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Diffusion of Information on Networked Lattices by Gossip
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Abstract— We study time-dependent dynamics on a network
of order lattices, where structure-preserving lattice maps are
used to fuse lattice-valued data over vertices and edges. The
principal contribution is a novel asynchronous Laplacian,
generalizing the usual graph Laplacian, adapted to a network of
heterogeneous lattices. This resulting gossip algorithm is shown
to converge asymptotically to stable ‘“harmonic” distributions
of lattice data. This general theorem is applicable to several
general problems, including lattice-valued consensus, Kripke
semantics, and threat detection, all using asynchronous local
update rules.

I. INTRODUCTION

The use of the graph Laplacian to diffuse information over
networks is well-established in classical and contemporary
work ranging from opinion dynamics [1] to distributed multi-
agent consensus [2] and control [3], synchronization [4], [5],
flocking [6], and much more. In the past decade, Laplacians
that are adapted to handle vector-valued data, such as graph
connection Laplacians [7], [8] or matrix-weighted Laplacians
[9], have been revolutionary in signal processing processing
[10], [11] and machine learning [12], [13].

While the ultimate form of a generalized Laplacian is
as yet not present in applications, there are hints of a
broader theory finding its way from algebraic topology to
data science. The Laplacian from calculus class and the graph
Laplacian are two extreme examples of a Hodge Laplacian.
These are operators which act diffusively on data structures
called sheaves [14]: see §1I-B for brief details.

The present work is motivated by extending recent work
on distributed consensus and data fusion from the setting of
vector-valued data to that of data valued in more general
partially-ordered sets and, specifically, lattices (in the alge-
braic as opposed to discrete sense): see §II-A. The fidelity
with which lattices (including Boolean algebras) can model
logical structures makes them appealing for representing
distributed systems with complex logical behaviors, such
as preference posets [15], robust linear temporal logic [16]
and discrete signal processing [17]. Maps between lattices
preserving structure and their residuals model the interchange
of information between neighbors: see §IV-A.
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Related work: The consensus literature is vast and
includes Laplacian-based protocols [18] and (asynchronous)
gossip-based protocols [19], [20]. Several works consider
consensus on general functions [21], including max/min
consensus [22], [23]. In the area of distributed computing,
centralized branch-and-bound style algorithms for reaching
agreement on lattices have been discovered [24]. Sheaves
have shown promise in multi-agent systems, particularly
from the perspective of concurrency [25], routing [26], [27],
opinion dynamics [28] and sensor fusion [29].

The Bayesian approach to modeling knowledge/belief
propagation via graphical models [30] is standard but funda-
mentally different than the approach here. Modal logics, par-
ticularly temporal logics, have seen numerous applications in
model-checking [31] and control systems [32]-[35]. There
are several use-cases of multimodal logics in the analysis of
message-passing systems [36].

The authors previously defined a synchronous [Tarski]
Laplacian and proved a Hodge-style fixed-point convergence
result [37], which is extended here to the asynchronous
setting. The gossip algorithm introduced in this paper gener-
alizes an algorithm called the alternating algorithm [38, §3]
introduced to synchronize event times of a pair of coupled
discrete event systems, each described by a max-plus linear
system [39]; our algorithm goes far beyond this in computing
sections of (nearly) arbitrary lattice-valued network sheaves.

Outline: Background material (§II) and problem spcifi-
cations (§1II) are followed by details of a novel Laplacian for
asynchronous communication on networks of lattices (§IV).
It is here that the main results on stability and convergence
are proved. The subsequent section (§V) detail applications
to multimodal logics, by using Kripke semantics, leading to
a dual pair of semantic and syntactic Laplacians for diffusing
knowledge and beliefs. This work ends (§VI) with some
simulation.

II. BACKGROUND
A. Lattices

Ordered sets model data types such as relations, concepts,
rankings, matchings, concurrent events, as well as other
taxonomies of information that are hierarchial, epistemic, or
logical in nature: both in §V. Lattices double as ordered
sets and algebraic structures consisting of two “merging”
operations called meet and join.

Definition 1: A lattice is a tuple Q = (Q,A,V,0,1).
@ is a set with binary operations, A (meet) and V (join),
satisfying the following axioms: 1) A/V are commutative and
associative; 2) forall z € Q, c Az =x and zVz = x;
3) there exist elements L, T € ) such that 1 and T are
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the identity of vV and A respectively; 4) for all x,y € Q,
x=aV(@Ay)=xA(xzVy).

