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Abstract— We study time-dependent dynamics on a network
of order lattices, where structure-preserving lattice maps are
used to fuse lattice-valued data over vertices and edges. The
principal contribution is a novel asynchronous Laplacian,
generalizing the usual graph Laplacian, adapted to a network of
heterogeneous lattices. This resulting gossip algorithm is shown
to converge asymptotically to stable “harmonic” distributions
of lattice data. This general theorem is applicable to several
general problems, including lattice-valued consensus, Kripke
semantics, and threat detection, all using asynchronous local
update rules.

I. INTRODUCTION

The use of the graph Laplacian to diffuse information over

networks is well-established in classical and contemporary

work ranging from opinion dynamics [1] to distributed multi-

agent consensus [2] and control [3], synchronization [4], [5],

flocking [6], and much more. In the past decade, Laplacians

that are adapted to handle vector-valued data, such as graph

connection Laplacians [7], [8] or matrix-weighted Laplacians

[9], have been revolutionary in signal processing processing

[10], [11] and machine learning [12], [13].

While the ultimate form of a generalized Laplacian is

as yet not present in applications, there are hints of a

broader theory finding its way from algebraic topology to

data science. The Laplacian from calculus class and the graph

Laplacian are two extreme examples of a Hodge Laplacian.

These are operators which act diffusively on data structures

called sheaves [14]: see §II-B for brief details.

The present work is motivated by extending recent work

on distributed consensus and data fusion from the setting of

vector-valued data to that of data valued in more general

partially-ordered sets and, specifically, lattices (in the alge-

braic as opposed to discrete sense): see §II-A. The fidelity

with which lattices (including Boolean algebras) can model

logical structures makes them appealing for representing

distributed systems with complex logical behaviors, such

as preference posets [15], robust linear temporal logic [16]

and discrete signal processing [17]. Maps between lattices

preserving structure and their residuals model the interchange

of information between neighbors: see §IV-A.

University of Pennsylvania; Department of Electrical/Systems Engineer-
ing; hmr@seas.upenn.edu

University of Pennsylvania; Departments of Mathematics and Electri-
cal/Systems Engineering; ghrist@math.upenn.edu

This material is based upon work supported by the Under Secretary of Defense

for Research and Engineering (Research Technology & Laboratory Directorate/Basic

Research Office) under Grant No. HQ00342110001. The views expressed do not

necessarily reflect the official policies of the Department of Defense nor does mention

of trade names, commercial practices, or organizations imply endorsement by the U.S.

Government.

Related work: The consensus literature is vast and

includes Laplacian-based protocols [18] and (asynchronous)

gossip-based protocols [19], [20]. Several works consider

consensus on general functions [21], including max/min

consensus [22], [23]. In the area of distributed computing,

centralized branch-and-bound style algorithms for reaching

agreement on lattices have been discovered [24]. Sheaves

have shown promise in multi-agent systems, particularly

from the perspective of concurrency [25], routing [26], [27],

opinion dynamics [28] and sensor fusion [29].

The Bayesian approach to modeling knowledge/belief

propagation via graphical models [30] is standard but funda-

mentally different than the approach here. Modal logics, par-

ticularly temporal logics, have seen numerous applications in

model-checking [31] and control systems [32]±[35]. There

are several use-cases of multimodal logics in the analysis of

message-passing systems [36].

The authors previously defined a synchronous [Tarski]

Laplacian and proved a Hodge-style fixed-point convergence

result [37], which is extended here to the asynchronous

setting. The gossip algorithm introduced in this paper gener-

alizes an algorithm called the alternating algorithm [38, §3]

introduced to synchronize event times of a pair of coupled

discrete event systems, each described by a max-plus linear

system [39]; our algorithm goes far beyond this in computing

sections of (nearly) arbitrary lattice-valued network sheaves.

Outline: Background material (§II) and problem spcifi-

cations (§III) are followed by details of a novel Laplacian for

asynchronous communication on networks of lattices (§IV).

It is here that the main results on stability and convergence

are proved. The subsequent section (§V) detail applications

to multimodal logics, by using Kripke semantics, leading to

a dual pair of semantic and syntactic Laplacians for diffusing

knowledge and beliefs. This work ends (§VI) with some

simulation.

