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RIGOROUS JUSTIFICATION OF THE FOKKER-PLANCK
EQUATIONS OF NEURAL NETWORKS BASED ON AN ITERATION
PERSPECTIVE*

JIAN-GUO LIUt, ZIHENG WANG!, YUAN ZHANGS, AND ZHENNAN ZHOUY

Abstract. In this work, the primary goal is to establish a rigorous connection between the
Fokker—Planck equation of neural networks and its microscopic model: the diffusion-jump stochastic
process that captures the mean-field behavior of collections of neurons in the integrate-and-fire model.
The proof is based on a novel iteration scheme: with an auxiliary random variable counting the firing
events, both the density function of the stochastic process and the solution of the PDE problem admit
series representations, and thus the difficulty in verifying the link between the density function and
the PDE solution in each subproblem is greatly mitigated. The iteration approach provides a generic
framework for integrating the probability approach with PDE techniques, with which we prove that
the density function of the diffusion-jump stochastic process is indeed the classical solution of the
Fokker—Planck equation with a unique flux-shift structure.
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1. Introduction. Although various models have emerged in neuroscience [23,
30, 36, 45], which is currently one of the most active disciplines, the level of mathemat-
ical rigor in understanding the rational connections between these models is usually
formal or empirical. In the case of modeling the dynamics of a large collection of
interacting neurons, the integrate-and-fire model for the potential through the neuron
cell membrane, which dates back to [30], has received great attention. In this model,
the collective behavior of neural networks can be predicted by the stochastic process
of a single neuron [3, 4, 14, 16, 25, 29, 31, 34, 35, 41, 42, 44|, where the influence of
the network is given by an average synaptic input by the mean-field approximation
[16, 29, 41, 44]. The time evolution of the probability density function (abbreviated
p.d.f.) of the potential voltage is governed by a Fokker-Planck equation on the half
space with an unusual structure in which it constantly shifts the boundary flux to
an interior point. This equation has been utilized by neuroscientists in exploring the
macroscopic behavior of neural networks and, in the past decade, by mathematicians
in investigations of the unique solutions structures [5, 6, 7, 8, 9, 10, 28, 37]; these

*Received by the editors May 18, 2020; accepted for publication (in revised form) September 9,

2021; published electronically February 24, 2022.
https://doi.org/10.1137/20M 1338368
Funding: The first author was partially supported by National Science Foundation grant DMS-
2106988. The third author was supported by NSFC Tianyuan Fund for Mathematics grant 12026606
and by National Key R&D Program of China project 2020YFA0712902. The fourth author was
supported by National Key R&D Program of China project 2020YFA0712000 and by NSFC grants
11801016 and 12031013, and was partially supported by the Beijing Academy of Artificial Intelligence
(BAAI).
TDepartment of Mathematics and Department of Physics, Duke University, Durham, NC 27708
USA (jliu@phy.duke.edu).
fMathematical Institute, University of Oxford, Oxford OX2 6GG, UK (wangzl@math.ox.ac.uk).
§School of Mathematical Sciences, Peking University, Beijing 100871, China, and Pazhou Labo-
ratory, Guangzhou 510330, China (zhangyuan@math.pku.edu.cn).
9Beijing International Center for Mathematical Research, Peking University, Beijing 100871,
China (zhennan@bicmr.pku.edu.cn).

1270

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.


https://doi.org/10.1137/20M1338368
mailto:jliu@phy.duke.edu
mailto:wangz1@math.ox.ac.uk
mailto:zhangyuan@math.pku.edu.cn
mailto:zhennan@bicmr.pku.edu.cn

Downloaded 03/29/22 to 152.3.43.52 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

FOKKER-PLANCK EQUATIONS OF NEURAL NETWORKS 1271

studies, in turn, have enriched the scientific interpretation of the integrate-and-fire
model.

In this paper, we focus on the single neuron approximation of the celebrated
noisy leaky integrate-and-fire (LIF) model for neural networks, where the state vari-
able X; denotes the membrane potential of a typical neuron within the network. In
the LIF model, when the synaptic input of the network (denoted by I(t)) vanishes,
the membrane potential relaxes to its resting potential Vi, and in the single neuron
approximation, the synaptic input I(t), which itself is another stochastic process, is
replaced by a continuous-in-time counterpart I.(t) (see, e.g., [3, 4, 31, 37, 41, 42]),
which takes the drift-diffusion form

(1) Idt ~ I.dt = pedt + o, dB,.

Here, By is the standard Brownian motion, and in principle the two processes I.(t) and
I(t) have the same mean and variance. Thus between the firing events, the evolution
of the membrane potential is given by the following stochastic differential equation
(SDE):

(2) de = (*Xt+VL +,U,(.) dt+0'(. dBt

The next key component of the model is the firing-and-resetting mechanism: whenever
the membrane voltage X; reaches a threshold value, called the threshold or firing
voltage Vg, it is immediately relaxed to a reset value Vg, where Vi < Vp. The reader
may refer to [41] for a thorough introduction to this subject. It is worth mentioning
that numerous mathematical aspects of the LIF model and its variants have been
studied (see, e.g., [16, 17, 29, 38, 41, 44]) in addition to its enormous significance in
neuroscience.

There has been growing interest in studying the partial differential equation
(PDE) problem for the dynamics of the p.d.f. with which the stochastic process X
is associated [12, 13, 16, 17, 29]. We denote the density of the distribution of neuron
potential voltage at time ¢t > 0 by f(z,t), x € (—o0,VF]. At least from a heuristic
viewpoint, it is widely accepted that the p.d.f. f(z,t) satisfies the following Fokker—
Planck equation on the half line with a singular source term:

2
(3) %(m,t) + %[hf(x,t)] - a%(w,t) =N({t)é(x—Vg), x€(—00,Vp), t>0,
where N(t) denotes the mean firing rate. By formal calculations via It6’s calculus,
we obtain the drift velocity h = —x + VI, + p. and diffusion coefficient a = 2/2.

The firing-and-reset mechanism in the stochastic process has led to multiple con-
sequences in the PDE model. First, since the neurons at the threshold voltage have
instantaneous discharges where the density is supposed to vanish, and due to the noisy
leaky terms, we consider the following Dirichlet boundary conditions:

(4) f(Vp,t) =0, f(—o0,t)=0 ¥t>0.

Second, due to the Dirichlet boundary condition at x = Vg, there is a time-
dependent boundary flux escaping the domain, and a Dirac delta source term is added
to the reset location z = Vg to compensate for the loss. Noting that (3) is the evolution
of a p.d.f., we therefore see that for all ¢ > 0,

Ve Ve
flz,t)de = fin(z)dx = 1.

—00 —
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The conservation of mass and the boundary condition characterize the magnitude of
the mean firing rate
of

5 N(t) = —a=—(Vg,t) > 0.
o) (1) 1= —a gl (Vi) 2
The PDE problem is completed by an appropriate initial condition f(x,0) = fin(x).

Third, the firing events generate currents that propagate within the neural net-
works, which are incorporated into this PDE model by expressing the drift velocity h
and the diffusion coefficient a as functions of the mean firing rate N(t). For example,
it is assumed in quite a few works (see, e.g., [5, 6, 10, 28]) that

h(z,N) = —z +bN, a(N)=ag+a1N,

where b, ag > 0 and a; > 0 are some modeling parameters. When b > 0, the neural
network is excitatory on average, and when b < 0 the network is inhibitory. In
particular, when b = 0 and a; = 0, the PDE problem becomes linear, but the flux-
shift structure persists.

We remark that adding the delta source term to the right-hand side of (3) is
equivalent to setting the equation on (—oo, Vi) U (Vg, Vi) and imposing the following
conditions:

0

0
ag f(Vg,t)=N(t) vt>0.

PV t) = FViE 1), as

fVg,t) =
The equivalence can be checked by direct integration by parts, and we use this form
throughout the rest of the paper.

Due to the unique structure of the PDE problem, most conventional analysis
methods do not directly apply, and many recent works are devoted to investigating
solution properties of such a model and its various modifications, including finite-time
blowup of weak solutions, multiplicity of steady solutions, the relative entropy esti-
mate, existence of classical solutions, structure-preserving numerical approximation,
etc. (see, e.g., [5, 6, 7, 9, 10, 28] and the references therein). For the stochastic process
(2), as the jumping time for X; is determined by its hitting time, classical It6 calculus
is not directly applicable.

The primary goal of this paper is to show the rigorous derivation of the Fokker—
Planck equation from the stochastic process. More specifically, we investigate whether,
and in which sense, the p.d.f. f(x,t) of the stochastic process X; satisfies the PDE
model. We choose the model parameters as follows:

(6) Vi=Vr=0, pu.=0, o,=+v2, and Vp=1.

Let the distribution of X be denoted by v, which is a probability measure compactly
supported on (—oo,1), and let fi,(z) denote the density function of v. Then X; €
(—00,1) is a stochastic process whose trajectory is cadlag in time, and it evolves as
an Ornstein—-Uhlenbeck (OU) process,

(7) dX, = —X,_dt+/2dB,,

until it hits 1. Whenever X, hits 1 at time ¢, it immediately jumps to 0, i.e.,

(8) if X,_ =1, X,=0.
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Then we restart the OU-like evolution independent of the past. We remark that (7)
and (8) serve as a formal definition of the diffusion-jump process only for heuristic
purposes, and the rigorous definition shall be presented in section 2.2. We aim to show
for any fixed T' > 0 that the associated density function f(z,t) is indeed a classical
solution to the PDE problem

af 0

92 f
ot "oz ) " 52

0) {7070 = 1070, S-F070)~ S F07 ) = 22 F070), e (0.7
f(=o0,t) =0, f(1,t)=0, te]0,T],
f(x,0) = fin(z), =z € (—00,1).

The processes of such types (7) and (8) were first introduced by Feller [19, 20]
(in terms of transition semigroups). In particular, [20] presents the Fokker—Planck
equation of such processes (dubbed “elementary return processes” there) in weak form,
the proof of which is based on a Markov semigroup argument in [19]. See Theorem
9 of [20] for details. Such processes have also been studied in later works such as
[2, 24, 38, 39, 40, 43]. More specifically, in [1, 2, 38, 39], the authors are concerned
with spectral properties of the generator of the stochastic process or related models
and have shown exponential convergences in time towards stationary distribution.
In particular, [38] studied a neuronal firing model driven by a Wiener process and
computed the distribution of the first passage time. In the works [40, 43|, the authors
made more relaxed or modified assumptions on the stochastic process than those in
[24] and proved the existence of pathwise solution of such processes in a generalized
sense.

Following in the spirit of the pioneering work of Feller [20], the focus of this paper
is to rigorously establish a bridge between the density functions of such processes
and the classical solutions of the Fokker—Planck equations to be specified as in (9).
From a technical perspective, there are no mathematical tools available for linking the
boundary condition at the firing voltage and the jump condition at the reset voltage
(or, equivalently, the singular delta source term) of the PDE model to a stochastic
model for a single neuron model. In [5, 10], some heuristic arguments are provided to
connect N (¢) to the rate of change of the expectation of the number of firing events,
which is related to the synchronization behavior of the neural networks, whereas
such an interpretation is not applicable for a single neuron model. In this paper, we
rigorously prove that for a single neuron, the mean firing rate N(t) = > 0> fr, (¢)
where fr, stands for the p.d.f. of the nth jumping time of X;.

