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Abstract. Paleoclimatic records provide valuable information about Holocene climate, revealing aspects of climate
variability for a multitude of sites around the world. However, such data also possess limitations. Proxy networks are
spatially uneven, seasonally biased, uncertain in time, and present a variety of challenges when used in concert to illustrate
the complex variations of past climate. Paleoclimatic data assimilation provides one approach to reconstructing past climate
that can account for the diverse nature of proxy records while maintaining the physics-based covariance structures simulated
by climate models. Here, we use paleoclimate data assimilation to create a spatially-complete reconstruction of temperature
over the past 12,000 years using proxy data from the Temperature 12k database and output from transient climate model
simulations. Following the last glacial period, the reconstruction shows Holocene temperatures warming to a peak near 6,400
years ago followed by a slow cooling toward the present day, supporting a mid-Holocene which is at least as warm as the
preindustrial. Sensitivity tests show that if proxies have an overlooked summer bias, some apparent mid-Holocene warmth
could actually represent summer trends rather than annual mean trends. Regardless, the potential effects of proxy seasonal
biases are insufficient to align reconstructed global mean temperature with the warming trends seen in transient model

simulations.

1. Introduction

Paleoclimate research is typically conducted in two ways: by extracting information from natural archives of past
climate, called climate proxies, and by simulating past climate with models. These two methods have complementary
strengths, as proxies provide location-specific data about climate, while models can be used to explore spatial and dynamical
relationships in the broader climate system. Here, we use paleoclimate data assimilation to synthesize information from both

approaches into a spatially complete reconstruction of Holocene temperature (approximately the past 11,700 years).
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Compared to the last deglaciation and contemporary global warming, the Holocene is a relatively stable period of
climate with temperatures similar to the preindustrial period. Spanning from 11.7 thousand years ago (ka) to the present, the
Holocene presents an opportunity to study natural climate variations over thousands of years, illuminating climate variability
over timescales much longer than the relatively short instrumental record. The Holocene has been relatively well-sampled by
proxy records, resulting in extensive collections of global data amassing records of temperature (Kaufman et al., 2020a),
stable water isotopes (Konecky et al., 2020), speleothems (Comas-Bru et al., 2020), temperature of the Common Era
(PAGES2k Consortium, 2017), and more.

Proxy records provide information specific to certain locations, time periods, temporal resolutions, seasons, and
climate variables. This presents a multi-faceted but incomplete perspective on past climate. To gain a larger-scale
perspective—and to help account for biases in individual proxy records—it is desirable to synthesize these data into global,
hemispheric, or spatial reconstructions of past climate variations. However, large-scale synthesis remains an ongoing
challenge in paleoclimate research. Any method that computes global quantities based on location-specific observations
must make assumptions about how observed data relates to unknown regions or unsampled climate quantities.

Addressing this challenge, paleoclimate data assimilation provides an intuitive way of fusing paleoclimate
information from proxy data with climate physics, usually provided by a climate model ‘prior’ in online (e.g., Goosse et al.,
2012) or offline (e.g., Steiger et al., 2014; Hakim et al., 2016) approaches. Networks of paleoclimate archives, called proxy
data, provide temporal information across multiple sites, while the climate models help quantify missing information in
space using model dynamics and spatial relationships, making the necessary inferences between known data (i.e., temporal
evolution of climate at a given location) and unknown data (missing values in space, infilled using climate model
relationships) (e.g., Hakim et al., 2016; Steiger et al., 2018). Output from climate models is used to quantitatively connect
proxy locations to other climate variables throughout the globe. In theory, this means that data assimilation can be used to
reconstruct the complete climate system based on available information. However, the method should be most skillful for
variables that are both (1) closely related to assimilated proxy data and (2) have broad spatial covariances (Steiger et al.,
2017). Therefore, reconstructions are often constrained to a subset of climate variables. The goal of paleoclimate data
assimilation is to transform a set of proxy records into a spatially complete and multivariate perspective on climate through
time.

Data assimilation-based reconstructions of past climate have nearly all been confined to the Common Era (e.g.,
Bhend et al., 2012; Goosse et al., 2012; Steiger et al., 2014; Steiger et al., 2018; Hakim et al., 2016; Tardif et al., 2018; Erb
et al., 2020; Neukom et al., 2019a, 2019b). Data assimilation has also been used to infer mean temperature of the last glacial
maximum (LGM) from a global collection of sediment cores (Tierney et al., 2020) and very recently to produce a
reconstruction from the LGM to the present (Osman et al., 2021). Here, we use data assimilation to reconstruct Holocene
temperature using a new multi-timescale reconstruction methodology that seeks to assimilate each proxy record using
timescale appropriate spatial covariance patterns instead of using patterns calculated on a single timescale (c.f., Tierney et

al., 2020, Osman et al., 2021). Compared to Osman et al., 2021, we also incorporate a larger proxy database that contains
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both oceanic and terrestrial proxy records. The inclusion of land proxies is a major difference compared to Osman et al.,

2021, which focused only on marine sediments.

2. Methods

In paleoclimatic data assimilation, proxy records provide data about past climate at specific locations, seasons, and
for different spans of time. Relationships from climate models are used to connect the proxy data to the rest of the globe
within a physically-consistent framework. This process requires: (1) a proxy database complete with relevant metadata, (2)
climate model output that realistically quantifies climate relationships for the timeframes of interest, (3) proxy calibrations or
proxy system models (PSMs) that relate proxy quantities (e.g., 8'80, tree-ring width) to climate quantities (e.g., temperature),
and (4) the update equations of data assimilation that propagate pointwise information spatially to the rest of the climate

system (e.g., Steiger et al., 2014, Hakim et al., 2016). These four components are described below.

2.1. The proxy database

The Temperature 12k proxy database consists of 1319 temperature-sensitive proxy records from 679 locations
across the world (Kaufman et al., 2020a). Each record consists of a time series of data from a specific location along with
relevant metadata. We use a slightly updated version of the database (v1.0.2), which contains 713 lake sediment, 359 marine
sediment, 193 peat, 26 glacial ice, thirteen speleothem, ten midden, three wood, and two ground ice records. To ensure that
proxy records provide sufficient Holocene climatic information, each record generally covers at least 4000 years, has a
temporal resolution of at least 400 years, and has age control points at least every 3000 years over the past 12,000 years
(Kaufman et al., 2020a). The dataset contains metadata about location, inferred seasonality, uncertainty, and several other
variables; the units of more than 95% of the records are already calibrated to temperature in degrees Celsius. The
Temperature 12k dataset has previously been used to compute index reconstructions of mean temperature anomalies for
latitude bands and the global mean (Kaufman et al., 2020b).

The Temperature 12k database presents a spatially diverse and multifaceted perspective on Holocene temperature,
but also possesses limitations. It has uneven spatial coverage with large areas of the Southern Hemisphere under-sampled
compared to the Northern Hemisphere. Many of the records are seasonally biased, with 34% interpreted to record summer
temperature and 20% interpreted to record winter temperature (Kaufman et al., 2020a). Additionally, the Temperature 12k
data have uncertainties in the magnitude, timing, and interpretation of the records, which is typical for paleoclimate data.
Temperature magnitude uncertainty in the database is quantified for each record as root mean square error (RMSE) based on
archive type, measured proxy, and seasonality (Kaufman et al., 2020a), ranging from 1.1 to 3°C. These values, after being
converted to mean square error, are incorporated into the data assimilation so that records with larger uncertainties are given
less weight in the reconstruction. For this work, we exclude records that are not calibrated to temperature, lack uncertainty

estimates, or do not overlap with the chosen 3-5 ka reference period. Additionally, we do not include seasonal records when
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an annual record is available for the same location, as in past work (Kaufman et al., 2020b). Of the 1319 proxy records in the
Temperature 12k database, 1276 are calibrated to temperature and 711 are used in the data assimilation. The majority of the
excluded records are seasonal records at locations that also have annual records. Recent work has shown that data
assimilation may perform better when given a large database of proxy records that has been filtered for climate relevance
(Franke et al., 2020). The Temperature 12k database consists of Holocene proxy records selected for their temperature
sensitivity (Kaufman et al., 2020a).

Regarding temporal resolutions, median resolutions of calibrated proxy records in the Temperature 12k database
range from 1 to 700 years over the past 12,000 years, with almost two thirds of the records having median resolution finer
than 200 years over that period (Fig. 1). Since the database lacks precise information about the duration of each data point,
we assume that each proxy record contains contiguous data, with each data point representing an average of the period
between data midpoints. This assumption represents one endmember within a range of possibilities and, because not all
proxy datasets are sampled contiguously, this assumption effectively transfers some higher-frequency variability to lower-

frequencies (though we expect this effect to be small).

2.2. Climate model data

Paleoclimatic data assimilation fuses proxy data with information from climate models and requires a collection of
climate states drawn from a single simulation or multiple simulations. This ensemble of model states provides two pieces of
information. First, it provides an initial range of climate anomalies for the period of interest, which is later updated through
comparison with proxy data. Second, the model ensemble is used to compute covariances between different locations,
seasons, and climate variables. These covariances allow the method to infer remote climate anomalies based on the location-
specific climate data from proxy data. Because these model data represent our knowledge of the climate system before
assimilating proxy data, it is known as the model “prior.”

A good model prior should be relevant to the period of interest, accurately capture realistic relationships in the
climate system, and be long enough to quantify these relationships on paleoclimate-relevant timescales. For Holocene
climate, we draw prior climate states from two transient Holocene model simulations. The first simulation is a PMIP4
HadCM3 transient climate simulation of the past 23 ka. This simulation (also used by Snoll et al., 2022) follows the PMIP4
protocol for the last deglaciation, version 1 (Ivanovic et al., 2016), using the ICE-6G_C VMb5a ice sheet reconstruction
(Peltier et al., 2015) and the BRIDGE version of HadCM3 (Valdes et al., 2017), specifically HadCM3B-M2.1dD. The land-
sea mask, bathymetry, and ice-mask are updated at 500-year intervals for the period studied here, in accordance with the
temporal resolution of ICE-6G_C. Orographic changes are applied by linearly interpolating at annual resolution between the
ICE-6G_C time steps. This provides smooth evolution of surface orography and thus reduces the propensity for sudden
climate shocks that can occur if only making these changes at 500-year (or less frequent) intervals, especially at times of
rapid deglaciation (Gregoire et al., 2012, 2016). As recommended by the PMIP4 protocol, freshwater forcing from melting
ice was computed from a high resolution (30-arc seconds) network drainage model of ICE-6G_C (e.g., Wickert et al., 2016)
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following the method employed by Ivanovic et al (2017, 2018). Orbital forcing and radiatively active gases (CO2, N.O, CH4)
evolve smoothly, interpolating at annual resolution between any lower resolution time steps of the PMIP4 last deglaciation
forcing dataset. This model simulation is from the latest generation of transient simulations spanning the period. The direct
climate output has undergone light spatial smoothing to account for a minor checkerboard pattern that developed. The
second model simulation used in the prior is the TraCE-21ka simulation, which is an earlier transient simulation spanning
from the last glacial maximum to present day and has been described in past work (Liu et al., 2009).

