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Abstract

Bottom-towed fishing gears produce significant amounts of seafood globally but can result in seafloor habitat damage. Spa-
tial closures provide an important option for mitigating benthic impacts, but their performance as a fisheries management
policy depends on numerous factors, including how fish respond to habitat quality changes. Spatial fisheries management
has largely focused on marine protected areas with static locations, overlooking dynamic spatial closures that change through
time. To investigate the performance of dynamic closures, we develop a spatial fishery model with fishing-induced habitat
damage, where habitat quality can affect both fish productivity and movement. We find that dynamic spatial closures of-
ten achieve greater harvest and habitat protection than fixed marine protected areas or conventional nonspatial maximum
sustainable yield management, especially under strong habitat-stock interactions. Determining optimal dynamic spatial clo-
sures may require considerable information, but we find that simple policies of fixed-schedule rotating closures also perform
well. Dynamic spatial closures have received less attention as fisheries management tools, and our results demonstrate their
potential value for addressing both harvest and habitat impacts from fishing.

Key words: dynamic spatial closures, ecosystem-based fisheries management, habitat damage mitigation, marine protected
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1. Introduction

While fisheries management has historically focused on
maximizing yield for single stocks, more attention is now
given to maintaining the health of ecosystem components
such as seafloor habitats (Pikitch et al. 2004). Along with
providing valuable ecosystem services (Costanza et al. 1997;
Barbier 2017), healthy seafloor habitat may increase juve-
nile survival and recruitment (Collie et al. 1997; Bradshaw
et al. 2003; Scharf et al. 2006), enhance fish body condition
(Hiddink et al. 2011), and improve fish population recovery
(Auster 1998; Hutchings and Reynolds 2004). This recognition
has resulted in laws and mandates to protect seafloor habitat:
for instance, in the United States the Magnuson-Stevens Fish-
ery Conservation and Management Act requires that “essen-
tial fish habitat” be considered in fishery management plans
(NOAA National Marine Fisheries Service 2007). The Marine
Strategy Framework Directive in the European Union simi-
larly calls for maintaining seafloor integrity (European Com-
mission 2008).

Fishing gear that contacts the seafloor can damage benthic
habitat in a variety of ways, including reducing seafloor com-
plexity, removing epiflora and epifauna, and disrupting bio-
geochemical processes (Peterson et al. 1987; Collie et al. 1997;
Watling and Norse 1998; Watling et al. 2001; Sala et al. 2021).

Mobile bottom gears that contact the seafloor (e.g. bottom
trawls) are widely used, accounting for approximately a quar-
ter of worldwide seafood catch (Cashion et al. 2018). For these
reasons, bottom gears are a primary anthropogenic source
of physical seafloor disturbance in commercially fished areas
(Watling and Norse 1998; Foden et al. 2011; Ramirez-Llodra
et al. 2011). Often habitat quality can recover over time, but
the rate of recovery may differ greatly depending on the type
of habitat (Rooper et al. 2011; Grabowski et al. 2014).

The three main management tools generally available to
limit seafloor habitat damage from fishing are effort reg-
ulations, gear regulations, and spatial closures (National
Research Council 2002; Smeltz et al. 2019). It is crucial to un-
derstand how and when these tools might be able to protect
seafloor habitat while sustaining or improving harvests. Here
we focus on spatial closures. While gear and effort regula-
tions can be useful, they may require difficult socioeconomic
tradeoffs and may not be feasible in fisheries with limited re-
sources for monitoring and enforcement (National Research
Council 2001, 2002; Russ 2002; Reithe et al. 2014; Cabral et al.
2019). In contrast, spatial closures may be logistically easier
to manage once implemented, and have been used widely
in developing nations (Myers et al. 2000; Reithe et al. 2014;
Cabral et al. 2019). Not all spatial closures completely ban all
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types of fishing (Costello and Ballantine 2015), but here we
focus on strictly "no-take" closures.

We classify spatial closures based on whether the place-
ment of closures is fixed (marine protected areas, MPAs) or
allowed to change over time (dynamic spatial closures, DSCs).
Broadly, spatial fisheries management has focused on MPAs,
with studies and real-world implementations of DSCs being
less abundant. DSCs may range greatly in complexity, from
simple fixed schedules of rotations to adaptive policies, and
have often focused on the management of sedentary benthic
species (Cohen and Foale 2013; Plaganyi et al. 2015; O’Boyle
et al. 2017). For example, the Australian Queensland sea cu-
cumber fishery uses rotational closures where the fishing
area is split into over 150 zones, and each zone is open one
of every 3 years (Plagdnyi et al. 2015; Commonwealth of Aus-
tralia 2021). The U.S. Atlantic sea scallop fishery uses adaptive
rotations, closing areas with many small scallops and reopen-
ing areas when the scallops have grown large (New England
Fishery Management Council 2003). DSCs have also been used
for small-scale fisheries throughout the Indo-Pacific (where
they are a traditional form of management); for instance,
on Kakarotan Island (Sangihe-Talaud Archipelago, Indonesia),
community leaders select one area of reef each year to be
closed for several months (Cinner et al. 2005; Cohen and Foale
2013).

Beyond limiting seafloor habitat damage, spatial closures
can result in increased stock density and biomass within
the closure (Hilborn et al. 2004; Lester et al. 2009). Adults
and/or larvae may "spill over" into fished areas, counter-
acting losses in harvest due to the closure, but the overall
effect of spatial closures on yield depends on a number of
factors (Hilborn et al. 2004; Hart 2006). Many models of
no-take areas (e.g., Hastings and Botsford 1999; Hart 2006;
Le Quesne and Codling 2009; Carvalho et al. 2019) have found
that they cannot increase overall yield beyond what can be
obtained with optimal nonspatial management. However,
such models do not consider interactions between stocks
and habitat quality, potentially missing an important driver
of stock dynamics under fishing-induced habitat damage.
Along with possible impacts to population growth, empir-
ical results have suggested that fish might prefer being in
areas with higher quality habitat, reducing their movement
out of such areas (Claudet et al. 2010; Griiss et al. 2011).
Both of these interactions may affect the performance of
spatial closures in meeting harvest and habitat protection
goals.

Our work extends past models for the optimization of spa-
tial closures in fisheries with fishing-induced habitat damage
in several significant ways (Moeller and Neubert 2013, 2015;
Akpalu and Bitew 2014; Reithe et al. 2014; Nichols et al. 2018;
Alqawasmeh and Lutscher 2019; Kelly et al. 2019; Falc6é and
Moeller 2022). First, we consider two potential habitat-stock
interactions: the impact of habitat quality on fish population
growth and on fish movement. While several previous mod-
els have incorporated the former effect, only Algawasmeh
and Lutscher (2019) have considered the latter, even though
the movement behavior of fish may greatly impact the ef-
fectiveness of different spatial management policies. Second,
we explicitly model the impacts of fishing on seafloor habi-

tat quality and the recovery of habitat over time. Most of the
previously mentioned works have not explicitly considered
the dynamics of habitat quality (but see Kelly et al. 2019 and
Nichols et al. 2018). Third, we model an open-access fishery
whereby spatial closures may be the only viable management
option available. This differs from most previous works, in
which spatial management is examined in combination with
(or arising from) harvest/effort controls (but see Reithe et al.
2014). Finally, we compare MPAs with DSCs to see when sig-
nificant management benefits can be gained by letting spa-
tial closures change over time. With the exception of Kelly
et al. (2019), past works have focused exclusively on optimiz-
ing MPAs.

We develop an n-patch model of a fishery in which the
stock, habitat quality, and fishing effort in each patch are ex-
plicitly modeled. The closure status of each patch may change
on a yearly basis, allowing us to examine DSCs. Due to the
complexity of our model, we utilize an ADP algorithm to
find near-optimal policies of DSCs. These DSC policies, in
which the manager decides which patches are open/closed
each year, are then compared with optimal MPAs, i.e. fixed
spatial closures. We assess the performance of DSCs and MPAs
under both conventional management focused solely on
maximizing yields, and the multiobjective case where both
yield and habitat protection are recognized as management
objectives.

The primary question we ask is: under what conditions can
DSCs significantly outperform MPAs? We explore this ques-
tion by varying the strength of the habitat-stock interactions,
along with key habitat properties (recovery rate and sensitiv-
ity), for both a sedentary stock and a mobile stock. As an im-
portant performance benchmark, we also compare our DSC
policies to nonspatial management at maximum sustained
yield (MSY) harvest rates. Recognizing that optimal DSC
policies may be hard to develop and implement in real life,
we additionally consider the performance of simple heuris-
tic policies of rotating spatial closures on fixed schedules.
Finally, we briefly examine a stochastic version of our model
in which recruitment is variable, reflecting a key source
of population variability in real fisheries (Thorson et al
2014).

