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We prove monotonicity of a parabolic frequency on static and evolving manifolds
without any curvature or other assumptions. These are parabolic analogs of Almgren's
frequency function. When the static manifold is Euclidean space and the drift operator
is the Ornstein-Uhlenbeck operator, this can been seen to imply Poon's frequency mono-
tonicity for the ordinary heat equation. When the manifold is self-similarly evolving by
the Ricci flow, we prove a parabolic frequency monotonicity for solutions of the heat
equation. For the self-similarly evolving Gaussian soliton, this gives directly Poon’s
monotonicity. Monotonicity of frequency is a parabolic analog of the 19th century
Hadamard three-circle theorem about log convexity of holomorphic functions on C.

From the monotonicity, we get parabolic unique continuation and backward uniqueness.

1 Introduction

Bounds on growth for functions satisfying a partial differential equation give crucial
information and have many consequences. One of the oldest bounds of this type is
Hadamard's three-circle theorem for holomorphic functions. For the Laplace equation,
Almgren [1] proved the monotonicity of a frequency function that measures the rate
of growth. Almgren'’s [1] frequency played a fundamental role in his regularity results
and other areas; see, for example, [16, 22]. It was generalized to the heat equation by
Poon [23]. The results of Almgren and Poon rely on the scaling structure of R" (cf.
[6]) and do not extend globally to general manifolds. Here we prove two very general
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monotonicities for heat equations on manifolds. Both recover Poon’s monotonicity. One
of these monotonicity is for drift heat equations on any static manifold. The other is
a monotonicity for a parabolic frequency for self-similarly evolving solutions of the
Ricci flow; when the shrinking flow is the Gaussian soliton, this recovers directly the
monotonicity in [23]. Part of the strength is the simplicity of the arguments.

Let (M, g) be a Riemannian manifold, ¢ : M — R a smooth function, and define

an operator £, (drift Laplacian) on vector-valued functions u : M — R” by
Lyu=Au—(Vu,V¢)=e’div (e Vu). (1.1)

These operators play an important role in many parabolic problems; see, for example,
x|

[7-9, 12]. The prime example of L, is on R™ with the flat metric, ¢ = -, and £, u =
T

Au— % (Vu, x) is the Ornstein-Uhlenbeck operator. We let Li and Wé‘z be the spaces of

square integrable RV -valued functions and Sobolev functions with respect to the weight

e~?. It follows from (1.1) that L, is self-adjoint on Wé'z with
f(u,£¢ vie?=— /(Vu,Vv)e"¢’. (1.2)

Suppose that u : M x [a,b] — RY is smooth and (some growth assumption is

necessary to rule out the classical Tychonoff example) u, u, € Wdl;z for each t € [a, b]. Set

I(t) = [\urz e?, (1.3)

D(t) = —/I |Vul?e™? =[<u,£¢, uye?, (1.4)
D

) = 5 (1.5)

Observe that with our convention U is always non-positive.

The next theorem is a parabolic analog of the classical Hadamard's three-circle
theorem (the three-circle theorem was stated and proven by J. E. Littlewood in 1912, but
he stated it as a known theorem; Harald Bohr and Edmund Landau, in 1896, attribute
the theorem to Jacques Hadamard; Hadamard did not publish a proof) for holomorphic

functions:
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Theorem 1.6. When (3, — Ly)u = 0, then (logI)'(t) = 2U(t) and logI(t) is convex
so U’ > 0. Moreover, when U is constant, then u(x,t) = eV?u(x,0) and u(-,0) is an

eigenfunction of £, with eigenvalue —U.

Poon [23] proved a monotonicity that can be shown (see Section 2) to follow from
the special case of Theorem 1.6 when M = R", N = 1, and ¢ = %. The monotonicity
in [23] holds for non-negative sectional curvature and parallel Ricci curvature—exactly
the assumptions needed to generalize Hamilton's work [17, 18] from R" to manifolds.
{See the discussion in [23] after Theorem 1.1’ on page 522 and the remark on page 530.)
Theorem 1.6 holds on any manifold and no curvature assumption is needed.

