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ABSTRACT: Iron-associated reductants play a crucial role in providing electrons
for various reductive transformations. However, developing reliable predictive tools
for estimating abiotic reduction rate constants (logk) in such systems has been
impeded by the intricate nature of these systems. Our recent study developed a
machine learning (ML) model based on 60 organic compounds toward one soluble
Fe(II)-reductant. In this study, we built a comprehensive kinetic data set covering
the reactivity of 117 organic and 10 inorganic compounds toward four major types of
Fe(II)-associated reductants. Separate ML models were developed for organic and
inorganic compounds, and the feature importance analysis demonstrated the
significance of resonance structures, reducible functional groups, reductant
descriptors, and pH in logk prediction. Mechanistic interpretation validated that
the models accurately learned the impact of various factors such as aromatic
substituents, complexation, bond dissociation energy, reduction potential, LUMO
energy, and dominant reductant species. Finally, we found that 38% of the 850,000 compounds in the Distributed Structure-
Searchable Toxicity (DSSTox) database contain at least one reducible functional group, and the logk of 285,184 compounds could
be reasonably predicted using our model. Overall, the study is a significant step toward reliable predictive tools for anticipating
abiotic reduction rate constants in iron-associated reductant systems.
KEYWORDS: abiotic reduction, Fe(II) reductants, inorganic compounds, machine learning, organic compounds, reactivity prediction

■ INTRODUCTION
Reduction is a crucial pathway for the transformation of
contaminants in anoxic environments. Ferrous iron, Fe(II), is
one of the most important reductants in natural anoxic
environments and reduces contaminants containing reducible
functional groups. Common reducible functional groups
include the nitro group (e.g., explosives, neonicotinoid
pesticides), halogens (e.g., chlorinated solvents, fire retard-
ants), −N−O− single bond (e.g., livestock pharmaceuticals),
and nitroso group (e.g., disinfection byproducts). Fe(II)-based
reductants include aqueous Fe(II), ligand complexed Fe(II)
(e.g., Fe(II) complexed with natural organic matter), structural
Fe(II) in minerals (e.g., magnetite, FeS, green rust), and
sorbed Fe(II) on mineral surfaces (e.g., Fe(II)-goethite).1 It is
important to note that sorbed Fe(II) on iron mineral surfaces
is not static and may react with the mineral to become surface-
or structure-associated. Different contaminants can be reduced
by these Fe(II) reductants through various mechanisms.
Environmental conditions such as pH can significantly affect
abiotic reduction, as the reduction potentials of the reactants
and the dominant reactive species can be greatly influenced by
solution pH.2 However, measuring reduction rates is time-
consuming and labor-intensive due to the diversity in
reductants, contaminants, and reducing environments. As

contaminants may be present in different anoxic environments,
such as groundwater, lake sediments, wetlands, and wastewater
treatment plants, and some of these contaminants persist,
predictive models for the reduction kinetics of all compounds
of concern are crucial.
Developing models with broad prediction applicability is a

complex task, especially when it comes to predictive models for
reduction, as available models are limited in their application
and only work for narrowly defined cases. Common models for
reduction reactivity, such as quantitative structure−activity
relationships (QSARs) and cross-correlations of logk, are
limited in their applicability, as they only work for specific
groups of compounds with the same reducible functional
group3 or two correlated reductants,4,5 under narrow reaction
conditions. Although some QSARs have attempted to
incorporate system descriptors like mineral reduction potential,
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mineral physicochemical properties, and pH,6−8 their ability to
account for diverse compounds is still limited. Other modeling
approaches, such as molecular modeling and chemoinfor-
matics, mainly predict compound properties rather than
handling complex environmental systems.9 Therefore, it is
essential to develop comprehensive models that cover the
abiotic reduction of diverse compounds by different reductants
under changing conditions.
Moreover, the mechanisms of abiotic reduction for common

reducible compounds by different Fe(II)-based reductants are
not fully understood,1 which hinders the development of
mechanism-based predictive models. To address this issue,
exploring data-driven models for compound reduction
reactivity would be timely and necessary, given the recent
rapid development and success in ML modeling.10 Recent
studies have successfully developed ML models based on both
compound descriptors and system descriptors for the
prediction of contaminant reactivity in oxidation,11 adsorp-
tion,12 and aerobic biodegradation.13 By leveraging such ML
models, it may be possible to develop comprehensive models
that can predict the reduction kinetics of diverse compounds
by different reductants under varying conditions, without
relying solely on mechanistic understanding.
In our recent work,14 we demonstrated the potential of ML