Equivalently, lattices can be viewed as (partially) ordered
sets (Q,=<) with x < y & x Ay = x or, equivalently,
T =1y < xVy = x It will be useful to think of lattices
as both partially-ordered sets and algebraic structures: the <
notation will be crucial in proofs of all main results.

Example 1: Suppose S is a set. The powerset 2° is a
(Boolean) lattice (29,N,U,0,S). The truth values 2 =
({0,1},A,V,0,1) is a lattice. Other important lattices are
embedded in 2° such as lattices representing ontologies
[40], partitions [41], rankings, preferences [15], [42], and
information-theoretic content [43]. The extended real line
R = RU{—00,00} is a lattice with min and max. Cartesian
products of lattices are lattices with the component-wise meet
and join operations; the lattice R” and its matrix algebra is
integral to the study of discrete event systems [39], 2" to
logic gates [44].

In order to work with systems of lattices, we will work
with lattice maps ¢ : P — Q. Such a map is order
preserving if x < y = ¢(x) < ¢(y) and is join preserving if
ez Vy) =e(x)Ve(y) and ¢(Lp) = Lg. Join preserving
maps are automatically order preserving. A dual definition
of meet preserving maps holds with similar consequences.

B. Network Sheaves

Suppose G = (V, E) is an undirected graph (possibly with
loops). An edge between (not necessarily distinct) nodes @
and j in V is denoted by an unordered concatenated pair of
indices ij = ji € E. The set N; = {j : ij € E} are the
neighbors of 1.

Given such a fixed network GG, we define a data structure
over G taking values in lattices. Such a structure is an
example of a cellular sheaf [45], [46] (though the details
of sheaf theory are not needed here).

Definition 2: A finite lattice-valued network sheaf F over
G is a data structure that assigns:

1) A finite lattice (F(¢),A;,V;) to every node i € V.

2) A finite lattice (F(ij), Aij, Vi;) to every edge ij € E.

3) Join-preserving maps

Fa) 225 Flij) E22 7 () (1)

for every 15 € E.

In most applications we imagine, the maps from node data
to edge data will be join-preserving. Thinking of a sheaf as
a distributed system, the state of the system is given by an
assignment of vertex data: a tuple x € [,y F (i) of choices
of data z; € F (i) for each i. The data over the edges and the
maps F;jq;; are used to compare the compatibility of vertex
data in an assignment. The following definition is crucial.

Definition 3: The sections of F are assignments x that
are compatible: for every ij € F,

Figij(®i) = Fjaij(x;)- 2)
The set of sections of F is denoted I'(F). These are the

“globally compatible” states. In the simplest example of a
constant sheaf (which assigns a fixed lattice to each vertex

and edge, with identity maps between vertex and edge data),
sections are precisely assignments of an identical element to
each vertex (and edge): consensus over the network.

Example 2: The true utility of a sheaf lies in heterogene-
ity. For example, assign to each vertex ¢ € V a finite set
S; and to each edge ij € E a finite set S;; and set-maps
S; — S;; + S;. This induces several interesting sheaves of
lattices. The powerset sheaf assigns the powersets (lattices of
all subsets with union and intersection) to vertices and edges,
with induced maps. The partition sheaf assigns the partition
lattices (partitions of set elements with partition union and
refinement) to vertex and edge sets, again with induced maps.
More examples from formal concept analysis are less well-
known [40], but very general.

III. PROBLEM FORMULATION

An abstract formulation is sufficient, but, for concreteness,
consider a scenario in which a collection of geographically
dispersed agents collect, process, and communicate data
based on local sensing. Proximity gives rise to a commu-
nications network, modeled as an undirected graph G. The
data are lattice-valued, but each agent ¢ € V' works within its
lattice F (i), assumed to be finite. In order for two proximate
agents ¢ and j to communicate their individualized data
(residing in F (i) and F(j) respectively), they must “fuse”
their observiations into a common lattice F(ij) by means of
structure-preserving lattice maps. Together, the system forms
a network sheaf.

The problem envisioned is distributed consensus by means
of asynchronous communication and updates. By consensus,
we do not mean that everyone agrees on a particular fixed
lattice value; rather, each node agrees upon choices of local
data that, when translated and compared to all neighbors’
data over communication edges, agree. In the context of
a sheaf of lattices, this is precisely the condition of an
assignment being a section. The synchronous version of
this problem — everyone communicates simultaneously with
neighbors and updates immediately — is solvable via the
Tarski Laplacian as per [37]. The asynchronous problem
is our focus here. Select sensors broadcast their data to
neighboring nodes according to some firing sequence.