We will also prove a frequency monotonicity for shrinking gradient Ricci flows

with no curvature assumption (see Section 4 for the definitions of I and U in this case):

Theorem 1.7. If u, = A u on a gradient shrinking Ricci flow, then I'(t) = @g” and U(t)

is monotone with U’ > 0. Furthermore, if U’(t) = 0, then at t we have Ef U= E_‘-? u.

An immediate consequence of Theorems 1.6 and 1.7 is the following version of

backwards uniqueness for these equations:

Corollary 1.8. Suppose that u : M x [a,b] — RY and either the metric g is time
independent and (3, — Ly)u = 0 or (M, g(t)) is a gradient shrinking Ricci flow and
u,=Auw Ifu(,b)=0,thenu=0forallt <b.

We are grateful to S. Brendle, R. Hamilton, and S. Klainerman for discussions

and to Q. S. Zhang for useful comments.

2 Parabolic Frequency on Manifolds
Proof. (of Theorem 1.6). Calculating and integrating by parts give
I'it)y=2 ](u, ue® =2 [(u,ﬁ¢ uje™? = -2 [quIz e ? =2D(1). (2.1)
D'(t)=-2 /(Vu, Vu,) e % =-2 /(Vu,V£¢ ue =2 / |Lg ul?e?. (2.2)
By (2.1) and the definition of U, we get
D(t)

4 =2 — = - .
(log Iy (t) 0 2U(t) (2.3)
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Therefore, using (2.1), (2.2), and (1.4),

IPU=DI1-ID= (2] L4 ul? e‘¢’) (/ Jul? e—¢) D%
2
= (2 [ |£¢ ul? e_¢) (/lu.l2 e‘d’) -2 (f(u, £¢ u}e_¢) =0 (2.4)

Here the inequality uses the Cauchy-Schwarz inequality (a similar estimate without the
weight ¢ is used in [15] to prove backwards uniqueness when u, = Au and the boundary

values are specified).
If U is constant, then we have equality in the Cauchy-Schwarz inequality (2.4)
and, thus,

£¢ u=c(t)u. {2.5)

To evaluate c(t), use the 2nd equality in (1.4) to get
D(t) = f{u,£¢ uje ™ = C(t)/ lul?e™? = c(t) I(t). (2.6)
It follows that ¢(t) = U and £¢ u="Uu. If wesetv(x,t) =e Ulu(x,t), then we have that
yv=e Y (-Uu+ou =e V" (-Uu+Lyu)=0. (2.7)

From this, the 2nd claim follows. E

Proof of Corollary 1.8. The proof is essentially the same in both cases. We will give the
details when g is time independent and u satisfies the drift heat equation. By Theorem

1.6, we get for a < b that

b b
logI(b) — logI(a) :/ (logD'(s)ds = 2 / U(s)ds > 2U(a) (b —a). (2.8)
a

a

Integrating this gives that

I(b) > I(a) 32 Ua) (b—a) ) (2.9)

Backwards uniqueness follows immediately. i
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Equation (2.9) can be thought of as a bound for the vanishing order at oc. The
bound implies strong unique continuation at oc. That is, if u vanishes to infinite order
at oo, that is, lim, , . e®*I(t) = O for all constants c, then it vanishes identically.

There is a natural correspondence on R" between solutions of the ordinary heat
equation and solutions of the drift heat equation: given u : R™ x (—o¢,0) — R, define
v(x, t) = u(v/—tx,t), w(x,s) = v(x, —e %), and t = —e 5. We have the following:

Lemma 2.10. The function w : R"™ x (—o0,0) — R defined as above satisfies
(8 — Ly2) wix, s) = ™5 (u, — Au) (e 2x,—e7%). (2.11)
Pl

