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Lagrangian Cobordisms between Enriched Knot Diagrams
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Abstract

In this paper, we present new obstructions to the existence of Lagrangian cobordisms in
R* that depend only on the enriched knot diagrams of the boundary knots or links, using
holomorphic curve techniques. We define enriched knot diagrams for generic smooth links.
The existence of Lagrangian cobordisms gives a well-defined transitive relation on equivalence
classes of enriched knot diagrams that is a strict partial order when restricted to exact enriched
knot diagrams To establish obstructions we study 1-dimensional moduli spaces of holomorphic
disks with corners that have boundary on Lagrangian tangles - an appropriate immersed La-
grangian closely related to embedded Lagrangian cobordisms. We adapt existing techniques
to prove compactness and transversality, and compute dimensions of these moduli spaces. We
produce obstructions as a consequence of characterizing all boundary points of such moduli
spaces. We use these obstructions to recover and extend results about “growing” and “shrink-
ing” Lagrangian slices. We hope that this investigation will open up new directions in studying
Lagrangian surfaces in R%.
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1 Introduction

Lagrangians are interesting and important objects in symplectic geometry. It is known that
they display both flexible and rigid properties. A generic Lagrangian surface in R* intersects
parallel hyperplanes, R3 := {ys = a} and RZ’ , transversely. So, LN R‘[la’b] :={a < yo < b} gives
a cobordism from 0_L = LNR3 to 8L = LN R} that is Lagrangian.

Lagrangian cobordism can refer to one of many similar objects. Lagrangian cobordisms
were first studied by Arnold [Arn80]. For a usual cobordism, 3, between manifolds By and By,
that is, 8 = By — By, Arnold referred to Lagrangian submanifolds A in 7*3 with Lagrange
border OA = m(OL N OT*F) = L1 — Ly, where 7w : 9T*3 — T*0f is the standard projection, as
a Lagrange cobordism over 3 between Lagrangian manifolds L1 C T*B; and Ly in T* By.
Turns out Lagrange cobordisms in = B x [0, 1] give an equivalence relation on the set of
immersed Lagrangians in B.

Eliashberg ([Eli84]) showed that immersed Lagrangian cobordisms obey an h-principle,
that is, their existence is assured upto vanishing of algebraic topological invariants. This is
referred to as a “flexible” phenomenon in symplectic geometry.



Figure 1: Lagrangian cobordism is a natural way of viewing Lagrangian surfaces
by restricting our attention to R‘[‘a ok

Embedded Lagrangians are more “rigid.” For example, embedded Lagrangians in R? are
only circles, and it can be shown that all embedded Lagrangian cobordisms between circles in
R? must be between circles of equal area. Biran and Cornea show that monotone Lagrangians
cobordisms in M x R2, for symplectic manifold M, between embedded Lagrangians in M
preserve Floer homology and similar invariants.

What we are considering is somewhere in between. Like in [ST10], we consider cobordisms
that are embedded in R* but we allow the Lagrangian projection of the boundaries to R? to be
immersed. Sabloff and Traynor used generating functions to define capacities, ci’a : H*(Ly) —
(—00,0], C’i’a : H*(L,) — [0, 00), for unknotted, planar, flat-at-infinity Lagrangian cobordisms
in R?" [ST10]. Slices of such Lagrangians in R4 (upto compactly supported area preserving
diffeomorphisms of R?) have a partial order defined by the existence of a Lagrangian cobordism
in R%.

In this paper we consider relatively exact Lagrangian cobordisms in R*. Relative exactness
is a generalization of exactness - A Lagrangian cobordism is said to be relatively exact
if the image of the function w : Hy(R* L;Z) — R is contained in the set of Z-multiples of
a(0_L) = | [, ;z1dy1]. In fact, relative exactness follows from topological considerations
of the cobordism (see Remark 1). This means that, in some cases, obstructing relatively
exact Lagrangian cobordisms, obstructs the existence of any Lagrangian cobordisms with those
boundaries. We find obstructions to the existence of relatively exact Lagrangian cobordisms



between knots/links based on the combinatorial data of enriched knot diagrams. Intuitively,
the enriched knot diagram for a knot, K, keeps track of the topological of the knot like
a standard knot diagram, and additionally records the geometric data of areas of different
regions in R? defined by m1(K) for the standard projection m; : R® — R? forgetting the last
coordinate (see Definition 3.3).

Definition 1.1. Given two diagram classes, [D1, 01,.41] and [Ds, 09, As], we say [D1,01,.A1]
undercuts [Ds, 02, Ag] if there exists a relatively exact Lagrangian cobordism (Definition 2.1),
L, such that Kp, <1 Kp,, for links Kp, having diagram [Dj,05,A;], j =1,2. We denote this
by [Dl,O'l,Al] < [DQ,O‘Q,.AQ] (01“ [Dl] < [DQ])

Lemma 1.2. The undercut relation is a transitive relation on equivalence classes of enriched
knot diagrams, that is,

1. the relation < is well-defined on equivalence classes of diagrams;

2. undercutting is transitive: if [D3] < [D2] and [D2] < [D1], then [Ds] < [D1].

Additionally, the undercut relation gives a strict partial order when restricted to exact diagrams
(see Definition 3.4), that is,

1. undercutting is non-reflexive: for all exact diagrams [D], [D] 4 [D];

2. undercutting is anti-symmetric: for [D1] # [Da], [D1] < [D2] implies [Da] £ [D1];

3. not all enriched knot diagrams are related by the undercut relation.

Given an enriched knot diagram, D, and two disks, A and B, bound by D, (Definition 4.2),

we say A and B share a corner ¢ € X(D) if ¢ is a corner for both the disks A and B and
both A and B have the same sign at q.

Definition 1.3. A disk, A, bound by a diagram pair ((D1,01,.41), (D2,09, A2)) is called big
if:

1. A has all convex corners;

2. A is bound by D; and has all negative corners, or A is bound by Ds and has all positive
corners;

3. A is an aligned disk as in Definition 6.3;
4. either a(D1) = a(D2) = 0 or area(A) < a(Dy).

Given a diagram pair ((D1,01,.41), (D2,09, A2)) and a big disk, A, bound by it, we define
a little disk relative to A to be a disk, B, bound by the pair ((D1,01,41), (D2, 02, .A2)),
distinct from A, such that one of the following conditions hold:

(a) B and A are both bound by D2 and B has sign equal to +1 only at those corner points
it shares with A. The rest are negative corners. If B has no negative corners, B must
share all of A’s corners;

(b) B and A are both bound by D; and B has sign equal to —1 only at those corner points it
shares with A. The rest are positive corners. If B has no positive corners, B must share
all of A’s corners;

(¢) A is bound by Dy; B is bound by D; and has all positive corners , with at least one
corner when A has non-zero number of corners;



(d) A is bound by D;; B is bound by Dy and has all negative corners, with at least one
corner when A has non-zero number of corners.

We show that the existence of a big disk implies that of a little disk whenever an enriched
knot diagram, D;, undercuts another enriched knot diagram, Ds.

Theorem 1.4. If [Dy,01, A1] < [Da,09, As] and there exists a big disk A bound by the pair,
then there must exist a little disk B relative to A bound by the diagram pair, such that

area(A) > area(B).

Equality of area can hold only when [A] = [B] € TIo(R*, L) for any possible Lagrangian tangle
L with Dy, 1, = Do and Dy_r, = D1 and they share all corners.

Note that even though the condition on equality a priori feels like it depends on more than
just the diagrams, as we can determine the topology of the tangle using the diagrams from
Equation (6), this condition actually depends only on the diagrams.

= A
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Figure 2: Parts (a) and (c) show for r < R possible Lagrangian cobordisms
8.(r) < 84 (R) and 8_(R) < 8_(r), respectively.
There are no Lagrangian cobordisms when the orders are reversed
as in (b) and (d). This figure appeared in [ST10].

The motivating question or observation that propelled this research is as follows. Consider
the following 8-shaped curves in R3 : 8.(m72?) = {(z1,y1,2z2)|2? + 23 = r?,y1 = £2z172}.
It is possible to construct Lagrangian cobordisms L C R?a,b} such that 04 L = 84(A) and
J_L = 84(B) for A > B, but it was shown in [ST10] that this is impossible for A < B.



Similarly, it is possible to construct L C Rf‘a’b] such that 0y L = 8_(A) and 0_L = 8_(B) for
A < B, but impossible for A > B.

We are able to recover these results using our methods. Additionally, we are able to show
similar results for knots like trefoils with positive or negative crossings, T, which are beyond
the scope of the techniques in [ST10]. These are presented as corollaries of Theorem 1.4 in
Section 7. Many similar results can be obtained by applying Theorem 1.4 and we only present
select few.

To establish the obstruction, Theorem 1.4, we study moduli spaces on holomorphic disks
with corners that have boundary on “Lagrangian tangles” which are immersed Lagrangian
cobordisms that have boundary on copies of R? of the form R2 := {25 = 0,9, = a} such that
the Lagrangian is embedded away from its boundary.

Definition 1.5. A Lagrangian tangle, L, is a compact, connected, oriented, immersed
Lagrangian submanifold (with boundary) such that:

° LCR?M]::{agygSb}CR4forsomea<b€R;

e L intersects RS UR? transversely, and 0L = LN (R3 UR);
e OL is flat, that is, 0L C R2 URZ;

the only self-intersections of L are transverse double points on dL;
e L intersects R} transversely for b —e < t < b and for a < t < a + ¢, for some small € > 0;

e LN Rfa tebd] is relatively exact as defined in Definition 2.2 for all € > 0.

To show that one can go between (embedded) relatively exact Lagrangian cobordisms and
Lagrangian tangles as required, we include constructions of Lagrangian collars. Some of the
constructions rely on Lagrangian movies perspective which was utilized very effectively in
[Sau04] and [Linl3] previously.

Theorem 1.4 is proved in Section 7 using Theorem 6.5. Theorem 6.5 is our main technical
result where we completely classify boundary points of 1-dimensional moduli spaces of holo-
morphic disks with corners that have boundary on a Lagrangian tangle. The proof of Theorem
6.5 spans the entirety of Section 6.

Figure 3: Depiction of a holomorphic disk with corners that has boundary on a
Lagrangian tangle moving in a one dimensional moduli space.

In [ST10], Sabloff and Traynor study the Morse theory of generating functions of unknotted
and planar-at-infinity Lagrangians. An embedded submanifold, L C R* = T*R? is “planar” if



it is diffeomorphic to the zero section, Ly = {y1 = y2 = 0}. A planar Lagrangian is “flat-at-
infinity” if it agrees with Lg outside of a compact subset of R*. These conditions mean that the
Lagrangian cobordism has genus 0 and the writhe (with respect to the blackboard framing) of
the knots that can appear as Lagrangian slices has to be £1. Relaxing the “global” conditions
of unknottedness and planarity implies we are able to prove results for a larger range of knots.
In particular, we allow writhes to be any integer, and do not require the knots to be capped
or filled by a Lagrangian disk.
+ +

(a) (b) ©) (d)

¢

Figure 4: (a) wr =1, (b) wr =1, (¢) wr = —3, (d) wr = 3.

A related, well-studied, setup is to consider Lagrangians in the symplectization of a con-
tact manifold. For example, the contact manifold R? with contact form o = dz — ydx has
symplectization ]RflF = R, x R? with the symplectic form d(e’a). Here, one studies La-
grangians that are cylindrical over Legendrians at ¢ = oo and 0. With the change of coordinates
x1 =z, = ely,xo = e',ys = 2z, we can view the symplectization as R* with the standard
symplectic form. In these new coordinates the Lagrangians would be conical over Legendrians
at £oo. This situation is a special case of the setup that we consider in this paper. An enriched
knot diagram, D, has a Legendrian representative if and only if

e the total area, fD x1dy, bound by the diagram is zero, and

e at each crossing, the sign of a corner is the same as the sign of the area bound by the
arc that starts and ends at that crossing and contains that corner. (Here we consider the
parametrization on the arc that is anti-clockwise along the boundary of the considered

corner.)
/
() (b) (©

Figure 5: (a) This loop cannot appear in an enriched knot diagram that has
a Legendrian representative.
(b),(c) Diagrams with Legendrian representatives.

This means that the 8 enriched knot diagrams have Legendrian representatives whereas the
8_ enriched knot diagrams don’t. We remark here that the signs look opposite to more
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common conventions (for example, those of Legendrian contact homology in [|) because we
slice by y2 = z = constant, whereas, in the above described coordinates, the more common
convention is to slice by ¢t = constant which is equivalent to xo = constant.

2 Preliminaries

2.1 Setup

Consider the standard R* with coordinates 1,1, 2, y2, with the standard symplectic form,
w = dx1 A dyi + dxa A dys. The complex structure obtained by identifying R* with C @ C,
given by i(0,,;) = 9,, for j = 1,2, is compatible with w. The pair (w,i) generate the standard
Riemannian metric on R*, g = dz; ® dx1 + dy; ® dy; + drs @ drgy + dys ® dys = w(-,i-). Let
us fix notation for some special subsets of R*:

o R := {(x1,y1,72,y2) € RYya € I} is a restricted part of R? for any interval (open or
closed) I C R;

e R3:= {(x1,y1,22,y2)| y2 = a} is a hyperplane for any a € R;
o R2:= {(x1,y1,22,y2)| Y2 = a,ro = 0} is a complex plane contained in R3 for any a € R.

A Lagrangian submanifold, L, of R* is a half-dimensional submanifold with or without
boundary, on which the symplectic form vanishes, that is, w|r;, = 0. In case of R*, hal-
dimensional means a real 2 dimensional manifold, so L is a surface. We assume that all our
manifolds are smooth unless mentioned otherwise. For any Lagrangian surface L C R* we
denote by L, the slice of L,

Lo:=LNRS

whenever L intersects R? transversely.

A knot is a smooth embedding, S* < R3. A link is a smooth embedding, LI?ZIS1 — R3, of
finite number of copies of S'. Denote by m; the projection 7 : R3 — R2, (21, y1,22) + (21, y1).
The projection 7 is sometimes referred to as the Lagrangian projection of R®. For a generic
oriented link K in R?, 7 (K) is an immersed curve with finitely many transverse double points,
called crossings. We assume that all links, K, in this paper have such m (K).

Definition 2.1. A Lagrangian cobordism, L, from a link K7 to a link K5 is an embedded,
orientable, connected, compact, Lagrangian surface L C R‘[la b] for some real numbers a < b,
such that

e L intersects R3 := {yo = a} and R} := {yp = b} transversely, and

o LNR} = 4(K2), LNR3 = 1,(K;) for the canonical inclusion ¢, : R — R? given by
te(®1,y1,22) = (21,41, 22, ¢) for c € R.

If such a Lagrangian cobordism exists, we say that K; undercuts K5, and denote it by by
Ky < K5. We write K1 <y, Ko if we want to specify that the specific Lagrangian L gives this
cobordism.

A knot K is said to be capped by a Lagrangian if K < (), and filled by a Lagrangian if
< K.

4

(0]’ let us denote

For a Lagrangian cobordism L C R

0yL:=LNR} and §_L:= LNR3.

8



As L is oriented, L induces an orientation on its boundaries 01 L. So, any Lagrangian cobor-
dism is a Lagrangian cobordism from 0_L to 0+ L.
Define area of a knot K to be
/ z1dy:
w1 (K)

Note that as we take absolute value, in the case K is a knot, the specified orientation does not
matter. If K had multiple connected components, the orientation would be important. By
Stoke’s theorem, a Lagrangian cobordism from knot Kj to K» cannot exists unless a(K;) =

a(Kg).

Definition 2.2. Recall that the symplectic form w € H?(R*, L) defines a map w : IIa(R*, L) —
R. We call a Lagrangian cobordism relatively exact if the image w(Ila(R*, L)) is aZ where
a=a(0+L)=a(0_L).

a(K) =

Remark 1. In some cases, we can conclude that a Lagrangian cobordism is relatively exact
purely from topological constraints. Suppose L is a Lagrangian cobordism from a knot Kj to
K5 such that the writhes (with respect to the blackboard framing in x,y;, 2 coordinates)
satisfy wr(K7) = wr(K3). As L is Lagrangian, one can show that the Euler characteristic
satisfies

x(L) = wr(Kz) — wr(K1),

and hence x(L) = 0. As we know that L is topologically a surface with at least two boundary
components, zero Euler characteristic implies

0=x(L)=2-2g9—-b=—2g,

that is, genus ¢ = 0 and b = 2. This forces L to be topologically a cylinder and ITy(R*, L) is
generated by a class [u] for u a disk that has boundary equal to one of the boundary components
of L. Thus, L is automatically relatively exact.