models by developing a single ML model for five groups of
reducible compounds, as opposed to five separate QSARs, each
QSAR for one group of reducible compounds. However, the
kinetic data set we used in our previous research only consisted
of 278 logk values for 60 organic compounds tested with one
Fe(II) reductant - Fe(II)-tiron complexes. The limited amount
of available kinetic data poses a challenge in developing a
comprehensive ML model for compound persistence evalua-

tion in various anoxic environments. Furthermore, we face the
challenge of a lack of a comprehensive data set that covers the
reactivity of all potentially reducible compounds toward all
known Fe(II) reductants under different conditions. Unlike
compound descriptors, reduction kinetic data are scattered
across individual articles and require significant effort to
collect. We believe that ML is the best candidate for reactivity
prediction, not only because of its ability to handle diverse
relationships between inputs and outputs but also because logk
can be directly predicted based on measured and calculated
descriptors capturing compound, reductant, and condition
features without knowing the exact mechanisms.14 Another
advantage of the ML approach is its tolerance to missing
values, a common challenge in almost all large data sets,10

whereas conventional approaches such as QSARs cannot
handle this.
This work represents a significant advancement over our

previous study due to several key factors. First, the develop-
ment of models for predicting the reduction kinetics of
heterogeneous Fe(II)-based reductants, such as Fe(II)-iron
oxides and Fe(II)-containing Fe(III) minerals and clay
minerals, has been a major challenge in the literature and
has not been achieved before. Second, there is a lack of
comprehensive data sets documenting the behavior of complex
reduction systems toward a wide range of organic and
inorganic compounds. Third, constructing such models is
fraught with difficulties, including ensuring data quality,
addressing missing data, and selecting appropriate descriptors
for training models to achieve reasonable predictions. Finally,
even after constructing an ML model, we lack an under-
standing of its internal processes, such as what it has learned
and its applicability to a wide range of reducing systems or

Figure 1. Flowchart of this work. Note: CG = compound grouping; RG = reductant grouping.
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within a broad chemical space. Consequently, this study
represents a significant breakthrough in the development of
models for predicting reduction kinetics and provides valuable
insights into the behavior of complex reduction systems toward
various chemicals. The methodology developed in this study
addresses the complexity of reduction systems, leading to more
accurate predictions and a better understanding of iron-
associated reductants in reductive transformations.
The objectives of this study were as follows: 1) to compile a

comprehensive data set of abiotic reduction kinetics for all
known organic and inorganic compounds using all available
Fe(II) reductants; 2) to develop a robust and comprehensive
prediction model that estimates compound persistence based
on predicted logk values; 3) to create a template/standard for
data collection and feature selection to predict abiotic
reduction rate constants; 4) to explore methods for
interpreting the obtained model and evaluating the extent of
model learning in a straightforward manner; and 5) to evaluate
the performance and applicability of the model for predicting
abiotic reactivity. To achieve these objectives, we conducted a
thorough literature review and extracted all relevant kinetic
data, reactants, and reaction conditions. We then preprocessed
the data by selecting input features and imputing missing data.
Different grouping strategies, compound representations, and
ML algorithms were compared to obtain the best ML models.
The SHAPley Additive exPlanations (SHAP) method15,16 and
comparison with known reduction mechanisms were used to
interpret the developed models. Finally, we applied the models
to general reactivity analysis for all compounds in the organic
data set and identified all potentially reducible compounds in

the US EPA Distributed Structure-Searchable Toxicity
(DSSTox) Data set.17 The overall workflow of this work is
summarized in Figure 1 (for more details, see Text S1.1 of the
Supporting Information (SI)).

■ MATERIALS AND METHODS
Kinetic Data Sets. All kinetic data used in this study were

collected from published journal papers on abiotic Fe(II)
reduction. The two kinetic data sets are summarized in an
Excel file provided in the SI. The data collection process
involved the following steps: (i) searching for relevant
keywords in all published research papers between 1995 and
2021 that investigated abiotic Fe(II) reduction; (ii) collecting
data from 107 papers out of over 300 collected papers,
including descriptors, references, compound names, acid/base
dissociation constants (pKa), dissolved Fe(II) concentration,
buffer concentration and pKa values, temperatures, and rate
constants, as summarized in Table 1; (iii) ensuring data quality
by checking the experimental design (e.g., control experiments,
triplicate experiments), procedure (e.g., rigorous operation in
N2/H2 atmosphere), and data analysis (e.g., correlation r2 >
0.90); (iv) preprocessing the data, including converting
SMILEs, calculating species acid/base fractions, standard
reduction potentials, structural Fe(II) content, and ionic
strength, and unifying the data format; (v) selecting initial
descriptors based on our understanding of the known
mechanisms and the availability of data, as summarized in
Table 1 for organic compounds and Table S3 for inorganic
compounds; and (vi) converting all the experimentally
measured rate constants to first-order constants (kobs, the log

