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Preparing random states and benchmarking 
with many-body quantum chaos

Joonhee Choi1,8, Adam L. Shaw1,8, Ivaylo S. Madjarov1, Xin Xie1, Ran Finkelstein1, 
Jacob P. Covey1,2, Jordan S. Cotler3, Daniel K. Mark4, Hsin-Yuan Huang1, Anant Kale3, 
Hannes Pichler5,6, Fernando G. S. L. Brandão1, Soonwon Choi4,7 ✉ & Manuel Endres1 ✉

Producing quantum states at random has become increasingly important in modern 
quantum science, with applications being both theoretical and practical. In particular, 
ensembles of such randomly distributed, but pure, quantum states underlie our 
understanding of complexity in quantum circuits1 and black holes2, and have been 
used for benchmarking quantum devices3,4 in tests of quantum advantage5,6. However, 
creating random ensembles has necessitated a high degree of spatio-temporal 
control7–12 placing such studies out of reach for a wide class of quantum systems. Here 
we solve this problem by predicting and experimentally observing the emergence of 
random state ensembles naturally under time-independent Hamiltonian dynamics, 
which we use to implement an efficient, widely applicable benchmarking protocol. 
The observed random ensembles emerge from projective measurements and are 
intimately linked to universal correlations built up between subsystems of a larger 
quantum system, offering new insights into quantum thermalization13. Predicated on 
this discovery, we develop a fidelity estimation scheme, which we demonstrate for a 
Rydberg quantum simulator with up to 25 atoms using fewer than 104 experimental 
samples. This method has broad applicability, as we demonstrate for Hamiltonian 
parameter estimation, target-state generation benchmarking, and comparison of 
analogue and digital quantum devices. Our work has implications for understanding 
randomness in quantum dynamics14 and enables applications of this concept in a 
much wider context4,5,9,10,15–20.

We start by illustrating the concept of pure random state ensembles 
through a thought experiment: consider a programmable quantum 
device that evolves an input state Ψ ⟩0∣  to an arbitrary output state ψ ⟩j∣ , 
labelled by the program setting, j (Fig. 1a). If the set of states ψ ⟩j∣ —in 
the limit of many repetitions with different j—is homogeneously  
distributed over the output Hilbert space, it is termed a Haar-random 
(or uniform) state ensemble21. A distribution of states close to the 
Haar-random one is shown for a single qubit in Fig. 1b (right).

In practice, approximations to Haar-random state ensembles are 
generated by certain quantum devices requiring explicit classical ran-
domization, in the sense that output states ψ ⟩j∣  are produced by ran-
domly chosen unitary evolution operators Ûj. Examples include random 
unitary circuits (RUCs)8,10, in which each configuration j is realized by 
a random choice of single- and two-qubit gates, and stochastic evolu-
tion with a dynamically changing Hamiltonian12, H tˆ ( )j . In such systems, 
generation of approximate random state ensembles has been used for 
benchmarking of large-scale quantum devices3,4, including fidelity 
estimation as part of quantum advantage5,6 and quantum volume tests22. 
On a more fundamental level, random ensembles provide important 
insights into studies of complexity growth in quantum systems1 and 
understanding the quantum properties of black holes2,23.

However, it is currently unknown how to generate such random 
ensembles from the simplest form of quantum evolution, that governed 
by a fixed, time-independent Hamiltonian Ĥ that is not explicitly ran-
domized, as is the case for dynamics of closed and unperturbed quan-
tum systems. Here, by considering pure state ensembles generated 
during partial measurement of a larger quantum system (Fig. 1c), we 
show such random ensembles do in fact emerge under such conditions. 
These emergent random ensembles enable applications such as device 
benchmarking, even in systems without explicit local, time-resolved 
control, which we demonstrate here experimentally using a Rydberg 
atom simulator24–26 with up to 25 atoms.

Observation of emergent randomness
We generically consider Hamiltonian evolution that produces a global 
quantum state ∣ψ⟩ , which we suppose here describes a set of qubits 
with basis states ∣0⟩ and 1⟩∣ . We bipartition the state into two subsys-
tems: a local system of interest A and its complement B (Fig. 1c). Explic-
itly keeping track of measurement results in B, which are bitstrings of 
the form, for example, zB = 100 ⋯ 010, provides a full description of 
the total system state as
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∑ψ p z ψ z z⟩ = ( ) ( )⟩ ⊗ ⟩ , (1)
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where p(zB) is the probability of measuring a given bitstring in B and 
ψ z( )⟩A B∣  is a pure quantum state in A conditioned on the measurement 

outcome in B. Thus, for each possible zB, there is a well-defined pure 
state in A, the set of all of which is generally not orthogonal. Together 
these states, ψ z( )⟩A B∣ , and their respective probabilities, p(zB), form 
what we term the projected ensemble14 (Fig. 1d); similar concepts also 
enter the definition of localizable entanglement27 and in the concept 
of conditional wavefunctions28. By tracking the time evolution of the 
projected ensemble through both the states and probabilities that 
compose it, we can probe for signatures of the ensemble approaching 
a Haar-random distribution (Fig. 1e).

We stress that this concept is distinct from typical studies of equili-
bration in quantum many-body systems. There, the central object of 
interest is the reduced density operator on A, ρ ρˆ = Tr ( ˆ)A B , found from 
tracing out B from the full density operator ρ̂. The reduced density 
operator can be constructed by averaging over the projected ensemble 

states, ∑ρ p z ψ z ψ zˆ = ( ) ( )⟩⟨ ( )zA B A B A BB
∣ ∣, but as such can only provide infor-

mation on the mean of ensemble observables and never on the actual 
ensemble distribution itself.

To explain the importance of this distinction and reveal the emer-
gence of random statistical properties of the projected ensemble, we 
use a Rydberg analogue quantum simulator24–26, implemented with 
alkaline-earth atoms29–32, which provides high fidelity preparation, 
evolution and readout26 (Extended Data Fig. 1 and Methods). After a 
variable evolution time, we perform site-resolved readout in a fixed 
measurement basis, yielding experimentally measured bitstrings, z, 
which we bipartition into bitstrings zA and zB (Methods).

Hamiltonian parameters are chosen such that, after a short settling 
time, the marginal probability, p(zA), of measuring a given zA (while 
ignoring the complementary zB) agrees with the prediction from ρ̂A 
being a maximally mixed state. In the language of quantum thermaliza-
tion13,33–35, this is equivalent to saying that ρ̂A has reached an equilibrium 
at infinite effective temperature with the complement B as an effective, 
intrinsic bath13,36,37. For a single qubit in A, such a reduced density 
operator is ∣ ∣ ∣ ∣ρ̂ = ( 0⟩ ⟨0 + 1⟩ ⟨1 )A

1
2 : the qubit has a probability of being 

in state 0⟩∣  of p(zA = 0) = 1/DA = 1/2, where DA = 2 is the local dimension 
of A. As shown in Fig. 2a, after a short transient period the experimen-
tally measured probabilities p(zA = 0) (grey squares) equilibrate in 
agreement with this prediction.

