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Abstract. This paper deals with the convergence of the Doi-Navier-Stokes

model of liquid crystals to the Ericksen-Leslie model in the limit of the Debo-

rah number tending to zero. While the literature has investigated this problem
by means of the Hilbert expansion method, we develop the moment method,

i.e. a method that exploits conservation relations obeyed by the collision oper-

ator. These are non-classical conservation relations which are associated with
a new concept, that of Generalized Collision Invariant (GCI). In this paper,

we develop the GCI concept and relate it to geometrical and analytical struc-
tures of the collision operator. Then, the derivation of the limit model using

the GCI is performed in an arbitrary number of spatial dimensions and with

non-constant and non-uniform polymer density. This non-uniformity generates
new terms in the Ericksen-Leslie model.
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1. Introduction. We consider the Doi kinetic model of liquid crystals coupled
with the Navier-Stokes equation for the fluid solvent. We investigate the limit of
the Deborah number tending to zero by means of a moment method. The limit
model is a system of fluid equations named the Ericksen-Leslie model [25, 37, 59].
In classical kinetic theory, there are two methods to derive fluid equations, the
Hilbert expansion method [7, 11, 26, 34] and the moment method [5, 52]. However,
for a number of kinetic models including the Doi model, only the Hilbert method
can be used. Indeed, the moment method is subject to a condition on the number
of conservation relations satisfied by the collision operator and this condition is not
satisfied by the Doi model. This is why the Hilbert expansion method is the only
method developed in the literature so far (see e.g. [25, 37, 59]). In the present
work, we address the question whether the moment method can be used for the Doi
kinetic model.

The moment method relies on the requirement that the space of collision invari-
ants (the quantities conserved by the collisions operator) has the same dimensions
as the number of free parameters in the local equilibrium distribution function. This
requirement is not satisfied for the Doi model. The goal of this paper is to show
that the moment method can still be used for this model but necessitates a weaker
concept of collision invariant, that of “generalized collision invariant” or GCI. This
concept has first been introduced in [23] to derive the fluid dynamic limit of the
Vicsek model [55]. Since then, the GCI concept has been applied to a variety of
collective dynamics models [17, 18, 19, 21, 22, 30]. The present work is its first
application to visco-elastic fluid models.

Visco-elastic fluids have been the subject of an abundant literature (see e.g.
[2, 3, 16, 24, 32, 58] for reviews). The Doi model is one of the most fundamen-
tal models of visco-elastic fluids [24]. It models an assembly of polymer molecules
flowing in an incompressible fluid (the solvent). The polymer molecules are as-
sumed to be rigid spheroids mutually interacting through alignment and subject
to noise. They are represented by a distribution function of their position and
orientation. After Onsager and Maier-Saupe [50, 53], alignment accounts for the
volume exclusion interaction between the molecules. Alignment is of nematic type,
i.e. invariant if the head and tail of the molecules are flipped. Following Landau
and de Gennes [16], the interaction depends on the Q-tensor, a quadratic quantity
which respects this invariance. The fluid solvent is modelled by the incompressible
Navier-Stokes equations. Polymer molecules are transported by the fluid and ro-
tated by the fluid gradients. In turn, they influence the fluid through extra-stresses
depending on their distribution function. The mathematical theory of this model
has been investigated in [45, 54, 62] and for active particles, in [13].

The Doi model involves a dimensionless parameter, the Deborah number which
describes the alignment rate of the polymer molecules. When this parameter goes
to zero, the distribution of orientations tends to a profile which depends on two pa-
rameters, the polymer density ρ and the polymer molecules average orientation Ω
which are functions of space and time. In the case of a constant density ρ, it is shown
in [25, 37, 59] that the mean orientation satisfies a transport-diffusion equation. Its
coupling with the Navier-Stokes equations leads to the so-called Ericksen-Leslie sys-
tem [27, 38]. The convergence is formal in [25, 37] and rigorous in [59]. In all cases,
the method relies on the Hilbert expansion. There is an abundant mathematical
literature on the Ericksen-Leslie system per se [35, 42, 43, 44, 60].
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Here, our goal is to provide a formal convergence proof of the Doi model to the
Ericksen-Leslie model using the moment method. Specifically, we will derive the
appropriate GCI concept, discuss its rationale and relation to the Hilbert expansion
method. There are several motivations to develop a moment method even if a
Hilbert expansion theory already exists. The first one is that the GCI concept has
an underlying geometrical structure which is worth highlighting and may lead to new
structural properties of the Doi model. The second reason is that a mathematical
theory based on the moment method often requires less regularity than the Hilbert
expansion method (compare e.g. [4] with [7]). This potentially opens the way to
simpler convergence proofs from the Doi to the Ericksen-Leslie models. The third
reason is that the moment method naturally leads to the development of efficient
numerical methods [33, 39] which might enable us to handle the complexity of the
Doi kinetic model in a systematic way.