2. Methods

2.1. Model framework

We model a fishery with n patches. Let x;(t), h;(t), and fi(t)
be the stock biomass, habitat quality, and fishing effort in
patch i at time t, respectively. Thus, at any given time the
state of the fishery can be described by the vector s(f) =
(x(t), h(t), fit)), where x(t) = (x1(t), ..., xa(t)), h(t) = (he(), ...,
hy(t)), and f{t) = (fi(t), ..., fa(t)). We will let S denote the state
space, the set of all potential states of our model. Note that
since we only require x;(t), fi(t) > 0 and 0 < h;(t) < hpmax, the state
space is continuous and large (3n-dimensional). Note that our
model has been rescaled such that all the state variables are
unitless.

Our model is not based on a specific real fishery or fish
species, but is rather meant to represent the general case of a

894 Can. J. Fish. Aquat. Sci. 80: 893-912 (2023) | dx.doi.org/10.1139/cjfas-2022-0198



http://dx.doi.org/10.1139/cjfas-2022-0198

Can. J. Fish. Aquat. Sci. Downloaded from cdnsciencepub.com by CORNELL UNIVERSITY LIBRARY on 08/28/23
For personal use only.

fishery with fishing-induced habitat damage that is managed
only with spatial closures. However, as our equations use
specific functional forms, we must make some assumptions
about the fishery and the life history of the fish. Notably, we
assume that the early life stages of fish contribute to a com-
mon juvenile pool, from which they may recruit into any of
the patches. From there, our model allows for adults that are
either sedentary or mobile. We also assume specific forms
for the effects of habitat on the stock, although we vary the
strength of these to represent a wide range of possible in-
teractions. While these restrictions are important to note,
our model is still relevant for a wide range of species. Model
state dynamics and assumptions are described in detail in
Section 2.2.

A summary of our modeling framework is shown in Fig. 1.
At the beginning of each year, the manager makes a decision
about which patches should be open to fishing, and which
should be closed to fishing (in which case no fishing effort or
take is permitted within the patch). Note that throughout this
work we use d to denote the year, while t is used for continu-
ous time. The action taken by the manager at the beginning
of year d is denoted by a(d) = (a;(d), ..., as(d)), with a;(d) = 1
indicating that patch i is open, and a;(d) = 0 indicating that
patch i is closed, for the duration of year d (in other words,
ait)=1forallt € [d, d + 1) if a;(d) = 1). We also assume that
due to stakeholder concerns, the manager is not allowed to
close all the patches at once. Letting .4 denote the set of all
actions the manager can take in a single year; we have that
Al =2"—1.

The manager’s goal can include both maximizing harvest
and protecting habitat. The manager receives Reward(d) at
the end of year d, which represents how well they met these
two objectives. More specifically, Reward(d) is a weighted sum
of the total harvest and the total habitat quality through-
out the fishery over the course of year d. The weights
can be adjusted to control how much the manager cares
about maximizing harvest versus protecting seafloor habi-
tat. The ultimate goal of the manager is to maximize the
sum of the discounted rewards over an infinite time hori-
zon. When the closure status of each patch is allowed to
change on a yearly basis, the resulting policies are called
DSCs. A key focus of our work will be comparing these
DSC policies with MPAs, in which the closure status of each
patch is not allowed to change over time (ai(d) = a; for
all d).

2.2. State dynamics

Recall that x;(t), h;(t), and f;(f) are the stock, habitat quality,
and effort in patch i at time t, respectively. The dynamics of
our fishery model are a system of ordinary differential equa-
tions (ODEs) having the form

dx;
(1) % = Growth; (t) + Movement; (t) — Harvest; (t)
dh;
(2) & Recovery, (t) — Damage, (t)
dfi . .
(3) i Entry, (t) — Exit; (t) + Relocation; (t)
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In this section, we first discus the two potential effects of
habitat on the stock that we consider. Subsequently, we dis-
cuss each of the state processes (Growth, Movement, etc.) in
eqs. 1-3, paying particular attention to where and how each
habitat-stock effect is incorporated. Parameter values will be
discussed later in Section 2.5.

2.2.1. Habitat-stock effects

We assume that habitat quality may potentially impact
both the population growth and the movement behavior of
the stock.

Empirical evidence has suggested several possible benefits
of higher habitat quality to fish population growth. Here
we specifically focus on how healthy seafloor habitat may
increase the survival of early life stages (and subsequently,
increase recruitment). We refer to this as the "habitat-stock
survival effect". To represent this effect formally, we denote
the scaled effect of patch i (with habitat quality h;(t)) on
survival by

(4)  Aj(t)=1+2¢s(hi(t)—0.5)

Here ¢ denotes the strength of the habitat-stock survival
effect, with 0 < ¢s < 1. A value of ¢ = 0 indicates that early-
stage survival is independent of habitat quality, while ¢, =1
indicates a strong positive effect of habitat quality on early-
stage survival. Note that with hy,x = 1 (which is used through-
out this work), we have that 0 < k() < 1, and subsequently
1—¢s <A (t) < 1+ ¢

Empirical evidence has also suggested that fish might
have a preference for areas with greater habitat quality.
We call this the "habitat-stock movement effect". In our
model, we will assume that higher habitat quality may both
(1) increase the preference recruits have for settling in a
patch, and (2) decrease the movement rate of mobile adults
from a patch. As recruits immediately join the adult popu-
lation after settling in a patch, we assume that they have
the same preference for habitat as adults. To represent the
habitat-stock movement effect, we let the scaled prefer-
ence that fish have for patch i (with habitat quality h;(t)) be
denoted by

(5)  A™(t)=142¢m (hi(t) —0.5)

Here ¢, denotes the strength of the habitat-stock move-
ment effect, with 0 < ¢, < 1. A value of ¢, = 0 indicates
that patch preference is independent of habitat quality,
while ¢, = 1 indicates a strong preference for patches with
greater habitat quality. Note that with hy,x = 1 (which is
used throughout this work), we have that 0 < hi(t) < 1, and
subsequently 1 — ¢, < A" (£) < 1+ ¢p.

While several past models considering optimal spatial clo-
sures have assumed that habitat impacts fish population
growth, only Algawasmeh and Lutscher (2019) consider that
habitat might affect fish movement behavior. Our approach
differs slightly from Alqawasmeh and Lutscher (2019), who do
not explicitly model habitat quality, but rather assume that
fishing activity may instantly affect fish movement behavior
(by increasing the movement rate outside of protected areas
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Fig. 1. Summary of the steps in our modeling framework.

Model Framework Summary: Starting at the beginning of year d,

1. The manager selects an action a(d), representing which patches are
open/closed for the duration of year d

2. The dynamics of the fishery are simulated for times € [d,d + 1)

3. The manager receives Reward(d), representing the dual goals of
maximizing harvest and maximizing habitat quality

4. Advance to year d+ 1 and return to step 1

and/or bias toward protected areas). However, both our ap-
proaches maintain the same key assumption that fish may
prefer less disturbed areas.

2.2.2. Stock dynamics

The growth equation represents the instantaneous change
to the stock in patch i through recruitment and natural mor-
tality.

Al (t ry X (t
6 Growth(t) = (AL r2x®)
DA )1+ K2 iXilt)
—— LT YA ——
recruit spatial natural
total mortality

distribution recruitment

We will assume that (1) recruitment happens throughout
the year (and is not affected by seasonality), and (2) the early
life stages disperse widely and function as a common juve-
nile pool. The "total recruitment” term represents the total in-
stantaneous recruitment for the entire fishery coming from
this common pool. The potential total instantaneous recruit-
ment is given by r) ;xi(t), where r is the stock growth rate.
Actual total instantaneous recruitment is reduced through
density-dependent effects, represented by the denominator
of the "total recruitment" term, where « is a scaling param-
eter. As we assumed a common juvenile pool model, to rep-
resent the habitat-stock survival effect, we let the survival
of early life stages depend on the status of the entire fishery
aggregated across all spatial patches (represented by ) ,A? (t);
see eq. 4). As ) A} (t) increases, survival (and, subsequently,
recruitment) increases.

The total instantaneous recruitment is then distributed
between patches by the "recruit distribution" term. To in-
corporate the habitat-stock movement effect for recruits,
we assume that recruits settle in patches in proportion
to their scaled patch preferences (A (t); see eq. 5), upon
which they enter the adult population. Finally, we assume
that the natural mortality of the stock occurs at a constant
rate p.

