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Abstract: We will show that if a gradient shrinking Ricci soliton has an approximate symmetry on one scale,
this symmetry propagates to larger scales. This is an example of the shrinker principle which roughly states
that information radiates outwards for shrinking solitons.
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1 Introduction

A time-varying metric g on a manifold M is a Ricci flow if
0,8 = —2Ric,. (1.1)

This is a nonlinear geometric evolution equation where singularities can form, and understanding them is
the key for understanding the flow. For instance, one important ingredient in the rigidity of cylinders for the
Ricci flow in [16] was a new estimate called propagation of almost splitting. This showed that if a gradient
shrinking Ricci soliton almost splits off a line on one scale, then it also almost splits on a strictly larger set,
though with a loss on the estimates.

tA manifold splits off a line if it is the metric product of a Euclidean factor R with a manifold of one
dimension less. A splitting gives a linear function whose gradient is a parallel vector field. Similarly, an almost
splitting gives an almost parallel vector field, which is a special type of almost Killing vector field. Thus, the
propagation of almost splitting is equivalent to showing that a certain type of approximate symmetry extends to
larger scales [16,17]. We will see here that this holds also for more general approximate symmetries.

A triple (M, g, f) of a manifold M, metric g, and function f is a gradient Ricci soliton if there is a
constant x so that

Ric + Hessy = xg. (1.2)
Up to diffeomorphisms, the Ricci flow of a gradient Ricci soliton evolves by shrinking when x > 0 is static {or

steady) when x = 0, and expanding when x < 0. Gradient shrinking Ricci solitons model finite time singu-
larities of the flow and describe the asymptotic structure at minus infinity for ancient flows.
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A Killing field V is a vector field that generates an isometry, i.e., the Lie derivative of the metric g
vanishes

[.Vg =00

Equivalently, V is Killing when its covariant derivative VV is skew-symmetric. Many of the most important
examples of solitons are highly symmetric; cf. [1,3-5,12,16,20-22].

On Euclidean space, there are two types of Killing fields: the parallel vector fields that generate
translations and the linearly growing rotation vector fields. There are two very different types of symmetries
on Ricci solitons depending on whether the symmetry preserves the function f. This dichotomy is already

seen in the simplest examples of shrinkers: the Gaussian soliton (R", by %) and cylinders. Rotations

around the origin on the Gaussian soliton preserve both the metric and f = %, while the translations along

the axis of a cylinder preserve the metric but not the level sets of f. It is not hard to see that this is typical. To
make this precise, use the metric g and function f, to define a weighted L2 norm on functions, vector fields,

and general tensors by

1B = [1re. 13)
M

Proposition 1.1. If Y is an L? Killing field on a gradient shrinking Ricci soliton, then either Y preserves f or M
splits off a line.

The metric and weight induce weighted divergence operators divy on vector fields and symmetric two
tensors and a drift Laplacian £ on general tensors. The adjoint div} of divs takes a vector field V to the
symmetric two tensor:

divjV = %ng. 1.4)

As in [16], define a self-adjoint operator # on vector fields by
PY = divy o divyY. (1.5)

For a Killing field V, div;V vanishes and, thus, PV = 0.

For an approximate Killing field, the associated flow almost preserves the metric g. As mentioned
earlier, approximate translations played an important role in [16] to show “propagation of almost splitting.”
Our interest here will be a corresponding propagation for more general symmetries.

We will show that if a gradient shrinking Ricci soliton (shrinker) has an approximate symmetry on one
scale, then this approximate symmetry propagates outwards to larger scales. This is an example of the
shrinker principle [12,16,18], which roughly states that information radiates outwards for these types of
equations.

Theorem 1.2. Let (M, g, f) be a non-compact shrinker and C, be a constant with |R| < C,. There exist C, and R
so that if Y is a vector field on {f < r’/4} withr = R and
26f = ivivRel <g<l
(1) jf“%;rr e”f =1and jf"%:dw}n ef<ps.
(2) |Y] + |VY| < Gy on {f < r2/}.
then there is a vector field Z on M with |Z)|;» = 1, PZ = uZ, and satisfying
(2) 1diviZI2, = p < cz(,: + r"”‘e*':).