Aside to this main goal, we will pursue two secondary goals. The first one is
to provide a treatment of the small Deborah number limit in arbitrary dimension.
So far, this has only been done in dimension 3. This extension is made possible
by Wang and Hoffman [56] who have determined the spatially uniform equilibria
in any dimension. Although dimension three is the physically relevant case, there
are several reasons for considering an arbitrary dimension. The first one is that
the use of dimension 3 often conceals simple structures under dimension-specific
concepts and notations. Then, as argued in [12], the use of an arbitrary dimension
often reveals hidden and interesting mathematical properties. Finally, fluid-dynamic
equations are based on simple postulates that may be adapted to other objects such
as information flow in abstract spaces of large dimensions.

The second side goal is to investigate the effect of a spatially non-uniform den-
sity of polymer molecules. To the best of our knowledge, earlier work on the small
Deborah number limit [25, 37, 59] have assumed the density of polymer molecules
to be constant. Investigation of Ericksen-Leslie models with non-uniform order pa-
rameter has been made in the literature [8, 9, 27, 40, 41, 46], but none has explicitly
linked this non-uniform order parameter to the non-uniform polymer density (as is
should as we will see) and derived these models from kinetic theory. Non-uniform
polymer density results in modifications of the equations for the mean director Ω
and for the extra-stresses that will be highlighted in this work.

The organization of this paper is as follows: Section 2 gives an exposition of
the Doi-Navier-Stokes model and the small Deborah number scaling. Section 3 is
devoted to the statement of the main result, namely the formal convergence of the
Doi-Navier-Stokes model to the Ericksen-Leslie model in the zero Deborah number
limit. Section 4 describes the local equilibria. Section 5 develops the GCI concept
for the Doi model and discusses it. In Section 6, the limiting equations of the
Doi model when the Deborah number tends to zero are derived. Conclusions and
perspectives are drawn in Section 7. Auxiliary results stated in Sections 2, 3, 5 and
6 are proved in appendices A, B, C and D respectively.

2. Kinetic model for rod-like polymer suspensions and scaling.

2.1. The Doi equation. In this paper, we consider the Doi model [16, 24, 25,
37, 54, 57, 59], where polymer molecules are identified as spheroids. We consider
the semi-dilute regime [24, 25, 57] where a volume-exclusion interaction potential
needs to be incorporated. We neglect the inertia of the polymer molecules. Follow-
ing [25, 37, 57], we describe the polymer molecules by a kinetic distribution function
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f(x, ω, t) where x ∈ Rn is the position, ω ∈ Sn−1 is the molecule orientation and
t ≥ 0 is the time. We let Sn−1 be the unit (n− 1)-dimensional sphere and since ω
and −ω refer to the same molecular orientation, we impose

f(x, ω, t) = f(x,−ω, t). (1)

Let u(x, t) ∈ Rn be the fluid velocity. In general, the dimension n = 2 or 3 but the
theory will be developed for any value of n. The equation for f (the so-called Doi
equation) reads as follows:

∂tf +∇x · (uf) +∇ω ·
(
f (ΛPω⊥E −W )ω

)
= D∇ω · (∇ωf +

1

kBT
f ∇ωU

R
f ). (2)

Here, D denotes the rotational diffusivity, T , the fluid temperature and kB , the
Boltzmann constant. The tensors E and W are respectively the symmetric and
anti-symmetric parts of the velocity gradient, given by

E =
1

2
(∇xu+∇xu

T ), W =
1

2
(∇xu−∇xu

T ). (3)

The symbols∇x and∇x· refer to the spatial gradient and divergence operators while
∇ω, ∇ω· to the gradient and divergence operators on the sphere Sn−1 respectively.
The notation ∇xu refers to the gradient tensor of u defined by (∇xu)ij = ∂xiuj and
the exponent ‘T’ indicates the transpose. The dimensionless quantity Λ is related to
the aspect ratio (ratio between the semi-axes) of the spheroidal polymer molecules.
Finally, Pω⊥ = Id− ω ⊗ ω for ω ∈ Sn−1 denotes the projection operator of vectors
onto the normal hyperplane to ω. Throughout this paper, Id denotes the identity
matrix and if u = (ui)i=1,...,n and v = (vi)i=1,...,n are two vectors, u ⊗ v denotes
their tensor product, i.e. the n×n tensor (u⊗ v)ij = ui vj . For two n×n tensors S
and S′, SS′ stands for the matrix product of S and S′, hence the meaning of Pω⊥E.
The surface measure on the sphere will be normalized, meaning that

∫
Sn−1 dω = 1.

The quantity URf is the interaction potential stemming from volume exclusion

between the polymer molecules. In the Maier-Saupe theory [50], this interaction
potential reads

URf (x, ω, t) = kBTν

∫

Rn×Sn−1

1

Rn
K
( |x− x′|

R

) (
1−(ω ·ω′)2

)
f(x′, ω′, t) dω′ dx′, (4)

where ν is the potential strength. Following the formalism proposed by [25, 57],
a spatial non-locality is introduced by means of the kernel K: [0,∞) → [0,∞),
ξ 7→ K(ξ) which describes the influence of two neighboring molecules. Specifically,

two molecules separated by a distance ξ influence each other with strength 1
RnK( ξR ),

where R is the typical interaction range. The kernel K satisfies
∫
Rn K(|x|) dx = 1.

