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Key Points:

+ Dynamic mode decomposition (DMD) is applied to the geomagnetic radial field
and its time variation.

« Waves with 20-yr and 60-yr periods are identified from the DMD decomposition.

« The 60-yr waves are compatible with fluid stratification at the top of the core.
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Abstract

Rapid growth of magnetic-field observations through SWARM and other satellite mis-
sions motivate new approaches to analyze it. Dynamic mode decomposition (DMD) is

a method to recover spatially coherent motion with a periodic time dependence. We use
this method to simultaneously analyze the geomagnetic radial field and its secular vari-
ation from CHAOS-7 at high latitudes. A total of five modes are permitted by noise lev-
els in the observations. One mode represents a slowly evolving background state, whereas
the other four modes describe a pair of waves; each wave is comprised of a complex DMD
mode and its complex conjugate. The waves have periods of 77 = 19.1 and T3 = 58.4
years and quality factors of @1 = 11.0 and Q2 = 4.6, respectively. A 60-year wave is
consistent with previous predictions for zonal waves in a stratified fluid. The 20-yr wave
is also consistent with previous reports at high latitudes, although its nature is less clear.

Plain Language Summary

New insights into the structure and dynamics of Earth’s outer core are enabled by
the acquisition of large quantities of magnetic field data from recent satellites missions.
We exploit this growing dataset using a method called dynamic mode decomposition (DMD)
and apply it for the first time to geomagnetic field observations. The DMD method iden-
tifies coherent spatial and temporal patterns in the observations, which can be used to
identify waves. Two pairs of waves with nominal periods of 20 and 60 years are recov-
ered from the CHAOS-7 model. The 60-year waves are compatible with fluid stratifica-
tion at the top of the core. The second 20-year waves have been reported in previous stud-
ies, but their spatial structure appears to require a different interpretation. The DMD
method is successful in identifying waves in noisy data and provides an important tool
for analyzing time variations in the geomagnetic field.

1 Introduction

Observations of the geomagnetic field offer a wealth of information about the dy-
namics of Earth’s deep interior. Historical records from the past 400 years (Jackson et
al., 2000) are commonly used to construct models of the geomagnetic field and its first
time derivative, often called secular variation. A large part of the secular variation is at-
tributed to large-scale fluid motion near the surface of Earth’s core (e.g. Holme et al.
(2015)). Other contributions include magnetic diffusion and the effects of unresolved small-
scale flow. Recent efforts to account for these effects (Gillet et al., 2019) rely on geody-
namo simulations to establish statistical correlations between the predicted flow and the
magnetic field. While this approach represents the forefront of current research, it does
mean that our ability to recover dynamics from magnetic-field observations is dependent
on prior assumptions about the nature of flow. A complementary approach relies on mod-
ern data-driven methods to identify and characterize patterns of change in the observa-
tions. One particular technique, known as dynamic mode decomposition (Schmid, 2022),
is particularly well-suited to the analysis of magnetic-field observations because it allow
us to establish modes (waves) in the data before attaching a physical interpretation. There
is no requirement for each mode to have a common physical basis or interpretation, al-
though we do expect a common set of background conditions. A primary motivation for
this study is to explore the feasibility of using new data-driven approaches to assess the
geomagnetic field.

Several factors prompt our interest in data-driven approaches. One is the availabil-
ity of magnetic observations from satellite missions (e.g. Orsted, CHAMP, SWARM),
which substantially improve the quality and quantity of information. Satellite-based ob-
servations give better spatial coverage and allow greater discrimination between the in-
ternal and external sources of the geomagnetic field compared to ground-based measure-
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ments (Friis-Christensen et al., 2006). This improvement in observations has occurred

in parallel with advances in the methods used to construct geomagnetic field models. Weaker
temporal regularization and more flexible descriptions of the time dependence (Olsen et
al., 2006; Gillet et al., 2013; Finlay et al., 2016; Barrois et al., 2018) have enabled reli-
able estimates of the second time derivative of the geomagnetic field (known as secular
acceleration). This information creates new opportunities for exploring the dynamics of
Earth’s core on timescales that are surprisingly short. Short pulses of secular acceler-
ation have been detected in the equatorial region (Chulliat et al., 2010; Finlay et al., 2016)
and at high latitudes below Alaska (Finlay et al., 2020; Chi-Durédn et al., 2020). The du-
ration of these events is sometimes only a few years, and the equatorial disturbances of-
ten coincide with magnetic jerks (Chulliat & Maus, 2014).