The movement equation represents the net movement of
the stock (i.e., adults) infout of patch i. The first term gives
the instantaneous movement out of patch i, while the second

gives the total instantaneous movement into patch i.

x; (1) .
(7) Movement; (t) =« | Y; Am(t) + Z
—_—— J=
movement out ]751
of patch i

- X(t)
AT (r)
———

movement to i
from other patches

Here « is the stock movement rate parameter, and Y;; are
movement weights. To represent the habitat-stock move-
ment effect for a mobile stock (@ > 0), we assume that adults
do not have any information about the habitat quality in
other patches, and make the decision to leave a patch based
only on its scaled patch preference (A" (t); see eq. 5). Specif-
ically, we let the rate of adult movement out of a patch be
inversely proportional to A" (t), meaning that mobile adults
are less likely to leave a patch with a higher A" (t). On
the other hand, when modeling a sedentary stock, we let
« = 0, in which case no movement of adults occurs (note,
though, that recruits are still assumed to be mobile; see
eq. 6).

The weights Y;; determine the pattern in which mobile
adults move between patches (representing the geometry of
patches, directional biases, etc.). For i # j, Y;; gives the pro-
portion of fish leaving patch j that enter patch i. On the other
hand, Y;; represents the movement out of patch i. In our anal-
ysis, we use the following matrix of Y;; values:

r—0.5 0.5 0 0 0
05 -1 05 O 0
0

8 Y=| 0 05 -1 05
0 0 05 -1 05
0 0 05 —05_

This represents a fishery with n = 5 patches in a line,
fish movement only allowed between neighboring patches,
and no directional bias. Essentially, of the fish leaving each
patch, half will end up in each neighboring patch (reflecting
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our assumption that fish don’t know the habitat quality of a
patch until entering that patch). This matrix of weights also
assumes a reflecting outer boundary (half the fish that at-
tempt to leave an end patch instead hit the habitat boundary
and do not leave the patch).

Finally, the harvest equation represents the harvest of the
stock in patch i by the fishing effort in patch i. For this we as-
sume a simple type I functional response (the Schaefer catch
equation):

(9)  Harvest; (t) = qa; (t) i (t) fi (t)

where ¢q 1is the catchability parameter. Multiplica-
tion by the management action g;(f) is included to
emphasize that no harvest occurs in a closed patch
(when a,(t) = 0).

2.2.3. Habitat dynamics

We assume that damaged habitat is able to recover
in quality over time, which we represent with the re-
covery equation. Similar to Smeltz et al. (2019), we as-
sume that habitat recovery is of an exponential asymptotic
form,

(10) Recovery; (t) = B (hmax — hi (t))

where g is the habitat recovery rate and hy,x is the maximum
habitat quality that can occur in a given patch.

The damage equation represents damage to each patch
by the fishing effort in that patch. As with the harvest
term for stock, we assume a type I functional response for
habitat damage caused by fishing activity. This is the same
functional form as used in past works that explicitly model
habitat and habitat damage (Nichols et al. 2018; Kelly et al.
2019).

(11) Damage; (t) = ya; (t)hi (t) fi (t)

The habitat impact parameter y represents how damaging
the fishing gear is to habitat (or equivalently, how sensitive
the habitat is to damage). A value of y = 0 implies that no
habitat damage occurs. Multiplication by the management
action a;(t) is again included to emphasize that no damage
occurs in a closed patch (when a;(t) = 0).

2.2.4. Effort dynamics

We assume that fishing effort follows open-access dynam-
ics in open patches, and that no effort is permitted within
closed patches (the closures are strictly "no-take"). This means
that effort will enter an open patch from outside the fishery
when it is profitable to do so, and leave when it is not. Let C;(t)
= qa;(t)x;(t) be the instantaneous catch per unit effort (CPUE)
in patch i, p be the price per unit harvest, and c be the cost
per unit effort (we multiply CPUE by the management action
to ensure there is no catch allowed in a closed patch, where
ai(t) = 0). Then, the instantaneous average profit in patch i
can be written as Pj(t) = pCi(t) — c.

The classic open-access model (Smith 1969; Sanchirico and
Wilen 2001) would assume that effort enters and exits an
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open patch from outside the fishery according to the equa-
tion df;/dt = P, (t) f; (t). However, this form poses issues when
it comes to modeling patch closures and reopenings, as if
there is no effort in a patch (fi(t) = 0), then df;/dt = 0 always.
This means that when a closed patch is reopened, no effort
would move into it from outside the fishery, even if the po-
tential CPUE was very high. We rectify this issue by making
slight changes to the classic open-access equation while main-
taining the key aspects of its dynamics. Notably, we want our
model to satisfy the property that effort will enter an open
patch from outside the fishery when P;(t) > 0, and exit when
Pi(t) < 0. We thus define the entry and exit terms for effort
in our model by

(12)  Entry; () = AentP;" (t)

(13)  Exit; (t) = AexitP; (£) fi (F)

where P™ = max (P, 0),P~ = —min (P, 0), and Aent, Aexit T€PTe-
sent respective rates for entry and exit. We assume that when
effort entry occurs, it is independent of the amount of effort
currently present in the patch. This allows effort to enter into
recently reopened patches from outside the fishery. In the
case of effort exiting the fishery, our form matches the clas-
sic open-access model exactly.

Additionally, we allow effort already in the fishery to
quickly move between patches. We assume that fishers will
move between patches in response to Cj(t) (CPUE), and define
the relocation term for effort as

(14) Relocation; (t) = hxet 3 [c;]. (t) f; ) — C; (1) f (t)]
j#i

where C; ;(t) = Cj(t) — Cj(t) gives the difference in CPUE be-
tween patch i and patch j, A, represents the rate of ef-
fort movement between patches, and C* = max(C, 0),C~
= —min(C, 0). Essentially, if Cj(t) > Cj(t), effort will move
from patch j to patch i (and vice versa). Unlike the stock, we
do not constrain effort to move only between neighboring
patches. Additionally, we assume that Ape; > tent, Aexit» Such
that movement between patches occurs more quickly than
exiting/entering the fishery does.

Finally, our model must account for what happens to
effort in patches that become closed. When a patch contain-
ing effort is closed by the manager, we assume that the ef-
fort is instantaneously redistributed into patches that are
open, representing how real spatial closures often result
in effort shifting into other areas (Agardy et al. 2011). As
a simple way of representing this displacement, we redis-
tribute effort from newly closed patches to open patches in
proportion to the amount of effort currently in each open
patch.

2.3. Management goals and rewards
The reward given to the manager for year d is a weighted
sum of the total harvest and total habitat quality over the
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course of the year,

d+1 n
(15) Reward(d) = / Wharv |:Z Harvest; (t)
d

i=1 .
+ Whab |:Z h; (t)i| dt
i=1
The manager wishes to maximize the total discounted re-
ward (with discount factor §) on an infinite time horizon. No-
tably, the total discounted reward can also be written as a
weighted sum of the total discounted harvest and the total
discounted habitat. Both forms are shown in eq. 16.

(16) Total discounted reward = Z(Sd Reward (d)

d=0
ot d+1
d
= Wharv E 8 /
=0 d

n
ZHarvesti () dt)
total discounted harvest

i=1
o0 d+1 n

+ Whap ) 7 f Y () di
d=0 a ia

total discounted habitat

Since we cannot actually simulate an infinite time horizon,
we estimate the total discounted reward on a large, finite
time horizon tr. For our selected discount factor of § = 0.95,
we found tr = 150 years to be sufficient.

In investigating spatial closure policies, we will con-
sider both conventional single-objective harvest maximiza-
tion (Whary = 1, whapy = 0) and multiobjective optimization
with nonzero weights on both harvest and habitat. While
our optimization focus is on maximizing yield in the single-
objective setting, we still pay attention to the habitat con-
ditions occurring under each policy. Notably, some policies
may result in more or less habitat degradation than oth-
ers, even though habitat protection was not explicitly in-
cluded in the optimization goal. We call this a "secondary
habitat benefit". This secondary benefit could, for instance,
be seen as a tie-breaker for policies that perform similarly in
yield.

In the multiobjective setting, our general approach will be
to vary wp,, over a range of values in [0,1] (with wpa,y = 1
— Whap), and look at the resulting policies produced in each
scenario. Plotting the total discounted harvest vs. total dis-
counted habitat for each policy allows us to visualize the
range of possible outcomes as different management goals
are prioritized. We call a policy “Pareto optimal” if no other
policy of the same class (e.g., comparing DSC policies with
DSC policies) produces both a larger discounted harvest and
a larger discounted habitat (or ties in one and is larger in the
other). Connecting all the Pareto optimal policies with a line
allows us to visualize the “Pareto frontier”, a representation
of the outer boundary of what can be obtained using only
that class of policy. Rather than deciding on exact mathemat-
ical weights (Whap and whpary) to define an optimization goal, a
manager could visually inspect a Pareto plot, and after con-
sidering different trade-offs, pick the "best" policy for their
fishery.

Finally, we also briefly consider a stochastic setting, in
which there is variability in yearly recruitment. In this set-

ting, the manager’s goal becomes to maximize the expected
total discounted reward. The procedure for this setting is fur-
ther discussed in Supplementary Material Section S3.