An equivalent expression of URf is

URf (x, ω, t) = kBTνρ
R
f

[
− (ω ·QRf ω) +

n− 1

n

]
, (5)

where ρRf and QRf are the locally averaged particle density and orientational de
Gennes Q-tensor given by

ρRf (x, t) =

∫

Rn×Sn−1

1

Rn
K
( |x− x′|

R

)
f(x′, ω, t) dω dx′, (6)

(ρRf Q
R
f )(x, t) =

∫

Rn×Sn−1

1

Rn
K
( |x− x′|

R

)(
ω ⊗ ω − 1

n
Id
)
f(x′, ω, t) dω dx′. (7)
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Note thatQRf is a trace-free symmetric matrix obtained by averaging ω⊗ω− 1
n Id over

the probability distribution ρRf (x, t)
−1R−nK(|x − x′|/R) f(x′, ω, t) dω dx′. Conse-

quently, thanks to the min-max theorem, its eigenvalues λ satisfy the inequality

− 1

n
≤ λ ≤ 1− 1

n
. (8)

The following fully local versions of the polymer density and orientational tensor:

ρf =

∫

Sn−1

f dω = lim
R→0

ρRf , (9)

ρfQf =

∫

Sn−1

(
ω ⊗ ω − 1

n
Id
)
f dω = lim

R→0
ρRf Q

R
f , (10)

will also be useful. From (5), it follows that

1

kBT
∇ωU

R
f (x, ω, t) = −2νρRf Pω⊥QRf ω,

so that an alternate formulation of the Doi equation (2) is given by

∂tf +∇x · (uf) +∇ω ·
(
f (ΛPω⊥E −W )ω

)

= D
(
∆ωf − 2ν ρRf ∇ω · (f Pω⊥QRf ω)

)
. (11)

We note that Eq. (11) preserves the symmetry constraint (1). The second and
third term at the left-hand side of (11) model passive transport of the polymer
molecules by the fluid: the second term corresponds to translation of the molecules
by the fluid velocity and the third term to their rotation by the gradient of the
fluid velocity. Here, we assume that the polymer molecules can be described by
spheroids, i.e. ellipsoids, in which n − 1 semi-axes b are equal. The aspect ratio p
is the ratio a/b where a is the remaining semi-axis. The quantity Λ is related to p

by Λ = p2−1
p2+1 . In particular, Λ ∈ [−1, 1] and Λ = 1 for infinitely thin rods, Λ = 0

for spheres, and Λ = −1 for infinitely flat disks. The rotation operator is derived
from Jeffery’s equation [36]. The first term at the right-hand side of (11) describes
Brownian effects due to rotational diffusion. We neglect translational diffusivity, as
it is usually much smaller than rotational diffusivity [16]. The second term at the
right-hand side of (11) takes into account the volume exclusion interaction between
the molecules and drives the distribution to that of a system of fully aligned polymer
molecules. To measure the degree of alignment of the molecules, one introduces

χf =
n

n− 1
λf with λf = the largest eigenvalue of Qf , (12)

where Qf is given by (10). This quantity can be seen as the order parameter for the
distribution f . We have χf ∈ (0, 1). If f is close to the uniform distribution on the
sphere, which corresponds to a fully disordered distribution of polymer orientations,
then χf is close to 0. By contrast, if f is close to 1

2 (δΩ+ δ−Ω) where Ω is any vector

on Sn−1, which corresponds to a fully aligned distribution of polymer orientations
in the direction ±Ω, then, χf is close to 1.

To ensure thermodynamic consistency, one introduces the polymer free energy
[25]:

AR(t) =

∫

Rn×Sn−1

[
kBT (f log f − f) +

1

2
URf f

]
dx dω.

From (4), it is easy to check that the quantity
∫
Rn×Sn−1 U

R
f g dx dω defined for

two functions f and g of (x, ω) is a symmetric bilinear form. Then the functional
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derivative µRf = δAR

δf , also referred to as the chemical potential, is given by

µRf = kBT log f + URf = kBT
(
log f − νρRf

[
(ω ·QRf ω)−

n− 1

n

])
. (13)

Thus,

∇ωµ
R
f = kBT

(∇ωf

f
− 2νρRf Pω⊥QRf ω

)
, (14)

so that (2) can also be written:

∂tf +∇x · (u f) +∇ω ·
(
f (ΛPω⊥E −W )ω

)
=

D

kBT
∇ω ·

(
f ∇ωµ

R
f

)
. (15)