II. BACKGROUND

A. Lattices

Ordered sets model data types such as relations, concepts,

rankings, matchings, concurrent events, as well as other

taxonomies of information that are hierarchial, epistemic, or

logical in nature: both in §V. Lattices double as ordered

sets and algebraic structures consisting of two ªmergingº

operations called meet and join.

Definition 1: A lattice is a tuple Q = (Q,∧,∨, 0, 1).
Q is a set with binary operations, ∧ (meet) and ∨ (join),

satisfying the following axioms: 1) ∧/∨ are commutative and

associative; 2) for all x ∈ Q, x ∧ x = x and x ∨ x = x;

3) there exist elements ⊥,⊤ ∈ Q such that ⊥ and ⊤ are
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the identity of ∨ and ∧ respectively; 4) for all x, y ∈ Q,

x = x ∨ (x ∧ y) = x ∧ (x ∨ y).
Equivalently, lattices can be viewed as (partially) ordered

sets (Q,≼) with x ≼ y ⇔ x ∧ y = x or, equivalently,

x ≽ y ⇔ x ∨ y = x. It will be useful to think of lattices

as both partially-ordered sets and algebraic structures: the ≼

notation will be crucial in proofs of all main results.

Example 1: Suppose S is a set. The powerset 2S is a

(Boolean) lattice (2S ,∩,∪, ∅, S). The truth values 2 =
({0, 1},∧,∨, 0, 1) is a lattice. Other important lattices are

embedded in 2S such as lattices representing ontologies

[40], partitions [41], rankings, preferences [15], [42], and

information-theoretic content [43]. The extended real line

R̄ = R∪{−∞,∞} is a lattice with min and max. Cartesian

products of lattices are lattices with the component-wise meet

and join operations; the lattice R̄
n and its matrix algebra is

integral to the study of discrete event systems [39], 2n to

logic gates [44].

In order to work with systems of lattices, we will work

with lattice maps φ : P → Q. Such a map is order

preserving if x ≼ y ⇒ φ(x) ≼ φ(y) and is join preserving if

φ(x∨ y) = φ(x)∨φ(y) and φ(⊥P) = ⊥Q. Join preserving

maps are automatically order preserving. A dual definition

of meet preserving maps holds with similar consequences.

B. Network Sheaves

Suppose G = (V,E) is an undirected graph (possibly with

loops). An edge between (not necessarily distinct) nodes i

and j in V is denoted by an unordered concatenated pair of

indices ij = ji ∈ E. The set Ni = {j : ij ∈ E} are the

neighbors of i.

Given such a fixed network G, we define a data structure

over G taking values in lattices. Such a structure is an

example of a cellular sheaf [45], [46] (though the details

of sheaf theory are not needed here).

Definition 2: A finite lattice-valued network sheaf F over

G is a data structure that assigns:

1) A finite lattice (F(i),∧i,∨j) to every node i ∈ V .

2) A finite lattice (F(ij),∧ij ,∨ij) to every edge ij ∈ E.

3) Join-preserving maps

F(i) F(ij) F(j)
Fi◁⩽ij Fj◁⩽ij

(1)

for every ij ∈ E.

In most applications we imagine, the maps from node data

to edge data will be join-preserving. Thinking of a sheaf as

a distributed system, the state of the system is given by an

assignment of vertex data: a tuple x ∈
∏

i∈V F(i) of choices

of data xi ∈ F(i) for each i. The data over the edges and the

maps Fi◁⩽ij are used to compare the compatibility of vertex

data in an assignment. The following definition is crucial.

Definition 3: The sections of F are assignments x that

are compatible: for every ij ∈ E,

Fi◁⩽ij(xi) = Fj◁⩽ij(xj). (2)

The set of sections of F is denoted Γ(F). These are the

ªglobally compatibleº states. In the simplest example of a

constant sheaf (which assigns a fixed lattice to each vertex

and edge, with identity maps between vertex and edge data),

sections are precisely assignments of an identical element to

each vertex (and edge): consensus over the network.