(Z,) Fors € (r2/4,r?), we have jf IdiviZ2 < Gl
=5
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The theorem shows that the approximate symmetry extends to the larger set, though with a loss in the
estimates. This extension is powerful in situations where the loss can be recovered using some additional
structure particular to the situation, thus leading to a global symmetry. In Theorem 0.2 in [16], the loss was
recovered by solving a gauge problem and then using a rigidity property of cylinders that showed up at the
quadratic level. This quadratic rigidity relied on the structure of the compact factor of the cylinder and not
just on the existence of the approximate translation.

This kind of propagation of symmetry often plays an important role in understanding the structure of
solutions, as well as the rate of convergence of a Ricci flow to a singularity.

2 Weighted manifolds and Killing fields

We will be most interested in gradient shrinking Ricci solitons, but many of the results hold more generally.
Killing fields preserve the metric, so they also preserve volume and, thus, are always divergence free.
However, they do not necessarily preserve the weighted volume, so the weighted divergence divfY of a
Killing field Y need not vanish. We will see, however, that it does satisfy an eigenvalue equation on any
gradient Ricci soliton (equation (2.3)).

To show this, we recall some general formulas from Lemma 2.8 in [16] on any gradient Ricci soliton (i.e.,
(M, g, f) satisfies (1.2) for some constant x) for any vector field Y:

(L + x)divY = -div(PY), (2.1)
LVdiv(Y) = -Vdiy(PY). (2.2

IfY is a Killing field on a gradient Ricci soliton, then (2.1) gives that
(£ + x)divY = 0. (2.3)

As a consequence of this, divfY is harmonic:
Corollary 2.1. If Y is a Killing field on a gradient Ricci soliton, then divyY is harmonic.

Proof. By (2.3), (£ + x)divY = 0. Since divY = 0 for any Killing field, it follows that

AdivyY = LdivY + (Vf, VdivY)
= —xkdiveY — (Vf, V(Y, Vf)) (2.4)
= K(Vf, ¥) - (Vos¥, Vf) - Hess/(Y, Vf).

The second to last term vanishes because of the Killing equation. For the last term, we bring in the soliton
equation Ric + Hessy = xg to obtain

AdivfY = Ric(Vf, Y). (2.5)

Finally, this last term vanishes since Ric(Vf, Y) = ;(VS, Y) (see, e.g., (1.14) in [16]) and the scalar curvature
must be constant along a Killing field. O

Later, we will need a second-order self-adjoint operator L defined on symmetric two-tensors by
Lh = Lh + 2R(h), (2.6)
where R is the Riemann curvature acting on h in an orthonormal frame by

R = Y Rimjnhimn- 2.7

Theorem 1.32 in [16] gives the following relation between L and divy
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Ldiv{Y) = div{(£ + x)Y. (2.8)
It will also be useful that the operator # is related to £ by
-2P = Vdivy + £ + x. (2.9)
Finally, an easy integration by parts argument shows that if Y and PY are in L2, then Y € W12 and
divfY € L this is given by the next lemma:
Lemma 2.2. (Lemma 2.15, [16]) For any gradient Ricci soliton if Y, PY € I2, then div(Y), VY € L? and
IVYIE, + Idive Y12, < 21Yl;z12P + x)Y];2. (2.10)

2.1 Shrinkers

We now specialize to shrinkers, where x = % We will use the spectral theory of cL in the next proof; see, e.g.,
[9,14,17,21].

Proof of Proposition 1.1. We consider two cases. Suppose first that ¥ preserves f, so that (Vf, Y) = 0. Since
Y is Killing, divY = 0, and, thus, div/Y vanishes.

Suppose now that ¥ does not preserve f and, thus, divsY does not vanish identically. In this case, (2.3)
gives that divY is a non-trivial solution to

LdiyY = %diva. 2.11)
Moreover, Lemma 2.2 implies that div¥ € L2 If Lv = —uv, then the drift Bochner formula gives that
%.L‘leF = |Hess, ]* + (% - p) Vv, (2.12)
Applying this with v = divfY and u = % and integrating over M, we conclude that
|Hessgiyyll,2 = 0. (2.13)
It follows that Vdiv;Y is a non-trivial parallel vector field, giving the desired splitting. O

There is an interesting distinction between the Killing fields that preserve f and those that do not. The
Killing fields that preserve f turn out to be orthogonal to all gradient vector fields. The translations, which
do not preserve f, are generated by gradient vector fields coming from least eigenfunctions on the shrinking
soliton. Both types of vector fields satisfy eigenvalue equations for the drift Laplacian £, but at different

eigenvalues.