Observations of secular acceleration point to much richer dynamics on short timescales
(Finlay et al., 2020). The origin of these fluctuations is not well understood, although
several lines of evidence from geodynamo models point to hydromagnetic waves in the
core (Aubert & Gillet, 2021). Additional evidence comes from models of secular accel-
eration (Chi-Durdn et al., 2020). A snapshot of secular acceleration from the CHAOS-
7 model (Finlay et al., 2016) in 2008.5 shows regions of high activity near the equator
and at high latitudes (see Fig. S1 in the supplementary material). Disturbances prop-
agate at velocities of several hundred km/yr, which is more than an order of magnitude
faster than the largest fluid velocities inferred from secular variation. Waves are a vi-
able interpretation of these rapid disturbances, and the DMD methodology is an ideal
detection tool because it identifies spatially coherent structures with a periodic time de-
pendence (see Section 2).

2 Dynamic Mode Decomposition

Dynamic mode decomposition (DMD) is a method to recover the dynamics of a
physical system from observations (Schmid, 2010). It was originally devised for linear
systems in the context of fluid mechanics (Schmid, 2011), although recent theoretical de-
velopments have paved the way for extensions to nonlinear systems (Rowley et al., 2009).
To illustrate the fundamental concept we consider a linear system

df
— = Af 1
= (1)
for the time dependence of a vector f(¢). Here A is a constant matrix and the elements
of f might represent the values of a function on a spatial grid z; (i =1,...,n). A gen-
eral solution for an arbitrary time increment At is

f(to + At) = A2 (tg) = Af(to) (2)

where f(to) denotes the initial condition at ¢ = t,. The goal of the DMD method is to
recover an estimate for the finite-time matrix A using pairs of snapshots of the system.
We define a data matrix

F= [f(tO) f(tl) "'af(tm—l)] (3)
and let
F' = [£(t1) £(ts) ooy £(tn)] (4)

be the data matrix at a subsequent snapshot (e.g.. t, = tx—1 + At). An optimal ap-
proximation for A minimizes the misfit to

F = AF. (5)

Once we establish the matrix operator A from Eq. 5, we can evolve the system forward
in time using

f(te) = Af(te—1). (6)
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Several implementations of the DMD method have been proposed (e.g. Brunton
and Kutz (2019); Schmid (2022)). We follow the approach called exact DMD (Tu et al.,
2014), which differs slightly in the way the eigenvectors of A are computed. The eigen-
values and eigenvectors of A define the dynamic modes, although in practice the modes
are computed by first projecting A onto the leading principal components (singular vec-
tors) of the data matrix F. In effect, we use coherent spatial structure from the data ma-
trix to construct A (see Tu et al. (2014) for details). When 7 singular values are retained
in the singular value decomposition of F, the reconstruction of the data can be written
as

f(ty) = zr: ®;[\;]"b; (7)
=1

where ®; is the eigenvector and ;\j is the eigenvalue of A, which has been raised to the
kth power in Eq. 7; b; defines the mode amplitude, such that the initial condition can
be written as a linear combination of the modes

ft0) = @b;. ®)

We can express Eq. 7 in a more convenient form by noting that the eigenvalues of A are
related to the eigenvalues \; of the original A matrix in Eq. 1 (e.g., Perko (2013)). Let-
ting ~

>‘j = exp()\jAt) (9)

allows us to rewrite the data reconstruction as
r
f(te) = Y ®yeM* 20, (10)
j=1

where we see that the time dependence of the system is explicitly recovered through the
DMD procedure. We can think of the DMD modes a linear combination of principal com-
ponents (or EOFs) that evolve with a complex frequency A. This makes DMD ideal for
detecting waves in magnetic-field models because any coherent wave structure is expected
to have a specific frequency. In general the frequencies will be complex (i.e. A =0;+
iw) so we can define the quality factor (@) of a mode as

wj

Q; = (1)

Finally, it is important to note that complex eigenvalues appear as complex conjugate
pairs when the input data is real; if \ is a complex eigenvalue of A then the complex con-
jugate A\* is also a eigenvalue of A. This means that a pair of DMD modes have the same
frequency w.
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3 Results

We model the geomagnetic radial field and secular variation simultaneously by defin-
ing a state vector as (see Eq. 1)