Figure 2. Grouping strategies for organic compounds (top) and reductants (bottom). NCs are divided into nitro-aliphatics (NAls) and nitro-
aromatics (NArs). Depending on the α-atom to the -NO2, NAls were further split into -NO2 attached to nitrogen (NAl-N) and carbon (NAl-C).
PHCs are separated into C1- and C2-hydrocarbons. C1-hydrocarbons contained halogenated methanes, while C2-hydrocarbons consisted of
halogenated ethanes and ethenes. NOCs consist of aromatic N-oxides (ANOs), isoxazoles (ISXs), oximes (OXMs), and hydroxylamines
(NHOHs). ORCs include N-heterocyclic nitramine explosive compounds, nitroso compounds (NO), and sulfoxides and sulfones (SOs). The
numbers in parentheses in the small gray boxes mean (number of compounds, number of kinetic records) for the compounds or reductants. Boxes
with dashed lines indicate further refinement of the groups from top to bottom (e.g., from NCs in group 1 to NArs and NAls in group 2 and then
from NAls in group 2 to NAl-N and NAl-C in group 3). In addition to the group numbers (circled numbers inside the dashed boxes), the groups
have names, such as CG5NC and RG3, under the group numbers to indicate the sequence of the group refinement (e.g., CG5NC means there are
5 chemical groups with an NC being further refined from CG4). Lines indicate further refinement of the group.
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transform is applied later for modeling). See Texts S1.2−S1.5
for more details.
Grouping Strategies. Compounds sharing similar re-

ducible structural features and being reduced in similar
reductant systems were manually grouped together, as
summarized in Figure 2. Compound grouping strategies: The
organic data set covered a wide range of organic compounds
containing four major reducible functional groups: nitro-
compounds (NCs) containing nitro group(s) (-NO2),
polyhalogenated compounds (PHCs) containing halogen
atom(s) (-X, X = Cl, Br, F), nitrogen−oxygen containing
compounds (NOCs) having −N−O− single bond(s), and
other reducible compounds (ORCs) containing additional
reducible compounds (only limited numbers of reported
logkobs), such as N-heterocyclic nitramine, nitroso compounds,
sulfoxides, and sulfones. For compounds containing both -NO2
and -X, they were grouped based on the reported mechanisms:
when the two functional groups were attached to the same
aromatic ring, polyhalogenated nitroaromatics were grouped
into NArs because -NO2 was known to be reduced before -X;

18

when -NO2 and -X were attached to an aliphatic structure, they
tended to undergo reductive dehalogenation rather than nitro-
reduction, so they were grouped into PHCs.19,20 The inorganic
data set contained the top 10 most widely investigated
inorganic contaminants, as shown in Figure 1. Reductant
grouping strategies: This study only involved naturally occurring
Fe(II)-associated reductants. Initially, all Fe(II)-reductants
were separated into two major groups (RG2): ‘Homo’ and
‘Hetero’. ‘Homo’ refers to soluble Fe(II)-reductants containing
aqueous and complexed Fe(II), while ‘Hetero’ refers to
heterogeneous systems containing structural Fe(II) minerals
and sorbed Fe(II) on Fe(III) or non-Fe minerals. Different
grouping strategies were applied to refine major compound
and reductant groups into subgroups (Text S2.1). Additionally,
compound grouping based on calculated similarity levels was
conducted for comparison (Text S2.2).
Model Development and Evaluation. We developed

ML models to predict logk using a five-step procedure: (i)
Stratified shuffle split: The data set was stratified based on
various grouping strategies to preserve the percentages of
records for each group in the training and test data sets. (ii) 5-
Fold cross validation: The training data set was split into 5
consecutive folds to minimize model overfitting. One-fold was
reserved for model validation, while the remaining 4 folds were
used for model training. This process was repeated 5 times,
and the average result was used as the final model performance
of the training data set. (iii) Model prescreening: The optimal
combination of algorithms, encoders, and scalers with the
lowest root-mean-square error of the test data set (RMSEtest)
was selected. (iv) Bayesian optimization: The optimal
hyperparameters of the selected algorithm, encoder, and scaler
were obtained using Bayesian optimization. (v) Development
of final models: The final models were developed with the best
and simplest representations and essential descriptors selected
through Pearson correlation (removing highly correlated
numeric features) and Ablative analysis (investigating the
importance of each numeric feature by removing one
descriptor at a time). For more details, refer to Texts S2.3−
S2.7.
Model Interpretation. The developed models were

explained using two methods: (i) SHAP analysis, which
calculated the feature importance (SHAP values) by
comparing the predictive performance of models with and

