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Producing quantum states at random has become increasingly important in modern
quantum science, with applications being both theoretical and practical. In particular,
ensembles of such randomly distributed, but pure, quantum states underlie our
understanding of complexity in quantum circuits' and black holes?, and have been
used for benchmarking quantum devices** in tests of quantum advantage®¢. However,
creating random ensembles has necessitated a high degree of spatio-temporal
control” 2 placing such studies out of reach for a wide class of quantum systems. Here
we solve this problem by predicting and experimentally observing the emergence of
random state ensembles naturally under time-independent Hamiltonian dynamics,

which we use toimplement an efficient, widely applicable benchmarking protocol.
The observed random ensembles emerge from projective measurements and are
intimately linked to universal correlations built up between subsystems of a larger
quantum system, offering new insights into quantum thermalization®. Predicated on
this discovery, we develop a fidelity estimation scheme, which we demonstrate for a
Rydberg quantum simulator with up to 25 atoms using fewer than 10* experimental
samples. This method has broad applicability, as we demonstrate for Hamiltonian
parameter estimation, target-state generation benchmarking, and comparison of
analogue and digital quantum devices. Our work has implications for understanding
randomness in quantum dynamics™ and enables applications of this conceptina
much wider context*>%101520,

We start by illustrating the concept of pure random state ensembles
through a thought experiment: consider a programmable quantum
device thatevolvesaninputstate |, toanarbitrary outputstate |¢.),
labelled by the program setting,j (Fig. 1a). If the set of states |¢pj)—in
the limit of many repetitions with different j—is homogeneously
distributed over the output Hilbert space, it istermed a Haar-random
(or uniform) state ensemble®. A distribution of states close to the
Haar-random one is shown for a single qubit in Fig. 1b (right).

In practice, approximations to Haar-random state ensembles are
generated by certain quantum devices requiring explicit classical ran-
domization, in the sense that output states |¢.) are produced by ran-
domly chosen unitary evolution operators Uj Examplesincluderandom
unitary circuits (RUCs)®', in which each configurationjis realized by
arandom choice of single- and two-qubit gates, and stochastic evolu-
tion with adynamically changing Hamiltonian®, I-7j(t). Insuchsystems,
generation of approximate random state ensembles has been used for
benchmarking of large-scale quantum devices**, including fidelity
estimation as part of quantum advantage®® and quantum volume tests?.
On a more fundamental level, random ensembles provide important
insights into studies of complexity growth in quantum systems' and
understanding the quantum properties of black holes*?,

However, it is currently unknown how to generate such random
ensembles from the simplest form of quantum evolution, that governed
by a fixed, time-independent Hamiltonian A that is not explicitly ran-
domized, asis the case for dynamics of closed and unperturbed quan-
tum systems. Here, by considering pure state ensembles generated
during partial measurement of a larger quantum system (Fig. 1c), we
showsuchrandom ensembles do infact emerge under such conditions.
These emergent random ensembles enable applications such as device
benchmarking, even in systems without explicit local, time-resolved
control, which we demonstrate here experimentally using a Rydberg
atom simulator®* ¢ with up to 25 atoms.

Observation of emergent randomness

We generically consider Hamiltonian evolution that produces aglobal
quantum state |¢), which we suppose here describes a set of qubits
with basis states |0) and |1). We bipartition the state into two subsys-
tems: alocal system of interest A and its complement B (Fig. 1c). Explic-
itly keeping track of measurement results in B, which are bitstrings of
the form, for example, z; =100 --- 010, provides a full description of
the total system state as
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Fig.1|Random pure state ensembles from Hamiltonian dynamics.

a, Athought experiment, consisting of aprogrammable device producing
arbitrary quantumstates ) through unitary operations lflj wherejenumerates
over different programsettings. b, Repeatedly applying explicitly randomized
unitary evolution to aninitial state |;) produces anensemble of pure quantum
states |z[9) (blue arrows), whichis distributed near-uniformly over the Hilbert
space, H (grey sphere), givingarandomstate ensemble. ¢, Here we demonstrate
anewapproachtocreatingrandom state ensembles based ononly asingle
instance of time-independent Hamiltonian evolution. Aninitial product state
evolves under aHamiltonian, 4, before site-resolved projective measurement
inthe computational basis {|0), [1)}. We bipartition the systeminto two
subsystems A and B, and analyse the conditional measurement outcomesin
subsystem A, z,, given a specific result z; from the complement B. These
outcomes aredescribed by the projected ensemble, a pure state ensemble
inA,{|g, (zp)}, realized through measurement of B.d, As an example for when
Aconsists of asingle qubit, conditional single-qubit quantum states |¢, ()}
arevisualized onaBloch sphere for all possible z; bitstrings. e, Numerical
simulations of our experimental system show that the distribution of the
conditional pure state ensemble in A changes during evolutioninto anear-
uniform form. Selected states are chosen (as shownind) and highlighted to
demonstrate their late-time divergence (right panel) despite nearly overlapping
initial conditions (left panel).

Wy =Y Jpzo) 14,(z)) ® |z, M

where p(z;) is the probability of measuring a given bitstring in B and
|¢,(z)) isa pure quantumstate in A conditioned on the measurement
outcome in B. Thus, for each possible z;, there is a well-defined pure
statein A, the set of all of which is generally not orthogonal. Together
these states, |¢,(z3)), and their respective probabilities, p(z;), form
what we term the projected ensemble™ (Fig. 1d); similar concepts also
enter the definition of localizable entanglement? and in the concept
of conditional wavefunctions?®. By tracking the time evolution of the
projected ensemble through both the states and probabilities that
composeit, we can probe for signatures of the ensemble approaching
aHaar-random distribution (Fig. 1e).

We stress that this concept is distinct from typical studies of equili-
bration in quantum many-body systems. There, the central object of
interest is the reduced density operator on A, g, = Trz(4), found from
tracing out B from the full density operator g. The reduced density
operator canbe constructed by averaging over the projected ensemble

states, p, = Zz.; p(zp) 19, (zp) X¢, (z)|, but as such can only provide infor-
mation on the mean of ensemble observables and never on the actual
ensemble distribution itself.

To explain the importance of this distinction and reveal the emer-
gence of random statistical properties of the projected ensemble, we
use a Rydberg analogue quantum simulator® 2, implemented with
alkaline-earth atoms®-3?, which provides high fidelity preparation,
evolution and readout? (Extended Data Fig. 1 and Methods). After a
variable evolution time, we perform site-resolved readout in a fixed
measurement basis, yielding experimentally measured bitstrings, z,
which we bipartition into bitstrings z, and z; (Methods).