Denote by 7 : {0,1,2,...} — 2V the firing sequence of
selected nodes which broadcast as a function of (ordered,
discrete) time. At t € {0,1,2,...}, active nodes ¢ € 7
broadcast to each agent j € N;.! No other nodes broadcast.

This notion of a firing sequence suffices to cover
asynchronous updating. The regularization of time to
{0,1,2,...} is a convenience and does not impact results.
The firing sequence is, in practice, not known a priori. This
is of no consequence since our results will hold independent
of the choice of firing sequence. The following assumptions
will hold throughout.

UIf desired, one may choose a selection of egdes incident to the node and
broadcast only to those neighbors. This results in more bookkeeping and
a refined version of liveness, below, but does not substantially change the
results or proofs.
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Assumption 1 (Latency-Free): Within a single time in-
stance t, nodes may broadcast (if firing), receive data (al-
ways), and compute (always).

Assumption 2 (Liveness): For all i € V and for every ¢ €
{0,1,2,...} there is a t/ > t such that ¢ € 7. As such,
agents neither die nor are removed from the system.

Assumption 3 (Cross-Talk): Suppose ¢ is an agent and
j,j' € N; N7, are active neighbors. Then, j and j' can
simultaneously broadcast to 7 without resulting in a fault.

Under these assumptions, we wish to solve the following
distributed asynchronous constrained agreement problem.
Assume 1) a network G = (V, E); 2) a sheaf F of lattices
over G; 3) an firing sequence 7 : {0,1,2,...} — 2V
of broadcasts; and 4) an initial condition x[0], being an
assignment of an element x, € F(v) to each agent v € V.
Using only local communication subordinate to the firing
sequence 7, evolve the initial condition x[0] to a section
x € I'(F).

This problem has elements of consensus (because of the
local agreement implied in a section) as well as data fusion
(due to the lattice maps merging data from vertex lattices to
edge lattices).

IV. AN ASYNCHRONOUS LAPLACIAN

Our method for solving this asynchronous constrained
agreement problem is to define an asynchronous harmonic
flow on the sheaf by localizing the Tarski Laplacian of [37].

A. The Tarski Laplacian

Throughout, F is a finite lattice-valued sheaf over a network
G. Our first step towards a Laplacian involves preliminaries
on residuals [47], also known as Galois connections [48].
These are a type of adjoint or lattice-theoretic analogue of
the familiar Moore-Penrose pseudoinverse in matrix algebra.

Definition 4: Given a join-preserving lattice map ¢ : P —
Q, its residual is the map ¢ : Q — P given by

=\{al el <p}

Like an adjoint, it reverses the direction of the map,
resembling a pseudoinverse more closely in some cases.
The following two lemmas have straightforward proofs via
definitions.

Lemma 1: Suppose ¢ : P — Q is join-preserving and
injective. Then o+ o ¢ = id.

Lemma 2: For ¢ : P — Q join-preserving, the following
identities hold:

1) for all p € P, o™ o ¢(p)
2) for all p e P and ¢ € Q,

p)sa e p=<et(a) 3)

A lattice-theoretic analogue of the graph Laplacian — the

Tarski Laplacian — was introduced in [37]. For F a network

sheaf of lattices over G and x an assignment of vertex data,
the Tarski Laplacian L acts as:

= p; and

The key construct is to localize this operator subordinate to
a firing sequence 7.
Definition 5: The asynchronous Tarski Laplacian is the

map
L:{0,1,2,...} x [[ Fti) = [ F®)

icV icV

which acts on an assignment x as

(Lix); = )\ FiaFicis(x;). 5)

JEN;NT:
This is a restriction of the Tarski Laplacian (4) in that at

time ¢, only immediate neighbors to broadcasting nodes are
updated; all other nodes are unchanged. In the extreme of a
firing sequence where all nodes broadcast at all times, the
full Tarski Laplacian ensues.

B. Gossip and harmonic states

The rationale for the Laplacian moniker lies in the efficacy of
L as a diffusion operator on states. Given an initial state x[0],
heat flow is defined by the following discrete-time dynamical
system:

x[t + 1] = (id AL) x[t] ©6)

with initial condition x[0] € [, F (7).