In the data assimilation, output from both the HadCM3 and TraCE-21ka simulations are averaged to decadal
resolution and used together in a multi-model ensemble prior. The latitude by longitude resolution for the models is 2.5° by
3.75° for HadCM3 and ~3.71° by 3.75° for TraCE-21ka, but both have been regridded to 2.8125° by 3.75° so they can be
used together. The mean of the 3-5 ka period was removed from each model. We composed the prior as all decades within a
5010-year window that was centered, to the degree possible, on the decade to be reconstructed, resulting in a shifting
collection of 1002 decades (i.e., 501 decades from two models). The 5010-year length of this window is arbitrary, but was
chosen to be long enough to encompass numerous model states and short enough to allow distinct changes as orbital forcing
and boundary conditions evolved through the Holocene. The use of decadal resolution speeds up the data assimilation
(compared to annual resolution) and is already equal or higher than the median resolution of the vast majority (99%) of
datasets in the Temperature 12k database. Of the 1276 calibrated records, only 11 have median resolution that is decadal or
finer in the past 12,000 years, although 165 records have minimum resolutions finer than decadal during this period (Fig. 1).
Maintaining decadal resolution also allows for high resolution proxy data such as ice cores to inform the data assimilation on
much shorter timescales than previous Holocene data assimilation efforts. While this approach results in a climate
reconstruction which is nominally decadal, however, users should not treat the reconstruction as if it contains robust decadal
information; instead, the information content of the reconstruction is dependent on the assimilated records. Decadal
resolution has been utilized with the goal of retaining high resolution information where possible, despite the fact that most
of the proxies are lower resolution.

Because the prior climate states are taken from a moving window, both the mean climate and the spatial and
seasonal covariance patterns change through the Holocene. Slowly evolving covariance patterns are realistic, so it is
appropriate to account for this in the prior. For example, orbital forcing alters seasonal and latitudinal insolation patterns
throughout the Holocene. Additionally, the melting of remnant ice sheets alters spatial climate patterns, particularly on and
near the ice sheets. The use of temperature states taken from a moving window allows time-varying relationships to be
represented in the prior.

The choice of a time-varying (e.g., Osman et al., 2021) or time-constant prior (e.g., Hakim et al., 2016) is an
important consideration in offline data assimilation. Whether the prior varies in time or not, the temporal evolution of the
model prior will influence the reconstructed climate, so it should be chosen carefully. A time-varying prior, as used here,
may impart some aspects of its temporal evolution onto the final reconstructed climate. To test how the reconstructed climate

is affected by the model prior and other methodological choices, alternate experimental designs are explored in Appendix B.
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2.3. Proxy calibrations

In data assimilation, proxy records must be quantitatively compared to model values in the same units. This can be
done using empirical methods such as linear regression (e.g., Hakim et al., 2016), physically based proxy system models
(e.g., Dee et al., 2016, Tierney et al., 2020), or other approaches. In the work presented here, most of the Temperature 12k
proxy records have already been calibrated to temperature (Kaufman et al., 2020a), so we rely on those previous proxy
calibrations rather than a proxy system modelling (PSM) approach. The use of physically based PSMs is a focus of ongoing

and future work, as discussed in Section 4.4.

2.4. Multi-timescale data assimilation

Data assimilation is a mathematical technique for optimally combining observations (here proxy data) with prior
information, typically from a model. The model is a climate model that provides an initial, or prior, state estimate that can be
updated in a Bayesian sense based on the information from the proxies and error estimates of both the proxies and the prior.
The prior may contain any climate model variables of interest and the updated prior, called the posterior, is a probabilistic
estimate of the true climate state given the observations and the error estimates. The basic data assimilation state update
equations (e.g., Kalnay 2003) are given by
Xq = Xp + K[y —H(xp)] (1)
where K is the Kalman gain matrix, which can be written as
K= cov(xb, H(xb))[cov(H(xb), H(xb)) + R]_1 2)
and cov represents a covariance expectation. The matrix Xy is the prior (or “background”) estimate of the state and the matrix
X, is the posterior (or “analysis”) state and represents the ensemble reconstruction. Observations or proxies are contained in
the vector y and the observations are estimated by the prior through H(x), which is an operator that maps x;, from the state
space to the observation space (e.g., converts climate model variables to measured proxy quantities). Note that here we
assimilate only proxies that have already been converted to units of degrees Celsius, so our H(Xp) is simply an ensemble of
temperature values from x; at the same locations, seasons, and temporal resolutions as the proxy records. The difference
between y and H(xp) represents the new information added by the proxies. From the first term of Eq. 2, we see that K is
fundamentally a spatial covariance matrix that spreads the information added by the proxies, y - H(xy), to all variables in the
prior x,. R is a positive and diagonal error covariance matrix for the proxies, where each diagonal element is the error term
for each proxy. As the values of R become large, corresponding to higher proxy uncertainties, R comes to dominate the
matrix inverse in Eq. 2 which, because it is positive and diagonal, leads to a K that approaches zero; thus, in a high proxy-
uncertainty scenario, Xp is modified only slightly. In a low proxy-uncertainty scenario, the opposite situation occurs, the new
proxy information is weighted more heavily, and x; is modified more substantially. The data assimilation process involves
computing the above equations, which “updates” the prior X, to arrive at the posterior state x, for each timestep. For

paleoclimate data assimilation, the reconstruction consists of X, computed for each fundamental time step of the
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reconstruction (e.g., every decade of the Holocene). As in Steiger et al., 2018, Egs. 1-2 are implemented using a square root
ensemble Kalman filter outlined in (Whitaker & Hamill, 2002). See Steiger et al., 2014 and Steiger and Hakim, 2016 for
detailed interpretations of the data assimilation update equations.

As noted earlier, many of the proxy records in the Temperature 12k database are interpreted to represent summer or
winter temperature. While proxy seasonality biases are poorly accounted for in many compositing methods, seasonal biases
of individual records are accounted for here. This is done through the model-based estimate of the proxy H(xn), which is
computed using the same seasonality as the proxy (using seasonality information in the metadata of each record, which is
generally represented as a span of months). Because H(xp) is computed for the same season as the proxy, the Kalman gain
matrix (Eq. 2) quantifies the relationship between the seasonal proxy quantity and annual mean climate in the prior xp. This
allows seasonal proxy record to help reconstruct annual mean climate.

Here, we expand from the multi-timescale data assimilation approach developed by Steiger and Hakim (2016).
Multi-timescale data assimilation is distinguished from single timescale data assimilation (used by all previous data
assimilation-based paleoclimate reconstructions) in that multiscale proxy data are assimilated using timescale appropriate
covariances rather than covariances calculated at a single uniform resolution (e.g., Badgeley et al., 2020; Osman et al.,
2021). Such a multiscale approach allows us to utilize covariances across timescales to update the reconstruction (Steiger
and Hakim 2016). This is important in a scenario where, for example, high-frequency and low-frequency covariances
between locations differ or even oppose each other. Also, a multiscale reconstruction approach can reduce the chances of
obscuring high-resolution climate signals in the proxy data because it does not impose a single “sampling” time scale on all
proxy data regardless of their true time resolution.

Here, we update the methodology of Steiger and Hakim 2016 by modifying two components: (1) We have a
different technique for creating and structuring the multi-timescale prior, xu, as well as H(xy); (2) We additionally employ a
simultaneous square root Kalman filter (all observations at a given time step are assimilated simultaneously) instead of a
sequential square root Kalman filter. These primarily technical modifications result in an algorithm that is faster and requires
far less memory storage (a major limiting factor in the Steiger and Hakim 2016 algorithm) to complete the reconstruction.
We note that, given the same inputs, simultaneous and sequential assimilation techniques produce identical ensemble means
and only minor differences in ensemble spread.

In this multi-timescale data assimilation approach, the reconstructions are performed off-line at a predetermined
base timescale, here decadal resolution, though the algorithm is general and can apply to any base timescale (e.g., annual or
centennial). To process all proxy data to decadal resolution, we first average any sub-annual data, then generate values for
every missing year using nearest-neighbor interpolation (i.e., values are repeated for nearby years which lack data), and
finally bin these annual values to decadal means. As stated earlier, this processing makes the assumption that proxy data is
continuous (unless NaNs are present) and essentially spreads lower resolution values to a decadal resolution. A uniform
temporal resolution is necessary to perform the data assimilation, but information about the time-resolution of each proxy

data point is retained and proxy data is assimilated using timescale appropriate covariances.
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The prior x; is composed of base time scale averaged climate states, taken from a climatically representative climate
model simulation (or simulations, described previously). H(Xp) is pre-computed for each proxy over the full set of temporal
resolutions contained within that proxy time series; the time averages for H(Xp) are computed such that the center year of xp
and H(xy) are the same (or half a time step away for a span of an even number of time steps). For example, suppose that xy is
composed of 10-year averaged climate states and a proxy has values that are decadal means or multi-decadal means of
different lengths; we pre-compute multiple ensembles of H(xyp) for this proxy: one ensemble uses 10 year-averages of climate
model data and the others use multi-decadal means computed with box averages of decades centered to the degree possible
on the same decades. Relationships between the ensembles of H(x») and x» quantify how proxy estimates (at the same
location, season, and timescale as the proxy data) relate to decadal-mean climate everywhere else.

The data assimilation update equations are then computed for each base time step in turn, assimilating all proxies
that have values spanning a given time step. For proxies with a resolution lower than the base timescale, the proxy value will
be assimilated repeatedly for all the base time steps it spans (e.g., a value spanning the years 1000 to 1050 BP will be
assimilated at each decadal time step within that time range); thus, this repeated assimilation updates the entire period that a
proxy value represents in base time step segments. The reconstruction code uses the pre-computed H(xy) which applies for
the particular time average of a given proxy value. Depending on the time resolution of a proxy data point, H(xp) values can
represent time averages ranging from 10 years (our chosen base resolution) to 1000 years. Because of our use of center
referencing and temporal averages of up to 1000 years, no ensemble members will be centered on decades more recent than
500 years before present in the simulations. The temporal resolution is capped at 1000 years to prevent the loss of additional
ensemble members at the modern end of the simulation.

In summary, the data assimilation is performed separately for each decade. For proxy observations that represent
decadal data, decadal covariances are used to propagate the climate signal from that location to everywhere else in the
climate system. For proxy observations with lower temporal resolution, the data is first “spread” to decadal resolution. Then,
for each decade, covariances between lower resolution temperature and decadal temperature are used to translate the climate
signal from the proxy data to the decadal resolution of the reconstruction. This attempts to quantify how information from a
lower resolution climate signal at the proxy location can inform decadal climate elsewhere. In our approach, assimilating
higher resolution proxies should provide more local information while assimilating longer-term mean conditions should have
a broader spatial impact.