2.2 Geometric estimates for shrinkers

We will next recall several useful formulas for shrinkers and some geometric estimates. First, taking the
trace of the shrinker equation gives that
n
Af+ 8§ = ‘i, (2.14)

where § is the scalar curvature. On a complete shrinker, it is well known ([19], cf. [6,10]) that f can be
normalized so that
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IVfE +S=f. (2.15)

Since S 2 0 by [8] (see [11] for an improved bound on non-compact shrinkers), the function b = 2\«‘? is
nonnegative and satisfies

|Vb| < 1. (2.16)

We will also need some geometric estimates by Cao-Zhou for shrinkers. First, Theorem 1.1 in [7] gives g
and ¢, depending only on B,(xp) ¢ M so that

%(r(X) —aP<f(0) < %(r(x) + o), 2.17)

where r(x) is the distance to a fixed point x, (the constants can be made universal if x, is chosen at the
minimum of f). Second, Theorem 1.2 in [7] gives that shrinkers have at most Euclidean volume growth:
There exists ¢; so that

Vol (B,(xo)) < cgr™. (2.18)

3 Small eigenvalues and almost Killing fields

Throughout this section, (M, g, f) is a complete non-compact gradient shrinking Ricci soliton (i.e., x = %).

The operator P was constructed to vanish on Killing fields. The next lemma uses the variational
characterizations of eigenvalues and the exponential decay of the weight to find low eigenvalues for #
when there is an approximate symmetry on a large ball.

Lemma 3.1. Suppose that there is a (non-trivial) compactly supported vector field V with
IdiviVI? < AlVIEZ,, (3.1
where i < 1. Then there is a W'? vector field Z with |Z||;z = 1, so that
(A) PZ = pz, with p € [0, ji], and |diviZI2, = p.
(B) diviZ € W2 satisfies LdivZ = —(% - p)divfz and IldivaIIi, < 4u + 1.
Proof. The operator P is self-adjoint by construction. Lemma 4.20 in [16] gives that # has a complete basis

of smooth W2 eigen-vector fields ¥; with eigenvalues
M; — oo, (3.2)

and with || ¥ll;z = 1. Moreover, Lemma 4.20 in [16] also gives that

Juiviree s = [ pme s = g, 33)
Expanding V by projecting onto the ¥;’s, we write V as follows:
V= Yav, (3.4)
i
where each g; € R and
Ya? = IVE;. (3.5)

Since the ¥;’s are L?-orthonormal, (3.1) gives that
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AIVE, > IdiviViis = [ (v, Ve = Fatu, = m Yl (3.6)
i i

Comparing this with (3.5), we see that y, (the smallest y;) is at most ji. Set Z = ¥;.
Since Z, PZ ¢ I?, Lemma 2.2 and Proposition 3.3 give that

divZ e W? and VZel? (3.7)

The L? bound on div;Z in (B) follows from Lemma 2.2. Finally, (2.1) gives that diviZ satisfies the eigenfunc-

tion equation LdivZ = —(% + p)div;Z , O

The weighted L? bound on div}Z forces it to be small in the region where f is small, but it says almost

nothing where f is large and the weight e is very small. To obtain better bounds when f is large, we
instead rely on polynomial growth estimates developed in [16]. To explain this, given a tensor w define the
“weighted spherical average” I,(r) by

Lip) = ptn I [wi?[Vb]. (3.8)
b-r
A priori, this is well defined at regular values of b, but Lemma 3.27 in [16] shows that I,,(r) can be extended
to all r, this extension is differentiable almost everywhere and is absolutely continuous as a function of r; cf.
[2,13,15].
We have the following polynomial growth bounds:
Proposition 3.2. [16] Given A, there exists r, so that if w is an L2 tensor with