Proof. To prove (2.11), we use the chain rule to get

3,V=—2\/__t(Vu,X)+ut, (2.12)
asw=—t8tv=—§{Vu,x}—tut, (2.13)
E#W=Aw—%(x,Vw):—tAu—%(x,J?tVu). (2.14)

Combining (2.13) and (2.14) gives (2.11). E

Poon [23] considered solutions the ordinary heat equation on R". He showed a

monotonicity that is equivalent to s — log H(e?) being convex, where
|
H(R)=R™ [ u?(y, —R?) i (2.15)
The convexity of log H(e?) follows from Theorem 1.6 when M = R" and ¢ = '—ﬂi. To see
this, suppose u;, = Au, so that (3, — £ ,2) w = 0 by Lemma 2.10. Using the definition of
T
I, (s) and making the change of variables y = e ixandR=e ? give

s x|2 3 iyl? s
L= /uz(e_i x,—e™ %) e F dx=R" / u?(y, —R?) 871%7 dy = H(eZ). (2.18)

The convexity of logH(e%) now follows from Theorem 1.6.
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3 More General Operators

Our results hold also for more general operators (cf. [2, 4, 13, 24]) where
(9, — C(p)ul < C(t) (|lu| + [Vul), (3.1)

and C(¢) is allowed to depend on ¢.

Theorem 3.2. Ifu:M x [a,b] — RY satisfies (3.1), then

) c 3C
I “luv-= 4
(log)3(2+2)U o (3.3)
= et -1, (3.4)
c? = [log(1 — )]’ (3.5)

Proof. First, we rewrite D as follows:

D= [(u Lyue?=[u, uzfi(u —L,u) e“”kl (u, (u, — Lyu))e . (3.6)
: ¢ o ¢ T ¢

Differentiating I(t) and rewriting give
I =2 /(u, u)e? = 2/(u,£¢, uje ¥ 42 [{u, (u, — Lyu))e™?
1 _ .
= 2/<u, l:ut - (u, — Cqbu)}) e ? + l/(u. (u, — £¢ u)y e ?. (3.7)

It follows from the 1st line in (3.7), the Cauchy-Schwarz inequality, and the elementary
inequality a < % (a2 + 1) applied to @ = /=U that

3C

C
(logI)’EZUﬁ? /iu|(|u|+|Vu|)e"¢ > W= C 4T = (2+§) b= e

This gives the 1st claim. Next, (3.7) gives that

2 2
I'(t)D(t) = 2 (f(u, [ut — % (e, — £¢ u):]> e_¢) - % (/(u (u, — £¢ u)) e'“"’) . (3.8)
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11884 T. H. Colding and W. P. Minicozzi II

Differentiating D(t) and integrating by parts give

D'(t) =—2 /(Vu,Vut) e =2 /‘(ut, Lyuje ® =2 /(uz, (uy — [u, — Lyub)e™

o

1
2 2L, u|2] e?. (3.9

1
ut—Elut—C(pu]

We conclude that

Lo ? % /Iut - £¢ qu o P, (3.10)

1
ut—a[ut—ﬁqﬁuI

D) I(t) =21(t) [

Combining (3.8) and (3.10) and using the Cauchy-Schwarz inequality, (3.1) and the
elementary inequality (a + b)? < 2 (a? + b?) give

2 g 20 - ] )
U=2 [ul“e / e ¥ — /u, utk-z—(ut—ﬁtpu) e

’ g 2
- g / |, — £¢,ur2 e ? +% (/(u, (u, — £¢ u))e‘"’) (3.11)

1
ut—Elut—qu]

I 6 cI [ 2 -6 5
z2—5 [ lu—Lyul"e z —— [ (ul+|Vu)e™ = —C° 1 - D).

Dividing both sides by I gives the 2nd claim, which implies the remaining claim. |
This leads to the following generalization of Corollary 1.8:

Corollary 3.12. If u:M x [a, b] — RY satisfies (3.1), then

b
I(b) = I(a) exp ((b —a)(2+supC) {exp (/ C%(s) ds) [U@)—1]1+1— § sup C:’) ;
la,b] a 2 [ahbl

In particular, if u(-,b) =0, then u = 0.