The right-hand side of (15) can be viewed as describing the steepest descent in
the direction of the minimum of the polymer free energy. This is also known as
the maximal dissipation principle. Using Green’s formula, we have the following
identity (provided f vanishes fast enough at infinity), whose proof is sketched in
Appendix A.1:

dAR

dt
=

∫

Rn

σRf : ∇xu dx−
∫

Rn

FRf · u dx− D

kBT

∫

Rn×Sn−1

f |∇ωµ
R
f |2 dx dω, (16)

where σRf is the extra-stress tensor and FRf is a body force, given by :

σRf =

∫

Sn−1

(
Λ
(
ω⊗∇ωµ

R
f

)
s
+
(
ω⊗∇ωµ

R
f

)
a

)
f dω, FRf = −

∫

Sn−1

∇xµ
R
f f dω. (17)

Here, for two n× n tensors S = (Sij)ij=1,...,n and S′ = (S′
ij)ij=1,...,n, we denote by

S : S′ = Sij S
′
ij their contraction (with the repeated index summation convention)

while Ss and Sa are respectively the symmetric and antisymmetric parts of S namely
Ss =

1
2 (S+ST ), Sa = 1

2 (S−ST ). Contractions and tensor products will be defined
and noted similarly for tensors of higher order.

2.2. The Navier-Stokes equations. The Doi equation (2) (or equivalently, (11)
or (15)) is coupled to the Navier-Stokes equation for the fluid velocity, which is
written [24, 25, 57]:

ρF
(
∂tu+ u · ∇xu

)
+∇xp = ∇x · (σRf + τu + Tf,u) + FRf , (18)

∇x · u = 0. (19)

Here ρF is the fluid mass density. The extra-stress tensor σRf is given by (17) while τu
and Tf,u are contributions of the fluid and polymer molecules to the viscous stresses
respectively given by

τu = 2η E, Tf,u = ζ
kBT

D
ρf Tf : E,

with the fourth order orientational tensor Tf given by

ρfTf =

∫

Sn−1

ω⊗4 f dω. (20)

For a n × n tensor S, its divergence ∇x · S denotes the vector defined by (∇x ·
S)j = ∂xi

Sij (using the repeated index summation convention). As above, Tf : E
denotes the contraction of Tf and E with respect to two indices. Although Tf
is a fourth order tensor, it is symmetric, so which pair of its indices is concerned
by the contraction is indifferent. The quantity η is the fluid viscosity. Using the
divergence-free condition (19), we remark that ∇x · τu = η∆xu. The quantity ζ is
a dimensionless number. In [24], for the dilute polymer regime in dimension 3, it is
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shown that ζ = 1
2 . But this derivation requires the use of the Oseen tensor which has

dimensional dependence [12] and thus, the value of ζ changes with the dimension.
Moreover, even in dimension 3, in the semi-dilute regime considered here, the value
of ζ may be different from 1

2 [24, Section 9.5.1]. So, we shall consider ζ as a free
parameter of the model.

We have the following expression for the extra-stress:

σRf = nkBTΛρfQf +

∫

Sn−1

[Λ + 1

2
ω ⊗∇ωU

R
f +

Λ− 1

2
∇ωU

R
f ⊗ ω

]
f dω. (21)

However, although more complicated, the following expression, which is valid if f
is a solution of the Doi equation (2), will turn out to be more useful:

σRf =
kBT

D

Λ

2
ρf

[
Λ(EQf +QfE) +QfW −WQf +

2Λ

n
E − 2ΛTf : E

−DtQf
]
+

1

2

∫

Sn−1

(ω ⊗∇ωU
R
f −∇ωU

R
f ⊗ ω) f dω, (22)

where
Dt = ∂t + u · ∇x, (23)

is the material derivative. Eq. (21) results from the first equation of (17) after inser-
tion of (14). Eq. (22) is obtained by multiplying Doi’s equation (15) by ω⊗ω− 1

n Id
and integrating with respect to ω, followed by some algebra. These computations
have been done in [25, 37, 59] for n = 3 and are sketched in Appendix A.2 for any n.

The rationale for involving σRf and FRf in the coupling between the Navier-Stokes

equations (18) and the Doi equation (2) is thermodynamical consistency. Indeed, we
have the following total free energy dissipation identity (provided spatial boundary
terms vanish in the integrations by parts):

d

dt
ER +DR = 0, (24)

where ER is the total free energy (sum of the fluid and polymer free energies):

ER(t) =
∫

Rn

1

2
ρF |u|2 dx+AR,

and DR is the total free energy dissipation:

DR(t) =
D

kBT

∫

Rn×Sn−1

f
∣∣∇ωµ

R
f

∣∣2 dx dω+
∫

Rn

(
2η E : E+

kBTζ

D
ρfTf : (E⊗E)

)
dx,

where now, Tf : (E ⊗ E) indicates the contraction of the fourth order tensors Tf
and E ⊗ E with respect to all four indices. We have omitted the dependence of E
on u for simplicity.