Hamiltonian parameters are chosen such that, after ashort settling
time, the marginal probability, p(z,), of measuring a given z, (while
ignoring the complementary z;) agrees with the prediction from g,
being a maximally mixed state. In the language of quantum thermaliza-
tion®*%, thisis equivalent to saying that j, has reached an equilibrium
atinfinite effective temperature with the complement B as an effective,
intrinsic bath™**¥, For a single qubit in A, such a reduced density
operatoris g, = %( |0>€0] + |1)(1]): the qubit has a probability of being
instate |0) of p(z,=0) =1/D, =1/2, where D, =2 is the local dimension
of A. Asshownin Fig. 2a, after ashort transient period the experimen-
tally measured probabilities p(z, = 0) (grey squares) equilibrate in
agreement with this prediction.

We contrast this equilibration with the dynamics of conditional prob-
abilities, p(z4]zy), of measuring a given z, conditioned on finding an
accompanying measurement outcome in the intrinsic bath z;. We note
the marginal probability for finding z, is the weighted average over
conditional probabilities, p(z,) = ZZB p(25)p(24]25) . More generally,
whereas p(z,) yieldsinformation of the reduced density operator, such
conditional probabilities yield signatures of the projected ensemble,
as p(z4]zg) = |{zAlWa(zp))|% In Fig. 2a, we plot numerically simulated
p(z,=0|z;) in grey, with selected traces highlighted in colour to be
compared with their corresponding experimental data (circle markers).
Importantly, conditional probabilities fluctuate chaotically with sen-
sitive dependence on z;, even when the marginal probability has
reached a steady state. In experiments, fluctuations slowly damp out
over time owing to extrinsic decoherence effects from coupling to an
external environmentat very late time, but these decoherence effects
donotappear to affect the late-time marginal probability (Fig. 2a, right).

Toanalyse fluctuations, we bin conditional probabilitiesinto a histo-
gram P(p) for a time when fluctuations are strong and decoherence
effectsare small (¢,, Fig. 2b), aswell as at very late time (¢,, Fig. 2c) when
decoherence dominates. At ¢,, the experimental P(p) distribution is
essentially flat, as predicted for a Haar-random ensemble, up to
finite-sampling fluctuations and weak decoherence effects (Supple-
mentary Information). We show projected states obtained from simu-
lation (Bloch sphere inFig.2b), including decoherence, toillustrate how
such a flat distribution is generated from a near-uniform ensemble of
states. At very late time, t;, decoherence reduces the purity of projected
states significantly, leading to P(p) becoming concentrated around
1/D, = 0.5 (Fig. 2c). This highlights that the agreement between the
experimental data and the random ensemble prediction in Fig. 2b,d is
acoherent phenomenon of closed quantum system dynamics. We fur-
ther validate thisin Fig. 2d,e by plotting the P(p) for Acomposed of two
and three atoms, with corresponding Hilbert space dimensions of D, =3
and 5, respectively (Methods). Here the predictionfromthe Haar-random
distribution®is P(p) = (D, — 1)(1 - p)°+~2, whichwe notein thelimit D, > -
becomes the well-known Porter-Thomas distribution®, P(p) = DAe'DA",
akey signature of the formation of random state ensembles.

The convergence of the projected ensemble to anearly Haar-random
distribution canbe temporally resolved by considering moments of the
distributions P(p), for which the kthmoment is defined as p® = ¥ ,p*P(p)
(Fig.3a). Looking order by order, we find that, after rescaling by a fac-
torof D, --- (D4 + k—1), moments from both experiment and numerics
quickly approach k!, the analytical result expected from aHaar-random
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Fig.2|Experimentalsignatures ofrandom pure state ensembles. a, We use
aten-atom Rydberg quantum simulator (Extended Data Fig. 1) to perform
Hamiltonian evolution leading to quantum thermalization at infinite effective
temperature (see main text for details). For asingle qubitin A, we plot the
probabilities for finding a single-qubit subsystemin state |0) as afunction of
time. Grey square markersindicate the marginal probabilities p(z, = 0), which
equilibrate to around 0.5 owing to thermalization with B. By contrast, coloured
circle markers show conditional probabilities given a specific measured z; in B,
p(z,=0|z5), whichshow large fluctuations even after the marginal probability
reaches asteady state; these then diminish at late times because of extrinsic
decoherence effects. Such conditional probabilities yield information about
the projected ensemble as p(z,]z) = [(za|@a(25))|% Grey lines are simulated
trajectories of p(z, = 0|zg) for all outcomes z;, with a few highlighted to be
compared with experimental data (colour lines and markers). Decoherence
sources (Supplementary Information) areincluded for simulations after the
axis break. b, Histograms, P(p), of the probabilities p(z, = 0|z;) atintermediate
(Qt,/2m=2.3) time. The experimental results are close to a flat distribution,
consistent with aHaar-random ensemble, as visualized by the simulated
distribution of projected states (right). c, However, at late (Qt,/2n = 38) time,
decoherence effects have concentrated probabilitiesaround1/D, = 0.5,
consistent with the error model simulation showing the reduced lengths of
single-qubit states (right). d,e, Similar agreement with predictions from
random state ensemblesisalsoseenatbothearly (d) and late (e) times for
larger subsystemsizes of Awith higher subsystem dimension, D, (Methods).
Inb-e, blacklinesand grey bands are predictions and uncertainties (from finite
sampling) of a D,-dimensional uniform random ensemble; red dashed lines and
bluesolidlines are from simulations with and without decoherence, respectively
(Supplementary Information).

ensemble (Supplementary Information); this is independent of the
details of subsystem selection, such aswhether Ais chosen at the edge,
centre or is even discontiguous (Extended Data Fig. 2), and universal
values are also found for two-point correlators (Supplementary Infor-
mation). At very late time, moments decrease, indicating sensitivity to
decoherence effects (Fig. 3a, right). Although here we consider solely
the projected ensemble equilibrated to infinite effective temperature,
signatures of similar universal behaviour are seen numerically for finite
effective temperature cases™ (Supplementary Information).
Importantly, convergence of the kth moment to k! only suggests
formation of low-order approximations to the Haar-randomensemble,

470 | Nature | Vol 613 | 19 January 2023

b
[0}
o
j
©
k]
kel /
[0}
Q
o
'_
0 102
0 5 10 15 100 102 104
Time (£2t/2) Dg

Fig.3|Development of emergentrandomness. a, Rescaled second (red),
third (purple) and fourth (blue) moments of the conditional probability
distributionsin Fig.2d for subsystem of length L, = 2. Experimental moments
saturate to approximately k!, the expectation from the uniformly random
ensemble (dotted lines) and consistent with numerical simulation (solid lines),
before eventually decaying owing to decoherence. b, Numerically computed
tracedistancesasafunctionoftimebetweenthel, =2 projected ensemble
and the four lowest order approximations to the uniform random ensemble,
theso-called quantum state k-designs, for k=1, 2, 3, 4 (inset). Distances for

all kdecrease initially before saturating due to finite systemsize effects
(Supplementary Information). If the trace distances up to order kvanish, the
ensembleisasrandomasthe kth design, and fluctuations of observables
matchuptoorderk, suchasthe kthmomentsina. c, Late-timedistances
decrease as approximately1/,/Dy (solid lines), the Hilbert space dimension
ofthe effective bath, subsystem B.

so-called quantum state k-designs®. We study the trace distance
between the projected ensemble, generated from error-free simula-
ton, and successive k-designs (Fig. 3b), finding the distance decreases
for all kth orders as a function of time, before saturating to a value
exponentially smallinthe total systemsize (Fig. 3c). Similar numerical
results are found for the case of RUCs and a Hamiltonian used in ion
trap experiments (Extended DataFig. 3). Inan accompanying paper™,
we show that the formation of uniformly random, pure state ensembles
in subsystems is amore universal phenomenon.

