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ABSTRACT. This paper investigates the global existence of weak solutions for
the incompressible p-Navier-Stokes equations in R% (2 < d < p). The p-
Navier-Stokes equations are obtained by adding viscosity term to the p-Euler
equations. The diffusion added is represented by the p-Laplacian of velocity
and the p-Euler equations are derived as the Euler-Lagrange equations for the
action represented by the Benamou-Brenier characterization of Wasserstein-p
distances with constraint density to be characteristic functions.

1. Introduction. In this paper, we show the global existence of weak solutions for
the p-Navier-Stokes (p-NS) equations in R%:

Opup +u - Vuy, + Vr = vA,u,
up = a2,

Ayu =V - (|Vu|'72Vu),
V-u=0,u(z,0) = up.

(1)

Here u(z,t) : R x Rt — R? is the velocity field. up, is the signed power of velocity
u and is called the momentum. m(z,t) : R? x Rt — R denotes the unknown
scalar pressure. A, u is y-Laplacian of velocity. Physically it is related to the shear
thinning effect and is reminiscent of the shear thickening fluid [2]. v > 0 and v > 1
are constants, which denote viscosity and strength of diffusion respectively. The
parameter v measures the level of diffusion. It is the fast diffusion when v € (1,2),
whereas v € (2,00) corresponds to the slow diffusion. If v = 2, it is the usual
diffusion in the Newtonian fluid. In addition, we require the solution to decay fast
enough at infinity.
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The p-Laplace equation (Apu = 0) is a far-reaching generalization of the ordinary
Laplace equation, but it is non-linear and degenerate (p > 2) or singular (p <
2). More physical situations and applications about p-Laplacian can also be found
in [1, 18]. The systems of p-Naiver-Stokes equations and p-Euler equations were
proposed by Li and Liu in [16]. p-Euler equations are derived as the Euler-Lagrange
equations for the action represented by the Benamou-Brenier characterization of
Wasserstein-p distances with constraint density to be a characteristic function. The
difference between p-Euler equations and usual Euler equations is the nonlinear p-
momentum in the velocity. The p-Navier-Stokes equations are derived by adding
a viscosity with y-Laplacian (A,u) to p-Euler equations. It should be mentioned
that the name of ‘p-Navier-Stokes equations’ is reminiscent of the models for non-
Newtonian fluids, which were studied by Breit in [1, 2] based on a power law model
for the viscosity term. Their models are the usual Navier-Stokes equations with the
viscous term replaced by div(|e[P~2€) where e = $(Vu + VuT). With this term, it
follows that

(div(|el"2e),u) = —[lellg,-
However, in Equations (1) we have
(Ayu,u) = (div(|Vu] 7> Vu),u) = [ Vul]Z,.
Hence, if v = p, we can give a priori estimates of (1)
u € L>(0,T; LP) N LP(0,T; W'P).

The p-Laplacian diffusion has been studied by many authors. Lindqvist studied
stationary p-Laplace equation in [18]. Matas and Merker in [19] investigated exis-
tence of weak solutions to doubly degenerate diffusion equations via Faedo-Galerkin
approximation. A degenerate p-Laplacian Keller-Segel model was studied by Cong
and Liu in [9]. In addition, there have been extensive numerical works for various
gradient flows, such as [8, 12, 22, 24]. The convexity of such a p-Laplacian energy
has played a crucial role in the energy stability estimates in these numerical works.

About p-Navier-Stokes equations, it is worth noting that Li and Liu [16] have
studied the existence of global weak solution by using the time-shift estimate and
compactness criterion. In this paper we give a completely different proof about
the global existence of weak solutions. More precisely, compared to the results in
[16] we construct a sequence of approximate solutions by use of a semi-implicit
scheme at first. In this construction, we establish a well-defined operator ® and
apply the Leray-Schauder fixed point theorem and the monotone operator theory to
prove the existence of a solution to the discrete problem. The monotone operators
theory was proposed by Minty [20, 21], which was used to obtain the existence
results for quasi-linear elliptic and parabolic partial differential equations, see for
instance [3, 4, 10, 14, 15]. Then, it is sufficient to get uniform estimates for the time
shifts ™ — u"(- — 7) for 7 > 0 instead of all time shifts u™ — u"(- — k) for h > 0.
Next, we employ compactness and the monotone operator theory to show that the
constructed solution converges to the weak solution. Some compactness results for
piecewise constant functions in time can be found in [5, 11].

The rest of the paper is organized as follows. In Section 2, we give the definition
of weak solution for (1) and the proof of some essential inequalities. In Section 3,
we prove Theorem (4) by using a semi-implicit scheme to construct approximate
solutions, which indeed converge to a weak solution. Finally, in the appendix, we
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establish existence and uniqueness of the weak solution for a class of stationary
p-Laplacian equations.