Heat flow is the analogue of iterating the random-walk
or Perron operator I — eL (where I is the identity matrix,
L the graph Laplacian matrix, € > 0) on scalar-valued data
on a graph [18]. The principal result of this work is a type
of “Hodge Theorem:” the harmonic states (the equilibria of
id AL is a proxy for the kernel of the Laplacian) are exactly
the globally consistent solutions to the sheaf.

Theorem 1 (Main Theorem): For any finite lattice-valued
network sheaf F with join-preserving structure maps and
any firing sequence 7 satisfying liveness, the sections of F,
I'(F), are precisely the time-independent solutions to heat
flow (6).

The argument in the proof of Theorem 1 in Appendix A
immediately implies an iterative protocol we call gossip for
an agent ¢ € V to converge to a harmonic state by firing a
finite number of times. The protocol is exactly the localized
heat flow (6).

Local assignments x;[0] € F(i) are initialized by all
nodes, then, in a series of rounds ¢t = 0,1, 2, ..., proceed as
follows. Each node i listens for adjacent nodes broadcasting
their “fused observation” Fjq;; (x;[t]), j € N;. Upon
receiving the “encoded” message, ¢ applies the residual map
.7-';;” to Fjgij (x[t]). At the end of each round, 7 aggregates
all of the “decoded” messages, including the original local
assignment x;[t], taking meets. The resulting element of F ()
is the local assignment for the new round, x;[t + 1].
Finiteness of F (i) implies the gossip algorithm terminates
in finitely many iterations since x[t + 1] < x[t], or else x][¢]
is a section.’

2In fact, a weaker condition, that Hiev satisfies a descending chain

/\ <11J JQU x ]) “4) condition, is possible if we require F;g;; to preserve joins of an arbitrary
JEN; subset.
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V. SEMANTICS

Examples of the Tarski Laplacian and heat flow are
especially well-suited to distributed multimodal logic, where:
vertices of a network correspond to agents; edges are com-
munications between agents; assignments are sets of states
associated to each vertex; and sections are assignments that
express a consensus of knowledge across the network. For
this we require the basic theory of Kripke semantics [36].

A. Kripke semantics

Definition 6: A Kripke frame F = (S,K1,Kq,...,K,)
consists of a set of states, S, and a sequence of binary
relations /C; € S x S used to encode modal operators. A
Kripke model over a set ® of atomic propositions consists of
the data M = (F, 7), where 7 : S — 2% validates whether
or not a state s € S satisfies an atomic proposition p € ®.

Suppose ¢ is a formula; then one writes (M, s) | ¢ if
s satisfies the formula ¢ in the model M. The semantics
of a Kripke model is defined inductively using the symbols
true, A, and — in their typical usage:

1) (M,s) = true for all s € S.
2) For p € ® atomic, (M, s) = p if and only if p € 7(s).
3) For ¢ an formula, (M,s) | —¢ if and only if
(M, s) = .
4) For ¢, formulae, (M,s) |E ¢ A ¢ if and only if
(M, s) E ¢ and (M, s) E .
There are additional (dual) modal operators on formulae, K;
and P; (typically corresponding to knowledge and possibil-
ity), based on the binary relations ;. One writes (M, s) =
K;p if and only if (M,t) = ¢ for all ¢ € S such
that (s,t) € K;. The dual operators P; are defined via
P, = —K;—p. Standard operations in propositional logic
such as ¢ — 1 are derived in the usual way [49]. By abuse
of notation, we write = ¢ if (M, s) = for all s € S.
Depending on a number of axioms placed on the modal
operators K; and P;, one has rich interpretations for K; and
P;. For instance, the Knowledge Axiom [36]

FKip — ¢ (7N
and the Introspection Axiom [36]

together suggest the interpretation of K;p and P;p: agent i
knows o and agent j considers @ possible, respectively. On
the other hand, if (7) not hold, but the Consistency Axiom
[36] does hold,

E-K;(false), 9

K, and P;y could be interpreted as: agent © believes ¢ and

agent i does not disbelieve (i.e., is undecided about) .
The set of all finite formulae inductively obtained by &

is called the language denoted L£(®) (omitting the ® where

3Belief is assumed to satisfy the law of excluded middle: believing
something does not make it true.

understood). For ¢ € £, and model M, the intent of ¢ is
the subset

pM={seS| (M,s)F ¢}

Formulae ,1) € L are semantically equivalent if o™ =
1»™. Semantic equivalence is an equivalence relation, written
© = 1, with L= (M) denoting the set of equivalence classes
in £ up to semantic equivalence.