The key strategy of our proofs is based on an iterated scheme: with the intro-
duction of an auxiliary random variable counting the number of firing events, the
p.d.f. of potential voltage f(x,t) allows for a decomposition as a summation of sub-
density functions {f(z,t)}22,. Each subdensity naturally links to a less singular
sub-PDE problem, and all the sub-PDE problems are connected successively by iter-
ation because the escaping boundary flux of f,(x,t) serves as the singular source for
fn+1(z,t). Among all the iterations, the first step from fy to fi exhibits the strongest
singularity at the source of the flux, and thus this turns out to be the major technical
difficulty in our proof. In order to tackle this obstacle, elaborated estimates on the
regularities of fy have to be established. The first sub-PDE problem corresponds to
the stochastic process killed at the first hitting time, and there is a vast literature
[18, 26, 27, 32, 33] concerned with the stochastic processes with no reset for the killed

=0, z€(—00,0)U(0,1),t€ (0,T],
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particles. In [15, 17], the authors consider the process with firing-and-resetting as in
this paper and have established connections between the subdensity function and the
PDE solution. They have proved that fo(¢, ) is continuous in (¢, z) and continuously
differentiable in z on (0,7T] X (—o0, 1] and admits Sobolev derivatives of order 1 in ¢
and of order 2 in x on any compact subset of (0,7T] x (=00, 1). However, these results
are not strong enough to guarantee the existence of the classical solution to the whole
problem (9). In fact, by analyzing the Green’s function for the parabolic equation on
the half space, we get estimates for classical derivatives and high order regularity for
t in Propositions 3.1 and 3.2, which is essential for the iteration from fy to f1. In ad-
dition, all the desired smoothness properties are maintained by the iteration scheme,
and thanks to the decomposition, rigorous justification of the jump condition for each
sub-PDE problem becomes tractable. Finally, with the exponential convergence of
decomposition, we can pass to the limit and conclude with the preserved properties
on the original problem. This iteration scheme is inspired by the renewal nature of
the stochastic process, which shares the spirit of Feller’s original work [20] and pro-
vides a platform on which to combine techniques from both probability theory and
differential equations.

It is worth noting that in our first attempt at studying rigorous justification of the
Fokker—Planck equations of neural networks from the stochastic model, we have only
obtained results for the linear cases. In particular, we could not yet incorporate the
dependence on the mean firing rate into the drift velocity or the diffusion coefficient,
but we shall investigate those directions in the future.

The rest of the paper is outlined as follows. In section 2, we summarize the
main results of this work, give a precise definition of the stochastic process, and
lay out the iterated scheme. In section 3, we show that the density function of
the stochastic process is indeed the mild solution of the PDE problem with certain
smoothing properties, and we make a few remarks on the implications in the weak
solution. For the rest of this work, we use C, Cy, Ck, and Cr to denote generic
constants.

2. Preliminaries and main results. In this section, we present our main re-
sults in detail and also provide some technical preparations for the proofs, including
construction of the stochastic process, which serves as the precise definition, and
elaboration of the iterated strategy, accompanied by some elementary estimates.

2.1. Main results. The stochastic process X; has been formally defined in (7)
and (8), but the rigorous construction of such a process can be found in (18) of section
2.2.

We first suppose that the process X; starts from 0, i.e., the distribution of X is
fin(z) = d(x). We state the first main result in the following.

THEOREM 1. The process X; as in (18) that starts from 0 has a continuously
evolving p.d.f. denoted by f(x,t). f(x,t) is a solution of (9) in the time interval
(0,T) for any given 0 < T < 400 and with initial condition 6(x) in the following
sense:

(i) N(t) := f% (17,t) is a continuous function for t € [0,T].

(i) f is continuous in the region {(x,t): —co <z <1, t € (0,T]}.

(iii) fze and f; are continuous in the region {(z,t) : x € (—o0,0) U (0,1), t €

(0.7},
(iv) fz(07,t), fz(0,t) are well defined for t € (0,T).
(v) Forte (0,T], fo(x,t) = 0 when z — —oo.
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(vi) Equations (9) are satisfied with f(x,0) = §(x) in the following sense: for any
pE Cb(foo7 1)’

1
(10) lim p() f(z,t)dr = ¢(0).

t—0t ) _

The proof of Theorem 1 is shown in section 3 and relies on an iterative approach.
In fact, we decompose both the probability density of the stochastic process and the
solution to (9) into series and show that there is a one-to-one correspondence between
the two series representations.

Next, we let the process start from any fixed y < 1; this time we use f¥(z,t) to
denote the p.d.f. of the process X; in (18) starting from y, and now the distribution
of Xo is fin(x) = 0(z — y). With the same method, we immediately get the following
corollary.

COROLLARY 2.1. For any fized y € (—o0, 1), the process X; as in (18) that starts
from y has a continuously evolving p.d.f. denoted by f¥(x,t). f¥(x,t) is a solution of
(9) in the time interval (0,T] for any given 0 < T < 400 and with initial condition
d(xz — y) in the following sense:

(i) N¥(t) is a continuous function for t € [0,T].

(ii) fY is continuous in the region {(x,t): —oo < x <1, t € (0,T]}.

(iii) Oy fY and O, fY are continuous in the region {(x,t) : * € (—o0,0)U(0,1), t €

(0.7},

(iv) 0. fY(07,t), O, fY(0T,t) are well defined for t € (0,T].

(v) Forte (0,T], 0, f¥(x,t) = 0 when x — —o0.

(vi) Equations (9) are satisfied with f(x,0) = é(x —y) in the following sense: for

any ¢ € Cp(—00,1),

(11) lim () (2, t)de = o(y).

t—0t ) _ o

Moreover, for any fized €9 > 0, the continuity in (i), (ii), (ili) and the convergence in
(v) and (vi) are uniform fory <1 —eq.

The proof of Corollary 2.1 is the same as that of Theorem 1 and is thus skipped.

The initial condition of the Fokker—Planck equation (9) corresponds to the initial
distribution of the stochastic process Xy. We remark that in the above cases, the
majority of arguments below are based on the initial condition of the process Xy =y
for any y < 1, and the corresponding initial condition of the PDE problem becomes
f(z,0) = 6(z—y). Although the initial condition is a singular function, we have shown
that the PDE has an instantaneous smoothing effect, while the solution coincides with
the density function of the stochastic process. Since the problem is linear, the natural
extension to general and proper initial conditions can be obtained by integration
against the initial distribution (see, e.g., [15] for a precise discussion).

THEOREM 2. Let v be a cumulative distribution function (c.d.f.) whose p.d.f.
fin(z) € Ce(—00,1). We assume that fin(x) is continuous and supported in (—oo, 1 —
o) for some g > 0. Then the process X; as in (18) that starts from p.d.f. fin(x) has
a continuously evolving p.d.f. denoted by f¥(x,t), with

(12) fo(z,t) :/ - fY(x, t)v(dy), z€(—o0,1], t>0,

— 00
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and f¥(x,t) is a classical solution of (9) in the time interval (0,T] for any given
0 < T < +oo with initial condition fi,(x) in the following sense:
(i) N¥(t) :== —Z f*(17,t) is a continuous function for t € [0,T].
(ii) f* is continuous in the region {(x,t) : —oo < a <1, t € [0,T]}.
(iil) Opuf” and Oy f” are continuous in the region {(x,t) : x € (—o00,0)U(0,1), t €
0.7}
(iv) 0. f¥(07,t), 0. f¥(0T,t) are well defined for t € [0,T).
(v) Forte (0,T], Opf¥(z,t) = 0 when z — —oo.
(vi) Equations (9) are satisfied with the L? convergence to the initial condition as
t— 0T, de.,
1
(13) lim |f¥(x,t) — fin(x)]*dx = 0.

t—0+ J_

A proof can be found at the end of section 3.1.

Remark 1. It is not clear yet how to get the uniform estimates near the bound-
ary of the domain, and thus we suppose that the initial distribution is compactly
supported on (—o0,1). Actually, some recent work [27] concerning related models
progressed towards more general assumptions, from compactly supported to o(1 — x)
decay near 1, and more recently, O ((1 — x)ﬁ) with 8 € (0,1). Usually, the literature
assumes O(1 — ) decay near 1 (see, e.g., [11]) and in Theorem 1.1 of [18], this bound-
ary decay is linked to short-term regularity of the solutions. Thus the hypothesis of
a compactly supported initial condition has deep consequences on the smoothness of
the solution in the short term.

2.2. Construction of the process. For the rest of this section, we shall present
some preliminaries of the stochastic process. First, we should give the process X; a
precise definition in probability by following the construction of Gthman and Skorohod
[24]. We emphasize that an additional process n; is introduced to count the number
of jumping events of a trajectory that have taken place before time t.

On a given probability space (2, F,P), we consider a sequence of independent

OU processes,
<n>}°°
Y,
{ ¢ n:l7

with YO(") =0 for all n > 1. Note that an OU process Y; starting from initial value yq
is an SDE with an almost surely (a.s.) pathwise continuous strong solution. That is,

t

(14) Y, =e 'y + V2 / e”(=*)dB,
0

with a normal p.d.f.,

(15) N(e tyo, 1 —e2).

For each n € N, ¢ € [0, o0], define the natural filtration

FP = (v se0.h).

In other words, ft(") represents the information carried by the path of the nth copy

of the OU process by time t. For all n, fég ) are abbreviated as F (") which are easily
seen to be jointly independent. Now define their filtration

Gn=0(F®, k<n), G"=0o(F®, k>n)
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with the convention G, = G.
For each n, let

(16) Tn:inf{tzozyt<">:1}:inf{tEO:hllr?_y}f">:1}

be the first time Yt(n) hits 1, with the convention 79 = 0. Moreover, for all n > 0 and
k < n, define

(17) Tnzzn:ﬂ‘, Tk = z”: i
i=0

i=k+1

By definition, 7, is a stopping time with respect to the natural filtration {]—'t(n) }>o0.
Also, we have that {7,,}22, is a sequence of independent and identically distributed
random variables with strictly positive expectation. Thus by the law of large numbers,
(>, 7)/n — E[r1] > 0 a.s., which implies that

P<§:Ti=OOVk21>=1.

i=k

Particularly, we have T,, — 0o a.s. as n — oo. Then within the almost sure event
Ao =A{>2, 7 = oo for all k> 1}, we define (Xy,n;) as follows: for any k > 1,

(18) (Xene) = (V0 k= 1)

on [Tx—1,Tx). Thus Ty is interpreted as the kth jumping time associated with X;.

By definition, we have constructed a piecewise continuous path on [0, co) for each
w € Ag, and thus a mapping from Ay to (D]0,00) x N, D x N) is clearly measurable
with respect to G, where D[0, 00) is the space of cadlag paths. Here D is the smallest
sigma field generated by all coordinate mappings, and N is the trivial sigma field on
N. In the rest of this paper, we will use the construction above as the formal definition
of (X¢,n:), which is the stochastic process of interest.

Similarly, we can define the process X; that starts from y < 1 or starts from
a distribution v. We denote the probability measure of (X;,n;) by P¥(-) and the
expectation by EY[-]. The meanings of P¥(-) and E”[-] are analogous. Using F, /Frp,
to denote the c.d.f. of 74/T}, we immediate see that for any k and ¢, P(rpy = t) <
P(Yt(k) =1)=0. So F,, and Fr, are always continuous.

2.3. Properties of the process and the iterated approach. We derive some
preliminary estimates for the process (X¢, n;), which manifest the solution properties
and also motivate us to propose the iterated scheme.

It has been shown in [24] that the process X; constructed above is always Markov-
ian. Now we are ready to show the following “strong Markovian” result that allows
us to later calculate the probability distribution of (X, n;) in an iterative fashion: for
each integer k£ > 0, define

(19) Fi(z,t) = PY(X; < x,ny = k);

then we have the following proposition.
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ProprosITION 2.1. Foranyx <1, k> 1, andt > 0,

(20) Fi(z,t) = Eq [P (Yt(_’“;:) < 2Ty >t — Tk) 1Tk<t} :
Thus,

t
(21) Fulat) = [ Folat = )i, s).

0

Proof. We only prove (20); (21) is obvious. First, note that Typ11 = Tk + Tit1
and that
{TLt = k} = {Tk S t7T]€+1 > t}

By Fubini’s formula,
P(ny = k) =Eo [P (Tpy1 >t — Tp) Ir,<4] -
Thus it suffices to prove
PY(X, > z,n; = k) = Ey [P (Yt(f;kl) > 2, Thgr >t — Tk> 11Tk<t} .