without a certain feature, and (ii) mechanistic interpretation
for each group of compounds and the four types of reductants.
To explain the reaction mechanisms learned by the organic
model without direct input during training, we analyzed the
SHAP values and logkpred values. First, we correlated the SHAP
values of the Morgan Fingerprint (MF) positions for
monosubstituents of nitroaromatics with the reported
Hammett constants.21 Second, we predicted logkpred values
for selected compounds under experimental conditions similar
to those in studies reporting corresponding mechanisms (as
shown in the results). We then built linear correlations
between the logkpred values and known descriptors, either
extracted from previous studies for PHCs,22 sorbed Fe(II)
reductants,7 and structural Fe(II) reductants23 or calculated
using environmental software, MINEQL+5.024 for complexed
Fe(II)14 and Visual MINTEQ25 for free Fe(II) and structural
Fe(II),26 under selected conditions. More details can be found
in Texts S2.8−2.9.

Model Applicability. Model applicability was determined
using two methods: (i) the similarity method by establishing a
similarity threshold through computing the average similarity
of the test compounds to all training compounds [Compounds
with an average similarity score above the established threshold
were deemed predictable by the developed model.] and (ii)
the functional group method by identifying the MF positions
of the reducible functional groups in the organic data set.
Compounds containing at least one reducible functional group
were deemed potentially predictable for their reduction
kinetics, as determined by having 1s in the corresponding
MF positions. The applicability of the final organic model was
defined as all potentially reducible compounds in the EPA
Distributed Structure-Searchable Toxicity (DSSTox) Data
Set17 that had a similarity score above the established
threshold. General analysis was conducted by predicting logk
of organic compounds being reduced in default conditions,
which can be used to support exposure assessments (Text
S2.10). The default conditions were selected from the most
frequently reported reductant systems covering as many
different chemical groups as possible in the organic data set
(as shown in Results and Discussion). This selection was made
to ensure that the predictions were more reliable.

■ RESULTS AND DISCUSSION
Kinetic Data Sets. The compiled data set contained a total

of 2151 abiotic reduction rate constants for 127 compounds.
This included 1723 rate constants for 117 organic compounds
and 428 rate constants for 10 inorganic compounds, measured
under various conditions. The organic data set covered a wide
range of compounds (NCs, NOCs, PHCs, and ORCs),
reductants (free Fe(II), complexed Fe(II), structural Fe(II),
and sorbed Fe(II)), and conditions (acidic, neutral, and basic
pH, and varied ionic strength), as shown in Table 1 (organic
compounds) and Table S3 (inorganic compounds). The input
descriptors included compound descriptors and system
descriptors (for reductants and conditions), while the output
descriptor was logk (Text S3.1). Due to the complexity of the
compound structures, reductant types, and reaction conditions
in the data sets, it was challenging to identify trends/patterns
between logkobs and different descriptors for narrowly defined
compound groups and reductant types during the quantitative
analysis of the data sets (Text S3.2). Therefore, machine
learning models were developed.
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Model Development. One challenge in developing the
model with a relatively small and complex data set was that its
performance was not robust when randomly splitting the data
into training and test data sets. To ensure that the test set
could meaningfully evaluate model performance, different
grouping strategies were applied to ensure data similarity
between the test and training data sets.14 The higher the
compound similarity between the test and training data sets,
the better the predictive performance.13 RMSEtest was selected

as the metric to compare model performance in this study
(Figure S7). High RMSEtest indicates poor model performance,
while low RMSEtest indicates good model performance. A large
ΔRMSE (=RMSEtest − RMSEtrain) indicates overfitting, so a
small ΔRMSE is preferred. The model performance with
different grouping strategies is shown in Figure 3A,B
(RMSEtest) and Figure S8 (ΔRMSE). The general trends in
RMSEtest and ΔRMSE were the same, suggesting that the
developed models with better predictive performance

Figure 3. Plots of the model performance (RMSEtest) with MF based on (A) different reductant grouping strategies, (B) compound grouping
strategies, (C) compound representations, and (D) individual models for the organic compounds, inorganic compounds (RG2), and combined Org
+Inorg (RG2+CG(8 + 1) data sets, where CG(8 + 1) stands for 8 organic subgroups plus 1 inorganic group). The performance of best models for
(E) organic and (F) inorganic compounds. Absolute SHAP values for (G) the most important MF bits of all records in the training data set and
(H) the numeric descriptors in the organic data set. Model RG2+CG8 (RS = 90) was employed unless otherwise specified. Error bars are obtained
by retraining the models at different random states (RS = 50, 70, 90), which represented different splittings of the records in each group to form
different training and test data sets. The outliers in Figure 3E might occur because of (i) the scarcity of kinetic records for a compound toward a
specific reductant; (ii) insufficient descriptors to capture reductant characteristics (particle size, dominant reductant species, etc.); and (iii)
experimental errors of the original records in the kinetic data set (Table S6).
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(RMSEtest) were less likely to have overfitting issues (ΔRMSE).
Among all the grouping strategies, RG2+CG8 provided the
lowest RMSEtest (= 0.62) and ΔRMSE (= 0.01) and was
selected as the organic model, and RG2 had the lowest
RMSEtest (= 0.78) and ΔRMSE (= 0.55) and was selected as
the inorganic model. The worse performance of the inorganic
model might be due to the small data set, which had more than