In theory, the multi-timescale approach offers two advantages compared to binning at a lower temporal resolution:
first, it prevents high resolution proxy data from being averaged out, as discussed in Section 2.2; second, it allows individual
data points to inform the climate reconstruction using covariances based on different timescales. Accordingly, the multi-
timescale methodology is used in this paper to reconstruct Holocene temperatures. A drawback of this method is some added
methodological complexity. Additionally, the lower-resolution features of the reconstructed temperature do not differ

strongly compared to a reconstruction using lower-resolution bins (Appendix B.5).
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Figure 1. Median temporal resolution all 1276 calibrated proxies in the Temperature 12k database during the period 0 —
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Decadal temperature anomalies (° C)
for all proxies arranged from north to south, Nyajigproxies = 1263

Latitude (*)

Proxy number

Age (yr BP)
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Figure 2. Temperature anomalies from calibrated records. Relative temperatures (°C) for 1263 calibrated proxy records in the
Temperature 12k database. Records are interpolated to decadal resolution using a nearest-neighbor interpolation method
(described in Section 2.4) and arranged from north to south. The 3-5 ka mean is removed from each record, and the thirteen
records that do not have data between 3-5 ka show no data. Black lines indicate the timing of the warmest decade for each 30°
latitude band, calculated by standardizing all records within each latitude band and finding the warmest mean where at least 25%
of the proxy records have values. The y-axes show how many records are displayed (left) and indicate the approximate latitudes of
the records (right).
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3. Results
3.1. Proxy network analysis

The Temperature 12k dataset contains 1319 proxy time series and substantial metadata and has been described and
synthesized into global means in past work (Kaufman et al., 2020a; Kaufman et al., 2020b). 1276 of these proxy records
have been calibrated to degrees Celsius, and 711 are used in the data assimilation-based reconstruction. To visualize this
data-rich network, calibrated proxy records are plotted from north to south with each proxy represented as a color-coded line
(Fig. 2). This perspective allows the entire database to be visualized at a glance, although it ignores fundamental aspects of
the data such as longitude and seasonality.

The calibrated proxy records show considerable spatial and temporal variability, but some consistent patterns
emerge. The early Holocene is cold in most records, with many records showing warming toward the mid-Holocene.
Maximum preindustrial temperatures typically occur around 6-7 ka in the Northern Hemisphere, with the late Holocene
showing cooler temperatures. There is also considerable spatial and temporal variability, some of which may represent
genuine temperature variability while some may represent noise. To quantify temperature trends in the data, we perform a
linear regression of the original proxy data, using a Wald Test and a t-distribution with p <= 0.05 to determine significance
(Table 1). Using this metric, more proxy records show significant warming as opposed to cooling from 12 ka to 6 ka (49.6%
warming vs. 14.4% cooling), while more records show significant cooling than warming from 6 ka to 0 ka (40.9% cooling

vs. 15.3% warming).

12 - 6 ka 6-0ka
Warming Cooling Flat Warming Cooling Flat
All 49.6 14.4 36.0 15.3 40.9 43.7
Annual 53.7 12.2 342 15.9 38.5 45.5
Summer 453 16.2 38.5 11.7 48.2 40.1
Winter 46.9 16.6 36.5 19.9 34.5 45.6

Table 1. Percentage of records with given temperature trends. Linear regression slopes are calculated for the periods 12-6 ka and
6-0 ka and the percentage of records which fall into each category are listed. “Flat” refers to records that fail the Wald Test for
slopes significantly different from 0 at a 0.05 level, using a t-distribution. The 1276 calibrated records are considered, with 587
annual records, 427 summer records, and 262 winter records. Records with fewer than 5 points in a given period are excluded
from that period, which accounts for no more than 20% of records in each category. Percentages may not sum to 100 due to
rounding.
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The dataset possesses both spatial and seasonal biases, however, so summary statistics should not be taken as
straightforward indicators of global mean temperature trends. An important consideration when examining Holocene
temperatures is the possible effect of seasonal biases in proxy data, which is especially important considering time-varying
external climate forcings over the Holocene. Changes in aspects of Earth’s orbit, for instance, redistribute incoming solar
radiation between seasons and latitudes, producing different trends in insolation for different seasons and locations. From the
early Holocene to present day, Northern Hemisphere insolation has decreased substantially in the summer, increased in the
winter, and remained relatively stable for the annual mean (Fig. 3). Climate feedbacks, which can amplify or diminish the
climate response to climate forcings (Erb et al., 2013), may further modify seasonal signals, so care must be taken not to
misinterpret a seasonal proxy signal as an annual mean. When using metadata to separate records by season, many proxy
records of all seasons show warming in the early Holocene and cooling in the late Holocene, although most of these records
are in the Northern Hemisphere (Fig. 4). Interestingly, summer records have the highest percentage of time series with clear
late Holocene cooling (48.2%), while annual and winter records have a plurality of time series without significant trends
(only 38.5% of annual and 34.5% of winter records show cooling; Table 1). This is somewhat consistent with insolation
forcing. In data assimilation, the use of a time-varying prior helps account for changing relationships between seasonal proxy
signals. Additionally, sensitivity tests conducted in Sect. 3.3 can be used to evaluate the extent to which our seasonal
interpretation of proxy records can affect the final reconstruction.

In addition to showing general temperature patterns, these overview figures illustrate the predominance of Northern
Hemisphere records (over half of the time series are in the Northern Hemisphere mid-latitudes) and the truncation of many
records near 11 ka, a result of the processing conducted for a previous pollen proxy synthesis effort (Marsicek et al., 2018).
Many other aspects of the database, such as proxy type, longitude, season, uncertainty, and other metadata, are not shown.
Additional analysis of the proxy database can be found in recent publications (Kaufman et al., 2020a; Kaufman et al., 2020b)

and the proxy data can be visualized online at lipdverse.org.

3.2. The past 12,000 years

We now assimilate the Temperature 12k proxy database. The model prior uses decadal climate anomalies from two
models, the transient HadCM3 and TraCE-21ka simulations. Because the prior uses climate states from a moving 5010-year
window, the mean and the covariance patterns change through time (Fig. 5). Starting from this prior, we assimilate the
Temperature 12k proxy records to produce a spatially complete reconstruction of Holocene temperature from 12 ka to the

present.
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Insolation (Wm~2) and temperature (°C) from the
HadCM3 transient 21k simulation, averaged over different seasons
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Figure 3. Modeled hemispheric insolation and temperature in different seasons. Insolation (W m, dashed) and temperature (°C,
solid) from the HadCM3 deglacial simulation, averaged for the annual mean (black), June-August (red), and December-February
(blue) for the (a) Northern Hemisphere and (b) Southern Hemisphere. Throughout this paper, original monthly data is used from
models, with no adjustment to account for the calendar effect (Joussaume and Braconnot, 1997).
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Figure 4. Temperature anomalies for calibrated proxy records separated by seasonal metadata. (a-c) Maps of proxy record
locations, separated by season. (d-f) Relative temperatures of calibrated records, as in Fig. 2, separated by season.
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Figure S. Reconstructed global mean temperature. (a) Global mean temperature in the prior (gray) and reconstruction (blue).
Lines show the ensemble mean and colored bands show the 1-sigma and full ranges of the ensemble. The reconstruction uses 3-5
ka as the reference period, as most records overlap with that period. (b) The temporal proxy coverage, showing the number of
assimilated observations at each time step.

Reconstructed global mean temperature warms rapidly at the end of the last glacial period, with ~1.2°C warming
from 12 to 10 ka (Fig. 5). The temperature shift near 11 ka is likely a result of the rapid increase in proxy coverage at that
moment. After 10 ka, warming continues at a slower pace with peak warmth around 6.4 ka followed by a gradual cooling
toward present day. Note that some reconstructed values in the early to mid-Holocene are warmer than the climate states in
the model prior, demonstrating that reconstructed values can exceed the limits of the prior if proxy values support such
anomalies. Proxy coverage is highest near 3-4 ka (~700 records) and lowest before 11 ka (~300 records). The relatively fast
20th century warming seen in the instrumental temperature record is not captured by the reconstruction due to the coarse
temporal resolution of the assimilated records (having a median resolution of ~150 years) and the decrease in proxy coverage

toward the present day.
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Spatially, the reconstruction shows warming in the first half of the Holocene over almost the entire globe, with
some of the largest values over the regions of disappearing ice sheets in the Northern Hemisphere (Fig. 6a). Changes are
generally larger over continents than over the ocean and tend to be larger over the Northern Hemisphere than the Southern
Hemisphere, although in pseudoproxy tests, the skill of the reconstructed temperature is reduced in the Southern Hemisphere
relative to the Northern Hemisphere (Appendix A). For the latter half of the Holocene, temperatures decrease in most of the
Northern Hemisphere, with notable exceptions in regions of India and northern Africa where stronger mid-Holocene
monsoons may have allowed for cooler mid-Holocene climate (Brierley et al,. 2020; Fig. 6b). Southern Hemisphere
temperature changes are small in the late Holocene, perhaps due to the relative lack of proxy data in that region.

To better understand the temporal and spatial characteristics of the Holocene reconstruction—and to further explore
the complexity of the underlying proxy network—we here compare the reconstructed climate to the proxy records that
inform it. This proxy/reconstruction comparison helps illustrate how the multifaceted proxy data is transformed into a
spatially complete product.

Temperature trends are first compared for the reconstruction and individual proxies in the data-rich regions of North
America and Europe (Fig. 7). Notably, the reconstructed temperature anomalies are more spatially uniform than those seen
in the proxy records themselves. Proxy records are diverse and sometimes contradictory, with temperature trends that vary
substantially even over short distances. These spatially diverse climate signals are impossible to fully match using the
relatively coarse spatial resolution of the data assimilation (2.8125° latitude by 3.75° longitude). Additionally, the data
assimilation is constrained by the model’s spatial covariance pattern, which prohibits unrealistically large changes over short
distances. Consequently, the data assimilation product often serves as an effective compromise between opposing and high
amplitude anomalies in a region. A side effect of this compromise is that the reconstructed temperature often cannot match
the large positive and negative anomalies of proxies in the region. Resolving the cause of this apparent spatial variability in
the proxy database—whether it represents real spatial differences, proxy interpretation uncertainty, age model uncertainty, or
some other source of uncertainty—should continue to be a research priority.

