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Designing Robust Networks of Coupled Phase
Oscillators With Applications

to the High Voltage Electric Grid
Shriya V. Nagpal , Gokul G. Nair, Francesca Parise , and C. Lindsay Anderson, Senior Member, IEEE

Abstract—In this article, we propose a mathematical
framework for designing robust networks of coupled phase
oscillators by leveraging a vulnerability measure proposed
by Tyloo et al. that quantifies the impact of a small pertur-
bation at an individual phase oscillator’s natural frequency
to the system’s global synchronized frequencies. Given a
complex network topology with specific governing dynam-
ics, the proposed framework finds an optimal allocation of
edge weights that minimizes such vulnerability measure(s)
at the node(s) for which we expect perturbations to occur
by solving a tractable semidefinite programming problem.
We specify the mathematical model to high-voltage electric
grids, where each node corresponds to a voltage phase
angle associated with a bus and edges correspond to trans-
mission lines. Edge weights are determined by the suscep-
tance values along the transmission lines. In this applica-
tion, frequency synchronization is increasingly challenged
by the integration of renewable energy, yet is imperative
to the grid’s health and functionality. Our framework helps
to alleviate this challenge by optimizing the placement of
renewable generation and the susceptance values along
the transmission lines.

Index Terms—Convex optimization, coupled phase os-
cillators, frequency synchronization, high-voltage electric
grid, renewable energy, robust network design, semidefinite
programming.

I. INTRODUCTION

COMPLEX networks are frequently used to model coupled
dynamical systems ranging from interacting molecules in
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chemical reactions [1] to high-voltage electric grids [2]. Whether
it is man-made or natural, elements of a coupled dynamical
system are represented by nodes in a complex network, and two
nodes are adjacent to one another if the differential equations
that govern those nodes, are dependent on one another [2]. Two
questions that are often investigated in complex networks are as
follows.

1) What are the vulnerable nodes of the complex network?
2) How can one use this knowledge to design robust complex

networks?
In this work, we seek to address the latter question for a

complex network of coupled phase oscillators. Specifically,
we consider a weighted, connected, and undirected network,
G = (V,E), where V is a set of n nodes and E is a set of m
edges. B ∈ Rn×n is the weighted adjacency matrix specifying
the edge weights of G; Bij = bij ≥ 0 if (i, j) ∈ E and Bij = 0
if (i, j) /∈ E.1 Each node i ∈ V in the network corresponds to
an angle θi ∈ [−π,π) that evolves according to the coupled
dynamics

θ̇i = ωi −
∑

j∈N (i)

bij sin (θi − θj) , i = 1, . . . , n (1)

where N (i) is the set of all nodes j such that (i, j) ∈ E. The
phase oscillator’s dynamics of node i is determined by its natural
frequency ωi, and its coupling with other phase oscillators de-
termined by the network’s edge weights B. Despite the apparent
simplicity, the coupled phase oscillator model and its variations
have been utilized to describe and analyze a broad array of
applications including circadian rhythms, flashing fireflies, and
high voltage electric grids [3]. In many of these phenomena, it is
desirable for phase oscillators to maintain global synchronized
frequencies, i.e., θ̇i = ω0 for all i ∈ {1, . . . , n}.

Following [4], we measure the vulnerability of a network by
quantifying how much a small perturbation to a node’s/phase
oscillator’s natural frequency impacts the system’s global syn-
chronized frequencies. A small external perturbation at a node
with high vulnerability has a larger influence on the global
synchronized frequencies than nodes with a smaller vulnera-
bility measure. Interestingly, in [4], the authors show that such
a vulnerability measure may be written as a linear combination

1We allow for edge weights of the fixed network topology to be 0 to facilitate
an expansive proposed optimization framework.
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of generalized effective resistance measures. In the rest of this
section, we recap intuition into the derivation of this measure
and then describe how to leverage this vulnerability measure for
the purpose of designing robust systems.

We apply the design framework to high voltage grids, where
each node i corresponds to a voltage phase angle θi ∈ [−π,π),
associated with a bus i, and evolves according to the coupled
dynamics given in (1), [5], [6], and [7]. Here, the voltage phase
oscillators’ ability to maintain synchronized frequencies is es-
sential to the functionality of the grid. The current administration
plans to have wind and solar energy comprise 90% of the US’s
electricity profile by 2050 [8], but this integration will likely
result in small perturbations to the power injected into the system
due to variability on renewable output [4], [9], challenging the
voltage phase oscillators’ capacity to maintain synchronized
frequencies. This work seeks to address this tension by optimiz-
ing the placement of renewable generation and the susceptance
values along the transmission lines to minimize the effect of
disturbances on the voltage phase oscillators’ frequencies, in
line with the proposed $US2 billion government investment for
clean energy infrastructure [10].

Notation: Let R denote the set of real numbers. We consider
b ∈ Rm to be an m length vector consisting of all bij , where
(i, j) ∈ E and 1 are to be the all ones vector. The constraint
b ≥ 0 is equivalent to enforcing that bij ≥ 0, where (i, j) ∈ E.
L ∈ Rn×n is the network Laplacian matrix corresponding to
G = (V,E), where Lij = −Bij if i %= j, and Lii =

∑
k Bik,

and L† ∈ Rn×n is the Moore–Penrose pseudoinverse of L.
Throughout the text, we use L interchangeably with L(b) and G
interchangeably with G(b) to remind the reader that properties
of L and G are dependent on the edge weights of the network.
Similarly, suppose λi is the ith eigenvalue of L and λi(b) is used
interchangeably with λi. Lastly, Y & 0 means that Y is positive
definite, while Y ' 0 means that Y is semipositive definite.

A. Vulnerability Measure

Let ω(0) = [ω(0)
1 , . . . ,ω(0)

n ]T be a vector of natural frequen-
cies. When natural frequencies, ω(0)

i for all i, are not too large
compared to their coupling parameters, stable solutions exist
where phase oscillators have global synchronized frequencies,
i.e., θ̇i = ω0 for all i ∈ {1, . . . , n}2 [11]. By working in a rotat-
ing reference frame, one may assume θ̇i = 0, for all i, resulting
in a stable fixed point θ(0) = (θ(0)1 , . . . , θ(0)n ). Subjecting ω(0)

i

to a time-dependent perturbation ωi(t) = ω(0)
i + ω̃i(t) results

in phase angles becoming time-dependent θi(t) = θ(0)i + θ̃i(t),
and linearizing the dynamics around θ(0) ultimately yields

˙̃θi = ω̃i −
∑

j∈N (i)

bij cos
(
θ(0)i −θ(0)j

)(
θ̃i−θ̃j

)
, i=1, . . . , n.