2. Preliminaries. The global weak solution to the p-Navier-Stokes equations is
defined as below:

Definition 2.1. We say u is a global weak solution to the p-Navier-Stokes equations
(1) with an initial data wu;, € LP(R%) and V - u;, = 0 when v = p, if for V T' > 0,

w € L0, T; LP(RY)) N LP(0, T; WP (RY));
and for V p € C°([0,7); R%) and V - ¢ = 0, it satisfies that

T T
/ / Up - Oppdadt +/ / Vo (u®uy)dedt
0o Jre 0 Jra

_ /OT/R V<p:(Vu|Vu|p_2)dxdt—/Rd(um)p-go(m,o)dl“, 2)

where the term about pressure m vanishes: fRd Vredr = _fRd 7V - pdzr = 0,
because ¢ is divergence free. Furthermore,

V(P : (U (24 Up) = Z al'ng’Ui(’l)p)j, VQD :Vu = Z@Zgojazuj
ij ij
We prove the following essential lemma:
Lemma 2.2 ([18]). Let p > 2, then there exists C(p) > 0 such that V a,b € R?,
then
C(p)la—bl” < (lalP~*a —[b[P~?b) - (a — b), (3)
Proof.

_ lalP™% + [bP2 (lal*~* — [b[P~2)(|al* — [b]*)

—b? .
a— b+ 5

(lal""*a— [p[P~*b) - (a — D)

Itp>2,

P=2 4 |b|p*2
2

(|la[P~2a — [b]P~2b) - (a — b) > o] la — b|? > 227P|a — bJP.

O

3. Existence of the global weak solution. In this section, we state our theorem
and give a proof.

Theorem 3.1. When 2 < d < p, the p-Navier-Stokes equations (1) have a global
weak solution with v = p and an initial data u;, € LP(R?).

Remark 3.1. Note that we allow 2 = d = p. This is the classical incompressible
Navier-Stokes equations in R?, which is well-known to have global weak solutions
and strong solutions. Actually, we mainly focus on 2 < d < por 2 =d < p in our
proof. However, we include the result for the case that 2 = d = p in the statement
of the theorem, for the sake of completeness.

We complete the proof through four subsections. Firstly, we use a semi-implicit
scheme to construct a sequence of approximate solutions in the bounded domain by
the Leray-Schauder fixed point theorem, and prove the existence of the approximate
solution in the whole space by using maximal monotone operator theory. Then
uniform estimates for approximate solutions are obtained. Next, we show that the
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sequence of constructed approximate solutions has a subsequence which converges
to u by the compactness argument. We finally prove that w is indeed a global weak
solution of the equations (1) when v = p.

3.1. The approximate solutions. The following notation will be used: A < D
(orA << D) denotes that A is continuously (or compactly) embedded in D. f, —
(= or =) f in A denotes that a sequence {f,},>0 C A converges strongly (weakly
or weakly star) to f in A as 7 — 0. C(a,b,...) denotes a constant only dependent
on a,b,....

In this subsection, we will use a semi-implicit time scheme to obtain a sequence
of approximate solutions in B,,(z) by employing the Leray-Schauder fixed point the-
orem and then give the extension of solutions in B,, to R%. The extended solutions
actually converge to the approximate solutions in whole space as n — oc.

Let VT >0, N € Nand set 7 =T/N, 0 < 7 < 1. We divide the time interval
[0,T) into UN_,[(k — 1)7,kT). For any k = 1,...,N, given @*~1, the approximate
problem reads

k k—1

Uy — U

/ u-tpdx-l—/ a’f—l-va’;@dwr/ \Va* P2V Vpde =0,  (4)
Rd T Rd R4

for any test function ¢ € WO1 P(RY) and V - ¢ = 0. In addition, the term about

pressure 7 vanishes because ¢ is divergence free,

/ Vmpdx:f/ 7V - pdr = 0.
Rd Rd

We now prove the existence of solutions to approximate equation (4) by the following
proposition:

Proposition 3.1. Let @*~' € W, *(R?) and V - a¥~' = 0. Then there exists a
solution @*, @ € WyP(RY) and V - @* = 0, which solves (4) when 2 < d < p or
2=d<p.

Proof of Proposition 3.1. We give the proof in two steps. In Step 1, we show the
existence of @* to (4) in a bounded domain B, () for a fixed radius R,, by the
Leray-Schauder fixed point theorem (see Theorem 11.3, [13]). In Step 2, we extend
the function @* by zero outside B,, and denote such extended functions by @*™.
Then we make use of the monotone operator theory to get the approximate solutions
on the whole space.