To study relatively exact Lagrangian cobordisms we consider related immersed Lagrangians
called Lagrangian tangles (Definition 1.5). An immersed Lagrangian in (R*, w) is the image,
L = (L), of an immersion

LZE—)R4,

where L is a 2-manifold (possibly with boundary), such that the pull-back ¢*w = 0 vanishes.
Given such an immersed Lagrangian, L, its transverse double points are ¢ € L such that
there exists p; # po in L with t(p1) = t(p2) = ¢, and dup, (T, L) @ dip, (T, L) = T,R*. Denote
the set of transverse double points of an immersed Lagrangian, L, by

A(L) :={q € L|# {q} =2}.

A Lagrangian tangle (Definition 1.5), L, has two leaves near any point ¢ € A(L), that is, in
a small neighbourhood of ¢, L \ {¢} has two connected path components. Note that, here we
are using the assumption that the only singularities are transverse double points. Near each
double point, for any fixed ys-value, one leaf has higher xs-values than the other. We refer to
the former as the higher leaf, L, and the latter as the lower leaf, L!, near q.

Lagrangian cobordisms and Lagrangian tangles are related by the addition or removal of
appropriate Lagrangian collars, which we describe in the next section.



2.2 Lagrangian Collars

In this section we describe how we can add small Lagrangian collars to the ends of a given
Lagrangian to get desired boundary conditions. We first restate some lemmas from [ELSTOS]
that show that Lagrangians with equal slices can be glued smoothly. We remove the require-
ment that the Lagrangians are planar unknotted and include proofs that are slight alterations
of those in [ELSTO08] so that we do not use the planar unknottedness hypothesis.

Lemma 2.3. [ELST08, Lemma 5.1] Let L, L' C R* be two Lagrangians that are transverse to
and agree on R3, for some a € R. Let

S:=L,=1L1,.
Then, for all € > 0, there exist neighborhoods V- C U of S in L and a symplectic isotopy ¢ of
R* such that ¢4|1, is the identity on S and on the complement of U, ¢1(U) C ]R‘(La_E ate)’ and
»(V)yc L.

Proof. We present the argument when S has only one connected component but, as the ar-
gument is local in nature, it extends to the case when S has many connected components by
repeating this argument for each component.

Let Lo be the (x1,z2)-plane, that is, the zero-section of R* = T*R2. By the Lagrangian
neighbourhood theorem, there exists a small neighbourhood A C L of S and a symplectomor-
phism 4 of a tubular neighbourhood U C R* of A taking A to S' x I C Lg for some open
interval I C R. Let v be the image of S under 1.

The rest of the proof is identical to that of [ELST08, Lemma 5.1]. O

This allows us to smoothly glue two Lagrangians that have a common slice or have matching
boundaries.

Lemma 2.4. Let L C R‘[la b] and L' C ]R‘[lb g be two Lagrangians that are transverse to and

agree on R3,
S=0,L=1L,=Ly,=0_L"

Then, for all € > 0, there exists a Lagrangian L" C R?M] such that

L L"ORE o g =LNRL ;) and
4 — 4
2. LNRG, o =LNRG, -

In [ELSTO8], they assumed that the common slice was connected to get the planarity as-
sumption. As we do not care about planarity of the Lagrangians, we can drop this assumption.

Proof. We first extend both L and L’ arbitrarily such that the previous boundaries 9, L and
O0_L' are interior slices and the Lagrangians are still embedded. Then we use the previous
lemma to make Lagrangians L and L’ such that

T 4 _ 4

Ln R(foo,bfe) =LnN R(foo,bfe)’
T 4 4
L/mR(b+€’oo) :LHR(bﬁ-G,OO)’

T 4 _ T 4
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Figure 6: Two types of Lagrangian collar attaching.
(a) Lagrangian tangle from relatively exact Lagrangian cobordism.
(b) Extension of Lagrangian tangle to get immersed Lagrangian with
transverse double points in the interior.

Then we may identify L and L’ to get
7 A d 7 4
L// = (L N R(foo,b]) uzbizg (L/ N R[b,oo))

that is smooth. O

Lemma 2.5. Suppose we have a Lagrangian cobordism L C Rfa b] (Definition 2.1). Given

€ > 0, there exists a Lagrangian tangle L' C R?a,€7b+d (Definition 1.5), such that L = L’ﬁR‘[‘a’b].

Proof. We attach small immersed Lagrangian collars, that is, images of immersions of LI¥S1 x
[0,¢] into R* | at both d;L and 0_L to obtain a Lagrangian tangle. We only describe the
construction near 04 L, the case for 0_L is exactly the same.

Let us consider the case when 04 L has one connected component. If there are multiple
components, we can treat each of them individually with some care near intersections in
71(94L) C R%. We assume, for simplicity of notation, that 9, L lies in R3, that is, b = 0.

Let 7 : R} — R? be the projection (x1,y1,2,0) — (21,y1). Then, by our assumption
about genericity of the link 9, L, 1 (94 L) is an immersed S*. Let us fix an immersion g : S* =
{(z,y) € R?|z®+3? = 1} — R?, such that Im(g) = m1(d; L). We can extend ¢ to an immersion
(again called) g : A := S' x [4, 6] — R? for some small § > 0. Using this immersion, we pull
back the standard symplectic form on R? to get a symplectic form wy 1= g*(dxz1 Adyr) on A.

The height of points on 04 L or the value of the x3-coordinate gives us a Hamiltonian f on
g Y (m1(0+ L)), namely, f: S*x{0} — Rissuch that (g, f,0) : S' — R* gives a parametrization
of 0y L. We extend f to a Hamiltonian f : A — R that is supported in a neighbourhood of
St x {0} and away from S' x {—§} U St x {+6} = 0A.

Consider a smooth function cut off function 3 : [0, 1] — [0, 1] such that

11



o B(1) =0,
e B(t)=1on [0,u) for 0 < p <K 1,
e [3(t) #0 for t # 1.
Now, consider the time-dependent Hamiltonian f;, ¢ € [0,1], on A given by

£(0,5) == B(t)f(6,s), for (6,s) € S* x [~4,] = A.

So, we have fy(0,s) = f(0,s) and f; = 0.
On A, we get a Hamiltonian vector field X; that is the symplectic dual to df;. Namely, for
any point p € A and vector v € T,A

(dft)p(v) = Wg(Xta v).

Let ¢; be the flow of the vector field X;, that is, ¢ : A x [0,1] — A, ((6,s),t) — ¢¢(0,s) such
that %d)t(@, 5) = X;0¢4(0,s) for all (0,5) € A, and ¢ = id. We now look at only S x {0} C A
and suppress the s = 0 in our notation.

Consider the map

F:S'x[0,1] - A x R?
(0,t) = (0:(0), fi(Pe(0)), ).

If we put the product symplectic form on A x R? given by wg © dx N dy, F is a Lagrangian
embedding. Indeed, we can check

F*(wy & da A dy) = ¢iw, + o 3; ) 46 A dt
_, (9% 0% 991
_wg<86, at>d9/\dt—|—dfaed9/\dt
= —w, <Xt, ‘2%) o A dt + w, <Xt, %%) do A dt
=0.

F is injective as ¢; is a diffeomorphism on S' for each t. F is an immersion because, in local
coordinates,

¢! ¢t
b2 852
dF = 00 ot
8 9
(dfe)gu o) (a%’) (dfe)gu (o) (m)
0 1

a0
Now, we can compose F' with the immersion g : St x {0} — R? to get

which is rank 2 as ¢; is a diffeomorphism implies %(9) = (%(t, 9), %(t, «9)) is non-zero.

G:S'x[0,1] — R? x R?
(evt) — (g © ¢t(0)>ft(¢t(9))vt)

As g is an immersion that preserves the symplectic form, G is a Lagrangian immersion. Note
that G(0,0) = (g(0), f(0),0) is exactly a parametrization of d; L. So, we can “attach” this
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collar to our original Lagrangian, L. We get smoothness from our choice of 5. This gives us
the required L' with e = 1. By changing the time interval of the Hamiltonian f to [0, €] and
taking f such that f. = 0, we can attach a collar of height € for any € > 0.

We lose injectivity only at ¢ = 1 as f; = 0. Indeed, as d4+L is embedded, fy is injective
in a neighbourhood of the points where ¢ is not injective. By taking the support of f; to be
a very small neighbourhood of S in A, we can ensure that ¢; is close to identity. This will
guarantee that G is injective as long as B(t) # 0, that is, for t # 1. As g~!(p) for any point
p € R? is at most two points, the same holds for G~!(q) for any ¢ € R*. Thus, L' is embedded
on the interior and has double points on the boundary.

L’ intersects itself transversely. Indeed, this follows if we write out dG in local coordinates
and use the fact that g was an immersion and therefore, dg is injective and X; is the symplectic
dual to df; and the symplectic form is non-degenerate. L’ has flat boundary as f; = 0.

It remains to check whether L' C R‘[la’b] is relatively exact away from its boundaries. Note

that L' N R‘[la bte—o] deformation retracts to L for all ¢ > § > 0 as we introduce new self-

intersection points only at yo = b + €. So, relative exactness of L implies relative exactness of
L.
O

Remark 2. Suppose we have a Lagrangian cobordism L C R‘[la o We may assume that near the
boundaries L is standard in the following sense: There exists € > 0 such that for ¢ € [a,a + €]
the crossings of m1(L;) in R? remain constant. The same is true for ¢t € [b —¢,b]. We can
assume this because we may construct a small Lagrangian collar L+ C Rﬁb—zs,b +e] that has the
following properties:

o Lg— = Lb = 8+L,
e the double points of 7 (L;") remain constant for ¢ € [b — ¢, b].

We can construct such L™ by repeating the above type of constructions while taking a Hamil-
tonian on g~ !(m1 (04 L)) that has partial derivative %—g = 0 at the pre-images of the double
points of 71 (04 L). Then, using Lemma 2.3 to make the neighbourhood of 04+ L in L equal to
the neighbourhood of &, L in L™ we get a standard neighbourhood without changing 04 L. An

alternate approach to construct L™ is to use the Lagrangian moves given in Section 3.2.

Remark 3. Given a Lagrangian tangle L C {a < yy < b} and € > 0, there exists an immersed
Lagrangian L' C {a—e < yo < b+e€} such that L = L’HR‘[‘a,b], and all the points of singularities
of L' are transverse double points away from OL’. Further, the set of double points of L’ is
equal to that of L, A(L) = A(L").

The construction of L’ is practically the same as of Lemma 2.5, but the initial height
function or Hamiltonian is the constant function 0 and we take a time-dependent Hamiltonian

satisfying f; # 0 for ¢t > 0 in a neighbourhood of S! in A.

2.3 Lagrangian Movies

In this section, we include some lemmas about Lagrangian “movies,” which are known pop-
ularly, for completeness. The term movies appears in other related works like [Sau04] and
[Lin13]. A Lagrangian movie is a convenient way of visualizing a Lagrangian via a family
of slices of the Lagrangian. A family of slices fit together to give a Lagrangian provided they
satisfy the partial differential equation (2).

13



Proposition 2.6. A generic Lagrangian surface L C R* parametrized by

r(0,t) = (21(0,1), y1(0,1), 22(0,1), 1), (1)
where § € S, t € R, satisfies
0.0 = (G555 ) Jor 20.0) = (21(6.0).0(0.0), @
00 ot’ 00

Conversely, if there is a family of knots parametrized by

(z<97 t)v 1‘2(9, t)) - (xl(‘ga t)? Y1 (97 t)a x2(97 t))
(with parameter t) in R3 satisfying Condition 2 above, then
T(07 t) = (1'1((9, t)a U1 (07 t)v .%'2(9, t)a t)

gives a Lagrangian surface in R,

Remark 4. For any t € R, a tangent to m1(L N R}) is given by (8—”%1, %) and so, the normal
n= 180( z) is given by (%%, —%) Then, the right hand side of (2) is equal to (%,m.

Proof. If we pull back the form w on R?* via r, we get

r*w = ’r’*(d.’Bl A dyl + dan A dyQ)

8%1 8901 6y1 ayl 8$2 81‘2
(69d9+ (%dt) <89d9+ atdt 60d0+ 5 dt ) Ndt

. 8.’1)1 8y1 B 6y1 6m1 8([)2
'(wmwm*wﬁ“ﬁ

0z 0z 83:2
Therefore, 7*w = 0 if and only if Condition (2) holds. O

For a Lagrangian, L, parametrized by 7(6,t) as above, fix a §p € S! and define
AZL'Q(Q, t) = 1’2(9, t) — 1‘2(90, t),

1 o1 oy Ox 1 [0 0z 1 /9
area(f,t) ._2/90 <w80 89>d9 2/00w< 80) dh = 2/00(z(9,t),n(9,t))d9.

We call this quantity “area” even though the arc over which we integrate, namely, 7 (L NR3)
from z(6,t) to z(6p,t) does not bound a bounded region unless z(6p,t) = z(0,t). When
z(6o,t) = 2(0,t), then 2y, g defines the boundary of a bounded region and area(6,t) actually
measures the area of that region.

and

Corollary 2.7. Given a Lagrangian in R* parametrized by
T(Qa t) = (.1'1(9, t)? yl(ea t)a x2(€7 t)v t)a (07 t) S Sl X Rv
suppose that for 0y,01 € S* and t € (c,c+¢€) C R,

(21(01,1),y1(61,¢)) = (z1(60, 1), y1 (6o, 1))- (3)
Then, for Axzo(0,t) and area(0,t) defined with reference point 6y as above,

sz((gl, t) = %area(&l, t).
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Proof. Note that

;(Qarea(ﬁ,t)) _ /99 <§tz(9,t) >d9+/991< (9 t)>d6
— /9:1 <§tz(9,t) >d9+/001 < 5;80 —y86;0> df
%Z(e,t) >d0 + [m — yat] " - /0:1 <;Z(9,f),77(9775)>

— o [ 229 1ydh + 0 = 282061, 1),
6, 00

where the middle term is zero using the assumption, and we use integration by parts in the
earlier step. O

If we do not have assumption (3), we can still put bounds on the area change by assuming
that the intersections points do not move much. We would have another term that depended
on the derivative 2 5 9 where 6(t) is such that

(21,51)(0(2),1) = (21,51) (b0, 1)

while we are assuming that one of the S'-coordinates of the intersection points, namely 6y,
does not move. This shows that by controlling the height of Lagrangian collars in Lemma 2.5,
that is, the range of ys-values it lies in, we may control the total change in areas bound by
sectors of slices.

The above discussion leads to the following lemma that has previously appeared in [Lin13]
and [Sau04]. It was used to prove the existence of combinatorial moves on Lagrangian diagram
in [Lin13]. We will be using it to show the existence of enriched knot diagram moves, which
are truly only a rephrasing of Lin’s Lagrangian moves.

Lemma 2.8. [Lin13, Lemma 2] Suppose we are given a smooth map
2(0,1) = (x(0,1),y(0,1)) : $" x [0,T] — R

such that z(—,t) : S* — R? is an immersion with total signed area C fized with respect to t.
Suppose additionally, we are given h(—,0) : S1 — R. Then there exists h : S x [0,T] — R
given by

t

0z 0z
h(0,t) = h(6,0) +/w<8t 39> dt,

0

extending h(—,0) such that
¢: 8T < [0,T] =R, (0,1) = (x(0,1),y(6,1), h(6,1), 1),
is a Lagrangian immersion. Further, it is an embedding if and only if whenever

2(0,t) = 2(0',t), h(0,t) # h(0',t).
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3 Enriched Knot Diagrams

In this section, we define precisely what we mean by an enriched knot diagram of a knot or
link. We describe equivalence classes of enriched knot diagrams, and describe and discuss the
undercut relation between these equivalence classes. In particular, we show that the undercut
relation defines a strict partial order on equivalence classes of exact enriched knot diagrams.
Lastly, we describe enriched knot diagram moves, which are adapted from [Lin13]. Compare
enriched knot diagrams with Lagrangian diagrams in [Linl3, Definition 1]. In particular, the
crossings appear reversed as Lin looks at slices zo = constant, whereas we consider ys =
constant.

Consider an immersed curve D C R? whose only singularities are transverse double points.
Denote by X (D) the set of double points of D, which we call crossings of D.

Definition 3.1. For p € X (D) and € > 0 small enough, B.(p) \ D has four connected com-
ponents that we call corners at p. We call two corners at p adjacent corners if they
have a common boundary arc and otherwise opposite corners. Note that the corners are
defined only up to a choice of € and we may also replace the ball B.(p) by a small open neigh-
bourhood of p. We call two corners C7 and Csy at p equal if there exists ¢ > 0 such that
cin Be(p) =C9N Be(p).

Definition 3.2. The complement R? \ D consists of disjoint union of connected sets Ug‘?:le.
All but one D; are a bounded subsets of R? that are diffeomorphic to the open disk, D° =
{(z,y) € R%*2? + y?> < 1}. In fact, these are images of holomorphic disks with corners
uj : D — D;j (see Definition 4.1). We refer to these holomorphic disks with corners as disks
cut out by curve D.