We contrast this equilibration with the dynamics of conditional prob-
abilities, p(zA∣zB), of measuring a given zA conditioned on finding an 
accompanying measurement outcome in the intrinsic bath zB. We note 
the marginal probability for finding zA is the weighted average over 
conditional probabilities, ∑p z p z p z z( ) = ( ) ( )zA B A BB

. More generally, 
whereas p(zA) yields information of the reduced density operator, such 
conditional probabilities yield signatures of the projected ensemble, 
as p(zA∣zB) = ∣〈zA∣ψA(zB)〉∣2. In Fig. 2a, we plot numerically simulated 
p(zA = 0∣zB) in grey, with selected traces highlighted in colour to be 
compared with their corresponding experimental data (circle markers). 
Importantly, conditional probabilities fluctuate chaotically with sen-
sitive dependence on zB, even when the marginal probability has 
reached a steady state. In experiments, fluctuations slowly damp out 
over time owing to extrinsic decoherence effects from coupling to an 
external environment at very late time, but these decoherence effects 
do not appear to affect the late-time marginal probability (Fig. 2a, right).

To analyse fluctuations, we bin conditional probabilities into a histo-
gram P(p) for a time when fluctuations are strong and decoherence 
effects are small (t0, Fig. 2b), as well as at very late time (t1, Fig. 2c) when 
decoherence dominates. At t0, the experimental P(p) distribution is 
essentially flat, as predicted for a Haar-random ensemble, up to 
finite-sampling fluctuations and weak decoherence effects (Supple-
mentary Information). We show projected states obtained from simu-
lation (Bloch sphere in Fig. 2b), including decoherence, to illustrate how 
such a flat distribution is generated from a near-uniform ensemble of 
states. At very late time, t1, decoherence reduces the purity of projected 
states significantly, leading to P(p) becoming concentrated around 
1/DA = 0.5 (Fig. 2c). This highlights that the agreement between the 
experimental data and the random ensemble prediction in Fig. 2b,d is 
a coherent phenomenon of closed quantum system dynamics. We fur-
ther validate this in Fig. 2d,e by plotting the P(p) for A composed of two 
and three atoms, with corresponding Hilbert space dimensions of DA = 3 
and 5, respectively (Methods). Here the prediction from the Haar-random 
distribution5 is P p D p( ) = ( − 1)(1 − )D

A
−2A , which we note in the limit DA → ∞ 

becomes the well-known Porter–Thomas distribution38, P p D( ) = e D p
A

− A , 
a key signature of the formation of random state ensembles.

The convergence of the projected ensemble to a nearly Haar-random 
distribution can be temporally resolved by considering moments of the 
distributions P(p), for which the kth moment is defined as p(k) = ∑ppkP(p) 
(Fig. 3a). Looking order by order, we find that, after rescaling by a fac-
tor of DA ⋯ (DA + k − 1), moments from both experiment and numerics 
quickly approach k!, the analytical result expected from a Haar-random 
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Fig. 1 | Random pure state ensembles from Hamiltonian dynamics.  
a, A thought experiment, consisting of a programmable device producing 
arbitrary quantum states ψ ⟩j∣  through unitary operations Ûj, where j enumerates 
over different program settings. b, Repeatedly applying explicitly randomized 
unitary evolution to an initial state Ψ ⟩0∣  produces an ensemble of pure quantum 
states ∣ψ ⟩j  (blue arrows), which is distributed near-uniformly over the Hilbert 
space, H (grey sphere), giving a random state ensemble. c, Here we demonstrate 
a new approach to creating random state ensembles based on only a single 
instance of time-independent Hamiltonian evolution. An initial product state 
evolves under a Hamiltonian, Ĥ, before site-resolved projective measurement 
in the computational basis { 0⟩∣ , 1⟩∣ }. We bipartition the system into two 
subsystems A and B, and analyse the conditional measurement outcomes in 
subsystem A, zA, given a specific result zB from the complement B. These 
outcomes are described by the projected ensemble, a pure state ensemble  
in A, ∣ψ z{ ( )⟩}A B , realized through measurement of B. d, As an example for when  
A consists of a single qubit, conditional single-qubit quantum states ∣ψ z( )⟩A B  
are visualized on a Bloch sphere for all possible zB bitstrings. e, Numerical 
simulations of our experimental system show that the distribution of the 
conditional pure state ensemble in A changes during evolution into a near- 
uniform form. Selected states are chosen (as shown in d) and highlighted to 
demonstrate their late-time divergence (right panel) despite nearly overlapping 
initial conditions (left panel).
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ensemble (Supplementary Information); this is independent of the 
details of subsystem selection, such as whether A is chosen at the edge, 
centre or is even discontiguous (Extended Data Fig. 2), and universal 
values are also found for two-point correlators (Supplementary Infor-
mation). At very late time, moments decrease, indicating sensitivity to 
decoherence effects (Fig. 3a, right). Although here we consider solely 
the projected ensemble equilibrated to infinite effective temperature, 
signatures of similar universal behaviour are seen numerically for finite 
effective temperature cases14 (Supplementary Information).

Importantly, convergence of the kth moment to k! only suggests 
formation of low-order approximations to the Haar-random ensemble, 

so-called quantum state k-designs39. We study the trace distance 
between the projected ensemble, generated from error-free simula-
ton, and successive k-designs (Fig. 3b), finding the distance decreases 
for all kth orders as a function of time, before saturating to a value 
exponentially small in the total system size (Fig. 3c). Similar numerical 
results are found for the case of RUCs and a Hamiltonian used in ion 
trap experiments (Extended Data Fig. 3). In an accompanying paper14, 
we show that the formation of uniformly random, pure state ensembles 
in subsystems is a more universal phenomenon.

Demonstration of device benchmarking
A key question is whether the formation of approximate k-designs 
in the projected ensemble enables associated applications such as 
device benchmarking with only global, time-independent control. 
Decoherence changes observables of the projected ensemble (Figs. 2 
and 3); can this quantitatively signal the onset of decoherence in a 
quantum device?