half of the records for Cr(VI) (261 out of 428). The effect of
compound grouping strategies on the inorganic compounds
was not investigated because the data set only consisted of 10
compounds. Further discussion of the effect of grouping
strategies is in Text S4.2. Note that grouping the compounds
based on different similarity levels did not improve the model
performance and was not investigated further (Figure S9).

Figure 4. Plots for the mechanistic interpretation of the model (RG2+CG8, RS = 90) observed compound structure effects for (A) nitroaromatics
(NArs), (B) ISXs, (C) ANOs, and (D-I) PHCs. (A) Correlations between SHAP values of electron donating/withdrawing groups and Hammett
constants (inductive effect). (B−C) logkpred of ISXs and ANOs by Fe(II)-tiron (under the same conditions as in previous studies28−30). Red, green,
and purple bars indicate type I, II, and III complexations, respectively. Example structures of the three types of complexes for ISXs and ANOs are
listed on the left side of Figure 4-C. The numbers in circles represent ANO structures containing ① two −N−O− bonds, ② one −N−O− bond and
one ring-N, and ③ only one −N−O− bond. Correlations of logkpred of PHCs by (D-F) FeS and (G-I) Fe(II)-tiron with three compound
descriptors: DR‑X′, ΔG0′, and ELUMO. Solid squares denote the relevant kinetics records were covered in the data set; open squares denote no
records in the data set (only model predicted logkpred); circles represent PHC containing Cl- and F-groups; and triangles indicate PHC containing
Br-groups. Conditions in (D-F): [FeS] = 33 g/L, Fe(II)/Fe(III) = 1, total Fe content in solid w/w = 0.64, [Fe(II)]ads = 0 mM, I = 0 M, pH = 7,
[compound] = 20 μM; conditions in (G-I): [Fe(II)] = 0.5 mM, [tiron] = 10 mM, I = 0.25 M, pH = 7, [compound] = 20 μM.
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Our goal was to develop environmental fate models that
accurately represent the essential features of reaction
components (i.e., chemicals, reductants, and conditions),
instead of relying on different algorithms or improving
algorithms based on small data sets. To achieve this, we
investigated different compound, ligand, or buffer representa-
tions, as shown in Figure 3C and Figure S10. We ultimately
chose to represent compounds and ligands using MF and
categorical descriptors, respectively, without specifying the
buffer identity, as this resulted in the simplest model with the
best performance (more details in Text S4.3). Figure 3D
indicates that the model performance followed the order of
organic compounds > organic+inorganic compounds >
inorganic compounds, leading us to develop separate models
for organic and inorganic compounds. We provide details on
the components used for the final model development in Text
S4.3 and Table S5. The final model’s performance is shown in
Figure 3E,F, with most predictions falling within one log unit
of the observed values.
Model Interpretation. Although our ML models have

demonstrated exceptional predictive performance, it is essential
to ensure that they follow known reaction mechanisms to
produce reasonable predictions. To achieve this, we initially
quantified the importance of all input features to verify if the
models correctly captured the influence of each feature on the
compound reactivity. This approach has gained increasing
popularity in recent literature for interpreting ML models.10

However, this technique has limitations as there are numerous
reduction mechanisms for various compounds toward different
Fe(II) reductants. The feature importance only reflects a
feature’s contribution to the model prediction and cannot
reflect the detailed mechanisms. Therefore, we further
interpreted the models by using them to obtain logkpred of
individual compound groups toward selected reductants or of
selected compounds toward all four reductant groups. These
compound and reductant groups were chosen because they
have been extensively examined in the literature regarding their
reaction kinetics and mechanisms. QSARs have been
established between logkobs and well-known molecular/
reaction descriptors such as reduction potential,6,7 energy of
the lowest unoccupied molecular orbital (ELUMO),