Example 2: The true utility of a sheaf lies in heterogene-

ity. For example, assign to each vertex i ∈ V a finite set

Si and to each edge ij ∈ E a finite set Sij and set-maps

Si → Sij ← Sj . This induces several interesting sheaves of

lattices. The powerset sheaf assigns the powersets (lattices of

all subsets with union and intersection) to vertices and edges,

with induced maps. The partition sheaf assigns the partition

lattices (partitions of set elements with partition union and

refinement) to vertex and edge sets, again with induced maps.

More examples from formal concept analysis are less well-

known [40], but very general.

III. PROBLEM FORMULATION

An abstract formulation is sufficient, but, for concreteness,

consider a scenario in which a collection of geographically

dispersed agents collect, process, and communicate data

based on local sensing. Proximity gives rise to a commu-

nications network, modeled as an undirected graph G. The

data are lattice-valued, but each agent i ∈ V works within its

lattice F(i), assumed to be finite. In order for two proximate

agents i and j to communicate their individualized data

(residing in F(i) and F(j) respectively), they must ªfuseº

their observiations into a common lattice F(ij) by means of

structure-preserving lattice maps. Together, the system forms

a network sheaf.

The problem envisioned is distributed consensus by means

of asynchronous communication and updates. By consensus,

we do not mean that everyone agrees on a particular fixed

lattice value; rather, each node agrees upon choices of local

data that, when translated and compared to all neighbors’

data over communication edges, agree. In the context of

a sheaf of lattices, this is precisely the condition of an

assignment being a section. The synchronous version of

this problem ± everyone communicates simultaneously with

neighbors and updates immediately ± is solvable via the

Tarski Laplacian as per [37]. The asynchronous problem

is our focus here. Select sensors broadcast their data to

neighboring nodes according to some firing sequence.

Denote by τ : {0, 1, 2, . . . } → 2V the firing sequence of

selected nodes which broadcast as a function of (ordered,

discrete) time. At t ∈ {0, 1, 2, . . . }, active nodes i ∈ τt
broadcast to each agent j ∈ Ni.

1 No other nodes broadcast.

This notion of a firing sequence suffices to cover

asynchronous updating. The regularization of time to

{0, 1, 2, . . . } is a convenience and does not impact results.

The firing sequence is, in practice, not known a priori. This

is of no consequence since our results will hold independent

of the choice of firing sequence. The following assumptions

will hold throughout.

1If desired, one may choose a selection of egdes incident to the node and
broadcast only to those neighbors. This results in more bookkeeping and
a refined version of liveness, below, but does not substantially change the
results or proofs.
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Assumption 1 (Latency-Free): Within a single time in-

stance t, nodes may broadcast (if firing), receive data (al-

ways), and compute (always).

Assumption 2 (Liveness): For all i ∈ V and for every t ∈
{0, 1, 2, . . . } there is a t′ ⩾ t such that i ∈ τt′ . As such,

agents neither die nor are removed from the system.

Assumption 3 (Cross-Talk): Suppose i is an agent and

j, j′ ∈ Ni ∩ τt are active neighbors. Then, j and j′ can

simultaneously broadcast to i without resulting in a fault.

Under these assumptions, we wish to solve the following

distributed asynchronous constrained agreement problem.

Assume 1) a network G = (V,E); 2) a sheaf F of lattices

over G; 3) an firing sequence τ : {0, 1, 2, . . . } → 2V

of broadcasts; and 4) an initial condition x[0], being an

assignment of an element xv ∈ F(v) to each agent v ∈ V .

Using only local communication subordinate to the firing

sequence τ , evolve the initial condition x[0] to a section

x ∈ Γ(F).
This problem has elements of consensus (because of the

local agreement implied in a section) as well as data fusion

(due to the lattice maps merging data from vertex lattices to

edge lattices).

IV. AN ASYNCHRONOUS LAPLACIAN

Our method for solving this asynchronous constrained

agreement problem is to define an asynchronous harmonic

flow on the sheaf by localizing the Tarski Laplacian of [37].

A. The Tarski Laplacian

Throughout, F is a finite lattice-valued sheaf over a network

G. Our first step towards a Laplacian involves preliminaries

on residuals [47], also known as Galois connections [48].

These are a type of adjoint or lattice-theoretic analogue of

the familiar Moore-Penrose pseudoinverse in matrix algebra.