Demonstration of device benchmarking

A key question is whether the formation of approximate k-designs
in the projected ensemble enables associated applications such as
device benchmarking with only global, time-independent control.
Decoherence changes observables of the projected ensemble (Figs. 2
and 3); can this quantitatively signal the onset of decoherence in a
quantum device?

We affirmatively answer this question by benchmarking the evolution
of our experimental system under a time-independent Hamiltonian.
We stress that our approach would be impossible with access only to
thereduced density operator asit is relatively insensitive to decoher-
ence (Fig. 2a). As atoy example, we consider the case of a single error
occurring at time ¢,,, during unitary evolution. The effect of this error
then propagates outward*’, generically transforming the evolution
output state and affecting measurement outcomes in subsystem A
(Extended Data Fig. 4). Using the fact that the projected ensemble
forms an approximate 2-design***>*?° (Supplementary Informa-
tion), we devise a fidelity estimator F_ to quantify the effect of this



error (Methods) as arescaled cross-correlation between measurement
probabilities in the experimental and ideal conditions:
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where p(z) and p,(z) are the experimental and theoretical probabilities
of observing a global bitstring z, respectively. We numerically confirm
that, shortly after we apply an instantaneous phase rotation error on
one qubit, our estimator approximates the many-body state overlap,
F.=F=(y|A|¢), between the ideal state |¢) and the erroneous state p
(Extended Data Fig. 4b, Methods and Supplementary Information).

To evaluate F.experimentally, we formulate an empirical, unbiased
estimator:

(2)

1 <M i)
2 Zi=1Po(Zexp)
FompM St P0e0) ) 3)
Zz pO(z)
where Mis the number of measurements and zgipis the experimentally

measured bitstring at the ith repetition. Although this reformulation
still requires calculation of a reference theory comparison, we note
that the required number of experimental samples to accurately
approximate F_scales favourably with system size N. Concretely, the
standard deviation of F, is estimated to be o(F.) ~1.04"/./M (Extended
Data Fig. 5), yielding an improved sample complexity in comparison
with other existing methods'*. This implies that we do not need to
fully reconstruct the experimental probability distribution for fidelity
estimation of large quantum systems.

We test our benchmarking protocol for errors occurring continu-
ously with a Rydberg quantum simulator of up to N =25 atoms. We
estimate the fidelity of our experimental device, F_ ., by correlating
measured bitstrings to results from error-free simulationas afunction
of evolution time. In addition, we use an ab initio error model with no
free parameters that mimics the experimental output (Supplementary
Information), from which we extract both the fidelity estimator, F_ o4ei»
and the model fidelity, Foge1= (P(0)] P, 40/ (O 18(0)) (Fig. 4a).

InFig.4b, we compare Frogep Fe, exp@Nd Femoaer fOT asystemof ten atoms.
Weobserve F. 4e = Fnoderr Validating the efficacy of the estimator under
realistic error sources. Inaddition, we find F_ ., = F, moqer @nd that full
bitstring probability distributions show good agreement between the
errormodel and the experiment (Supplementary Information), indicat-
ingthatourabinitioerror modelisagood description of the experiment.

We further apply this method to estimate the fidelity for generating
states with a maximum half-chain entanglement entropy in larger
systems. We first use error-free simulation to calculate the half-chain
entanglement entropy growth as a function of system size, finding
that the entanglement saturates atatime¢,,, whichislinearin system
size (Fig. 4c and Methods). We evaluate the fidelity estimator F_ for
Nranging from 10 to 25, each at their respective ¢, again finding
good agreement between experiment and our ab initio error model
(Extended DataFig. 6) inthe range for which our error model is readily
calculable (Fig. 4d). We note an estimated fidelity of 0.49(2), where the
numberinbracketsis the standard errorinthelast digit, for generat-
ing a state with maximum half-chain entanglement entropy for N = 25.

We numerically show that F_ also applies for erroneous evolution
using other quantum devices (Extended Data Fig. 3). In the case of
RUCs, F.accurately estimates the fidelity at much shorter evolution
times than do existing methods such as linear cross-entropy bench-
marking®3, which can be explained through the early time-formation
of the projected ensemble (Methods).

Applications of benchmarking

Our protocol enables various applications, including evaluating the
relative performance of analogue and digital quantum devices, in situ
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Fig.4|Fidelity estimation ofan analogue Rydberg quantum simulator.

a, To estimate experimental fidelity, we repeatedly perform Hamiltonian
evolution, each time performing a projective measurementtoaccruean
ensemble of measured bitstrings z.,. We then correlate the measured bitstrings
withanerror-free simulation of the dynamics to calculate the fidelity estimator,
Fe exp- TO validate our fidelity estimation method, we compare the error-free
simulation against results fromanabinitio error model (Supplementary
Information), to calculate the model fidelity 4. and accompanying estimator
F. mode- B, Experimental benchmarking of a Rydberg quantum simulator for
N=10atomswithblockaded Hilbert space dimension D =144. Shownare F .,,,
(grey markers), the fidelity F,,.4. (dashed red line) and F. .4 (solid pink line).
¢, The half-chain entanglement entropy (calculated from the error-free
simulation) increases before saturatingatatime, t.,, whichgrows linearly
with systemsize (inset). d, Fidelity estimated at ¢,,,, showing estimator F,
fromexperiment (grey markers) up toN=25and from error model (pink
crosses) up toN=22.Inaddition, we show afit to the model fidelity, given as
F’g’exp[—y(N)tem(N)] (red dashed line), where F,is the single-atom preparation
fidelity and y(N) is the many-body fidelity decay rate of our Rydberg simulator
(Methods and Extended Data Fig. 6). The fidelity estimation uses only less than
10*experimentally sampled bitstrings per data point. See Methods for
descriptionoferrorbars.

Hamiltonian parameter estimation and benchmarking the fidelity of
preparing various target states. First, tocompare analogue and digital
quantum evolution, we evaluate the fidelity achieved at ¢,,,. for both
analogue quantum simulators and digital quantum computers (for
which ¢, is defined in terms of gate depth, see Methods). We find our
system has anequivalent effective, state preparation and measurement
(SPAM)-corrected, two-qubit cycle fidelity of 0.987(2) for the gate-set
usedinref.’and 0.9965(5) for a gate-set based on two-qubit SU(4) gates*
(Extended DataFig. 7 and Methods).