2.4. Summary of optimization methods

For DSCs, we define a policy as a function that outputs
the manager’s action (which patches are opened/closed) at
each state. Ideally, we would like to find a DSC policy that
maximizes the total discounted reward. In simpler models
(e.g., where there are only a finite number of possible states),
this could be done using an algorithm such as value iteration
(Sutton and Barto 2018). However, due to the complexity
of our model, we must rely on approximate optimization
methods instead, with the goal of finding near-optimal
DSC policies. Specifically, we use an approximate dynamic
programming (ADP) algorithm called “sampling-based fitted
value iteration” (as described in Munos and Szepesvdri 2008).
While classic value iteration proceeds in iterations that re-
quire calculations at every state in the state space, sampling-
based fitted value iteration calculates each iteration at a
sample of states, and then uses a functional approximation
to generalize to other states. This ADP algorithm can thus
be applied to models with large and continuous state spaces,
such as ours. Interested readers may refer to Appendix Sec-
tion A.1 and Fig. A1 for a more thorough description of
the algorithm and our implementation details, but these
specifics are not necessary to understand our results. Because
the ADP algorithm involves random sampling, each run will
produce slightly different DSC policies; however, we found
that the difference in policy performance between runs was
generally very small (see Section A.1).

All simulations and optimization were performed in Mi-
crosoft R Open 4.0.2 (R Core Team 2020). ODEs were solved
with the ode function from the deSolve package, using the
Adams method (Soetaert et al. 2010). For the functional ap-
proximation in the ADP algorithm, we used a GAM (gener-
alized additive model), implemented with the mgcv package
(Wood 2017).

2.5. Parameters

We will examine a fishery consisting of n = 5 patches in
a line. The key parameters that we will vary in our analysis
are the strength of the habitat-stock survival effect (¢5) and
the strength of the habitat-stock movement effect (¢n,), along
with the stock movement rate « (to represent either a seden-
tary stock or a mobile stock). Although we vary ¢s, ¢, over
several values, throughout our analysis we pay particular at-
tention to two scenarios: "no habitat-stock effects" (meaning
¢s = ¢m = 0) and "very strong habitat-stock effects” (meaning
¢s = ¢m = 1)-

Other parameters will remain fixed in the "base case",
which will be used for the majority of our analysis. Table 1
gives a summary of our model parameters and the chosen
value(s) for each in the base case. We selected the stock
parameter values to represent a typical harvested marine
taxa where the early life stages contribute to a common
juvenile pool. Similarly, habitat parameter values were se-
lected to be moderate to represent a typical habitat impacted
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Table 1. A summary of model parameters and their selected values in the base case.

Parameter Meaning Base case value(s) Units
n Number of patches 5 (arranged in a line) patches
Ps Strength of habitat-stock survival effect Varied in {0, 0.5, 0.8, 1} unitless
dm Strength of habitat-stock movement Varied in {0, 0.5, 0.8, 1} unitless
effect
r Growth parameter for stock 0.8 year~!
K Recruitment term scaling parameter unitless
m Stock natural mortality rate 0.2 year—!
o Stock movement rate 0 (sedentary), 1 (mobile) year~!
Yi Weights for fish movement see Section 2.2 unitless
q Catchability parameter * year—!
B Habitat recovery rate 0.2 year™!
hmax Maximum (per patch) habitat quality * unitless
y Habitat impact parameter * year~!
P Price per unit harvest * unitless
c Cost per unit effort 1 year—!
Aent Rate of effort entry into fishery 10 unitless
Aexit Rate of effort exit from fishery 10 unitless
Arel Rate of effort movement between 50 unitless
patches
xf Stock open-access equilibrium 0.1 unitless
hy Habitat open-access equilibrium 0.25 unitless
I Effort open-access equilibrium 1 unitless
X Stock no-fishing equilibrium 1 unitless
fl;‘ Habitat no-fishing equilibrium 1 unitless
fi* Effort no-fishing equilibrium 0 unitless
te Time horizon used to estimate infinite 150 years
horizon reward
) Discount factor 0.95 unitless
Whab Reward weight for habitat protection 0 (single objective), varied in [0, 1] unitless
(multiobjective)
Whary Reward weight for harvest 1 — Whap unitless

Note: A *" under "base case values(s)" indicates that the parameter is found analytically using the equations in Section A.3 such that the

chosen values for the equilibria (x;, hf, f*, &, h, f;") result.

Table 2. Key parameters changed for each of the four alter-
native cases explored.

Case description r B b (v)
Base case 0.8 0.2 0.25 (0.6)
(C1) Slower habitat recovery 0.8 0.1 0.1429 (0.6)
(C2) Less damaging gear 0.8 0.2 0.4 (0.3)
(C3) Slower habitat recovery and 0.8 0.1 0.25 (0.3)
less damaging gear

(C4) Decreased stock productivity 0.45 0.2 0.25 (0.6)

Note: The remaining parameters take their base case values, given in Table 1.
r is the stock growth parameter, $ is the habitat recovery rate, and h; is the
open-access habitat equilibrium (from which the habitat impact parameter y is
calculated using eq. A6).

by bottom-towed fishing gear. We will also consider several
alternate cases in which some key parameters will differ
from the base case (see Table 2). In the alternative cases, we
vary the habitat recovery rate, the damage caused by fish-
ing gear (equivalently, the sensitivity of the habitat), and the
productivity of the stock. Additional details about parameter
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selection for the base case and alternative cases are given in
Section A.2.

Two sets of equilibria are of central importance to our
model: the open-access equilibria (x, hf, f), occurring
when all patches are open, and the no-fishing equilibria
(%5, ﬁ;*, fi*), occurring when all patches are closed. The
formulas for each equilibria are given and discussed in
Appendix Section A.3. We fix the values for these equilib-
ria, and then solve for some parameters (those marked with
a "x" in Table 1) to result in the chosen values. For exam-
ple, the habitat impact parameter y is determined based on
the value for the open-access habitat equilibrium h} using
eq. A6. The base case values for each equilibria are listed
in Table 1. Note that we set x! to a small value to repre-
sent that the fishery is overfished under open-access condi-
tions. Similarly, h} is set to a small value to represent that
continually fishing at open-access effort levels is very dam-
aging to the seafloor. The open-access equilibrium will also
serve as our initial state in simulations (in other words,
we assume that the fishery was previously unmanaged):
%(0) = %7 1 (0) = hf. £ (0) = f;.
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2.6. Comparison with other policy classes

Section 2.4 discussed our procedure for finding near-
optimal policies of DSCs. Our analysis will focus on how these
DSC policies compare in performance with other classes of
policies, which are described here.

2.6.1. Marine protected areas

For MPAs (i.e. fixed spatial closures), we assume that the
manager decides which patches are closed at t = 0, and does
not change the closures throughout the entire time horizon.
In an n-patch model, there are 2" — 1 possible configura-
tions of MPAs (since the manager is not allowed to close all
patches), so we simply simulate each one and select the con-
figuration that maximizes the total discounted reward. Com-
paring our DSC policies with the best MPA will let us identify
when significant gains could be achieved by allowing spatial
closures to change over time.

As a quick note, theoretically, our DSC policies should al-
ways perform at least as well as the best MPA, because making
decisions identical to the best MPA is always an option. How-
ever, because ADP is an approximate optimization algorithm,
there were a few scenarios where the best MPA slightly out-
performed the best DSC policy.

2.6.2. Heuristic spatial policies

While our DSC policies represent an upper bound for the
performance of (yearly changing) spatial closures, they may
be quite challenging to implement in real life. These policies
require a large amount of information to develop, which may
not be available, especially for fisheries with limited man-
agement resources available. Additionally, they may produce
quite complicated patterns of spatial closures, which may be
undesirable from a management perspective. Thus, we also
consider some simple heuristic policies of rotating spatial
closures on a fixed schedule. These heuristic policies rotate
through all n patches in order with one patch open at a time;
each patch is open for a fixed length of y™* years (and closed
otherwise). Since the fishery begins in a depleted state, an ini-
tial period of y™¢ years is also included to give the fishery time
to recover before the rotations begin. For the first y™° years,
one patch is permanently open and the rest are closed (as not
all n patches are allowed to be closed at once). We vary y™t ¢
{1, 2,3}and y™° € {2, 3, ..., 8} to get an assortment of reason-
able rotational policies, and compare their harvest and habi-
tat protection performance to the best DSC policy and the
best MPA. Beyond these simple heuristic policies of rotating
spatial closures, we also briefly examine how heuristic poli-
cies could utilize additional information about the optimal
DSC policies to achieve improved performance.

2.6.3. Nonspatial maximum sustainable yield

Finally, as a performance benchmark, we also compare our
DSC policies to nonspatial management at MSY harvest rates.
Maximum sustainable yield is the largest catch that can be
sustained in a fishery indefinitely (Maunder 2008). For our

nonspatial MSY benchmark, we assume that the manager has
total control over equilibrium effort, but manages the fishery
in a nonspatial manner (the effort level in every patch is the
same). Note that under this management regime, the fishery
is no longer open-access. The calculation of MSY is shown in Sec-
tion A.4.