To compare the temperature reconstruction and proxy records in a different way, the reconstructed zonal mean is
compared to annual proxy values binned into half-degree latitude bands (Fig. 8). This helps reveal the extent to which the
reconstruction matches—or fails to match—the complex spatial and temporal patterns of the proxy data. The Holocene
Reconstruction shows some clear similarities to the annual mean proxy data, with coldest temperatures in the early Holocene
and warmest temperatures later. Again, the Holocene Reconstruction is more spatially and temporally homogeneous than the
data. The reconstruction shows warmest temperatures close to 6 ka in the Northern Hemisphere mid and high latitudes,
where proxy coverage is densest, but more recent in the tropics and Southern Hemisphere. Reconstructed temperature
anomalies are largest in the northern mid and high latitudes as well as the Antarctic region, with relatively small temperature
anomalies in the tropics and southern mid-latitudes. Part of the reduced Southern Hemisphere signal may be indicative of the
real climate, as the Southern Hemisphere has larger oceans and is more remote from changes in Northern Hemisphere ice

sheets, although the relative lack of sufficient proxy data in the Southern Hemisphere likely also contributes to this result.
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Figure 6. Temperature trends. Temperature trends (°C kyr™') at every location for the periods (a) 12 to 6 ka and (b) 6 to 0 ka. Dots
show locations of assimilated proxy records during each period. Note the different scales between the two panels.

17



395

(a) 12 to 6 ka

(b) 6to 0 ka
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Figure 7. Temperature trends in the reconstruction and proxy records for North America and Europe. Temperature trends (°C
kyr!) over the periods (a) 12 to 6 ka and (b) 6 to 0 ka, like Fig. 6. Trends in assimilated proxy records are shown as colored
symbols, with shapes indicating the seasonality of the proxy (circle: annual; upward-pointing triangle: summer; downward-

pointing triangle: winter). Records are only plotted if they have data covering at least half of the time period. Note the different
color bars in the two panels.
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Figure 8. Comparison of annual records and zonal mean Holocene Reconstruction. (a) Annual Temperature 12k proxy records
binned into 0.5° latitude bands, showing temperatures relative to 3-5 ka. (b) Zonal mean annual temperatures in the Holocene
Reconstruction. Panel (a) is like Fig. 2, but only annual records are selected and they are binned by latitude and averaged when
multiple records occupy the same latitude band. Panel (a) does not represent zonal means, whereas (b) shows the zonal mean of the
reconstruction. Black lines or dots show the timing of the warmest period, calculated by standardizing all latitude bands and
finding the warmest mean of each 30° latitude zone where at least 25% of the bands have values.

3.3. Possible influence of proxy seasonal biases

Changes in Earth’s orbit affect Holocene insolation trends differently in different seasons (Fig. 3). Since the early to
mid-Holocene, insolation in the Northern Hemisphere has substantially decreased in summer, increased in winter, and stayed
relatively stable in the annual mean. These seasonal insolation trends affect seasonal temperature, with warmer early to mid-
Holocene temperatures in Northern Hemisphere summer and colder temperatures in winter relative to the annual mean in the
HadCM3 transient simulation (Fig. 3). In the Southern Hemisphere, a similar but opposite insolation pattern occurs, but

seasonal temperatures are less impacted due to the large ocean basins.
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The existence of differing seasonal temperature trends highlights the need to accurately diagnose seasonal biases in
proxy records. If summer biased proxy records are assumed to represent annual means, for example, reconstructed
temperatures may show too much early to mid-Holocene warmth. If winter biased proxies are used instead, the opposite is
true.

Data assimilation accounts for proxy seasonality directly by transforming seasonal proxy values into annual means
using covariance relationships between seasonal and annual values in the model prior. To do this, the method requires
accurate seasonality metadata for assimilated proxies. If metadata about proxy seasonality is inaccurate, then season-specific
temperature trends may still bias the final reconstruction.

In our main reconstruction, we use seasonality metadata from the Temperature 12k database. Assimilated proxies
are prescribed to be 78% annual, 21% summer, and 1% winter. To explore the extent to which incorrect seasonality metadata
could bias results, we run three additional experiments. In the first experiment, all proxies are assumed to represent summer
values: June-August in the Northern Hemisphere and December-February in the Southern Hemisphere. In the second
experiment, all proxies are assumed to represent winter values in their respective hemispheres. In the final experiment, proxy
values are assumed to represent annual means. The proxy data are not modified; we only change how assimilated proxy data
are translated into annual mean reconstructed temperature.

In the “summer” experiment, reconstructed annual mean temperatures become cooler in the early to mid-Holocene,
with a value of 0.02 °C at the mid-Holocene (compared to 0.09 °C in the default experiment) (Fig. 9). This reduction in early
to mid-Holocene temperature is consistent with expectations for the Northern Hemisphere, where summer temperatures were
relatively warm in the early to mid-Holocene. When accounting for this possible bias, the reconstructed annual mean
temperature in the early to mid-Holocene becomes cooler. In comparison, the “winter” experiment—which assumes that all
proxies represent winter values in their respective hemispheres—produces an opposite response: accounting for the relative
cold of the early to mid-Holocene winter produces an annual mean reconstruction that is warmer during that period, with a
mid-Holocene anomaly of 0.17 °C, nearly twice that of the default experiment. In both the “summer” and “winter”
experiments, changes to global mean temperature trends are more affected by anomalies in the Northern Hemisphere than
the Southern Hemisphere because, despite similar but opposite insolation patterns in the Southern Hemisphere, seasonality
changes in that region are damped due to large oceans (Fig. 3).

These results show that our perception of Holocene trends can be influenced by assumptions about proxy
seasonality. If proxy records have an undiagnosed summer bias, some of the mid-Holocene warmth in climate
reconstructions may simply represent summer warmth. On the other hand, if proxy records have an undiagnosed winter bias,
mid-Holocene warmth could be greater than reconstructions show. That said, even in these extreme scenarios where all
proxies are assumed to represent either summer or winter anomalies, reconstructed mid-Holocene temperatures only differ
by a couple tenths of a degree, not nearly enough to match the cold mid-Holocene anomalies present in transient climate
simulations (-0.56°C in HadCM3 and -0.29°C in TraCE-21ka). Therefore, proxy seasonality biases can potentially explain

part of the Holocene temperature “conundrum” (Liu et al., 2014), but by no means all of it.
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Figure 9. Global mean temperature composites created using different assumptions for proxy seasonality. “author_interp” is the
default experiment, where proxy seasonality metadata from the Temperature 12k proxy database is used. In the other
experiments, all proxies are assimilated as if they represent annual, summer, or winter means. Temperature anomalies are shown
relative to 0-1 ka.

4. Discussion
4.1. Regional comparison with proxy data

To explore the spatial and temporal patterns of the reconstruction in more depth, time-varying temperature
anomalies are explored in North America and Europe. These regions are well-covered by proxy records and, since they are
locally forced by the shrinking Laurentide and Fennoscandian ice sheets, they present worthwhile targets for closer analysis.
Reconstructed North American temperatures are averaged into millennial means spanning the past 12 ka and are plotted
alongside ice sheet anomalies and annual mean proxy values binned to the same grid as the reconstruction (Fig. 10). This
comparison allows us to examine how the proxy records are translated into the final spatiotemporal temperature
reconstruction. Additionally, the ice sheet reconstruction (ICE-6G_C; Peltier et al., 2015) allows us to evaluate the
reconstructed temperature patterns against a clear spatial forcing.

As noted previously, the temperature reconstruction shows some agreement with the proxy data but also shows

greater spatial uniformity. Widespread cold anomalies exist over North America at 11-12 ka, which reduce in extent and
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magnitude as the Laurentide ice sheet shrinks. During 9-11 ka, reconstructed warmth over part of northern Canada is likely
caused by the assimilation of warm proxies in nearby western North America but is probably incorrect due to the presence of
the Laurentide ice sheet in that region. By 7-8 ka, the effect of the ice sheet appears to be relatively local. By 6-7 ka, cool
temperatures have largely disappeared despite some ice remaining in northeast Canada according to the ICE-6G_C ice sheet
reconstruction (Peltier et al., 2015). No proxy records exist for temperatures over extinct ice sheets, so temperatures in those
regions are inferred based on available records and covariance patterns from the model prior.

Temperature and ice anomalies vs. 3-5 kyr BP
11-12 ka 10-11ka ___9-10ka

-1.8 -1.2 0.6 0.0 0.6 1.2 1.8
ATemperature (° C)

Figure 10. Temperature and ice sheets in North America. Millennial anomalies for reconstructed temperature (shaded, °C),
gridded annual mean proxy records (dots, °C), and ice sheets from the ICE-6G_C reconstruction (contours, 500 m interval; Peltier
et al., 2015). All values, including ice sheets, are shown for 1000 year means relative to the period 3000-5000 years before present.
Proxy values are binned and averaged to the same spatial resolution as the data assimilation for clarity. Summer and winter-
biased proxy records—which make up 21% and 1% of the assimilated records, respectively—are not shown, as seasonal records
are not directly comparable to the annual reconstruction. The temperature reconstruction is based on proxy values and model
covariances, without knowing the specific timing of ice sheet changes.
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Figure 11. Temperature and ice sheets in Europe. Millennial anomalies for reconstructed temperature (shaded, °C), gridded

(contours, 500 m interval), as in Fig. 10.

and ice sheets from the ICE-6G_C reconstruction

annual mean proxy records (dots, °C),
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In Europe, cool temperatures prevail until around 8 ka, past the end of the Fennoscandian ice sheet (Fig. 11).
Afterward, temperatures over Scandinavia reach a peak from 5-7 ka before gradually cooling toward pre-industrial
temperatures. Reconstructed temperatures in the Greenland Sea show pronounced warmth during 9-11 ka and afterward,
which appears to be informed by several records on Svalbard and the waters west and south of Svalbard. The two sediment
core foraminifera records from the Fram Strait west of Svalbard (MSM5/5-723-2 and MSM5/5-712-2; Fig. 4f-g of Werner et
al., 2016) reflect subsurface (100m depth) temperatures and are likely influenced by increased Atlantic Water advection as
well as the summer insolation peak and limited sea-ice extent across this region during the Early Holocene (Werner et al.,
2016?). If they do not correspond with surface temperatures, it may be beneficial to remove these records (and similar ones)
from future data assimilation.

In both the North American and European regions, proxy data shows a greater diversity of signals compared to the
larger-scale patterns of the reconstruction. Data assimilation represents a best-fit solution given the model, the data, and their

uncertainties.

4.2. Northern Hemisphere cooling at 8.2 ka

Evidence from proxy records indicates the existence of a brief cold event near the North Atlantic region around
8200 years ago (Alley et al., 1997, Thomas et al., 2007, Morrill et al., 2013), possibly caused by freshwater influx in the
North Atlantic. This event, which has also been studied in models (Tindall & Valdes, 2011, Morrill et al., 2014, Matero et
al.,, 2017), represents a pronounced multi-decadal climate event that is (at least partially) captured in our Holocene
reconstruction. Because of its short timescale and relative age, it is a worthwhile target for further exploration.