Next, to perform Hamiltonian parameter estimation, we measure F,
while varying Hamiltonian parameters in the simulation; when numeri-
cal parameters do not match with those in experiment, F, will decay
quickly. To capture this effect in a single quantity we plot the normal-
ized, time-integrated F, (Fig. 5a). For each Hamiltonian parameter,
a sharp maximum emerges (Supplementary Information), showing
good agreement with precalibrated values (dashed lines and shaded
areas). Parameter estimation also works when applied to learn local,
site-dependent terms of a disordered Hamiltonian (Fig. 5b), notably
without any local control during readout.

Finally, F.canbe used to benchmark the fidelity of preparing various
quantum states of interest by preparing atarget state and then quench-
ing the Hamiltonian to evolve the prepared state at infinite effective
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Fig.5|Hamiltonianlearning and target-state benchmarking. a, Normalized,
time-integrated F_as afunction of the global Rabi frequency, detuning and the
next-nearest-neighbourinteractionstrengthin the Rydberg model (Methods);
thisnormalized F.is maximized only when the correct parameters are used.
Vertical dashed lines and shaded areas denote independently calibrated values
and their uncertainties. b, Programmed (grey bars) and learned (red bars) local
Hamiltonian parameters for anarbitrary, site-dependent detuning field
imposed by anintensity-dependent lightshift from locally addressable optical
tweezers (inset, red funnels). ¢, The one-dimensional Rydberg ground state
phase diagram**and an adiabatic path (red dotted line) to produce a specific
targetstate near theIsing quantum phase transition.d, Our F.benchmark
(solid line) can estimate the fidelity F (dashed line) of the prepared noisy state
consisting of an equal probability mixture of the ground and first excited
states by evolving atinfinite effective temperature after preparation. Here

we numerically demonstrated the target state benchmarking foraground state
of systemsize N=15 (Methods).

temperature (Fig. 5c and Methods). As anumerical proof-of-principle,
we show results for such target-state benchmarking to prepare aground
state near the Ising quantum phase transition in the Rydberg model*
(Fig.5c,d), where the noisy state is an equal probability mixture of the
ground and first excited states. After a short disordered quench, the
estimator F,reveals the fidelity of the prepared state, offering away to
performinsitu optimization of many-body state preparation; further
examples are shown in Extended Data Fig. 8.

In conclusion, we have uncovered emergent randomness arising
from partial measurement of an interacting many-body system. Subse-
quently, we have shown awidely applicable fidelity estimation scheme
that works at shorter evolution times and with reduced experimental
complexity compared with existing approaches, and have demon-
strated applications in quantum device comparison, Hamiltonian
parameter estimation and benchmarking the fidelity of preparing
interesting quantum states. The concept of emergent randomness
could provide anew framework for quantum thermalization, chaos and
complexity growth*. Open questions remain, such as adeeper under-
standing of the finite effective temperature case™ (Supplementary
Information) and uncovering the signatures of non-ergodic dynamics
inintegrable or localized systems*3%*45 Such developments could
enable a more flexible and standardized way of performing quantum
fidelity estimation in a wide variety of quantum hardware, including
trappedions*¢, superconducting qubits®, photonic systems*, and cold
atoms and molecules in optical lattices*®, Ultimately, emergent ran-
dom ensembles could find a broader range of applications, including
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quantum advantage tests>*"* ¥ in situ Hamiltonian learning>*’ and
optimization of target quantum state preparation.

Noteadded in proof:During the course of the revision, anew fidelity
estimator has been introduced®®; we present acomparison in Supple-
mentary Information.
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Methods

Description of the experiment

The details of our experiment have been summarized previously?*30325L,
in brief, we use an array of optical tweezers to trap individual
strontium-88 atoms. Initially in the 5s?'S, state, atoms are cooled on
the narrow-line 5s°'S, < 5s5p 3P, (689 nm) transition close to their
motional ground state, with an average transverse occupation number
of (n) = 0.3 (corresponding to approximately 3 pK). For all data shown,
we rearrange the initially stochastically filled array to a defect-free
array>>*® of atoms spaced by 3.75 um, discarding extras. Atoms are
initialized to the 5s5p P, (698 nm) clock state through a combination
of coherent drive and incoherent pumping, for a total preparation
fidelity of 0.997(1) per atom. We treat the clock state as a metastable
qubitground state, |0), and subsequently drive to the 5s61s°S,, m,= 0
(317 nm) Rydberg state, |1). Following Hamiltonian evolution, state
readout is performed using the auto-ionizing transition
5s615°S,, m,= 0 < 5p;,61s,,(408 nm,/ =1, m, = £1), which rapidly ionizes
atoms in the Rydberg state with high fidelity (approximately 0.999),
leaving them dark to our fluorescentimaging. Atomsin the clock state
are pumped into the imaging cycle, allowing us to directly map atomic
fluorescence to qubit state.

The Hamiltonian of this system is well approximated by

H/h=025‘f—AZﬁ,-+C—22 4)

. 26
a i li=J

which describes aset of interacting two-level systems, labelled by site
indicesiandj, driven by alaser with Rabi frequency Q and detuning 4.
The interaction strength is determined by the C, coefficient and the
lattice spacing a. Operatorsare $; = (|1} (0|, + |0) <1| )/2and ;= [1) 1],
where |0),and |1), denote the electronic ground and Rydberg states
atsite i, respectively.

For measurements observing the emergence of random ensem-
bles, we use Q/21 =4.70(1) MHz, 4/2t=0.90(3) Hzand a = 3.75(5) pm,
with an experimentally measured next-nearest-interaction strength of
V,o/ 210 = C4/(2a)® =1.40(2) MHz, yielding an estimated C, coefficient of
21 x 249(20) GHz pm®. Under this condition, we confirm numerically
that the initial all-zero state rapidly thermalizes to an infinite effec-
tive temperature thermal ensemble locally within the constrained
subspace where no two adjacent atoms are simultaneously in the
Rydberg state** 2, Benchmarking measurements are performed with
0/21=5.30(1) MHz, A/21t = 0.50(3) MHZz, which again thermalizes to
aninfinite effective temperature thermal ensemble.

As the experimental data shown throughout the main text require
both high statistics (taken over the course of multiple days) and very
fine parameter control, we periodically perform automatic feedback
to several experimental parameters using ahome-made control archi-
tecture. Specifically these are: (1) the clock state resonance frequency
to ensure maximal preparation fidelity, (2) the Rydberg laser beam
alignment, (3) the Rydberg resonance frequency and (4) the Rydberg
Rabi frequency. For the clock frequency, we apply amt-pulse on the clock
transition toidentify theresonance and performstate-resolved readout
by ejecting all ground state atoms from the trap with an intense pulse
of light on the 5s*'S,, < 5s5p 'P, (461 nm) transition?.