(2)
Suppose k is some node in the network. To determine the

vulnerability measure of this node, we set ω̃k(t) to a time-
dependent, Ornstein–Uhlenbeck noise disturbance, and ω̃s = 0

2This statement is made more precise later on in this write up.

for all s %= k. Let θ̃(k)i be a corresponding solution of (2).3 We
then define

Mk(b) = lim
T→∞

T−1
∑

i

∫ T

0

∣∣∣ ˙̃θ(k)i (t)− ∆̇(k)(t)
∣∣∣
2
dt (3)

where ∆̇(k)(t) = n−1Σj
˙̃θ(k)j (t), and the bar represents an aver-

age with respect to the random noise. Intuitively, this measure
quantifies how much a specific perturbation at a node k impacts
the global angular-frequency synchronization. If the measure
is small, the oscillators’ frequencies remain synchronized, or
at least close in value, throughout time when exposed to a
small perturbation.4 While (3) depends on the solution of an
ordinary differential equation, in [4], it is shown that Mk(b) can
be expressed in terms of network properties only. Specifically,
in [4], the authors’ derive an analytical expression for (3) and
show that if the timescale of correlation in the noise is large in
comparison to the dynamical system timescale, then

Mk(b)=c1

(
n−1

∑

j

Ωjk

(
θ(0), b

)
− n−2

∑

i<j

Ωij

(
θ(0), b

))

(4)
where c1 is a fixed positive constant independent of the network,
b is a m length vector that consists of all bij , where (i, j) ∈ E,
and

Ωij

(
θ(0), b

)
= L†

ii

(
θ(0)
)
+ L†

jj

(
θ(0)
)
− 2L†

ij

(
θ(0)
)

is the effective resistance [4] corresponding to the weighted
network Laplacian matrix evaluated at a steady state, whose
entries are given by

Lij

(
θ(0)
)
= −Bij cos

(
θ(0)i − θ(0)j

)

if i %= j and

Lii

(
θ(0)
)
=
∑

k

Bik cos
(
θ(0)i − θ(0)k

)
.

The same vulnerability measure may be derived by exposing
oscillator k’s natural frequency to a temporary box noise per-
turbation, expanding the types of perturbations for which the
vulnerability measure accounts for [11]. To further highlight
the broad applicability of this measure, it is shown in [4] that
the vulnerability measure may also be considered for a network
of coupled phase oscillators with the following second-order
dynamics:

miθ̈i + diθ̇i = ωi −
∑

j∈N (i)

bij sin (θi − θj)

where mi = m0 and di = d0 for all i = 1, . . . , n, and is addi-
tionally numerically justified for independently varying mi and
di.

3We note that the Ornstein–Uhlenbeck process can be considered as the
continuous-time analogue of the discrete-time AR(1) process.

4The authors in [4] do make an implicit assumption that the perturbation is
small enough such that the dynamics remain within the basin of attraction.
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B. Existing Literature and Contributions

Various topological vulnerability measures have been dis-
cussed in the literature that quantify the ability of identical
oscillators (i.e.,ω(0)

i = ω̄ for all i) to maintain synchronized fre-
quencies in the presence of small perturbations [11], [12], [13].
One such topological measure that has received considerable
attention is the eigenratio of the network Laplacian,Q = λn/λ2,
where 0 = λ1 < λ2 ≤ · · · ≤ λn are the eigenvalues of L. Using
the master stability framework proposed in [14], it was shown
that the interval in which the synchronized state is stable is
larger for smaller Q [13]. Following this work, many papers
have leveraged this measure for the purpose of exploring and
designing robust systems governed by (1), [13], [14], [15], and
[16]. However, many of these design frameworks are rendered
incompatible with existing applications because a number of
these applications involve a network of nonidentical coupled
oscillators, like high voltage electric grids.

To remedy this drawback, this work considers nonidentical
coupled oscillator networks and seeks to design robust os-
cillator networks capable of maintaining global synchronized
frequencies in the presence of noise by considering the vulner-
ability measure (4). To this end, the main contribution of this
article is three-fold. First, under a small phase angle difference
assumption, the vulnerability measure (4) can be written as
a linear combination of effective resistance measures. This is
particularly useful because vast literature exists on the effective
resistance measure [17], [18], [19], [20], which we exploit to
propose a mathematical model for designing robust networks
of nonidentical coupled phase oscillators that can be solved
optimally and efficiently. Second, in proposing this model, this
work synthesizes two well-studied bodies of work (work on
networks of coupled phase oscillators and work on the effective
resistance measure) setting the stage for further interdisciplinary
research of this type. Third, motivated by the need to integrate
renewable energy into the grid given the growing threat of
climate change, this work specifies the proposed mathemat-
ical model to the high voltage electric grid to facilitate the
design of a system that is robust to the integration of renewable
energy.

The rest of the article is organized as follows. In Section II,
the main mathematical problem is posed: given a connected,
complex network topology with governing dynamics described
by (1), the suggested framework seeks to find an optimal allo-
cation of edge weights to minimize the vulnerability measures
corresponding to a subset of nodes for which small perturbations
are expected to occur. Section II provides sufficient conditions
for the main problem to be convex and considers the worst
case vulnerability measure for the purpose of designing a robust
network of coupled phase oscillators. Under this specification,
the convex optimization problem is reformulated as a semidefi-
nite programming problem (SDP) for the purpose of tractability.
Section IV provides further intuition into the optimization prob-
lem via the analysis of the vulnerability measure from both a
graph-theoretic and analytical perspective. Lastly, in Section V,
the optimization framework is applied to the high voltage electric
grid, demonstrating not only the theoretical contribution of

this work, but its practical utility as well. Finally, Section VI
concludes this article.