Definition 3.3. An enriched knot diagram is a tuple (D, o,.A) where (refer Figure 7):

e D is an immersed, closed curve (possibly disconnected) in R? whose only singularities are
transverse double points;

e (SIGNS) o is a function assigning sign +1 to each corner of D such that at each double
point of D, adjacent corners have opposite signs and opposite corners have the same sign;

e (AREA) A assigns to each disk cut out by D the positive real number equal to the disk’s
area with respect to the standard metric on R?. We can also forget the geometric aspect
and view it as a function on the set of all disks cut out by D taking values in positive
real numbers.

Definition 3.4. An enriched knot diagram, [D, o, A], is said to be exact is the total signed

area,
/ .,”Uldyl =0.
D

Given a generic link K € R3, we obtain an enriched knot diagram as follows: Take Dy
to be the image 7 (K). We get a “height function” x2 : Dg \ X(DPg) — R defined by
71 (2) = (2,22(2)) € K outside the crossings. Generic K gives Dy that is immersed with
only finitely many transverse double points as its singularities. We decorate Di to get a
diagram as follows:

e (SIGNS) At each crossing ¢, by taking a small enough neighbourhood U > ¢, we get four
corners in U divided by D. Intuitively, if for a corner, C, the height value jumps up ¢ as
we traverse OC' in the anticlockwise direction, we assign o (C) = —1. If the height value
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Figure 7: Enriched knot diagrams (a) 8.(A) (b) 8_(B) (c¢) T_(A) (d) T+ (B)
() C (A1, Ag, A3) (£) B-(A) () E+(A)
Note that we draw broken strands to clarify the crossing type, even though the
actual enriched knot diagram consists of an immersed curve with crossings.
Additionally, the information conveyed by the signs and the broken strands is the
same. We continue to use both, even though this information is redundant, for
clarity. Compare with Lagrangian diagrams in [Lin13].

jumps down, we assign ox(C) = 1. More precisely, let us denote by limyc_,,- 2 the
limit of x9-values as we approach ¢ along the boundary of C' (on D) in the anticlockwise
direction. Similarly, let limpo_,o+ 72 denote the limit in the clockwise direction. Then

we assign
og(C)=—-11i lim z3< lm x9, and
0C—q— 0C—qt
oxg(C)=1if lim x> lim xo.
0C—q— 0C—qt

e (AREAS) The area Ak (D) assigned to each disk ,D, cut out by Dy is the area of D
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with respect to the standard metric on R2.

Then (Dg, ok, Ak) is the enriched knot diagram of K.

For any diagram (D, o0,.A), D is the image of an immersion ¢ : |_|§:1S]1 — R? where each
S} is a copy of the unit circle. The above construction of obtaining a diagram from a link
can be easily reversed by assigning a height function zs : u;?:ls ]1 — R, so that the combined
map (¢, x32) : I_Ilesj1 — R3 is an embedding that respects the signs o. That is, if we formed a
diagram from this link following the above method, we get back the original diagram (D, o, A).
Let us denote a link obtained from (D, ,.A) by Kp. The height function for Kp and therefore,
the link itself is not uniquely determined by the diagram (D, o,.A). This will not concern us
as the undercutting relation, existence of Lagrangian cobordisms, and the obstructions we
develop will only depend on equivalence classes of enriched knot diagrams, which we define
next. But first, we define the enriched knot diagrams for the boundaries of a Lagrangian
tangle.

Definition 3.5. Consider a Lagrangian tangle, L C Rfa,b]‘ Let ¢ : Rz — R? be the canonical
isomorphism (z1,y1,0,b) — (z1,y1). We say a diagram, (D, o,.A), is the enriched knot diagram
of 04 L if D = 14(04+ L), for any disk D cut out by D, A(D) is equal to the area of D with respect
to the standard Riemannian metric on R?, and the signs are the signs for the corresponding
corners of Ly for small € > 0. This makes sense as the crossings of 71(Lp_.) are in on-to-one
correspondence with the crossings of 7 (04 L) (see Remark 2). Similarly, we define the enriched
knot diagram for 0_L = L, using ¢, : RZ — R? and the signs from L.

Definition 3.6. Two diagrams, (D1, 01,.41) and (D3, 09,.A2), are said to be equivalent if
there exists an orientation preserving diffeomorphism ¢ : R? — R? such that

1. ¢(D;1) = Dy,
2. for all corners C of Dy, o2(¢p(C)) = 01(C),
3. for all disks D cut out by D1, A 0 ¢(D) = A1 (D).

We denote the equivalence class of an enriched knot diagram (D, o,.A) by [D, 0, A]. We some-
times drop the o and A from the notation and write [D] with the hope that it makes reading
easier and does not confuse the reader.

The above definition is trivially an equivalence relation as it is defined via diffeomorphisms.

Lemma 3.7. For an enriched knot diagram, (Dy,00,Ag), any diffeotopy (isotopy through
diffeomorphisms) 1, : R?2 — R? gives rise to a family of enriched knot diagram )} (Do, 0g, Ao)
where 1} (Do) = +(Do); for any corner C of Dy, ¥ioo(Y(C)) = 0o(C); and for any disk D
cut out by Do, Vi Ao(1y(D)) is the area of (D) with respect to the standard metric on R2.
Two enriched knot diagrams (Do, 00, Ag) and (D1,01, A1) are equivalent if and only if there
exists a compactly supported Hamiltonian isotopy vy : R? — R? such that 11(Dg) = D1, and

WUO =01.

Proof. The existence of a Hamiltonian isotopy vy : R? — R? such that v;(Dy) = Dj, and
Yjop = o1, implies equivalence of the diagrams (Dy, 09, Ag) and Dy, 01,.4;) via the diffeomor-
phism 1. As 11 is the time-1 map of a Hamiltonian isotopy, it is area preserving.

For the converse, suppose there exists a diffeomorphism 1 : R? — R? making (Do, 0o, .Ag) ~
(D1,01,A1) as in Definition 3.6. Note that by using appropriate cut off functions outside a
compact set K that contains both D; and Ds, we may assume that the diffeomorphism 1 is
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equal to identity outside K. We show that the existence of such a diffeomorphism, 1, implies
existence of a symplectomorphism, ¢, such that ¢(Dy) = D;, and for all corners, C, of Dy,
02(#(C)) = a1(C). Then, as the group of symplectomorphisms Symp(R?) is isomorphic to
the group of compactly supported Hamiltonian isotopies (see [Bar02]), we get that ¢ = ¢; for
a compactly supported Hamiltonian isotopy ¢; : R? — R2. The double points criterion is a
generic condition about transverse self-intersections. Note that it is not necessary that ¢ = ¢.

To construct the symplectomorphism ¢, we carry out a standard Moser argument. View
Dy as the 1-skeleton of a CW-complex structure on R? with one 2-cell of infinite area and
proceed by induction on the dimension of the skeleta. First we want a symplectomorphism
at the crossings of Dy such that d¢,(v) is a positive multiple of di,(v). We achieve this by
rescaling by m. Now along each arc of Dy we define ¢ such that it takes the arc « to 1(«)
and it is symplectic. We achieve this by taking its derivative d¢ as a rescaling of diy such that
the symplectic condition holds. Now we want to extend across the 2-cells. Note that by using
cutoff functions we may extend ¢ to all of R2 such that it matches 1) outside a neighbourhood
of the 1-skeleton, Dy. Let us call this map qb Then, w := (1 — t)¢*w + tw is a cohomologous
path of symplectic forms on each 2-cell such that w; = w on Dy and outside K. Then for each
2-cell, D, by [MS98, Theorem 3.17], there exists an isotopy of diffeomorphisms n” : D — D
such that n% = id, (nP)*w; = w for all t and nP = id for all ¢ on Dy (and outside K for the
2-cell that is unbounded). As nP’s for adjacent D’s match on Dy, we may glue 7; together to
get 1 : R> — R%. Then ¢ = ¢ o n is the required symplectomorphism. O

3.1 Undercut relation

In this section we define undercut relation and discuss some of its properties.

Define a diagram pair to be an ordered pair of two diagrams ([D1, 01,.41], [D2, 02, A3]).
We refer to the first diagram, [Dp,01,.41], as the lower diagram and [Dq, 09, A2] as the
upper diagram of the pair. Given a diagram pair ([Dy,01,.A1], [D2, 02, A2]), we say a disk
A is cut out by the pair if it is either cut out by Dy or by Ds. Recall we defined area of an
oriented knot as a(K) = | [, A|, which does not depend on the chosen orientation of the knot.
So, we may talk about relatively exact cobordisms without mentioning an orientation.

To show that the undercut relation is well-defined on equivalence classes of enriched knot
diagrams we prove the following lemma.

Lemma 3.8. Suppose K| and Ky are two links in R3 with equivalent enriched knot diagrams
(D1,01,A1) and (Da, 09, A2), respectively. Then, for a link Ks if there exists Lagrangian
cobordism K3 < Kj, there exists a Lagrangian cobordism K3 < K. Similarly, K1 < Kj
implies Ko < Kj.

Proof. Suppose L C IR{[ b is a Lagrangian cobordism from K3 to K. Assume for simplicity
that K7 and K are knots that is, they have one connected component each. We want to
change L in a neighbourhood of the boundary 0 L so that the new boundary is K. We do this
by constructing a Lagrangian collar L such that Eb_e = Ly_. for some € > 0 and Eb = 1p(K2).
Note that the main difficulty in this proof is to make the boundary of L exactly K3, including
achieving the areas of the underlying diagram.

Choose € > 0 small compared to b — a such that L N R[b 2.0] has a parametrization,

St x [b—2e,b] = R?, (0,t) — (2(0,1),22(0,1),1).
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More conditions on the choice of € > 0 will be clear as the proof progresses. Label K/ := L;_
and K% := Ly_g.. Assume that we have a time dependent Hamiltonian

H:R?®x[b—2e,b =R, (z,7)— H(z,7)
such that for Hamiltonian vector field X, defined by w(X;, ) = dH,, the flow
¢:R? x [b—2¢b] — R?

of X gives Hamiltonian isotopy such that ¢1(D1) = D and ¢jo1 = 09, as in Lemma 3.7. Note
that this means %qﬁx(r) = Xg,(r) for all z € R2. Then, as

ST R3O0 (2(0,b), 22(0,b))
is a parametrization of K, we get a parametrization of Ko
Sl _>R37 0 — (¢bOZ(9,b),h(9))

for an appropriately chosen h : S — R. Let us denote w := ¢y 0 2.
Consider the map

2 SV b—2e,b—¢ =R (6,t) — ¢ o2(6,1).

We would like to use 2’ as the (z1,y1)-part of a Lagrangian parametrization. Note that

82 aqbt 8 0z
07 0 0z oler

L0, = 2 0.0) 22 (0,0) + 22(=(0,8), 1~ b+ 2]
<%ZH ‘Z) <d¢toa d¢toa)+w<d¢togz,gf>
(55 ((2) 2

(o))

) ) )
;02 + dHy o doy <02) 60(332 + Hyo¢poz).

Define 25, : S x [b— 2¢,b — €] — R to be
xh(0,t) = x9(0,t) + Hy o ¢y 0 2(0,1).

Then we have
orh, 0

x5(0,b — 2¢) = x2(0,b — 2¢), 50 _80(

xo + Hpodoz).

So L' C R[b 9¢p—q defined by the following parametrization

Sl x [b - 267 b— 6] - R27 (Hat) = (Zl(eat)vxé(97t)at)a
is a Lagrangian that we can attach to L N R}

[a,b—2¢]"

20



Now we want to build another Lagrangian L” C R} cpsuchthat L) =1Ly and Lj = K».
So we need functions

2 St xb—eb] 5 R? oS x[b—e€ b =R,
such that

2(0,b—¢€) =2'(0,b—¢€); 2"(0,b) = w();
23(0,b —€) = 25(0,b —¢);  25(6,b) = h(0);

Ozy (02" 92"
a0 “\a0 ot )

Assume that the isotopy ¢ is “fast” on 7 € [b — 2¢,b — €] and we are very “close” to the
diagram we want to achieve. More concretely, we want that z; = 2/(6,b — €) to have the
following properties:

1. Image of z,__ is in a neighbourhood of Im(w) such that for each arc v of Imz__ \
X (Imz,__), the corresponding arc of w is graphical over it. Here, X (Imz; _) denotes the
double points of z,__.

2. For each sector S of area A cut out by w, the corresponding sector of z,__ has area A’
such that

sign(A — A”) = sign Z 6h(p) — Z 6h(p)

p positive corner ofS p negative corner ofS

Here, dh(p) = |h(01) — h(02)|, whenever w(f;) = w(h2) = p.
We may achieve this by controlling the speed of ¢,, that is, aa% for each € R?, by

-
reparametrizing with respect to the 7 € [b — 2¢,b] coordinate of the Hamiltonian H. The
second property we always get as we assumed the signs at corresponding corners of K; and
K5 are the same and x4 (0,t) = x9(0,t) + H; o ¢y 0 2(6,t), implies dxg = dxly, as Hy is a function

on R? and so, (see Lemma 2.7)

dx5(p) = dwa(p,t) = %area for all t € [b— 2¢,b].

By the first assumption, for each continuous arc v of z;__\ A(z;__) we can take a neighbour-
hood N, and symplectomorphisms v, : Ny, — I, x (=0, ) for some interval I, of appropriate
length and 6 > 0, where v is mapped to I, x {0} and the corresponding arc of w is mapped
to (p,ny(p)) € I x (—0,6) for some function 7, on I, because of the graphical assumption.

Denote by h],h3 : I — R functions such that when (p,0) = 1, (2'(6,b — €),

hi(p) = 25(0,b =€), h3(p) = h(0).

If we pick Hamiltonians HJ : I x (—4,8) — R for s € [b—¢,b], and 7 arc of z;__\ A(z]__) such
that

LoH)
o Op

H)(p,q) =H)(p), HJ =0, hi+H=h} and — (¥(p,0)(s))ds = n,(p),
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and consecutive H” match at end points, then the function

S x [b— e — R
(0,5s) — (1#,;1 o¢sothy 02 (0,b—€),x5(0,b—€)+ Hlpy 02 (6,b—¢),s)

is the required L” parametrization. We can obtain such H?7 as the boundary conditions and
the derivatives are on different coordinates.

The assumption on the signs and the area means we can choose HJ’s such that this is an
embedding and there are no double points. We have to just ensure that if h](p1) > h](p2)(resp.
hi(p1) < hi(p2)) for p1,p2 endpoints of some I, then hy + HJ(p1) > hi + HJ (p2)(resp <)
for all s € [b —¢€b]. This is possible as the assumption on signs of K; and Ky implies
ha(p1) > ha(p2)(resp <) whenever hi(p1) > hi(p2)(resp <).

Now we may use Lemma 2.4 to glue LHR‘(&OO’FQE], L', and L"” together to get the required
Lagrangian cobordism from K3 to Ko. As relative exactness is a condition on the topology of
L and we do not change Hy(R*, L) and a(0, L) = a(d_L), relative exactness holds for the new
Lagrangian also. O

Note that the above Lemma implies Lemma 2.5 if we allow K5 to be an immersed link in
R?, that is, we take the height function h = 0. In that case we get double points at y» = b as
before. In fact, the proof of Lemma 3.8 implies the stronger statement, Lemma 3.9. We still
include the separate proof of Lemma 2.5 as we are able to write down the Hamiltonian more
precisely.

Lemma 3.9. Suppose we have a Lagrangian cobordism L C ]R‘[la b] with diagram of 4+ L equal

4

to Dy and diagram of O_L equal to Dy. Then we can obtain a Lagrangian tangle L' C R[a,b]

such that diagram of O+ L' equal to Dy and diagram of O_L' equal to D;.
We are now ready to prove Lemma 1.2, except Part 3 of the partial relation statement.

Proof of Lemma 1.2. 1. Well-definedness follows directly from Lemma 3.8.

2. Transitivity follows by using Lemma 3.8 and Lemma 2.4. Suppose
[D1] <1, [D2] and [D3] <1, [Ds],

that is, we have Lagrangian cobordisms L; and Ls such that 0_Ly, 01 L1, 0_Lso, and
04 Ly have diagrams Dy, Ds, Dy, and Ds, respectively. We are suppressing the notation
for signs and areas. Lemma 3.8 implies we can assume 0, L1 = 0_Lo, and so we may
glue L; and Ly using Lemma 2.4 to get [D1] < [Ds].

Now we prove the additional properties that make < a partial order on exact diagrams.

1. Recall that if we restrict to exact diagrams, that is, if the total signed area bound by the
diagram is zero, the relatively exact condition of the Lagrangian cobordism means that
it is weakly exact.