Step 1. For fixed R,,, B,, denotes a ball centered at 0 of radius R,, € N, and
Vi={u€cLP(B,):V-u=0,ulsp, =0}, H:={ucW"?(B,):V-u=0}.

Firstly, we construct a mapping. Let u*~!' € H and define the mapping ® :
V x [0,1] = V by ®(a*, o) = u* via the following procedure

/ u’;wpdx—i—T/ |Vuk|p*2VukV<pdm:J/ U};ilgodl'—O'T/B uk*1~Vﬂlgcpdx.

n n n (5)
It can be deduced that the mapping ® is well-defined through the existence and
uniqueness of the weak solution to stationary p-Laplacian equation (49) in the
Appendix.

n
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Moreover, we find u¥ € W'P(B,,) by a priori estimate. Indeed, it follows that
by taking ¢ = u* in (5)

k||, + 7| Vak|, < J/u’;_lukdx—aT/uk_l~Vﬂ’;ukdx
k— -1y, k k— —kp—1 k
< ol THIE b e + orlle T e | 1 Ve | e
d p=d
k— k=171 |, k=1 =1 || =k
< Ol zs + CONVE M L a2 a1

T 1
+ZIVaF B, + [, (6
pH L pH 1% )

where we have used the Holder inequality, the Young inequality and the Gagliardo-
4 1—4

Nirenberg inequality: [[uf~!||pe < C||Vub=Y|7, |lu*1,,7, 2 <d<por2=d<

p. Then, we obtain

[u* 170 + TIVut |70 < Clo, | [[7* )

Secondly, we shall prove that the mapping ®; of V into itself given by ®(u", 1) =
u® has a fixed point ©* € V by the Leray-Schauder fixed point theorem. To achieve
this goal, we need to show the following four claims (this format was used in [6, 7]):

Claim 1. ®(@;,0) =0 for any u; € V.
Claim 2. ®:V x [0,1] — V is continuous.
Claim 3. ® is compact.
Claim 4. ' := {u* € V : u* = ®(u¥, o) for all o € [0,1]} is bounded in V.
Proof of Claim 1. If ®(u;,0) = u; for any @; € V,
/ (ui)p - pdx + 7'/ |Vu; [P~2Vu; Vdx = 0,

n By,
taking ¢ = u; yields
uillZe + T Vuill7, =0,
whence, u; = 0. Thus, ®(@;,0) = 0 for any @; € V. This ends the proof of Claim
1. ]

Proof of Claim 2. Assume ®(u,0) = u and ®(4;,0) = u;, i € N, o # 0, then
/ (ui)p - pdx + T/ |V P2V, Vodz = o/ ugflgod:v — UT/ uF T V() ppda.
' ' ' ' (7
If
u; = % in 'V as i — 00,
we claim that
u; —»uwin V as 1 — oo.

Indeed, it follows from subtraction between equation (7) and (5) that

/ (Jui [P~ 2u; — |ulP~2u)pdx + T/ (|Vu;[P~2Vu; — |VulP~2Vu)Vedz

n Bn

= O'T/ (uF=t Vi, —uF TV (0),) pda.
B

n
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Taking ¢ = u; — u, using Lemma 2.2 and integrating by parts gives

lu; — ullf, + 7| Vu; — Vul|?,
< C(p)T/ R ((a3) — 1p) (Vu; — Vu)da

< O [ =l + i =)(Vus = Vayds

< OV (wi = w)lleo T + all75? 1@ — a0
T p(p— 2)

< ];IIV(UFU)H’LD Cla —allg, la +al 5

_d_
4 P (T 1Hm :
where we have used the Holder inequality, the Young mequahty and the Gagliardo-
Nirenberg inequality ||u*~!||L~ < C||Vuk 1||Lp||uk 1HLP" 2<d<por2=d<np.

Hence, |lu; — ul|?, < Clla; — u||p »oT. Thus, u; — u in V when @; — @ in V as
1 — 00, i.e. @ is continuous. This completes the proof of Claim 2. O

Proof of Claim 3. Tt holds from (6) that
IC(p) > 0,V a* € V, |@(@*,0)llwir(s,) < CO)(L+ [|T¥]|Lr(5,))-

This inequality above together with W1P(B,,) << LP(B,,) (for any bounded 2, the
embedding of W1P(Q) into LP(2) is compact by the Rellich-Kondrachov theorem)
gives the proof of Claim 3. O

Proof of Claim 4. Assuming that for any o € [0, 1], it holds that

/ u’;-godx—i—T /
By B

Taking ¢ = u” yields

|Vuk|p_2VukV<pd:r:a/B u’;_lgodx—JT/B w1V (uP) ppda.

n

[ 12, o+ TIVEH L, o ) < CE) s,
where
1
7'/ btV (uP)ufde = —T*/ u T VWP Pdr = 0.
By bJB,

This establishes the Claim 4.