Let A = {X; > x,n; = k} be our event of interest. For any n > 1 and any 0 < i <
2" — 1, we define the interval

IOty = (27mit, 27" (i + 1)t] .

Moreover, for any s € (0,¢] and any n, one may define Id(n, s) as the unique s < 2" —1
such that s € I (t). Now we define the event

AW = inf YD > gm0 > (1 - 27t e N {Ty € I (1)}
set—I (1)

and define A,, = U?;a 1A5f). By definition, Agf ) A for every feasible n and 7. Thus
P(A,) < P(A). On the other hand, for any w € A = {X; > z,n; = k, T}, < t}, the
continuity of the path in Y+ guarantees that there has to be some N < oo such
that for all n > N, w € ALTD) a0 thus P°(A,) - PY(A) =P°(A) asn — oco.
The last equality follows from the fact that Fr, is continuous.

Meanwhile, note that 7}, is independent of Y *+1)_ We have

2" —1
P'(4,)= > P (Tk € I}P(t)) P ( inf Y >, mg0 > (1- 2”i)t>
=0 set—1I,"(t)

=E°

P inf YD > 20 1y > (1—27d(n, Ti))t | Ig, <t | -
sthfflId(n’Tk))(t)

Now, noting that for any 0 < h < ¢, one may similarly have from the continuity of
y (k+1)

P ( inf YD > 2 > (1 - 2_"Id(n,h))t>
set— 18T (g

S P (Y > e >t -n),

we have that (20) follows from monotone convergence. d
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For any ¢ > 0, we first consider the case where no jumps have been made by time ¢.
Note that Fo(z,t) = P(Xy <z, Ty > 1) = P(Yt(l) <z,m >t)foral xe(—oo,1). It
is clear that Fy(-,t) induces a measure on ((—o0, 1), B), which is absolutely continuous
with respect to the Lebesgue measure on R. The assertion above can be seen from the
facts that for any measurable A, P(Yt(l) ceAmn>t)< P(Yt(l) € A) and that Yt(l) is
a continuous random variable. Here we also use Fy(-,t) to denote the corresponding
measure on ((—oo,1),B) and let fo(z,t) be its density. Also, pou(z,t) denotes the

p.d.f. of Y;(l). Thus we have

(22) Jo(z,t) < pou(w,t) = 277(11—6_2’5)6}{1){2(1_1;_%)}7

which, together with (15), derives
1
V21 —e28)

LEMMA 2.1. Fy(x,t) is a bivariate continuous function on (—oo, 1]x (0, 00). More-
over, for any bounded continuous function ¢(x),

(23) fola,t) <

(24) li Bl (X0 Lol = lim [ o@)fa(e. )iz = (0).

t—0+t

Proof. In order to prove this lemma, one may first show that for any (z,t) €
(—00,1) x (0,00), Fo(,-) is continuous at (z,t) on both directions.
The continuity on the direction of x is obvious since for all 2’ > z,

’
X

0< Foa',t) = Fo(a,t) <P (V) € [o,0]) = / Pou(y, t)dy,

x

and the last term goes to 0 as ' — x™.

Thus one may concentrate on proving continuity on the direction of ¢. Let A
be the symmetric difference between events. One may first note that for any events
A=A NAy and B = By N By,

AAB = (A1NAsNBY)U(A1NANBS)U (AN BN By)U(A5N By N By)
(25) C(A1NBY)U (A2 N BS)U(A{ N By) U (A5N By)
= (A1ABy) U (A2ABy).

For any t > 0, any fixed xg, and any At sufficiently close to 0 (without loss of
generality, one may assume At > 0),

Fo(:b‘o,t) = P(Y;(l) < xg, 71 > t),
Fo(wo,t + At) = P(Y,1), <o, 71 > t+ At).

Now let A1 = {}/t(l) S JU()}, A2 = {7’1 > t} and Bl = {}/t(-;)At S xo}, Bg = {T1 >
t + At}. By (25) we have

|Fo(zo,t) — Fo(wo,t + At)]
< P(AAB) < P(A41ABy) + P(A,AB,)

= P (Y <0, Y0 > a0) + P (V) 5 w0, Y0, < a0) + P € (6,8 + AF)

<P (Els € [t,t + At] such that YV = xo> + Fr, (t 4 At) — F, (1)
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Recalling that F» () is continuous, we have
Al;ltglo F. (t+ At) — F, (t) =0.
At the same time, for any positive integer n, define event
A, = {Hs € [t7t + n_l] such that Ys(l) = xo} .

Note that
P(A,) 5P =20) =0 as n— oo

We obtain the continuity of ¢.
Thus, one can show that Fy(x,t) is binary continuous at (z,t) as follows: given
(z,t) € (—00,1) x (0,+00) and any € > 0,30 < § < § such that for any [t —t] <6,

€
|Fo(x,t') — Fo(z,t)| < 7

Also, for any s > £ and any |2’ — 2| < § (here, without loss of generality, we ask for
x<a'),

[Foa, ) = Fo(e, )| < PV € [o,0']) < 5.

(The last inequality occurs because when s < %, the density of Ys(l) can be bounded
by a big enough constant C'.)

Then for all (a/,t") € (=00, 1) x (0,00) such that |[t' —t| < 4, |z’ — x| < 0, we have

|F0(x/7tl) - Fo(]},t)| < ‘Fo(xlvtl) - F()(J,‘,t,” + |F0($,t/) - Fo(x,t)| <€

Finally, we show that Fy(z,t) is continuous at « = 1. It suffices to prove that for
any t, — t and €, — 0%, we have lim,,_,o Fo(1 — €p,tn) = Fo(1,t) = P(1; > 1), i.e.,
lim, 0o P(X:, <1—¢,,71 >t,) =P(r >t), which is equivalent to

lim P(Xy, >1—¢,,71 >t,) =0.

n—oo

Setting event A, = {X; >1—e¢,,7 > t,}, we have

PUXs, Am) <P (33 € [maxtm,maxtm} such that X, > 1 —¢,,7 > min tm) .
m>n m>n

mzn m>n

Note that limsup,, ., P(A4,) < P(limsup 4,,) < P(X; > 1,71 > t) = 0. Thus we get
lim,, o P(A4,,) = 0 and the desired result.

Finally, to prove (24) we recall that ¢ is a bounded and continuous function.

Thus |¢(z)| < M for all z, and for each € > 0, there is a 0 < § < 1 such that for all
€ [-6,0], |¢(x) —¢(0)] < e. So we have

Bl (X0 Lo,mo] = 9(0)] < =+ 201P max V] 2 6)
Now recalling (14), we have

(26) D)L

)

t d t
\/5/ e_(t_s)st‘ < )\/5/ e’dB;
0 0
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where the d means the probability distribution. Note that the right-hand side of (26)
forms a martingale. One immediately has

lim P (max \Ys(l)| > 5> =0
t—0+ s<t

by Doob’s inequality. Thus we have shown (24), and this completes the proof. ]

Remark 2. With Lemma 2.1, one may immediately have that F (¢, t) is a bounded
and measurable function of ¢ € [0, 00).

Moreover, the following corollary follows directly from Proposition 2.1, Lemma
2.1, and a standard measure theory argument.

COROLLARY 2.2. For any bounded measurable function f, any integer k > 1, and
any t >0, E[f(Y;(l))]lTQt] is measurable with respect to t, and

(27) E [f(X) Uy, =] = B [B [FO ) oo | 1]
Note that
1
(28) FL () =1—P(r >t =1—Fy(l,6) =1 / Fola, t)dz
and
(29) Fr =F, «F,, %% F_

Moreover, for each n, F,(-,t) is absolutely continuous, and we let f,(x,t) denote its
density.

In the rest of this section, we use Proposition 2.1 and a renewal argument similar
to that in [20] to calculate the distribution of X;. First one has the following lemma.

LEMMA 2.2. Foralln>1,t>0, andxz < 1,

(30) Fo(z,t) = /0 Fo_1(z,t — s)dFy (s).

Moreover, F,(z,t) is also bivariate continuous on (—oo,1] x (0,00).

Proof. Suppose the lemma holds for n — 1 > 0, which has been shown true for
n = 1. By Proposition 2.1, Lemma 2.1, and Fubini’s formula on the independent
random variables T},_; and 7,,,

Fn(.%',t) = P(Xt S T, Ny = ’I’L) = EO [P (}Q&n;nl) S Ty Tp+1 >t — Tn> ]lTn<t:|

=Eo [Fo(z,t — T) 11, <t) = Eo [Fo(z,t — Thm1 — 70) Ly s 4r <t

/ /t SFO (x,t —s = h)dFr, _, (h)dF:, (s)

and thus we have (30). With (30), for any o > 0 and zy < 1, the continuity of
F,(z,t) at (z9,to) with respect to ¢t can be shown as follows: for any € > 0, by the
continuity of Fi, (t), there is a d; € (0,%p) such that

F.(to+d1)—Fr(to—01)<e
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Now note that F,_j(xg,t) is continuous on (0,00) and thus uniformly continuous
on [01/2,to + 01]. Thus there is a 6o > 0 such that for all ¢1,t2 € [01/2,t0 + 1],
|t1 — t2| < 52,

|Fn,1(.’)30,t1) — Fn,1($07t2)| <E.

Thus for any ¢ such that |t — to| < min{d1/2,d2} (here, without loss of generality, we
may assume that ¢ < tp), one has

to—01
| Fn (w0, to) — Fr(wo,t)] < / [Fn-1(z0,t0 — ) — Fn1(wo, t — s)[dF7, (s)
0

to

t
+ / Fn_1(zo,t — s)dFy, (s)+/ Fo—1(zo,to — 8)dF(s)
t

t0—6]
S €+ 2[F7—1 (to + 5) — F’-,—1 (to — 5)] S 3e.

0—01

Similarly, the continuity of F,(x,t) at (xq,to) with respect to x is guaranteed by
the facts that Fj,_1(x,t) is continuous and thus uniformly continuous on [z, z'] X [e, ]
for all € > 0 and that F, (-) puts no mass on point tg. Also, by an argument similar
to the last lemma, we show that F),(-,-) is bivariate continuous and complete the
proof. ]

With the same argument as before, we have the following corollary.

COROLLARY 2.3. For any bounded measurable function f, any integer k > 1, and
anyt >0,

1
By [ (X)) Lo, 1] = / F(@)dFi (e, 1)

is measurable with respect to t, and

(31) Bo [f(X0)Ln—t] = / f(@)dFy(z,t) = / / J(@)dFy_ (x, t — $)dFp, (s).

Our next lemma gives the exponential decay of F,,(z,t) on a compact set of ¢,
which is useful in our later calculations, especially when we need to deal with the
convergence of some series.

LEMMA 2.3. There is a 0 > 0 such that for T € (0,00),
(32) Fo(x,t) <exp(—6n+1T)

foralln e N, t <T, and z € (—o0, 1].
Proof. For any t <T and x € (—o0,1],

F.(z,t)=P(X; <a,n=n)<Pn,>n) =P, <t) <P(T,,<T).
Thus it suffices to show that
P(T, <T)<exp(—On+T).
Now recalling that T,, = Y, 7; € (0, 00), define
Y, =exp(-T,) € (0,1),
where, by the independence of {r;, i > 1},
E[Y,] = (Blexp(—)])"
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Note that for a.s. w,Yt(l)(w) is a continuous trajectory, which implies 71 (w) > 0 a.s.
Thus we have P(m; > 0) = 1, which implies

Elexp(—m1)] = exp(—6) < 1

for some # > 0. Then the desired result follows from the Markov inequality for Y,
and the fact that {T,, < T} ={Y, > exp(-T)}. O

Remark 3. The upper bound found in Lemma 2.3 is clearly not sharp, although
it suffices for our purpose later in the paper.