For the Rydberg alignment, detuning and Rabi frequency, we rear-
range the array to non-interacting atoms spaced by 15.1 um. During
alignment we raster the Rydberg beam across the array, sampling dif-
ferent position-dependent Rabi frequencies and thus evolving to dif-
ferent position-dependent phases. We compare the resultant signal
with a numerical simulation across all positions to identify the point
of furthest phase and thus maximal intensity. For the Rydberg detun-
ing, we measure the resonance condition at Q¢ =131 to narrow the
resonance feature. For the Rabi frequency, we take a series of time
points between 131t < Qt < 17m and fit the resulting Rabi oscillations.

After each feedback experiment, the relevant parameter is automati-
cally updated for subsequent measurements (Extended Data Fig. 1).

Data analysis

Our state readout is described in detail in ref. %; it features single-
site detection that discriminates atoms in the clock state, |0), versus
the Rydbergstate, |1), through acombination of fluorescence imaging
and Rydberg auto-ionization. We take a total of three images: (1) after
the array is initially loaded to perform rearrangement, (2) after the
rearrangement is completed to verify the initial state is correct and
(3) after the sequence has finished. We postselect for image triplets for
which the proper rearrangement pattern is visible in image (2) and
calculate the survival of each atom by comparing site occupations in
image (2) toimage (3). This array of survival signals is then converted
into the qubitbasis. Forinstance, in typical experimentsinwhich atoms
arerearranged into defect-free arrays of ten atoms, we calculate the
binary survivals for each atom and then make the mapping ‘atom
survived’~>|0) and ‘atomdid not survive’™> 1), yielding abitstring of the
qubit states. After taking many shots we accrue an ensemble of such
bitstrings {z}. For randomness measurements, a total of approxi-
mately 120,000 shots are used (approximately 3,000 shots per time
point).Forbenchmarking measurements atotal of approximately 40,000
shots are used for generating the time trace at V=10 in Fig. 4b (approx-
imately 3,700 shots per time point). Approximately 4,000 total shots
are used for the N-scaling plot in Fig. 4d, in which the number of shots
for agiven systemsize is approximately given by M= 3,000 + 250N.

ErrorbarsinFigs.2and 3 are calculated viabootstrapping methods,
and are often smaller than the marker sizes. In Fig. 4, error bars on
experimental quantities are calculated via extrapolation from sub-
sampling of the total number of experimentally measured bitstrings to
estimate the sample complexity atagiven N (Extended DataFig. 5). The
errorbarson F_ .4 fromthe abinitio error model stem from typicality
errorsassociated with the temporal fluctuation of our estimator (Sup-
plementary Information). Error bars on the programmed parameters
in Fig. 5b come from uncertainty in local detuning intensity, whereas
error bars on the learned parameters are standard deviations arising
from performing the simultaneous parameter optimization 30 times
with randomized starting initial conditions.

Oursystem Hamiltonianis naturally stratifiedintoanumber of energeti-
cally widely spaced sectors due to the Rydberg blockade? . In particular,
the nearest-neighbour interaction is approximately 20 times greater
thanthe nextlargest energy scale, so cases for which neighbouring pairs
of atoms are both excited to the Rydberg state are greatly suppressed.
For N=10, we find around 99% of all experimental bitstrings are in the
blockade-satisfying energy sector atshort times (¢ <1 ps) but this probabil-
ity startstodecrease atlate times (¢ > 1 us) owing to experimentalimper-
fections—werefine {z} by discardingall realizations notin this sector. We
note, however, thatall simulations are performed in the full Hilbert space.

For calculations involving conditional probabilities, we bipartition
eachbitstring zinto subsystems A and Bwithbitstrings z, and z;, respec-
tively. When considering the statistics of conditional probabilities, we
notethat theblockadeinteraction canreduce the dimensionality of the
Hilbertspace of subsystemAifthe boundary qubitsin Bareinthe Rydberg
state. Toisolate a set of conditional states having the same Hilbert space
dimension D, for agiven choice of subsystem A and B, we only consider
bitstrings z, and z; if the qubits in Bbordering A are in the |0) state.

Derivation of the fidelity estimator F,

Our fidelity estimator F_(equation (2)) can be understood by express-
ing the global bitstring probabilities for ideal and noisy evolutions,
Po(2) and p(2), respectively, in terms of conditional and marginal prob-
abilities as

Po(2) = Py (2al25)Py (z8) ®)



P(2) = p(zplzp)p(25), (6)

for complementary subsystems A and B. We consider the simplest case
ofasinglelocal errorV occurring at time t,,, during time evolution and
assume that the time-evolved error operator V(t) = U(t) VU(t) is sup-
ported within subsystem A. Here 7=t - ¢,,, is the time past the occur-
rence of the error and U(7) is the time-evolution operator from¢,,, tot.
Thisimplies that the measurement outcomeinBis not affected by the
error, giving p(z) = p(z,|zp)po(zs) because p(zg) = po(zp). Under these
conditions, we can rewrite F_as

_2.p@p2)
X, v
— ZZB P(Z)(ZB) ZZA P(Zplzp)Py (24l 28) _ ®)
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Fyep(zp) =(Dy+1) Z P(zplze)py (zalz) 1 (H)

ZA

isthe z;-dependent, linear cross-entropy benchmark®in subsystemA,
and D, is the Hilbert space dimension of A. From equation (8) to equa-
tion (9), we used the second-order moment of the projected ensemble
inanerror-free case

2!

1y -
D, ZPO(ZMZB) = DA(Dy+1) (12)

based on our experimental and numerical observations of emergent
local randomness during chaotic quantum dynamics (Fig. 2 and Sup-
plementary Information).

Thevalidity of the relation F. = Fcanbe analytically understood based
on the assumption that the projected ensemble of |¢, (z)) approxi-
mately forms aquantumstate 2-design. To see this explicitly, we consider

Z q(zp)Py(zpl25)D (251 2)

= Y gz, @)IP, | 2)X W2V (0P, V(@)1 (2)
2B

= tr{(PZA VP, V(D) Y q(ZB)(llpA(ZB»((I)A(ZB)|)®2} B)

(P, @ V' (P, V(D) (1+35)}
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where PZA = |z,) (24| is the z-basis projector onto a specific bitstring z,
inA, g(zy) is the probability weighting factor, 1is the identity operator

and 8, is the swap operator acting on subsystem A for the duplicated
Hilbert space H%2. To obtain the fourth line, we used

z q(ZB)(|¢A(ZB)> <¢A(ZB) | )®2 e ——— 14)

where the right-hand side is due to the projected ensemble forming
an approximate quantum state 2-design (Supplementary Informa-
tion). We note that the weighting factors g(z;) are different than those
used for most of the manuscript; however, we numerically find that
approximate 2-designs form regardless of which weighting factor is
used (Supplementary Information).
Inserting equation (13) into equation (10), we obtain
1 N 2
Fo~ o2 1@l VDlzl
A
1 R 2 (15)
= pLi@voR’,

where the equality on the second line holds because one can always
multiply the identity DLB ZZB (zB|zB)2 =1with the Hilbert space dimen-
sion of the complement Dy = D/D,, with D being the Hilbert space
dimension of the entire system.