II. PROBLEM FORMULATION

Given a connected complex network topology with gov-
erning dynamics described by (1), this work’s objective is to
find an optimal allocation of edge weights to minimize the
vulnerability measure at a node, or a function of vulnerabil-
ity measures corresponding to a subset of nodes, for which
we expect small perturbations to occur, subject to three con-
straints; the edge weights are nonnegative, the edge weights
sum to 1,5 and the network remains connected. Specifically,
the nodes for which we expect perturbations to occur are de-
scribed by the subset V ′ ⊆ V , and in the application of in-
terest, correspond to buses where renewable energy is intro-
duced. Edge weights correspond to susceptance values along
the transmission lines, and this work investigates how the dis-
tribution of susceptance values along the transmission lines of a
high voltage electric grid topology facilitates robustness of that
network.

To start, we work under the assumption that the difference
between phase angles of a steady state |θ(0)i − θ(0)j | is small for

all (i, j) ∈ E, implying that cos(θ(0)i − θ(0)j ) ≈ 1.6 This means

that for each k ∈ V ′, Mk(b)
c1

≈ M̂k(b) := n−1
∑

j Ωjk(b)−
n−2

∑
i<j Ωij(b), where Ωij(b) = L†

ii + L†
jj − 2L†

ij is the ef-
fective resistance corresponding to the network Laplacian,
Lij = −Bij if i %= j, and Lii =

∑
k Bik. Suppose V ′ =

{k1, . . . , kl}, where l ≤ n. We wish to find b∗ ∈ Rm to min-
imize a function of the vulnerability measures of nodes in V ′,
F : Rl → R, that is

b∗ = arg min
b∈X

F
(
M̂k1(b), . . . ,M̂kl(b)

)
(5)

where

X = {b ∈ Rm : b ≥ 0, bT1 = 1, G(b) is connected}.

In the following section, sufficient conditions on F are pro-
vided in order to describe when (5) is a convex optimization
problem. This work focuses on the case where

F
(
M̂k1(b), . . . ,M̂kl(b)

)
= max

k∈V ′
M̂k(b)

to produce edge weights that optimally minimize the worst case
vulnerability measure of nodes in V ′. With this specification
of F , (5) is reformulated as an SDP problem for the purpose
of employing efficient solvers, simultaneously ensuring that the
resulting edge weight assignment is such that the oscillators’
frequencies synchronize and have small phase angle differences.

5This assumption is made for simplicity, but in reality, the edge weights may
sum to any positive constant.

6Note that in the power grid, fixed points of the system are sought such that
|θ(0)i − θ

(0)
j | are small for all (i, j) ∈ E.

Authorized licensed use limited to: Cornell University Library. Downloaded on August 28,2023 at 18:51:23 UTC from IEEE Xplore.  Restrictions apply. 



NAGPAL et al.: DESIGNING ROBUST NETWORKS OF COUPLED PHASE OSCILLATORS 1049

III. OPTIMIZATION FRAMEWORK

A. Convex Optimization Problem

Proposition 1 shows that the set b ∈ Rm such that G(b) is
connected is a convex set. From this proposition, it immediately
follows that X is a convex set since the intersection of convex
sets is convex [21].

Proposition 1: {b ∈ Rm : G(b) is connected} is a convex set.
Proof: Suppose σ ∈ [0, 1] and let b1, b2 ∈ Rm be such

that G(b1) and G(b2) are both connected. When σ = 0,
G(σb1 + (1− σ)b2) = G(b2), and G(b2) is connected by
assumption. Similarly, when σ = 1, G(σb1 + (1− σ)b2) =
G(b1), and G(b1) is connected by assumption. Lastly, when
σ ∈ (0, 1), G(σb1 + (1− σ)b2) consists of all of the edges in
G(b1) and G(b2), and therefore G(σb1 + (1− σ)b2) is con-
nected since both G(b1) and G(b2) are connected. !

Theorem 2 shows that M̂k(b) is convex with respect to the
edge weights, b ∈ X . From this theorem, sufficient conditions
on F are provided in Corollary 3 for when (5) is a convex
optimization problem, and for which our choice of F satisfies.

Theorem 2: Suppose G = (V,E) is a simple, connected
network with |V | = n and |E| = m. Let bij ≥ 0 be the edge
weight that corresponds to edge (i, j) ∈ E and suppose b is a
m length vector that consists of all bij . For each node k ∈ V ,
the measure M̂k(b) is convex with respect to the edge weights
b ∈ X .

Proof: Since L is a real symmetric matrix, it can be written
as L = V ΛV T , where V ∈ Rn×n, Λ ∈ Rn×n are such that

1) V TV = V V T = I

2) Λ =





λ1 0 . . . 0
0 λ2 . . . 0
... 0

. . . 0
0 . . . 0 λn





where 0 = λ1 < λ2 ≤ λ3 · · · ≤ λn, λi ∈ spec(L). Moreover,
the Moore–Penrose pseudoinverse of L may be written as L† =
(L+ 11T /n)−1 − 11T /n [17], or L† = V Λ†V T , for

Λ† =





0 0 . . . 0
0 1

λ2
. . . 0

... 0
. . . 0

0 . . . 0 1
λn




.

Now, for fixed k, consider the measure M̂k(b) =
n−1

∑
j Ωjk(b)− n−2

∑
i<j Ωij(b). Recall that ek is a

standard basis vector of length n, and let vα denote the
eigenvector associated with αth eigenvalue of L, i.e, the αth
column of V . Then,

M̂k(b) = n−1
∑

j

Ωjk(b)− n−2
∑

i<j

Ωij(b)

∗
=

(
∑

α≥2

v2αk
λα

+ n−2
∑

i<j

Ωij(b)

)
− n−2

∑

i<j

Ωij(b)

=
∑

α≥2

v2αk
λα

= L†
kk = ek

TL†ek

= ek
T
((

L+ 11T /n
)−1 − 11T /n

)
ek

= ek
T
(
L+ 11T /n

)−1
ek − eTk

(
11T /n

)
ek

= ek
T
(
L+ 11T /n

)−1
ek − 1

n
.