2.3. Scaling. We now introduce a suitable scaling of this model. Let x0, t0 and ρ0
be space, time and polymer density units and let u0 = x0/t0, f0 = ρ0, σ0 = kBTρ0,
p0 = ρF u

2
0, F0 = σ0/x0, U0 = kBT be units for velocity, distribution function, stress

tensor, fluid pressure, elastic force and potential respectively. Then, we introduce
the following dimensionless quantities:

De =
1

Dt0
, Re =

u0x0ρF
η

, Er =
ηD

kBTρ0
, α = νρ0, R̄ =

R

x0
.

The dimensionless quantities De, Re and Er are the classical Deborah, Reynolds
and Ericksen numbers, which respectively encode the relaxation time of the polymer
molecular assembly to equilibrium, the ratio of inertial to viscous forces in the fluid
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and the ratio between the viscous and extra stresses. The parameters α and R̄ are
measures of the molecular interaction intensity and range respectively. The other
dimensionless parameters of the model are ζ and Λ. Introducing scaled variables
x′ = x/x0, t

′ = t/t0 and unknowns f(x, ω, t) dx dω = ρ0 f
′(x′, ω, t′) dx′ dω, u(x, t) =

u0 u
′(x′, t′), . . . , we can deduce the following dimensionless form of the Doi model

(dropping the primes for clarity):

∂tf +∇x · (uf) +∇ω ·
(
f (ΛPω⊥E −W )ω

)
=

1

De
∇ω ·

(
∇ωf + f ∇ωU

R̄
f

)
, (25)

with

U R̄f = αρR̄f
[
− (ω ·QR̄f ω) +

n− 1

n

]
,

and ρR̄f , Q
R̄
f given by (6), (7) with R replaced by R̄. The polymer free energy is

now given by

AR̄(t) =

∫

Rn×Sn−1

(f log f − f +
1

2
U R̄f f) dx dω

and the chemical potential µR̄f = δAR̄

δf by

µR̄f = log f + U R̄f = log f − α (ω · ρR̄f QR̄f ω) + α
n− 1

n
ρR̄f .

Thus, the expression at the right-hand side of (25) is equivalently written

∇ω ·
(
∇ωf + f ∇ωU

R̄
f

)
= ∇ω ·

(
f ∇ωµ

R̄
f

)
= ∆ωf − 2αρR̄f ∇ω(f Pω⊥QR̄f ω).

The scaled Navier-Stokes equation reads as follows

∂tu+ u · ∇xu+∇xp =
1

Re
∇x ·

(
τu +

1

Er
Tf,u

)
+

1

ReErDe

(
∇x · σR̄f + F R̄f

)
,

∇x · u = 0,

τu = 2E, Tf,u = ζ ρf Tf : E,

with σR̄f , F
R̄
f given by (17) with R replaced by R̄ and ρf , Tf given by (9), (20).

Expressions (21), (22) for the stress tensor are scaled into

σR̄f = nΛρfQf +

∫

Sn−1

[Λ + 1

2
ω ⊗∇ωU

R̄
f +

Λ− 1

2
∇ωU

R̄
f ⊗ ω

]
f dω.

= De
Λ

2
ρf

[
Λ(EQf +QfE) +QfW −WQf +

2Λ

n
E − 2ΛTf : E

−DtQf
]
+

1

2

∫

Sn−1

(ω ⊗∇ωU
R̄
f −∇ωU

R̄
f ⊗ ω) f dω, (26)

with Qf still given by (10). The free-energy dissipation identity is still written

as (24) with ER̄ and DR̄ now given by

ER̄ =
1

2

∫

Rn

|u|2 dx+
1

ReErDe
AR̄,

DR̄ =
1

Re

∫

Rn

|∇xu|2 dx+
1

ReEr
ζ

∫

Rn

ρfTf : (E ⊗ E) dx

+
1

ReErDe2

∫

Rn×Sn−1

f
∣∣∇ωµ

R̄
f

∣∣2 dx dω, (27)

where, for a n × n tensor S, |S| denotes the Frobenius norm of S, i.e. |S|2 =
Tr{STS}.
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The goal of this article is to investigate the limit of the Deborah number De
tending to zero through the use of the new “generalized collision invariant” concept.
In doing so, we will keep the parameters Re, Er and α of order unity. As for R̄,
following [25, 59], we make the scaling R̄ = O(

√
De). This scaling assumption is

analogous to the weakly non-local interaction scaling of the Vicsek model [20]. As
we may choose the time and space units independently, we assume:

De = ε, R̄ =
√
ε, ε→ 0,

and assume Re, Er and α independent of ε. A straightforward Taylor expansion
shows that

ρ
√
ε

f = ρf + ε β∆xρf +O(ε2), ρ
√
ε

f Q
√
ε

f = ρf Qf + ε β∆x(ρf Qf ) +O(ε2),

where

β =
1

2n

∫

Rn

K(|x|) |x|2 dx. (28)