To allow for a direct comparison to our nonspatial MSY
benchmark, we will consider the average harvest and habitat
produced by our DSC policies, taken over the time interval
[10, ty] years. Although our DSC policies are trained to max-
imize the total discounted reward rather than the average
reward, we find that they still perform well in the latter.
As our DSC policies assume an initially depleted fishery,
we ignore the first 10 years to allow the fishery time to
recover.

3. Results
3.1. Maximizing yield: base case

3.1.1. Demonstration and characteristic policies

We begin by considering a single-objective management
goal, where the manager’s only aim is to maximize yield
(Whab = 0, Whary = 1), under base case parameters. To demon-
strate our procedure and explore the characteristics of the
resulting policies, Fig. 2 presents the best DSC and MPA
in four scenarios: a sedentary stock with no habitat-stock
effects (¢pm = ¢s = 0), a sedentary stock with very strong
habitat-stock effects (¢, = ¢s = 1), a mobile stock with no
habitat-stock effects, and a mobile stock with very strong
habitat-stock effects.

We found that the DSC policies generally had two distinct
sections: an initial "recovery” period lasting a few to several
years, followed by a "rotational" period lasting the remainder
of the time horizon. During the "recovery" period, a single
patch was permanently open and the rest were closed, giv-
ing the fishery a chance to recover from its initially depleted
state. (Recall that the manager was not allowed to close all n
patches at once.) The recovery period was longer for the mo-
bile stock, and in the very strong habitat-stock effects sce-
narios. During the "rotational" period, which patch(es) were
open changed through time. The length of the openings in
the rotational period varied from 1 year to several years, as
did the time between openings. It was common for only one
patch to be open at a time during the rotational period (al-
though see Fig. 2D). This is likely due to our chosen parameter
values: notably, we assumed that the stock is overfished un-
der open-access conditions, and thus keeping more patches
closed at once to maintain a larger stock size may often be
optimal. Keeping more patches closed also results in more
habitat protection (and subsequently, greater recruitment if
¢s > 0). The strength of the habitat-stock effects and the mo-
bility of the stock both qualitatively affected the behavior
of the optimal DSC policies in the rotational period. For the
sedentary stock (Figs. 2A and 2B), very strong habitat-stock ef-
fects generally increased the number of years each patch was
closed between openings, and the number of years each patch
was consecutively open. For the mobile stock (Figs. 2C and
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Fig. 2. The best dynamic spatial closure (DSC) policy from single-objective optimization (harvest only; wh,, = 0), and corre-
sponding best marine protected area (MPA), in four stock mobility/habitat effects scenarios. The behavior of the best DSC and
MPA was strongly affected by both the mobility of the stock and the strength of the habitat—stock effects. “No habitat-stock
effects” implies ¢, = ¢s = 0, while “very strong habitat-stock effects” implies ¢, = ¢s = 1. Other parameters take their base
case values (Table 1). Only the first 50 years of decisions are shown for clarity.
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2D), very strong habitat-stock effects shifted the optimal DSC
policy from one with several permanent closures to a pulse
fishing strategy, with the entire fishery opened once every
several years. Finally, the strength of the habitat-stock effects
and the mobility of the stock also affected the best MPA con-
figuration. More patches were closed in the optimal MPA for
the mobile stock, and in the no habitat-stock effect scenarios
(Fig. 2).
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3.1.2. Relative performance across policies

For both yield and secondary habitat benefits, the optimal-
ity of DSCs versus MPAs generally increased as the strengths
of the habitat-stock effects (¢s, ¢m) increased (Figs. 3A and
3B). When there was no effect of habitat on stock move-
ment (¢, = 0), the best DSC policy achieved similar or only
slightly larger harvests than the best MPA (Fig. 3A). However,
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Fig. 3. Relative performance of dynamic spatial closures (DSCs) under base case parameters (Table 1) for a single-objective
optimization goal (harvest only; wpha, = 0). The optimality of DSCs versus marine protected areas (MPAs) and the nonspatial
maximum sustainable yield (MSY) benchmark strongly depends on the strengths of both habitat-stock effects (survival and
movement). (A) Ratio of discounted harvest of the best DSC policy to the best MPA. (B) Ratio of discounted habitat of the best
DSC policy to the best MPA. (C) Ratio of postrecovery average harvest of the best DSC policy to nonspatial MSY. (D) Ratio of
postrecovery average habitat of the best DSC policy to equilibrium habitat under nonspatial MSY management.
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when the habitat-stock movement effect was present (¢,
> 0), DSCs were often able to produce significantly larger
discounted harvests: up to 71% (sedentary stock) and 55%
(mobile stock) greater than that produced by the best MPA
(Fig. 3A). Additionally, DSCs achieved larger secondary habi-
tat benefits than MPAs in many scenarios, notably for the
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sedentary stock (Fig. 3B). DSCs resulted in discounted habitat
up to 129% (sedentary stock) and 60% (mobile stock) greater
than that resulting from the best MPA (Fig. 3B).

We observed that when fish have a strong preference for
habitat, they tended to aggregate in areas that had been
closed for a while (and therefore had a high habitat quality),
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potentially decreasing yield if they were unreachable by fish-
ers (Fig. S1). This was a key driver in the performance differ-
ence between DSCs and MPAs. DSCs were able to allow access
to areas with high densities of fish by changing the placement
of closures through time, helping to alleviate this problem.
On the other hand, using MPAs (i.e. fixed spatial closures) re-
sulted in a trade-off between closing more patches to protect
more of the stock and habitat, and closing fewer patches and
making fish more accessible to harvest. The optimal number
of patch closures in the best (harvest-maximizing) MPA de-
creased as the strength of the habitat-stock movement effect
increased, with this pattern especially strong for the mobile
stock (Fig. S2). In fact, there were some scenarios (e.g., Fig. 2B)
for which the strong habitat-stock movement effect made it
so that the best MPA configuration was to close no patches
at all.

Now comparing DSCs with our nonspatial MSY bench-
mark, we find that for both yield and secondary habitat
benefits, the optimality of DSCs generally increased as the
strength of the habitat-stock survival effect (¢s) increased
(Figs. 3C and 3D). When there was no effect of habitat on sur-
vival (¢s = 0), DSCs could match but not increase yield versus
nonspatial MSY (Fig. 3C). However, when habitat did affect
survival (¢s > 0), DSCs could produce average postrecovery
harvests greater than nonspatial MSY (up to 83% for the
sedentary stock and 164% for the mobile stock; Fig. 3C). The
ability of DSCs to protect more habitat than nonspatial man-
agement at MSY harvest rates explains why DSCs were able
to produce average yields greater than nonspatial MSY when
the habitat-stock survival effect was present. DSCs were able
to achieve more habitat protection than our nonspatial MSY
benchmark in most cases: up to 42% (sedentary stock) and
96% (mobile stock) greater (Fig. 3D). On the other hand, the
habitat-stock movement effect had varied impacts on the
optimality of DSCs versus nonspatial MSY (with respect to
both yield and habitat protection). For the sedentary stock,
the habitat-stock movement effect had little impact on the
relative performance of DSCs; for the mobile stock, the rela-
tive performance of DSCs generally increased as the strength
of the habitat-stock movement effect decreased (Figs. 3C
and 3D).

3.1.3. Heuristic spatial policies

In scenarios with no habitat-stock effects (¢ = ¢s = 0),
our heuristic policies of rotating spatial closures achieved
similar harvests as the best DSC and best MPA, although the
amount of habitat protection varied more greatly (Fig. S3). On
the other hand, under very strong habitat-stock effects (¢m
= ¢s = 1), our heuristic rotational policies often achieved less
harvest than the best DSC (upwards of 25% less in the worst
case), especially for the mobile stock (Figs. 4A and 4B). The
heuristic rotational policies also often achieved less habitat
protection under very strong habitat-stock effects (Figs. 4A
and 4B). Despite this, all heuristic policies achieved notably
better performance than the best MPA under very strong
habitat effects (Figs. 4A and 4B). This suggests that even in
information-limited systems where it is hard to identify and
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implement optimal dynamic patterns of spatial closures, sim-
ple policies of rotating spatial closures may be able to capture
many of their benefits.