Suppose, if possible, [D] < [D]. Then, by using Lemma 3.8 we may assume that there
exists an exact Lagrangian L with 0, L = 7,_o(0_L), where 7, : R* — R* is given by
(@1, 41, 22, y2) = (21,91, T2, Y2 + ©).

Consider the quotient space R*/(z ~ 7,_4(2)). Then the image, (L/ ~), of the Lagrangian
L under the quotient map gives a weakly exact closed Lagrangian in (R*/ ~) ~ C x V,
where V ~ T*S! with the appropriate symplectic structure. By Lemma 2.4, we may
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assume smoothness of (L/ ~). As IIx(R* L) = T(R*/ ~, L/ ~), using the push forward
of the quotient map, w|,(gs,r) = 0 implies Wi, g/~ r/~) = 0. So, (L/ ~) is weakly
exact in R*/ ~.

On the other hand, such a weakly exact closed Lagrangian cannot exist in a symplectic
manifold of the type C x V' with the product symplectic structure by [Gro85, Theorem
2.3.B1]. Hence, no such Lagrangian cobordism exists.

2. Anti-symmetry follows by combining anti-reflexivity and transitivity. Suppose we have
two diagrams, [D;] # [Ds] with relations [D] <, [D2] and [D2] <1, [Di]. Then by first
gluing L1 and Ly and then quotienting by the appropriate translation we obtain a closed
exact Lagrangian in T*S' x C as in the proof of non-reflexivity, which is not possible.

3. We show in Corollary 7.4 that, for 0 < A < B,

81 (A) ACT T(A,B,B) and C*~ (A, B, B) £ 8. (A).

3.2 Enriched Knot Diagram Moves

In this section we describe moves akin to Reidemeister moves in knot theory that can be
achieved via Lagrangian cobordism. We include area conditions so that it makes sense in the
enriched knot diagram context. This section is included for completeness and as a natural look
at existence questions alongside obstructions.

These moves almost completely appear in [Linl3]. We add in area conditions that are
more global to the enriched knot diagram compared to the local nature of moves described
in [Lin13], but everything described here follows from [Lin13]. Our diagrams appear to have
the opposite signs to that of [Lin13] because Lin works with zo-slices of R* and we work with
yo-slices. So, we redraw all the moves with our conventions. The arguments remain analogous.

Recall that we defined the area of an enriched knot diagram [D1] by a(D1) = | [ z1dyl.

Proposition 3.10. Suppose we have enriched knot diagrams [Diy,01,A1] and [Da, 02, As].
Suppose { A1, Aa, ..., A} is the set of all areas of disks cut out by Dy. If the disk corresponding
to A; survives, that is, if there exists a corresponding disk cut out by Ds, denote the area of
the corresponding disk of [Da] by A; + €.

Then [Dy,01,A1] < [Da, 02, As] if the following conditions hold:

G(Dl) = a(Dg).
Ifej < 0, then ‘Ej’ < Aj.
If a disk has only positive corners and survives, then e; > 0.

If a disk has only negative corners and survives, then e; < 0.

AR N I

Do differs from D1 by one of the moves in Figure 8 assuming Dy satisfies the area con-
ditions written under the arrow.

Remark 5. The areas of disks cut out by Dy is determined by condition 1 and which moves

were performed on D to obtain Ds. For example, suppose I C {1,...,k} is such that
ZAz - ZAz = a(Dl).
iel i¢l
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\ Ay > Ay i L D2 E
/ B;;+B|>B-_J B / \+B;g 41+A]3’ -l

By > B, G S Ay > Ay
‘;l 4 .U] B;
A+ Ay > Ay B;+U|,>Bg

C/\/DE,E.%

(==X K

Figure 8: Enriched knot diagram moves.
Compare with the combinatorial moves on Lagrangian diagrams
in [Linl3, Figure 11].

Condition 1 implies, if we only performed Ry, that is, if all the disks cut out by D; survived
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in Do, then

Proof of Proposition 3.10. Let us suppose that Ds differs from D; by one of the moves de-
scribed in Figure 8 that we refer to as M. We show that we can construct a Lagrangian
cobordism from D; to Ds using Lemma 2.8. For the move M = Ry, this Lagrangian was
described exactly in [Linl3]. For M different from Ry, note that given the area conditions on
D1, we can use move Ry to enclose M within a disk of fixed radius. Then it is in the set up on
Lin’s moves. Thus, M = Rs, R3, Hi, and H» are Lin’s Rygo Ry o Ry, Ryo R30 Ry, Ryo Hi o Ry,
and Ry o Hs o Ry, respectively.
The birth and death moves M = D and B can be described as follows. The functions

2(0,t) = (tcos @, 2t* cos fsin ), h(f,0) = tsinf
for r € [0,T], gives a birth move and
2(0,t) = (tcos @, —2t* cos sin 0), h(f,0) = tsinf

gives a death move D. This is not a unique description. As we have seen before, the exact
geometry of the movie is not unique. The moves Rf and R; follow from using a piece of the
birth or death moves, respectively. ]

4 Moduli Spaces of Holomorphic Disks

Our main tool for studying Lagrangian cobordisms is holomorphic disks that have boundary
on Lagrangian tangles. In this section we define the holomorphic functions we work with, and
then review some standard notions about moduli spaces of holomorphic curves See [MS12]
(Chapter 5) and [AJ10]. We then show compactness holds in our set up.

We consider the complex structure (R%,i) obtained by identifying R* with (C2,i). Let
D := {z € C||z] < 1} be the closed unit disk. For any subset of C, like the unit disk D,
we get a complex structure on it as a subset of C. We denote this sructure also by i. There
should not be any confusion as these are all essentially multiplication by the same i. We denote
the open unit disk by D° := {z € C||z| < 1}. The boundary of the unit disk is denoted by
oD := {z € C||z| = 1} = S. Fix a Lagrangian tangle, L, in R*.

4.1 Holomorphic Disks

Definition 4.1. A holomorphic disk with corners is a function v : (D,0D) — (R*, L)
such that the following conditions hold:

e v is holomorphic on the interior of I, that is, u satisfies the Cauchy-Riemann equation

du(p) oi=1odu(u(p))
for all p € D°.

e There are finitely many distinct points z1, ..., 2z, € 0D, known as marked points that
are mapped to double points of L and where du jumps from one leaf of L to another.
The images of these points are called corners of u.
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e In the complement of the corner points u is C%-regular.
e % is an immersion.

We denote by Ou the restriction of u to the boundary 0D of the disk ID. We can orient Ou
with the anti-clockwise orientation on dID, which is also the complex orientation.

We make the assumption that at each marked point the disk jumps between leaves of L
because we do not allow marked points where u is smooth. Note that unless Ju jumps leaves
at a marked point, it would be a smooth point. See the discussion about the trace operator
in the proof of Lemma 6.12 for a proof.

Definition 4.2. As in Definition 4.1, we may define holomorphic disks with corners taking
values in R? that have boundaries on any smooth curve. Given a diagram (D, ,.A), we say
a holomorphic disk with corners u : (D,dD) — (R? D) such that each corner point of u is a
double point of the diagram D is a disk bound by the diagram. We say it is a disk bound by
the pair ((D1,01,.A1), (D2, 09,.A2)) if it is a disk bound by (D1, 01,.41) or by (D2, 02,.A2).

Note that the area of a disk u bound by a diagram is the sum of the areas of disks cut out
by the diagram that together make u, counted with the appropriate sign and multiplicity.

Definition 4.3. Suppose L is a Lagrangian tangle in R* (Definition 1.5). A horizontal disk
is a holomorphic disk with corners whose image lies completely in a complex plane R? for some
ceR.

For this paper, we only consider horizontal holomorphic disks with convex corners.

A holomorphic disk with corners will be horizontal if Im(Ou) C 9+ L or Im(du) C 0_L, see
Lemma 6.8 for a proof.

We get signs at the corners of a horizontal disk just by assigning the sign of the corner
as per the diagram of 0, L or 0_L. We would like to extend this notion of corner sign to all
holomorphic disks in a way that is useful in describing broken disks in moduli spaces. Recall
that at each double point ¢ € AL C 0L, the Lagrangian has an higher leaf L, and a lower
leaf L'.

Definition 4.4. Let u : (D,0D) — (R* L) be a holomorphic disk with corner ¢ € A(L). If
du traverses the leaf L first and then L!, we say that v has positive sign at ¢. Otherwise,
we say u has negative sign at q. More explicitly, just as in the definition of enriched knot
diagram coming from a knot K, let us denote by limg,_,,~ 2 the limit of zz-values as we
approach ¢ along the boundary du. Similarly, let limpc_,,+ 22 denote the limit in the reverse
direction. Then we assign

sign,(u) = —1if lim x9 < lim x9, and
kK Ou—q~ Ou—qt

signq(u) =1if 87}i_r>r(1r To > aii_r)r(l}+ 9.

If v is an immersed disk, it may pass through ¢ multiple times, but always in the same
direction. So, this is well-defined.

If w is a horizontal disk, the signs are part of the information of the enriched knot diagram
of 9_L or d4 L, whichever u has boundary on. A horizontal disk can have both positive and
negative signs at corners. On the other hand, we show in Lemma 6.14 that non-horizontal
disks can have only positive signs at the upper boundary and only negative signs at the lower
boundary of a Lagrangian tangle.
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4.2 Stable Disks

A tree is a connected graph without cycles. We think of a tree as a finite set T of vertices
along with a relation £ C T x T on T such that «, 8 € T are related, that is, aF3, if and only
if they are connected by an edge. An m-labeling A of T is a function

A:T—>T
1,
where I = {1,...,m}. Such an m-labeling partitions I into disjoint subsets

Ao ={i€l|a; = a}.

TNV 5 s

o us | us )24
NEPANY

(a) (b)

Zz

Figure 9: (a) Stable disk modelled on tree T (b) Tree T'

Definition 4.5 (Stable Disks). Let n > 0 be a non-negative integer. Let (7, E,A) be an
n-labelled tree. A stable holomorphic disk with m marked points (modelled over
(T,E, A)), or simply a stable disk, is a tuple

(u7 Z) = ({ua}a€T7 {Zaﬂ}aEﬁa {ai> Zi}lgigm)a

consisting of a collection of holomorphic disks with corners u, : (D, D) — (R*, L) labelled by
vertices o € T', a collection of nodal points z,3 € JD labelled by the oriented edges aFES3,
and a sequence of m marked points zy, ..., z, € 0D, such that the following conditions are
satisfied.

e (NODAL POINTS) If o, 8 € T with aEf, then uq(z48) = ug(284). The set of nodal
points on the a-disk is denoted by

Zo = {zaplaBB}.

e (SPECIAL POINTS) For every a € T the nodal points z,g and the marked points z;
(for a; = ) are pairwise distinct. These are called special points. We denote the set
of special points on the a-disk by

Yo = Zo U{zi|la; = a}.
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e (STABILITY) If u, is constant function then #Y, > 3.

e (HOLOMORPHICITY) The maps u, are holomorphic on the complement of the special
points, i.e.

Ualpry, : D\ Yo — R

is holomorphic.

(Compare with [MS12, Definition 5.1.1].)

We exclude marked points on the interior of any disk because they would only arise if we
allowed sphere bubbles and sphere bubbles cannot form inside R?*, as Ha(R*) = 0.

The domain of each of the maps u, is the closed unit disk D = {z € C||z|?> < 1}. We fix the
holomorphic structure on the domain as the one coming from the standard complex structure
on C. The domain of the stable holomorphic map (u,z) can be represented as the quotient

S=TxD/~

where the equivalence relation on T x D is given by («, z) ~ (5, w) if and only if either « = 3
and z = w or BB and z,3 = wgo. The domain 3 gets the quotient holomorphic structure
which we denote by jx. We denote the map with domain ¥ by u : ¥ — R?

Let us denote the set of singularities of ¥, namely the nodes, by si(X). We will be consid-
ering domains ¥ that have genus zero, by which we mean that the double ¥ Ugy, ¥ is a genus
0 compact Riemann surface whose only singularities are nodes. Equivalently, this means that
there is a deformation (in the sense of Hummel [Hum97, Chapter V, Section 1] ) f: D — X
that is a continuous surjective map with the following properties.

1. The preimage f~!({z}) of each singular point, z € X, is an arc with end points on 9D.
2. flp\f-1(siv) is a diffeomorphism onto X\ si(¥).

In [Hum97], they allow the preimage f~'({z}) of a singular point z € ¥ to also be a simple
closed loop, but we need not consider that case because we do not have sphere bubbles.
Recall that, i and w define a Riemannian metric on R* as i is compatible with the symplectic
structure w. This metric is equal to the standard Riemannian metric. Using this, we define
the energy of a js-holomorphic curve u : (3,0%) — (R%, L) defined on a compact Riemann
surface with boundary (X, jx, dvoly), where the boundary is mapped to a Lagrangian L, to be

1
E(u) := 2/|alu(z)|2dvolg = /u*w.
5 )

Hence, the energy of a js-holomorphic curve defined on a closed Riemann surface with bound-
ary, if the boundary is mapped to a Lagrangian, is a topological invariant. If (u,z) is a
holomorphic disk tree we denote the energy of u

E(u) =) E(ua).

aeT

Thus, the energy F(u) of u vanishes if and only if all the maps u, are constant.
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4.3 Boundary Data and Corner Points

In the case the Lagrangian is embedded we can take appropriate isomorphism classes of (u, z)
to define moduli spaces. In our case, the Lagrangian is immersed. So, one needs to keep track
of some extra information. In this section, we repeat a small construction from [AJ10, Section
4] with simplifying assumptions that suffice for our purposes.

For (u,z) as above we would like to think of 0¥ as a smooth circle, but this is not true if
¥ has nodes and Im(u) contains points of A(L). Let S' = {z € C : |z| = 1} be the unit circle
in C with the anti-clockwise orientation. The boundary of 0¥ has the orientation induced by
the complex structure of each copy of the disk D, and there is a continuous and orientation
preserving map [ : ST — 93 unique up to reparametrization such that

e the inverse image of a singular point, that is each node, of 9% consists of two points;
e the inverse image of a smooth point of 93 consists of one point.

The main observation here is that we can define this map by following along the boundary
0%, and at each singular point making the choice of branch that is consistent with the ori-
entation. We also need to make sure we do not miss any part of 9X. Write ¢; := [~!(z;) for
marked points z;, i =1,...,m.

For a stable disk, (u, z), as above, u ol is a continuous map S' — L. Recall that for any
immersed Lagrangian, L, there exists an immersion ¢ : L — R? from a surface L with i image
(L) = L. The map w ol can not always be lifted locally to a continuous map @ : S' — L with
to@ =wuol. Fora point ¢ € A(L) C R* we have 17 (¢) = {q4,q_}, that is, there are two
points, gy # g—, in L that map to one point ¢ under the immersion ¢, and L has two sheets
near ¢ that are the images under ¢ of disjoint open neighbourhoods of ¢4 and ¢_ in L.

If uol(¢) = q for some ¢ € S!, it may be the case that u ol jumps at ¢ from one sheet of
L to another near ¢ in R%. Then o cannot be lifted to a continuous map @ : S — L near ¢,
since @ would have to jump discontinuously between ¢, and ¢_ near (. We make the following
definition so that we can keep track of such jumps.

We consider (u, z) in which w ol jumps at z; between two sheets of ¢(L) in this way for all

ie{l,...,m}.

Definition 4.6. (Stable disks with corners) Let L be an immersed Lagrangian coming from
immersion ¢ : L — R*. Define R to be the set of ordered pairs (¢_,¢.) € L x L such that
q— # q4 but (q-) = t(q4). Fix amap A : {1,...,m} — R. Consider a tuple (u,z,\,[,a),
where (u,z) is a stable disk as in Definition 4.5, [ : St — 9% is a continuous and orientation
preserving map as above, and @ : S* \{z1,.--y2m} — L is a continuous map, satisfying the
following conditions:

® 21,...,2ny are ordered anti-clockwise on S';
e tou=wuolon S\ {z,...,2,}; and
o (limg_,o- u(€%%),limg_,or u(e2)) = A\(i) in R for all i € {1,...,m}.

Such a tuple (u,z,\,l,u) is called a stable map with corners. (Compare with [AJ10,
Definition 4.2].) Notice that we are only specifying what happens at the marked points of u.
At the nodes, a priori we might get a jump between leaves, but they do not appear because of
how [ was chosen.

Note that we could have that u ol jumped leaves of L only at some of the marked points.
This is the case in [AJ10, Definition 4.2]. In that case we would consider A : I — R for some
I c{1,...,m} and refer to z; for i € I as pre-corner points. For our case, we only consider
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the case when I = {1,...,m}. So, we drop the name pre-corner point and call them marked
points.