Therelationin equation (15) explains how F.estimates the many-body
fidelity with a good accuracy. The right-hand side of equation (15)
describes the return probability of V() (also known as the Loschmidt
echo) averaged over all possible initial states in the fixed measurement
basis. Under chaotic time evolution, the propagated error operator
V(t)becomes scrambled, and it is exponentially unlikely with the size
of A that acomputational state remains unchanged.

Therefore, non-vanishing contributions to F_ arise only when the
error operator is partly proportional to the identity, for example,
V(1) = col + Y c(1)6, with ¢, # 0, where s enumerates over all possible
Pauli strings supported in A. Insuch a case, F, = |c,|* approximates the
probability thatV did not affect the many-body wavefunction, hence
F. = F. This statement becomes exact if the local qubit on which the
error occurs is maximally entangled with the rest of the system at the
time of the error. Our analysis can be straightforwardly generalized to
more than one error, either located nearby or distant, as long as their
joint support A leads to a random ensemble approximately close to
the state 2-design.

Finally, we comment on the conditionsin which F,may significantly
deviate from F. IfV is diagonal in the measurement basis, for example
dephasingerror along thezaxis, and if the error occurs shortly before
the bitstring measurements, the return probability in equation (15)
will be close to unity despite the fact that the many-body fidelity may
be decreased significantly. Our method can fail in this special case.
However, if F. is evaluated after some delay time from the error, then
V(1) becomes scrambled in the operator basis and F can be approxi-
mately estimated (Extended Data Fig. 4). In other words, even in the
case of the diagonal errors, our formula becomes valid after a finite
delay time.

Statistical error scaling from a finite number of bitstring
samples

We quantify the typical statistical error from approximating our fidel-
ity estimator via equation (3) in two steps. First, we use our ab initio
error model to simulate the quantum evolution of the Rydberg Ham-
iltonian for system sizes from N =10 to 22, from which we can calculate
the exact value of F,compared to error-free numerics. We thensample
afinite number of M samples from the probability distributions pro-
duced from the error model simulation, apply equation (3), and plot
the standard deviation of F.as a function of M (Extended Data Fig. 5a).
We see a characteristic scaling of 6(F,) = A/-/M, where A is the sample
complexity, expected to scale exponentially with N,and o denotes the
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standard deviation. We perform a similar process directly on our
experimental data by repeatedly subsampling the experimentally
measured bitstrings to estimate the scaling of the standard deviation.
We plot both error model and experimental results in Extended Data
Fig. 5b as a function of N, where the time is set as the N-dependent
entanglement saturation time. By fitting the experimental (error
model) results, we find A = a", with a=1.037(2) (a =1.039(2)).

Predicting fidelity at the entanglement time

Calculating the entanglement time. As canbe seenin Fig. 4c, entan-
glement growth in our Rydberg quantum simulator is generally char-
acterized by two distinct regions: a size-independent linear increase,
followed by saturation at an N-dependent value. To systematically
capture thisbehaviour and predict the entanglement saturation time
forarbitrary N, we apply the following protocol. We first calculate the
entanglement growth for system sizes ranging from N =10 to 22. We
then fit all profiles with a functional form of

mt t<t(N)

Sen(N. 0 {mltc(N) +my(N)(t—t(N))  t>t(N)
with free parameters m;, m,(N) and t.(N), but with the explicit constraint
that m, must be the same for all system sizes. From this we find ¢.(N),
and we further define ¢..(N) = Ct.(N), wherein the Rydberg case we set
C=1.35tomake sure the time we study s firmly in the saturated entan-
glement regime (as can be verified visually in Fig. 4c). The secondary
slope m,is used because even past ¢, there is still some slight growth to
the entanglement entropy, whichbecomes more noticeable for larger
N.Thisbehaviour is attributed to slow coupling to the non-blockaded
Hilbert space as the blockade constraintis only approximate. The entan-
glement saturation time is then fit as a linear function of system size,
yielding ¢,..(N) = a, + a;N; for our particular Hamiltonian parameters we
find &y, = — 0.0580(2) and a; = 0.05404(1), both in units of microseconds.
For the case of finding the entanglement saturation depth, d.,,, for
the case of RUCs considered in Extended Data Fig. 7, we apply essentially
the same procedure. We study two different digital circuitimplementa-
tions. In the first, with a gate-set based on ref. %, the RUC circuit is com-
posed of alternating one- and two-qubit gates; the one-qubit gates are
randomly chosen 1/2 rotations along the X, y and X +y directions,
whereas the two-qubit gates are ‘fSym”. In the second, the RUC is com-
posed entirely of two-qubit SU(4) gates (without global swap opera-
tions*). For the firstimplementation, we set C=1, whereas in the second
weset C=1.7,tobetter guarantee that the chosendepthisinthesaturated
entanglementregime. Openboundary conditionsare used inaccordance
withthe experimental Rydberg system, and thus there are two possible
gate topologies (that is, in the first depth applying the ‘fSym’ gate to
qubits1-2,3-4 and so on, or 2-3,4-5 and so on)—we explicitly average
over anequal number of randomized realizations of each topology when
calculating the entanglement entropy growth. As in the Rydberg case,
we fitthe entanglement saturation depth asalinear function of the num-
berof qubitsinthe RUC, yielding d,,. = B, + BiNruc. For the gate-set based
on ref.’ we find 8,=-0.395(17) and 8, = 0.557(1), and for the gate-set
based on SU(4) gates* we find 8, = -3.18(77) and B, = 2.261(51).

Estimating fidelity decay. In Fig. 4b, we see that the decay profile of
the model fidelity, F,,,q, for our Rydberg simulator is approximately
exponential, which we confirm by error model simulations with system
sizesranging from N=10to22in Extended DataFig. 6a. For each system
size, we fit the fidelity decay profile as

F(N, t) = exp(-y(N)?), (16)

where y(N) is the fidelity decay rate. We find that, for the system size
range considered here, y(N) scales approximately linearly with N, from
whichwefity(N) =y, + y;N; for our particular Hamiltonian parameters

and noise sources, we find y, = 0.12(4) and y; = 0.017(3), both in mega-
hertz (Extended Data Fig. 6b).

In Fig. 4d, we use the fitted y(N) explicitly to predict the fidelity
scaling of our Rydberg simulator at the N-dependent entanglement
saturation time, ¢, as a function of system size. Concretely, we plot
(red dashed line):

FmodeI(N' tent(N)) =FI(\)IeXp(_y(N)tent(N))' (17)

where F,=0.997(1) is the single-atom preparation fidelity determined
experimentally. The shaded red regionin Fig.4d depicts the error from
the fit uncertainty of y(N).