We also investigated how using additional information
from the DSC policies could produce better heuristic poli-
cies. For example, the best DSC policy for the "mobile stock,
very strong habitat effects" scenario (Fig. 2D) suggests a pulse
fishing strategy, as opposed to a rotational strategy. We thus
consider a range of heuristic pulse fishing policies for this
scenario, wherein all patches are open to fishing every yPu!se
years, and between that a single patch is open (to meet the
management requirement that not all patches can be closed
at once). We vary y?"s¢ ¢ {8, 10, ..., 20} years, representing
a wide range of pulse lengths around that of the best DSC
policy (15 years, Fig. 2D). An initial recovery period of y™¢
years is again included, but since the best DSC policy sug-
gests a longer recovery period (12 years, Fig. 2D), we vary y'*¢
€{8,9, ..., 16} years. Compared with the heuristic rotational
policies, we observe improved performance across this range
of heuristic pulse policies, with many achieving similar or
even slightly better harvests than the best DSC (Fig. 4C). This
"informed heuristics" approach demonstrates how optimal-
ity analysis might be used to guide simple heuristic policies
that would be easier to implement and manage.

3.1.4. Stochastic setting

Finally, we briefly consider a stochastic environment with
variable recruitment (described in Supplementary Material
Section S3). In this setting, we compared the performance of
DSC policies that take recruitment variability into account
when making decisions with DSC policies that ignore recruit-
ment variability. Ultimately, we found that the two policy
types performed similarly in the stochastic setting (Fig. S4),
indicating that it was not crucial to take this type of vari-
ability into account for decision-making. The results for the
stochastic setting are further discussed in Section S3.

3.2. Maximizing yield: alternative cases

Here we briefly summarize the main results found by
exploring the four alternative cases outlined in Table 2.
Additional details are given in Supplementary Material Sec-
tion S4 and Figs. S5-S8. First, we found that slower habitat
recovery rates had little impact on the optimality of DSCs
versus MPAs, but in most cases significantly increased the
performance of DSCs versus the nonspatial MSY manage-
ment benchmark. On the other hand, less damaging gear
decreased the benefits of using DSCs versus both MPAs
and nonspatial MSY management. Finally, we found that
decreasing stock productivity had little effect on the relative
optimality of the different policy classes.

3.3. Multiobjective management

Now we turn our attention to a multiobjective manage-
ment goal, where both harvest and habitat protection can
have non-zero weight (Whary, Whap) in the reward (eq. 16). Here
we focus our attention on two scenarios under base case pa-
rameters (Table 1): a sedentary stock with no habitat-stock
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Fig. 4. The performance of several heuristic policies and the best marine protected area (MPA), relative to the performance
of the best dynamic spatial closure (DSC) policy, for a single-objective optimization goal (harvest only; wh,, = 0) under very
strong habitat-stock effects (¢s = ¢, = 1). Other parameters take their base case values (Table 1). (A, B) A range of simple
rotational heuristic policies were generated by varying the initial recovery period and the length of patch openings (y*¢ and
y™°t; see Section 2.6.2). These heuristic policies sometimes achieve smaller discounted harvests than the best DSC policy, but
still notably outperform the best MPA. (C) Since the best DSC policy for a mobile stock with very strong habitat-stock effects
(Fig. 2D) suggests a pulse fishing strategy with a longer recovery period, a range of heuristic pulse policies were tested, varying
the initial recovery period and how often pulses occur (y™ and yP"!*¢; see Section 3.1.3). By using this additional information,
the heuristic policies were able to achieve similar performance to the best DSC.
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effects (¢, = ¢s = 0) and a sedentary stock with very strong
habitat-stock effects (¢pm = ¢s = 1).

For a sedentary stock with no habitat-stock effects, no
matter the weights used for habitat protection (Wpap) ver-
sus harvest (Whary), DSCs are only able to achieve marginal
improvements over the best MPA (Fig. 5A). This matches
our observations from the single-objective management case.
On the other hand, for a sedentary stock with very strong
habitat-stock effects, we find that the manager can obtain
significant benefits by using DSCs instead of MPAs across
a range of weights (Fig. 5B). Matching the single-objective
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case, when the management goal is mostly focused on har-
vest maximization (wpap is small), DSC policies significantly
outperform MPAs. As the manager’s goal shifts more to-
ward protecting habitat, however, DSCs begin to lose their
edge (the optimality of DSCs versus MPAs decreases as the
habitat weight wy,, increases). In extreme situations where
the habitat weight is sufficiently large, the optimal DSC
policy is in fact an MPA. Still, by varying the weights,
we see that DSCs are able to offer a variety of options
that provide different trade-offs between yield and habitat
protection.
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Fig. 5. Pareto plots summarizing the results of multiobjective optimization (where both harvest and habitat protection are
included as management goals). Each circle represents a dynamic spatial closure (DSC) policy generated under a different set of
weights (Whap, Whary)- Triangles represent all possible marine protected areas (MPAs); note that MPAs with the same number of
patches closed overlap in these examples. A policy is “Pareto optimal” if no other policy of the same class obtains both a larger
total discounted harvest and total discounted habitat. To represent the Pareto frontiers (which show the trade-offs between
the two management goals), Pareto optimal MPAs are connected with a dashed line while Pareto optimal DSCs are connected
with a solid line. Both panels consider a sedentary stock with base case parameters (Table 1). (A) No habitat-stock effects (¢m

= ¢s = 0). (B) Very strong habitat-stock effects (¢pm = ¢s = 1).

A Sedentary Stock, No Habitat-Stock Effects

>

Total discounted harvest
>

30 40 50

Total discounted habitat

B Sedentary Stock, Very Strong Habitat-Stock Effects

Total discounted harvest

30 40 50
Total discounted habitat

To visualize how DSC policies change as the weight given
to habitat protection changes, for each of the two scenar-
ios discussed previously, we selected four example policies to
present for the no habitat-stock effects scenario (Fig. S9) and
the very strong habitat-stock effects scenario (Fig. 6). As dis-
cussed in Section 3.1.1, the policies generally had two distinct
sections: a "recovery" period followed by a "rotational” period.

MPAs: Number of
patches closed

0
1

60 70

>>D> P b

2
3
4

DSC Policies

Not Pareto Optimal
QO Pareto Optimal

60 70

We found that the length of the recovery period increased as
the habitat weight (wy,p) increased. For example, in the no
habitat-stock effects (very strong habitat-stock effects) sce-
nario, the recovery period lasted 5 (8) years when wyp,, = 0,
but 11 (11) years when wp,, = 0.05 (Figs. 6A and 6B and S9A
and S9B). As the habitat weight increased, we also found that
switches in the rotational period became less frequent, and
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Fig. 6. The best dynamic spatial closure (DSC) policy from multiobjective optimization (for both harvest and habitat protection),
and corresponding best marine protected area (MPA), as the weight for habitat protection in the reward increases (Wnap, With
Whary = 1 — Whap). Increasing the weight for habitat protection strongly affected both the length of the recovery period and the
behavior in the rotational period for the DSC policies, and the number of patches closed in the best MPA. All panels consider a
sedentary stock under very strong habitat-stock effects (¢, = ¢s = 1); other parameters take their base case values (see Table 1).
Only the first 50 years of decisions are shown for clarity. Note that MPAs with the same number of patches closed perform

identically for a sedentary stock.
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the lengths of patch closures generally became longer. When
the habitat weight became sufficiently large, there were no
switches at all: in both scenarios, the optimal DSC policy was
an MPA with one patch open (Figs. 6D and S9D).

In both scenarios, the number of patches closed in the best
MPA increased as the habitat weight increased (Figs. 6 and

906

B

Closed Open

Best MPA

Best MPA

5-
4-
3-
2-
1-

Best MPA

40 50

Best MPA

S9; note that MPAs with the same number of patches closed
perform identically for a sedentary stock). When the habitat
weight was sufficiently large, the best MPA always involved a
single open patch (recall that the manager was not allowed
to close all n patches). In the very strong habitat-stock effects
scenario (Fig. 6), this shift occurred very quickly; note that
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because of the near-linear shape of the MPA Pareto frontier
in Fig. 5B, there were very few weights for which an MPA with
one, two, or three patch closures was optimal.

4. Discussion

Our approach allowed us to evaluate the effectiveness of
DSCs for balancing harvest with habitat protection in a con-
text that has previously focused predominantly on MPAs (i.e.,
fixed spatial closures). We found that DSCs offered improved
yield and greater habitat protection versus MPAs across many
scenarios for a fishery with fishing-induced habitat damage.
To date, on-the-ground implementations of DSCs have pre-
dominantly focused on targeted benthic stocks such as scal-
lops or urchins (Cohen and Foale 2013; Plaganyi et al. 2015;
O’Boyle et al. 2017). The best DSC policy still outperformed
the best MPA in some scenarios for a mobile stock (notably
under strong habitat-stock effects), demonstrating that they
may warrant further attention for such taxa, although the
benefits were generally greater for a sedentary stock. We also
found that DSCs were always able to match or increase yield
versus the nonspatial MSY benchmark, along with generally
providing greater habitat protection. This is despite several
restrictions faced by our DSC policies (the fishery was open-
access with no direct way to control effort, not all n patches
could be closed at once, etc.). Overall, we found DSCs to be
effective at meeting management goals in an open-access set-
ting, demonstrating their potential value when management
resources are limited (see also Reithe et al. 2014).