4.4 Reparametrization Groups

Definition 4.7. Two stable disks, (u,z) and (1, z), modelled over trees, T and T, respectively,
are called equivalent if there exists a tree isomorphism, f : T — 7T, and a function, T" —
G := Aut(D), @ — ¢, which assigns to each vertex an automorphism of the disk, such that

Uf(a)© Pa = Ua, Zf(a)fB) = Pal2ap), Zi = da;(2i).

We can think of f as a map that assigns to each ¢, € Aut(D) its target disk, Dy(,), and
Pa is a map, ¢po : Do — Djy(yy. (Compare with [MS12, Definition 5.1.4].)

Note that by our definition, if we have a holomorphic disk with corners, the tree that it
is modelled on is a single vertex {v}. So, f : {v} — {v} is the identity map and the only
information for equivalence is the element ¢ € AutlD such that

wop=u, ¢(z)=z.

If the number of marked points is high, namely greater than or equal to 3, the identity map
D — D is the only candidate for ¢.

For every tree, T', there is an associated group, G, that acts on the set of stable disks
modelled on T and whose orbit space is the corresponding set of equivalence classes. The
elements of G are tuples

9= (fi{ataer),

where f is an automorphism of T such that
Ao = Ay and ¢ € Aut(D) for a € T.
The group operation is given by composition,

g -g="(ff. {ﬁb}(a) © ¢ataer)-

We would like to consider the subgroup of G that is compatible with the corner points and
boundary data.

Definition 4.8. Two stable disks with corners (u,z, \,l, @) and (u’,z', N, l', @)
(where the corresponding stable disks (u,z) and (u’,z’) are modelled over trees T and T”
respectively) are called equivalent if all of the following conditions hold:

e (u,z) and (u’,z’) are equivalent as stable disks and the equivalence is given by some
(f, {¢a}a€T) € Gr;

e there exists an orientation preserving homeomorphism ¢ : S' — S* such that

paol=10¢ on S'\ {z1,...,2m} ND,, and

Wop=1u onSl\{zl,...,zm}.

(Compare with [AJ10, Definition 4.2].)
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4.5 Definition of Moduli Spaces

Fix a relative homology class, A € Ho(R* L;7Z), and a map, A : {1,...,m} — R. A stable
disk with m-marked points (u, z) is said to represent the class A if

A= ua.D],

where [D] € Ho(ID, 0D;Z) is the fundamental class. Note that the energy of the stable curve,
E(u), depends only on the class, A € Ho(R*, L;7Z), it represents.

We denote the moduli space of unparametrized disks in the class A with m marked
points by

M (A4; L) = {(u,2z) stable holomorphic disk with
m marked points that has boundary on L}/ ~

where ~ is the equivalence defined in Definition 4.7. Similarly, we get moduli space of
unparametrized disks in the class A with m corners by

M (AN L) = {(u, z,«,l,u) stable holomorphic disk that has boundary on L and
m corners labelled by A}/ ~

where ~ is the equivalence in Definition 4.8. (Compare this definition of M with definitions
in [MS12, Section 5.1].) We sometimes denote elements just by [u,z] or [u,z1,..., 2] for
z = (z1,...,2m), but a, [, and u are always included in the given information.

For each labelled tree, T = (T, E, A), and homology class, A € Ho(R*, L;Z), we denote the
equivalence classes of stable disks modelled on T and representing A by

Mrp(A; L) = {(u,z) € M, (A)|modelled on T}/Gr.

Note that the spaces Mr(A4; L) correspond to decompositions of A into

A:ZAa

a€eT

of integral relative homology classes.

If there is only one Lagrangian in the discussion, then we drop the L from the notation as
well. We sometimes use a representative holomorphic disk to “define” the moduli space. What
we mean is, suppose we have (u,z), a particular fixed holomorphic disk with corners in A(L).
Then, u gives us a homology class A := [u] € Hy(R*, L) and also amap A : {1,...,m} — A(L),
namely, A(j) = u(z;). We denote

M(u) = M (A, N).

We sometimes refer to this moduli space as the space of variations of .
Let us denote by M(u), M(A, \), the corresponding moduli space with only genuine holo-
morphic disks with corners.
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Figure 10: (a) Stable disk modelled on subtree T3, is encircled by dotted lines,
(b) Subtree T32

4.6 Gromov Convergence

Suppose X is a compact subset of D. A sequence of maps v* : D — R* is said to converge
u.c.s. (uniformly on compact sets) on D\ X to v : D — R* if it converges to v in the
C*°-topology on every compact subset of D\ X.

For a tree T and «, f € T the interval [a, 8] C T denotes the set of vertices along the path
of edges connecting o and 3. When aFE3, we denote by 1,3 the subtree containing 3 after
removing the edge connecting a and 3, i.e. Tog := {y € T|B € [a,7]}. If u is a stable disk
modelled on T with aF 3, we denote

Mmap(u) i= Z E(u).
'YeTaB
Definition 4.9. (Gromov convergence) Let

(u,2) = ({UataeT, {Zas taEs, 1% Zif1<i<m)

be a stable disk and let u” : (D,0D) — (R* L) be a sequence of holomorphic maps with m

distinct marked points z2Y,...,z7 € 0D. The sequence (u”,z") = (u”,2Y,...,2%) is said to
Gromov converge to the Gromov limit, (u,z), if there exists a sequence of sets {¢% Z??

of disk automorphisms ¢}, € AutD, such that the following hold:
e (MAP) For every a € T the sequence u”, := u” o ¢% : (D,0D) — (R%, L) converges u.c.s.
to uq on D\ Z,.
e (ENERGY) If aES, then
mag(u) = lim lim E(uy; Ne(za8))

e—0v—00

where E(uq; Ne(2qp)) = fNe(Z ﬁ)(ug)*w is the energy of u¥ concentrating in an epsilon
neighbourhood around z,g in D. As z,3 € 0D, Nc(zqg) := D N Be(zqp) for the ball,
B(zap), of radius € around z,p in C.

e (RESCALING) If aEf, then the sequence ¢}, 5 := (¢2) 1o @} converges to zqg U.C.8. 0N
D\ {zga}-
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e (MARKED POINTS) z; = limy00(¢%,) " H(2¥) for i = 1,...,m.

It can be shown that for a given sequence, the Gromov limit limit is unique. Gromov
convergence defines a Hausdorff topology on M,,(A, \) called the C*-topology. We do not
include a proof of Hausdorffness here but proofs of similar statements can be found in [MS12,
Section 5.4].

4.7 Gromov Compactness

Theorem 4.10 (Gromov compactness). Let L C Rﬁl’b] be a Lagrangian tangle. Fiz m € Z,

A€ HyRY L), and a map X : {1,...,m} — A(L). Then, the moduli space M, (A, \; L) with
the C°-topology is compact.

Proof. Tt is sufficient to show sequential compactness. Let u” : (D, 0D) — (R*, L) be a sequence
of holomorphic disks with marked points z¥ = (2, ..., 2%,), where (2Y,...,2},) is a sequence
of m-tuples of pairwise distinct points on dD, with u”(z}) to be double points of L. Then,
(u”, z¥) has a Gromov convergent subsequence.

This is essentially the same compactness as in [AJ10, Section 4.1], but our Lagrangian has
boundary (with transverse double points) and the ambient manifold is not compact. However,
we can adapt their argument to our situation as follows.

To apply the compactness results by M. Akaho and D. Joyce in [AJ10, Section 4.1], we
first extend our Lagrangian by attaching small collars to 0+ L and d_L as in Lemma 3 to get a
slightly larger Lagrangian, L' D L, with the same set of double points. In particular, we have

L'n Rﬁz = L. We denote by M(A, \; L) the moduli space of stable disks with corners that
have boundary on L’. Note that {[u,z] € M(A,X; L")|[Im(u) iR?a,b]} = M(A, \;L). Now,
we argue that if we restrict our attention to those elements of M(A, \; L') that have image in
R‘[la o W get a sequentially compact space.

Consider sequence [(u”, z")] € M(A, \; L). Note that
Im(0u”) C L C R?a,b] ={a<ys <b}
implies, by the maximum principle for harmonic functions, Im(u”) C R‘Qb] and therefore
the entire sequence of holomorphic disks have image outside an e-neighbourhood of L’ for
some € > 0. As, L is the image of a compact surface with boundary, it is contained in
a compact set. In particular, there exists a;,b; € R for i = 1,...,4 such that L C K =
[a1,b1] X -+ X [aq, bg] and all of the u” have image inside K. These two observations say that
arguments for compactness carried out in [AJ10] or [Liu02] will carry through and [u”, 2¥] has
a convergent subsequence with limit in M(A, \; L’). As, convergence in the Gromov sense also
gives convergence of the images, the limit will also have image within Rﬁhb] and therefore be

contained in M(A, \; L). O

5 Dimension Calculations and Automatic Transver-
sality

In this section, we cover some analytical results regarding the moduli spaces M (u) we defined.
For this section let L C R‘[l b] be a Lagrangian tangle.

a,
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5.1 Dimension Calculations

In this section, we recall index counts for holomorphic disks with corners from Suppose u
is a horizontal disk (Definition 4.3). Then, the tangent bundle of u is canonically identified
with C x {0} € C x C ~ u*(TR*). So, the normal bundle is canonically identified with
{0} x C € C x C. The real line bundle TL along dD also splits into TL = T'L x T?L,
where T'L = m(TL) and T?L = my(TL) for m; : R* — R? (21,41, 72,y2) — (x;,y;). The
Maslov index of the bundle pair (C,T5L) is called the normal Maslov index, 2. Note that
the path T2L’u(9) for § € S' = 0D in the Lagrangian Grassmanian is discontinuous at each
marked point as the boundary jumps between leaves of the Lagrangian. We make the path
T2L|u(6),0 € S* continuous by adding the “canonical short path” that is obtained by rotating
in the clockwise (negative Kéhler) direction. To get uo, we count the number of half-rotations
of T2L (after completing using the canonical short paths) as we go along du in the orientation
given by the complex structure, that is, anticlockwise on 9.

We are considering the dimension of the moduli space, M (u), of unparametrized holomor-
phic disk with corners. The (virtual) dimension of the moduli space defined in 4.5 is given
by

dim M(u) = pa(u) +2 — b —2g.

See, for example, [HLS97, Equation (2)]. In our case, b is the number of boundary components,
hence b = 1. Genus is g = 0 as we are working with disks. So

dim M(u) = po(u) + 1.

In the case of Lagrangian tangles, we can track the rotation of T2L along the boundary
of a disk explicitly. We can assume for simplicity of calculations that at each self-intersection
point in 9. L, T?L" (the normal direction for the higher leaf) is spanned by 9,, and T?L
is spanned by 0y, + 0,,. This is equivalent to assuming we have a parametrization like 1 in
Section 2.3 with a standard collar near 0. L (see Remark 2) and as we increase y2 = ¢, the
top leaf is stationary and the bottom leaf moves up to meet the top leaf. In general, T2L! is
spanned by some vector in the first quadrant, but that does not change our calculations as we
close up the path using canonical short paths. Similarly, 72L" may be spanned by Oy, + Oy, Or
any vector in the second quadrant but this does not change the calculated number in the end.
Further note that, along each of the continuous arcs of du, T?L is never parallel to zo-axis as
we assume that L intersects R} transversely for b — e < ¢t < b, for small € > 0 (see Definition
1.5).

These assumptions give us that we can calculate us by referring to the following tables:
If the boundary of u, Im(du) C 04 L:

For every path running from to add
negative corner negative corner | —1
negative corner positive corner —%
positive corner positive corner 0
positive corner negative corner —%

For example, if we go from a positive corner to a positive corner in 04 L, we go from a higher
leaf to a lower leaf adding a rotation of %. Then we add the rotation from the canonical short
path at the terminal corner to add an additional —i. This leaves us with a total of 0. The

rest of the calculations are similar.
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For an intersection point in 0_L, all the computations are mirrored. We may assume that
T2L" is spanned by 0, + Oy, and T2L! by Oy, This is same as assuming that the lower leaf
remains stationary with respect to yo near the intersection point and the higher leaf moves
away by moving up in 5. Similarly to the 0, L case, T?L is never parallel to the zs-axis as L
intersects R} transversely for a <t < a + €. So, if Im(Qu) C O_L:

For every path running from to add
negative corner negative corner | 0
negative corner positive corner —%
positive corner positive corner | —1
positive corner negative corner —%

It is clear from the above tables that for any holomorphic disk with corners, u, with
Ou C 04+L, a negative corner adds at least —1 to the virtual dimension. Whereas, if u had
all positive corners, the virtual dimension dim(M([u];q1,...,¢m)) = 1 as pua = 0. Similarly,
if Ou C 0_L, then any positive corner decreases the virtual dimension from 1 by at least 1,
and if u has all negative corners, then dim(M([ul; q1,...,¢m)) = 1. This gives us the following
lemma:

Lemma 5.1. Suppose u is a horizontal holomorphic disk with corners, that has boundary on
a Lagrangian tangle L.

e IfOu C 0+ L, then dim M(u) =1 if and only if u has all positive corners.
e IfOu C 0_L, then dim M(u) = 1 if and only if u has all negative corners.

We also need to keep track of the total Maslov index, namely, the Maslov index of the
bundle (uv*TR*, w*L). For horizontal disks, keeping in mind the above discussed splitting, we
refer to the Maslov index of the tangent bundle (R? T'L) as p1. This records the number
of half rotations of the tangent of du. Note that, if we have m corner points, this number is
always 2—m. The total Maslov index, denoted by p(u), is obtained by taking Maslov(du)+m,
where Maslov(Ou) = pj + p2 in our notation (see [DRET20, Section 2.1]). Notice that the two
contributions of m cancel each other out and we get that

() = iz () +2.

For a sanity check, let us compute the expected dimension of M (u) using p(u). From [DRET20,
Section 2.1],

dim M(u) = (n —3) + p(u) = (2 - 3) + pa(u) +2 = pa(u) + 1,

which matches our earlier calculations using the normal bundle.

5.2 Automatic Transversality

In this section we extend the arguments in [HLS97] to the case of holomorphic disks with
corners, to get transversality. For this section, we do not really use the Lagrangian tangle
structure of L. In fact, all results in this section hold if L is an immersed Lagrangian with
only transverse double point singularities.

First, we formalize the idea that nearby holomorphic disks are holomorphic sections of the
normal bundle. This is similar to [HLS97, Section 1], with changes to account for the presence
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of corners in the boundary in our case. Second, in Section 5.2.1, we discuss how the normal
bundle we defined has a complex structure. Then we state the main theorem of this section,
Theorem 5.2, which is automatic transverality in the presence of corners. Then, in Section
5.2.2, we discuss how we can obtain a smooth bundle pair relevant to the problem by adjusting
the bundle over the corners. Finally, We prove Theorem 5.2 in Section 5.2.3.

An unparametrized regular holomorphic disk with corners in R? that has boundary on L is
a real immersed surface of genus zero and one boundary component, 3 C R* of class C° that
is C2on ¥ :=%\ {@1,-- -, qm}, with 0¥ C L, and ¢; € 0¥ N A(L), such that the tangent space
at each point z € X is J-invariant. To simplify notation, we assume X is embedded. Let us
denote by 9% := 90X N X. Note that Definition 4.1 gives us a parametrized holomorphic disk
with corners. B

If ¥ is such a disk, then J induces on T'Y an integrable almost complex structure j, that
is, a Riemann surface structure on ¥ such that the identity map from ¥ to R* defines a
parametrization of the holomorphic curve with Lagrangian boundary and corners, that is, it
satisfies df o j = J(f) o df on points of ¥ and 9% C L.

Let us now fix such a curve ¥y with corners q1, ..., ¢, € A(L) and denote

io =30\ {q1,---,qm}

By the tubular neighbourhood theorem, we can identify R* near EO (as a differential manifold)
with the normal bundle N = T~ R4/ TEO Note that here we are defining TEO on the boundary
points by taking the vector space spanned by the half-space of tangent vectors to 3. Then,
N is a complex line bundle over 3. Here the tubular neighbourhood of ¥ is not really
an open neighbourhood of Z~]0, as Yo has boundary. For points of the boundary the tubular
neighbourhood does not include a ball around it, instead only half-balls are included.

We get a totally real subbundle of N| x given by

F = TaioL/T(f)Zo) =TLN NBfE

Here intersection means the image of T'L under the projection TV' — N coming from the
identification N = T'V/ TY. This is a real line bundle along 9% that cannot be extended to
0% as the boundary jumps from one leaf of the Lagrangian to another at the corners.