For an explanation of the first equality (denoted with ∗) see [19].
From [17], we observe that f(Y ) = cTY −1c, where Y = Y T ∈
Rn×n and c ∈ Rn, is a convex function of Y for Y & 0.
Consequently, since (L+ 11T /n)−1 & 0 [17] and L+ 11T /n
is an affine function of the edge weights of the graph G,
ekT (L+ 11T /n)−1ek is a convex function of the edge weights
of the graph. This means that ekT (L+ 11T /n)−1ek − 1/n is a
convex function of the edge weights of the graph since 1/n is
simply a constant. !

Corollary 3: If F : R|V ′| → R is convex and nondecreasing,

then F
(
M̂k1(b), . . . ,M̂kl(b)

)
is convex with respect to b.

Corollary 3 is proven in [21] and implies thatmaxk∈V ′ M̂k(b)
is convex with respect to the edge weights of b [17].

B. SDP Formulation

We now show how to reformulate problem (5) (specified to
this work’s choice of F) into an SDP problem so that efficient
solvers may be employed. To start, a property of the objective
function (Proposition 4) is proven for the purpose of incorporat-
ing the connectivity constraint in a way that is compatible with
SDP formulations. In particular, the fact thatG(b) is connected if
and only if the second smallest eigenvalue of the corresponding
network Laplacian λ2(b) is positive is leveraged. The constraint
λ2(b) > 0 cannot directly be ensured in the SDP. We instead
use λ2(b) > ε and show that this is, without loss of generality,
equivalent for sufficiently small ε.

Proposition 4: For any b ∈ X and any V ′ ⊂ V

max
k∈V ′

M̂k(b) ≥
1

λ2(b)

(
1− 1

n

)2

.

For a proof of Proposition 4, please see Appendix-A.
By Proposition 4, there exists an ε > 0 such that for all

b where 0 < λ2(b) < ε, maxk∈V ′ M̂k(b) > maxk∈V ′ M̂k(b∗).
Leveraging this ε and results from Theorem 2, (5) (specified to
this work’s choice of F) may be written as

arg min
b∈X

max
k∈V ′

ek
T
(
L+ 11T /n

)−1
ek (6)

where

X = {b ∈ Rm : b ≥ 0, bT1 = 1, E ' 0}.

Note that the constraint E = L+ 11T /n− εI ' 0 guaran-
tees that all of the eigenvalues of L+ 11T /n are greater than
or equal to ε, and in particular, λ2(b) ≥ ε > 0. Next, set a slack
variable t such that

ek
T
(
L+ 11T /n

)−1
ek ≤ t for all k ∈ V ′.
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By Schur’s complement, ekT (L+ 11T /n)−1ek ≤ t for all k ∈
V ′ if and only if

Sk :=

[
L+ 11T /n ek
eTk t

]
' 0 for all k.

Hence, problem (6), may be written as

arg min
b∈X ,Sk'0 ∀k∈V ′

t.

Construct the block diagonal matrix Z ∈ Rd×d, where d =
|V ′|(n+ 1) +m+ n as

Z =





S1

S2

. . .
S|V ′|

b1
b2

. . .
bm

E





.

Define W ∈ Rd×d such that Wij = 1 if and only if i = j = n+
1, and Wij = 0 otherwise. Define A ∈ Rd×d such that Aij = 1
if and only if

i ∈ {(n+ 1)|V ′|+ 1, . . . , (n+ 1)|V ′|+m}

and i = j, and Aij = 0 otherwise. Then, coalescing everything
together, results in the following SDP formulation of problem
(6)

arg min
b

Tr(WZ)

s.t. Tr(AZ) = 1

Z ' 0. (7)

To solve (7) for b∗, we utilize CVXPY, a Python-embedded
modeling language for convex optimization problems [22].

C. Ensuring Synchronicity

In the derivation of the vulnerability measure, we assumed that
the oscillators have synchronized frequencies and small phase
angle differences. This assumption is not always true and is
dependent on the relationship between the oscillators’ natural
frequencies and the edge weights of the complex network.
Bullo [23] delineated a condition relating complex networks
oscillators’ natural frequencies and edge weights that ensures
the existence of a stable synchronized solution with phase angle
differences less than a given small angle parameter γ. Specif-
ically, the authors show that if the second smallest eigenvalue
λ2(b) of L satisfies

λ2(b) ≥ ‖ω(0)‖E,∞ · sin(γ) (8)

where ‖x‖E,∞ = max{i,j}∈E |xi − xj |, then |θ(0)i − θ(0)j | ≤ γ
for a wide class of networks. Thus, to ensure that a synchronized
stable solution with angle difference less than a chosen, small
angle parameter γ exists, (8) is incorporated as a constraint into

the optimization framework by further tightening the already
existing constraint, E ' 0. That is, set ε = ‖ω(0)‖E,∞ · sin(γ),
and note that E ' 0 is a sufficient condition for (8).

IV. INTERPRETATIONS

To start to shed light on the edge weight assignments that
result from the optimization framework, (6), specified to this
work’s choice of F , this section investigates how to optimally
assign edge weights to minimize vulnerability of a specific node
k,

arg min
b∈X

M̂k(b). (9)

Section IV-A reformulates the vulnerability measure in terms
of expected commute time, a graph theoretic measure. This
reformulation facilitates intuition into how to optimally assign
edge weights to solve (9) and how this edge weight assignment
permits a system of coupled phase oscillators to be robust to
small perturbations at node k. In Section IV-B, a sufficient
condition for the optimality of b ∈ X with respect to (9) is
derived and used to justify a prescribed edge weight assignment
as optimal for a complete graph and any tree network of size n.

A. Graph Theoretic Analysis

Let D be the weighted degree matrix of G, where Dij =∑n
j=1 Bij for i = j and 0 otherwise. Define a discrete-time

transition probability matrixP = D−1B. Such a transition prob-
ability matrix defines a random walk on the weighted graphG in
which a random walker at node i has probability Pij of visiting
node j in the next time step. The expected hitting time Hij is the
expected number of steps such a random walker takes to reach
node j for the first time, starting from node i. The expected
commute time is the expected number of steps a random walker
takes to reach node j, starting at node i, and then return to node i;
Cij = Hij +Hji [19]. The following well-known result relates
expected commute times and effective resistance [17]

Cij = 2
(
1T b

)
Ωij(b) = 2Ωij(b)

since 1T b = 1. By multiplying both sides of

M̂k(b) = n−1
∑

j

Ωjk(b)− n−2
∑

i<j

Ωij(b)

by n2, we have

n2M̂k(b) =
1

2
(n− 1)

∑

j

Cjk − 1

2

∑

i<j
i,j %=k

Cij .