Forthe RUC case, the fidelity decay for agiven systemsize, Npc, and
depth, d, is modelled as a simple product over constituent two-qubit
cycle fidelity, F,., yielding

FoucN, d) = FNec0d/2.

cycle (18)
where the exponent on the right-hand side reflects the fact that we
apply, onaverage, (Nyyc — 1)/2 two-qubit gates in parallel per depth.

Comparing digital and analogue devices. We wish to directly com-
paretheevolution fidelity of our analogue Rydberg quantum simulator
against that of a digital device implementing a RUC with equivalent
entanglement entropy at the entanglement saturation time. However,
duetothe Rydbergblockade mechanism, as well as symmetries of our
Hamiltonian (Supplementary Information), an equal number of atoms
inthe Rydberg simulator, N,and qubitsin the RUC, Ny, will not saturate
to the same half-chain entanglement entropy.

To overcomethis, in Extended Data Fig. 7b we plot the entanglement
entropy, S (Spuc), achieved at ¢, (d.,) for the Rydberg simulator (RUC)
asafunctionof N (Nyc). For the Rydberg simulator, we fit S(N) = g, + o,N
with g, =0.16(4) and 0, = 0.26(3).For the RUC, we use the prediction of
Sruc(Nruc) = 1o + MNruc With 17, =-log,(e)/2 ~-0.72 and 17, =1/2 being
exact values with no error bars, as defined in ref. >* (where e is Euler’s
number and where we have used thelog, entanglement entropy con-
vention). To find the equivalent Ny . foragiven N, we thensimply equate
Sruc(Nruo) = S(N), yielding Ngyc = (6N + (0, — no))/n, = 0.52N +1.76.

With this system size equivalence established we can directly com-
pare the SPAM-corrected Rydberg and RUC systems at their respective
entanglement time and depth, to find the equivalent RUC two-qubit
cycle fidelity that would match the Rydberg quantum simulator’s
evolution fidelity. By evolution fidelity, we refer to the fidelity at the
entanglement time, up to preparation errors, which based on our
validated error model is approximately given by exp(=y(N)teq(N))
from equation (17). We equate Fpyc(Ngucr @ene) = €XP(—V(N)ter(N)) and
then solve for Fy .. As shown in Extended Data Fig. 7c, for the gate-set
used in ref.>, we find F.,.,. = 0.987(2), whereas for the SU(4) circuit we
find F . = 0.9965(5), which is nearly independent of system size.
Error bars originate from the uncertainty on the parameters of y, t..,,
don Foand S.

Hamiltonian parameter estimation

The Hamiltonian parameter estimation scheme presented in Fig. 5
works by comparing measurements from experiment against an ensem-
ble of target states from numerical simulations, each evolved with a
different set of Hamiltonian parameters. For example, we can define
afamily of target states, which are parameterized by the Rabi frequency,
0, as |P(t, Q) = e HDR 10y ®N When the value of Q does not match
the Rabi frequency used in the experiment, the target state |¢(¢, Q))
will have smaller overlap with the experimental state, and the fidelity
estimator F(t, Q) = (P(t, Q)| p(6) |Y(t, Q2)) will decay more quickly. To
identify the best Rabi frequency yielding the highest fidelity, we define
the time-integrated estimator defined as F(Q) = %LT) de F(t, Q) where
Tis the maximum interrogation time, and plot F(Q) as a function of Q



(Fig. 5a). We analyse the sensitivity of this method in the Supplementary
Information.

Target state benchmarking

Our fidelity estimation protocol can be used both to estimate the fidel-
ity of performing some quantum evolution (Fig. 4) and to estimate the
fidelity of preparing a target quantum state of interest (Fig. 5). In this
modality, we assume the target state is prepared with some non-unity
fidelity due to experimental imperfections, after which we apply an
infinite effective temperature quench Hamiltonian and observe the
resulting dynamics.

In Fig. 5d, the ideal state is the ground state at 4/Q =3 and
Von/Q2=0.26, close to the phase transition between the disordered and
Z,-ordered states of the Rydberg Hamiltonian*’. The imperfect state
is taken to be an incoherent mixture composed of 50% each of the
ground and first excited states. This state is then quenched with a
Hamiltonian with parameters Q/2n=5.3 MHz, 4/2nt=2.8 MHz,
C,/21 =254 GHz pm®and a = 3.75 um, with 21t x +1 MHz random on-site
disorder drawn from a uniform distribution.

In Extended Data Fig. 8, we numerically demonstrate fidelity estima-
tion of various target states such asacluster state, aHaar-random state
of atwo-dimensional Rydberg quantum simulator and a symmetry-
protected topological ground state.

Specifically, in Extended DataFig. 8a, we estimate the state prepara-
tion fidelity of a one-dimensional cluster state defined as

N-1
1) quster = T1 (€D aq 14> (19)
i=1

where (CZ), ., is the two-qubit, controlled-Zgate acting on two adjacent
qubits atsiteiand i+1,and|+) is the equal superposition of the |0)
and |1) states. Theimperfect quantum state is prepared by applying a
global phase rotation to the ideal state such that the state overlap
becomes F=0.5.Wethenuse aninfinite effective temperature quench
Hamiltoniangivenas H/h=h, 3, ($; —1.795; + 4.64S; S, ) tolearnthe
state overlap via our F.formula.

In Extended Data Fig. 8b, we estimate the state preparation fidel-
ity of a pure Haar-random state generated from Rydberg atomsin a
4 x 4two-dimensional square array. Theimperfect stateis prepared by
applying alocal phase rotation to a central qubit, yielding F = 0.5. For
subsequent quench dynamics, identical Hamiltonian parameters are
used as in the one-dimensional Rydberg benchmarking case (Fig. 4).

Finally, in Extended Data Fig. 8c, we estimate the state preparation
fidelity of a symmetry-protected topological ground state prepared
inaRydbergladder array realizing the Su-Schrieffer-Heeger topo-
logical model, following the approach of ref. . The imperfect state is
prepared with alocal phase erroryielding astate overlap of F=0.5.1tis
subsequently benchmarked by infinite effective temperature evolution

with the quench Hamiltonian chosen to be the combination of the iden-
tical interaction Hamiltonian, arandom on-site disorder of strength
1MHz and a detuned global drive with a Rabi frequency of 2 MHz and
adetuning of 0.5 MHz.
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Extended DataFig.1|Experimental system and parameter feedback.