How strongly the stock is affected by habitat quality greatly
impacted the performance of DSCs. For instance, the rela-
tive benefits of DSCs (versus both MPAs and the nonspatial
MSY benchmark) were typically greater when habitat quality
had a larger effect on early life stage survival. Notably, DSCs
only produced higher average yields than nonspatial MSY
when this survival effect was present, due to the increased
habitat protection DSCs provided. This result broadly agrees
with past studies of spatial management (Moeller and Neu-
bert 2013, 2015; Alqawasmeh and Lutscher 2019; Kelly et al.
2019). The affinity that fish had for less disturbed areas was
also important. We found that MPAs performed poorly rela-
tive to DSCs in terms of both harvest and habitat protection
when fish had a strong preference for high-quality habitat
(because fish clustered in closed areas; see also Algawasmeh
and Lutscher 2019). DSCs were able to alleviate this problem
by allowing access to previously closed areas. As there is em-
pirical evidence supporting an interaction between habitat
quality and fish movement in some systems (Claudet et al.
2010; Griiss et al. 2011), this connection may deserve fur-
ther attention when considering the effectiveness of spatial
management policies. While changes in other factors (habi-
tat recovery rate, gear damage, etc.) affected the quantita-
tive performance of DSCs, the qualitative trends caused by
habitat-stock effects were consistent, which may have im-
portant management implications for any stock thought to
be highly affected by habitat quality.

Identification of optimal DSC policies is useful for deter-
mining the theoretical maximum performance of spatial
management strategies; however, this approach may present
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a high information burden to implement in practice, re-
quiring information on stock status, habitat distributions,
and fishery dynamics. To investigate the potential for imple-
menting DSCs with simpler approaches, we also explored the
harvest and habitat conservation performance of heuristic
rotating closure policies. These heuristic policies performed
robustly across a suite of rotational schedules tested (achiev-
ing comparable or greater harvests than the best MPA),
demonstrating their potential in systems where limited in-
formation is available for spatial siting analyses. We further
showed how improved heuristic spatial policies could be
developed when additional information is available (e.g.,
using a pulse rather than rotational strategy when suggested
by the optimal DSC policy). As heuristic spatial policies were
able to capture many of the benefits achievable by optimal
DSC policies, they may provide a practical yet effective
management option for real-world fisheries.

We found that DSCs offered both greater harvest and habi-
tat protection than the nonspatial MSY benchmark in many
scenarios, especially those with slower habitat recovery and
more damaging gear. Some types of habitat may take even
longer to recover postfishing than our slowest simulated
habitat recovery rates (e.g., coral, Rooper et al. 2011), for
which spatial management is likely to be even more impor-
tant. Other benefits spatial closures may offer over nonspa-
tial controls include being easier to manage, being able to
protect dedicated portions of fish populations, and providing
less disturbed areas for scientific study (Hilborn et al. 2004).
However, it is important to consider how spatial closures
and shifts in effort may impact fishers/fishing communities
when considering spatial management policies (Hilborn et al.
2004). DSCs would require both enforcement and coopera-
tion from fishers to be effective (as with MPAs; Sethi and
Hilborn 2008). Although we focus on how well spatial clo-
sures perform alone, they are likely to produce better over-
all results when combined with other management methods
(when such methods are feasible). Future research into DSCs
might examine their performance alongside harvest/effort
controls, a question which has mostly been considered for
MPAs in this setting (but see Kelly et al. 2019).

Given the potential benefits of DSCs identified by our
analysis, it is important to explore the robustness of our
findings and note where future research might be valuable.
First, there are many potential forms for the habitat-stock
effects that could be considered (e.g., besides early life
stage survival, habitat quality might impact population
growth via effects on somatic growth, natural mortality, or
so forth). Further theoretical investigation of habitat-stock
interactions represented by a variety of functional forms
may reveal important drivers for the effectiveness of spatial
management policies; additional empirical studies of the
impacts of habitat quality on a variety of taxa would provide
an important foundation for this study. Second, we chose to
focus on a single stock and its links to habitat to reduce the
size of the state space. Our model could be expanded in the
future to incorporate multispecies dynamics, an important
consideration for ecosystem-based fisheries management,
at the cost of an increased computational burden. State
models that incorporate structured populations may also be
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of interest in cases where the size or age of fish is important
for fisheries harvest/conservation goals.

As our aim was to represent a general case of a fishery with
fishing-induced habitat damage while limiting the computa-
tional burden, we chose to use a simple spatial configuration
(five patches in a line). While it would be possible to model ad-
ditional patches or more complex spatial arrangements, we
do not expect it to change our overall conclusions (e.g., that
DSCs outperform MPAs under strong habitat-stock effects).
Still, there may be real-world complexities and questions
relevant to managers requiring a model with more complex
spatial processes. For instance, if the fishery forms a habitat
mosaic with heterogeneous quality, or if different life stages
utilize different areas, the optimal DSC/MPA might look very
different. Our framework could be modified to examine such
questions (e.g., by letting h,.x differ between patches). While
we focused on two crucial fisheries management objectives,
maximizing harvest and protecting habitat, investigation of
the ability for DSCs to meet other goals (economic, conserva-
tion, social, etc.) may reveal additional benefits or drawbacks
of this management tool. Lastly, while we found our re-
sults were robust to stochastic recruitment (a key source of
variability; Thorson et al. 2014), there are other types of
stochasticity that may be relevant for a variety of systems.
For instance, examining stochasticity in habitat quality or
negative shocks resulting in large mortality events (Aalto
et al. 2019; White et al. 2021) might reveal situations
where taking variability into account is essential for spatial
decision-making.

Our work provides important contributions to the study
of fisheries with fishing-induced habitat damage. The tran-
sition to ecosystem-based fisheries management recognizes
the importance of management objectives beyond maximiz-
ing yield, a key one of which is maintaining seafloor habi-
tat integrity. We found DSCs often resulted in greater habitat
protection compared with other policies, even when habitat
protection was not included in the optimization goal. Fur-
thermore, we demonstrated how DSCs offer a wide variety of
options to meet different goals balancing harvest and habi-
tat protection. While DSCs have not been widely considered
as management options in comparison to MPAs, our work
demonstrates that they may show promise across a range of
systems and taxa for meeting fisheries management goals.
The need for a flexible, dynamic management approach may
be especially important under rapid climate-driven ocean
changes (Lynch et al. 2021).
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Appendix A

A.1 Approximate dynamic programming

Here we describe the optimization procedure used to find
policies of DSCs. As we consider both deterministic and
stochastic environments, the procedure here is written in
general terms that work in both cases (e.g., we consider the
expected total discounted reward, which would simplify to
just the total discounted reward in the deterministic case).

Let 7 be a policy, a function that outputs the manager’s ac-
tion at each state: given a state s(d) at the beginning of year
d, the action taken by the manager is a(d) = 7(s(d)). The per-
formance of a policy is quantified by its value function V7”,
which gives the expected total discounted reward given that
the system begins at state s and decisions are made according

to the policy 7 (Sutton and Barto 2018).

(A1) V™ (s)= [E[ isd Reward (d) | s(0)
d=0

=s, decisions made by n]

Notably, the value function can be written recursively
in the form of Bellman’s equation (Sutton and Barto
2018), where Reward(0) and new state s’ result from run-
ning the model for 1 year starting in state s and using
action 7 (s).

(A2) V7 (s)=E[Reward(0)+ V" (s) | s(0)=s,a(0)=m(s)]

Ideally, we would like to identify an optimal policy:
a policy m+ that maximizes the total discounted reward
(Vs € S, V™' (s) = max;V7 (s)). However, due to the com-
plexity of our model (notably the large, continuous state
space), we must turn to approximate optimization meth-
ods. Specifically, we use an ADP algorithm called “sampling-
based fitted value iteration” (as described in Munos and
Szepesvdri 2008), the general procedure of which is given
in Fig. Al.

As an initial value function, we select \70 = 0 uniformly.
With this as the initial value function, V; (s) estimates the
maximum expected reward obtained in 1 year, starting from
state s. Expanding this, it can be seen that generally, Vi es-
timates the maximum expected discounted reward from a
state when looking ahead k years. Intuitively, K (the total
number of training iterations) represents how many years
our resulting policy will look ahead when trying to make op-
timal decisions. We selected K = 30, and did not find increas-
ing K to result in better policies; with future years discounted
at rate §, the first 30 years are ~80% of the (discounted) infi-
nite future. In other words, with a discount factor of § = 0.95,
we found that it was not necessary for the policy to consider
the fishery more than 30 years in the future in order to make
good decisions.