Definition 4: Given a join-preserving lattice map φ : P→
Q, its residual is the map φ+ : Q→ P given by

φ+(p) =
∨

{q | φ(q) ≼ p}.
Like an adjoint, it reverses the direction of the map,

resembling a pseudoinverse more closely in some cases.

The following two lemmas have straightforward proofs via

definitions.

Lemma 1: Suppose φ : P → Q is join-preserving and

injective. Then φ+ ◦ φ = id.

Lemma 2: For φ : P→ Q join-preserving, the following

identities hold:

1) for all p ∈ P, φ+ ◦ φ(p) ≽ p; and

2) for all p ∈ P and q ∈ Q,

φ(p) ≼ q ⇔ p ≼ φ+(q). (3)

A lattice-theoretic analogue of the graph Laplacian ± the

Tarski Laplacian ± was introduced in [37]. For F a network

sheaf of lattices over G and x an assignment of vertex data,

the Tarski Laplacian L acts as:

(Lx)i =
∧

j∈Ni

F+

i◁⩽ijFj◁⩽ij(xj). (4)

The key construct is to localize this operator subordinate to

a firing sequence τ .

Definition 5: The asynchronous Tarski Laplacian is the

map

L : {0, 1, 2, . . . } ×
∏

i∈V

F(i)→
∏

i∈V

F(i)

which acts on an assignment x as

(Ltx)i =
∧

j∈Ni∩τt

F+

i◁⩽ijFj◁⩽ij(xj). (5)

This is a restriction of the Tarski Laplacian (4) in that at

time t, only immediate neighbors to broadcasting nodes are

updated; all other nodes are unchanged. In the extreme of a

firing sequence where all nodes broadcast at all times, the

full Tarski Laplacian ensues.

B. Gossip and harmonic states

The rationale for the Laplacian moniker lies in the efficacy of

L as a diffusion operator on states. Given an initial state x[0],
heat flow is defined by the following discrete-time dynamical

system:

x[t+ 1] = (id∧Lt)x[t] (6)

with initial condition x[0] ∈
∏

i∈V F(i).
Heat flow is the analogue of iterating the random-walk

or Perron operator I − ϵL (where I is the identity matrix,

L the graph Laplacian matrix, ϵ > 0) on scalar-valued data

on a graph [18]. The principal result of this work is a type

of ªHodge Theorem:º the harmonic states (the equilibria of

id∧L is a proxy for the kernel of the Laplacian) are exactly

the globally consistent solutions to the sheaf.

Theorem 1 (Main Theorem): For any finite lattice-valued

network sheaf F with join-preserving structure maps and

any firing sequence τ satisfying liveness, the sections of F ,

Γ(F), are precisely the time-independent solutions to heat

flow (6).

The argument in the proof of Theorem 1 in Appendix A

immediately implies an iterative protocol we call gossip for

an agent i ∈ V to converge to a harmonic state by firing a

finite number of times. The protocol is exactly the localized

heat flow (6).

Local assignments xi[0] ∈ F(i) are initialized by all

nodes, then, in a series of rounds t = 0, 1, 2, . . . , proceed as

follows. Each node i listens for adjacent nodes broadcasting

their ªfused observationº Fj◁⩽ij (xj [t]) , j ∈ Ni. Upon

receiving the ªencodedº message, i applies the residual map

F+

i◁⩽ij to Fj◁⩽ij (xj [t]). At the end of each round, i aggregates

all of the ªdecodedº messages, including the original local

assignment xi[t], taking meets. The resulting element of F(i)
is the local assignment for the new round, xi[t+ 1].
Finiteness of F(i) implies the gossip algorithm terminates

in finitely many iterations since x[t+ 1] ≼ x[t], or else x[t]
is a section.2

2In fact, a weaker condition, that
∏

i∈V satisfies a descending chain
condition, is possible if we require Fi◁⩽ij to preserve joins of an arbitrary
subset.
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V. SEMANTICS

Examples of the Tarski Laplacian and heat flow are

especially well-suited to distributed multimodal logic, where:

vertices of a network correspond to agents; edges are com-

munications between agents; assignments are sets of states

associated to each vertex; and sections are assignments that

express a consensus of knowledge across the network. For

this we require the basic theory of Kripke semantics [36].