We affirmatively answer this question by benchmarking the evolution 
of our experimental system under a time-independent Hamiltonian. 
We stress that our approach would be impossible with access only to 
the reduced density operator as it is relatively insensitive to decoher-
ence (Fig. 2a). As a toy example, we consider the case of a single error 
occurring at time terr during unitary evolution. The effect of this error 
then propagates outward40, generically transforming the evolution 
output state and affecting measurement outcomes in subsystem A  
(Extended Data Fig. 4). Using the fact that the projected ensemble 
forms an approximate 2-design4,5,9,15,19,20 (Supplementary Informa-
tion), we devise a fidelity estimator Fc to quantify the effect of this 
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Fig. 2 | Experimental signatures of random pure state ensembles. a, We use 
a ten-atom Rydberg quantum simulator (Extended Data Fig. 1) to perform 
Hamiltonian evolution leading to quantum thermalization at infinite effective 
temperature (see main text for details). For a single qubit in A, we plot the 
probabilities for finding a single-qubit subsystem in state 0⟩∣  as a function of 
time. Grey square markers indicate the marginal probabilities p(zA = 0), which 
equilibrate to around 0.5 owing to thermalization with B. By contrast, coloured 
circle markers show conditional probabilities given a specific measured zB in B, 
p(zA = 0∣zB), which show large fluctuations even after the marginal probability 
reaches a steady state; these then diminish at late times because of extrinsic 
decoherence effects. Such conditional probabilities yield information about 
the projected ensemble as p(zA∣zB) = ∣〈zA∣ψA(zB)〉∣2. Grey lines are simulated 
trajectories of p(zA = 0∣zB) for all outcomes zB, with a few highlighted to be 
compared with experimental data (colour lines and markers). Decoherence 
sources (Supplementary Information) are included for simulations after the 
axis break. b, Histograms, P(p), of the probabilities p(zA = 0∣zB) at intermediate 
(Ωt0/2π = 2.3) time. The experimental results are close to a flat distribution, 
consistent with a Haar-random ensemble, as visualized by the simulated 
distribution of projected states (right). c, However, at late (Ωt1/2π = 38) time, 
decoherence effects have concentrated probabilities around 1/DA = 0.5, 
consistent with the error model simulation showing the reduced lengths of 
single-qubit states (right). d,e, Similar agreement with predictions from 
random state ensembles is also seen at both early (d) and late (e) times for 
larger subsystem sizes of A with higher subsystem dimension, DA (Methods).  
In b–e, black lines and grey bands are predictions and uncertainties (from finite 
sampling) of a DA-dimensional uniform random ensemble; red dashed lines and 
blue solid lines are from simulations with and without decoherence, respectively 
(Supplementary Information).
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Fig. 3 | Development of emergent randomness. a, Rescaled second (red), 
third (purple) and fourth (blue) moments of the conditional probability 
distributions in Fig. 2d for subsystem of length LA = 2. Experimental moments 
saturate to approximately k!, the expectation from the uniformly random 
ensemble (dotted lines) and consistent with numerical simulation (solid lines), 
before eventually decaying owing to decoherence. b, Numerically computed 
trace distances as a function of time between the LA = 2 projected ensemble  
and the four lowest order approximations to the uniform random ensemble, 
the so-called quantum state k-designs, for k = 1, 2, 3, 4 (inset). Distances for  
all k decrease initially before saturating due to finite system size effects 
(Supplementary Information). If the trace distances up to order k vanish, the 
ensemble is as random as the kth design, and fluctuations of observables 
match up to order k, such as the kth moments in a. c, Late-time distances 
decrease as approximately D1/ B  (solid lines), the Hilbert space dimension  
of the effective bath, subsystem B.
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error (Methods) as a rescaled cross-correlation between measurement 
probabilities in the experimental and ideal conditions:

∑
∑

F
p z p z

p z
= 2

( ) ( )

( )
− 1, (2)z

z
c

0

0
2

where p(z) and p0(z) are the experimental and theoretical probabilities 
of observing a global bitstring z, respectively. We numerically confirm 
that, shortly after we apply an instantaneous phase rotation error on 
one qubit, our estimator approximates the many-body state overlap, 

∣ ∣F F ψ ρ ψ≈ = ⟨ ˆ ⟩c , between the ideal state ψ⟩∣  and the erroneous state ρ̂ 
(Extended Data Fig. 4b, Methods and Supplementary Information).

To evaluate Fc experimentally, we formulate an empirical, unbiased 
estimator:

∑
F

p z

p z
≈ 2

∑ ( )

( )
− 1, (3)M i

M i

z
c

1
=1 0 exp

( )

0
2

where M is the number of measurements and z i
exp
( )  is the experimentally 

measured bitstring at the ith repetition. Although this reformulation 
still requires calculation of a reference theory comparison, we note 
that the required number of experimental samples to accurately 
approximate Fc scales favourably with system size N. Concretely, the 
standard deviation of Fc is estimated to be σ F M( ) ≈ 1.04 /N

c  (Extended 
Data Fig. 5), yielding an improved sample complexity in comparison 
with other existing methods19,41. This implies that we do not need to 
fully reconstruct the experimental probability distribution for fidelity 
estimation of large quantum systems.

We test our benchmarking protocol for errors occurring continu-
ously with a Rydberg quantum simulator of up to N = 25 atoms. We 
estimate the fidelity of our experimental device, Fc,exp, by correlating 
measured bitstrings to results from error-free simulation as a function 
of evolution time. In addition, we use an ab initio error model with no 
free parameters that mimics the experimental output (Supplementary 
Information), from which we extract both the fidelity estimator, Fc,model, 
and the model fidelity, F ψ t ρ t ψ t= ⟨ ( ) ˆ ( ) ( )⟩model model∣ ∣  (Fig. 4a).

In Fig. 4b, we compare Fmodel, Fc,exp and Fc,model for a system of ten atoms. 
We observe Fc,model ≈ Fmodel, validating the efficacy of the estimator under 
realistic error sources. In addition, we find F F≈c,exp c,model, and that full 
bitstring probability distributions show good agreement between the 
error model and the experiment (Supplementary Information), indicat-
ing that our ab initio error model is a good description of the experiment.

We further apply this method to estimate the fidelity for generating 
states with a maximum half-chain entanglement entropy in larger 
systems. We first use error-free simulation to calculate the half-chain 
entanglement entropy growth as a function of system size, finding 
that the entanglement saturates at a time tent, which is linear in system 
size (Fig. 4c and Methods). We evaluate the fidelity estimator Fc for 
N ranging from 10 to 25, each at their respective tent, again finding 
good agreement between experiment and our ab initio error model 
(Extended Data Fig. 6) in the range for which our error model is readily 
calculable (Fig. 4d). We note an estimated fidelity of 0.49(2), where the 
number in brackets is the standard error in the last digit, for generat-
ing a state with maximum half-chain entanglement entropy for N = 25.

We numerically show that Fc also applies for erroneous evolution 
using other quantum devices (Extended Data Fig. 3). In the case of 
RUCs, Fc accurately estimates the fidelity at much shorter evolution 
times than do existing methods such as linear cross-entropy bench-
marking3,5, which can be explained through the early time-formation 
of the projected ensemble (Methods).

Applications of benchmarking
Our protocol enables various applications, including evaluating the 
relative performance of analogue and digital quantum devices, in situ 

Hamiltonian parameter estimation and benchmarking the fidelity of 
preparing various target states. First, to compare analogue and digital 
quantum evolution, we evaluate the fidelity achieved at tent for both 
analogue quantum simulators and digital quantum computers (for 
which tent is defined in terms of gate depth, see Methods). We find our 
system has an equivalent effective, state preparation and measurement 
(SPAM)-corrected, two-qubit cycle fidelity of 0.987(2) for the gate-set 
used in ref. 5 and 0.9965(5) for a gate-set based on two-qubit SU(4) gates4 
(Extended Data Fig. 7 and Methods).

Next, to perform Hamiltonian parameter estimation, we measure Fc 
while varying Hamiltonian parameters in the simulation; when numeri-
cal parameters do not match with those in experiment, Fc will decay 
quickly. To capture this effect in a single quantity we plot the normal-
ized, time-integrated Fc (Fig. 5a). For each Hamiltonian parameter, 
a sharp maximum emerges (Supplementary Information), showing 
good agreement with precalibrated values (dashed lines and shaded 
areas). Parameter estimation also works when applied to learn local, 
site-dependent terms of a disordered Hamiltonian (Fig. 5b), notably 
without any local control during readout.