Thus,2n2M̂k(b) = (n− 1)
∑

j Cjk −
∑

i<j
i,j %=k

Cij and so min-

imizing the vulnerability measure M̂k(b) at a node k according
to the optimization framework amounts to an edge weight as-
signment that seeks to 1) minimize the expected commute time
from node k to any other node in the system, and/or 2) maximize
the expected commute time between any two nodes in the system
that are not k. Note that 1) and 2) have different influences on an
optimal edge weight assignment based on the network structure
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Fig. 1. We consider a complete graph (K5), a star graph (S4), and a
tree (T7). Each graph in the top row has the same edge weight for each
edge such that all edges sum to one, and in the bottom row, we apply
this optimization framework to exactly one node, node k, in the graph
indicated by the black square. The vulnerability measure at each node
k, after the optimization framework either decreases or stays the same.
If edges are dotted, this means that the edge weight is 0 at that edge.

considered and the node for which the vulnerability measure is
being minimized at. Fig. 1 explores the influences of (1) and
(2) on an optimal edge weight assignment for a few canonical
graphs.

In order to achieve the optimal vulnerability measure for node
k in the scenario (K5), edge weights are assigned such that
the sum of the expected commute time from node k to any
other node in the system decreases and the sum of the expected
commute time between any two nodes in the system that are not
k increases. In (S4), the edge weights, and therefore commute
times, do not change. In (T7), the sum of expected commute time
from node k to any other node in the system decreases, and as a
result, the sum of the expected commute time between any two
nodes in the system that are not k decreases in order to achieve
an optimal vulnerability measure at the chosen node k.

To give insight on how assigning edge weights such that this
graph theoretic/commute time interpretation is satisfied permits
a system of oscillators’ whose synchronized frequencies are
robust to perturbations via simulation we consider a complete
graph on five nodes with uniform edge weights and synchronized
frequencies and expose a specific oscillator’s/node’s natural
frequency to a temporary box noise perturbation. Then, we con-
sider the same complete graph on five nodes with edge weights
obtained from the optimization framework and synchronized
frequencies and expose the same node’s natural frequency to the
same temporary box noise perturbation. For both cases, we plot
in Fig. 2 the oscillators’ frequencies over time for the purpose
of comparison.

It is interesting to note that for all five nodes, the oscillators’
frequencies behavior in the uniform edge weight case and opti-
mized edge weights case are qualitatively similar except for one
caveat; the oscillators frequencies’ behavior in the uniform edge
weights case seems to slightly lag the oscillators frequencies’
behavior in the optimized edge weights case. We observe this
qualitative behavior when performing the same type of simula-
tion on T7 and a figure elucidating this can be seen in Fig. 5.

This nicely connects the graph theoretic interpretation to
the vulnerability measure (3) definition Mk(b), which is how
this work defines robustness in a network of coupled phase

Fig. 2. Node that is squared on the complete graph on five nodes in
the center of this image is the node with perturbed natural frequency for
both the uniform edge weight case (b0) and optimized edge weight case
(b∗). Each node on the graph has an associated arrow which points to a
plot where the oscillators’ frequencies over time for both cases, uniform
and optimized edge weights, are considered. For each of these plots, we
consider time (seconds) on the x-axis and frequency (in a co-rotating
frame) on the y-axis. Notably, Mk(b0) is about 2.4 times larger than
Mk(b

∗) when considering node k indicated in Fig. 1.

oscillators.7 In assigning edge weights such that the commute
time interpretation is satisfied we are permitting perturbations
introduced at node k to have more of an influence and, therefore,
propagate to other nodes at a quicker speed. This allows for
oscillators’ frequencies to synchronize at a quicker rate, or
at least remain close in value, throughout time when a node
is exposed to a small perturbation which is in line with the
definition of the vulnerability measure (3). We observe this same
qualitative behavior when node k’s natural frequency is exposed
to an Ornstein–Uhlenbeck noise disturbance, however, the box
noise perturbation lends itself to a sharper illustration.

B. Analytical Formulations for Canonical Graphs

Lemma 5: Let b∗ ∈ X . If for all l ∈ {1, . . .m}

∂M̂k(b∗)

∂bl
+ M̂k (b

∗) ≥ 0 (C1)

then b∗ is an optimal solution to (9).
Proof: We start by proving in Lemma 8 in Appendix B that

(
∇M̂k(b)

)T
b = −M̂k(b)

for all b ∈ X . Leveraging this property and (C1), for all l ∈
{1, . . .m}

∂M̂k(b∗)

∂bl
+ M̂k(b

∗) ≥ 0

7Here, recall that vulnerability measure (3) is derived in [11] for box noise
perturbations.
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⇒ ∂M̂k (b∗)

∂bl
− (−M̂k(b

∗)) ≥ 0

⇒
(
∇M̂k(b

∗)
)T

el −
(
∇M̂k(b

∗)
)T

b∗ ≥ 0

⇒
(
∇M̂k(b

∗)
)T

(el − b∗) ≥ 0

where el is a standard basis vector of length m. Suppose b̄ ∈ X
and note that we may write

b̄ =
m∑

i=1

ciei

where ci ≥ 0 and
∑m

i=1 ci = 1, since
∑m

i=1 b̄i = 1. Since
(∇M̂k(b∗))T (el − b∗) ≥ 0

m∑

i=1

ci
(
∇M̂k(b

∗)
)T

(ei − b∗) ≥ 0

⇒
(
∇M̂k(b

∗)
)T m∑

i=1

ciei −
(
∇M̂k(b

∗)
)T m∑

i=1

cib
∗ ≥ 0

⇒
(
∇M̂k(b

∗)
)T

b̄−
(
∇M̂k(b

∗)
)T

b∗ ≥ 0

⇒
(
∇M̂k(b

∗)
)T (

b̄− b∗
)
≥ 0.