Then, we can expand U
√
ε

f = U0
f + εU1

f +O(ε2), µ
√
ε

f = µ0
f + εµ1

f +O(ε2) with

U0
f = αρf

[
− (ω ·Qfω) +

n− 1

n

]
, µ0

f = log f + U0
f (29)

U1
f = µ1

f = β∆xU
0
f . (30)

Straightforward computations show that

∫

Sn−1

ω ⊗∇ωU
0
f f dω = −2αρ2f

[
Q2
f +

1

n
Qf − Tf : Qf

]
, (31)

so that the left-hand side of (31) is a symmetric tensor. We deduce that the integral

term in (26) is O(ε), so that σ
√
ε

f = O(ε). Additionally, similar computations as

for (31) lead to

∫

Sn−1

(ω ⊗∇ωU
1
f −∇ωU

1
f ⊗ ω) f dω = 2αβ ρf

[
∆x(ρfQf )Qf −Qf∆x(ρfQf )

]
.

So, we can write σR̄f = εσ1
f +O(ε2) with

σ1
f = ρf

Λ

2

[
Λ(EQf +QfE) +QfW −WQf +

2Λ

n
E − 2ΛTf : E

−DtQf
]
+ αβ ρf

[
∆x(ρfQf )Qf −Qf∆x(ρfQf )

]
. (32)

We also note that F
√
ε

f = −∇xφ
0
f + εF 1

f +O(ε2), with

φ0
f = ρf −

α

2
ρ2f

[
Qf : Qf −

n− 1

n
], F 1

f = −
∫

Sn−1

∇xµ
1
f f dω. (33)

We let p̃ε = pε + 1
ε

1
ReErφ

0
f . We will omit the tilde below for simplicity. Since the

O(ε2) terms in all these developments have no contribution to the limit model when
ε→ 0 (at the leading order), we will just ignore them.
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We finally get the following perturbation problem:

∂tf
ε +∇x · (uεfε) +∇ω · (fε (ΛPω⊥Eε −W ε)ω)

+2αβ∇ω · (fε Pω⊥∆x(ρfε Qfε)ω) =
1

ε

(
∆ωf

ε − 2αρfε∇ω · (fε Pω⊥Qfε ω)
)
,(34)

∂tu
ε + uε · ∇xu

ε +∇pε = 1

Re

{
∆xu

ε +

1

Er

[
ζ∇x ·

(
ρfεTfε : Eε

)
+∇x · σ1

fε + F 1
fε

]}
, (35)

∇x · uε = 0, (36)

where σ1
fε is given by (32) and F 1

fε by (33).

We define the transport operator Tu(f) (for a given time-dependent vector field
u: Rn × [0,∞) → Rn) and the collision operator C(f) by

Tu(f) = ∂tf +∇x · (u f) +∇ω · (f (ΛPω⊥E −W )ω)

+2αβ∇ω · (f Pω⊥∆x(ρf Qf )ω), (37)

C(f) = ∆ωf − 2αρf∇ω · (f Pω⊥Qf ω) = ∇ω ·
(
f ∇ωµ

0
f

)
(38)

= ∇ω ·
(
∇ωf + f∇ωU

0
f

)
, (39)

so that (34) is written

Tuε(fε) =
1

ε
C(fε). (40)

We note that µ0
f = δA0

δf is the functional derivative of the free energy A0 =

limε→0 A
√
ε given by

A0(t) =

∫

Rn×Sn−1

(f log f − f +
1

2
U0
f f) dx dω, (41)

and recall that U0
f and µ0

f are given by (29). We refer to [25] for the formulation of

the free energy dissipation identity for the whole model (34)-(36).

3. Main result.

3.1. Preliminaries. The purpose of this paper is to derive the limit of model (34)-
(36) when ε → 0. Before stating the result, we need a few preliminaries. We note
that C given by (38) operates on the variable ω only and leaves (x, t) as parameters.
This justifies the definition:

Definition 3.1. A function f : Sn−1 → R, ω 7→ f(ω) is called an equilibrium of C
if and only if it satisfies

C(f) = 0. (42)

Remark 1. We note that f is an equilibrium if and only if f is a critical point of
the free energy functional A0 given by (41) in the spatially homogeneous case (i.e.
when f is a function of ω only and integration with respect to x in the definition of
A0 is ignored) [1, 47, 48, 59]. Moreover, such equilibria will be called “stable” if they
correspond to local minimizers of this free energy (see [28] for n = 2, [1, 29, 47, 48]
for n = 3 and [31] for n = 4).

The equilibria will attract the dynamics as ε → 0 and their determination is of
key importance. For this purpose, we introduce the Gibbs distributions:
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Definition 3.2 (Gibbs distribution). Let S be a trace-free symmetric matrix.
Then, the Gibbs distribution GS associated with S is given by:

GS(ω) =
1

ZS
eω·Sω, ZS =

∫

Sn−1

eω·Sω dω. (43)

Next, we introduce the

Definition 3.3 (Normalized prolate uniaxial trace-free tensor). Let Ω ∈ Pn−1 :=
Sn−1/{±1}. Then, the normalized prolate uniaxial trace-free tensor in the direction
of Ω, AΩ, is defined by

AΩ = Ω⊗ Ω− 1

n
Id. (44)

AΩ is a traceless symmetric tensor with leading eigenvalue equal to n−1
n .