In our reconstruction, global mean temperature shows a brief cold excursion for ~100 years near 8.2 ka (Fig. 12).
Spatially, the coldest temperatures in the reconstruction occur above the Laurentide ice sheet, with moderate cooling over the
Northern Hemisphere mid and high latitudes and mild warmth in parts of the Southern Hemisphere, particularly near
Antarctica. This temperature pattern is generally consistent with data syntheses and climate model experiments of the 8.2 ka
event (Morrill et al., 2013), which suggests that the multi-timescale assimilation technique can reasonably reconstruct short-
term phenomena, even when only a small fraction (24%) of the assimilated records have the resolution to meaningfully
contribute. Although the pattern is generally consistent with previous reconstructions and simulations, there are some key
differences. Generally, maximum 8.2 ka event cooling is thought to have occurred in the North Atlantic (Morrill et al.,
2013), in part due to the hypothesis that the event is driven by freshwater forcing in the region (e.g., Matero et al., 2017). Our
reconstruction does show substantial cooling in the North Atlantic, but the maximum cooling occurs further west near the
remnants of the Laurentide Ice Sheet. This is likely due to our methodology, which uses a prior drawn from a moving 5010
year long window centered on each decade of this event—a period of large changes in the remnant Laurentide ice sheet over
the present-day Hudson Bay. Additionally, the method has no information about the exact timing of freshwater forcing
events. For data assimilation to better capture the spatial details of the 8.2 ka event, it may need more specific information

about the climate forcing; however, doing so may bias the result to the expected response, which is also problematic.
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Temperature anomaly near 8.2 ka
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Figure 12. Cooling at 8.2 ka. (a) Reconstructed temperature anomalies (°C) for (a) the global mean, (b) spatial patterns for the 8.2

520 Kka event in the reconstruction (shading) and proxies (symbols), and (c) global and regional means at the 8.2 ka event calculated
across ensemble members. The periods used for the calculations used in (b,c) are shown in (a), with the anomaly period shown in
blue and the reference periods shown in red. Proxies are only shown in (b) if they have at least one value in each of the three
periods shown in (a), which is 169 of the 711 assimilated proxies. Proxy seasonality is annual (circles), summer (upward-pointing
triangles), or winter (downward-pointing triangles). The spatial extent of the Greenland and Europe regions in (c¢) are shown in
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(b). In (c¢), all ensemble members are shown for the global mean while a randomly selected group of 100 ensemble members are
shown for the other two regions.
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Although the temporal pattern is similar, the amplitude of the cooling reconstructed by data assimilation is less than
previous estimates. For example, cooling in the Greenland and European regions (-0.47°C and -0.12°C, respectively; Fig.
12¢) is less than those seen in proxy-only studies (e.g., -2.2°C and -1.1/-1.2°C, respectively, in Morrill et al., 2013). This is
an expected result, as (in comparison to Morrill et al., (2013)) no effort was made to align the event across age-uncertain
records. Age uncertainties in proxy records are often larger than the duration of short events, and assimilation of temporally
displaced records will mask or diminish the true extent of the event. This difficulty has been addressed in other studies
through the alignment of age models (e.g., Thomas et al., 2007) or by searching for climate excursions within a larger multi-
century window (e.g., Morrill et al., 2013), but this still poses a problem for data assimilation, which has so far not been used
with proxy age alignment.

Ultimately, the 8.2 ka event provides a useful test case for exploring the utility and limitations of paleoclimate data
assimilation, and provides food for thought for future studies. Adjustments in the model prior, the age models of proxy data,
or the temporal resolution of the reconstruction (e.g., Osman et al., 2021) may help account for these issues, but the exact

design of these solutions is left to future work.

4.3. Comparison with past reconstructions

Previous reconstructions of Holocene temperature have employed an assortment of reconstruction techniques, with
many showing peak warmth in the early to mid-Holocene and a clear cooling toward present day (Kaufman et al., 2020b;
Marcott et al., 2013; Shakun et al., 2012). This contrasts with transient model simulations, which show warming throughout
the Holocene (Liu et al., 2014). Two exceptions to this pattern were published recently. The first, which reconstructs sea
surface temperatures between 40°S and 40°N, attempts to remove a possible seasonal bias by examining proxy trends during
the last interglacial (Bova et al., 2021), resulting in a 40°S-40°N sea surface temperature reconstruction which warms
throughout the Holocene. The other study uses data assimilation based on marine sediments to reconstruct spatial
temperature anomalies since the Last Glacial Maximum, also resulting in warming through the Holocene (Osman et al.,
2021).

The mid-Holocene temperature anomaly in those reconstructions, calculated as the difference between the millennia
centered on 6 and 0.5 ka, is 0.54°C for Marcott, 0.44°C for Kaufman, -0.27°C for Bova, and -0.17°C for Osman. For
comparison, the Holocene Reconstruction presented in this paper has a mid-Holocene anomaly of 0.09°C (Fig. 13), fitting
between these previous reconstructions. Mid-Holocene warmth is present in 88% of the ensemble members, with the other
12% showing colder anomalies when comparing the means of these millennia. While not all ensemble members show
warmth, these mid-Holocene temperatures are notable because they emerge when using a time-varying prior with a
predominantly colder mid-Holocene. In other words, the initial baseline climate state (from the models) has a colder mid-

Holocene, but the proxy data is strong enough that a cold mid-Holocene is not supported in the final reconstruction (Fig. 5).
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560 Figure 13. Comparison of Holocene temperature reconstructions. The Holocene temperature reconstruction using data
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assimilation (black; this study) compared to other proxy or DA-based reconstructions: Shakun (dark blue; Shakun et al., 2012),
Marcott (light blue; Marcott et al., 2013), Kaufman (green; Kaufman et al., 2020b), Bova (olive; Bova et al., 2021), and Osman
(red; Osman et al., 2021). All curves represent global means except for the Bova curve, which represents sea surface temperatures
between 40°S and 40°N (these quantities are not directly comparable, but are plotted together for convenience). The mean or
median (lines) and 1 sigma uncertainty values (shaded) are shown for all reconstructions, and the 95% range is also shown for the
new Holocene Reconstruction. The Temperature 12k reconstructions consist of five different reconstructions made using different
methodologies but are here plotted together. Reconstructions are plotted relative to recent values, except for the Shakun

reconstruction which has been aligned to the Marcott reconstruction for their period of overlap, although such alignment is largely
arbitrary.

Mid-Holocene warmth is also seen in the collection of all calibrated records (Fig. 2), annual mean records (Fig. 4),
and aggregate proxy record statistics (Table 1). It’s possible that the proxy database does not give a representative picture of

global temperature, which could result from errors in proxy calibrations, errors in the attributed seasonality of records, or a
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bias resulting from the spatial non-uniformity of the proxy network. The effect of errors in proxy calibrations is difficult to
gauge but, provided that such errors are not too consistent across proxy types, this should be somewhat ameliorated by the
diversity of proxy types in the Temperature 12k database. Proxy seasonality was explored in Sect. 3.3, and past work has
suggested that their effect should be limited (Kaufman et al., 2020a). As for spatial biases in the proxy network, data
assimilation helps account for that directly by using proxy data together with spatial covariance patterns to infer data in
poorly sampled regions. However, biases could be introduced by limitations of the data assimilation approach, so a more
spatially complete dataset would be beneficial.

Osman et al., 2021 suggested that over-weighting sparce Southern Hemisphere proxy records may explain some of
the mid-Holocene warmth seen in global proxy composites, but this explanation only accounts for part of the apparent
warmth, so additional work is needed to reconcile proxy and model Holocene trends. Other uncertainties should be explored,
and the uncertainty range displayed for our Holocene reconstruction in Fig. 13 is certainly an underestimate as uncertainties
related to proxy record age models, proxy seasonality metadata, and other sources are not represented. Accounting for these
areas of uncertainty in the future may help explain the large amounts of spatial diversity even among nearby records in the
proxy database (e.g., Fig. 2, Fig. 7).

Some reconstructions have similarities in either the methodology or the underlying data. Our data assimilation
approach, for example, uses the same proxy records as the Kaufman composites (with minor updates included in v1.0.2 of
the database): we use the Temperature 12k database but omit seasonal records when an annual mean proxy record is
available for the same archive. If all eligible proxy records are used instead, the reconstructed climate looks largely the same.
The Kaufman composites also use a collection of five different compositing techniques (Kaufman et al., 2020b), all of which
differ from the data assimilation method. Like the Kaufman reconstructions, the present Holocene reconstruction shows
maximum temperatures in the mid-Holocene, though to a smaller degree.

The present reconstruction uses many of the marine sediments used in the Osman et al., 2021 reconstruction,
although we use calibrated versions of these records while Osman uses the raw data together with PSMs. Note that while the
Osman et al., 2021 reconstruction shows warming through the Holocene, the source of this apparent Holocene warming
remains unclear given that both the underlying marine sediment proxy records (Fig. 7 in Osman et al., 2021) and the mid-
Holocene simulations used in the model prior are either warmer or comparable to preindustrial. Without knowing why that
reconstruction shows late Holocene warming, it is difficult to explain differences between these two reconstructions.

To compare 40°S-40°N ocean temperature, as used in the Bova reconstruction, to global mean temperature, we
calculate both quantities in our new Holocene reconstruction, using air temperatures rather than SSTs. Temperatures over
these two domains are highly correlated in our reconstruction, but changes in 40°S-40°N ocean temperatures are only ~57%
as large as global mean changes, owing to the large magnitude of temperature changes at higher latitudes (Fig. 6). The use of
the 40°S-40°N ocean domain results in a mid-Holocene temperature anomaly of 0.01°C in our main reconstruction.

Recent work has reported improved data assimilation skill by reducing the estimates of proxy uncertainty, which

forces the data assimilation to rely more on the proxy information than the prior distribution (Tierney et al., 2020, Osman et
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al., 2021). As a sensitivity test, we repeat our data assimilation using proxy uncertainty values arbitrarily reduced to 20% of
their original values, which is the mean reduction used in past work (Tierney et al., 2020, Osman et al., 2021). In our reduced
uncertainty experiment, reconstructed mid-Holocene warmth rises from 0.09°C to 0.17°C, bringing it closer to the Kaufman
and Marcott reconstructions but further from the Bova and Osman reconstructions. Additionally, mid-Holocene warmth is
clearer in this experiment, with only 1% of the ensemble members showing cooler values at the mid-Holocene compared to
the past millennium. This is one of many sensitivity experiments we explore in Appendix B; although the parametric and

methodological choices have important impacts, a cooler mid-Holocene is generally not supported by our reconstruction.