Finally, Fc can be used to benchmark the fidelity of preparing various 
quantum states of interest by preparing a target state and then quench-
ing the Hamiltonian to evolve the prepared state at infinite effective 
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Fig. 4 | Fidelity estimation of an analogue Rydberg quantum simulator.  
a, To estimate experimental fidelity, we repeatedly perform Hamiltonian 
evolution, each time performing a projective measurement to accrue an 
ensemble of measured bitstrings zexp. We then correlate the measured bitstrings 
with an error-free simulation of the dynamics to calculate the fidelity estimator, 
Fc,exp. To validate our fidelity estimation method, we compare the error-free 
simulation against results from an ab initio error model (Supplementary 
Information), to calculate the model fidelity Fmodel and accompanying estimator 
Fc,model. b, Experimental benchmarking of a Rydberg quantum simulator for 
N = 10 atoms with blockaded Hilbert space dimension D = 144. Shown are Fc,exp 
(grey markers), the fidelity Fmodel (dashed red line) and Fc,model (solid pink line).  
c, The half-chain entanglement entropy (calculated from the error-free 
simulation) increases before saturating at a time, tent, which grows linearly  
with system size (inset). d, Fidelity estimated at tent, showing estimator Fc  
from experiment (grey markers) up to N = 25 and from error model (pink 
crosses) up to N = 22. In addition, we show a fit to the model fidelity, given as 
F γ N t Nexp[− ( ) ( )]ent

N
0  (red dashed line), where F0 is the single-atom preparation 

fidelity and γ(N) is the many-body fidelity decay rate of our Rydberg simulator 
(Methods and Extended Data Fig. 6). The fidelity estimation uses only less than 
104 experimentally sampled bitstrings per data point. See Methods for 
description of error bars.
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temperature (Fig. 5c and Methods). As a numerical proof-of-principle, 
we show results for such target-state benchmarking to prepare a ground 
state near the Ising quantum phase transition in the Rydberg model42 
(Fig. 5c,d), where the noisy state is an equal probability mixture of the 
ground and first excited states. After a short disordered quench, the 
estimator Fc reveals the fidelity of the prepared state, offering a way to 
perform in situ optimization of many-body state preparation; further 
examples are shown in Extended Data Fig. 8.

In conclusion, we have uncovered emergent randomness arising 
from partial measurement of an interacting many-body system. Subse-
quently, we have shown a widely applicable fidelity estimation scheme 
that works at shorter evolution times and with reduced experimental 
complexity compared with existing approaches, and have demon-
strated applications in quantum device comparison, Hamiltonian 
parameter estimation and benchmarking the fidelity of preparing 
interesting quantum states. The concept of emergent randomness 
could provide a new framework for quantum thermalization, chaos and 
complexity growth43. Open questions remain, such as a deeper under-
standing of the finite effective temperature case14 (Supplementary 
Information) and uncovering the signatures of non-ergodic dynamics 
in integrable or localized systems33–35,44,45. Such developments could 
enable a more flexible and standardized way of performing quantum 
fidelity estimation in a wide variety of quantum hardware, including 
trapped ions46, superconducting qubits3, photonic systems47, and cold 
atoms and molecules in optical lattices48. Ultimately, emergent ran-
dom ensembles could find a broader range of applications, including 

quantum advantage tests5,6,15–17,47, in situ Hamiltonian learning5,49 and 
optimization of target quantum state preparation.

Note added in proof: During the course of the revision, a new fidelity 
estimator has been introduced50; we present a comparison in Supple-
mentary Information.
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Methods

Description of the experiment
The details of our experiment have been summarized previously26,30,32,51; 
in brief, we use an array of optical tweezers to trap individual 
strontium-88 atoms. Initially in the 5s2 1S0 state, atoms are cooled on 
the narrow-line 5s2 1S0 ↔ 5s5p 3P1 (689 nm) transition close to their 
motional ground state, with an average transverse occupation number 
of 〈n〉 ≈ 0.3 (corresponding to approximately 3 μK). For all data shown, 
we rearrange the initially stochastically filled array to a defect-free 
array52,53 of atoms spaced by 3.75 μm, discarding extras. Atoms are 
initialized to the 5s5p 3P0 (698 nm) clock state through a combination 
of coherent drive and incoherent pumping, for a total preparation 
fidelity of 0.997(1) per atom. We treat the clock state as a metastable 
qubit ground state, 0⟩∣ , and subsequently drive to the 5s61s 3S1, mJ = 0 
(317 nm) Rydberg state, ∣1⟩ . Following Hamiltonian evolution, state 
readout is performed using the auto-ionizing transition 
5s61s 3S1, mJ = 0 ↔ 5p3/261s1/2 (408 nm, J = 1, mJ = ±1), which rapidly ionizes 
atoms in the Rydberg state with high fidelity (approximately 0.999), 
leaving them dark to our fluorescent imaging. Atoms in the clock state 
are pumped into the imaging cycle, allowing us to directly map atomic 
fluorescence to qubit state.

The Hamiltonian of this system is well approximated by

∑ ∑ ∑H ħ Ω S Δ n
C
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n n

i j
ˆ / = ˆ − ˆ +

ˆ ˆ
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i
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i j
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>
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which describes a set of interacting two-level systems, labelled by site 
indices i and j, driven by a laser with Rabi frequency Ω and detuning Δ. 
The interaction strength is determined by the C6 coefficient and the 
lattice spacing a. Operators are ∣ ∣ ∣ ∣Ŝ = ( 1⟩ ⟨0 + 0⟩ ⟨1 )/2i i i ii

x
 and ∣ ∣n̂ = 1⟩ ⟨1i i i, 

where 0⟩i∣  and 1⟩i∣  denote the electronic ground and Rydberg states 
at site i, respectively.

For measurements observing the emergence of random ensem-
bles, we use Ω/2π = 4.70(1) MHz, Δ/2π = 0.90(3) Hz and a = 3.75(5) μm, 
with an experimentally measured next-nearest-interaction strength of 
Vnnn/2π = C6/(2a)6 = 1.40(2) MHz, yielding an estimated C6 coefficient of 
2π × 249(20) GHz μm6. Under this condition, we confirm numerically 
that the initial all-zero state rapidly thermalizes to an infinite effec-
tive temperature thermal ensemble locally within the constrained 
subspace where no two adjacent atoms are simultaneously in the 
Rydberg state24–26. Benchmarking measurements are performed with 
Ω/2π = 5.30(1) MHz, Δ/2π = 0.50(3) MHz, which again thermalizes to 
an infinite effective temperature thermal ensemble.

As the experimental data shown throughout the main text require 
both high statistics (taken over the course of multiple days) and very 
fine parameter control, we periodically perform automatic feedback 
to several experimental parameters using a home-made control archi-
tecture. Specifically these are: (1) the clock state resonance frequency 
to ensure maximal preparation fidelity, (2) the Rydberg laser beam 
alignment, (3) the Rydberg resonance frequency and (4) the Rydberg 
Rabi frequency. For the clock frequency, we apply a π-pulse on the clock 
transition to identify the resonance and perform state-resolved readout 
by ejecting all ground state atoms from the trap with an intense pulse 
of light on the 5s2 1S0 ↔ 5s5p 1P1 (461 nm) transition26.