Thus, (∇M̂(b∗))T (b̄− b∗) ≥ 0 for all b̄ ∈ X . By the mini-
mum principle, b∗ is an optimal solution to the convex problem
(9). !

In the rest of this section, the sufficient condition (C1) is used
to justify the optimality of prespecified edge weight assignments
for complete and tree graphs.

Theorem 6: Suppose G = (V,E) is a complete graph on n
nodes and fix k ∈ V . An optimal edge weight assignment that
solves (9) is a star centered at node k with uniform edge weight
distribution.

Proof: Without loss of generality, set k = 1. We show that
edge weight assignment b̄, where b̄l =

1
n−1 for all j such that

l = (1, j) ∈ E and b̄l = 0 otherwise, is optimal by showing that
(C1) holds for each edge l. Using gradient derivations presented
in [17] and the fact that

M̂1(b) = e1
T
(
L(b) + 11T /n

)−1
e1 −

1

n

we have that ∂M̂1(b)
∂bl

where l = (i, j) ∈ E, equals

−e1
T

[
L(b) + 11T

n

]−1

(ei − ej)(ei − ej)
T

[
L(b) + 11T

n

]−1

e1

for any b ∈ X . Note that (C1) where k = 1 holds true if and only
if −∂M̂1(b∗)

∂bl
≤ M̂1(b∗) for each l = (i, j). Thus, (C1) where

k = 1 holds true if and only if
(

n∑

α=1

v∗α1(v
∗
αi − v∗αj)λ

∗
α

)2

≤
n∑

α=1

(v∗α1)
2λ∗

α − 1

n
(10)

for each l = (i, j), where v∗α denotes the normalized
eigenvector8 associated with αth eigenvalue of (L(b∗) +
11T /n)−1, λ∗

α. By our edge weight assignment and properties
of the spectrum of the Laplacian of a uniformly weighted star
graph, the eigenvectors of (L(b̄) + 11T /n)−1 are

1) v̄1 = [ 1√
n
, . . . , 1√

n
]T ;

2) v̄s =
1√
2
(es − es+1), for all 2 ≤ s ≤ n− 1; and

3) v̄n = [ n−1√
(n)(n−1)

, −1√
(n)(n−1)

, . . . , −1√
(n)(n−1)

]T

with corresponding eigenvalues λ̄1 = 1, λ̄s = n− 1 for 2 ≤
s ≤ n− 1, and λ̄n = n−1

n . We now consider two cases.
Case 1: Suppose i = 1 and j ∈ {2, . . . , n} and consider∑n
α=1 v̄α1(v̄α1 − v̄αj)λ̄α. Since v̄11, v̄1j =

1√
n

, v̄11(v̄11 −
v̄1j)λ̄1 = 0. Moreover, since v̄α1 = 0 for all 2 ≤ α ≤ n− 1,

n∑

α=1

v̄α1(v̄α1 − v̄αj)λ̄α = v̄n1(v̄n1 − v̄nj)λ̄n =
n− 1

n
.

Thus,
(∑n

α=1 v̄α1(v̄α1 − v̄αj)λ̄α

)2

= (n−1
n )2, and

n∑

α=1

v̄2α1λ̄α − 1

n
=

(
n− 1

n

)2

implying that (10) is met.
Case 2: Suppose i, j ∈ {2, . . . , n} and consider∑n
α=1 v̄α1(v̄αi − v̄αj)λ̄α. For this case, since v̄1i = v̄1j ,

v̄α1 = 0 for 2 ≤ α ≤ n− 1, and v̄ni = v̄nj ,
∑n

α=1 v̄α1(v̄αi −
v̄αj)λ̄α = 0. Clearly,

0 <

(
n− 1

n

)2

=
n∑

α=1

v̄2α1λ̄α − 1

n

thus (10) is met. By Case 1 and Case 2, (C1) holds true for each
edge l, and therefore, b̄ = b∗. !

Theorem 7: Suppose G = (V,E) is a tree with |V | = n and
|E| = m and k ∈ V. Let A be the set of all simple paths in G
and Ak be the set of all simple paths from node k to all other
nodes in G, then

b̄l =
(nakl − al)

1
2

∑m
s=1(na

k
s − as)

1
2

for each edge l ∈ {1, . . . ,m} is an optimal edge weight assign-
ment that solves (9), where al (akl ) is the number of times edge
l appears in A (Ak).

Proof: We show that the edge weight assignment

b̄l =
(nakl − al)

1
2

∑m
s=1(na

k
s − as)

1
2

for each edge l ∈ {1, . . . ,m} is an optimal solution to (9). Since
G = (V,E) is a tree, for all (i, j) ∈ E and b ∈ X , Ωij(b) is the
sum of the reciprocal of edge weights that lie on the unique path
from node i to node j [17]. Thus

n2M̂k(b) = n
∑

j

Ωjk(b)−
∑

i<j

Ωij(b)

8That is, the two-norm of each eigenvector equals 1.
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= n
m∑

l=1

akl
bl

−
m∑

l=1

al
bl

=
m∑

l=1

nakl − al
bl

.

Note that

∂n2M̂k(b)

∂bl
+ n2M̂k(b) =

−(nakl − al)

(bl)
2

+
m∑

s=1

naks − as
bs

.

It can be verified that by plugging in b̄ as defined above we obtain

−(nakl − al)

(b̄l)
2

= −
(

m∑

s=1

(
naks − as

) 1
2

)2

, and

m∑

s=1

naks − as
b̄s

=

(
m∑

s=1

(
naks − as

) 1
2

)2

.

By substitution, ∂n2M̂k(b̄)
∂b̄l

+ n2M̂k (b̄) = 0 implying that (C1)

holds true. Thus, b̄ = b∗. !

V. HIGH VOLTAGE ELECTRIC GRID APPLICATION

An electrical grid is an interconnected network, consisting of
transmission lines and buses, designed for the purpose of deliver-
ing power from producers to consumers. Power is delivered from
generator buses to load buses via the transmission lines by way
of alternating current, depicted by a sinusoidal curve. Electrical
impedance is the measure of opposition that a transmission
line presents to alternating current when a voltage is applied.
Specifically, in the power grid, impedance of transmission lines
are comprised of resistance and reactance. Buses where power
is generated are called generator buses and have net positive
power injections into the system, whereas buses where power
is consumed are called load buses and have net negative power
injections into the system.