A. Kripke semantics

Definition 6: A Kripke frame F = (S,K1,K2, . . . ,Kn)
consists of a set of states, S, and a sequence of binary

relations Ki ⊆ S × S used to encode modal operators. A

Kripke model over a set Φ of atomic propositions consists of

the data M = (F, π), where π : S → 2Φ validates whether

or not a state s ∈ S satisfies an atomic proposition p ∈ Φ.

Suppose φ is a formula; then one writes (M, s) |= φ if

s satisfies the formula φ in the model M. The semantics

of a Kripke model is defined inductively using the symbols

true, ∧, and ¬ in their typical usage:

1) (M, s) |= true for all s ∈ S.

2) For p ∈ Φ atomic, (M, s) |= p if and only if p ∈ π(s).
3) For φ an formula, (M, s) |= ¬φ if and only if

(M, s) ̸|= φ.

4) For φ, ψ formulae, (M, s) |= φ ∧ ψ if and only if

(M, s) |= φ and (M, s) |= ψ.

There are additional (dual) modal operators on formulae, Ki

and Pi (typically corresponding to knowledge and possibil-

ity), based on the binary relations Ki. One writes (M, s) |=
Kiφ if and only if (M, t) |= φ for all t ∈ S such

that (s, t) ∈ Ki. The dual operators Pi are defined via

Piφ = ¬Ki¬φ. Standard operations in propositional logic

such as φ→ ψ are derived in the usual way [49]. By abuse

of notation, we write |= φ if (M, s) |= φ for all s ∈ S.

Depending on a number of axioms placed on the modal

operators Ki and Pi, one has rich interpretations for Ki and

Pi. For instance, the Knowledge Axiom [36]

|=Kiφ→ φ (7)

and the Introspection Axiom [36]

|=Kiφ→ KiKiφ (8)

together suggest the interpretation of Kiφ and Piφ: agent i

knows φ and agent j considers φ possible, respectively. On

the other hand, if (7) not hold, but the Consistency Axiom

[36] does hold,

|=¬Ki(false), (9)

Kiφ and Piφ could be interpreted as: agent i believes φ and

agent i does not disbelieve (i.e., is undecided about) φ.3

The set of all finite formulae inductively obtained by Φ
is called the language denoted L(Φ) (omitting the Φ where

3Belief is assumed to satisfy the law of excluded middle: believing
something does not make it true.

understood). For φ ∈ L, and model M, the intent of φ is

the subset

φM = {s ∈ S | (M, s) |= φ}.

Formulae φ, ψ ∈ L are semantically equivalent if φM =
ψM. Semantic equivalence is an equivalence relation, written

φ ≡ ψ, with L≡(M) denoting the set of equivalence classes

in L up to semantic equivalence.

B. Semantic diffusion

Our goal is to adapt the technology of sheaves of lattices and

Laplacians to Kripke semantics over a network of agents.

One simple approach is to use powerset lattices 2S of states

S of a frame. Let G = (V,E) be a network and F a frame.

Define the semantic sheaf I over G so that the data over each

vertex and edge is precisely 2S . The following is crucial to

define the structure-preserving maps:

Definition 7: For F = (S,K1, . . . ,Kn) a frame and for

each i ∈ {0, 1, . . . , n}, there is residual pair

2S 2S

K
∃

i

⊥

K
∀

i

(10)

given by the formulae

K∃
i (σ) = {t ∈ S | ∃s ∈ σ, (s, t) ∈ Ki},

K∀
i (σ) = {s ∈ S | ∀t ∈ S, (s, t) ∈ Ki ⇒ t ∈ σ}.

Lemma 3: Each map K∃
i : 2S → 2S is join-preserving

and
(

K∃
i

)+
= K∀

i .

Proof: First,

K∃
i (σ ∪ σ

′) = {t ∈ S | ∃ s or s′ ∈ σ, (s, t) or (s′, t) ∈ Ki}.

Second,
(

K∃
i

)+
(σ) =

⋃

{α ∈ 2S | K∃
i (α) ⊆ σ}

= {s ∈ S | ∀t ∈ S, (s, t) ∈ Ki ⇒ t ∈ σ}

= K∀
i (σ).

Such a sheaf of powerset lattices has an asynchronous

Tarski Laplacian and a corresponding heat flow. The follow-

ing definitions are straight translations from §IV.