For the Rydberg alignment, detuning and Rabi frequency, we rear-
range the array to non-interacting atoms spaced by 15.1 μm. During 
alignment we raster the Rydberg beam across the array, sampling dif-
ferent position-dependent Rabi frequencies and thus evolving to dif-
ferent position-dependent phases. We compare the resultant signal 
with a numerical simulation across all positions to identify the point 
of furthest phase and thus maximal intensity. For the Rydberg detun-
ing, we measure the resonance condition at Ωt = 13π to narrow the 
resonance feature. For the Rabi frequency, we take a series of time 
points between 13π < Ωt < 17π and fit the resulting Rabi oscillations. 

After each feedback experiment, the relevant parameter is automati-
cally updated for subsequent measurements (Extended Data Fig. 1).

Data analysis
Our state readout is described in detail in ref. 26; it features single- 
site detection that discriminates atoms in the clock state, 0⟩∣ , versus 
the Rydberg state, ∣1⟩, through a combination of fluorescence imaging 
and Rydberg auto-ionization. We take a total of three images: (1) after 
the array is initially loaded to perform rearrangement, (2) after the  
rearrangement is completed to verify the initial state is correct and  
(3) after the sequence has finished. We postselect for image triplets for 
which the proper rearrangement pattern is visible in image (2) and  
calculate the survival of each atom by comparing site occupations in 
image (2) to image (3). This array of survival signals is then converted 
into the qubit basis. For instance, in typical experiments in which atoms 
are rearranged into defect-free arrays of ten atoms, we calculate the 
binary survivals for each atom and then make the mapping ‘atom  
survived’ ∣→ 0⟩ and ‘atom did not survive’→ 1⟩∣ , yielding a bitstring of the 
qubit states. After taking many shots we accrue an ensemble of such 
bitstrings {z}. For randomness measurements, a total of approxi-
mately 120,000 shots are used (approximately 3,000 shots per time 
point). For benchmarking measurements a total of approximately 40,000 
shots are used for generating the time trace at N = 10 in Fig. 4b (approx-
imately 3,700 shots per time point). Approximately 4,000 total shots 
are used for the N-scaling plot in Fig. 4d, in which the number of shots 
for a given system size is approximately given by M ≈ 3,000 + 250N.

Error bars in Figs. 2 and 3 are calculated via bootstrapping methods, 
and are often smaller than the marker sizes. In Fig. 4, error bars on 
experimental quantities are calculated via extrapolation from sub-
sampling of the total number of experimentally measured bitstrings to 
estimate the sample complexity at a given N (Extended Data Fig. 5). The 
error bars on Fc,model from the ab initio error model stem from typicality 
errors associated with the temporal fluctuation of our estimator (Sup-
plementary Information). Error bars on the programmed parameters 
in Fig. 5b come from uncertainty in local detuning intensity, whereas 
error bars on the learned parameters are standard deviations arising 
from performing the simultaneous parameter optimization 30 times 
with randomized starting initial conditions.

Our system Hamiltonian is naturally stratified into a number of energeti-
cally widely spaced sectors due to the Rydberg blockade24–26. In particular, 
the nearest-neighbour interaction is approximately 20 times greater 
than the next largest energy scale, so cases for which neighbouring pairs 
of atoms are both excited to the Rydberg state are greatly suppressed. 
For N = 10, we find around 99% of all experimental bitstrings are in the 
blockade-satisfying energy sector at short times (t < 1 μs) but this probabil-
ity starts to decrease at late times (t > 1 μs) owing to experimental imper-
fections—we refine {z} by discarding all realizations not in this sector. We 
note, however, that all simulations are performed in the full Hilbert space.

For calculations involving conditional probabilities, we bipartition 
each bitstring z into subsystems A and B with bitstrings zA and zB, respec-
tively. When considering the statistics of conditional probabilities, we 
note that the blockade interaction can reduce the dimensionality of the 
Hilbert space of subsystem A if the boundary qubits in B are in the Rydberg 
state. To isolate a set of conditional states having the same Hilbert space 
dimension DA for a given choice of subsystem A and B, we only consider 
bitstrings zA and zB if the qubits in B bordering A are in the 0⟩∣  state.

Derivation of the fidelity estimator Fc

Our fidelity estimator Fc (equation (2)) can be understood by express-
ing the global bitstring probabilities for ideal and noisy evolutions, 
p0(z) and p(z), respectively, in terms of conditional and marginal prob-
abilities as

p z p z z p z( ) = ( ) ( ) (5)0 0 A B 0 B



p z p z z p z( ) = ( ) ( ), (6)A B B

for complementary subsystems A and B. We consider the simplest case 
of a single local error V̂  occurring at time terr during time evolution and 
assume that the time-evolved error operator V τ U τ V U τˆ( ) = ˆ( ) ˆ ˆ( )† is sup-
ported within subsystem A. Here τ = t − terr is the time past the occur-
rence of the error and U τˆ( ) is the time-evolution operator from terr to t. 
This implies that the measurement outcome in B is not affected by the 
error, giving p(z) = p(zA∣zB)p0(zB) because p(zB) = p0(zB). Under these 
conditions, we can rewrite Fc as
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is the zB-dependent, linear cross-entropy benchmark5 in subsystem A, 
and DA is the Hilbert space dimension of A. From equation (8) to equa-
tion (9), we used the second-order moment of the projected ensemble 
in an error-free case
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based on our experimental and numerical observations of emergent 
local randomness during chaotic quantum dynamics (Fig. 2 and Sup-
plementary Information).

The validity of the relation Fc ≈ F can be analytically understood based 
on the assumption that the projected ensemble of ψ z( )⟩A B∣  approxi-
mately forms a quantum state 2-design. To see this explicitly, we consider
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where ∣ ∣P z zˆ = ⟩ ⟨z A AA
 is the z-basis projector onto a specific bitstring zA 

in A, q(zB) is the probability weighting factor, ̂� is the identity operator 

and ˆAS  is the swap operator acting on subsystem A for the duplicated 
Hilbert space A

⊗2H . To obtain the fourth line, we used
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where the right-hand side is due to the projected ensemble forming 
an approximate quantum state 2-design (Supplementary Informa-
tion). We note that the weighting factors q(zB) are different than those 
used for most of the manuscript; however, we numerically find that 
approximate 2-designs form regardless of which weighting factor is 
used (Supplementary Information).

Inserting equation (13) into equation (10), we obtain
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where the equality on the second line holds because one can always 
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 with the Hilbert space dimen-
sion of the complement DB = D/DA, with D being the Hilbert space  
dimension of the entire system.

The relation in equation (15) explains how Fc estimates the many-body 
fidelity with a good accuracy. The right-hand side of equation (15) 
describes the return probability of V τˆ( ) (also known as the Loschmidt 
echo) averaged over all possible initial states in the fixed measurement 
basis. Under chaotic time evolution, the propagated error operator 
V τˆ( ) becomes scrambled, and it is exponentially unlikely with the size 
of A that a computational state remains unchanged.