In light of the properties of joint process (X¢,n:) defined in (18) above, we have a
new perspective on investigating the distribution of X;. Let F(x,t) denote the c.d.f.
of X;. Based on the number of jumping times, it admits the decomposition

(33) F(z,t) =Y Fu(x,t).
n=0

There are two major types of results that we could obtain from the decomposition
above.

On one hand, we immediately get the well-posedness and regularity properties
of the distribution of X; at a given time, which are not easily achievable due to the
complication of jumps. We observe that the right-hand side of (33) converges by the
bounded convergence theorem, and, moreover, it is clear that by the previous lemmas,
F(z,t) is continuous on (—oo, 1] X (0, c0). In addition, due to the exponential decay of
F,(z,t) with respect to n, we know that the measure induced by F(-,t) is absolutely
continuous with respect to the Lebesgue measure, whose density function we shall
denote by f(x,t).

On the other hand, such a decomposition provides an auxiliary degree of freedom
in the representation of the density function, which facilitates analyzing the time
evolution of the density function. While the flux-shift mechanism makes the evolution
of F(z,t) nonlocal, the decomposition unfolds the distribution by adding one more
dimension such that the evolution has a simpler structure: the evolution of Fj is self-
contained without any nonlocality, and for n > 1, the evolution of F;, is also local,
although it has a tractable dependence on F),_;. Recall that we have used f,(z,t) to
denote the density function of F,(z,t). In fact, we are able to show that f,(x,t) is
a solution to a sub-PDE problem, and, eventually, the exponential convergence in n
can help us conclude that

(34) Flat) =" fala,t)
n=0

is a solution of the PDE problem of interest, satisfying the properties in Theorem 1.

3. Iteration approach. In this section we aim to prove the theorems in section
2.1. First, we prove that the density of the process X; that starts from 0 is an instan-
taneous smooth mild solution of (9) with initial condition fi,(z) = é(x). Then with
a similar treatment we can easily get Corollary 2.1, which, together with the integral
representation (12), derives Theorem 2. Finally, we show that the mild solution is
consistent with the definition of the weak solution of (9) defined in [5].

3.1. Solutions in iteration. Recalling the process (X, n;) defined in (18), we
first focus on the case Xy = 0, i.e., the initial condition of PDE (9) is f(z,0) = 6(z). In
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the previous section, we decomposed the distribution F(z,t) of the stochastic process
X, into a summation of series {F),(z,t)}1>) according to (19) and (33). We also

decompose the original PDE problem (9) into a sequence of sub-PDE problems: for
n =20,

dfo 0 & fo
o o )~ G
fO(_OO7t) = 07 fO(lat) = Ov te [OvT]a

fo(z,0) =6(x) in D'(—o0,1),

=0, z¢€(—o00,1),t€ (0,T],
(35)

where D(—00,1) = C°(—00, 1), and for n > 1 defining N,,_1(t) = —%fn_l(l,t), we
solve

Ofn O O fn
U D wh) - Tl 0, we (0,00 U01),1€(0.T)
0 0
(36) fn(oia ):fn(0+7t)7 %fn(oivt)_%fn(0+7t):Nn—l(t)a te (OvT]v
fn(fooat) = 07 fn(Lt) = Oa te [OaT]a
fn(xao) = 07 HAS (_007 1)

In particular, we find that the PDE problem (35) for fj is self-contained with singular
initial data, and thus only a mild solution can be expected, which, however, can be
shown to be instantaneously smooth. For n > 1 the PDE problems (36) for f, are
defined when z € (—00,0) U (0,1), and the time-dependent interface boundary data
N,_1 at x = 1 is determined by f,,_1, the solution to the previous PDE problem in
the sequence, but the classical solution of such problems can be understood in the
usual sense.

Here, there is a bit of ambiguity in the notation, since we have used f,(z,t) to
denote the subdensity function of the stochastic process and also the solution to the
PDE problem. In fact, we shall show that these two functions coincide, the precise
meaning of which shall be specified. In the following, we show that subdensity function
fo with delta initial data is an instantaneous smooth mild solution of (35), and then
following the iteration scheme, we prove that for each n > 1, the subdensity function
fn is the classical solution of (36). We conclude with the proof of Theorem 1 at the
end of this subsection.

Before we prove our main theorem, we first discuss the Green’s function of the
Fokker—Planck equation (35). According to Theorem 1.10 in Chapter VI of Garroni
and Menaldi [22], we know that the generator of the OU process (14), i.e.,

Ly = (~y)dy - +0y,",
admits a Green’s function G : (—o0,1] x [0,T] x (—o0,1] X [0,T] > (y,s,z,t) —
G(y,s,z,t). For a given (x,t) € (—o0,1] x [0,T], the function (—oo,1] x [0,%) >
(y,s) = G(y, s,z,t) is a solution of the PDE

0sG(y,s,x,t) + L,G(y,s,2,t) =0, y € (—o0,1),s€]0,t),
(37) G(1,s,z,t) =0, se€]0,t],
G(y,t,x,t) = 5(y — z) in D'(—o0, 1).

Following Theorem 5 in Chapter 9 of [21], for a given (y,s) € (—o0,1) x [0,T), the
function (—o0,1] x (s,T] 3 (z,t) = G(y, s, z,t) is also known to be Green’s function
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of the adjoint operator
Ly = Oulr] + 02y

i.e., the function (—o0,1] x (s,T] 3 (z,t) — G(y, s, x,t) is a classical solution of the
PDE

WGy, s,x,t) = LrG(y, s,x,t), x€(—o0,1),t€ (s,T],
(38) G(y,s,1,t) =0, telsT],

G(y,s,r,8) = §(x — y) in D'(—o0, 1),
which is consistent with (35). Now we give an important lemma that connects the den-
sity function of the stochastic process before the first jumping time with the Green’s
function of PDE problem (35), which is the starting point of our iteration strategy.

Also, for Green’s function G, although we cannot find a closed formula for it, there
exists the following estimation.

LEMMA 3.1. There exists a unique Green’s function G : (—oo, 1]x[0, T]x (—o0, 1] x
[0, 7] 3 (y,s,z,t) = G(y, s,x,t) for (35). Let fo(x,t) denote the density of the distri-
bution Fy(x,t) defined in (19); then fo(x,t) = G(0,0,x,1), i.e., it is a mild solution
of (35) on (—o0,1] x [0,T]. In addition, we have the estimation

. 2
(39) |8ZG(y,s,x,t){ <C(t— s)’# exp (_Co(xt—i)> , 0<s<t<T,
where £ = 0,1,2, 8* = 0f, = 90", £ = 2m +n, for m,n € Ny.
Proof. Set
p(z,t) = G(0,0,z,t), € (—o0,1],t€ (0,T].

Now we prove that p(z,t) coincides with fo(x,t), which immediately derives that
fo(z,t) is a mild solution of (35). Given a smooth function ¢ : (—o0,1] x [0,T] — R
with a compact support, noting that Green’s function satisfies (38), we have that the
PDE
asu(ya 5) - yayu(:% 'S) + 3yyu(ya 5) + d) 07 (y7 'S) € (7007 1) X (07 T]7
(40) u(l,5) =0, s€l0,T],
u(va> = 07 Yy e (—OO, 1)7

admits a (unique) classical solution

T 1
(41) u(y, s) :/ /_ Gy, s, z, t)p(z, t)dzdt, s€0,T), y<1.

Moreover, u is bounded and continuous on (—oo, 1] x [0,7] and is once continuously
differentiable in time and twice differentiable in space on (—oo, 1) x [0, T]. Let (X¢,n¢)
be the process defined in (18), and let 7 := inf{t > 0 : X;xr > 1}. By Itd’s formula,
we have

du(Xipr t AT) = —=d(Xinr, t AT)dE + V2uy(Xipr,t AT)dB.

Integrating the above formula from 0 to 7" and taking the expectation, with the
boundary condition in (40), we then have the representation formula

TAT
(42) u(0,0) = E /0 qS(Xt,t)dt].
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Also, with the two presentations for «(0,0) above, i.e., (41) and (42), we obtain

/O v ¢(Xt,t)dt] = /0 ' [ 100 p(z, ) (x, t)dxdt.

We further rewrite (42) as

TAT
/ O (Xy, t)dt
0

Clearly, for t € [0,T], {7 >t} = {T} >t} = {n, = 0}, and thus

E

T T 1
E :/O E [¢(X¢,t)1<ry] dt:/o [m¢(x,t)P(Xt € dx, T > t)dt.

(43) /O ! /_ 100 (2, ) o, t)dwdt = /0 ' /_ 100 bz, Op(a, 1) dad,

By (22) and (39), p(z,t) and fo(z,t) decay at —oo, and thus (43) is also valid for
any smooth function ¢ that is only bounded, which derives that the density function
fo(z,t) coincides with p(x,t). With (24), we conclude that fo(z,0) = §(z), and thus
fo(x,t) is a mild solution of (35). The complete proof of estimation (39) can be
found in Theorem 1.10 in Chapter VI of Garroni and Menaldi [22]. The proof is
complete. ]

Remark 4. The proof of Lemma 3.1 is essentially implied from the results in
[15, 17, 22], in particular, Lemma 2.1 of [15] and Theorem 1.10 in Chapter VI of [22].

Next, we prove some regularities of the subdensity fo(x,t) that are useful in our
later calculations.

PROPOSITION 3.1. Let X; be the process defined in (18), and let Ty be the stopping
time defined in (17). Let Fy(z,t) be defined in (19) and its density be denoted as
fo(x,t). Let fr, (t) denote the p.d.f. of Th. For any fized T > 0, we have

(i)
(44) $EI_HOO axf(](if, t) =0, te (0, T]

(ii) For any zo € (0,1), fo(z,t) € C?1 ((—o0, —x0] U [0, 1] x [0,T]). Moreover,
for all |x] = |zol, limy0+ fo(z,t) = 0.

(iii) Forany0 < eo <T < oo, fo(z,t) € C*! ((—o0,1] X [eg, T)), with the uniform
gradient estimations

(45)
0
sup | fol < o0, sup ﬁ < 0, sup ﬁ < 0,
(—00,1] X [£0,T] (—o0,1]x[e0,T] | OF (—o0,1]x[20,T] | O
0 02
sup (zfo) < 00, sup f20
(o0, x[0,T] | O (=001 x[z0.,T] | OT

(iv) We have the coupling relation between fr,(t) and fo(z,t): for allt € (0,T],
it satisfies

1
(46) i =- [ 2Dy -2 s,

and fr, (t) S C[O, T] with fr, (0) =0.
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Proof. (i) is the direct corollary of estimate (39). From (39), we know that the
Green’s function of (35) is continuously differentiable and decays exponentially fast
as t tends to 07 when z stay away from 0. Thus we immediately obtain the properties
in (ii). Also by the estimation (39) for the Green’s function, we can easily get the
bound for fy in (iii) when ¢ stays away from 0. Finally, to prove (iv), recall that
folz,t)de = P(X; € da, Ty > t); thus the c.d.f. of T is given by

1
P(T1 < t) =1- P(T1 > t) =1 —/ fo(lL’ﬂf)diE

By (39), we can differentiate the above formula with respect to ¢ and exchange the
derivative and the integral. Using (i) and the boundary condition of fy, we have for
any t € (0,71,

2
m=apmsn=- [ DDy [ D Sl D g,

With Lemma 3.1,

(0] = 0: (1.0 < G o (<)

and we conclude that fr, (t) € C(0,T], lim;_,o+ fr, (£)=0, and thus fr,(t)€C[0,T]. O

In order to make the iteration strategy successful, we need to further show that
fr, (t) is continuously differentiable, which is not a direct consequence of estimating
Green’s function. Thus next we shall prove that fr, (¢t) € C1[0,T] and the following
estimation is useful in the further calculations.