Suppose we are considering a high voltage electric grid con-
sisting of n buses and m transmission lines. We may model the
grid as a connected network G = (V,E) with n nodes and m
edges, where each node i ∈ V corresponds to a voltage phase an-
gle θi ∈ [−π,π), associated with a bus i, and evolves according
the coupled dynamics [5], [6], [7] described in (1), where ωi is
the per unit power injected at node i, and

∑N
j=1 bij sin(θi − θj)

is the per unit power extracted at node i.9 We note that bij
is the per unit susceptance along the transmission line that
connects bus i to bus j. Concretely, bij is calculated by taking
the reciprocal of the per unit reactance along the transmission
line that connects bus i to bus j in the physical system, and
intuitively describes how conductive the transmission line is.

As previously stated, the ability for voltage phase oscillators
participating in the system to maintain frequency synchroniza-
tion is imperative to the health and functionality of the electric
grid, and this ability is potentially threatened by the integration
of renewable energy into the high voltage electric grid. Indeed,

9Note that there would be a damping term that we assume to be 1 s for now.

variability in renewable output cause small disturbances to the
power injected into the system at certain buses [4], [9]. To
mitigate these small disturbances, we leverage the model as a
design tool for ensuring the grid is robust to small perturbations
that are inevitable with integration of renewable energy. We
consider two scenarios whose solutions amount to ensuring that a
fixed amount of susceptance10 is optimally allocated to the edges
of a power grid topology to minimize the vulnerability measure
at nodes where renewable energy is introduced. As indicated
in [24] and [25], electronics that control susceptance values
along the transmission lines are currently in development, which
would allow for this optimization strategy to be realized. More-
over, a motivating factor for this study is to explore the potential
of new technology; we hope that the efficacy demonstrated by
our optimization framework may inspire further development
of these types of control electronics for the high voltage electric
grid.

A. Dataset Description

We consider a 57 bus case system that is a high voltage electric
grid model for the NY region [26]. The dataset consists of
29 generator buses, 28 load buses, and 94 transmission lines.
To establish a natural frequency corresponding to each voltage
phase oscillator participating in the system, we attain the per unit
power injected information associated with each node during a
cold morning in December 2019. For all of the problem scenarios
considered, following the discussion in Section III-C, we set
γ = π

16 [27].

B. Scenario 1

Suppose a power grid engineer is tasked with converting the energy
source at a generator bus to a renewable energy source which will
likely result in small perturbations to the power injected at that bus. Is
there a generator bus that would be the most robust to the introduction
of renewable energy? Does the choice of bus change given the ability
to distribute a fixed amount of susceptance to the edges of the electric
grid network?

Let b0 be the original susceptance values obtained from data
and suppose V ′ is the set of nodes corresponding to the 29
generator buses in the system. Without the ability to distribute a
fixed amount of susceptance to the edges of the electric grid
network, a generator bus that would be the most robust to
the introduction of renewable energy is a generator bus cor-
responding to a node that solves arg mink∈V ′M̂k(b0). This is a
direct application of the work done in [4]. Suppose b∗k ∈ X is a
susceptance value assignment that minimizes the vulnerability
measure at node k, i.e., b∗k = arg minb∈XM̂k(b). Given the
ability to allocate susceptance to the edges of the high voltage
electric grid, a generator bus that would be the most robust to
the introduction of renewable energy corresponds to a node that
solves arg mink∈V ′M̂k(b∗k).

We computed M̂k(b0) and M̂k(b∗k) for all 29 nodes corre-
sponding to generator buses, and as expected, M̂k(b0) is greater

10Normalized to one, for simplicity, and informed by a fixed amount of
physical resources.
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than M̂k(b∗k) for all k. Comparing M̂k(b∗k) for each node k
corresponding to a generator bus, the generator bus indexed
as node 6 exhibits the smallest vulnerability measure M̂6(b∗6),
and the generator bus indexed as node 4 exhibits the largest
vulnerability measure M̂4(b∗4), after applying the optimization
framework.

Thus, given the ability to allocate susceptance to the edges
of the high voltage electric grid, the generator bus that would
be the most robust to the introduction of renewable energy
corresponds to the node indexed as 6. Moreover, without the
ability to distribute a fixed amount of susceptance to the edges
of the electric grid network, the generator bus that would be the
most robust to the introduction of renewable energy is indexed
as node 15. We note that M̂15(b0) is 87.3% larger than M̂6(b∗6).

Given that renewable energy resources are often concentrated
in areas according to natural resources, it may be unreasonable
to assume that all 29 generator buses should be considered as
candidates for the introduction of renewable energy under this
particular scenario. Our framework accommodates this con-
straint. In fact, one can choose to solve b∗k for each of the k nodes
corresponding the generator buses, where appropriate natural
resources are available, instead of all k nodes corresponding to
29 generator buses, and solve for arg mink∈V ′M̂k(b∗k).

C. Scenario 2

Generating power using renewable energy resources rather than fossil
fuels reduces greenhouse gas emissions, and thus, helps address cli-
mate change [28]. Incorporating renewable energy at all the generator
buses in the system will, however, likely result in small perturbations
to the power injection at all these nodes. Can we distribute a fixed
amount of susceptance to the edges of the electric grid network in
such a way that allows for the voltage phase oscillators’ synchronized
frequencies to be robust to noise at any of the generator buses?

This problem amounts to solving (6) for b∗, where V ′

is the set of 29 nodes corresponding to generator buses in
the complex network. Note that

∑
k∈V ′ M̂k(b0) ≈ 5663.14

and
∑

k∈V ′ M̂k(b∗) ≈ 2628.66, amounting to approximately a
53.6% decrease in the sum of vulnerability measures at nodes
corresponding to generator buses after applying the optimization
framework. As illustrated by the plot in Fig. 4, the vulner-
ability measure at each bus k ∈ V ′ decreases after the opti-
mization framework except for three generator buses indexed
as node 7, 12, and 15. Here, we are minimizing the worst case
vulnerability measure for nodes in V ′, so it is interesting to
note that M̂k(b∗) becomes smaller for nearly all k ∈ V ′. We
would like to explore this aspect further as a potential future
direction.