Therefore, non-vanishing contributions to Fc arise only when the 
error operator is partly proportional to the identity, for example, 

�V τ c c τ σˆ( ) = ˆ + ∑ ( ) ˆs s s0  with c0 ≠ 0, where s enumerates over all possible 
Pauli strings supported in A. In such a case, Fc ≈ ∣c0∣2 approximates the 
probability that V̂  did not affect the many-body wavefunction, hence 
Fc ≈ F. This statement becomes exact if the local qubit on which the 
error occurs is maximally entangled with the rest of the system at the 
time of the error. Our analysis can be straightforwardly generalized to 
more than one error, either located nearby or distant, as long as their 
joint support A leads to a random ensemble approximately close to 
the state 2-design.

Finally, we comment on the conditions in which Fc may significantly 
deviate from F. If V̂  is diagonal in the measurement basis, for example 
dephasing error along the z axis, and if the error occurs shortly before 
the bitstring measurements, the return probability in equation (15) 
will be close to unity despite the fact that the many-body fidelity may 
be decreased significantly. Our method can fail in this special case. 
However, if Fc is evaluated after some delay time from the error, then 
V τˆ( ) becomes scrambled in the operator basis and F can be approxi-
mately estimated (Extended Data Fig. 4). In other words, even in the 
case of the diagonal errors, our formula becomes valid after a finite 
delay time.

Statistical error scaling from a finite number of bitstring 
samples
We quantify the typical statistical error from approximating our fidel-
ity estimator via equation (3) in two steps. First, we use our ab initio 
error model to simulate the quantum evolution of the Rydberg Ham-
iltonian for system sizes from N = 10 to 22, from which we can calculate 
the exact value of Fc compared to error-free numerics. We then sample 
a finite number of M samples from the probability distributions pro-
duced from the error model simulation, apply equation (3), and plot 
the standard deviation of Fc as a function of M (Extended Data Fig. 5a). 
We see a characteristic scaling of σ F A M( ) = /c , where A is the sample 
complexity, expected to scale exponentially with N, and σ denotes the 
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standard deviation. We perform a similar process directly on our 
experimental data by repeatedly subsampling the experimentally 
measured bitstrings to estimate the scaling of the standard deviation. 
We plot both error model and experimental results in Extended Data 
Fig. 5b as a function of N, where the time is set as the N-dependent 
entanglement saturation time. By fitting the experimental (error 
model) results, we find A ≈ aN, with a = 1.037(2) (a = 1.039(2)).

Predicting fidelity at the entanglement time
Calculating the entanglement time. As can be seen in Fig. 4c, entan-
glement growth in our Rydberg quantum simulator is generally char-
acterized by two distinct regions: a size-independent linear increase, 
followed by saturation at an N-dependent value. To systematically 
capture this behaviour and predict the entanglement saturation time 
for arbitrary N, we apply the following protocol. We first calculate the 
entanglement growth for system sizes ranging from N = 10 to 22. We 
then fit all profiles with a functional form of

S N t
m t t t N

m t N m N t t N t t N
( , ) =

≤ ( )

( ) + ( )( − ( )) > ( )ent
1 c

1 c 2 c c






with free parameters m1, m2(N) and tc(N), but with the explicit constraint 
that m1 must be the same for all system sizes. From this we find tc(N), 
and we further define tent(N) = Ctc(N), where in the Rydberg case we set 
C = 1.35 to make sure the time we study is firmly in the saturated entan-
glement regime (as can be verified visually in Fig. 4c). The secondary 
slope m2 is used because even past tent there is still some slight growth to 
the entanglement entropy, which becomes more noticeable for larger 
N. This behaviour is attributed to slow coupling to the non-blockaded 
Hilbert space as the blockade constraint is only approximate. The entan-
glement saturation time is then fit as a linear function of system size, 
yielding tent(N) = α0 + α1N; for our particular Hamiltonian parameters we 
find α0 = − 0.0580(2) and α1 = 0.05404(1), both in units of microseconds.

For the case of finding the entanglement saturation depth, dent, for 
the case of RUCs considered in Extended Data Fig. 7, we apply essentially 
the same procedure. We study two different digital circuit implementa-
tions. In the first, with a gate-set based on ref. 5, the RUC circuit is com-
posed of alternating one- and two-qubit gates; the one-qubit gates are 
randomly chosen π/2 rotations along the x̂, ŷ and x yˆ +  ̂directions, 
whereas the two-qubit gates are ‘fSym’5. In the second, the RUC is com-
posed entirely of two-qubit SU(4) gates (without global swap opera-
tions4). For the first implementation, we set C = 1, whereas in the second 
we set C = 1.7, to better guarantee that the chosen depth is in the saturated 
entanglement regime. Open boundary conditions are used in accordance 
with the experimental Rydberg system, and thus there are two possible 
gate topologies (that is, in the first depth applying the ‘fSym’ gate to 
qubits 1–2, 3–4 and so on, or 2–3, 4–5 and so on)—we explicitly average 
over an equal number of randomized realizations of each topology when 
calculating the entanglement entropy growth. As in the Rydberg case, 
we fit the entanglement saturation depth as a linear function of the num-
ber of qubits in the RUC, yielding dent = β0 + β1NRUC. For the gate-set based 
on ref. 5 we find β0 = −0.395(17) and β1 = 0.557(1), and for the gate-set 
based on SU(4) gates4 we find β0 = −3.18(77) and β1 = 2.261(51).

Estimating fidelity decay. In Fig. 4b, we see that the decay profile of 
the model fidelity, Fmodel, for our Rydberg simulator is approximately 
exponential, which we confirm by error model simulations with system 
sizes ranging from N = 10 to 22 in Extended Data Fig. 6a. For each system 
size, we fit the fidelity decay profile as

F N t γ N t( , ) ∝ exp(− ( ) ), (16)

where γ(N) is the fidelity decay rate. We find that, for the system size 
range considered here, γ(N) scales approximately linearly with N, from 
which we fit γ(N) = γ0 + γ1N; for our particular Hamiltonian parameters 

and noise sources, we find γ0 = 0.12(4) and γ1 = 0.017(3), both in mega-
hertz (Extended Data Fig. 6b).

In Fig. 4d, we use the fitted γ(N) explicitly to predict the fidelity 
scaling of our Rydberg simulator at the N-dependent entanglement 
saturation time, tent, as a function of system size. Concretely, we plot 
(red dashed line):

F N t N F γ N t N( , ( )) = exp(− ( ) ( )), (17)N
model ent 0 ent

where F0 = 0.997(1) is the single-atom preparation fidelity determined 
experimentally. The shaded red region in Fig. 4d depicts the error from 
the fit uncertainty of γ(N).

For the RUC case, the fidelity decay for a given system size, NRUC, and 
depth, d, is modelled as a simple product over constituent two-qubit 
cycle fidelity, Fcycle, yielding

F N d F( , ) = , (18)N d
RUC cycle

( −1) /2RUC

where the exponent on the right-hand side reflects the fact that we 
apply, on average, (NRUC − 1)/2 two-qubit gates in parallel per depth.