- [gj (12)

where B, and B, are the geomagnetic radial field (in 10=9 [T]) and secular variation (in
10710 [T/yr]), respectively from CHAOS-7.12 (Finlay et al., 2020). (The choice of units

is intended to give slightly higher weight to the time rate of change of secular variation

in the construction of the system matrix A.) The augmented state vector means that

our linear system in Eq. 1 corresponds to the coupled equations for secular variation and
secular acceleration. The state vector is evaluated between 1998 and 2019 using a ge-
ographic grid with 100 grid points in latitude and 200 grid points in longitude. We re-
strict the DMD analysis to the Northern Hemisphere between latitudes 30°N and 90°N.
The number of modes used in the calculation is set by the level of coherence in the ob-
servations (see next Section). We use 5 singular values in the construction of the DMD
modes to produce 5 modes. The first mode describes a secular trend with an infinite pe-
riod (zero frequency). We interpret this mode as the slowly evolving structure of the main
field and secular variation. The other four modes represent two waves with periods of

19.1 and 58.4 years and quality factors of 11.0 and 4.6, respectively. The spatial struc-
ture of the four wave-like modes is shown in Fig. 1. The corresponding time dependence
of each modes is shown in Fig. 2. These specific predictions are obtained when the CHAOS-
7 model is truncated at degree ¢ = 14. Small changes in the periods are found when

the truncation is increased, whereas the spatial structures of the modes are nearly in-
variant.

A superposition of the first 5 DMD modes accurately reconstructs the original sig-
nal from CHAOS-7 (Fig. 3a). For example, Mode 1 in Fig. 3b gives a reasonable descrip-
tion of the main field. Adding Modes 2 and 3 to Mode 1 captures most of the variabil-
ity in CHAOS-7 (compare Fig. 3a and Fig. 3c). Adding Modes 4 and 5 (see Fig. 3d) pro-
duces only small changes in the reconstruction. We conclude that the first five modes
are sufficient to recover most of the original signal.
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(a) Mode 2 and 3 - Spatial Structure

Geomagnetic Radial Field Geomagnetic Secular Variation
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Figure 1. (a) Spatial structure of the Modes 2 and 3 with a period of 58.4 years. (b) Spatial
structure of the Modes 4 and 5 with a period of 19.2 years. To reconstruct the magnetic field and
secular variation at a given time, it is necessary to multiply the modes by their amplitudes b; and

by their temporal dependence (see Figure 2).

4 Discussion

Application of the DMD methodology to the Northern Hemisphere reveals three
distinct types of variability in the geomagnetic field. We detect a slow secular trend and
two damped waves. The fact that distinct wave features are recovered by the DMD method
means that we are finding coherent spatial and temporal structure in the CHAOS-7 model.
We now turn to the question of whether we can identify the origin of this coherent struc-
ture.

Mode 1 represents a steady trend in the geomagnetic field. The amplitude of the
recovered mode increases linearly at a rate of about 0.3% per year (see Figure 2a). The
eigenvalue of Mode 1 is purely real, which means that w vanishes and the period 27 /w
is infinite. This mode accounts for the spatial structure of the geomagnetic radial field
and its slow secular trend. Deviations from this secular trend are described by the other
DMD modes.
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Figure 2. (a) Temporal evolution of Mode 1. This mode represents a secular trend with an

infinite period. (b) Temporal evolution of Modes 2 and 3 corresponds to a period of 58.4 years

and quality factor of 4.6. (c¢) Temporal evolution of Modes 4 and 5 corresponds a period of 19.1
years and quality factor of 11.0.

The oscillatory modes are needed to reconstruct short-period variations in the orig-
inal signal. The most prominent feature in B, and B, is due to a mode with a nominal
60-year period. Figure 4 shows the average misfit between the reconstruction and CHAOS-
7 using a different combination of modes. The average misfit is calculated as the aver-
age of absolute value of the difference between the reconstruction of the signal (super-
position of modes) and the original data. The total misfit is divided by the number of
grid points in the sum. Reconstructions that do not include the 60-year variation in Modes
2 and 3 have a higher misfit in both the radial magnetic field and the secular variation.

By comparison, Modes 4 and 5 contribute much less to the variation. This can be seen
by comparing the misfit for Modes 1, 2 and 3 with that for Modes 1, 4 and 5 (see Fig.
4). The first combination (Modes 1,2, and 3) lowers the average misfit by approximately
one of magnitude relative to the second combination (Modes 1, 4, and 5). On the other
hand, there is a discernible improvement in the misfit to B, and B, when all five modes
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Figure 3. (a) Geomagnetic radial field and geomagnetic secular variation from CHAOS?.