Every (real) surface that is C'-close to ¥ and belongs in M (%) can be seen as the graph
of a Cl-small section ¢ € T'(N) that has zeroes at qi, ..., ¢y, and ¢|ss, € T'(F). In fact, there
exists a,...,a; > 0 such that near the corner g;,

6(2) = exp,, £(2)

where {(z) € Ly, o) (Ty,;R*). Here ¢ € L}, o, (T4, R%) if ¢ converges in the norm

1€

where e?(z) = e¥(?) for z v (t(z,)7(2)) identifying a deleted neighbourhood of ¢; with
[0,1] x [0,00), lim,00(t(2),7(2)) = ¢; uniformly in ¢ (See [Flo88]). Let a = (ai,...,am)
and WEP(N, F) denote W¥P-sections of (N, F) with the above convergence property at each
¢j,j =1,...,m. Assume k > 1 and p > 2 guaranteeing Wk c €O,

In particular, ¥ is identified with the zero section. From now on we restrict our attention
to the tubular neighbourhood of ¥ and therefore, assume V = N.

ki = 1€ |kp
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Fix z1,..., zm ordered anti-clockwise on 9. Let us pick a parametrization of ¥,

u:D— X

with u(z;) = ¢;. Denote D := D\ {z1,...,2n}. Then we get a bundle u*N — D by pulling
back the normal bundle N — ¥ via u. The total space of ©*N gets a C'*° almost-complex
structure by pulling back the complex structure on T'N from R", via u.

5.2.1 Complex Structure on the Normal Bundle

In this section we discuss the complex structure on the bundle u*N — D for which F is
totally real. Let us fix a connection V on T'N compatible with J. We may take the standard
connection on R* = C2. Using the decomposition TN = T%y @ N into horizontal and vertical
subspaces, we define

where x € ¥ is the projection of n, j is the (integrable) complex structure on 7% and i is
the fiberwise complex structure on N. On ¥y we have J = Jy, and near Yy, we can write
J(n) = ®(n)"L1Jy(n)®(n) where ®(n) is an automorphism of TN equal to the identity on 3.
This complex structure can be pulled back to the trivial bundle CxD by taking J(v) = J (u(v))
and j(z) = j(u(z)) for all v € C x D and z € D. We again denote this by (N, F) — D.

As shown in [HLS97, Section 1], there is an operator 9, going from an open subset U C
W2P(N, F) containing the zero section to Q01(N, F), and is given by

0u(¢) = P(¢) 0 j —io P(¢) (4)

where P : Ty — N. Zeroes of this section are the nearby holomorphic curves in the moduli
space M(u). By nearby we mean any elements with image in the tubular neighbourhood, N.
Let us denote the linearization of 9, as L,. We consider it as an operator

Ly : WYP(N, F) — LP(Q"Y(N, F)).

This linearization of the equation for holomorphic curves is the usual linearization, but now it
acts only on sections that have boundary values lying in F' and appropriate zeroes at z;’s. It
is elliptic, thanks to the Lagrangian boundary conditions, with index given by

ind(Ly) =p2s+2—b—2g9 =pus+1,

where p9 is the Maslov index of the bundle pair (N, F'), that is, the normal Maslov index as
in the previous section. Here, b = 1 is the number of boundary components and g = 0 is the
genus of Y.

Theorem 5.2. If us(u) > —1, then L, is surjective. Thus, the space of holomorphic disks
with corners, (£,0%) C (R*, L), near (Xo,0%0) and with the same corners as Xq is a manifold
of dimension us + 1.
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5.2.2 Smoothing the Bundle

In this section we construct another complex line bundle pair (£, G) on (D, j) with a generalized
O-operator that we may think of as the d-operator for a different complex structure j on I
such that we get an isomorphism between holomorphic sections of this bundle and our original
normal bundle, u*(N, F') — D. We call this a “smoothing” because we are changing the bundle
in such a way that the real line bundle u*F along the boundary 0D “becomes” continuous
over all points.

The main idea here is to reparametrize the bundle locally near the corners such that
the Lagrangian lines have the same limit from both sides at a marked point. Suppose the
Lagrangian near a double point was given by L U Lo, for L1 = {y1 = 0,y2 = 0} and Ly =
{z1 = 0,29 = 0}, and our holomorphic corner is the first quadrant in C x {0}, that is,
I ={ys =29 =0,21 >0,y > 0}. We can apply the logarithm log to see our corner as the
strip (—oo, 1] x [0, §]. Simultaneously, we can apply the derivative of log, multiplication by %
on each fiber. Along the y;-axis boundary of I, rotating by % makes

i;}}glo i;l(T(iyl)LQ) = iyljfgo iyll{xl =wz=y1 =0} = {21 =91 =92 =0} = lim ;(T(II)LZ)‘
So now, at the marked point 0, both limits of T'Ly match. So, we can extend the Lagrangian
line bundle along the boundary to the corner point.

We want to do a similar construction at each corner of ¥. Recall the notation T' Ly, T' Lo
denote the projections of the tangent spaces T'L1, T'L to the tangent bundle of ¥, and T2L;
and T2Ly projections to the normal bundle. At any of the marked pints, zj € 0D, the real
subbundle »*F has two limits coming from either side. Let us denote

uFY == lim u*F, ., v'Fy = lim u*F, .u.

- t—0— J t—0+ J

By restricting u to the boundary 0D with the anti-clockwise orientation we get a parametriza-
tion of 0% that we denote by [. We denote the parametrization in the opposite direction by
l. Note that [ is not differentiable at the points z1,. .., z,. We denote by I’(z;) the one-sided
derivative of the part of [ starting at z;, that is, of l|[zj7z]_ ¢is) for some small 6 > 0. Similarly,

['(z;) is the derivative of l_|(zje—i67zj} at z;. Let
o V&) i (D)
eIl 2 =D ()]

Then, v] is a unit vector that generates Tzle1 in R? and vg generates 7T, leLg (as R-vector
spaces.) Let

J

9]
U1

L . L
= ¢ and v} = €.

Then, ¢/ := 9{ — 0% is the angle swept by Yo at ¢;. Let I; denote the cone in R? between
TI}le and TI}LQ, namely,

I = {av{ + bv%|a >0,b> 0}, :T; = {cw{ + bv%]a >0,b>0}\{(0,0)}.

Pick a small ¢ > 0. We will need to take ¢ small enough so that some properties are
satisfied which will become clear as the section progresses. For any p € R?, let B(p) be the
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ball of radius € around p and B.(p) = B. \ {p} the deleted ball. Let C; := (Be(2zj) N D) and
Cj := (Be(zj) N D). For small enough € > 0, there exists injective map

pj Cj— 1
such that p;(0) = 0 and g; + pj : C; — C is C'-close to the inclusion ¢; : C; — C.
On I; we have a biholomorphism,
v — Sj, (z) = log(e™?iz),
to the strip S; := [0,6;] x (—o0, R;] for some R; € R,which depends on e.

On C}, define coordinate chart

p; ::Jjopjz@%sj.
Now we apply a change of coordinates on the fibers of the normal bundle. Let

m w, e, wy= lim w

wi =
t—0— t—0t

. eit
zZj€ )

where w,; is the unit vector of F;, that lies in the upper half plane H C C with respect to the

chosen trivialization. Then w{ and w} are unit vectors in F} and FJ, respectively. Suppose

. o T L : . . ‘
w] = €1 and wj = €2 for o, o € S1. Let of = o — . Define a real-valued function

—0 J
£ 060 = [odad), oo )@
(67)
Define a continuous map, using polar coordinates on C = R?,
nj 1:; —C, e retfi@),
Then, 7; (TZIle) C TquLl, and ﬁj(qung) C Tqu Ly. As we removed 0, 7); is holomorphic.
Define smooth “cut-off” functions 3; : C — [0, 1], for j = 1,2, such that §; + f2 =1, and

1 on B<(0) 0 on B¢ (0)
b= OonB()\B%(O) » P2= lonB()\B%(O)

Define a smooth function 7 : D — C as follows.
e On Cj define n(z) = Bi(u"(2) — u™(2))7j(2) + Ba(u~(2) — u ™ (2)),
e onD\ (UjC~'- define n(z) = 1.
Note that 7 is a nowhere vanishing diffeomorphism on D.
Take the trivial bundle £ := C x D on (D i). We get a real subbundle along oD given by

G, = n(z)F,. Note that, because of how 1 was defined, G can be extended to a real subbundle
of E :=C x 9D over D. We denote this bundle by (E,G). So we have

(E,G) —

|

De—

@<—
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with the obvious inclusions. Note that all sections of (E, é) — D can be extended over the
marked points to get sections of (E,G) — D which are W!P-regular. Holomorphic sections of
(E,G) — D have a unique extension.

Note that, if we choose € small enough in the above construction, the rotation we are
introducing via multiplication by 7(z) is the same as the rotation added from the addition of
the canonical short path. So, the bundle pair (F, G) on D that has the same Maslov number as
the normal Maslov number pg of w, which is the same as u(N, F') defined via adding canonical
short paths, namely,

W(E, G) = p2(u) = p(N, F). ()

5.2.3 Proof of Theorem 5.2

In this section, we conclude the proof of Theorem 5.2 by putting together the constructions
from Sections 5.2.1 and 5.2.2.

The operator J, as described in Equation (4) gives an operator 5%71 going from an open
subset U C T'(u*N,u*F) to Q% (E,G) given by

Oun(9) = Ou(n™'¢), phi e WHP(E,G).

For any WP section ¢ € W*P(ED,G), the section n~'¢ € T'(E,G) is defined by extending
(non-uniquely) over the marked points. This non-uniqueness does not impact well-definedness
as we work with W*® space and the marked points are a measure zero set.

Let Ly, : D(E,G) — Q% (E, Q) be the linearization of 9, at the zero section. Then, Ly,
is a generalized J-operator as shown in [HLS97, Section 2]. Equation 5, implies that

ind(Ly,) = ind(Ly,).

Therefore, ind(L,,) > 0 implies ind(Ly,,) > 0. This implies, by [HLS97, Theorem 2], that L, ,
is surjective.
We note that the following diagram commutes:

WIP(N, F) —2s LP(QOL(N, F))

ln ldn

WiP(B,G) 22 (OB, Q)

where 7 is point-wise multiplication by 7(z) at z € D, and dn is point-wise multiplication of sec-
tions by dn. With the above definitions of the spaces of sections, Nlyer(r,) : ker(Ly) — ker(Luy,y)
is an isomorphism. Additionally, we have canonical isomorphisms ker(L,)* = cokerL, and
ker(Lyy)* =2 cokerLy, . So, if L, is surjective, L, is surjective. This completes the proof of

Theorem 5.2.

6 Properties of Boundaries of Moduli Spaces

In this section, we describe properties of the stable disks that appear in the boundary of moduli
spaces M(A, \) or M(u), that we defined in the previous sections.

Definition 6.1. We define and distinguish between two types of nodes. For a stable holomor-
phic disk [u, z], consider a node uqn(2438) = ug(284) = ¢
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e Corner node: The node ¢ is called a corner node if ¢ is a corner for both u, and
ug. This, by Definition 4.1 and discussion in proof of Lemma 6.12, can only happen at
double points of L, that is, if ¢ € A(L).

e Smooth node: The node g is called a smooth node if ¢ is a smooth point for both u,
and ug.

We want to understand what all the boundary points of a given one-dimensional moduli
space M (u), look like.

Definition 6.2. A stable holomorphic disk with corners, [u,z], is said to be of Type 1 if
there exists aF'8 such that ua(208) = ug(28q) is a smooth nodal point. Otherwise, we say
[u,z] is of Type 2. Note that, if [u, z] is of Type 2, then for all «FS, ua(za8) = ug(28q) is a
corner for u, and ug.

Note that any holomorphic disk with corners, u : (D,0D) — (R* L), is of Type 2 by
the above definition, as it has no nodes and hence, no smooth nodes. Holomorphic disks with
corners also share many properties with type 2 broken disks. So, it a natural choice to consider
holomorphic disks with corners as Type 2.

Definition 6.3. Let L C R‘[La b] be a Lagrangian tangle. Consider a horizontal holomorphic
disk with corners, u : (D,0D) — (R2URZ,0_L 104 L). Let [z, 2] denote the part of S going
from z to 2’ in the anticlockwise direction. The boundary du can be divided into m arcs given
by

7]:u|[zj,z]+1} [Zjﬂz]‘i’l]*)L j:17277m717

'Ym = u|[2'7n721} :[Zm7 Zl] - L
Fix an orientation of L. This gives an orientation on L. Then, each «; gets two orientations
— one from the complex orientation of u, that is, from g¢; to gj+1, and another from the
orientation of L. Accordingly, we assign a sign to each ~; — positive if these two orientations

match and negative otherwise.
We call the horizontal disk, u, aligned if the signs on all 'yj’-s are equal.

Definition 6.4. A horizontal holomorphic disk, u, that has boundary on a Lagrangian tangle
L is called big if:

e u has all convex corners;

e dim M(u) = 1 or equivalently pa(u) = 0;

e u is an aligned disk as in Definition 6.3;

o cither a(0;L) = a(d-L) =0 or [p(u*w) < a(d4L).

Note that the definition of big holomorphic disk is analogous to the definition of big disk
bound by a pair of diagrams (Definition 1.3).

Note that for a big holomorphic disk (u, z), M(u) is a compact 1-dimensional manifold.
In the following theorem, we state all the properties of boundary points M(u). The proof is

spread over the following subsections - part 1 is proved in Section 6.1, parts 2 and 3 are proved
in Section 6.2, part 4 is proved in Section 6.3, and part 5 is proved in Section 6.4.

Theorem 6.5. Suppose L C Rﬁa b] is a Lagrangian tangle and (u,z) is a big holomorphic disk

with corners that has boundary on L. Consider the moduli space M (u).
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Figure 11: Depiction of possible Type 2 stable holomorphic disks.

1. Horizontal disks in M(u) are boundary points. Non-horizontal holomorphic disks with
corners, which do not have any nodes, are not boundary points.

2. The number of stable holomorphic disks of Type 2 in M (u) must be even.

3. (NoDAL POINTS) For a stable disk, [v,z] € M(u), each nodal point 2,53 is mapped to a
double point of L;

4. (SIGNS) For a stable disk, [v,z] € M(u), two nodal disks have opposite signs at the
common node, that is, if ¢ = vo(208) = va(28a) then

sign, (va) = —sign,(vg).

5. (EXISTENCE OF HORIZONTAL DISKs) For any stable disk, [v,z] € M(u), every node has
exactly one horizontal disk attached to it.

6.1 Horizontal Disks are Boundary Points

In this section we prove Part 1 of Theorem 6.5. We show that horizontal disks give us boundary
points of M(u). We also show that a non-horizontal disk (without nodes) cannot be a boundary
point of the moduli space.

Given a Lagrangian tangle L, consider a small extension to get an immersed Lagrangian
L’ as in Remark 3. Let M(u; L") denote the moduli space of variations of u in L. Note that,
for a disk u that has boundary on L, dim M(u; L) = dim M (u; L').

Lemma 6.6. Suppose [u,z = (z1,...,2m)| is a horizontal disk with m corners and
dim(M(u; L)) = 1. Then, any holomorphic disk in M(u,\; L"), which is C'-close to [u, z],
intersects u at only the corner points, u(z1),...,u(zn).

In fact, it is not necessary that u is a horizontal disk but we will only be using this Lemma
for horizontal disks and the notation is easier in this case. So, we state and prove the above
lemma only for horizontal disks. The proof extends easily to all holomorphic disks with corners
and boundary on a Lagrangian tangle.
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Proof. Just as in proof of Theorem 5.2, we get a normal bundle

(N, F)

|

D

where D := D\ {21, ..y Zpm}. In fact, as u is a horizontal disk the normal bundle is canonically
identified with C x D — D. We also obtain a bundle

(B, G)

|

D

that is related to the normal bundle (N, F') via the smooth function 7, as in proof of Theorem
5.2. Recall that any holomorphic disk in M(u) near Im(u) will be given by the graph of a
holomorphic section

(N, F)
SC\LW :

D
Note that we are only considering sections that are zero at each z;. By point-wise multiplication
by 7, which was defined in proof of Theorem 5.2, we get a section 7 - s of (F,G). We made
choice of function 7 such that 1 - s does not vanish at the marked points, z;, even when s, a

holomorphic section of (N, F'), vanishes at the marked points z;.
The bundle pair (E,G) has Maslov index equal to the normal Maslov index ps(u) and so,

w(E,G) =0.
Hence, by doubling we get a bundle £ U E on sphere S? with Chern class
ci(EUE)=u(E,G)=0.

This means that a holomorphic section of E U E does not intersect the zero section, as all
intersections would be positive intersections (positivity of intersections in dimension 4, see
[MS12]). Therefore, the section 7 - s also cannot have any intersections with the zero section.
As n has no zeroes on D, this means that the original section s cannot intersect the zero section
outside of corner points.

O]

Lemma 6.7. For a horizontal holomorphic disk with corners, u, that has boundary on a
Lagrangian tangle, L C R‘[la’b], and normal Maslov index p2(u) =0, [u] € M(u) is a boundary
point of M(u).