B. Semantic diffusion

Our goal is to adapt the technology of sheaves of lattices and
Laplacians to Kripke semantics over a network of agents.
One simple approach is to use powerset lattices 2° of states
S of a frame. Let G = (V, E)) be a network and F a frame.
Define the semantic sheaf T over G so that the data over each
vertex and edge is precisely 2°. The following is crucial to
define the structure-preserving maps:
Definition 7: For F = (S,K4,...,K,,) a frame and for
each i € {0,1,...,n}, there is residual pair
K7
25’ T 25
-
j o4

i

(10)

given by the formulae
Ki(o)={teS|Iscoa, (s,t) €Ki},
Kl(o)={s€S|VteS (st)eK;=1t€coa}.
Lemma 3: Bach map K7 : 25 — 2% is join-preserving
and (K9)" =KV,
Proof: First,
Ki(cud)={teS|Isors ca, (st)or(s,t) €K}

Second,

(K9 (0) =Yl €25 | K2(a) C o}
={seS|vVte S (s,t)eK;,=>teo}
=K (o).

|

Such a sheaf of powerset lattices has an asynchronous
Tarski Laplacian and a corresponding heat flow. The follow-
ing definitions are straight translations from §IV.

Definition 8: Suppose F = (5,K4,...,K,) is a frame
and T a sheaf of powersets 2% over a network G = (V, E)
where V = {1,2,...,n}. Let 7 : {0,1,2,...} — V be a
firing sequence. The (asynchronous) semantic Laplacian is
the operator acting on o € [,y 2% via:

JEN;NT:
The associated heat flow is the dynamical system
olt+ 1] = dAL)o[t] (12)

Our main result follows directly from Theorem 1, interpreted
in the language of this section.

Theorem 2: Suppose G = (V,E) is a network
with firing sequence 7 satisfying liveness. Let M =

5949

Authorized licensed use limited to: University of Pennsylvania. Downloaded on August 28,2023 at 18:35:02 UTC from IEEE Xplore. Restrictions apply.



(S,K1,...,Kn,®,m) be a Kripke model. Then, the sections
of 7 are exactly time-independent solutions to the heat flow
(6).

These sections are interpretable as possibility consensus
assignments of the model M on G. The assignment of
formulae (p;);cy satisfies, for each edge ij € E, Pyp; =
Pjp;. This does not mean that the formulae are in consensus
as identical formulae; rather, they are semantically equivalent
in the language L.

C. Syntactic diffusion

The following lemma motivates why local residuations K7
KY induce a flow of knowledge.

Lemma 4: Suppose M = (F,x) is a model and ¢ €
L(M). Then, the following hold

Ky (<PM) = (Ko)™,

K7 (e™) = (Pip)™.
Proof: Writing

K (M) ={se S| Vte s, (s1) €Ki = (M,t) o},

13)
(14)

we prove (13). For (14), evaluating 7 (™) yields

{t € S| 3s such that (M, s) = ¢ with (s,t) € K;}.
On the other hand, evaluating (Picp)M yields
(~Ki~g)™

= ()’
={s | V t such that (s,t) € K;, (M,t) }£ p}°

u
The following simple observation together with Lemma 4
allows us to freely go back and forth between syntax and
semantics, opening the way for syntactic diffusion dynamics.
Lemma 5: Suppose {p}; is a finite set of formula in
L(M). Then, (\/iel ‘Pi) = U; " and (A, ‘Pi)M =
N, oM.
Definition 9: Suppose ¢ = (¢;)icy is a tuple of formulae
in M. The (asynchronous) syntactic Laplacian acts on
assignments as:

(Lep); =\ KiPjyp;.

JEN;NT
This is a straight translation of the semantic Tarski Laplacian,

using Lemmas 4 and 5.

(15)

D. Dual Laplacians

The classical meet-join duality in lattices pushes through to
all other structures built therefrom. In particular, the Tarski
(and thus semantic and syntactic) Laplacians come in dual
variants, implicating how syntactic and semantic consensus
is interpreted.