Proof. Integrating the 1st claim in Theorem 3.2, we get that

N —~

logI(b) —logI(a) >

b
4+ sup C [ U(s)cls—E sup C(b—a). (3.13)
@bl JJa 2 (ab]
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From (3.5), we get that for s € [a, b]

s b
log(1 — U(s)) < log(1 — U(cz))+[ C?(r)dr < log(1 — U(a)) +f C%(s)ds. (3.14)
a

a

Therefore,
s
U(s) > exp (/ C4(s) ds) (U@ —1)+1. (3.15)
a

Inserting this lower bound in (3.13) and integrating give

b
logI(b) — logI(a) > (b —a) l:exp ((2 +supC) C%(s) ds) [Ua)—1]1+1— E sup C} ;
labl Ja 2 (ab]

Recall that u : M x (a,00) — RY vanishes to infinite order at oo if
lim,_,  e“*I(t) = O for all constants c. Theorem 3.12 implies the following strong unique

continuation at oo:

Corollary 3.16. Suppose that sup C + [°C%(s)ds < oo and u : M x [a,00) - RV is a

solution of (3.1) that vanishes to infinite order at oo, then u vanishes.

This corollary implies the unique continuation of Poon [23] for u : R® — R with
u, — Au = (b(x,t), Vu) + c(x, ) u, (3.17)

where |b| + |c| < C is uniformly bounded (cf. [4, 19, 21]). See also [14] for a Carleman
estimate approach where it was observed that parabolic unique continuation is related
to backward uniqueness for the Ornstein—Uhlenbeck operator. The methods here apply
even more generally than to u satisfying (3.17). In particular, suppose that u satisfies
(note that functions satisfying (3.18) do not necessarily satisfy (3.1) because the drift

term may give an unbounded first order coefficient)

|u; — Aul < C(Jul +|Vu)). (3.18)
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Applying the transformation in Lemma 2.10 to u, we get a function w(y, s) with

|(35—ﬁu2_2) w. =e* |8, — Ayu| < Ce S (lu| + |Vul)

<CeSlw|+Ce ¥ |Vw]. (3.19)

Since [;° e Sds < oo, Corollary 3.16 applies. Exponential decay of order c, that is, decay

like e %, corresponds to polynomial decay ¢¢ in the transformed variable t = —e~S.

3.1 Without u term

In this subsection, we assume that u : M x [a, b] — RY satisfies
(3, — L4) ul < C(®)|Vul. (3.20)

In this case, we get better estimates when U(a) is small. It follows from (3.1 1), with
obvious simplifications in the 2nd to last inequality from using (3.20) in place of (3.1),
that U’ > %5 U or, equivalently, [log(—U)]’ < %2 We therefore get that

S
U(s) > U(a) exp (% / Cz(r)dt) " (3.21)
va
With similar simplifications in (3.3), we get that for s € [a, b]

(logh)' = 2U -Cc/-U

b b
> 2U(a) exp (%f C%(1) dt) —C/-U(a) exp(%/ Cz(r) dl’) ; (3.22)
a a
Integrating gives

b b
I(b) = I(a) exp l:(b —a) lZU(a) exp (%/ Cz(r) dr) - Cv-Ula) exp(;/ C%(1) dr)” g
a a

4 Monotonicity for Shrinking Ricci Flows
A Ricci flow (M, g(1)) for t < 0 is a gradient shrinking soliton flow if there is a function

f(x,t) satisfying

i 1
Hess; + Ric = i (4.1)
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Shrinkers model Ricci flow singularities. The function f can be normalized to satisfy

(see, e.g., [3, 5])

fi=—Af—S+ |VFP? - % 4.2)

where S is the scalar curvature. Given a function u(x, t), define I(¢) and D(t) by

I(t) = (—t) % [uze‘f, (4.3)
D(t) =t (—t)" % /JVu|2e‘f, (4.4)

and then define the frequency U(t) = %. The scaling here differs from (1.3) and (1.4),
but both are scale invariant (e.g., I is constant if u = 1). In the simplest case of the
shrinking Gaussian soliton, the two Is are logarithmically related via rescaling in space

as in (2.16).