Thus, there exists a fixed point for ®; given ®; = ®(u,1) of V into itself, i.e.
®(u*, 1) = u*, by Leray-Schauder fixed point theorem. Moreover, HukHWLp(Bn) <
C. Therefore, u* € H.

Step 2. Since B, is a ball of radius R,, centred at zero, R,, is an increasing sequence
with R,, — oo, and zero Dirichlet boundary condition in B,: uk|a B, = 0, we extend
the u* by zero outside B,, and denote such extended function by @"", i.e.

em o JuF(@), if = € Bn,
@) = 0, if « ¢ B

Due to step 1, in fact we can show @™ is a solution solving (4), i.e. Yo € Wy P (R%)
where the support of ¢ is larger than B,,

/ apn- goderT/ ﬁkil’"-Vﬂ];’"apderT/ |Vﬂk’"|p72Vﬂk‘"chdx:/ arpde. (8)
Rd Rd Rd Rd

~k,n 3
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We can obtain a priori estimate from (6) and (8) that
T e

where C' is independent of n.
Since {@*"} is bounded in W1P(R9), there exist a subsequence {@*"}, not
relabeling and @* € W1P(R?) such that

kb — F weakly in W1P(RY) as n — oo.

By the Rellich-Kondrashov theorem (see Theorem 8.9, [17]), there exist a sub-
sequence of {@*"}, not relabeling, and @* € WP(R?) such that the following
uniformly strong convergence holds true

~k,n

@k (z) — @ in LT

loc

(R?) as n — oo.

Through the argument about strong convergence, we easily obtain the convergence
of linear terms in (8), i.e. as n — oo

Jza ﬁ’;’” cpdr — [L, ﬂ’; - dax;
Jga WL VA odr — [o, @M Viakeda.

Now we only need to prove [,, V" [P=2Va*"Vode — [, |[VaF[P2Vi*Veds
as n — 0o.

Indeed, due to @™ — @* weakly in W,5P(R?) as n — oo, without loss of gener-
ality, we assume |Va*"[P=2vakm — ¢ in L7-1 (R%). Hence, let n — oo in (8) and
obtain

/ ak - pdr + 7’/ at Vit edr + 7'/ xXVdr = / aktoda. (9)
Re R4 P R4 RL
Choosing ¢(z) € C°(R%) with 0 < ¢ < 1 and taking ¢ = @*¢ in (9), we obtain
/ |a’“\P.g£dx+7/ T ~Vﬁ’;ﬂk¢~>dx+7/ XV (@*p)dx = / ar ik gdr. (10)
R4 R4 R4 R4
We take ¢ = @*"¢ in (8) and have
/ @ Pede + T / A T / \Vik " P gda
RY R4 R
JrT/]Rd |vak»”|f’*2va’wa’“”v<5dx:/Rd ak =gt gdr. (11)
Since the inequality (3), for any & € W,LP(R?) we have

; / (Vb P-2vikn — |ValP-20) (Vi — Va)dda
Rd

> Cp,r) / ik — VaPdds > 0,
Rd

i.e.

— T/ |Vakn
R

P — Vb P2Vak " Vag — Vo P 2VoVak g 4 |VoPedz < 0.

(12)
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Combining (11) with (12) yields

~k,nak,nvq~5

/ @b P hde + T/ aF = vag ek g + [vakn
Rd Rd
+ V@b P2Vab Vo 4 Vo |PTAV(Vik " — Vo) eda
- / ar—tnahrgdr < 0. (13)
Rd

Letting n — oo, we obtain
/ j@*Pode + 7/ ikt vakat e + xibve
Rd R4
+ XV + |Vo|P2Ve(Vik — Vo) dda
— / artak gdr < 0. (14)
R4
Combining (10) with (14) yields
/ (V& — Vak) (x — |[VO|P2VQ) ¢da < 0.
Rd
Taking @ = @* — A\p with X\ > 0 yields that

/d(x — |Vi* = AV@|P2V(@* — AV ))Veddz > 0.
R

Choosing d~> such that supp ¢ C supp ¢~> and ¢~5 = 1 on supp qz~5 When A — 0, it
follows that

/ (X — |Va*P=2Vi*) Vpdz > 0.
Rd
Employing the same method with & = @* — Ap and A < 0, we obtain
/ (X — |Vak P=2Vi*) Vedz < 0.
Rd

Thus, ¥ = |Vak[P-2Vik.

That proves [, |[VaF " P2V "Vodr — [p. V@ [P~2Va*Vedz.