COROLLARY 3.1. For any T > 0 and for all 0 < g9 < min{5,T}, fr,(t) €
CL(0,T] and for any t > &9, we have
(47) |1, (D] < Ceg .

Proof. By Proposition 3.1, we know that fo(x,t) € C*! ((—o0,1] X [g0,T]) and
fr(t) = —Z fo(1,t) € C[0,T]. Then for any z € (—o00,1], t € [g0,T], set go(,t) =
%fo (z,t) and it satisfies

dgo O »go _
E—%(mgo)— 5 =0, x€(~00,1),t€ (0,71,
(48) gO(_Oo7t) =0, 1>t) =0, te [EO,T]v
0
go(z,€0) = afo(l',é‘o), z € (—00,1).

Defining p(z) := %fg(l‘, £0), we immediately get that p(z) € C%(—o0,1]NL>(—00, 1]
and by (39)

_3
lp(x)] < Ceq 2

For any t > 0, z € (—o0, 1], define h(z,t) := go(x,t + £9) and then h(z,0) = ¢(x).

Recalling the Green’s function G(s,y,z,t) in PDE (38), we have

1
W, t) = / Gly. 0.t 2)p(y)dy, ¢ 0.
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Then
1
(49) go(z,t) = / G(y,0,t — g, x)p(y)dy, t > ep.
By (39) and Lemma 3.1, we have
(50)
0 0 0 Loy
fr,(t) = —a%fo(l,t) = _%90(17t) =- /_Oo %G(yvovt —eo0, Dp(y)dy, t> eo,

and thus fr, (t) € C(eo, T).
When ¢ > 2¢g,

1 a 3
1< [ |gpem0a | oz tay

-3 [t _C (1-y)?
< 2 —
< Cg /_Ootgoexp< Co teo)dy
51 I 2
(51) = Ce, 2 / exp (—Co § > d€
0 t—eo

3T = /7
S e 2
< Cgp?,

where the second inequality follows by the change of variable £ = 1 —y, and the third
inequality results from the fact that g < % Also, because g can be arbitrarily small,
we can complete the proof. 0

Now we focus on the behavior of f7. (t) when ¢ is small. This proof is partially
inspired by the reformulation and the representation proposed in [10].

PROPOSITION 3.2. The p.d.f. fr,(t) of the first hitting time Ty is C*[0,T)] for any
fixed T > 0.

Proof. By Proposition 3.1 and Corollary 3.1, we know fr, (t) € C*(0,7]nC[0,T],
and thus we need only prove that lim,_,o+ f7, (t) exists. We prove this in the following
steps. First, we lay out our strategy.

Step 1. We rewrite the problem (35) as a moving boundary problem and rewrite
fry (t) as M(s). With the heat kernel ', we derive an integral representation of M (s).

Step 2. We analyze the decay rate of M(s) and M'(s) at 0 by utilizing the decay
property of heat kernel T'.

Step 3. Using the estimations of M (s) and M’(s) and heat kernel I', we derive
limt_>0+ ff%l (t) = 0

Second, we give details of the proof.

Step 1. Inspired by [10], we introduce a change of variable to transform (35) into
a moving boundary problem. Let

(52) y=cle, s=("—1)/2, wu(y,s)=e "f(z,1).

Note that PDE (35) corresponds to the OU process killed at a stopping time and thus
has the Dirichlet boundary condition. By the standard change of variable (52), we
can transform (35) into a heat equation with the moving boundary b(s) = v/2s + 1.
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Actually, we have the new equation

Us = Uyy, Y E (—00,b(s)),s >0,
(53) u(—o0,s) =0, wu(b(s),s) =0, s>0,
u(y,0) = d(y) in D' (—00,b(s))

Let I" be the Green’s function for the heat equation on the real line as follows:

_ ! (y —¢)?
(54) F(y’svg,T)_Zlﬂ'(ST)exp{_ll(S—T)}v S>T.

In the region —co < £ < b(7), 0 < 7 < h, recall the Green’s identity

Q(Fu) =0.

(55) 9 (T — uTe) - =

23

To derive an expression of u, we consider the integration of (55) over such a region
and let

s rb(T) s rb(7) s rb(7)
I= / / (Dug)ededr, 1T = / / (ule)ededr, IIT = / / (Tu), dédr.
0 J—oo 0 —0o0 0 —00

We have .
1 :/ Fu5|§:b(.,-)d7'.
0

Using the boundary condition of u(y, s) in (53), we have
I11=0

and
b(s) b(0) b(0)
III = / Tu|,—g-d€ f/ Tu|r=od§ = u(y, s) —/ Tu|,=od§.
Plugging in (55), we obtain

S

5(0)
u(y,s) = / T(y. 5, £,0)5(¢)dé + / D(y, 5,b(r), 7)ue(b(r), 7)dr
(56) —00 0

=T1(y,s,0,0) — / T(y,s,b(T), 7)M(7)dr,
0
where M (1) = —ue(b(r), 7). Note that the Green’s function I' is infinitely continu-

ously differentiable, and thus the regularity of u depends on M. Using Lemma 1 of
[21, p. 217], we know that for any continuous function p, the following limit holds:

. o [° 1 s
lim a—y/o p(T)F(y,s,b(T),T)drzip(s)—i—/o p(T)Ty(b(s), s,b(T), T)dr.

y—b(s)~
So, by differentiating (56) at y = b(s)~, we can get the following integral equation:

“M() = Ty (0(2),5,0.0) = 531(5) = [T, 0065, 5,000), )M (1)
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That is,

(57) M(s) = —2Ty(b(s),s,0,0) + 2 /OS L'y (b(s),s,b(r), ) M(r)dr
=: 2J1(s) + 2J3(s).
Recalling the change of variable in (52) and taking derivatives directly, we know that
(58) fri(t) = e*M(s) and ff (t) = 2 M(s) + e*' M'(s).
Step 2. We shall analyze the decay rate of M (s) at 0. By the heat kernel (54), we
have T'(y,s,0,0) = —~ exp(ﬂﬁ) and b(s) = /25 + 1, we have that for any n > 0,

Vs 4s
lim,_, o+ J;SLS) = 0, and thus there exists a constant C' such that for s € [0,T], n > 0,
(59) [J1(s)] < Cs™.
Note that
1 (b(s) — b(1))? } {b(é’) —b(7) }
60 T, (b(s),s,b(1),7T) = ———exp< —
(80)  Tyfb(s), (7). 7) = s oxp { - LRI L [HO SR

and thus we have o
|Fy(b(8)’ S, b(T)v T)‘ < S \L
(s—7)2

By (iv) of Proposition 3.1 and (58), there exists another big enough constant K such
that |M(s)| < K for all s € [0,7]. Thus

| Ta(s)] < 0/05 (_K) N

Combining this with (59), we also have |M(s)| < |J1(s)| + |J2(s)] < C+/s, and thus
nese [ Yo —cs
0 (8 — 7')5

Using (59) again, we have |M(s)| < C's, and thus

(M)

()| gc/ T st
0

(S—T)%

Using (59) for the third time, we can get |M(s)| < Cs2, which, together with M (0) =
0, leads to the fact that the right derivative of M at 0 exists and that

M%) = tim M)

s—0t S

=0.

Repeating the above calculations step by step, we find that for any n > 0, there exists
a constant that depends on n such that

(61) |M(s)| < Cs™.

By (47) and (58), we know that for any sufficiently small g9 > 0, there is a constant
C' < 400 such that

(62) |M'(s)| < Ceg?® Vs € [eo, 1].
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Step 3. In order to prove fr,(t) € C[0,T], which is equivalent to proving that
lim,_,o+ M'(s) exists by (58), now we prove that lim,_,q+ M’(s) = 0. Using (57) and
the fact that lim,_,q+ J{(s) = 0, we need only prove that

(63) lim Jj(s) = 0.

s—0t

Using the estimations (61), (62) and heat kernel I', we compute the difference between
A= [2T,(b(s),s,b(r),7)M(r)dr and B := [F a5 p (b(s+As), s+As, b(t), )M (7)dr.
A can have the decomposition

A= (/0 +/) T, (b(s), s, b(r), 7) M (r)dr,

and for B,
+A5 s+As
(/ / / ) b(s + As), s+ As,b(r), 7)M(T)dr.
S+As
Define
Jals + A3) = Jo(s) = I + Iy + I,
As
where
:[r A A -T
fom [ [Falle )t 800.7) T M1 g,
0 AS
1 5+As
I := ~ / I'y(b(s + As), s+ As,b(1), 7)M(7)dT,
S Js
and
1 S

s+As
iz | [0+ A0) s 80,000, M)~ |

S+As £

Ly (b(s), s,b(7), T)M(T)dT] )

Thus to get (63), now it suffices to show that

(64) lim |I,] < / 10,7, (b(s), 5, b(r), 7)M(7)] dr = o(1),
As—0 0 b
(65) lim |Iz] = o(1),
As—0
and
(66) Jim |1a| = o(1),

The above “= 0(1)” means that the left side goes to 0 as s — 0.
Note that for 7 < 3s, the I'y and 9, I‘ terms in (64) and (65) can be bounded
by a polynomial order Wlth respect to s~!, which, together with (61), immediately
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derives (64) and (65). Thus we need only focus on proving (66). With a simple change
of variable, we have

s+As
/ Ty, (b(s+ As),s + As,b(r), 7)M(T)dr
S+As

= / Iy(b(s+ As), s+ As,b(T + As), 7+ As)M (1 + As)dr
:/ I'y(b(s+ As), s+ As,b(t + As), 7+ As)M(1)dr

+/ Ly(b(s+ As), s+ As,b(t + As), 7+ As) [M (T + As) — M(r)] dr.
I3 = I3 + I3,

I3 = L /S Ly (b(s + As), s + As,b(t + As), 7+ As) — Ty (b(s), s,b(7), )] M (7)dr

As

I30 = / Ty(b(s+ As),s + As,b(t + As), 7+ As) M(r + As) = M(r) dr.

Dl

Thus to show (66), it suffices to prove

(67) Jim [T51] = o(1)
and

li I35 = o(1).
(69) Jim {Tg] = o(1)

For (67), by (60) we have

Ty(b(s+ As),s + As,b(t + As), 7+ As) — Ty (b(s), s,b(7),T)

. { 1b(s+As)—b(T+As)}{ -1 }

— = expd_=

4r(s —7) P12 b(s + As) + b(T + As) b(s + As) + b(T + As)

1 { 1b(s) —b(T)} { -1 }
— —————exp{ 5 :
4dm(s — 1) 2b(s) +b(r) b(s) + b()

and thus there exists a constant C' < 400 independent of the choices of s, 7, and As
such that

1
Ty (b(s + As), s + As, b(T + As), 7+ As) — Ty (b(s),s,b(),7)| < C - As - )

S —T

which, together with (61), derives limas—o|I3,1] = o(1).
Finally, for (68), note that M(7) € C'[%, s] and that |T'y(b(s + As), s + As, b(T +
As), T + As)| < \/50—77' By the dominated convergence theorem, we have that the

limit in (68) exists and is equal to

(69) I35 := /S Iy (b(s),s,b(r), )M’ (T)dr.

2
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To prove |I3 3] = o(1), one may further decompose it as

7

I33 :/;—3 Ly (b(s), s, b(T), 7)M'(T)dr + /i ] Ly (b(s), s, b(r), )M’ (T)dr

2

=:14+ Is.
For I4, note that I'y(b(s), s,b(7), ) and M (7) are both smooth on [£, s — s7]; we may
use integration by parts to obtain
[1a] < [Ty (bls), 5,b(s = 57,5 = 57) - M(s = sT)] + [Ty b(s), b (5) . (5) -2 (3)]

7

+

b

Ls—é aTI"y (b(5)7 S, b(r;—)’ T)M/(T)dT

where all the terms are small since |M(7)| is much less than any polynomial of 7, and

thus Iy = o(1). For I, recall that |I'y(b(s),s,b(T), )| < \/% and |[M'(1)] < Cs™3

on [s — s7, s], and we have

\15|§573/ 7 i;ﬁg@ﬁ:ﬂ),

which derives limas_,0 [I3.2] = o(1) and thus limas_o |I3] = o(1). Combining (64),

(65), and (66), we get lim, o+ J5(s) = 0 and then lim, ,o+ M’'(s) = 0, which, together

with (58), derive lim,_,o+ f7, (t) = 0 and fr, (t) € C*[0,T7]. 0
Next, we can do the first iteration.