Proof. Suppose, we extend L to L’ as in Remark 3 and hence, we extend M(u; L) to M(u; L').

We claim that Lemma 6.6 implies that [u] divides the moduli space M (u; L') near [u] into two
parts — those with image completely contained in R?‘i(_oo b] and those with image completely

in R}

b,00)" As M(u; L') is also a 1-dimensional manifold and

M(u, L) = {[v] € M(u; L') | Im(v) C R}, .},
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this means that [u] is a boundary point of M(u; L).

Assume Im(du) C 0+ L = Ly. To show the claim, suppose if possible, that [v] € M(u; L'),
C'-close to u, such that there exists p; # p2 € D with my,v(p1) > b and my,v(p2) < b. By
the maximum principle for harmonic functions we can assume p1,ps € JD. If both p; and po
are in the same component of 0D\ {z1, ..., 2y}, then by continuity there must exist a smooth
point p € D with 7y, (v(p)) = b. As L' "R} = Ly, this would mean v is intersecting u, which
cannot happen by Lemma 6.6. If p; and ps are on different components of 9D \ {z1,...,2m},
then those entire components have to lie either entirely in R‘(lbpo) or in R?ﬁoo’b), respectively.
In this case, by taking a path of paths 7 : [0, 1] x [0,1] — D, such that each path ~; : [0,1] — D
starts on the component of 9D\ {z1,. ..,z } containing p; and ends on the one containing pa,
we can conclude there is a path in the interior of D on which 7y, o v takes constant value b.
This would have to mean my, o v takes value b at all points of D as 7, o v is harmonic. This
implies Im(9v) = Im(Ou) which contradicts Lemma 6.6.

O

Now we show that a non-horizontal disk (without nodes) cannot represent a boundary
point of M(u). We do so in two steps. First, note that if a holomorphic disk with corners,
(u, z), has boundary u(0D\ {zo,...,2m} C L° = L\ 0L, then we can find a 1-dimension worth
of variations of (u, z) by looking at the normal bundle we defined in Section 5.2. In Section
5.2.1, we showed that any solution of Equation 4 gives a nearby element of M(u). Unlike the
case of a horizontal disk (as discussed in Lemma 6.7), there are no additional constraints posed
on the solutions. So, u which corresponds to the 0-section of the normal bundle is an interior
point.

Second, we show that any disk touching the boundary of the Lagrangian tangle, L, is a
horizontal disk via the following lemma. This will complete the proof that non-horizontal disks
are not boundary points of a moduli space M(u) for big u.

Lemma 6.8. Let L C Rﬁa b] be a Lagrangian tangle. Consider holomorphic disk u : (D,0D) —

(R*, L) with corners qi,...,qm € A(L). Suppose Im(u) intersects OL at a smooth point. Then
it must be a horizontal disk.

Proof. ! Firstly, suppose Im(u) intersects OL at an interior point of . By the maximum
principle for the harmonic functions, my, ocu : D — R where 7, : R* — R is given by
(z1,y1, T2, y2) — Y2, must be a constant. So, u must be a horizontal disk.

So we look at the case when Im(u) intersects L on Im(Qu). Suppose, if possible, there
exists ¢ € u(0D) N Oy L. (The proof for the case where the point of intersection lies in d_L is
analogous.) Let ¢ = u(p) for p € 9D. As p is a smooth point of u, there is a neighbourhood of
p in D where the map w is holomorphic.

There must exist an open ball B C D° = D\ dD such that p € B and u(B) Nd.L = {q}.
This is because, if no such ball exists, there must exist a sequence of points in D° that map
to 01 L and have p as a limit point. So there would be a set of points with an accumulation
point mapping to the complex plane R2? which would imply, by Claim 6.9, « maps to R? and
u is a horizontal disk.

Let us denote the polar coordinates on R? by (r,0). Then i(8,) = 9p. Recall my, o u is
harmonic and 7y, o u(z) < b = my, ou(p) for all z € B. So, by Hopf lemma, the derivative
D(my, ou),(0y) > 0. By holomorphicity of «,

D(my, ou)p(9y) = D(my, o u)p(—ipde) = (Dmy,)q © Duy 0 ip(—0p) = (Dmy,)q 0 ig © Duy(—0p).

IThis proof idea was told to me by Laurent C6té.
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So,
(D7ry,)q(iq © Dup(—0s)) > 0.

On the other hand, observe that ¢ € 94 L implies Ou is tangent to 0, L at g. This is because
the image of Ju is contained within L, Ou is C' near p and it is touching the boundary 0, L at
q. This implies Du,(dp) is tangent to 01 L at q. So, Du,(dp) € R x {0} C T,C%. As R? x {0}
is closed under the action of iy, i; 0 Du,(99) € R? x {0}. So,

Dy (ig © Duy(0s)) = 0,
contradicting our previous observation. Thus, such a u cannot exist. O

Claim 6.9. Suppose u : (D,0D) — (R*, L) is a holomorphic map, for Lagrangian tangle, L.
Suppose x,, € D° is a sequence with limit point p € OD such that u(zx,) € R2 for some a € R.
Then im(u) C R2.

Proof. A holomorphic function v : D — R* gives two holomorphic maps to C by post compos-
ing by 7; : R* — R? given by (x1,y1,22,92) — (x4,y;) for j = 1,2. Let us denote u; = 7; o u.
Note that Im(u) C R2 is equivalent to ug is the constant map to (0,a). As u(z,) € RZ
uz(x,) = (0,a) for all z,. Note that as the boundary of the disk is mapped to L, which is a
real analytic and totally real surface (namely, TL Ni(T'L) = {0}), by using Schwarz reflection
we can extend the map u (and therefore uy) to a larger (open) domain E D I such that p € E.
Now we have a holomorphic function us on E that is constant on a set with an accumulation
point in E. So, us must be constant and the image of u must be completely contained in
R2, O

Note that Lemma 6.8 only cares about whether u was touching the boundary 0L of L at
a smooth point of u. It is possible that it was touching 0L at a double point ¢ of L without
OJu jumping between leaves at ¢q. As the concerned point was a smooth point of u, only one of
the leaves would feature in the above argument.

6.2 Type 1 Stable Holomorphic Disks Do Not Appear

In this section we analyze nodes that appear in stable disks in the moduli spaces, M(u), we
consider. This will prove Part 2 and Part 3 of Theorem 6.5. As a first step we show that all
nodes which appear away from double points of L are smooth nodes in Lemma 6.10. The rest
of the section shows smooth nodes do not appear when we consider moduli spaces, M (u), for
aligned disks u (Definition 6.3).

Lemma 6.10. Suppose we have [v,z] € M([u]) with a node q € L. Suppose vi and ve are the
two disks, part of the stable disk v, whose common node is q, that is, for special points z1 and
z9 on 0D,

v1(z1) = va(z2) = q € L°.

Then q is a smooth point for both v1 and vs.

45



Proof. As vy is holomorphic on the interior of I, v belongs to the Sobolev space W*P?(DD) for
any non-negative integers k£ and p. Let us take £k > 2 and p > 1, such that k& — % > 1. Then,
by using the trace operator

|
—

k
k—1—1

Ty - WEPD) — [ W = P (oD),
l

Il
=)

we see that (v1)|sp € WHP(OD). Then, by [BG83, Theorem 4.5], we get that v; is smooth at
q, as L is smooth at ¢. Similarly, vy is also smooth at q. ]

Recall that we let [z, 2'] denote the part of dD going from z to 2z’ in the anticlockwise
direction. Consider the moduli space M (u) where u is a horizontal disk with du C dL and
corner points qi, ..., ¢, € A(L). The boundary du can be divided in to m arcs given by

fyj:u|[zj,zj+1] (24, zj41] = L j=12....m—-1;

Vm = uhzm’ZI} :[2m, 21] = L.

Now onward, we will write [z, zj41] for all j with the understanding that m + 1 denotes 1,
when the number of corner points is m.

Suppose [v,z] = lim,_,o[uy, z,], for [u,,z,] € M(u). A boundary node of Type H (see
[Liu02, Definition 3.4]) is a singularity locally isomorphic to

(0,0) € {2 —w? =0}/A

where (z,w) are coordinate on C?, and A(z,w) = (%,w) is complex conjugation. We can view
this as the image u”(«) of an arc, a : [0,1] — D with «(0) € [z}, 2j41] and (1) € [z, 2k41],
shrinking to a point as ¥ — 0o. Another way to view this node is it corresponds to a boundary
arc, 5, “intersecting” itself or another arc, v} in the limit. The other types of possible nodes
as outlined in [Liu02, Definition 3.4] are singularities isomorphic to:

(1) (0,0) € {zw = 0} (interior node),
(2) (0,0) € {22 +w? = 0}/A (boundary node of type E).

Interior nodes do not appear for us because IIo(R*) = 0 does not allow sphere bubbles to form.
Boundary nodes of type F correspond to a boundary component shrinking to a point. As we
consider only one boundary component, a sphere bubble would be formed if that boundary
shrank to a point. So, boundary nodes of type E also do not form. Thus, all nodes of [v,z]
are of Type H. B

Suppose L is a Lagrangian tangle. So, there exists a surface L with boundary and an
immersion ¢ : L —>A]R4 such that L = L(E) We assumed L is oriented. We fix an orientation
on L such that ¢ : L — L is orientation preserving. Any continuous path v : [0,1] — L has a
continuous lift, 7 : [0,1] — L, unless it passes through a double point ¢ € A(L) and ~ jumps
from one leaf to the other at q.

Before we proceed, we define a switching operation on arcs on a surface with boundary.

Definition 6.11. Suppose L is an oriented surface with boundary. It may have any finite
number of boundary components and any genus. Suppose, we have two arcs v; and 3 on
the boundary such that there exists a small disk D, in the interior of L such that, up to a
diffeomorphism, (y; U ) N D, looks like a neighbourhood of 0 € R? with 4; and 72 mapped
on to {zy = €} for some small enough € > 0. Then, the switching operation swaps out the
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Figure 12: Two cases for the switching operation defined in Definition 6.11

two hyperbola pieces {zy = €} with the limit {xy = 0} or with the hyperbolas {xy = —¢}
depending on their orientation as in Figure 12. Then we match up the end point smoothly to
get continuous arcs d; and J2 on L. Note that if before the switching we had arcs going from
71(0) to 71 (1) and from ~2(0) to v2(1), after the switching we get arcs from 71 (0) to v2(1) and
from 72(0) to vy2(1).

Within the small disk D, we may have two orientation situations as shown in Figure 12.
In the first case, the two new arcs do not intersect and in the second case, they intersect only
once.

Lemma 6.12. If u is a big disk, Type 1 stable disks don’t appear in M(u).

Remark 6. Of course, this means the number of boundary points corresponding to type 2
stable disks is even. Note that it is crucial here that u is an aligned holomorphic disk, which
is part of the definition of big disk. This assumption will rule out interior smooth breakings.
If we did not have the aligned assumption, we can have smooth nodes in the interior of the
tangle.

Proof. Suppose we have a point [v,z] € M([u]) with a node ¢ on the interior of L. For sim-
plicity in notation let us assume that there is a representative stable disk with two components

(v,21,...,2m) and (v', 2],..., 2 ,) that are holomorphic disks with boundaries.
Note that the sets of marked (corner) points z1,..., %y, and 2,...,2 , have to both be

non-empty. Otherwise, we would have a disk bubble, that is, a holomorphic disk in II(R*, L°)
where L° = L\ L denotes the interior of L. We are considering a relatively exact Lagrangian
L°. This means we either have w|r, (g2, z0) = 0, in which case a disk representing an element of
II3(R*, L°) cannot be holomorphic as holomorphic disks have symplectic area strictly positive.
The other case is when w(IIo(R*, L°)) = aZ and w[u] < a. A disk bubble would be an element
[v] € TIx(R*, L°) with 0 < w[v] < a which cannot happen.

As ¢ is a boundary node of type H, there is a path of elements [u”] € M([u]),v € [0, 0)
limiting to the stable disk (v,v’), with domain X (see Definition 4.5). Let v} and v} be the
corresponding arcs for the holomorphic disk v”. Then u = u°, v = 7;-], and v = 'yg. Now, q is
a boundary node of type H in the interior of L, that is, there exist points z € 9D and 2’ € 9D
such that v(z) = v/(2’) = q and ¢ € L°. Note that, by Lemma 6.10, ¢ is a smooth point for
both v and v'. Further, we may assume the nodal point ¢ is a point of transverse intersection
between dv and Ov’ as this is a generic property of the compactification. _ N

Let d; and 0y, be boundary arcs of v and v’ that intersect, and ¢; and d;, be their lifts to L.
Then

6;(0) = 7;(0),

(1) = (1), 6(0) = F(0), 3¢ (1) = F;(1).

Skl
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There exists € > 0 such that the arcs g] and gk are isotopes of arcs obtained by doing the
switching operation inside a small disk D on 77 and 7y for large enough v. Let us denote the

arcs obtained by switching 7y’}’ and 7} in D, by Sj and ), that are respectively isotopic to g]
and gk As the switching operation is local, the only intersections of 5}- and ), are inside the
small disk D.. So, they will intersect in 0 or 1 points depending on whether we are in Case 1
or Case 2 of Figure 12.

There exist strong deformations f, : D — ¥ in the sense of [Liu02, Definition 5.5], such
that f, 1(z ~ 2’) is an arc in D¥ for each v € [R, o), and u, o f, ! converges uniformly on
contact sets to (v,v’). We can assume, by changing the parameter space, that this holds
for all v € [0,00). Pick a parametrization o” : [0,1] — D such that v”(a”(0)) € Imvy; and
u”(a” (1)) € Imyy, for some j, k € {1,...,m}. Note that convergence of u” — (v,v') as v — o0
implies

lim u”(a”(0)) = lim u”(a”(1)).

vV—00 v—00

Define a path §:[0,1] — L be defined by

utan(u)(atan v(0)) Ve [0’ %)
B(v) = < lim, o0 u”(a?(0)) v = %
uw tan(v) (aftanz/(O)) = (%’0]

Then $(0) € Im(v]), and B(1) € Tm(7y).

For any two paths v, 8 on an oriented surface S that intersect, intersection points can
be assigned an orientation sign (which is used to compute the algebraic intersection number)
as follows: an intersection point ¢ = v(t1) = B(t2) is a positive intersection if (7/(¢1), 5'(t2))
forms a positive basis for T;5. As u is an aligned disk, the boundary arcs ; and v; have the
same sign according to Definition 6.3. This means that the intersection point 5(0) of 8 and
7;, and the intersection point (1) of 5 and ~;, have opposite orientation signs. Let /3, 7;, and
7k be the lifts of 3, v;, and 74, respectively, to L. Then, the intersection point B (0) of B and
7;, and the intersection point B (1) of B and g, have opposite orientation signs, and so do the
intersection points B N7; and 5 N75. So, 77 and 7} in D, are in the configuration of Case 1
in Figure 12. Therefore, Sj and ), do not intersect, and so the isotopes gj and gk intersect in
zero points counted with orientation signs.

This implies that if J; and J; intersect, they do so at even number of points away from
their end points. Say at r1,...,72;. Note that “we can glue” near each intersection point r;
to get a sequence of holomorphic disks in M(u) converging to the stable disk that has v, v’ as
part of it. That is, we can do standard gluing technique like , for example, [Liu02], to get a
sequence [u},] € M([u]) that Gromov converges as n — oo to a stable disk v/ which has the
other points 7,1 # j as nodes. This means that the stable disk with smooth node ¢ lies in
a codimension 2 subspace of the moduli space M(u). As M(u) is a 1-dimensional manifold,
this is not possible. ]

6.3 Constraints on Sign at Corner Nodes

In this section we prove Part 4 of Theorem 6.5 as the following lemma. As we already showed
that the only relevant nodes are corner nodes, the following lemma suffices.
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Lemma 6.13 (ADJACENT DISKS HAVE OPPOSITE SIGNS). Suppose a stable disk

({ta }aer, {zaﬁ}aE,éH {2, ai}lgigm)

is the Gromov limit of a sequence, (un,{2]'}1<i<m)nen of holomorphic disks with corners that
has boundary on Lagrangian tangle L. Suppose z.p is a nodal point mapped to a double point
of L, that is,

ua(za,ﬁ) = uﬁ(zﬁa) =qc A(L) C IL,
and it is a corner node. Then,

sign, (ua) = —sign,(ug).

Proof. 1t is enough to show this for the case when u, and ug are embedded. Indeed, if they
are only immersed, we can restrict ourselves to a small enough neighbourhoods of z,3 and
Z8q, and repeat the same argument in those neighbourhoods. The notation and argument gets
more cumbersome.