14,22,27 extent
of complexation between the compound and reductant,28−30

and abundance of the dominant reductant species.18,27,31

SHAP Analysis. The significance of a descriptor to all
compounds was denoted by the sum of the absolute SHAP
values of that descriptor for all training records. From left to
right in Figure 3G, the ranking of the MF bits illustrates their
relative significance in the abiotic rate prediction. Feature
1873, representing a π bond in the form of carbon−carbon
double bonds and aromatic rings, had the highest absolute
SHAP value so it was the most influential structural moiety for
all organic compounds. This demonstrated the significant
influence of resonance structures on the compound reactivity.
Indeed, feature 1873 was also found to be key for the
individual compound groups (Figure S13). The three major
reducible functional groups�nitro group (753, 1195), −N−
O− single bond (695), and halogen atoms (216: Cl attached
to aromatic ring)�were also correctly recognized to be
important based on the large absolute SHAP values (Figure
3G). For PHCs, the saturated hydrocarbon structure (114)
was shown to be the second most dominant feature, next to the
π bond (1873), revealing the importance of aliphatic versus
aromatic structures in logk prediction for PHCs.20 Feature

1152 is not a reducible functional group, but NOCs that
contain -NH- in the side chain can complex with reactive
reductant species to facilitate reduction.29

The two condition descriptors were more influential than
the reductant descriptors, followed by the chemical descriptors
(Figure 3H). Consistent with mechanistic findings that k was
highly pH dependent,1 pH was identified as the most
important numeric descriptor, because it could affect the
dominant species of both the compound and reductant (Text
S4.6). The importance of other descriptors was smaller but still
non-negligible, as also supported by the ablative analysis results
(Figure S12). The species fraction was shown to be the least
important because most compounds in the data set were in the
neutral forms. The data scarcity, therefore, led to the impact of
compound speciation not well-captured by the model. SHAP
analysis of the inorganic models and other organic models is
discussed in Text S4.6.

Mechanistic Interpretation of the Model Observed
Compound Structure Effects. Successful models should
capture the mechanistic relationships of logk. For NArs, the
Hammett constants indicate the electron donating/with-
drawing ability of different substituents. Stronger electron
withdrawing groups have a larger effect on logk, meaning larger
SHAP values. As shown in Figure 4A, the SHAP values of the
monosubstituents in NArs correlated well with their
corresponding Hammett constants. For NOCs, the logkobs
values toward Fe(II)-tiron can be facilitated by the formation
of strong complexes and follow the decreasing order of type I >
type II > type III.28−30 Consistently, logkpred was observed to
follow the same order, where type I and II complexations were
more reactive than type III complexation for both ISXs and
ANOs (Figure 4B,C, Tables S8−S9). Besides, the ring
structure of ANOs was proven to have a major influence on
logkobs, where the ANOs with two −N−O− bonds were more
electron positive, and hence more reactive, than the ANOs
with one −N−O− plus one ring-N, followed by the ANOs
with one −N−O− alone.28 This pattern was also learned
correctly by the model (Figure 4C).
Studies have reported good linear correlations between

logkobs of PHCs and different compound descriptors (R2 =
0.80−0.95), such as bond dissociation energy of the weakest R-
X bond (DR‑X′), the standard free energy of one-electron
reduction (ΔG0′), and ELUMO.

22,27 Figure 4D-I demonstrates
similar strong linear correlations of logkpred by two Fe(II)
reductants with the three descriptors (R2 = 0.74−0.89).
However, the logkpred of ethenes by Fe(II)-tiron only showed
correlation with ELUMO but not with the other two descriptors
(Figure 4G-I). This is because the data set contained kinetic
records for the reduction of all PHCs by FeS but only those of
methanes and ethanes, not ethenes, by Fe(II)-tiron. The good
predictive ability of ELUMO in this work was consistent with the
finding in a previous QSAR study32 where ELUMO was most
frequently used regardless of the reaction mechanism. Similar
to observations,27 correlations of logkpred with ΔG0′ were
affected by halogen leaving groups (Cl, F vs Br). Predictions of
ethenes are shown as outliers in Figure 4G-H, suggesting that
the developed model was unable to expand its knowledge
when no records were included. These results revealed that,
although we did not specify compound structure effects during
the model training process, the model correctly learned their
effects in abiotic reduction, validating it to be mechanistically
viable. This was likely because these features had been
imbedded in the compound structures, which were part of
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the input features. Nevertheless, the obtained model was
unable to create new knowledge; instead, they were mainly
trained to make predictions based on the given information.
See more discussion for the model reflected effects of organic
and inorganic compounds in Text S4.7.
Mechanistic Interpretation of the Model Observed

Reductant Effects. For complexed Fe(II), logkobs of organic
compounds can linearly correlate with the concentration of the
dominant reactive species.18,27,31 Similarly, logkpred of three
representative organic compounds, 4- chloronitrobenzene (4-
Cl-NB), hexogen (RDX), and 1,1,1-trichloroethane (1,1,1-
TCA), toward Fe(II)-tiron correlated well with [FeL2