PROPOSITION 3.3. Let fi(x,t) be the density function of the measure induced by
Fi(-,t) defined in (19); it satisfies the following initial condition and the recursive
relation:

fi(z,0) =0 Vz e (—o0,1),

70 t
(70) filz,t) = /0 folz,t — s)fr,(s)ds Vz € (—o00,0)U (0,1),¢ > 0.

For any fixed T > 0, we have the following:
(1) fi(z,t) is the classical solution of the following PDE on (—o0, 1] x [0,T]:

af 9 52

(71) E—%(xh)—%ﬁ:o, z € (—00,0)U (0,1),t € (0,7,
(72)

RO = 070, SLRO70) ~ L AO%0) = fr (), 1e(0.T),
(73) fl(—OO,t) =0, fl(lvt) =0, te [OvT]v
(74) fl(xao) =0, z¢€ (_007 1)7
with
(75) IBEDOO Oufi(z,t) =0, tel0,T].

(ii) There is a big enough constant Cp depending only on T such that
(76) [fi(z,t)] < Cr Vo € (—00,0)U(0,1),t € [0,T],

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 03/29/22 to 152.3.43.52 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1294 J.-G. LIU, Z. WANG, Y. ZHANG, AND Z. ZHOU

(77) ;xfl(m)‘ < Cr V€ (—00,0)U(0,1),t € [0, 7).

Also, at the domain boundary,
(78)

0 0 0
%fl(o_,t) <Cr, ‘&Uf1(0+7t)‘SCT, ’axfl(l_at)‘SCT, t€[0,77].

(iii) Fort > 0, recalling that the density of the second jumping time is

(79) 0 / fru(t = 5) fr, (3)ds
we have
(80) —%(1 t) = fr,(t).

Proof. By (30) and the Fubini formula, we immediately get (70). As we already
know that fo(z,t) satisfies PDE (35), from iteration relationship (70) and the regu-
larities for fo(z,t) in Proposition 3.1, we can check that f;(z,t) satisfies PDE (36)
with n = 1, and the estimations for fi(xz,t) are valid.

To prove (i), by the regularities of fy in Proposition 3.1, we have for all z €
(7003 0) U (07 1)7

02 L o2
2 e / 2 fola,t=s)fr()ds and <o fa(a,t)= / e Jola, t=5) r(s)ds

which, together with the decay property (44) for fy, derive (75). Moreover,

)
gnw =2 [ et - s 6)as
B Cfolw,t+ At —s) — fo(x,t —s)
= dim, . iy o
. fﬁ“ folz, t + At — 8) fr, (s)ds
At—0 At

t

%fo(m,t — 8)fr,(s)ds

Thus we have checked (71) and also gotten the continuity of 88—;2]“1 (z,t) and %fl (z,t).
At the same time, (73) and (74) are obvious because of the boundary conditions of fy
and the formula (70). So, for the rest of the proof we concentrate on verifying (72),
which is composed of

(81) fl(Oiat):fl(OJrat)v tE(OvTL
and

0

(82) 2

fl(()’,t) — %fl (0+,t) = le (t), te (O,T]

To show (81), note that fol ﬁds < 00, and thus for any ¢ > 0, 30 < § < ¢
such that f06 \/ﬁds < £, where the constant c is the same as in (23). With (70),
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we have for any = # 0,
(83)
t

t t—6
1 (z,t) = /0 folx, t —s) fr,(s)ds = /0 folz,t—s) fr, (s)ds+ folz, t—s) fr,(s)ds

t—6

For the second term above, using (23), we obtain

/ fO le( dS < ||fT1 L>°[0,t] / \/7d5 S ||fT1||L°°[0,t] &

while for the first term, one may use (45) and see that

t—0
i [ oot = 5) = fo(oaat = 5)| fr (s)ds =0,
0

xr1 —)0+ L, L2 —)O+

Since ¢ is arbitrary, we get (81).
Now we prove (82). Note that

2 i a1 / 9 fo(ent— ) fr (s)ds, a1 € (0,1),

and for any t — s # 0,
0 b o2

%fo(xl,t—s):— Wfo(x,t—s)dx—i—%fo(l,t—s)

:_/ [aaio( ,t—S)—aax(xfo)(%t_S)] dx+%f0(l’t_s)

/ [ (zfo)(z,t — )g;o(yats)] da:Jrgfo(lat*S)

9fo

= fo(1,t = 5) — x1 fo(z1,t —5) — ot

= —z1fo(z1,t — 9) —/ 86];0 (x,t — s)dx — fr,(t — s).

—— (= t—s)dw—l—a—fo(l t—s)

x1

Thus

t
aaxfl(:rl,t):/o %fo(xl,t—s)fﬂ(s)ds

= [ [Fttont=o - [ Lo sy = o6 9] o
0 1

Similarly, for any z2 > 0, we have
*fo( T2, — 5)
—Z2 82
= / 3 — fo(z,t —s)dz +0

— 00

:/712 {68{?0( ,t—s)—%(mfo(x,t—s)) dx

7 0h

o (x,t — s)dx.

=z fo(—w2,t —5) + /

— 0o
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Thus

(85) *f1( x2, )—/O |:1’2f0(—.1‘2,t—8)+/z2aa'];0($,t—5)d$ fr,(s)ds

— 00

Combining (84) and (85), we have for all 21 € (0,1) and x5 > 0,

2 i, t) = 2 fulan, )

_:rz/ fo(=za,t — 8)fr, (s ds+x1/ folw1,t — ) fr,(s)ds
t
+/o ~/]R\[ m,m%(x’t_s)dwffﬂ(t—s)] fr.(s)ds

=: I+ I7 + Is.

(86)

For Ig, we have by (23),

ds—0 as x5 —0T.

t
C
o < fnllimn o | =

Also, I7 — 0 by the same argument, and it now suffices to show

(87) Iz — le (t) as Ti,To — O+.

In the rest of our calculations, the integrand of Ig will be called H(s). As a result of

Proposition 3.2, for any € > 0, we let the chosen § be small enough such that

(88) S\ frll7er0. <&
ta

(89) / ‘f}l(s)|ds<5 Vip < to <t, tog—t1 <9,
ty

(90) P(Ty <§) <e.

Then for the fixed § > 0 defined above,
t—6 t
(91) Ig = H(S)dS + H(S)ds = Ig’l + Ig’g.
0 t—6

For Ig 1, we have by (45) and (46),

t—ao
/ [/ aafto (y7 - S)dy + fT1 (t - 8)] fT1 (S)dS
0 R\[-z2,21]

t—48 ’Elaf

[Is1| =

= 8)fr, (s)dyds

t—o
< ||fT1||Lm0ﬂ/ /

9fo
ot

3fo

dyds
Lo (—00,1] X [6,T]

<t- ||fT1||L°°[O,T] ' H . (1'1 +£172),

Lo (—00,1][8,T]
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which — 0 as 1,22 — 0. As for Ig o,

t 0
@gzj' / oy ¢~ sydy + fro(t — 5)| fr, (s)ds.
t—6 | JR\[=20,2,] OF

One may first see by (88) that we have f;_(s fr, (t —s) fr,(s)ds < e. Moreover, for

any z1,22 > 0, note that function %(y,t — 5)fr,(s) is bounded and continuous on

the region (R \ [—z2,21]) X [t — §,t]. One may apply Fubini’s formula and obtain

" 9fo
(92) 18,2 = W(y, t— S)le (s)dsdy
R\[—(L‘z,(L‘l] t—6
At the same time, by (39) we have for any fixed t > 0,y ¢ [—x2,z1],

fo(y,t — s)fr,(s) € C[t — 6,t)

and
lim f()(yat - S)le (S) =0.
s—t—

Thus, one may apply integration by parts and obtain

b
| G- sis
ot w9 )ds
t=4 t—5

= ol )= 0)+ [ folust = 5) 7, (5)ds.

(93) :(—fo(y,t—s)le(s))

Plugging (93) back into (92) and applying the Fubini theorem once again, we have
(94)

t
&F{/ hmwﬂﬁmhﬁ+/ / foly.t — s)dy o, (s)ds
R\[—z2,21] t—8 J R\[—z2,21]
= .[9 + IlO~

First, for 10, noting that fy is a p.d.f., for any s € (¢t — 4, ) we have

/ fO(:%tfs)dyS ]-7
R\[—z2,71]

which, together with (89), derives

t
(95) |T10] S/t_é}f/Tl(s)|ds<5.

Then for Ig, by (90) we have

T —0+ , T2 —0+

1
lim / mm&wz/ Joly,8)dy = P(Ty > 6) € [1 —2,1]
R\[—z2,21] —o0

and

|fr (t =68) — fr,(t)] <e.
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Thus we have for all sufficiently small 1 > 0,22 > 0,

(96) [Ty = fr, (0) = o — fr, (t = 8)[ + [fr, (¢ = ) — fr, ()] < ([ 7 lLoe 0,61 + Ve

Now combining (91)-(96), we conclude that Is — fr,(t) as x1,22 — 0T, which,
together with Is — 0 and I7 — 0, derives (82).

As for (ii), we first derive (76) and (77) which are essential to getting (80), and
we then set the basis for subsequent iterations. First, we verify (76), and without loss
of generality, one may assume 7 > 1. So when ¢ € (0,7] and z € (—00,0) U (0, 1),

2 (,1) /fo o) fr,()ds

X 7 1 d B =
<[ ol = 8)n, (5)ds + sl OT/W

< o, ) Lo (—o,1x(1,00) + C1 = Cr-
For (77), without loss of generality, one may assume that > 0, and by (84) we have

df1
%(LE, t)

t

of

= [[rontet =0 [ Bty g -9)] s 10

0 T
=: I+ Lo + 13

Using the estimate (22) for fo(z,t), one has

{ || < C- Fry(t) < Cr,
i3] < || f1, || Lo jo,m Fry (1) < Cr.

For the remaining I15, by using Fubini’s theorem twice and integrating by parts,
together with the fact that fo(-,t) is a p.d.f., we have

|112|=//af0 - le()dsdy‘

- / / folyt ()dsdy’
://fo (y,t dyle()
s/o | /7, (5)| ds

< Cr.

Because of the proof of (72) in (i ) property (ii) of Pr0p051t10n 3.1, and representation
(70), we know that 3 2 f(07,t), 2 & f1(0%,t), and —fl( ,t) are well defined, and thus
by taking the one-81ded limit in (77), we immediately get (78), and thus we complete
the proof of (ii).

Finally, for (iii), using integral representation (29), we immediately get (79). Re-
calling that f1(1,¢) =0 for all ¢ > 0, it suffices to prove

(97) 0210

$1—>0+ {E1

= fr, (t) vt > 0.
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Now note that for all 0 < z1 < l,

Al—a1,t) / Jo(l— a1t — s)fr, (s)ds

while at the same time, by the mean value theorem on fy, for all s € [0,¢], 3 &—s(z1) €
[1 —21,1] C [§,1] such that

fol—a,t—s)  fo(l,t—5)— fo(l —z1,t =)

X1 I
2 o (rmala) = 9)
o 0 (St—s(T1), s).
Note that for all 0 < 1 < %, by (ii) of Proposition 3.1 for fo,

%f (ff s Il Hafo

oo

><[0 T]

and we have

lim 2f (&i—s(x1),t —8) = %fo(l,t*S).