Definition 10: The dual Tarski, semantic, and syntactic
Laplacians are given by, respectively:

(L*o), = |J KK} (o) (17)
JEN;

(L*¢); =\ PiKje; (18)
JEN;

The corresponding asynchronous dual Laplacians L} inter-
sect neighboring vertices with those in a firing sequence 7.

The dual heat flow iterates the operator id VLy. Conver-
gence results to sections remain. These sections are inter-
pretable as knowledge consensus assignments of the model
M on G. The assignment of formulae (p;);cy satisfies, for
each edge ij € I, K;p; = Kjp;.

VI. EXAMPLES

In this section, we supply an example of a semantic
sheaf modeling knowledge gain; we also provide a numerical
experiment demonstrating the correctness of asynchronous
heat flow (6) as well as convergence behavior. The Lyapunov
function acts on assignments in (6) via

V(x) = > d(Fiqij (@), Fiaij () ;

ijeE

19)

each d is a distance function on F(ij). If d is a metric, then
V(x) > 0 and V(x) = 0 if and only if x is a section. Below,
the metric is taken to be the well-known Jaccard distance
between subsets.

A. Threat detection

In this example, we model the knowledge of N ‘“smart”
sensors tasked with detecting M possible targets & =
{A1, Ay, ..., Apr}. Sensors are equipped with two-way links
forming a communication pattern modeled by an undirected
graph G = (V,E). Each sensor i has a local state s;
and a set of possible local states .S; which may vary from
sensor to sensor. For instance, s; could represent a risk
posed at a particular location. The atomic propositions ®
are each interpreted as threat A is present. A global state
s € Hfil S; is a tuple of all local states. The ground
truth on whether or not threat A is present is determined
by a map 7 : Hivzl S; — 2%. To model the knowledge of
individual sensors, the right choice of Kripke relation K; is
the equivalence relation on S = Hil S; given by s ~; t
if and only if s; = ¢;, reflecting the intuition that a sensor
i would know A is present — or, in general, any formula
in £(®) — precisely when, given a current the local state
s; € S;, A was present for every possible global state that
had s; as a local state.

B. Numerical experiments

In the following simulation, we demonstrate the validity of
the gossip algorithm by: 1) generating a random geometric
graph (N = 40, r = 0.08); 2) assigning (Kripke) relation on
S (with10 states), one for each node, by wiring each (z,y) €
K; randomly (p = 0.9 if z = y, p = 0.1 otherwise); 3) se-
lecting several random firing sequence 7 : {0,1,...} — 2V

(L*x), = \/ ]-“;;]j Figij(z;) (16)  which determine which nodes broadcast to their neighbors
JEN; h at time ¢. For a random initial assignment o[0], we run the
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heat flow dynamics using the dual asynchronous semantic
Laplacian (17) for each firing sequence (Fig. 1).

Lyapunov energy, V(o[t])

Fig. 1.
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The Lyapunov energies of each iteration of the gossip algorithm

computed from the dual asynchronous semantic Laplacian of the Kripke
frame defined above. Each trial is a different firing sequence 7.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

REFERENCES

M. Taylor, “Towards a mathematical theory of influence and attitude
change,” Human Relations, vol. 21, no. 2, pp. 121-139, 1968.

M. H. DeGroot, “Reaching a consensus,” Journal of the American
Statistical Association, vol. 69, no. 345, pp. 118-121, 1974.

V. M. Preciado, M. M. Zavlanos, A. Jadbabaie, and G. J. Pappas,
“Distributed control of the laplacian spectral moments of a network,”
in Proceedings of the 2010 American Control Conference, pp. 4462—
4467, IEEE, 2010.

V. Preciado and G. Verghese, “Synchronization in generalized Erdds
Rényi networks of nonlinear oscillators,” in Proceedings of the 44th
IEEE Conference on Decision and Control, pp. 4628-4633, 2005.

R. Sepulchre, D. Paley, and N. Leonard, “Collective motion and oscil-
lator synchronization,” in Cooperative control, pp. 189-205, Springer,
2005.

H. G. Tanner, A. Jadbabaie, and G. J. Pappas, “Flocking in fixed and
switching networks,” IEEE Transactions on Automatic control, vol. 52,
no. 5, pp. 863-868, 2007.

A. Singer and H.-T. Wu, “Vector Diffusion Maps and the Connec-
tion Laplacian,” Communications in Pure and Applied Mathematics,
vol. 65, no. 8, 2012.