6−] under

changing pH, ionic strength, and tiron concentrations (Figure
5A). Recent work also revealed a good linear correlation
between the surface area normalized logkobs of sorbed Fe(II)
on different Fe(III) oxides and their reduction potentials
(EH’s) under given pH conditions.7 Similarly, logkpred for the
same Fe(III) oxides under the same reported conditions
followed a comparable linear correlation (Figure 5B). For
structural Fe(II), related mechanistic studies provided
evidence for the dominant role of the maghemite-Fe(II)
redox couple on the reduction potentials of magnetite
suspensions in the presence of aqueous Fe(II);23 and for
Fe(OH)2(s) precipitates being the effective reactive mineral

Figure 5. Plots for mechanistic interpretation of the model (RG2+CG8, RS = 90) observed reductant effect based on linear relationships of logkpred
with (A) concentration of the 1:2 Fe(II)-tiron complex (FeL2

6−) in Fe(II)-tiron; (B) (−EH/(0.059 V) − pH) of NArs with sorbed Fe(II) (under
the same conditions as in reference 7); (C) the measured redox potentials of maghemite-Fe(II) in the presence of different amounts of Fe(II); and
(D) concentrations of Fe(OH)20/Fe(OH)2(s) for TCE reduction by magnetite/Fe(II). Cross-correlations for (E) NCs, (F) PHCs, and (G) NOCs
between logred by sorbed Fe(II) (Fe(II)-magnetite for NCs, Fe(II)-goethite for PHCs and NOCs) versus by complexed Fe(II) (Fe(II)-tiron)
(under the same conditions as in reference 5). In (A), the concentrations of [FeL2

6−] were calculated by MINEQL+5.024 (under the same
conditions as in reference 27). In (D), the amount of RMI was quantified as the saturation index (SatI) and calculated by Visual MINTEQ25 based
on =SatI log Q

K sp
, where Q is the ion product of the solid (=[Fe2+][OH−] for Fe(OH)2(s)), and Ksp is the solubility constant of the solid. SatI

indicates the abundance of Fe(OH)2 in the system. A negative SatI value indicates undersaturation, zero indicates solid at equilibrium, and positive
SatI indicates oversaturation. (Conditions: [Fe(II)] = 5, 10, 15, 20, and 25 mM; I = 0.1 M; and pH = 7.5 and 8.0 in the presence of magnetite.)
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intermediates (RMIs) in the abiotic reduction of two
chlorinated solvents, trichloroethene (TCE) and tetrachlor-
oethene (PCE), by clay minerals in the presence of Fe(II).33

The obtained logkpred of TCE and PCE in magnetite/Fe(II)
systems linearly correlated with the measured maghemite-
Fe(II) redox potential and the abundance of Fe(OH)2(s)
(Figure 5C−D for TCE, Figures S16−S17 for PCE). The
above three findings strongly confirm that the model captured
the reductant effects.
Cross-Correlations. A previous study5 reported linear

correlations of logkobs of various organic compounds, including
substituted nitrobenzenes, polyhalogenated methanes, and
NOCs, between two reductant systems: sorbed Fe(II) and
complexed Fe(II), that is, cross-correlation (another variation
of QSARs). The presence of the cross-correlations can be
attributed to the similarity in system descriptors, such as pH,
Fe(II) concentration, and reduction potential, that influence
the reactivity of these two reductants. However, one challenge
was to obtain logk of different organic compounds under the
same conditions because their reactivity might differ a few
orders of magnitude and the conditions, such as compound
concentration, Fe(II) concentration, ligand concentration, and
pH, varied in wide ranges during experimental measurements.
With the developed model in this work, we were able to obtain
logkpred for all organic compounds under the same, hypo-
thetical conditions. Compared to the reported cross-
correlations with logkobs (R2 = 0.76−0.95),5 this work (Figure
S19) showed similar R2 = 0.84−0.87 for the cross-correlations
with the same compounds. Similar R2 values were also
observed for NOCs with a small (0.84 in Figure S19C) versus
a large (0.86 in Figure 5G) number of NOCs.
When the cross-correlations were expanded to all NCs, the