4.4. Caveats and future work

Future improvements in paleoclimate data assimilation may come from a variety of sources. Using a model prior
which replicates the climate system’s true complexity has the potential to provide the most gains, and improvements in the
global proxy network should also provide clear benefits. Both of these topics are explored in Appendix A. Additional proxy
metadata, such as clear indications of whether data points represent contiguous or discrete observations should also aid
paleoclimate data assimilation as well as paleoclimate research in general. Such metadata would help researchers understand
whether a proxy record with centennial resolution, for example, represents contiguous centennial means as opposed to
annual or decadal means sampled at centennial resolution. An extreme data point might represent an important climate event
if it represents a long time period while the same observation may be less remarkable if it only represents a single year.

Additionally, the source of apparently conflicting signals among proxy records must be better understood. Even in
well-sampled regions, proxy records present an assortment of diverse signals that cannot all be matched within the data
assimilation framework. The sources of these diverse climate signals—whether they result from proxy calibration
uncertainties, un-aligned age models, proxy seasonality biases, or something else—is a question for future research.

In the Temperature 12k database, the vast majority of proxy records were calibrated to temperature, providing a
useful link between proxy measurements and modelled quantities. Assimilating calibrated temperatures allowed us to
include a large collection of diverse datasets and leverage the expertise of the original authors who performed the inverse
temperature calibration. Nevertheless, the exclusion of PSMs is also a limitation of the study. Many of the calibrations are an
over-simplification of the proxy-climate relationships, in that they are univariate, non-mechanistic, or both. PSMs allow
more mechanistic and multivariate relationships between climate and proxy observations and are a key value proposition of
the data assimilation methodology. We plan to include PSMs in future work, which will allow for assimilation of proxy
types which are generally not calibrated to temperature, such as many hydroclimate records. Many PSMs require an isotope-
enabled model in the prior. Long simulations with isotope-enabled models are currently rare, however the collection of
isotope-enabled simulations spanning the Holocene is growing, which will facilitate the use of PSMs in future work (e.g., He
et al., 2021). At present, PSMs exist for proxy types including 6'%0 of ice cores, speleothems, coral, and wood (Dee et al.,
2015), "0 and 6D of lake sediments and leaf waxes (Dee et al., 2018, Konecky et al., 2019), and the §'30, Mg/Ca, TEXS86,

and Uk37 of marine sediments (e.g., Tierney et al., 2019). In ongoing work, we are expanding on the pseudoproxy
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framework testing physically based PSMs in data assimilation presented in Dee et al., 2016 to examine whether the
reconstruction skill is improved via the use of PSMs.

For shorter-term goals, additional sampling of uncertainties for proxy records (e.g., uncertainties in proxy
calibration, age model, seasonality, and more) and model priors (through the use of additional models or alternate prior
design) would be beneficial. Accounting for age uncertainties would smooth the climate reconstruction somewhat and may
affect the results of Section 4.2. This will be explored in future work. Additionally, as more proxies are compiled into large,
machine-readable databases, Holocene data assimilation can be expanded to reconstruct additional variables such as
precipitation. Through future development of the methodology, paleoclimate data assimilation is well-positioned to help

scientists infer data about climate fields or regions where little proxy evidence exists.

5. Conclusions

The Temperature 12k proxy database provides considerable information about Holocene temperatures (Kaufman et
al., 2020a). Analysis of this database shows general warming in the early Holocene, maximum warmth in the mid-Holocene,
and a cooling toward the present day, a pattern which has been shown in past global mean temperature reconstructions
(Kaufman et al., 2020b). To reconstruct spatially complete changes, regions without local proxy data must be inferred based
on existing proxy records, which is here accomplished using paleoclimate data assimilation.

This is the first implementation of a multi-timescale paleoclimate data assimilation methodology using real proxy
data. By assimilating the data at high temporal resolution using timescale appropriate covariances, we avoid a key
assumption required in other approaches, allowing the method to reconstruct high-resolution changes that would otherwise
be obscured. This potential was realized in the reconstruction of a cold anomaly at 8.2 ka, which was reconstructed with
spatial and temporal patterns that are generally consistent with previous results.

On longer timescales, the global mean Holocene reconstruction generally shows peak preindustrial Holocene
warmth during the mid-Holocene, consistent with the proxy data. The mean reconstructed mid-Holocene temperature
anomaly was 0.09°C relative to the past millennium, which is cooler than previous reconstructions (Marcott, Kaufman) but
warmer than recent reconstructions that do not simulate a mid-Holocene Thermal Maximum (Bova, Osman). Our
assimilation framework also allowed us to test the impact of seasonality explicitly. Summer biases, even when imposed on
all records, cannot explain the discrepancy between the proxies and the model simulations. Spatially, the reconstruction
shows cold temperatures in regions where the Laurentide and Fennoscandian ice sheets have been reconstructed, adding
support for the reconstruction’s skill in these well-sampled regions.

By merging paleoclimate data with information from climate models, paleoclimate data assimilation can infer
spatially complete climate from incomplete data, a key benefit for exploring past climate. The present paper examines
Holocene temperature, but as more proxy data is compiled into large machine readable databases, new long climate

simulations are run, and the data assimilation methodology is further refined, this approach is well suited to clarify our
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perspective on more climate variables and time periods in the past. Reconstructions of past climate help reveal the

characteristics of natural variability, which is the backdrop against which current climate change is rapidly occurring.

Appendix A: Pseudoproxy tests and proxy/reconstruction agreement
A.1. Pseudoproxies tests

To explore our data assimilation approach, the method is tested using alternate data extracted from a ‘“known”
climate. Specifically, temperature data is selected from a variety of locations in a transient model simulation and processed
to create a collection of time series records akin to a proxy network, called “pseudoproxies” (Smerdon, 2011). While
pseudoproxies do not contain real data about past climate, they represent a deliberately limited perspective on a known
climate, useful for exploring the skill of a reconstruction methodology under controlled conditions. In the primary
pseudoproxy experiment conducted in this paper, pseudoproxies use the same locations, seasonalities, and temporal
characteristics as the real Temperature 12k proxy records but use temperature values from the closest grid cells of a
Holocene simulation. To account for uncertainty, white noise is generated with a standard deviation equal to the metadata’s
RMSE uncertainty value for each record. This white noise is added to each pseudoproxy time series after averaging the
selected model data into the same temporal windows as the original proxy record.

Several pseudoproxy experiments are run to verify the data assimilation approach. In the primary test case,
pseudoproxies are generated from the TraCE-21ka transient simulation and the transient HadCM3 simulation is used as the
prior, ensuring that the pseudoproxies and prior are not derived from the same model data. This differs from the primary data
assimilation experiment, where we use both climate models in the prior. Since the TraCE-21ka simulation is used as the
“real” climate, these pseudoproxy experiments test the ability of the data assimilation to reconstruct known climate states in
a fashion similar to real reconstructions where the proxies are derived from nature.

The TraCE-21ka transient simulation shows increasing global mean temperature throughout the Holocene. This
feature is replicated in the reconstruction (Fig. A1) with a Pearson correlation coefficient of 0.98 between the reconstructed
and “true” global mean temperature. Temporal correlations between the reconstruction and model are relatively high across
most locations, especially the data-dense regions of Europe and the United States (Fig. Alb). In the most pronounced region
of difference—the Southern Ocean off the coast of West Antarctica—the reconstruction produces warmer temperatures in
the early Holocene rather than the colder temperatures present in the model. This is one location where the covariance
patterns in the simulations used for the pseudoproxies (TraCE-21ka) and the prior (HadCM3) diverge. In the HadCM3
simulation, this region correlates positively with only ~18% of the rest of the world, while it correlates positively with ~98%
of the rest of the world in TraCE-21ka. If the TraCE-21ka simulation is considered the true climate, then the differences
between models represents model bias. Without any local data in that region, the reconstructed temperature trend is dictated
by these biased covariances. Several other regions of mismatch also stem from differences in the covariance patterns of the

two models.
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Pseudoproxy experiment
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Figure Al. Temporal and spatial agreement in a pseudoproxy experiment. Temperature pseudoproxies are generated from the
TraCE-21ka simulation and reconstructed using data assimilation with HadCM3 as the prior. (a) Annual, global mean
temperature in the prior, reconstruction, and model. (b) Correlation between the reconstruction and model temperatures at every
location. Locations of pseudoproxies are shown as dots in panel (b) and have the same spatial and temporal coverage as the

710 Temperature 12k proxy database.
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Correlation and CE in four pseudoproxy experiments
(a) Exp. 1, R (me (b) ‘I‘Exp. , CE mea“n:—Q.OI)

.

(e) Exp. 3, R (mean=0.84)

(g) Exp. 4, R (mean=0.87)

Figure A2. Spatial skill of pseudoproxy experiments. Spatial correlations (R) and coefficients of efficiency (CE) for four different
pseudoproxy experiments. Global mean values, calculated as the area-weighted mean of the spatial values, as given above each
map. Each experiment uses HadCM3 as the prior but differ in the model used to generate the pseudoproxies (Exps. 1, 2: TraCE-
21ka; Exps. 3, 4: HadCM3) and the spatial, temporal, and seasonal characteristics of the pseudoproxies (Exps. 1, 3: as in
Temperature 12k; Exps. 2, 4: uniform proxy network). When pseudoproxies are based on the Temperature 12k network, they use
the spatial, temporal, and seasonal characteristics as the real proxy records (Npseudoproxies=711). When pseudoproxies are generated
on a uniform 10° by 10° grid, they are all annual mean and cover the entire Holocene with decadal resolution (N pseudoproxies=648).
More details about these experiments are given in Table 2.
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To better understand the reasons behind these mismatches, several more pseudoproxy experiments are conducted.
The new experiments implement improvements in two key aspects of the underlying data: a spatially consistent pseudoproxy
network (Exp. 2), an “unbiased” prior (Exp. 3), and both (Exp. 4).

For Exp. 2, we generated pseudoproxies from the TraCE-21ka simulation on a 10° by 10° latitude-longitude grid
(n=648 pseudoproxies). Seasonal and temporal preferences are also removed, with each pseudoproxy representing decadal
climate with no seasonal preference and covering the entire 12 ka time period, with the same amount of noise added to each
pseudoproxy. Using this new pseudoproxy network, correlations are slightly improved and the coefficient of efficiency (CE,
which is a measure of the fraction of variance captured by the reconstruction, Nash and Sutcliffe, 1970) is greatly improved
in many regions (Fig. A2). These results demonstrate how a proxy network with better spatial coverage and no temporal or
seasonal over-representations can improve the reconstruction skill. Regardless, some regions still show errors in the
reconstruction. In particular, the Southern Ocean off the coast of West Antarctica still shows negative correlations,
suggesting that the presence of local pseudoproxies is not enough to overcome the influence of a large number of remote
pseudoproxies with “incorrect” covariances to this region. The influence of long-distance covariances could be diminished or
eliminated through the use of covariance localization, in which the reconstruction is only informed by records within a
prescribed radius. Covariance localization has been used in prior work (e.g., Osman et al., 2021; Tierney et al., 2020), and is
explored further in Appendix B.