A. S. Bandeira, A. Singer, and D. A. Spielman, “A cheeger inequality
for the graph connection laplacian.,” SIAM J. Matrix Anal. Appl.,
vol. 34, no. 4, pp. 1611-1630, 2013.

S. E. Tuna, “Synchronization under matrix-weighted laplacian.,” Au-
tomatica, vol. 73, pp. 76-81, 2016.

A. Ortega, P. Frossard, J. Kovacevié, J. M. Moura, and P. Van-
dergheynst, “Graph signal processing: Overview, challenges, and ap-
plications,” Proceedings of the IEEE, vol. 106, no. 5, pp. 808-828,
2018.

D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular
domains,” IEEE signal processing magazine, vol. 30, no. 3, pp. 83-98,
2013.

M. Welling and T. N. Kipf, “Semi-supervised classification with graph
convolutional networks,” in J. International Conference on Learning
Representations (ICLR 2017), 2016.

L. Ruiz, F. Gama, and A. Ribeiro, “Graph neural networks: architec-
tures, stability, and transferability,” Proceedings of the IEEE, vol. 109,
no. 5, pp. 660-682, 2021.

G. E. Bredon, Sheaf Theory. No. 170 in Graduate Texts in Mathemat-
ics, Springer, 2 ed., 1997.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]
[31]

[32]

[33]

[34]

[35]

[36]
[37]

[38]

[39]
[40]

[41]

5951

V. Janis, S. Montes, B. Seselja, and A. Tepavcevic, “Poset-valued
preference relations,” Kybernetika, vol. 51, no. 5, pp. 747-764, 2015.
T. Anevlavis, M. Philippe, D. Neider, and P. Tabuada, “Being correct
is not enough: efficient verification using robust linear temporal logic,”
ACM Transactions on Computational Logic (TOCL), vol. 23, no. 2,
pp. 1-39, 2022.

M. Piischel, B. Seifert, and C. Wendler, “Discrete signal processing on
meet/join lattices,” IEEE Transactions on Signal Processing, vol. 69,
pp. 3571-3584, 2021.

R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and
cooperation in networked multi-agent systems,” Proceedings of the
IEEE, vol. 95, no. 1, pp. 215-233, 2007.

D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of
aggregate information,” 2003.

S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE transactions on information theory, vol. 52, no. 6,
pp. 2508-2530, 2006.

J. Cortés, “Distributed algorithms for reaching consensus on general
functions,” Automatica, vol. 44, no. 3, pp. 726-737, 2008.

B. M. Nejad, S. A. Attia, and J. Raisch, “Max-consensus in a max-
plus algebraic setting: The case of fixed communication topologies,” in
2009 XXII International Symposium on Information, Communication
and Automation Technologies, pp. 1-7, IEEE, 2009.

A. Tahbaz-Salehi and A. Jadbabaie, “A one-parameter family of
distributed consensus algorithms with boundary: From shortest paths
to mean hitting times,” in Proceedings of the 45th IEEE Conference
on Decision and Control, pp. 4664—4669, IEEE, 2006.

X. Zheng, The lattice agreement problem in distributed systems. PhD
thesis, 2021.

J. A. Goguen, “Sheaf semantics for concurrent interacting objects,”
Mathematical Structures in Computer Science, vol. 2, no. 2, pp. 159—
191, 1992.

R. Ghrist and S. Krishnan, “A topological max-flow-min-cut theorem,”
in 2013 IEEE Global Conference on Signal and Information Process-
ing, pp. 815-818, IEEE, 2013.

M. Moy, R. Cardona, R. Green, J. Cleveland, A. Hylton, and R. Short,
“Path optimization sheaves,” arXiv preprint arXiv:2012.05974, 2020.
J. Hansen and R. Ghrist, “Opinion dynamics on discourse sheaves,”
SIAM Journal on Applied Mathematics, vol. 81, no. 5, pp. 2033-2060,
2021.

M. Robinson, “Sheaves are the canonical data structure for sensor
integration,” Information Fusion, vol. 36, pp. 208-224, 2017.

D. Koller and N. Friedman, Probabilistic graphical models: principles
and techniques. MIT press, 2009.

C. Baier and J.-P. Katoen, Principles of model checking. MIT press,
2008.

Y. Kantaros, M. Guo, and M. M. Zavlanos, “Temporal logic task plan-
ning and intermittent connectivity control of mobile robot networks,”
IEEE Transactions on Automatic Control, vol. 64, no. 10, pp. 4105-
4120, 2019.