Definition 8: Suppose F = (S,K1, . . . ,Kn) is a frame

and I a sheaf of powersets 2S over a network G = (V,E)
where V = {1, 2, . . . , n}. Let τ : {0, 1, 2, . . . } → V be a

firing sequence. The (asynchronous) semantic Laplacian is

the operator acting on σ ∈
∏

i∈V 2S via:

(Ltσ)i =
⋂

j∈Ni∩τt

K∀
i K

∃
j (σj). (11)

The associated heat flow is the dynamical system

σ[t+ 1] = (id∧Lt)σ[t] (12)

Our main result follows directly from Theorem 1, interpreted

in the language of this section.

Theorem 2: Suppose G = (V,E) is a network

with firing sequence τ satisfying liveness. Let M =
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(S,K1, . . . ,KN ,Φ, π) be a Kripke model. Then, the sections

of I are exactly time-independent solutions to the heat flow

(6).

These sections are interpretable as possibility consensus

assignments of the model M on G. The assignment of

formulae (φi)i∈V satisfies, for each edge ij ∈ E, Piφi ≡
Pjφj . This does not mean that the formulae are in consensus

as identical formulae; rather, they are semantically equivalent

in the language L.

C. Syntactic diffusion

The following lemma motivates why local residuations K∃
i ⊣

K∀
i induce a flow of knowledge.

Lemma 4: Suppose M = (F, π) is a model and φ ∈
L(M). Then, the following hold

K∀
i

(

φM
)

= (Kiφ)
M
, (13)

K∃
i

(

φM
)

= (Piφ)
M
. (14)

Proof: Writing

K∀
i

(

φM
)

= {s ∈ S | ∀t ∈ S, (s, t) ∈ Ki ⇒ (M, t) |= φ},

we prove (13). For (14), evaluating K∃
i (φ

M) yields

{t ∈ S | ∃s such that (M, s) |= φ with (s, t) ∈ Ki}.

On the other hand, evaluating (Piφ)
M

yields

(¬Ki¬φ)
M

=
(

(Ki¬φ)
M
)c

={s | ∀ t such that (s, t) ∈ Ki, (M, t) ̸|= φ}c .

The following simple observation together with Lemma 4

allows us to freely go back and forth between syntax and

semantics, opening the way for syntactic diffusion dynamics.

Lemma 5: Suppose {φ}i is a finite set of formula in

L(M). Then,
(
∨

i∈I φi

)M
=

⋃

i φ
M
i and (

∧

i φi)
M

=
⋂

i φ
M
i .

Definition 9: Suppose ϕ = (φi)i∈V is a tuple of formulae

in M. The (asynchronous) syntactic Laplacian acts on

assignments as:

(Ltϕ)i =
∧

j∈Ni∩τt

KiPjφj . (15)

This is a straight translation of the semantic Tarski Laplacian,

using Lemmas 4 and 5.

D. Dual Laplacians

The classical meet-join duality in lattices pushes through to

all other structures built therefrom. In particular, the Tarski

(and thus semantic and syntactic) Laplacians come in dual

variants, implicating how syntactic and semantic consensus

is interpreted.

Definition 10: The dual Tarski, semantic, and syntactic

Laplacians are given by, respectively:

(L∗x)i =
∨

j∈Ni

F+

i◁⩽jFj◁⩽ij(xj) (16)

(L∗
σ)i =

⋃

j∈Ni

K∃
i K

∀
j (σj) (17)

(L∗
ϕ)i =

∨

j∈Ni

PiKjφj . (18)

The corresponding asynchronous dual Laplacians L∗
t inter-

sect neighboring vertices with those in a firing sequence τ .

The dual heat flow iterates the operator id∨L∗
t . Conver-

gence results to sections remain. These sections are inter-

pretable as knowledge consensus assignments of the model

M on G. The assignment of formulae (φi)i∈V satisfies, for

each edge ij ∈ E, Kiφi ≡ Kjφj .