Therefore, if @*~! € Wol’p(Rd), we will obtain @* € W1?(R%) solving (4) through
discussion of Step 1 and Step 2. That completes the proof of Proposition 3.1. [

3.2. Uniform estimates. In this subsection, we aim to obtain the uniform esti-
mates of the approximate solutions {@*}.

At first, we regularize u;,, by @° which is the weak solution of ag—mpao = (Uin)p,
with u;, € LP(RY) (Meanwhile, the existence and uniqueness for weak solution to
this stationary p-Laplacian equation is given in Appendix by calculus of variations).

Therefore, multiplying above equation with @° and integrating in R? gives
0 0
112 gty + TIVEN2 oy < il (15)
By the weak compactness, there exists a subsequence (without relabeling) @° — w;,
in L (R%) as 7 — 04. Moreover, we get @° € WhP(R9).
It follows from Proposition 3.1 that a sequence of approximate solutions

{a® at, a% a3, ...} € Whp(R?),
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which satisfy the approximate problem of equations (4).
The first uniform estimate: Taking ¢ = @* in (4), we deduce

I + I ey < 9570000 < 1 g, 09

where the term of f ub—1l. Vu’;ukdx vanishes because of divergence free,
Jurt - Vurubde = f% Jubt - VukPde = 0.
Then, summing up (16) from k£ =1 to N yields
112, ey + 75N VTN gy < 102 gy < Ntinl e (07)
The second uniform estimate: Taking ¢ = @* —@*~! in (4) and using Lemma
2.2, we obtain

1, . -
;”uk k 1HLp(Rd +Hvuk”y) (R4)

/ |Vﬂk\”_2VﬂkV12k_1da:+/ it vapa T de
R4 R4
< IVaRI  IVEE T e + 1 e @) IV e

We infer from (17) that

IN

T k—
||U _uk 1” p(Rd)+ ||VukHLp(]Rd —Envuk 1” p(Rd)+CT||vuk 1||L1’ Rd +CT

Then, summing up above inequality from k£ =1 to N yields
oMt =@ ey~ ||qu||Lp @) < C+CNT. (18)

3.3. Convergence.

Definition 3.2. Define the following piecewise function in ¢ by
UT(ta ) = ﬂk()a ’/TTUT(ta ) = akil(')a
~k k-1
BpuT(t, ) = LU Oy e [(k — V)7, k), k=1,2,.., N.

In this subsection, we aim to obtain the compactness of {u"} in LP(0,T; LP(R™)).
We will employ an important lemma about compactness (see Theorem 3, [23]):
Lemma 3.3 ([23]). Let X and Y be Banach spaces such that the embedding X ——
Y is compact. If 1 < p < oo, let {u"} be a sequence of functions in LP(0,T;Y),
satisfying
(1) {u} is bounded in L}, (0,T; X); (2) |u”(-+7) —u" || r(o,r—7;v) = 0 as 7 — 0,

uniformly for u™
Then {u"} is relatively compact in LP(0,T;Y) (and in C(0,T;Y) if p=o00).

We have our results about convergence.

Proposition 3.2. As 7 — 04, there exist a subsequence of {u”}, not relabeled,
and u satisfying u € L>(0,T; LP(RY)) N LP(0,T; WLP(R?)) for any T > 0 with
d < p< oo such that

u” — win LP(0,T; LY (R)),

(

mou” — win LP(0,T; LY (RY)), (
Vu™ — Vu in LP(0,T;RY), (21

u” S in L°°(0,T; LP(RY)). (
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Proof of Proposition 3.2. It follows from the estimate of (17) that
T

19 W + [ 19 Wy < Ll

hence
T

T
1 syt < @) [0 Wi gyt < OOl @3

In addition, (18) yields
T—1 N-1
|t g < Yt - aty, < cr,
0 k=1

whence
|lu™(t+7) —u" || Lo(o,7—r;Lp(Re)) — 0 as T — 0. (24)
For any compact set K C RY, WHP(K) < LP(K), so it follows from Lemma
3.3 and (23)(24) that {u”} is relatively compact in LP(0,T : LY (R%)). Then we
obtain (19).

T N
/ e — |t < 73 it — @1, < O
T k=1

This and (19) yield (20).

Since {Vu7} is bounded in LP(0,T; LP(R)) from (23), the set is weakly pre-
compact in LP(ty,te; LP(R?)) for all t1,ty € (0,7) and t; < to. By diagonal argu-
ment, we obtain (21). Indeed, we can pick out a subsequence (without relabeling)
such that Vu™ — ¢ € LP(t1,te; LP(R?)) as 7 — 0. For any v € C°(0, T; R?)

to to
/ ¢ - dadt lim / VuTpdxdt
t1 R4 70 t1 R4

12
= —lim / u"V - dxdt
1 JRd

T—0 t

to
= —/ / uV - pdzdt,
t, JRd

where the last equality employs the strong convergence u”™ — w in LP([0,T"); L
(R%)). Thus, Vu = ¢ for ¥t € [0,T) \ © where O is a set of measure zero.