A. Rodionova, L. Lindemann, M. Morari, and G. Pappas, “Time-robust
control for stl specifications,” pp. 572-579, Institute of Electrical and
Electronics Engineers,, 2021.

H. Riess, Y. Kantaros, G. Pappas, and R. Ghrist, “A temporal logic-
based hierarchical network connectivity controller,” in 2021 Proceed-
ings of the Conference on Control and its Applications, pp. 17-24,
SIAM, 2021.

Y. Kantaros, M. Malencia, V. Kumar, and G. J. Pappas, “Reactive
temporal logic planning for multiple robots in unknown environments,”
in 2020 IEEE International Conference on Robotics and Automation
(ICRA), pp. 11479-11485, IEEE, 2020.

R. Fagin, J. Y. Halpern, Y. Moses, and M. Vardi, Reasoning about
knowledge. MIT press, 2004.

R. Ghrist and H. Riess, “Cellular sheaves of lattices and the tarski
laplacian,” Homology, Homotopy & Applications, 2022.

R. A. Cuninghame-Green and P. Butkovic, “The equation A ® x =
B ® y over (max,+),” Theoretical Computer Science, vol. 293, no. 1,
pp. 3-12, 2003.

R. Cuninghame-Green, “Minimax algebra and applications,” Fuzzy
Sets and Systems, vol. 41, no. 3, pp. 251-267, 1991.

R. Wille, “Restructuring lattice theory: An approach based on hierar-
chies of concepts,” in Ordered Sets, pp. 445-470, Springer, 1982.

B. A. Davey and H. A. Priestley, Introduction to lattices and order.
Cambridge university press, 2002.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on August 28,2023 at 18:35:02 UTC from IEEE Xplore. Restrictions apply.



[42] G. Curello and L. Sinander, “The preference lattice,” arXiv preprint
arXiv:1902.07260, 2019.

[43] C. Shannon, “The lattice theory of information,” Transactions of the
IRE professional Group on Information Theory, vol. 1, no. 1, pp. 105-
107, 1953.

[44] E. Gilbert, “Lattice theoretic properties of frontal switching functions,”
Journal of Mathematics and Physics, vol. 33, no. 1-4, pp. 57-67, 1954.

[45]1 A. D. Shepard, A cellular description of the derived category of a
stratified space. PhD thesis, Brown University, 1985.

[46] J. M. Curry, Sheaves, cosheaves and applications. PhD thesis,
University of Pennsylvania, 2014.

[47] T. S. Blyth and M. F. Janowitz, Residuation theory. Elsevier, 2014.

[48] O. Ore, “Galois connexions,” Transactions of the American Mathe-
matical Society, vol. 55, no. 3, pp. 493-513, 1944.

[49] E. Mendelson, Introduction to mathematical logic. Chapman and
Hall/CRC, 2009.

APPENDIX
A. Proof of Theorem 1
Suppose first that x[t] € I'(F) is a section. Then, for all
ij e E,
Figij(@ilt]) = Fiqis(x;[t])-

Hence, by Lemma 2,

(Lxt); = N\ Fila;Ficis(x;1t)

JEN;NT¢
= N\ FlFici(@lt)
JEN;NT:

Then, z;[t + 1] = (L;x[t]); A x;[t] = x;[t]. Hence, z;[t +
1] = a;[t] for all ¢ € V. Inducting in ¢, sections are time-
independent.

Conversely, suppose x[t] = x[0] is a time-independent
solution. Then, by (6),

(Lex[0]); = i 0] (20)

forall i € V and all ¢t € {0,1,2,...}. Thus, for all i € V
and j € N; N7y,

Fia; Fiis(24]0])
= N\ FlFici(;00)

JEN;NT:

Y

using the definition of the asynchronous Tarski Laplacian.
Applying Lemma 2 yields:
Fisij(x5[0]) = Figij(xi[0]). 2D
Suppose (21) holds for a particular ¢ € V and a j € N; N 7.
By liveness, there exist ¢’ > t such that i+ € 74 so that
i € Nj N 7. In particular, there is a smallest t' >t with
Fi<ij(@5[t]) < Figuz(@ilt]).- (22)

By hypothesis, x;[0] = z;[t'] for all ¢ € V. Hence, equations
(21) and (22) imply figij(mi[ﬂ) = ]:jg]ij(.’lij [t]) for all t.
Therefore, x[t] is a section.
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