a, Illlustration of aRydberg quantum simulator consisting of strontium-88
atoms trapped in optical tweezers (red funnels). Allatoms are driven by a global
transverse control field (purple horizontal beam) at aRabi frequency Qand a
detuning A (right panel). Theinteraction strengthis givenas C6/R withan
interaction constant C,and atomic separations R;;between two atoms at site
iandj.b,Schematic of the experimental feedback scheme. We automatically
interleave datataking with feedback to global control parameters and
systematic variables through ahome-built control architecture (Methods);
inparticular, we feedback to the clock laser frequency (to maintain optimal
state preparation fidelity), the Rydberglaser alignment, the Rydberg
detuning A, and the Rabi frequency Q. ¢, Example of the interleaved
automatic Rabifrequency stabilization over the course of = 20 hours with

no humanintervention. Feedbackis comprised of performing single-atom
Rabi oscillations, fitting the observed Rabi frequency, and updating the

laser amplitude, rather than simply stabilizing the laser amplitude against
aphotodiodereference. While the Rabi frequency setpoint (orange squares)
changes over the course of the sequence (due to long-time instabilities like
temperature drifts), the measured Rabi frequency (blue circles) stays constant
towithin<0.3%, withastandard deviation of 0.15%. This same stability isseen
over the course of multiple days with nearly continuous experimental uptime.
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Extended DataFig.2|Universality of moments of the projected ensemble.
kthmoments of the conditional probability distributions in Fig. 2b,d, evaluated
atintermediate time (Q¢/2m=2.3) and for a variety of choices of subsystems
(see panelontheright); we find auniversal convergenceto = k!, independent of
subsystem choice, suggesting that asubsystem’s projected ensemble
converges to the uniformrandom ensemble irrespective of the details of
placement, or connectivity. Error bars are the standard deviation over
temporal fluctuationsin moments near the evaluated time, as shownin Fig. 3a.
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Extended DataFig. 3| Emergent randomness and benchmarkingin other
quantumsystems. a, Fidelity estimation for the case of atrapped ion quantum
simulator governed by chaotic Hamiltonian evolution (left) and aquantum
computerimplementing arandom unitary circuit (RUC) (right); see
Supplementary Information for simulation details. Inboth cases, we plot the
many-body fidelity (dashedline), as well as our fidelity estimator, F, (solid line);
for the RUC case we also plot the more conventional linear cross-entropy-
benchmark, Fyg,° (dotted line). We find that F.approximates the fidelity at
much earlier times than Fyg;. b, Numerically computed trace distances between
the projected ensemble of atwo-qubit subsystem and the corresponding
k-design. Results are shown for multiple different total systemsizes: 10,13,

16 for thetrappedion case,and 10,12, 14,16 for the RUC case, with darker colors
correspondingtolarger total systemsizes.
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Extended DataFig.4 |Detectingerrors during quantum evolution.

a, Schematic of noisy time evolution withanerror occurring attime¢,,,. The
influence of the local error propagates outward, affecting the measurement
outcomes non-locally atalater time.b, Errors during evolution can be detected
by correlating the measurement outcomes with anerror-free, ideal evolution
case. We numerically tested this by applying alocal, instantaneous phase error
to the middle qubit of an N=16 atom Rydberg simulator at time Q¢t,,,/2m=1.

The proposed fidelity estimator, F.(solid line), accurately approximates the
many-body overlap (dashed line) between states produced with and without
errors, afteraslightly delayed time. Inset: Conditional probability distributions
inAbefore (blue) and after (red) the error, showing decorrelation.
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Extended DataFig. 5| Finite sampling analysis for F.. a, Statistical fluctuations
ofthefidelity estimator, F., at N=13 (dark purple) and N=22 (light purple),
computed both using our abinitio error model (solid lines) and experiment
(markers) evaluated with a finite number of Mbitstring samples. Dataare
consistent with al/-/M scaling, shown here as aguide to the eye (grey dashed
line) b, Sample complexity of the fidelity estimator, evaluated at the N-dependent
entanglementsaturation time for the error model (blue crosses), and for the
experimental datain Fig. 4d (red circles). A fit to the experimental data (dashed
line) with functional form a(Fc)W = aNyields anestimate of a=1.037(2)
(asimilarfitto the error modelyields an estimate of a =1.039(2)).
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Extended DataFig. 6 | Predictingfidelity scaling. a, We use our abinitio error
model (whichincludes state preparation errors) to predict the fidelity decay
rateasafunction of systemsize. For various system sizes we plot the model
fidelity (solid lines), as well as fits to exponential decay with an unconstrained
value at t= 0 (dashed lines), whichwe see are consistent with the time-dependent
fidelity. b, For therange of system sizes for which our error modelis readily
calculable, we see the fidelity decay rate normalized by the Rabi frequency,
y(N)Q/2m (markers), is consistent with alinear function of system size (red line).
Theshadedregion comes from uncertainty in the fit parameters.
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Extended DataFig.7 | Comparison to digital quantum devices executing
random circuits. a, Numerical simulations of a one-dimensional digital
quantum deviceimplementing arandom unitary circuit (RUC). Two different
digital gateimplementations are tested: a configuration based on the gate-set
used inref.® (bottom), and a configuration where each cycle is composed of
parallel two-qubit SU(4) gates (top)*. Cross markersindicate when the
half-chain entanglement entropy saturates. b, Due to the Rydbergblockade
mechanism, as well as symmetries of the Rydberg Hamiltonian (Supplementary
Information), an equal number of atomsin the Rydberg simulator, N, and
qubitsinthe RUC, Ny, will not saturate to the same half-chain entanglement
entropy. However, we canstill find an equivalence by plotting the saturated
entanglement entropy for the RUC (blue crosses for the SU(4) gate-set, open
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red squares for gate-set fromref.®) and for the Rydberg simulator (grey
markers) as afunction of their respective systemsizes. We fit the results for
the Rydberg simulator (black line), and plot the analytic prediction for the
RUC**(purpleline), from which we can write an equivalent Ny, as a function
of N,in the sense of maximum achievable entanglement entropy (Methods).
c,Foragiven N (and equivalent Ny,c), we plot the SPAM-corrected, two-qubit
cyclefidelity for an equivalently-sized RUC to match the evolution fidelity of
our Rydberg simulator at the time/depth when entanglement saturates. Red
lines, markers and crosses are for the gate-set of ref.*, while blue are for the
SU(4) gate-set. Shaded regions come from the error onfitting the various
N-dependent parameters which enter this calculation (Methods).
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Extended DataFig. 8| Applications to target state benchmarking.

a, Benchmarking of aone-dimensional cluster state, b, a pure Haar-random
statebenchmarkedin atwo-dimensional square Rydberg atomarray, and
c,asymmetry-protected topological (SPT) ground state prepared inaRydberg
ladder array realizing the Su-Schrieffer-Heeger topological model*.Ina, CZ
denotesacontrolled-Zgateand|+) = w. Inb, Rydenotesthe Rydbergblockade
radius within which more than asingle excitation is not allowed* . In c,/and
J’arethealternating coupling strengths of atwo-leg ladder array, respectively.
Inall cases, N=16 qubits are used, and imperfect quantum states are prepared
viaphase rotations such that the many-body fidelity overlap becomes 0.5 (red
dashed line). Additionally, chaotic evolutionis performed such that the initial
stateis atinfinite effective temperature to apply our F.formalism (blue solid
lines) (Methods).
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