The main idea is that if we restrict our vision to a small enough neighbourhood of ¢, the
situation looks exactly like that of converging strips in Lagrangian Floer homology setup.

Choose a neighbourhood ¢ € U C R* such that (UNL)\ {¢} has two connected components
and (UNL)\{q})NA(L) = (. Let us call these connected components union {q} as L; and Lo.
That is, UNL = L1 ULy and LiN Ly = {q}. We also take U to be small enough so that u_!(U)
and ugl (U) have no special points other than z,5 and zp, respectively, and ug (U)\{zas} and
ugl(U) \ {#8q} are biholomorphic to the strip R x [-1,1] C C. As u,, converge to (uq,ug) in
the Gromov sense, their images converge in C*° to the union of the images, Im(un) U Im(ug).
So, by choosing U to be small enough, we may assume u,, ' (U) contains no marked points and
are biholomorphic to R x [—=1,1] C C as well. Take coordinates t,s on the strip with ¢t € R
and s € [—1,1].

Let us define compact sets K, and Kg as follows. Denote by U the boundary of the closure
of U. Note that we can assume sufficient regularity on the neighbourhood U, in particular, we
may assume it is a domain in C x C. Let K, = 0U N Op(Im(u,)) and Kg = 0U N Op(Im(ug))
where Op(Im(uq)) and Op(Im(uq)) are arbitrary, small neighbourhoods of Im(u,) and Im(ug),
respectively. We choose the open sets Op(Im(u,)) and Op(Im(ug)) to be small enough that
Ko ¢ Kg and Kg € K,.

By restricting to large enough n and pre-composing by appropriate biholomorphisms to
the strip R x [~1,1] C C, we can assume we have i, : R x [-1,1] = R* for n € N, n > N for
some large N, with

lim w,(t,s) € Ka,tl_i>m un(t,s) € Kg;

t——o0

Un(R x {~1}) € L1, 8n(R x {1}) C L.

Of course, the L and Ly may be exchanged, but then it would be so for every n.
Additionally, i, : R x [-1,1] = R* and g : R x [-1,1] — R* with

lim =q, lim 4 Ky
Jim do(t,5) = g, lim ta(t,s) € Ka;

lim ag(t, s) € Kg,tlim ug(t,s) = gq.
——00

t—o00
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Note that, here we have made some specific choices of biholomorphisms from

ayt(U), QEI(U), and 1,1 (U) to R x [~1,1]. Our conclusions do not depend on this choice as
any biholomorphism between domains (with boundary) of C preserves the orientation on the
boundary.

Now, the original Gromov convergence restricted to the neighbourhood U is the Gromov
convergence of @, to the pair ., g while preserving the above limit restrictions. So, the only
allowed reparametrizations are translations of R x [—1, 1] by real numbers in the ¢ coordinate.
Actually there may be small translations in the s-direction as well, but we may ignore these
for the purpose of this argument. We get this condition by keeping in mind the marked
point conditions on the original convergence. Indeed, if both u, and ug have two or more
marked points each, we may view them as maps on strips already, and we readily get the
limit conditions above by restricting to appropriate half strips. If they have less than two
marked points, note that the allowed parametrizations are restricted because u, and ug are
non-constant. So, we can still get the above condition by adding an artificial marked point
to keep track of these reparametrizations and can choose one (say Z, and Zg, respectively)
appropriately, such that any path from z, to Z, has to pass through K. Then, if we set z, to
be the limit of this path at co and Z, at —oo and want the chosen biholomorphism to preserve
this linear order on the path, we get the required conditions on the biholomorphism.

Thus, from the convergence of u,, and their boundary conditions,

fLa(R X {—1}) C Ll,’ﬂ,a(R X {1}) C Ly and fLﬁ(R X {—1}) - L1,ﬂ5(R X {1}) C Lo.

So, we see that Otu, jumps from L; to Ly at ¢ and Otug goes from Ly to Ly at q. As, the
orientation on the boundary was always preserved this implies signq(ua) = —sign,(ug).
O

6.4 Non-horizontal Disks have Fixed Sign at Corners

In this section, we show that corner signs for non-horizontal holomorphic disks are determined
by which boundary of L the corner is at, when L is a Lagrangian tangle. This will give us the
last part of Theorem 6.5.

Lemma 6.14. Let L be a Lagrangian tangle. Suppose u is a non-horizontal holomorphic disk
with corner at q € 04 L. Then sign,(u) = +1. Similarly, ¢ € 0_L implies sign,(u) = —1.

Before we prove this lemma, let us discuss how we conclude Part 4 of Theorem 6.5. Lemma
6.13 and the above Lemma 6.14 together give us that we cannot have two non-horizontal disks
attached at a node. We claim that the case of two horizontal disks attached at a node also do
not appear in our considered moduli space, M(u). Suppose Im(du) C d; L = L. In Section
5.1, we defined the real line bundle T! L along D as a subbundle of C x {0} € Cx C = u*(TR?)
for the horizontal disk u. The Maslov index j1(u) of the bundle pair (C,T'L) will always be
2 (for convex u) and u1(u) actually gets suppressed in the dimension calculations and we only
see pa(u) in dim M(u). Maslov index p;(u) = 2 implies the expected dimension of the moduli
space of variations of u within the plane is

dim(p(w, Lp)) = p1(u) +2 -3 —-1=0.

If we had two horizontal disks attached at a node ¢ € 0L, we could glue within Rg to
obtain a 1-dimensional moduli space contained in M (u, Ly,), which contradicts the dimension
calculation. Thus, we can only have the situation where each node has exactly one horizontal
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disk and one non-horizontal disk attached, which is Part 4 of Theorem 6.5. Now we prove the
lemma.

Proof. First, we build a local model for L near a double point ¢. Suppose ¢ € d+ L. Let us
assume that 04 L C RZ and ¢ = 0 € d; L. Fix a small neighbourhood U of 0 in R*. In U,
the Lagrangian has linear approximation given by (ToL" U ToL!) N RAioo,op where L" and L
are the two leaves of L near q. Upto a Hamiltonian isotopy, we may assume the Lagrangian
is equal to this linear approximation in a small neighbourhood of 0. We want to analyze
what the Lagrangian L looks like near 0, so we analyze what two Lagrangian subspaces of R*
intersecting at one point can look like. Consider L™ N (R? x {0}). It is a line passing through
0, let us call it I1;. It is given by an equation a1z + byy1 = 0 for a,b € R. Any Lagrangian
plane containing this line lies in the symplectic complement of i(l11). So, the other generator
of L must be a line in {0} x R2, say aswy + bewy = 0, ag, by € R. Similarly, the subspace
ToL! = {c1x1 + diy1 = 0, cawa + doys = 0}, for some ¢1,d; € R. To get a local model for the
Lagrangian tangle L, we have to impose the condition {y2 < 0}.

Recall the notation L" is the higher leaf and L' is the lower leaf near ¢ = 0 with respect
to the xo-coordinate. For ease of notation we can fix coefficients without loss of generality as
follows: Locally, LNU = L" U L}, where

Lh = {(951>?/17332,y2) € U|y1 = 0,.’E2 +y2 = 07y2 < 0}7
L' = {(21,y1,22,92) € Ulry = 0,29 — yo = 0,y < 0}.

Now, we prove the lemma. If u : (D,0D) — (R%, L) is a holomorphic map with corner at
q =0, then my o u : (D,0D) — (R% my(L)) is also a holomorphic map with corner at 0. Here
7y : R* — R? is the projection (1, y1, x2,y2) + (22, y2). Note that mo(LNU) = mo(L")Uma (L)
where

mo (L") = {(z,y) € R*z +y =0,y < 0},
7r2(Ll) ={(z,y) € R2|:17 —y =0,y <0}

As u is holomorphic, the boundary of u has to travel anti-clockwise on the complex plane. So,
if 9 o u is non-constant, then its boundary traverses (L") first and then 7o (L!). If o o u is
constant, then u is a horizontal disk. Thus, for non-horizontal disks sign,(u) = +1.

The case for ¢ € 0_L is analogous. O

7 Applications: Obstructions to the Existence of
Undercut Relation

In this section, we give applications of Theorem 1.4 in the form of obstructions to undercutting
relation on diagrams. We also give proofs of the corollaries mentioned in Section 1. Many
similar results can be obtained by applying Theorem 1.4 and we only present select few.
Recall that topological data gives a priori restrictions on Lagrangian cobordisms. Let
71 : R* = R? be the projection (z1,y1,72,y2) — (21,y1). If there is a cobordism K; <1 Ko,
then 71 (K1) and 71 (K2) must bound the same signed area and have the same rotation number.
Further, let us denote by wr(K) the writhe of the diagram 7(K;) = D, with respect to the
framing ker wl|gs also known as black board framing. That is, it is the sum of the number of
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positive crossings minus the number of negative crossings as shown in Figure 13, when viewed
from positive infinity on the xs-axis. Then, for Ky <7 Ko

wr(K1) — wr(Kz) = x(L) (6)

where x denotes the Euler characteristic (see [ST10]). An interesting observation is that
Gromov’s theorem stating that there are no closed weakly exact Lagrangians in R?*, implies
that there is no knot that can be both filled and capped by an exact Lagrangian. This would
also follow from the above Euler characteristic computations.

AKX

+ crossing - crossing

Figure 13: Signs of crossings for calculating writhe.

We want to study those situations where these topological constraints are inconclusive. For
example, when K and Ko have the same writhes. We first prove Theorem 1.4, stated in the
Introduction.

Proof. Suppose [Dy,01, A1] < [D2, 02, As]. This means that there exists a Lagrangian cobor-
dism L' C Rf‘a’b] with 04 L' = Kp, and 0_L' = Kp,. Now, by using Lemma 3.9, we get a
Lagrangian tangle L C Rfa,b} with diagram of 0L = [Ds] and diagram of ;L = [D;]. This
also means 04 L = [Ds] and 0L = [D;] as immersed curves.

Suppose we have a big disk bound by the diagram pair. This means there exists a big disk
bound by 9, L or _L in the plane R2 or Rg. In either case, we get (u,z), a big, horizontal,
holomorphic disk with corners, that has boundary on L. As u is a big disk, M(u) is a compact
1-dimensional manifold (Theorem 5.2, Theorem 4.10) with [u] € M (u) representing a boundary
point of the moduli space (Part 1 of Theorem 6.5).

By Theorem 6.5, Part 2, we must have even number of type 2 holomorphic disks as boundary
points for M(u). So there must exist a stable, holomorphic, Type 2 disk, [u’,z/], distinct from
[u, z].

If v’ does not have any nodes, then it is a horizontal disk by Part 1 of Theorem 6.5. In
this case, from the definition of M(u), all the corners of v’ are the same as those of u, with
the same signs.

If (U, z) is a stable disk with nodes, by Theorem 6.5, the stable disk of type 2 would have
at least one horizontal disk, say v : (D, D) — (R*, L). We claim that v gives us a little disk to
u for the considered diagram pair. To prove the claim, take the case when Im(u) C ]Rg. Then,
u has all positive corners.

e If Im(v) C R?, then each corner g of v is either a corner point shared with u or it is
a node of the stable holomorphic disk that v is a component of. If ¢ is a node, then
it is a node of a stable holomorphic disk of type 2. So, it has to be a node between
v and a non-horizontal disk v’. As v is not horizontal, and ¢ € 9, L, by Lemma 6.14,
sign, (v') = +1. So, by Lemma 6.13, sign,(v) = —sign,(v') = —1. If ¢ is shared by v and
u, then it is a corner point of the stable holomorphic disk and by virtue of the definition
of M(u), has the same sign as sign,(u). So, sign,(v) = +1.
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e In the case Im(v) C R2, all its corners are nodes of a stable holomorphic disk of type 2.
Each node has an attached non-horizontal disk that must have sign equal to —1 at the
node. So, all of v’s corners are positive by Part 3 of Theorem 6.5. For the case when
im(u) C RZ, the argument is analogous.

The area inequality comes from the fact that every holomorphic disk must have strictly
positive area. Suppose, v is the little disk of u that appears as a horizontal disk of (u’,z’), the
stable holomorphic disk of Type 2 that represents a boundary point of M(A). Then,

> o) =w <Z[U’a]> = w(4) = w([u]).

acl ael

As each v/, is a holomorphic disk, w([u,]) > 0. So, we get that

o) =w(lu)) = Y w(lun]) <w(lul).

aclul,#v
The only exception to the above inequality happens when [v] = [u] € Ha(R?, L). O

Thoerem 1.4 gives us many exciting corollaries. We remark here again that these are only
example applications, not by any means an exhaustive list but instead a select few.

Note that Corollaries 7.1, 7.2, and 7.4, is stated in terms of the undercut relation. This
means we are proving that there cannot exist relatively exact Lagrangian cobordisms with the
given boundary conditions, but in all of these examples the observation in Remark 1 implies
that any possible Lagrangian cobordism will be relatively exact. So, in fact, we are showing
that no Lagrangian cobordisms can exist with these boundary enriched knot diagrams.

Corollary 7.1. For A, B > 0, we observe the following growing and shrinking behaviour among
enriched knot diagrams. Suppose 8_, 81, E_, and E denote exact enriched knot diagrams as
in Figures 2, and 14.

1. If8_(A) < 8_(B), then A > B;

2. If 8+(A) < 8+(B), then A < B,’

3. If E_(A) < E_(B), then A > B;

Here, assume that the total areas of all the diagrams is 0.

Proof. (1,2) Suppose 8_(A) < 8_(B). The diagram 8_(A) cuts out two disks of same area A,
and both are big disks. Let us pick one of them to be A; to apply Theorem 1.4. All the
other disks cut out by the pair, (8L (A),8! (B)), are little disks to A;. Let the other disk
cut out by the lower diagram be A,. Let the two disks cut out by the upper diagram be
Eﬁ and.Bz
Suppose L C Rﬁa,b% is a Lagrangian tangle with 0, L = Dg_(p) and 0_L = Dg_(4) Note
that the writhes of both the diagrams are the same, which means the cobordism will be
a cylinder. This means that the tangle L is topologically a sphere minus four points. So,
even though Aj is a little disk to Aj, area(A;) = area(Az) but [A1] # [A2] € Ha(R*, L).
So, we must have area(B;) = area(Bs) < area(A;), which implies A > B.

The proof for the 8, case is analogous.
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Figure 14: In all the figures the pink disk has to be larger than the yellow disk:
(a) E-(B) < E_(4) (b) B, (B) < E4(A)
(¢) T-(B) < T_(4) (d) T+(B) < T4.(4)

(3,4) If E_(B) < E_(A), then B is a big disk. The candidates for little disk for B are A and

C' as labelled in Figure 14 (a). But as the total bounded area of E_(B) is zero, C' > B.
So, A < B by Theorem 1.4.

The proof for the E statement is analogous.

We also get obstructions on diagrams that ae not exact.

Corollary 7.2. For A, B > 0, the following growing and shrinking behaviour among trefoil
knots hold.

1. If T_(A) <T_(B), then A > B;
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Proof. Note that B is a big disk bound by 7 (B). In particular, B < a(T-(B)) as all the
disks cut out by T_(B) contribute positively to a(T_(B)). A is the only possible little disk to
B. So, we must have A < B. The proof for T case is analogous. O

Corollary 7.3. Following are examples of obstructions to undercutting when the two enriched
knot diagrams do not have the same underlying (topological) knot diagram. We assume that
all the enriched knot diagrams in this corollary are exact. (See Figure 7.)

1. If 0 < C~T1(Ay, Ag, A3) for C~t as in Figure 7 with total area equal to zero, then
Az > As.
2. Let Ay > Ay > A3 > 0. If C~T1(By, Ba, B3) < C~ T (Ay, Ay, A3), then
As > min(Bs, By),
where By = By — B + Bs is the area of the unmarked lobe.
3. For A1 > Ay > A3 >0, and B >0, if 8. (B) < C~TT(Ay, As, A3), then
As > B.

Proof. In all of these cases, the disk with area As is a big disk. We make the above conclusions
by tracking through possible little disks and obtain these area conditions. O

Corollary 7.4. [Lemma 1.2, Part 3] There exist diagrams that are unrelated. For example,
for0 < A< B, 8, (A) £ACtTT(A,B,B) and C*~ (A, B,B) £ 8,(A). Thus, < is a partial
order.

Proof. Refer Figure 15. For the pair (8 (A),CT~1(A, B, B)), the upper lobe labelled A; is
a big disk. The two possible little disks are labelled B, As, and A4. But none of these have
area strictly less than A. Therefore, this is not an undercutting pair.

For the pair (C*T~(A, B, B),84(A)), As is a big disk. The little disks for Az are Ay, Aq,
and A4. None of these have area strictly less than A.

(a) (b)

Figure 15: For A} = Ay = A3 = A4, By = By as areas: (a) CT7(A, B, B), (b) 8,(A).

O]
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