By above similar diagonal argument and employing the Banach-Alaoglu Theorem
(any bounded set in the dual of a separable space in weak star precompact), we get
(22). 0

P
loc

3.4. Proof of Theorem 3.1. Now, we are in the position to prove that u is a
weak solution of the equations (1). The weak approximate form of (4) is rewritten
that, for any T > 0, the test function ¢ € C°([0,T);RY) and V - ¢ = 0,

T T T
/ Btu;'goda:dt—&—/ / WTuT~Vu;<pdxdt+/ / |VuT|P~2Vu" Vdzdt = 0.
0o Jrd 0o Jrd o Jrd
(25)
Next, we separate the proof of this step into three parts.
(i) We first claim that,

T T
/ Oyuypdrdt — —/ / upOppdzdt —/ (win)pp(0)dx, as 7 — 04. (26)
0o Jra 0 JRrd Rd
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Indeed,

T
L.

5‘tu; pdxdt

t) — t—
up(D) —up(t = 7) pdxdt + / /
T Rd
U T—1 u’ T UO
pdxdt —/ / —p (t + 7)dzdt —/ L pdrdt
T R4 0 Rd T
T—1 T—1
/ dmdt+/ / 2 dedt - / / T
Rd Rd Rd T
—dzdt
T—1
/ dmdt / / dmdt / / dmdt
T JRA Rd R
© T—1
/ Up— da?dt / / Tatcpdxdt—/ / dmdt
Rd Rd R4

T
/ 8tup<pdxdt+/ / upatgadxdtJr/ (win)pp(0)dx
R R
T—1
/ / dxdt—/ / U 3t<pdxdt—/ / d:cdt
T—r JRe R4 R4
—l—/ / upatgoda:dt—i—/ (win)pp(0)dx
R4
T—1
/ / Jrupat(pdxdt / / uyO0yp — uy, Oppdadt)
T—7 JRE
—|—(/ (in)pe(0 dx—/ / u d:rdt
Rd

J1+ Ja + Js.

@dxdt

&

ot +71)—

We estimate Ji, Jo and J3, respectively.

| J1]

And

/T /Rd t — elt) = (1) | + upOrpdadt

T||at<PHL°°(O7T;LF(]Rd (||U HLoo(T 7, T;LP (RD)) + ”u”LOO(T T LP(Rd)))
Ct—0, as 7 — 04.

T—7
t —p(t
< / / w(Orp — wmdt
Rd
T—1
/ / lup 7u7|| ) ! )\dosdt
< THatt(p”Ll(OT~LP(Rd))Hu||Loo(o7T_7—;LP(Rn))

Fllw =y

loc

-2
(0,T;R4) flu+ uTHip(o,T,T;Rd) ”at(aDHLP(O,T—T;Rd)»

479
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where we have used Lemma 2.2. Moreover, Proposition 3.2 yields
|Jo| = 0, as 7 — 04.

It follows from u® — w;, in V as 7 — 0+ and the mean value theorem that

]Rd
< / d((um>p—u2>¢<0>dx+ / u((0) - / it
< / [win — u®||win + u® P2 p( dm—|—/ u) / dt)dz
Rd R4 0

— 0, as 7 —0.

Thus, we establish (26).
(ii) Then, we show for any ¢ € C°(0,T;R%) and V - ¢ = 0, it holds that

T T
/ / mru” -V (uy)pdrdt — / / u - Vuppdrdt, as 7 — 0. (27)
0 R4 0 Rd

T T
|/ / mou” - Vugpdrdt — / / u - Vuppdrdt|
R 0 Rd
= |/ / u-up —mou’ uy)Vodrdt|
0o Jre
T
|/ / (u” — mru” )uy, Vdrdt] + |/ / (u-up —u” - uy) Vpddt|
0 R4 0 Rd

K + Ko,

In fact,

IN

where

K

IN

T
/ /Rd |(u" — mru” )u, V|drdt

la™ = o

loc

< o1& 14 | e 0,7) Vol oo (0,7:r4)
— 0, as 7 — 04,

and

Ky

IN

T
/ / |(u|u|P2uVe — u" [u" [P 2u" V) |dzdt
0o Jre

IN

T
/ /Rd (u — uT)ulP~2uVp + u” ([ulP~2u — |u” [P~ 2u") Vpdrdt

lu =Ty

loc

IN

-1
(0,T5R%) ||U|\Z£p(o T;Rd) Vel Lo 0,7me)

loc

Hu —u"||pr (0,T;R%) [lu+ UTHLp(O T;R%) ||UTHLP(0,T;1R"’) ||3t<P||Loo(o,T;Rd)
— 0, as 7 — 04.