Comparing digital and analogue devices. We wish to directly com-
pare the evolution fidelity of our analogue Rydberg quantum simulator 
against that of a digital device implementing a RUC with equivalent 
entanglement entropy at the entanglement saturation time. However, 
due to the Rydberg blockade mechanism, as well as symmetries of our 
Hamiltonian (Supplementary Information), an equal number of atoms 
in the Rydberg simulator, N, and qubits in the RUC, NRUC, will not saturate 
to the same half-chain entanglement entropy.

To overcome this, in Extended Data Fig. 7b we plot the entanglement 
entropy, S (SRUC), achieved at tent (dent) for the Rydberg simulator (RUC) 
as a function of N (NRUC). For the Rydberg simulator, we fit S(N) = σ0 + σ1N 
with σ0 = 0.16(4) and σ1 = 0.26(3). For the RUC, we use the prediction of 
SRUC(NRUC) = η0 + η1NRUC with η = −log (e)/2 ≈ −0.720 2  and η1 = 1/2 being 
exact values with no error bars, as defined in ref. 54 (where e is Euler’s 
number and where we have used the log2 entanglement entropy con-
vention). To find the equivalent NRUC for a given N, we then simply equate 
SRUC(NRUC) = S(N), yielding NRUC = (σ1N + (σ0 − η0))/η1 = 0.52N + 1.76.

With this system size equivalence established we can directly com-
pare the SPAM-corrected Rydberg and RUC systems at their respective 
entanglement time and depth, to find the equivalent RUC two-qubit 
cycle fidelity that would match the Rydberg quantum simulator’s  
evolution fidelity. By evolution fidelity, we refer to the fidelity at the 
entanglement time, up to preparation errors, which based on our 
validated error model is approximately given by γ N t Nexp(− ( ) ( ))ent  
from equation (17). We equate F N d γ N t N( , ) = exp(− ( ) ( ))RUC RUC ent ent  and 
then solve for Fcycle. As shown in Extended Data Fig. 7c, for the gate-set 
used in ref. 5, we find Fcycle = 0.987(2), whereas for the SU(4) circuit we 
find Fcycle = 0.9965(5), which is nearly independent of system size.  
Error bars originate from the uncertainty on the parameters of γ, tent, 
dent, F0 and S.

Hamiltonian parameter estimation
The Hamiltonian parameter estimation scheme presented in Fig. 5 
works by comparing measurements from experiment against an ensem-
ble of target states from numerical simulations, each evolved with a 
different set of Hamiltonian parameters. For example, we can define 
a family of target states, which are parameterized by the Rabi frequency, 
Ω, as ∣ ∣ψ t Ω( , )⟩ = e 0⟩tH Ω ħ N−i ˆ( )/ ⊗ . When the value of Ω does not match 
the Rabi frequency used in the experiment, the target state ∣ψ t Ω( , )⟩  
will have smaller overlap with the experimental state, and the fidelity 
estimator F t Ω ψ t Ω ρ t ψ t Ω( , ) ≈ ⟨ ( , ) ˆ( ) ( , )⟩c ∣ ∣  will decay more quickly. To 
identify the best Rabi frequency yielding the highest fidelity, we define 
the time-integrated estimator defined as ∫F Ω t F t Ω( ) = d ( , )T

T
c

1

0 c , where 
T is the maximum interrogation time, and plot F Ω( )c  as a function of Ω 



(Fig. 5a). We analyse the sensitivity of this method in the Supplementary 
Information.

Target state benchmarking
Our fidelity estimation protocol can be used both to estimate the fidel-
ity of performing some quantum evolution (Fig. 4) and to estimate the 
fidelity of preparing a target quantum state of interest (Fig. 5). In this 
modality, we assume the target state is prepared with some non-unity 
fidelity due to experimental imperfections, after which we apply an 
infinite effective temperature quench Hamiltonian and observe the 
resulting dynamics.

In Fig.  5d, the ideal state is the ground state at Δ/Ω = 3 and 
Vnnn/Ω = 0.26, close to the phase transition between the disordered and 

2Z -ordered states of the Rydberg Hamiltonian42. The imperfect state 
is taken to be an incoherent mixture composed of 50% each of the 
ground and first excited states. This state is then quenched with a  
Hamiltonian with parameters Ω/2π = 5.3 MHz, Δ/2π = 2.8 MHz, 
C6/2π = 254 GHz μm6 and a = 3.75 μm, with 2π × ±1 MHz random on-site 
disorder drawn from a uniform distribution.

In Extended Data Fig. 8, we numerically demonstrate fidelity estima-
tion of various target states such as a cluster state, a Haar-random state 
of a two-dimensional Rydberg quantum simulator and a symmetry- 
protected topological ground state.

Specifically, in Extended Data Fig. 8a, we estimate the state prepara-
tion fidelity of a one-dimensional cluster state defined as

∣ ∣∏ψ⟩ = (CZ) + ⟩ (19)
i

N

i i
N

cluster
=1

−1

, +1
⊗

where (CZ)i,i+1 is the two-qubit, controlled-Z gate acting on two adjacent 
qubits at site i and i + 1, and +  is the equal superposition of the 0⟩∣   
and ∣1⟩ states. The imperfect quantum state is prepared by applying a 
global phase rotation to the ideal state such that the state overlap 
becomes F = 0.5. We then use an infinite effective temperature quench  
Hamiltonian given as H ħ h S S S Sˆ / = ∑ ( ˆ − 1.79 ˆ + 4.64 ˆ ˆ )x i i

x
i
y

i
x

i
x
+1  to learn the 

state overlap via our Fc formula.
In Extended Data Fig. 8b, we estimate the state preparation fidel-

ity of a pure Haar-random state generated from Rydberg atoms in a 
4 × 4 two-dimensional square array. The imperfect state is prepared by 
applying a local phase rotation to a central qubit, yielding F = 0.5. For 
subsequent quench dynamics, identical Hamiltonian parameters are 
used as in the one-dimensional Rydberg benchmarking case (Fig. 4).

Finally, in Extended Data Fig. 8c, we estimate the state preparation 
fidelity of a symmetry-protected topological ground state prepared 
in a Rydberg ladder array realizing the Su–Schrieffer–Heeger topo-
logical model, following the approach of ref. 55. The imperfect state is 
prepared with a local phase error yielding a state overlap of F = 0.5. It is 
subsequently benchmarked by infinite effective temperature evolution 

with the quench Hamiltonian chosen to be the combination of the iden-
tical interaction Hamiltonian, a random on-site disorder of strength 
1 MHz and a detuned global drive with a Rabi frequency of 2 MHz and 
a detuning of 0.5 MHz.
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corresponding authors upon reasonable request.