VI. EXAMPLES

In this section, we supply an example of a semantic

sheaf modeling knowledge gain; we also provide a numerical

experiment demonstrating the correctness of asynchronous

heat flow (6) as well as convergence behavior. The Lyapunov

function acts on assignments in (6) via

V (x) =
∑

ij∈E

d (Fi◁⩽ij(xi),Fj◁⩽ij(xj)) ; (19)

each d is a distance function on F(ij). If d is a metric, then

V (x) ⩾ 0 and V (x) = 0 if and only if x is a section. Below,

the metric is taken to be the well-known Jaccard distance

between subsets.

A. Threat detection

In this example, we model the knowledge of N ªsmartº

sensors tasked with detecting M possible targets Φ =
{A1, A2, . . . , AM}. Sensors are equipped with two-way links

forming a communication pattern modeled by an undirected

graph G = (V,E). Each sensor i has a local state si
and a set of possible local states Si which may vary from

sensor to sensor. For instance, si could represent a risk

posed at a particular location. The atomic propositions Φ
are each interpreted as threat A is present. A global state

s ∈
∏N

i=1
Si is a tuple of all local states. The ground

truth on whether or not threat A is present is determined

by a map π :
∏N

i=1
Si → 2Φ. To model the knowledge of

individual sensors, the right choice of Kripke relation Ki is

the equivalence relation on S =
∏N

i=1
Si given by s ∼i t

if and only if si = ti, reflecting the intuition that a sensor

i would know A is present ± or, in general, any formula

in L(Φ) ± precisely when, given a current the local state

si ∈ Si, A was present for every possible global state that

had si as a local state.

B. Numerical experiments

In the following simulation, we demonstrate the validity of

the gossip algorithm by: 1) generating a random geometric

graph (N = 40, r = 0.08); 2) assigning (Kripke) relation on

S ( with10 states), one for each node, by wiring each (x, y) ∈
Ki randomly (p = 0.9 if x = y, p = 0.1 otherwise); 3) se-

lecting several random firing sequence τ : {0, 1, . . . } → 2V

which determine which nodes broadcast to their neighbors

at time t. For a random initial assignment σ[0], we run the
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heat flow dynamics using the dual asynchronous semantic

Laplacian (17) for each firing sequence (Fig. 1).

Fig. 1. The Lyapunov energies of each iteration of the gossip algorithm
computed from the dual asynchronous semantic Laplacian of the Kripke
frame defined above. Each trial is a different firing sequence τ .
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APPENDIX

A. Proof of Theorem 1

Suppose first that x[t] ∈ Γ(F) is a section. Then, for all

ij ∈ E,

Fi◁⩽ij(xi[t]) = Fj◁⩽ij(xj [t]).

Hence, by Lemma 2,

(Ltx[t])i =
∧

j∈Ni∩τt

F+

i◁⩽jFj◁⩽ij(xj [t])

=
∧

j∈Ni∩τt

F+

i◁⩽jFi◁⩽ij(xi[t])

≽ xi[t].

Then, xi[t+ 1] = (Ltx[t])i ∧ xi[t] = xi[t]. Hence, xi[t+
1] = xi[t] for all i ∈ V . Inducting in t, sections are time-

independent.

Conversely, suppose x[t] = x[0] is a time-independent

solution. Then, by (6),

(Ltx[0])i ≽ xi[0] (20)

for all i ∈ V and all t ∈ {0, 1, 2, . . . }. Thus, for all i ∈ V
and j ∈ Ni ∩ τt,

F+

i◁⩽jFj◁⩽ij(xj [0])

≽
∧

j∈Ni∩τt

F+

i◁⩽jFj◁⩽ij(xj [0])

≽ xi[0],

using the definition of the asynchronous Tarski Laplacian.

Applying Lemma 2 yields:

Fj◁⩽ij(xj [0]) ≽ Fi◁⩽ij(xi[0]). (21)

Suppose (21) holds for a particular i ∈ V and a j ∈ Ni ∩ τt.
By liveness, there exist t′ ⩾ t such that i ∈ τt′ so that

i ∈ Nj ∩ τt. In particular, there is a smallest t′ > t with

Fj◁⩽ij(xj [t
′]) ≼ Fi◁⩽ij(xi[t

′]). (22)

By hypothesis, xi[0] = xi[t
′] for all i ∈ V . Hence, equations

(21) and (22) imply Fi◁⩽ij(xi[t]) = Fj◁⩽ij(xj [t]) for all t.

Therefore, x[t] is a section.
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