(iii) Next, we establish that

T T
/ / Apu” pdxdt — / Apupdzdt, as T — 04 (28)
0 JRd 0 JR4
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ie.
T T
/ |VuT [P=2Vu" - Vodzdt — |VulP~2Vu - Vdzdt, as T — 0.
o Jrd

0o Jre
Since [|[Vu” || 1r 0,150 (rey) < C in (23), we obtain

T T
/ / |V P2V |71 dadt = / |Vu" [Pdzdt < C.
0o Jrd 0o Jrd
Then there exists a x such that
|VuT|P=2Vu” — x, in L7-1(0,T; L7-1 (RY)). (29)
Letting 7 — 0 in (25) and considering (26)(27)(29) yields

T T
—/ / upOppdxdt —/ (uin)pp(0)dx + / / u - Vuppdxdt
0o Jrd R o Jre

T
/ / X - Vpdzxdt = 0. (30)
0o Jrd

Then we will prove

T T
/ |VulP~2Vu - Vipdrdt = / / X - Vdzdt (31)
0o Jre 0 Jre
to finish the proof of (28).

Choosing ¢(z,t) € C(0,T;R?) with 0 < ¢ < 1, multiplying the equation (25)
by u"¢ and integrating in R™ and (0,7"), we obtain

T
/ Oruyu” pdxdt / / mru” - Vugu” pdrdt
0 R4 Rd

/ / |VuT [Pé +u”|VuT [P~2Vu"Vodrdt = 0.(32)
0 R4

For any w € LP(0,T; W P(R9)) to be determined later, we obtain the following
inequality by using Lemma 2.2

T
/ / (|VuT |P72Vu" — |VwP2Vw)V (u" — w)pdzdt > 0, (33)
0 R

T T
— / / |Vu™ [P pdrdt + / / |Vw|P2VwVu" ¢ddt
0 JRd 0 JRd

T T
+ / |Vu™ [P=2VuT Vwdrdt — / |Vw|Ppdrdt < 0. (34)
0 R4 0 R4

i.e.

Combining (32) and (34), we have
T T
/ Oruyu’ pdrdt + / / mou” - Vuyu” ¢drdt
0 JRd 0 JRd
T T
+ / / u” | VuT P2V "V dadt + / / |Vw|P2Vw(Vu™ — Vw)pdrdt
o Jra 0o Jrd

T
+ / |VuT P2 Vu Vwedadt < 0. (35)
0 R4

Then we estimate every terms in (35) one by one.
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From (25), (26) and (29), it easily follows that as 7 — 04

T
/ 8tuTuT¢d:cdt—>/ / Orupugdrdt, (36)
Rd

/ / TrU Vu7u7¢dxdt—>/ / u - Vupupdrdt (37)

R4 Rd
and
/ |Vu [P~ QVuTVw¢dmdt—>/ / xVweodzdt. (38)
0

It holds from (29) and Proposition 3.2 that

T
|/ / T|Vu7\p_2VuTV¢dxdt—/ / uxVodrdt|
Rd

< |/ / (VU P VT —X)V¢dxdt|+|/ / u” — u)xVodrdt|
— 0, as 7 — 0. (39)
And (21) yields

T
| / |Vw|P2Vw(V(u™ —w) — V(u — w))pdzdt|
0o Jra

T
= |/ / |Vw|P2VwV (u” — u)pdrdt|
0 Jre
— 0, as T — 04. (40)
Then, combining (36)-(40) and letting € — 0, (35) becomes that

T
/ 6tupu¢dmdt+/ / u - Vupu¢dxdt+/ / uxVodrdt
Rd Rd Rd

/ / |Vw|P2Vw(Vu — Vw)ddrdt + / / xVwodzdt
R4
(41)
Taking ¢ = uq/) in (30), we have
T T T
/ 8tupu¢dxdt+/ / u-Vupu(bdxdt—i—/ / xVug+xuVodrdt = 0. (42)
o JRrd 0o Jrd 0 JRd
Combing (41) and (42) yields that

/ /d |Vw|P~2Vw(Vu — Vw)pdrdt +/ / — u)pdxdt <0,
i.e. ‘
/ / (IVw|P~>Vw — x)(Vu — Vw)¢dadt < 0. (43)
Taking w = u — /\Lpowitlfd)\ > 0 yields that
[ ] 192 v - x) - 0V sz <o (14)