Once again, recall that renewable energy resources are con-
centrated in areas according to natural resources, and so it may be
unreasonable to include all 29 nodes corresponding to generator
buses into the vertex subset V ′. Instead, we may choose nodes
corresponding to generator buses where natural resources are
available to include in our vertex subset V ′ to accommodate for
such a natural resource constraint.

Fig. 3. In the bar plot, M̂k(b0) for each of the twenty-nine nodes
corresponding to generator buses, k, is plotted in blue, and M̂k(b

∗
k)

for each of the 29 nodes corresponding to generator buses is plotted in
orange. Below the bar plot, the 57 bus-case system is plotted twice.
In the left most graph, edge weights correspond to the edge weight
assignment for node 4 after the application of our optimization frame-
work, and in the right most graph, edge weights correspond to the edge
weight assignment for node 6 after the application of our optimization
framework. Notably, M̂4(b∗4) ≈ 36.42 and M̂6(b∗6) ≈ 12.68.

Fig. 4. In the bar plot„ M̂k(b0) for each of the twenty-nine nodes
corresponding to generator buses k, is plotted in blue, and M̂k(b

∗)
for each of the 29 nodes corresponding to generator buses is plotted
in orange. Below the bar plot, once again, the 57 bus-case system
is plotted twice. In the left graph, edge weights correspond to original
susceptance values, b0, and in the right graph edge weights correspond
to b∗.
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Fig. 5. Node that is squared on T7 in the center of this image is the
node where we perturb the natural frequency for both the uniform edge
weight case and optimized edge weight case. Each node on the graph
has an associated arrow which points to a plot where the oscillators’ fre-
quencies over time for both cases, uniform and optimized edge weights
are considered. For each of these plots, we consider time (seconds) on
the x-axis and frequency (in a corotating frame) on the y-axis.

VI. CONCLUSION

In this work, we considered a small angle variation of the
vulnerability measure derived in [4] that quantifies how much
a small perturbation to a phase oscillator’s natural frequency
impacts the system’s global synchronized frequencies. Given a
fixed total amount of edge weight, we proposed a mathematical
framework that assigns an optimal allocation of edge weights
to minimize the vulnerability measure at node k, M̂k(b), or a
function of vulnerability measures corresponding to a subset of
nodes V ′, F , for which we expect small perturbations to occur.
The model allows for flexibility in the choice of F contingent
on the desired definition of robustness. In this work we specified
F to produce edge weights that optimally minimize the worst
case vulnerability measure of nodes in V ′, maxk∈V ′ M̂k(b).

We proved that the vulnerability measure considered in this
work is convex with respect to the edge weights of the net-
work, implying that any edge weight assignment that results
from the specified optimization problem is a global minimizer.
Additionally, this work provided a tractable SDP reformulation
of the problem and incorporated a constraint that ensures the
existence of a synchronized stable solution with small angle
differences. We shed light on the results of this optimization
problem by considering the vulnerability of a single node from
a graph theoretical and analytical lens. Finally, we applied
the framework to high voltage electric grids, addressing two
scenarios that highlight how the mathematical model may be
leveraged to alleviate tensions between current green initiatives
and the high voltage electric grids’ capacity to accommodate
such initiatives.

There are many natural extensions to this work, both theoreti-
cal and applied in nature. One theoretical question to investigate
is whether the vulnerability measure considered in this work is
strictly convex with respect to the edge weights of a graph. If this
property holds, this would imply that the solution obtained from
the mathematical framework is a unique global minimizer. In
Section IV-B, we derived sufficient conditions for optimality
when the vulnerability of one node is considered. It would
be interesting to leverage these techniques to derive sufficient
conditions for optimality when the vulnerability of a set of nodes
is considered.

On the more applied side, recall that in establishing a natural
frequency corresponding to each voltage phase oscillator par-
ticipating in the high voltage electric grid, we attained the per
unit power injected information associated with a specific time.
In reality, the high voltage electric grid is a highly dynamic
system, where the power injected at each bus varies in time.
Thus, it would be informative to analyze how (if at all) the
susceptance values assigned along the transmission lines vary in
reference to time-series power injection data. If the susceptance
values assigned along the transmission lines vary in reference
to time-series power injection data, one could further quantify
the variance and construct structures that minimize the variance
of assigned susceptance values. Moreover, given that the high
voltage electric grid is constantly growing in size, ensuring that
the computational efficiency of the framework remains intact
is important. One could potentially enhance the computational
efficiency of this framework by taking advantage of the sparsity
of Sk discussed in Section III-B.

APPENDIX A
PROOF OF PROPOSITION 4

Proof: Suppose k ∈ V and b ∈ X . In [19] and [29], the
authors’ show that, respectively

M̂k(b) = L†
kk ≥ 1

Lkk

(
1− 1

n

)2

and

λ2 ≥ 1

nD

where Lkk is the weighted degree of node k and D is the
weighted diameter of the network being considered. Note that
Lkk, D ≤ 1 since bT1 = 1, and so

λ2n ≥ 1 ≥ Lkk ⇔ 1

Lkk

≥ 1

λ2n
.

This means that

M̂k(b) ≥
1

λ2

(
1− 1

n

)2

for all k ∈ V when b ∈ X , implying that for any V ′ ⊂ V

max
k∈V ′

M̂k(b) ≥
1

λ2

(
1− 1

n

)2

.
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APPENDIX B
ANALYTICAL SOLUTIONS FOR CANONICAL GRAPHS

CONTINUED

Lemma 8: (∇M̂k(b))
T b = −M̂k(b) for b ∈ X .

Proof: For any (i, j) ∈ E and any c > 0 it is shown in [17]
that the effective resistance satisfies

Ωij(cb) =
Ωij(b)

c
.

From this and the definition of M̂k(b), it can easily be verified
that

M̂k(cb) =
1

c
M̂k(b). (11)

By differentiating both sides of (11) with respect to c and then
setting c = 1, we obtain

(
∇M̂k(b)

)T
b = −M̂k(b).

!
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