AΩ is called a uniaxial tensor because it has only two eigenvalues with one being
simple. The simple eigenvalue has associated normalized eigenvectors ±Ω. The
line spanned by Ω is called the axis of the uniaxial tensor. It is trace-free and
consequently, the two eigenvalues have opposite signs. It is called prolate because
the simple eigenvalue is positive (it would be called oblate in the converse case). It
is normalized meaning that its leading eigenvalue is exactly n−1

n . We note that AΩ

is invariant by the change Ω → −Ω showing that it actually depends on Ω seen as
an element of the projective space Pn−1 = Sn−1/{±1}.
Proposition 1 (Gibbs distributions of uniaxial tensors). The Gibbs distributions
Gη AΩ associated to tensors of the form η AΩ with η > 0 are given by

Gη AΩ(ω) =
1

Zη
eη (ω·Ω)2 , Zη =

∫

Sn−1

e η (ω·Ω)2 dω, (45)

where the normalization constant Zη does not depend on Ω but only on η.

Proof. Eq. (45) is obvious from (44). Defining θ ∈ (0, π) such that cos θ = (ω · Ω)
and changing ω to (θ, z) where z ∈ Sn−2 through ω = cos θΩ + sin θ z, with dω =
Cn sin

n−2 θ dθ dz (Cn being such that Cn
∫ π
0
sinn−2 θ dθ = 1 and

∫
Sn−2 dz = 1), we

get:

Zη = Cn

∫ π

0

eη cos2 θ sinn−2 θ dθ,

which does not depend on Ω.
For two functions g and φ: Sn−1 → R, with φ > 0 a.e., we define:

⟨g⟩φ =

∫
Sn−1 g(ω)φ(ω) dω∫

Sn−1 φ(ω) dω

We introduce the following

Definition 3.4 (Definition of S2 and S4). The quantities S2(η) and S4(η) are
defined by

S2(η) = ⟨P2(ω · Ω)⟩GηAΩ
, S4(η) = ⟨P4(ω · Ω)⟩GηAΩ

, (46)

where P2(X) and P2(X) are the polynomials

P2(X) =
1

n− 1
(nX2 − 1), (47)

P4(X) =
1

(n− 1)(n+ 1)

[
3− 6(n+ 2)X2 + (n+ 2)(n+ 4)X4

]
.
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For the same reason as in Proposition 1, S2 and S4 do not depend on Ω. In
dimension n = 3, the polynomials P2 and P4 are the Legendre polynomials of
degree 2 and 4 respectively. About S2, we have the following proposition, which
will be proved in Appendix B.1.

Proposition 2 (Properties of S2). (i) We have

QGη AΩ
= S2(η)AΩ. (48)

(ii) The order parameter (12) of the distribution ρGηAΩ
is χρGηAΩ

= S2(η).

(iii) S2 is a non-decreasing function from (0,∞) onto (0, 1), i.e. S2(0) = 0 and
S2 → 1 as η → ∞.

We note that, when η → 0, GηAΩ
converges to the uniform probability distri-

bution on Sn−1. Likewise, when η → ∞, GηAΩ concentrates on two Dirac deltas
1
2 (δΩ + δ−Ω) which characterizes fully aligned distributions of molecules in the di-
rection Ω. Therefore, S2 takes the value 0 on fully disordered distributions and
the value 1 on fully ordered ones. As η increases, GηAΩ shows increasing order
evidenced by the increase of the order parameter S2. Now, we have the following

Proposition 3 (Implicit definition of η(ρ)). The implicit equation

η

α ρ
= S2(η), (49)

has at least a root η if and only if ρ ∈ (ρ∗,+∞) where ρ∗ > 0. It has at most
two roots. By choosing the largest root (which is necessarily nonnegative), it defines
a smooth non-decreasing function (ρ∗,+∞) → (η∗,+∞), ρ 7→ η(ρ), where η∗ =
limρ→ρ∗ η(ρ) ≥ 0.

This proposition is a consequence of the result of Wang and Hoffman [56] which
will be recalled in Section 4. With this, we formulate the following conjecture, which
has been verified in dimension n = 2 [28], n = 3 [1, 29, 47, 48] and n = 4 [31].

Conjecture 1 (Stable anisotropic equilibria). The set E of stable anisotropic equi-
libria (in the sense of Remark 1) is given by

E = {ρGη(ρ)AΩ
| ρ ∈ (ρ∗,+∞), Ω ∈ Pn−1}.

We will only consider anisotropic equilibria, i.e. belonging to the set E above.
Stable isotropic equilibria (i.e. such that f = ρ is independent of ω) do exist but
will not be used here.