Choosing ¢ such that supp ¢ C supp ¢ and ¢ = 1 on supp ¢. When A — 0, it
follows that

T
/ / (|Vu|P~2Vu — x)Vedzdt < 0. (45)
0 Jrd
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Employing the same method with w = u — Ay and A < 0, we obtain
/OT /Rd(|Vu|p*2Vu — x)Vedzdt > 0. (46)
Thus, for any ¢ € C°(0,T;R?),

T T
/ |Vu|P2VuVedrdt = / / XV pdadt. (47)
0 R4 R

Therefore, combining (i)-(iii), we have for VI' > 0

T
/ / upOppdadt —l—/ / u - Vuppdrdt + / |Vu|P~2VuVodzdt
Rd Rd 0 Jrd
= / (tin)pp(0)da. (48)
]Rd
Therefore, we complete the proof of Theorem 3.1. O

4. Appendix. In this Appendix, we give a proof of existence for weak solutions to
equation (49) by calculus of variations.

up — TApu = [tin P2 Ui, v € U

Vu=0,xze€U
u(z) =0,2 € OU (49)
Ui, € LP(U),

= [uP~?u, Apu =V - (|Vul|P~2Vu)

where the given positive constant 7 > 0.
At first, we show the definition of weak solution for (49):

Definition 4.1. We suppose that a domain U C R? is bounded, connected and
has a smooth boundary. We say u is a weak solution of (49) if u € WP(U) which
satisfies

/ uptbdr + 1 / |Vu|P~2VuVepdrdr = / [in |7 2 uintpda (50)
U U U

for any ¢ € WP (U) and given w;, € L*(U).
Lemma 4.2. For u;, € LP(U). The problem (49) admits a unique weak solution.
Proof. We first give the proof of existence in three steps.
Step 1. Define a functional I[]. We set
A:={weW"(U) | V-w = 0,w(x)|sr = 0}.
For any function w € A, we define a functional
1
Iw] := / L(Dw,w,z)dx = / I|Dw|p + Z|w|P = uin|P " 2umwda.
U P p
Since .
[ i~y < sl + ol
U p

we have -
Tw] > EHDU)HI;; — [[winll5. (51)
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Step 2. Existence of a minimizer for I[-]. Due to (51), we set
m = inf Iw]
weA
and choose a sequence of functions u, € A such that

m = lim Ifug].
k—o0

Note that
sip | |l .e () < 0.

By weak compactness there exists a subsequence of {uy}72,, without relabeling,
and a function u € W?(U) so that

up — u weakly in WP (U). (52)

By the Rellich-Kondrachov theorem we get that u; — w strongly in LP(U); and
choose a subsequence uy(without relabeling) such that ux — v a.e. in U. In fact,
u € A. Furthermore, we obtain that

lullwrr @y < liggi(gf luklw.e 0y,

therefore
Iu] < liminf I'fug] = m,
k—o0
i.e. I[-] is weakly lower semicontinuous on W1?(U). Since u € A, it follows that
I[u] = m = min I'[w]. (53)

weA

Step 3. Existence of a weak solution for (1). Fix any ¢ € W, (U) and set
i(€) := I[u+ e](e € R):

ile): = /UL(V(U—&-ezb),u—i—ei/),x)dx

1
= [ DI Tl =l Rt e
U

i'(e) = / T|Vu+eV[P = (Vu+eV) Vi + [u+ e P2 (ut e)th — |uim [P~ 2uintpda.
Since i(~)Uhas a minimum for € = 0, we know #/(0) = 0:
/U{—TV (IVulP72 V) + |ulP 2w — | [P 2w, Ybda = 0.
Hence, u is a weak solution to (49).
Now we prove the uniqueness. Assume that u,u € A are two weak solutions

satisfying (50), i.e. for any ¢ € Wy (U),

/upd)dx—kr/ |Vu|p72VuV1/)dx=/ i [P 2 Ui de, (54)
U U U

/ Aptpdr + 1 / |Va|P2VaVyde = / i [P~ 2uinpda. (55)
U U U

By subtraction,

/ (up — 1p)thdx + 7'/ (|VulP~2Vu — |Va|P~2Va) Vipdr = 0.
U U



EXISTENCE OF GLOBAL WEAK SOLUTIONS OF p-NAVIER-STOKES EQUATIONS 485

Taking ¢ = u — u yields

= Uy — Up)(u — 0)dx + T ulP~2Vu — |[ValP~2Via u— U)dx
of/Uu ol >d+/U<|V| Vu— Vi’ 2Va)V(u — a)d
> C)llu—all? + CE) IV (u— D)2 > C)llu—all?.

Hence, u = u a.e. in U. O
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