To test the effect of an unbiased prior, Experiments 3 and 4 use the transient HadCM3 simulation for both the
pseudoproxies and the prior. This ensures that the prior covariances match the “true” state covariances, and thus there are no
model biases. Experiment 3 uses the Temperature 12k proxy distribution while experiment 4 uses the uniform proxy
network, as in Exp. 2. Both experiments show substantial improvement in correlation and CE values, indicating the
importance of an unbiased prior. These experiments show that having an unbiased prior is more important than having a
uniformly sampled and seasonally unbiased proxy network (c.f. Exp 3 vs. 2), but the use of both modifications (Exp. 4)
produces the best results. The importance of realistic prior covariances has been shown in past work (Dee et al., 2016;
Amrhein et al., 2020).

Improvements in either the proxy network or model realism should aid future paleoclimate reanalyses. On the topic
of model realism, no model is perfect, so we use climate states from two simulations in the main data assimilation
experiment to diminish the impact of single-model biases. In the future, the inclusion of more simulations may better
emphasize robust multi-model covariance patterns while properly accounting for uncertainty when models disagree, and past
work has supported this approach (Parsons et al., 2021). Further improvements in the proxy network or model realism are
beyond the scope of the current work, but will be the natural byproduct of future efforts to improve climate models and
proxy databases. Even without such improvements, the relative skill of the pseudoproxy experiment (Fig. Al) supports the
use of data assimilation for reconstructing spatial Holocene temperatures, with the caveat that shortcomings in the proxy

network and the model prior reduce the accuracy of the results. Note that the prior in each of these experiments is allowed to
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change through time, so the prior inherits low-frequency variability from the underlying model. However, if a time-constant
755  prior is used instead, these general results still hold true.
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Figure A3. Agreement between proxy records and reconstructed proxy values. Distributions of (a) Pearson’s correlation
coefficient, (b) coefficient of efficiency (CE), and (c) root mean square error for each calibrated proxy compared to reconstructed
temperature at the same location and season. Comparisons are made on a decadal timescale. Distributions show assimilated
760  records (red) and records which were omitted due to a lack of uncertainty values (n=44, blue). Median values are shown as vertical

lines.
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Figure A4. Comparison of proxy and reconstructed anomalies in space and time. (a) Proxy (symbols) and annual mean
reconstructed (background) temperature for the period 6000-6010 vs 3000-5000 years BP. (b) Proxy values vs. reconstructed
records for 6000-6010 vs 3000-5000 years BP. (c) The mean of proxy records through time compared to the mean of reconstructed
records through time. The (d) slope and (e) correlation between proxy records and reconstructed records through time.
Reconstructed records are calculated using the data assimilation method for temperature at the same location and seasonality as
the real proxy records.
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A.2. Proxy records vs. the reconstruction

To quantify how well the Holocene Reconstruction (discussed in the main paper) agrees with the Temperature 12k
proxy database that informs it, we reconstruct temperature time series at the same locations and seasonalities as the original
proxy records. These “reconstructed records” are compared to the original proxy time series using three different skill
metrics: Pearson’s correlation coefficient (R), coefficient of efficiency (CE), and root mean square error (RMSE), calculated
separately for each of the 711 assimilated records as well as 44 un-assimilated records which lacked uncertainty values (Fig.
A3). Dissimilarities among nearby proxy records (see Fig. 7) will degrade apparent skill of the data assimilation, as the
relatively low-resolution reconstruction will not match such apparent spatial complexity.

Correlation values between the proxies and reconstructed proxies are mostly positive, showing that the general
patterns of change are captured, but median CE values are slightly below zero. For CE, values below 0 are generally
considered to represent a lack of skill. If change in skill between the reconstruction and the prior is examined instead, the
ACE values are slightly positive: 0.15 for assimilated proxies. As stated earlier, the pronounced spatial diversity of the proxy
data complicates efforts to match all records simultaneously.

To visualize spatial inconsistencies, the reconstruction and input proxy data are shown for an example decade along
with summary metrics plotted through time (Fig. A4). For the chosen decade, proxy data have a much larger range of
anomalies than the reconstructed records, showing that the method cannot match all the records at once and instead finds a
middle ground consistent with covariances in the model prior. Consistent with this, the mean of the proxy records matches
the mean of the reconstructed records relatively well through time, although the reconstructed proxies have less mid-
Holocene to present cooling, likely due to the warming trend in the prior (Fig. 5). The small values of regression slopes
indicates that the reconstruction does a poor job matching the spatial diversity of the proxy signals (Fig. A4d). Correlation
values range from ~0.1 to ~0.5 through time, with better correlation in the early Holocene when the climate anomalies are
large (Fig. Ade). It is worth noting that these metrics are all calculated for climate anomalies relative to 3-5 ka as opposed to
absolute climate values shown in past work (Osman et al., 2021). If the values were calculated for absolute values instead,

which include Earth’s natural latitudinal temperature gradients, the match would appear far better.

Appendix B: Alternate experimental designs

The pseudoproxy tests in Appendix A.1 explored improvements in the proxy network and the accuracy of the model
prior. To help account for single model biases, we use two models in the prior and recommend testing the inclusion of
additional transient model simulations as they become available. Beyond this, additional improvements in model physics and
proxy data acquisition will require considerable future effort and are beyond the scope of this paper. However, other changes
can be made to the experimental design. These options are explored in this section, providing a testbed for future
improvements in the data assimilation methodology. In many cases, the philosophy of the current paper was to use the

simpler approach for the “default” reconstruction, laying a baseline for future improvements.
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We test alternate experimental designs using both real data (Figs. B1, B2) and pseudoproxies (Fig. B3). Five aspects
of the experimental design are explored: the use of a constant vs. time-varying prior, the use of covariance localization, the
effect of modifying the proxy uncertainty values, the choice of model(s) in the prior, and the use of a 200-year binned proxy
approach.

805

Global-mean temperature anomalies (" C),
in prior and posterior

17(a) Using time-varying prior
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Figure B1. Holocene reconstruction with different priors. Reconstructions using three different options for prior: (a) the default
time-varying prior, which consists of a moving 5010-year window with the mean of 3-5 ka removed, (b) a time-varying prior
consisting of a moving 5010-year window with its mean removed at every time step, and (c) a time-constant prior consisting of all

810 climate states centered on 0.5 to 12.5 ka with its mean removed. In all cases, the prior uses climate states from both the HadCM3
and TraCE-21Kka transient simulations. Bands represent the 1-sigma (dark shading) and full (light shading) range of the ensemble
members. To aid comparison, the mean of the reconstruction in (a) is plotted in black in panels (b) and (c). The reconstruction in
panel (a) is the primary reconstruction analyzed in this paper, also shown in Fig. 5.
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815 Figure B2. Global mean temperatures from different experiments. Reconstructed global mean temperature from (a) the default
experiment as well as experiments using (b) a 25000 km localization radius, (c) a 20000 km localization radius, (d) a 15000 km
localization radius, (e) 20% of the original uncertainty values, (f) the HadCM3 prior, (g) the TraCE-21ka prior, (h) proxies binned
to 200-year resolution, and (i) proxies binned to a 200-year resolution as well as a 25000 km localization radius. The mean of the
default experiment is plotted in black over the other experiments for comparison. Shading shows the full range of ensemble

820 members for each reconstruction. The reference period of each reconstruction is 3-5 ka. Experimental options are listed in Table

3.
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Correlation and CE in four pseudoproxy experiments

(a) Exp. 5, R (mean=

Figure B3. Spatial skill of more pseudoproxy experiments. Spatial correlations (r) and coefficients of efficiency (CE) for four
additional pseudoproxy experiments, as in Fig. A2. Experiments are the same as the default experiment but use a localization
radius and/or a time-varying prior. Exp. 5 uses a time-varying prior 5010 years long, as in the main experiment, but with the mean
value set to 0 for every period. Exp. 6 uses a time-constant prior consisting of all climate states centered on 0.5 to 12.5 ka. Exp. 7
uses a localization radius of 25,000 km. Exp. 8 uses a time-varying prior of 3010 years, rather than 5010 years in the default
experiment. More details about these experiments are given in Table 2.

40



830

Exp. Pseudopr  Distributi  Changing Loc. Remr CEGmr Ripatial CEspatial
oxy on prior radius
model
1 TraCE- Temp 12k Yes, None 0.98 0.95 0.62 -0.01
21ka 5010yr
2 - Basic grid = --- - 0.99 0.96 0.66 0.21
3 HadCM3  --- --- --- 0.99 0.98 0.84 0.73
4 HadCM3  Basic grid --- - 0.99 0.99 0.87 0.77
5 - - Yes, - 0.97 0.70 0.47 0.02
5010yr w/
constant
mean
6 --- --- No --- 0.97 0.92 0.67 -0.24
7 --- --- --- 25000 km 0.98 0.96 0.64 0.06
8 --- --- Yes, --- 0.98 0.95 0.64 -0.08
3010yr

Table 2. Skill metrics for pseudoproxy tests. Skill metrics for the pseudoproxy experiments shown in Figs. A2 and B3. Metrics are
calculated between the reconstruction results and the original model data that the pseudoproxies are built from. Metrics are the
correlation (R) and coefficient of efficiency (CE) calculated for either global mean temperature values (GMT) or calculated for
temperature at every location and then averaged using an area-weighted mean (spatial). All these experiments use HadCM3 as the

prior model. Boxes with dashes indicate a setting is the same as the experimental design of Exp. 1.
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Exp. Prior model Changing Loc. radius Uncertainty Proxy Figs.
prior scaling resolution
Default HadCM3 and Yes, 5010 yr None None Multi- 5-13, A3-A4,
TraCE window timescale B1-B2
Constant — Yes, 5010 yr — — — B1
mean window  w/
constant
mean
Constant — No — — — B1
prior
25K locrad — — 25000 km — — B2
20K locrad — — 20000 km — — B2
15K locrad — — 15000 km — — B2
20% R — — — 20% of — B2
default
HadCM3 HadCM3 — — — — B2
prior
TraCE-21ka  TraCE-2lka — — — — B2
prior
200yr res — — — — 200 years B2
200yr res, — — 25000 km — 200 years B2
25K locrad

Table 3. Experimental design of data assimilation reconstructions. Settings of different reconstructions: the model(s) used in the
prior, the time-varying or time-constant construction of the prior, the localization radius, the scaling of the proxy uncertainties,
the approach to proxy resolution (multi-timescale or binned), and the figures where each experiment can be seen. Dashes signify
values that are the same as the default experiment.