We chose to sample ] = 200 states s; during each train-
ing iteration. To randomly generate these states, where s;
= (X1,j5 -es Xnj» M,jp ooes Mujs f1,o -..n fuj), we used the
following procedure. First, x; ; are drawn iid, with proba-
bility 0.7 from unif (0, %;) and with probability 0.3 from
unif (x; — 0.025, x7 + 0.025); recall that x; is the open-access
equilibrium and &} is the no-fishing equilibrium. We chose to
sample often from near the open-access equilibrium, since
open-access dynamics often dominate (as they occur when-
ever a patch is open). Then, we use the same procedure to
draw values for h;;, substituting in the appropriate equilib-
ria. Finally, for fi;, we simply let f; ; = f;* if h; ; < h} 4 0.025,
and f; j; = 0 otherwise (our assumption being that if h;; is
greater than this, the patch was likely closed or had little
effort during the previous year). Additionally, we always in-
clude the open-access equilibrium of the fishery (x;; = x],
hij = h, fij = f7) in every training set, as we found estimat-
ing the value of this state to be very important when train-
ing policies. This may be because the model ends up near
this state frequently (whenever all n patches were open in
the previous year); this state is also our initial condition, as
we assume that we start in open-access equilibrium. Finally,
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Fig. A1. Summary of the ADP algorithm we use to find near-optimal DSC policies: sampling-based fitted value iteration, from

Munos and Szepesvdri 2008.

ADP: Sampling-Based Fitted Value Iteration

1. Select an initial value function V;

2. Generate random states Sy, ...,Sy, and add them to the training set

3. For each state s, calculate Vj and add it to the training set:

V; = max E[Reward(0) + 8V(s') | s(0) =s;,a(0) = a]

acy/

(A3)

where Reward(0) and new state s’ result from running the model for one year
starting in state s(0) and using action a(0). In the stochastic case, the expected
value is estimated as the mean over M, trials.

4. Train a functional approximation V. | using the training set data (s s Vj)J

5. Repeat steps 2-4 for K iterations

J=1

6. After obtaining Vi, let T be the policy given by

n(s) = argmax,  ,E[Reward(0) + 8Vk(s') | s(0) =s,a(0) = a]

(A4)

where again, the expected value is estimated as the mean of M| trials in the
stochastic case. Test the performance of 7 by using it to make decisions over
a time horizon of 77 years (in the stochastic case, averaging over M trials of

the policy).

we make use of the symmetry of our problem to increase the
size of the training set. As §; = (X1,j, ..., Xn,j» N1,js -+v» Bnjs f1, s
---,fn,j) and §j = (XrL,ja s, X1, hn.js ey hl,jv fn,jv s, fl,j) will
always result in the same reward, we were able to double the
size of our training set without performing any additional
simulations.

Using the training set data (s;, \71)11:1 the following GAM
formula (implemented using the mgcv package in R) was used

~

to train Vi q:

(AS) Vi=po+ ) [ S3i-2 (Xi.5)

i=1

+ Szi—1 (hi,j) + Sai (%i,j) X5 + T (i3, hi j) ] +éj

where S are smooth functions using a thin plate regression
spline basis, and T are tensor product interaction smooths
using a cubic regression spline basis, x; =) | ;x;j, and &; ~
N (0, 0?). The first two terms in the sum are just smooth func-
tions of the stock size and the habitat quality in patch i. The
last two terms include interactions between the stock size in
patch i and the total stock size, and between the stock size
and habitat quality of patch i. The basis dimension k was set
to a low value in each term to limit the computational bur-
den and the number of training points required; we did not
find increasing k further to result in better performing poli-

cies. Other training settings used the defaults in the mgcv
package.

Since the samples of states used by the ADP algorithm
are randomly generated, each full run of the algorithm may
produce DSC policies with slightly different properties and
performance results. For instance, consider the DSC policies
in Figs. 2A and S9A, which were produced under the ex-
act same parameters. While these policies have some qual-
itative differences (e.g., a patch was permanently closed in
Fig. 2 A but not in Fig. S9A), they performed similarly, with
only a 1.13% difference in discounted reward. In the single
objective (harvest-maximizing) deterministic setting, we per-
formed three runs of the ADP algorithm for each parameter
combination under consideration, and selected the DSC pol-
icy resulting in the highest total discounted harvest. Over-
all, we found the difference between runs to be small across
parameter space (e.g., the mean percent difference between
the performance of the best and worst DSC policies of the
three runs in Section 3.1.2 was only 1.59%). Thus, in our fur-
ther analyses (multiobjective and stochastic settings), we only
performed one run of the ADP algorithm for each parameter
combination.

A.2 Parameter selection
For the base case, we selected © = 0.2 and r = 0.8 to
represent a medium productivity stock with a moderate
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(nonspatial) maximum sustainable yield exploitation rate of
20% (MSY/xMSY = 20% under no habitat-stock effects; see Sec-
tion A.4 for details on calculating nonspatial MSY). The habi-
tat recovery rate for the base case was also selected to be
moderate (8 = 0.2, resulting in a mean recovery time of
five years), but we note that estimated real habitat recovery
rates differ greatly based on the type of habitat (Grabowski
et al. 2014; Rooper et al. 2011). As the ratio between cost per
unit effort (c) and price per unit harvest (p) determines the
open-access dynamics, we simply set ¢ = 1. The rates of ef-
fort movement (Aent, Aexits Arel) Were hand selected, with Ay
> Aents Aexit T€Presenting that movement between patches
occurs more quickly than entering/exiting the fishery does.
The discount factor § was also selected to be moderate, al-
though this could vary greatly between fisheries based on
how much current versus future goals are prioritized. The
values for the habitat-stock effects parameters (¢, ¢s = O,
0.5, 0.8, 1) were selected because in the base case, they re-
spectively result in a fully recovered patch (h; (t) = 1~1;") hav-
ing a scaled habitat effect (eqs. 4 and 5) that is 1, 2, 3, or 4
times greater than that of a patch at open-access equilibrium
(i () = y).

For the alternative cases (Table 2), we adjust three key fac-
tors: the habitat recovery rate, the damage caused by fish-
ing gear (equivalently, the sensitivity of the habitat), and
the productivity of the stock. To examine how more slowly
recovering habitat may respond to spatial management, we
consider cases where the habitat recovery rate is = 0.1, half
its base case value. To examine how improvements in fishing
gear resulting in less habitat damage might impact our fish-
ery, we consider cases where the value for the open-access
habitat equilibrium (k) is selected to result in the habitat im-
pact parameter (y) being half its base case value, represent-
ing gear that is half as damaging. Finally, we consider one
alternative case concerning a less productive stock where r is
selected such that the resulting (nonspatial) maximum sus-
tainable yield exploitation rate is only 10%, compared with
20% in the base case.

A.3 Model equilibria
Here we give formulas for the model equilibria. These were
derived using the assumptions from Section 2.2 (notably that

effort follows open-access dynamics, and that the fish move-
ment weights Y; ; are as described).

The open-access equilibria (all patches are open) for the
stock, habitat, and effort are as follows:

c Bhmax 1 r
(AG) X:‘ = —, hf = - s fl* = — (Kx-* _ M)
pq v+ I\ 1+ 535 09)

x} is the stock level at which the instantaneous average
profit is 0 (if x; (t) > x;, then P;(t) > 0, resulting in effort en-
try and the stock being driven down; the reverse occurs if
xX; (t) < x}). b and f;* are found by setting % =0 and % =0,
respectively, while assuming a;(t) = 1 for all i.

The no-fishing equilibria (all patches are closed) for the
stock, habitat, and effort are as follows:

1+ 26 (hpax — 0.5 7 f
_ + ¢g(:ax )[%_1}’ h;kzhmax, fi*:()

A7) %

where f* = 0 since no effort is allowed in closed patches.
With no fishing activity, habitat can recover fully to its max-
imum quality, hpax. Finally, &} is found by setting dx;/dt = 0
with a;(t) = 0 for all i.

The parameters marked with a "x" in Table 1 are solved by
using eqgs. A6 and A7 using the following procedure: (1) hpax
is set to ﬁ;‘, (2) « is determined using the equation for &7, (3) g
is determined using the equation for f, (4) y is determined
using the equation for b, and finally (5) p is determined using
the equation for x;.

A.4 Calculating MSY R

Assuming the manager controls f*, the equilibrium per
patch effort level, the resulting equilibrium for stock and
habitat quality would be

1+2¢s(h;*—0.5)[ . _1} -
wtaf Covfi+B

The manager will pick the ]?l* that maximizes equilibrium
yield (MSY). The optimal (per patch) effort level will be de-
noted by fMSY, and the resulting (per patch) stock and habi-
tat quality under MSY will similarly be denoted as xM5¥ and
hMSY, respectively. The nonspatial maximum sustainable yield
exploitation rate, used in parameterizing our model, is then
defined as MSY/) }  xMSY.

2=
(A8) X = P
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