(b) Geomagnetic radial field and geomagnetic secular variation from Mode 1 (c) Geomagnetic
radial field and geomagnetic secular variation using the superposition of modes 1, 2 and 3 (c)
Geomagnetic radial field and geomagnetic secular variation using all modes (1, 2, 3, 4 and 5). All

quantities are calculated at t = 2005.5 using ¢ = 14 for the model truncation.

are included. The time average misfit using all five modes corresponds 0.1% in the ge-
omagnetic radial field and 11% in the geomagnetic secular variation.
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Figure 4. Misfit to the geomagnetic radial field and the geomagnetic secular variation over

time when different modes are included in the reconstruction.

A nominal 60-year wave in the secular variation is broadly consistent with previ-
ous studies (Yokoyama & Yukutake, 1991; Roberts et al., 2007). One possible interpre-
tation of the 60-year variation is due to a zonal MAC wave, which depends on the ex-
istence of stable stratification at the top of the core. Buffett et al. (2016) showed that
a zonal MAC wave, identified by spherical harmonic degree / = 4, could account for
fluctuations in both the geomagnetic field and the length of day. In this study we repro-
duce the predictions for an ¢ = 4 MAC wave using a physical model that allows for lat-
itudinal changes in the rms radial magnetic field (Buffett & Knezek, 2018). Here we let
the mean-square radial field increase by a factor of 3.5 between the equator and the pole,
consistent with predictions from dynamo models. The overall intensity of the radial field
is defined to have an surface-averaged rms strength of 0.5 mT. Predictions with this choice
of rms radial field provide a reasonable fit to the spatial structure of Modes 2 and 3 (only
Mode 3 is shown in Figure 5. The most prominent features in Mode 3 are the alternat-
ing patches of secular variation below Siberia and Alaska. A similar pattern of secular
variation is also evident in the predictions for the £ = 4 MAC wave, although there are
notable differences. In particular we find a strong negative patch in the secular varia-
tion below central Asia, which is much weaker in the DMD mode. There also appears
to be a 20° shift in the longitude of the peak variations at high latitudes. Further dif-
ferences below the Atlantic and Greenland also contribute to a surprisingly large O(1)
misfit, despite the qualitative visual similarity of the two signals. Other MAC waves
with higher ¢ have greater spatial complexity, which introduces features that are not seen
in Mode 3.

Estimates for the period and damping of Mode 3 constrain the choice of physical
properties for the wave model. Of particular interest is the thickness and strength of sta-
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ble stratification at the top of the core. To be specific we allow a linear variation in buoy-
ancy frequency N across the layer, starting with a value N = 0 at the base of the layer.

In this case the layer properties are fully defined by the layer thickness and the peak buoy-
ancy frequency at the core-mantle boundary. To illustrate we consider a 140-km thick
layer with a peak buoyancy frequency of Ny, = 0.86€2, where 2 is the Earth’s rota-

tion frequency. An ¢ =4 MAC wave has a period of 58.4 years and a quality factor @ =
2.8, which is broadly compatible with the complex frequency of Modes 2 and 3. Weaker
secular variation due to waves in the southern hemisphere is expected because the hor-
izontal gradients in the radial field are smaller in this region.

Figure 5. Comparison of DMD mode 3 and with predictions for three zonal MAC waves,
identified by the dominant spherical harmonic degree ¢ = 4, £ = 6 and ¢ = 8. All comparisons are
made at ¢t = 1998.5.