261‘)0“’ a

By the dominated convergence theorem,

t
i PU0) D g1t ) o) = [ e ), 01 = 0,
T —0t 0
and thus of
1
——(1 .
DL (1,0) = ()
The proof of Proposition 3.3 is complete. ]

Similarly, by (30), for all n > 1, we have

fu(z,0) =0 Vz € (c0,1),
(98) ¢
ol t) = /O For(@t — 8)fr(s)ds Va € (—00,0) U (0,1),¢> 0,

and
Fr (8) /h $)fry (s)ds

Hence, the iterative construction is feasible, and we can show the next proposition.

PROPOSITION 3.4. For each n > 1, let f,(x,t) be the density function of the
measure induced by F,, (-, t) defined in (19). For any fized T > 0, we have the following:
(1) fn is the classic solution of the following PDE:

Ofn 0 0?

(99) ﬁ——x( fn)— f =0, zé€(—00,0)U(0,1),¢t€]0,T],
(100)

fa(07,t) = fo (07,8), a%f" (07,t) — a%f" (0%,t) = fr,(t), te(0,T],
(101) fn(=00,t) =0, fu(1,t)=0, tel0,T],
(102) fo(z,0) =0, z€ (—00,1),
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with

(103) lim 8, f(x,t) =0, te[0,T).

T——00
(ii) There is a Cr that depends only on T such that

(104) |fr(z, )| < Cr Va € (—o00,0)U(0,1),t € [0,T],

(105) ‘aifn(x,t)‘ <Cr Vaxé€ (—00,0)U(0,1),t€[0,T],

and at the domain boundary

(106) 2f (0,1 <C 2f (ot <C 2f (17,1 <C
Oz n ) >~ LT, Oz n ’ >~ YT, Oz n ) >~ LbT.

(iii) Fort >0, fn is differentiable at x = 1, and

Afn
107 ——(1,t) = t).
(107) S (1,0) = fr,0 (1)
Proof. The proof of Proposition 3.4 follows from induction. By Proposition 3.3,
we have presented the inductive basis at n = 1. Now, assuming the inductive hypoth-

esis holds up to n > 1, to prove (i), by

t
fusr(,t) = / fult — ) fr, (3)ds.

one may immediately see that (99), (101), (102), and (103) hold. For (100), note
that f,(07,t) = f,(0",¢) for all t > 0 and that |f,(z,t)] < Ot for all x € (—oc0,0) U
(0,1),t < T. By the dominated convergence theorem, we have

lim |[frt1(x1,t) = frgr(—x2,1)]

1 *>O+ T2 ‘)0+

t
< lim /O|fn(:c17t—8)—fn(—$27f—8)|fT1(8)d8

T —0+ , T2 —0+

= 0.

So we have
fnt1(07,8) = faya(07,2).
Similarly,
6f’ﬂ+1 6fn+1
210+, 2,—0t 0T (1,1) ox (—22,1)
. Lof, Ofn
:$1—>0£1,r§:12—>0+ 0 ox (xl’t o S) - 67(_56271; - S)le (S)dS.

By the inductive hypothesis and the dominated convergence theorem, we have

0 0
%fn-l—l (O_at) - %fn-i-l (0+’t) = an,+1 (t)
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As for (ii), to check the additional regularity conditions, note that by the inductive
hypothesis,

0< fopi(t) = / fular,t — )y (8)ds < Cp.

For any y € (—o00,0) U (0,1) and ¢t < T,
Ofnt1 /t ofn
t) <
’ el )‘_ ;

- t —

5 Wt s)
Using arguments similar to Proposition 3.3, we have that %fn_l,_l (0-,1), 2 = frag1 (07, 1),
and % fne1 (17,¢) are individually bounded by Cp. Finally, for (iii), noting that
%(y,tﬂ <Crforallt<T,0<y<1, the proof of

le (S)dS S CT.

of,
~S(1,0) = fr®) VE>0
follows from the same treatment as in Proposition 3.3. ]

Now we can finish the proof of Theorem 1.

Proof of Theorem 1. Based on the previous analysis in Propositions 3.1-3.4, we
have shown that for n > 0, f, is the density function of the measure induced by
F,(-,t) defined in (19) as well as the solution to the sub-PDE problems (35) and (36).
Next, we consider the density function of the stochastic process X; as in (18) that
admits the series representation f(z,t) = Y% f,(z,t).

In order to prove that f(x,t) satisfies the properties in Theorem 1, we first show
that the relevant derivatives of f(x,t) also have the series representations, and the
series converge uniformly so that we can pass the regularity from f,(z,t) to f(z,t).
In addition, noting that f, is the solution to the sub-PDE problems (35) and (36),
we can show that f = ::B fn satisfies (9), which is the summation of sub-PDE
problems (35) and (36).

For any fixed T' > 0, we first show the uniform convergence of the relevant deriva-
tives of 3272 f,,(x, 1) on ((—o0, 0)U(0, 1]) x [0, T]. By (98), for all zy € (—o0, 0)U(0, 1],
we have for any 0 <t < T andn > 1,

(108)
0
‘8 fn(zo,t ‘ / fr, (s 'tlgfgl’ég] axf” 1(%%)‘ <"’Tt2}3§] xfn—1(9€0,t>‘,
where
T
(109) pr = / fru(s)ds = Po(Ty < T) € (0, 1)
0

is a constant that depends only on T'. The proof of (109) is quite standard in proba-
bility, and thus we defer the whole proof to the appendix. With (108), we have

(110)
+o00
0 0 0
< -
;tgf(?}%] &Efn o, 1 ’ ZPT%}S{% axfo(xovt)’ 1= pr ax, axfO(xO’ ],

which implies that to show the uniform convergence of such a series, it suffices to
check the regularities of fo(z,t). In fact, with (ii) of Proposition 3.1, we know that
for any g9 € (0,1), fo(z,t) € C*!(((—00, —eo] U [e0,1]) x [0,T]), and thus the last
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term in (110) has a uniform bound on any compact subset of (—oo,0) U (0, 1]; i.e., for
any compact subset I of (—oo,0) U (0, 1],

—+o0

max max
_Ote[O,T] z€l

0
== fn(Zo,1)| <
3xf (zo )' 1—pr tIer[l(i):/(“] rﬂrglg;(

0
axfo(l'mt)‘ < +00.

With the same treatment, we know that

(111) anxt Z fnact Z@ 9cfnact,andza2 (x,t)

n=0 n=0 n=0

are inner closed uniformly convergent on ((—o0,0) U (0,1]) x [0,77], and thus we can
exchange the derivative and the summation in (111). By (110), we have

+oo

max |0x f (z0,1)| < Z max

tel0,T te[o T)

aaxfn(afo,t)‘ < aaxf()(xo, )’ .

“1—-pr te[OT]

With the same treatment, we can get the same bounds for the series in (111), from
which we can analyze the regularities of f(x,t) by estimating fo(z,t).

To check (i), we show that N(t) = —2 f(17,¢) is well defined and N(t) has
a series representation in terms of the densities of jumping times. In fact, by uni-
form convergence, it is clear that Z::é % fn(17,t) uniformly converges on [0,7]. In
particular,

8f (17,%) Zai 17,1).
n=0

Then by (46) and (107), we also have
(112) N(t) = 1_ t) an

Note that fr,(t) € C[0,T], and thus N(t) € C[0,T]. Hence, (i) is completely proved.

With the uniform convergence of the series representations and the regularities of
fo(x,t) in Proposition 3.1, we can easily show (ii), (iii), (iv), and (v) of Theorem 1.
By (44) and (103), we have

lim 0, f(x,t) Z hm Op fr(z,t) = t € (0,77,

T——00

and thus (v) is valid. Similarly, the uniform convergence, together with the continuity
of fn, Orafn, and O¢f, on ((—oo0,0) U (0, 1)) x (0,T] implies (ii) and (iii). To check
(iv), we aim to show that f,(07,¢) and f,(0T,¢) are well defined for ¢t € (0,7]. With
a similar analysis, we can prove that for fixed 0 < ¢ < T, > da{: (z,t) uniformly
converge on [—1,0) and (0, 1], which, together with Lemma 3.1 and the existence of
one-sided limits given in (45) and (106), derives (iv) of Theorem 1.

Finally, to prove (vi), that is, density f satisfies PDE problem (9), we need
to show that the equation is satisfied and that all the conditions are met as well.
With uniform convergence, we can sum (74) from n = 0 to +oo, and thus for any
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(z,1) € ((=00,0) U (0,1)) x (0,77,

of 0 0%f
E—%(Jﬁf)—@

0 [ 0 (X o2
=% (Z fn(x,t)> ~ % <Z Zfn(z,t) ) <Z fnlz,t) >

n=0

—Z(af"—a oh) - 2h)

n=0
=0.

(113)

With the regularities of f proved above, all the initial and boundary conditions in (9)
are trivially satisfied, but we need to prove the jump condition on f, at x = 0. Given
any fixed ¢ > 0, for any € > 0, due to the uniform convergence, there is a constant
N < oo such that

(114) <e Vzée€ (—o0,0lU][0,1],

[eS) 9 3
> o

n=N+1

where at 0, 1 the derivatives are understood in the one-sided sense. Moreover, for the
now fixed N, by (100), there exists § > 0, such that for all y < 0 < x, |z|, |y| <6,

(115) O (4,1 - %’jw,w\ <
and
|0 Ofn
(116) > Bp &t = 5=y, 1) + an(t)‘ <e

Combining (114)—(116), we have

)~ Lyt +ZfT

=i(%ﬁ‘<x,t>— ) > )

n=0
d ) d n Ofn
<[ - Gown|+ S ( ! aj;(y,t)+an(t)>‘
oo a " oo " oo
+ > zTJ;(””’t) + Y a%(yﬂt) +1 > ()] < e,
n=N-+1 n=N+1 n=N-+1

and thus we conclude that for ¢ > 0,

0 _ 0 0 _
%f(o ’t) - %f(0+7t) = _%f(l 7t)'

Similarly, we can get, for t > 0,
JO07, 1) = f(0F,1).
Now that we have thoroughly checked (vi), the proof of Theorem 1 is complete. 0
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With the same steps as in the proof of Theorem 1, we can show Corollary 2.1.
Next, we only focus on proving Theorem 2. Due to the results for the process X; as
in (18) that, starting from y < 1, are largely parallel to the result starting from 0, we
only provide a sketch of the proof for those parts.

Now, note that v is a c.d.f. whose p.d.f. fin(z) € C.(—00,1), and that fi,(x) is
continuous and compactly supported in (—oo, 1 — g¢] for some gy > 0. Without loss
of generality, we assume fi,(x) is supported in [—Cy, 1 — ] for some Cy > 0. Thus
for the fixed T' > 0 we have the following:

(1) By conditional distribution, we have, for any = € (—o0, 1], t € (0,71,

17&‘0

et = [ Py

(2) Forallt € (0,7], x # 0 or 1, f¥(x,t) is continuous with respect to y.

(3) All the regularities and convergences in Corollary 2.1 are uniform with respect
toy € (—oo,1—¢g]. Actually, for all &1 > 0, tg > 0, and any = € (—oo0, —e1]U
[—e1,1), t € [to,T], y € (—00,1 — &g, we have

(1)) < C 10, 2 (, )| < OV

€0,€1,t0,1" £0,€1,t0,1"
2 3
|atfy(x’t)| < 05‘507)51 to, T |8mfy(:r,t)\ < 06(07)51 to, T

Moreover, for all ¢ € [tg,T], y € (—o0,1 — g, and = € [-1,0) U (0, 1),
|azfy(1'at)‘ < OEmto,T'
(4) Then we can take the derivative into the integral in (12), i.e., for £ =0, 1, 2,

ot = =002, L =2m+n,

1—eo
8£f”(z,t) = / azfy(x,t)y(dy), z € (—o0,1], t>0,

— 00

and thus,
NY(t) .= =0, f"(17,t) = / 0. (17, t)v(dy) = / NY(t)v(dy).