B.1. Time-constant vs time-varying prior

When using a time-varying prior, as in this paper, the prior consists of a changing collection of model states to
account for slow changes in the mean and covariance patterns of the climate system (e.g., Osman et al., 2021). When using a
time-constant prior, on the other hand, the prior consists of the same model states at every time step, ensuring that all

temporal variability is derived from the assimilated proxy records (e.g., Hakim et al., 2016).
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To explore the influence of changes in the prior using real proxy data, two new data assimilation experiments are
run for comparison with the default experiment (Fig. B1). In the first new experiment, prior climate states are selected from a
5010-year moving window, as in the main experiment, but the mean of the prior ensemble is set to 0 at every time step. This
represents a middle-ground between a time-varying and a time-constant prior, as the covariance patterns can change but the
mean state doesn’t. In the other experiment, the prior is identical for every time step, consisting of all climate states centered
on 0.5 to 12.5 ka.

Compared to the default reconstruction, anomalies in these two new reconstructions are warmer in the early
Holocene (Fig. B1). Since data assimilation is a mix of model data and proxy data, it is unsurprising that a warmer prior
would produce a warmer reconstruction during this period. It is especially notable that the reconstruction has positive
anomalies between ~6-8 ka in all three cases, providing more evidence for mid-Holocene warmth. Mean mid-Holocene
warmth in these three experiments is 0.09, 0.11, and 0.14 °C, respectively. These results demonstrate the potential effects of
the prior on the final reconstruction, but also show that the major climate trends are not overly influenced by this choice. If
these experimental designs are tested using pseudoproxy data, the time-varying prior generally performs better than either of
these constant-mean experimental designs (compare Exps. 1, 5, and 6 in Table 2 and Figs. A2, B3).

Whether a time-constant or a time-varying prior is used, it is worth considering how the prior influences the final
reconstruction (e.g., Fig. B1). The use of a time-varying prior may produce a reconstruction which preferentially resembles
prior trends while a time-constant prior may produce a flatter reconstruction. Additionally, while a time-constant prior
ensures that all time-varying signals in the reconstruction originate from the proxy data, the lack of information about
changing boundary conditions may bias results. On the other hand, a time-varying prior may limit the size of the prior
ensemble, as climate states must be drawn from a moving window rather than from a broader expanse of model output. This
last drawback, however, has been mitigated in the current work by the use of multiple models, providing twice the number of
climate states to the prior and potentially diminishing single-model biases.

As a final note, if data assimilation is conducted using a time-varying prior, desired analyses should be conducted
on both the prior and the reconstruction to see what information was already present in the model prior. Otherwise, features
thought to be based on proxy data may simply originate from the original model simulations. To the degree possible, data

assimilation should be conducted multiple times using alternate priors to test the sensitivity of results, as has been done here.

B.2. Covariance localization

In this paper’s main experiment, all proxy records have the potential to influence the reconstruction across the
Earth, with the length of that influence determined by the climate model’s covariance structures. Covariance localization, on
the other hand, reduces or eliminates the influence of long-range covariances and forces the reconstruction to rely more on
local proxy records. This is done by applying a localization radius such that a given proxy can only influence the
reconstruction within a certain distance-weighted area. The length of this localization radius is fundamentally arbitrary, and

multiple lengths are generally tested to find a length that minimizes the errors of selected reconstruction criteria (Tardif et
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al., 2019, Tierney et al., 2020, Osman et al., 2021). In our pseudoproxy tests, Exp. 7 uses a localization radius of 25000 km,
as in the Last Millennium Reanalysis (Tardif et al., 2019) (Fig. B3, Table 2). The localization method uses a Gaspari-Cohn
function (Gaspari and Cohn, 1999; Tardif et al., 2019) to reduce the influence of proxy data on locations distant from the
proxy itself, reducing to 0 outside of the localization radius, as in the LMR project (Tardif et al., 2019).

When applied to real proxy data, a localization radius of 25000 km produces a climate reconstruction similar to the
main experiment in many ways (Fig. B2). Skill metrics show that the new reconstruction matches proxy records slightly
better in some respects, with a median correlation to assimilated proxies of 0.37 rather than the 0.35 in the default
experiment. Because the use of a localization radius can diminish the influence of proxy data, our reconstructions using a
localization radius (Fig. B2b-d) more closely resemble the prior, with slightly cooler mid-Holocene temperatures and larger
uncertainty bands.

While the use of a localization radius improves the reconstruction in some regards, the method also poses some
challenges. As stated above, a localization radius can diminish the potential impact of proxy data, giving more weight to the
temporal evolution of the model prior. Additionally, a localization radius arbitrarily diminishes the influence of long-
distance climate relationships which may be valid, instead relying more on individual (potentially noisy) proxies in data poor
regions. On the other hand, covariance localization prevents data-rich regions from having an outsized influence on the
global climate reconstruction, which may be beneficial. Since the use of covariance localization presents a mix of benefits
and drawbacks, it is not used for the main reconstruction but shown in alternate reconstructions (Fig. B2). Additionally,
covariance localization is available as an option in the released code. When using a covariance localization, we use a serial
proxy assimilation rather than simultaneous proxy assimilation (Whitaker & Hamill, 2002) for simplicity. Serial and
simultaneous assimilation approaches produce nearly identical results (for our default experiment, ensemble means are the
same and ensemble members differ by no more than 0.05 °C). The use of a 25000 km localization radius produces a slight

improvement in several of our metrics so, with more testing, it might be a useful change to our experimental design.

B.3. Proxy uncertainties

In data assimilation, proxy records with larger uncertainties have less impact on the final reconstruction. The
Temperature 12k database has uncertainty estimates for each record, but these values are based on proxy type and may not
be accurate. First, these uncertainty values represent uncertainty of absolute temperature values rather than relative values, so
they may be too large for our relative temperature reconstruction. On the other hand, it’s possible that some aspects of
uncertainty were overlooked. Recent work found improved skill by scaling uncertainty values to 20% of their original values
on average (Tierney et al., 2020, Osman et al., 2021). To explore the effect of modified uncertainty, MSE values are here
similarly reduced to 20% of the original values (Fig. B2e). These reduced uncertainties produce larger temperature
anomalies, with an average mid-Holocene temperature anomaly of 0.17°C as opposed to 0.09°C in the original experiment.

Post-hoc scaling of uncertainty values to improve reconstruction skill has been done in other data assimilation work

(Osman et al., 2021; Tierney et al., 2020), but this should be done with care. Ideally, uncertainty values should be record-
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specific to account for individual considerations of each record. However, the size of the Temperature 12k database, as well
as difficulties in determining record-specific uncertainties, place this beyond the scope of the current work. The use of a
smaller, curated selection of proxy records is another approach but may limit spatial coverage of the data assimilation (King

etal., 2021).

B.4. Choice of model for prior

Another consideration is the use of different model simulations in the prior. We use both the HadCM3 and TraCE-
21ka transient simulations in this paper, but sensitivity tests can be run using just one of these models (or other models) as
the prior. The prior influences both the initial range of climate states and the relationships between locations, seasons, and
variables, so the choice of model simulation affects how proxy anomalies are translated to the rest of the climate system.

Here, pseudoproxy experiments are conducted using single-model or two-model priors. To avoid giving any
experiment an unrealistic advantage, the model used to generate the pseudoproxies in an experiment is never included in the
prior. Therefore, to generate independent pseudoproxy data for a two-model prior, we also use a third simulation: the
FAMOUS 10x accelerated transient simulation (Smith & Gregory, 2012). The use of an accelerated timescale may affect
prior covariances, so the FAMOUS simulation is not used more broadly in this paper and is only used here out of necessity.
In these pseudoproxy experiments, the reconstruction is compared to the “true” climate using several metrics: correlation and
coefficient of efficiency of both the global mean temperature and spatial temperatures (Table 4). In these experiments, the
HadCM3, TraCE-21ka, and two-model priors all perform relatively well. We use the two-model prior in the main
experiment because the use of multiple models provides the prior with more initial climate states and should diminish single-
model biases. Recent work has found that multi-model priors are well-suited to data assimilation (Parsons et al., 2021).

When assimilating real proxy data, global mean temperature reconstructions using the HadCM3 or TraCE-21ka
prior share many similarities with the default two-model experimental design (Fig. B2), indicating that global mean
temperature is not overly dependent on the particular characteristics of the model prior. As with the other experiments
discussed above (Figs. B1-B3), these experiments touch on areas for potential future improvement in Holocene data

assimilation.

B.5. The use of multi-timescale vs binned data assimilation

In the default experimental design, this paper uses a multi-timescale approach to data assimilation. By using
covariances between low- and high-resolution timescales, the method attempts to properly account for the temporal
information of proxies. An alternate approach, which has been used in past work (Osman et al., 2021), is to bin proxy data to
a uniform timescale. Since the mean temporal resolution of the Temperature 12k proxy dataset is near 200 years, we bin all
proxy data into 200-year intervals, using a nearest neighbor interpolation method to span intervals between proxy data
points. Using this approach, the data assimilation produces a reconstruction that is approximately a smoothed version of the

default multi-timescale experiment, with a reduced uncertainty band (Fig. B2). If correlations are calculated for temperature
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at every location between this experiment and the default experiment regridded to 200-year resolution, the global mean of
these correlation values is 0.96. If a 10-year bin is used instead (effectively a single-timescale version of the default
experiment), its mean spatial correlation with the default experiment is also 0.96. Additional comparison metrics should be

calculated to determine the full effects of a multi-timescale approach, which is left to future work.

Exp. Pseudoproxy  Prior model Ramr CEcmr Ripatial CExspatial
model
1 HadCM3 TraCE 0.96* 0.90 0.60% -0.62*
9 HadCM3 Famous 0.93 0.87 0.51 -1.08
10 HadCM3 2-model 0.96* 0.92* 0.58 -0.84
11 TraCE HadCM3 0.98%* 0.95* 0.62 -0.01%*
12 TraCE Famous 0.95 0.89 0.57 -0.57
13 TraCE 2-model 0.97 0.93 0.66* -0.02
14 Famous HadCM3 0.94* 0.86* 0.45 0.14
15 Famous TraCE 0.94* 0.84 0.47% 0.15
16 Famous 2-model 0.94%* 0.86%* 0.46 0.17*

Table 4. Skill metrics of pseudoproxy tests — choice of prior model. Skill metrics for pseudoproxy experiments, as in Table 2, but
exploring the effect of changes in the model used to generate pseudoproxies and the model(s) used in the prior. For the “2-model”
experiments, the two models used in the prior are the models not used to construct the pseudoproxies (e.g., if HadCM3 is used to
construct the pseudoproxies, TraCE-21ka and Famous are used in the 2-model prior). Asterisks indicate the highest values for
each set of pseudoproxies for the precision shown, with ties allowed.
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