Lemma 4.5. If u is a function on a gradient shrinking soliton flow, then

v 2
2/(Efu)2 e = / lZ |Hessu|2— | :Ll e, (4.6)
Proof. The drift Bochner formula gives
1
5 Lf \Vul? = [Hess,|? + (Vu, V L7 u) + Hessp(Vu, Vu) + Ric(Vy, Vu) . (4.7)

The lemma follows from integrating this, then integrating by parts on the 2nd term on

the right and using the shrinker equation (4.1) on the last two terms. [ ]
We will use some standard evolution formulas for Ricci flow:

Lemma 4.8. Suppose that g, = —2 Ric. The derivative of the volume element is 3, dv =

—Sdv where S is the scalar curvature. If u(x, t) is a function, then
3, |Vul® = 2Ric(Vu, Vu) + 2 (Vu, Vu,) . (4.9)

Proof. Let x; be local coordinates and d,, coordinate vector fields, so that g3y, 0y) =

g;;- The 1st claim follows since the volume element is given by dv = detg;; dx. Next, if
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gY denotes the inverse of 9;j, then 9, ghm = —(d, gij)g“ g = 2Ricl-jg""gmf. Since Vu =
g% u, 8y, we have Vu|? = gij(gik up) (@™ u,,) = g™ up u,, and, thus,

0 IVul® = 8 (9™ wye tpn) = (3,9"™) Uy Uy + gF™ (Ut + 9™ 1y (1),
= 2Ric(Vu, Vu) + 2 (Vu, Vu,) . (4.10)
]

We will now prove the monotonicity of the frequency U for the heat equation on
shrinking Ricci solitons. This has many analytic implications (cf. [10, 11, 20] for similar

situations).

Proof of Theorem 1.7. Note that
Ael =div(—e vf) = (IVF2 - Af). (4.11)
Observe that 3, dv = —Sdv and d, (e'f)=—fr e/, so that
0¥ = 2 Y] of = P 2_ ~f
( t)’fI(t)—‘/{Zuut u (S+ft-i—2t)]e —l/[ZuAu u (|Vf| Af)]e
=f[2uAue—f—u2Ae*f] =—2]|Vuf2e_f=2 /(uﬁfu)e*f. (4.12)

In particular, I'(t) = 2—1_3—?1. Differentiating D(t) and using Lemma 4.8 and (4.2) give

n-—2

(-ID(t) =t /[2 Ric(Vu, Vu) + 2 (Vu, Vu,) — |Vuf? (S +h+ 2t )] 7

|Vu|?

+2(Vu, VAu) — [Vul? (Nf|2 = Af)] e/

=t/[2Ric(Vu,Vu)+ :

(4.13)

Using (4.11), the divergence theorem, and the Bochner formula, we see that

/Nulz (|V_ﬂz —Af) e*f=f|Vu|2Ae—f - /(A|Vu|2) e~/

=2 / [iHessulz + Ric(Vu, Vu) + (Vu,VAu)] el. (414
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Substituting this into (4.13) and then applying Lemma 4.5 give

[Vul?

(=2 D ()= :/ = [Hessuizl e/ = —2:f(£f uy?e . (4.15)

Therefore, since I2U' = ID' — DI' and tI' = —2 D, we have

tI’U =202 +tiD'

g 2
=@y (: /(uﬁfu)e_f) — =gy (/uze‘f) (t2 /(L:f u)zef) . (4.16)

The Cauchy-Schwarz inequality then implies that U’ > 0 (recall that t < 0). Furthermore,

if U'(t) = 0, then the equality in this Cauchy-Schwarz inequality implies that (at time t)
Cf u = cu for some constant c; the definition of U(t) then gives that c = —-I%l. -
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