By the regularities and convergences for f¥(x,t) in Corollary 2.1, we get
properties (i), (i), (iii), (iv), and (v) for f¥(z,t).

(5) Finally, we check the L? convergence (13). We first turn the problem into
proving L' convergence by showing the uniform boundedness of f¥(z,t) when
t is sufficiently small. In fact, similar to the decomposition in (34), we have

(117) Z Y(x,t),

where f¥(z,t)dz = P(X}! € dz,n; = n) as in (19). With (22), we have

—(z—e”

t,,\2
(118) fg(.’t,t) < fgu(xat) = 27‘((11 6727&) exp{ 2(1 — 6_2:Z§ }
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By the same method as in Lemma 2.2, we get the iteration relationship for
any n > 1,

(119) Rlet) = [ frple=pa(os)as

Using (23), we know that for any ¢t > 0, fo(z,t) < fou(z,t) < % and with
an estimation similar to that in Proposition 3.2, we have for any k € N, all
sufficiently small ¢, and s < ¢,

fry(t—s) < Cyt",

where the constant Cj, is independent of all y < 1 —¢g. Thus
(120) 7Y t)<Otk/t L ds < b+
z, >~ Uk —F=as > CUg .
! 0 Vs

Repeat calculations in (120); with the iteration (119), one has for all suffi-
ciently small ¢,
file,t) < (C)",

and thus for all sufficiently small ¢,

= Ct
Yy
(121) > fila,t) < i = ¢

n=1

Combining (117), (118), and (121), we have

1—eo
1) < / 2 ) + C) fin(y)dy
1—eo

<t lfa)limomae | Falot)dy

— 00

Note that by (118), f_l;)ao Y (z,t)dy is uniformly bounded for any z and
sufficiently small ¢, and so is f¥. Note that both fi,(z) and f”(z,t) are
uniformly bounded for all sufficiently small ¢; thus to prove (13), it suffices
to prove

“+o0
(122) lim | (x,t) — fin(z)|dz = 0.

t—0t ) _ o

To get (122), for a suitable constant My whose value will be specified in the
following, we introduce the following decomposition:
(123)

400 — My 1
/_ ¥ (@, £)— fin(2) dz = ( / + / ) ) ¥ (@, )= fin (@) |dz = Py+Py.

First, to bound P;, we have the following lemma.

LEMMA 3.2. Consider the process X as in (18) that starts from y. For any
e > 0, there exist tg > 0 and My < oo such that for any t € [0,ty] and any

y € supp(fin) = [—Co,1 — &0},
(124) PY(X, < —Mp) < <.
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Proof. Note that according to the construction of the process X; as in (18)
that starts from gy, we have

(X, > Mo} > {V\V) > M} n {Ty > t},
which immediately implies
(125)  PY(X, < —Mp) < PY(Y,) < —My) + PY(Ty > t) == Q1 + Qo.

For Q5 when t < tg,

t t
PY(Ty < t) :/ ley(s)dsng/ shds.
0 0

So, letting k =1 and tg = Cil, we have for all t < tg
K 1
0

For @1, noting that Yt(l) is Gaussian, we can choose M, large enough to
control )1, and we complete the proof. 0

Remark 5. Without loss of generality, we choose the constant My in Lemma
3.2 larger than Cj.

Lemma 3.2 immediately implies that

1—eg
(127) F¥(~Mo,t) = P¥(X, < M) = / PG M ful)dy < <

For any ¢ > 0, 3ty > 0 and My < oo such that for all ¢ < ¢,

— M,
(128) Py :/ [z, t)dr =P (Xy < —My) < e.

To estimate P, in (123), we show the following.

LEMMA 3.3. For any e > 0, there is a t1 > 0 such that for any t € (0,t1] and
z € R,

f(z,t) < fin(z) + &

Proof. Note that when = > 1, f¥(z,t) = fin(z) = 0; thus we need only focus
on z € (—oo,1]. By (117), (118), and (121), we already have

—+00
(129) [ (1) < /_ o (2, 1) fin(y)dy + 1_072,5

and 1?& — 0 as t — 0%. Thus we need only bound fjooj Y (x,t) fin(y)dy.
To do this we will separate the cases z € [-Cp—1,1] and z € (—o0, —Cy—1).

(i) When z belongs to the compact set [—-Cy — 1,1], by (118) we have

1 (y — we')? }

Yy — ol S A vA—
(130) Joulat) = e 2m(1 — e=2t)e2t P { 2(1 — e~ 2t)e2t
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which is equal to the multiply of ¢! and the p.d.f. of the normal dis-
tribution N (ze!, (1 — e~2")e?). Note that fi,(y) is uniformly continu-
ous; thus for any € > 0, 30 > 0 such that for all |z1 — z3] < §, we
have |fin(21) — fin(22)] < &, and 3t2 > 0 such that for all ¢ < t5 and
re[-Co—1,1], |z —elz| < g. Moreover, for the fixed § above, 3t3 > 0
such that for all ¢ € (0, t3),

5 (3
PN ’
(131) (I 0,1)] = 5 ) = || finll £oe

(1 _ 672t)62t

where N(0,1) stands for the standard normal distribution. Thus for
t1 = t2 N3,

+oo
(132) / Y (1) fn (y)dy

— 00

wet+%
([ 4] ) )y = K + Ko
zet—3 R\[zet—$ zet+3]

For K1, we have by (130)

(133)

K < ma; ()€t < || finlloe (e=1)+ ma 3 < o (@)4e.
VS (et < Um0+ fuly) < o)

For K5, we have by (131)

€ t

(130) Ko < |fulli [ Pty < e =

R\[ze! — & et +4]

Combining (133) and (134), we see that the proof of case (i) is complete.

(ii) Note that fin(z) =0on z € (—o00,—Cy — 1) and f“(z,¢t) =0 on = > 1.
We need only prove that for all € > 0, 3¢; > 0 such that for all ¢ € (0, ¢4]
and any z < —Cp — 1,

+oo
(135) / Y (x,t) fin(y)dy < €.

—0o0

By (118) and noting that for any 2 < —Cy—1 and y € [—Cy, 1], we have
|z — e~ ty| > 1, and thus

+oo
/ Y (2, 1) fin(y)dy

— 00

1 1
< (Co+ 1)HfinHL°°m P (2(1—e—2t))

u u?
S(CO‘i’l)HfinHLoo\/T—ﬂ_eXp 5 )

where u := (1—e~2t)~2. Thus we know that fj;: Y (2,t) fin(y)dy — 0
ast — 0", and the proof of Lemma 3.3 is complete. O

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 03/29/22 to 152.3.43.52 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1308 J.-G. LIU, Z. WANG, Y. ZHANG, AND Z. ZHOU

With Lemma 3.3, now we conclude the proof of (13). For the fixed My in
Lemma 3.2, there exists ¢t > 0 such that for all ¢ € (0,¢3] and = € R,

€

f”(l‘,t) S fin(x) + MO + 1'

Noting that |a — b| < b — a + 2max{a — b,0}, we have

1
P, S/_M [fin(fﬁ) — fY(x,t) + Mfil} dx

(136) [ e /1 (@, t)da + 2¢

— My — My
< 3e.

Combining (128) and (136), we get (13). The proof of Theorem 2 is complete.

3.2. Weak solution. In this section, we show that the density of X;, which we
denote by f(z,t) and N(t) = 3.7 F7 (t), is the weak solution of PDE problem (9).
We adopt the definition of the weak solution of (9) as in [5]. The main theorem in
this section is as follows.

THEOREM 3. Let f¥(x,t) be the p.d.f. of the process X; as in (18) that starts

from p.d.f. fin(x) € Co(—00,1), and let N*(t) = 25 Fr (t). The pair (f,N)
is a weak solution of (9) in the following sense: for any test function ¢(x,t) €
C*® ((—00,1] x [0,T]) such that aw%x(f € L™ ((—o0,1] x [0,T]), we have

(137)

/ / <6t x2¢+ ;;M) I (x, t)dadt
= [ (¢(1,t) =0, )) N*(t)dt — | §(2,0) fin(@)dz + | o2, T)f"(x, T)dx
[ | [

The convergence of the series +°° 1 Fr ( ) relies on the proof of Theorem 2, by
which we already know that f”(z,1) is a solutlon to PDE problem (9). To prove that
(f¥,N") is also a weak solution of (9), one simply multiplies the equation by the test
function ¢ and carries out the integration by parts in space and in time, respectively.
Since the calculation is rather straightforward, we choose to omit the details in this
work, but we remark that the weak-strong uniqueness is still an open problem for such
a Fokker—Planck equation with a flux-shift structure, and we will continue research
along this line in the future.

4. Appendix. Now we shall show (109). In the following, we let X; as in (14)
denote an OU process starting from 0, and we define the stopping time 73 as the first
time that X; hits 1, i.e., T3 = inf{¢ > 0, X; = 1}. Now it suffices to prove that for all
fixed T € (0, +00),

(138) P(Ty > T) > 0.

In order to show (138), we show that the probability of an event being included in
{Ty > T} is positive. Actually, we construct a sequence of stopping times and use
the strong Markov property to decompose the process X; such that at each time
|X:| > 1, it escapes from —1. By showing that the product of the probability of an
event sequence is positive, we complete the proof. Now we show a useful lemma.
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LEMMA 4.1. For the OU process X; defined above, define a stopping time 1 =
inf{t > 0, | X;| = 1}; then

(139) { P(r < +00) = 1,
(140) P(ri> i, X;, =-1)=P(nn > £, X, =1)>0.

Proof. Line (139) follow from the fact that 77 < inf{n € N, |X,,| > 1}, the Markov
property, and the Gaussian transition distribution of X;. As for (140), by symmetry,
we need only prove

1
(141) P <n > 16) > 0.

By (14), X; = v2 [, e *~*)dB,, and thus
1
7 < —p=<max|X;| >1p C {max
16 <& <1
Now note that fot e’dB; is a martingale, and then
1 t
P (7’1 < ) < P | max \/i/ e_(t_s)st‘ >1
].6 tgﬁ 0

2 1 2
t 16
/ e’dB, < 8E / e’dBs | ,
0 0

where the last two inequalities follow from the Markov inequality and Doob’s inequal-
ity, respectively. Note that

i P 1 1
E (/ eSst> z/ e*ds = f(eé -1 <<,
0 0 2 8

and thus (141) is valid. o
With the above lemma, now we prove that (138) is equivalent to (109).

t
R TN
0

(142)

1
t<+s

< 2E (max

Proof of (109). We let Y; be an OU process starting at —1 and derive stopping
time 7{ = inf{¢t > 0,Y; = 0}. Then by the recurrence of the OU process,

(143) P(r] < +o00) = 1.
Next we define an increasing sequence of stopping times as follows:
St =0,
S; =inf{t >0, |X;| = 1},
S} = inf{t > S1, X; =0},
Sy = inf{t > S1,|X¢| = 1},
Sé = 1nf{t Z SQ,Xt = O},
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Combining (139), (143), and the strong Markov property of the OU process, we have
that S, S/, < +oo for all n. At the same time,

Sy — 8, 81— 51, So— 81, -

are independent of each other, while

d

/

STL - S’I’L*l - Tl,
/ d

S, —Sp =1].

Thus for the fixed T € (0, +00) above, let Ny = |T'| + 1, and then

1
{1y > T} > N {Si -S> T6’Xsi =-1,5 -85, < +oo} :

Using the strong Markov property, we have

P(T} > T) >P (ﬂ%fﬁ“’ {Si LS h X =185 < —I—oo})

B
16’

16N, 1
= H P<Tl > 77X71 :_1> >0,
it 16

which completes the proof of (109). 0
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