aromatic and aliphatic structures of the nitro compounds
differed in the correlation pattern (Figure 5E), where the
aromatic compounds followed a linear cross-correlation,
whereas the aliphatic compounds did not. One possible reason
is that the applied condition for the model predictions was
only relevant for NArs in the training data set, thus causing
biased predictions when expanded to NAls. Note that
predictions for the NAl reactivity can be improved when
more data become available. All PHCs (Figure 5F) examined
in this work followed the same cross-correlation, except for
three chlorinated nitro-methanes (mono-, di-, trichloronitro-
methane). When attributing the three chloronitromethanes to
NCs (open symbols in Figure 5E), the correlation was
consistent with the other NAl compounds. This suggested that
the nitro group in these compounds was reduced prior to -Cl
based on the model, but this contradicted the experimental
results.19,20 The likely reason for this “error” was that
compounds containing multiple reducible functional groups
react differently from those only containing one reducible
functional group. Sufficient records were also required when
training a trustable ML model to capture the dominant
reducible functional group(s). The halogenated nitroaromatic
compounds had 226 records in the data set, but there were
only 16 records for the three chloronitromethanes. So, the
model could not identify whether the -NO2 or -X was the
primary reducible functional group for halogenated nitro-
aliphatic compounds.
Model Applications. The model applicability was first

calculated based on similarity levels and showed that query
organic compounds with an average similarity above 0.06
toward the training compounds were predictable (Figure S20).

Such a low similarity level proved that the developed model
was robust and could be applied to a broad range of organic
compounds. However, this method did not consider the
importance of reducible functional groups in the compound
structure, as the similarity level was calculated based on the
overall structures. So, we employed the functional group
method and determined the model applicability for query
compounds based on whether the query compounds had the
reducible functional groups. A list of the essential MF bits for
each reducible functional group is shown in Table S11. For
example, having all 1s at the MF positions of 650, 715, 753,
838, and 1963 suggests the presence of a nitro group.
The DSSTox data set, containing a total of 853,766

environmentally relevant compounds, was our target database
to define the applicability domain of the developed model.
Among the DSSTox compounds, we found that 5.8%
contained -NO2, 6.4% contained -Br, 15.3% contained -Cl,
9.4% contained -F, 0.28% contained ANO, 0.26% contained
ISX, 0.20% contained OXM, and 0.01% contained NHOH.
Overall, a total of 321,900 compounds (37.7%) in the DSSTox
data set contain at least one of the identified reducible
functional groups (the other 62.3% are likely not reducible by
natural Fe(II) reductants). We then combined the similarity
calculation and the functional group method to further
evaluate the model applicability of the identified 321,900
compounds and found that 285,184 of them (89%) had the
similarity levels above 0.06, so the developed model could
provide reasonable estimations for these compounds toward
the four types of Fe(II) reductants under different conditions.
But because only a small number of organic compounds were
in the training data set, future work is warranted to evaluate the
uncertainty in the model predictions and to improve the model
applicability. Unlike the organic compounds, inorganic
compounds have no common reducible functional groups, so
the developed model is only recommended for the 10
inorganic compounds included in this work. Finally, the
developed models can be used to support exposure assessment
by providing logkpred for a query chemical under conditions of
interest (examples of relevant reaction conditions and general
analysis of the chemical reactivity under these conditions can
be found in Text S4.11).

■ ENVIRONMENTAL IMPLICATIONS
This study developed the largest and most comprehensive data
set for abiotic reduction kinetics of all available Fe(II)-
associated reductants. Based on this data set, we developed
comprehensive models that consider the reductant, compound,
and conditions. These models not only predict logk for
compounds in the data set but also provide reasonable
reactivity estimations for new query compounds containing
reducible functional groups covered in the data set. The
predicted reactivity can be used to (i) estimate compound
persistence in natural reducing environments and help evaluate
its potential risks; (ii) evaluate the potential to use reduction as
a natural attenuation or site-remediation approach, based on
which one can further engineer the treatment conditions to
yield better treatment outcomes; and (iii) gain insights into the
reaction mechanisms, such as the rate-limiting steps, by
correlating the predicted reduction rate constants (logkpred)
with relevant molecular/reaction descriptors.7

Despite the aforementioned achievements, further model
improvements are still necessary. One limitation of the current
models is the lack of sufficient descriptors for solid phases,
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such as particle size, extent of aggregation, facets, defects,
interlayer cations, conductivity, and other parameters that
significantly affect reductant reactivity.1 For instance, smaller
solid particles with higher surface areas are known to be more
reactive reductants,34 but the current models cannot differ-
entiate the reducing ability of the same type of mineral solids
with different particle sizes or surface areas due to insufficient
data. To enhance our understanding of the reaction
mechanisms, we can explore other opportunities such as
expanding the range of reducing conditions to cover more
records across a wider pH spectrum and increasing the number
of records that investigate the impact of various types of
dissolved organic matter. By doing so, we can construct a more
diverse and comprehensive data set, leading to significant
improvements in the performance of our models. Additionally,
it is crucial to expand the data set to more complex and
realistic reducing environments, such as natural anoxic
sediments, where multiple types of minerals and cosolutes
coexist and interact, allowing the corresponding model to more
accurately predict the reduction reactivity of a given
contaminant.
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