Code availability
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Extended Data Fig. 1 | Experimental system and parameter feedback.  
a, Illustration of a Rydberg quantum simulator consisting of strontium-88 
atoms trapped in optical tweezers (red funnels). All atoms are driven by a global 
transverse control field (purple horizontal beam) at a Rabi frequency Ω and a 
detuning Δ (right panel). The interaction strength is given as C R/6 ij

6 with an 
interaction constant C6 and atomic separations Rij between two atoms at site  
i and j. b, Schematic of the experimental feedback scheme. We automatically 
interleave data taking with feedback to global control parameters and 
systematic variables through a home-built control architecture (Methods);  
in particular, we feedback to the clock laser frequency (to maintain optimal 
state preparation fidelity), the Rydberg laser alignment, the Rydberg  
detuning Δ, and the Rabi frequency Ω. c, Example of the interleaved  
automatic Rabi frequency stabilization over the course of ≈ 20 hours with  
no human intervention. Feedback is comprised of performing single-atom  
Rabi oscillations, fitting the observed Rabi frequency, and updating the  
laser amplitude, rather than simply stabilizing the laser amplitude against  
a photodiode reference. While the Rabi frequency setpoint (orange squares) 
changes over the course of the sequence (due to long-time instabilities like 
temperature drifts), the measured Rabi frequency (blue circles) stays constant 
to within < 0.3%, with a standard deviation of 0.15%. This same stability is seen 
over the course of multiple days with nearly continuous experimental uptime.



Extended Data Fig. 2 | Universality of moments of the projected ensemble. 
kth moments of the conditional probability distributions in Fig. 2b,d, evaluated 
at intermediate time (Ωt/2π = 2.3) and for a variety of choices of subsystems 
(see panel on the right); we find a universal convergence to ≈ k!, independent of 
subsystem choice, suggesting that a subsystem’s projected ensemble 
converges to the uniform random ensemble irrespective of the details of 
placement, or connectivity. Error bars are the standard deviation over 
temporal fluctuations in moments near the evaluated time, as shown in Fig. 3a.
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Extended Data Fig. 3 | Emergent randomness and benchmarking in other 
quantum systems. a, Fidelity estimation for the case of a trapped ion quantum 
simulator governed by chaotic Hamiltonian evolution (left) and a quantum 
computer implementing a random unitary circuit (RUC) (right); see 
Supplementary Information for simulation details. In both cases, we plot the 
many-body fidelity (dashed line), as well as our fidelity estimator, Fc (solid line); 
for the RUC case we also plot the more conventional linear cross-entropy- 
benchmark, FXEB

5 (dotted line). We find that Fc approximates the fidelity at 
much earlier times than FXEB. b, Numerically computed trace distances between 
the projected ensemble of a two-qubit subsystem and the corresponding 
k-design. Results are shown for multiple different total system sizes: 10, 13,  
16 for the trapped ion case, and 10, 12, 14, 16 for the RUC case, with darker colors 
corresponding to larger total system sizes.



Extended Data Fig. 4 | Detecting errors during quantum evolution.  
a, Schematic of noisy time evolution with an error occurring at time terr. The 
influence of the local error propagates outward, affecting the measurement 
outcomes non-locally at a later time. b, Errors during evolution can be detected 
by correlating the measurement outcomes with an error-free, ideal evolution 
case. We numerically tested this by applying a local, instantaneous phase error 
to the middle qubit of an N = 16 atom Rydberg simulator at time Ωterr/2π ≈ 1.  
The proposed fidelity estimator, Fc (solid line), accurately approximates the 
many-body overlap (dashed line) between states produced with and without 
errors, after a slightly delayed time. Inset: Conditional probability distributions 
in A before (blue) and after (red) the error, showing decorrelation.
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Extended Data Fig. 5 | Finite sampling analysis for Fc. a, Statistical fluctuations 
of the fidelity estimator, Fc, at N = 13 (dark purple) and N = 22 (light purple), 
computed both using our ab initio error model (solid lines) and experiment 
(markers) evaluated with a finite number of M bitstring samples. Data are 
consistent with a M1/  scaling, shown here as a guide to the eye (grey dashed 
line) b, Sample complexity of the fidelity estimator, evaluated at the N-dependent 
entanglement saturation time for the error model (blue crosses), and for the 
experimental data in Fig. 4d (red circles). A fit to the experimental data (dashed 
line) with functional form σ F M a( ) =c

N yields an estimate of a = 1.037(2)  
(a similar fit to the error model yields an estimate of a = 1.039(2)).



Extended Data Fig. 6 | Predicting fidelity scaling. a, We use our ab initio error 
model (which includes state preparation errors) to predict the fidelity decay 
rate as a function of system size. For various system sizes we plot the model 
fidelity (solid lines), as well as fits to exponential decay with an unconstrained 
value at t = 0 (dashed lines), which we see are consistent with the time-dependent 
fidelity. b, For the range of system sizes for which our error model is readily 
calculable, we see the fidelity decay rate normalized by the Rabi frequency,  
γ(N)Ω/2π (markers), is consistent with a linear function of system size (red line). 
The shaded region comes from uncertainty in the fit parameters.
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Extended Data Fig. 7 | Comparison to digital quantum devices executing 
random circuits. a, Numerical simulations of a one-dimensional digital 
quantum device implementing a random unitary circuit (RUC). Two different 
digital gate implementations are tested: a configuration based on the gate-set 
used in ref. 5 (bottom), and a configuration where each cycle is composed of 
parallel two-qubit SU(4) gates (top)4. Cross markers indicate when the 
half-chain entanglement entropy saturates. b, Due to the Rydberg blockade 
mechanism, as well as symmetries of the Rydberg Hamiltonian (Supplementary 
Information), an equal number of atoms in the Rydberg simulator, N, and  
qubits in the RUC, NRUC, will not saturate to the same half-chain entanglement 
entropy. However, we can still find an equivalence by plotting the saturated 
entanglement entropy for the RUC (blue crosses for the SU(4) gate-set, open 

red squares for gate-set from ref. 5) and for the Rydberg simulator (grey 
markers) as a function of their respective system sizes. We fit the results for  
the Rydberg simulator (black line), and plot the analytic prediction for the 
RUC54 (purple line), from which we can write an equivalent NRUC as a function  
of N, in the sense of maximum achievable entanglement entropy (Methods).  
c, For a given N (and equivalent NRUC), we plot the SPAM-corrected, two-qubit 
cycle fidelity for an equivalently-sized RUC to match the evolution fidelity of 
our Rydberg simulator at the time/depth when entanglement saturates. Red 
lines, markers and crosses are for the gate-set of ref. 5, while blue are for the 
SU(4) gate-set. Shaded regions come from the error on fitting the various 
N-dependent parameters which enter this calculation (Methods).



Extended Data Fig. 8 | Applications to target state benchmarking.  
a, Benchmarking of a one-dimensional cluster state, b, a pure Haar-random 
state benchmarked in a two-dimensional square Rydberg atom array, and  
c, a symmetry-protected topological (SPT) ground state prepared in a Rydberg 
ladder array realizing the Su-Schrieffer-Heeger topological model55. In a, CZ 
denotes a controlled-Z gate and + = 0 + 1

2
. In b, RB denotes the Rydberg blockade 

radius within which more than a single excitation is not allowed24–26. In c, J and  
J ′ are the alternating coupling strengths of a two-leg ladder array, respectively. 

In all cases, N = 16 qubits are used, and imperfect quantum states are prepared 
via phase rotations such that the many-body fidelity overlap becomes 0.5 (red 
dashed line). Additionally, chaotic evolution is performed such that the initial 
state is at infinite effective temperature to apply our Fc formalism (blue solid 
lines) (Methods).
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