The DMD method also identifies a nominal 20-year wave, which has been previ-
ously reported in the Northern Hemisphere (Chi-Durédn et al., 2020; Chi-Durén et al.,
2021). However, the origin of Modes 4 and 5 is less clear. It is reasonable to ask if the
20-year wave could be attributed to a zonal MAC wave with higher ¢. To explore this
possibility we adopt a 140-km layer with a peak buoyancy frequency of N = 0.862. Our
prediction for £ = 12 wave gives a period of 18.9 years and a quality factor of 4.6. While
the period is in reasonable agreement, the quality factor is lower than @) = 11.0 for Modes
4 and 5. In addition, the spatial complexity of the predicted secular variation for an ¢ =
12 wave is not compatible with the structure of Modes 4 and 5. (Note that the spatial
structure of the secular variation depends on the wave structure and the distribution of
radial magnetic field). Predictions for an ¢ = 8 wave in Fig. 5 are already too compli-
cated compared to the spatial structure of Modes 4 and 5 in Fig. 1. Increasing the de-
gree to { = 12 to match the period only makes the comparison of the spatial structure
worse. We conclude that the predicted spatial patterns of higher £ MAC waves are not
compatible with the spatial structure of Modes 4 and 5. Other types of waves should be
explored to identify the origin of Modes 4 and 5. Alternatively, the geomagnetic signal
may be a consequence of flow associated with the tangent cylinder (Livermore et al., 2017)

Our calculation of DMD modes depends on the number of singular values we use
to construct the optimal dynamics matrix A. This choice determines the number of DMD
modes that are recovered from the data. Since the DMD modes are not orthogonal we
can expect a change in the spatial structure of the individual modes as the number of
singular values are increased. Even though the overall fit to the observations should im-
prove as the number singular values increases, our ability to interpret the individual modes
could be compromised if these modes change when we retain too many singular values.

There are several ways to make an objective choice for the number of singular val-
ues. In this study we have followed the approach advocated by Brunton and Kutz (2019).
This method sets a target for the cumulative variance (or energy) recovered from the orig-
inal data by a limited number of singular values. In Fig. S2, we plot the cumulative vari-
ance as a function of the number of singular values. Setting the threshold at 99.5% of
the total variance limits the reconstruction to the first 5 modes. Contributions from in-
dividual modes above this threshold do little to improve the fit to the data.

Finally, we comment on the recovery of DMD modes with periods that exceed the
duration of the record. We recall that the DMD method finds the optimal dynamics ma-
trix A. In principle, a long-period oscillation could be recovered from a short record if
the underlying dynamics is linear. Practical limitations arise in the presence of noise or
when the dynamics is nonlinear. One way to test the recovery of long-period modes is
to repeat the analysis on a longer record. For example, we consider a 30-year record of
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radial magnetic field and secular variation between 1988 and 2018 from the COV-OBSx2
model (Huder et al., 2020). We confine our attention to the northern hemisphere (as be-
fore) and retrieve 6 DMD modes from the longer record. Two modes correspond to sec-
ular trends (w = 0). The other four modes correspond to a pair of waves with periods

of 51 years and 19.6 years. The amplitude of the 51-year mode is slightly smaller than
the corresponding 60-year mode recovered from CHAOS-7 but the spatial structure of
the mode is remarkably similar to that from CHAOS-7 (see Figure S3).

Extending the COV-OBSx2 record to 55 years (1963 to 2018) has very little influ-
ence on the spatial structure of the 60-year DMD modes (see Figure S3), although the
period increases to 74 years. While a longer record should improve the reliability of the
recovered period, there is also a greater chance that stochastic generation of the wave
by convection in the core will alter the temporal coherence. Broadly similar results from
the shorter CHAOS-7 record is encouraging because we might try to average modes from
short records to reduce the contribution of the generation process.

5 Conclusions

We apply the DMD technique to geomagnetic observations to quantify waves in
the core. By combining observations of the geomagnetic field and secular variation we
obtain an optimal description of the time variations in B, and B,, corresponding to equa-
tions for secular variation and secular acceleration of the field. This is a powerful approach
because no priori physical knowledge is needed to construct the modes. We simply look
for patterns of spatial and temporal coherence in the observations. The DMD method-
ology opens a new way to study the time dependence of geomagnetic data and extract
information about waves in the core.

The DMD modes recovered from the simultaneous analysis of B, and Br are com-
patible with the existence of two waves. One with a nominal period of 20 years and an-
other with a nominal period of 60 years. Both of these waves had been reported in pre-
vious studies (Chi-Durén et al., 2020; Buffett et al., 2016). The advantage of the DMD
method is that we recover estimates of the spatial structure and the frequency of the waves,
including the damping time. The nominal 60-year wave is compatible with the structure
and frequency of a zonal MAC wave, which requires fluid stratification at the top of the
core. The shorter period wave does not appear to be due to a higher frequency (zonal)
MAC wave. Other physical processes may contribute to origin of the 20-year variations.

Open Research

The source code and the DMD implementation are available online (Chi-Durén,
2022).
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