(Lw,w) > -4 |wp, (3.9)

then for any r, > r, > ry, we have that
. L7
I(r) < 2(—2) L(n). (3.10)
n

Proposition 3.2 is a special case of Theorem 3.4 in [16]. This proposition requires the lower bound (3.9)
for (Lw, w), which would hold if w satisfied an eigenvalue equation for £. However, we will want to apply it
to a vector field that satisfies an eigenvalue equation for . The next result gives a decomposition for that
equation that makes this possible (this is a special case of Proposition 4.6 in [16]):

Proposition 3.3. [16] If PY = uY, and weset Z = Y + iszerdivf(Y), then div(Z) = 0 and
(L + p)vdiv(Y) = 0, (3.11)

(-L' + 21+ %)Z =0. (3.12)
Moreover, ifY € L2, then |Y|? = 2|7 + (,u + %)_ZJ]Vdivf(Y)IP "

We are now prepared to prove that divyY grows at most polynomially when Y is an eigenvector field
for P.

Theorem 3.4. Suppose that (M, g) has bounded curvature |R| < C; and Y is a W' vector field with | Y|;> = 1
that satisfies (A) and (B). There exist C,, R so that for allr > R

Laivy(r) < Crp. (3.13)
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Proof. Since PY = uY, Proposition 3.3 gives that Z = Y + VdivY satisfies

1+2u
I = —(2,u + %)z (3.14)
LvdivY = —uvdivY. (3.15)
Applying (2.8) to (3.14) and (3.15) gives

LdiviZ = divi{ £ + %)z = ~2udiv}Z, (3.16)
LdiviVdivY = div{ £ + %)vaw,y = (% - u)div}Vdiv;Y. (347)

The last equation can be rewritten as follows:

1

LHESdefy = (5 - y)Hessdwfy. (3.18)

Since M, g has bounded curvature and y is also bounded, (3.16) and (3.18) give C so that
(Lw,w) 2 —Clwf? for w = Hessgyy or w=diviZ. (3.19)

Thus, Proposition 3.2 applies, giving R and C, so that
w = Hessgyy oOr diviZ

both satisfy

s
Iu(r) < [?] I(rn) forany n>n>R. (3.20)
1

Next, observe that (B) and the drift Bochner formula give that

IHessaivy|2; < p. (3.21)
On the other hand, (A) gives that |div;Y |2, < u as well. It follows that
IIdiv}ZIIf_z < Cu. (3.22)
Since |Vb| < 1, the co area formula gives some r, > R and a constant C; so that
L(n) < Gu for w = Hessgny or w=diviZ. (3.23)
Using this in (3.20) and then writing div;Y as a combination gives the theorem. a

We are now prepared to prove the main theorem.

Proof of Theorem 1.2. The first step is to cutoff the vector field to obtain a compactly supported vector field
V that we can use in Lemma 3.1. To do this, define a cutoff function n with 0 < 5 < 1 that has support in

f< ': cuts off in distance r~?, has |Vn| < 2r and so that

e’ <e'e-’ onthe support of |Vn|. (3.24)
The last bound uses that|Vb| < 1by (2.16). Now set V = Y. Since |Y| < Cyr on the support of n, it follows that
IIVIIE2 > J. [YRef =1- j |YRed >1- Crz*"e":, (3.25)

n=1 O<n<l

where the last bound also used the volume bound (2.18). Similarly, we have that

IdivyVIZ, < 2 _[ (diVEYP e + Critne~ < 2 + Créenet, (3.26)

f<riz
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After multiplying V by a constant so that the L? norm is one, we have that
IdiviVI2, < 3@ + Cr+ne~% < 1. (3.27)
Lemma 3.1 gives a W2 vector field Z with |Z]|;z = 1 and satisfying (A) and (B). In particular, #Z = uZ with
U<3h+ Critvne~t < 1. (3.28)

This gives (Z1). Theorem 3.4 now gives a polynomially growing bound on Igy;v. Since the scalar curvature is
bounded in this range, there is a lower bound for |Vb| here. Therefore, the bound on l;v implies the fine
growth bound (Z2). (]
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