Remark 2. In the case n = 3, using the change of variables z = cos θ and an
integration by parts, Eq. (49) can be recast as

3eη∫ 1

0
eη z2 dz

= 3 + 2η +
4η2

αρ
.

Upon changing η into −η and making ρ = 1, we recover Eq. (1.9) of [48] and Eq.
(3.2) of [59] (up to a typo in the latter: a factor 4 is missing in front of the η2 term).

Now, we introduce the molecular interaction potential at equilibrium U0
ρGηAΩ

where U0
f is given by (29). Thanks to (48), (49), we have

αρQGηAΩ
= η(ρ)AΩ. (50)
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Thus, introducing θ ∈ [0, π] such that ω · Ω = cos θ, straightforward computations
give

U0
ρGηAΩ

= −η(ω ·AΩω) +
n− 1

n
αρ = −η

(
(ω · Ω)2 − 1

n

)
+
n− 1

n
αρ (51)

= −η
(
cos2 θ − 1

n

)
+
n− 1

n
αρ =: Ũ0(θ),

so defining the function Ũ0(θ). We note that

dŨ0

dθ
= 2η cos θ sin θ. (52)

For two functions φ and ψ defined on [0, π] with ψ > 0, a.e., we define

⟨⟨φ⟩⟩ψ =

∫ π
0
φ(θ)ψ(θ) sinn−2 θ dθ∫ π
0
ψ(θ) sinn−2 θ dθ

.

Thanks to these notations, we can state the

Definition 3.5 (Auxiliary function g). The function g: [0, π] → R, θ 7→ g(θ), is
the unique solution (in a sense made precise in Section 5) of the elliptic equation

1

sinn−2 θ

d

dθ

(
sinn−2 θ

dg

dθ

)
− dŨ0

dθ

dg

dθ
− (n− 2)

g

sin2 θ
= −dŨ0

dθ
. (53)

Note that, in the special case n = 3, (53) coincides with Eq. (5.31) of [37].
Thanks to g we have the following proposition, proved in Section 6.2:

Proposition 4 (Constant c). Assume Λ ̸= 0. Then, the constant c given by

c =
(n− 1)ΛS2(η)

〈〈
g
dŨ0

dθ

〉〉
exp(η cos2 θ)

, (54)

is such that c/Λ > 0.

In dimension n = 3, this formula coincides with formula (5.33) of [37]. We now
introduce the following definitions

Definition 3.6 (Definition of the Leslie constants αk, k = 1, . . . , 6). The Leslie
constants αk, k = 1, . . . , 6 are defined by

α1 = (ζ − Λ2)S4, α2 = −ΛS2

2

(1
c
+ 1

)
, α3 =

ΛS2

2

(1
c
− 1

)
, (55)

α4 =
2(ζ − Λ2)

(n+ 2)(n+ 4)
S4 −

2

n

(Λ2

2
+

2(ζ − Λ2)

n+ 4

)
S2 +

1

n

(
Λ2 +

2(ζ − Λ2)

n+ 2

)
, (56)

α5 = −2(ζ − Λ2)

n+ 4
S4 +

(Λ
2
+

Λ2

2
+

2(ζ − Λ2)

n+ 4

)
S2, (57)

α6 = −2(ζ − Λ2)

n+ 4
S4 +

(
− Λ

2
+

Λ2

2
+

2(ζ − Λ2)

n+ 4

)
S2, (58)

where S2 and S4 are given by (46) and their dependence on η has been omitted for
simplicity, and where c is given by (54). We note Parodi’s relation: α6−α5 = α2+α3.
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3.2. Main result: Statement and comments. Now, our aim is to prove the
following formal result:

Theorem 3.7 (Formal limit of model (34) - (36)). We assume n ≥ 2, Λ ̸= 0. For
n ≥ 5, we assume that Conjecture 1 is true (for 2 ≤ n ≤ 4, this conjecture is a
theorem [1, 28, 29, 31, 47, 48]). When ε → 0, we assume that (fε, uε) → (f, u) as
smoothly as needed, where f(x, ·, t) is a stable anisotropic local equilibrium for all
(x, t). Then, on the open set

B = {(x, t) ∈ Rn × [0,∞) | ρf (x, t) > ρ∗}, (59)

(where ρ∗ is defined at Proposition 3), we have

f(x, ω, t) = ρ(x, t)Gη(ρ(x,t))AΩ(x,t)
(ω), (60)

where the function (ρ∗,∞) ∋ ρ 7→ η(ρ) ∈ [0,∞) is defined by (49). The functions
(x, t) 7→ (ρ,Ω, u)(x, t) satisfy the following system of partial differential equations
(called the Ericksen-Leslie system):

∂tρ+∇x · (ρu) = 0, (61)

∂tΩ+ u · ∇xΩ+WΩ− c PΩ⊥
(
EΩ+

2β

Λ
∆x(ηΩ)

)
= 0, (62)

∂tu+ u · ∇xu+∇p = 1

Re
(∆xu+

1

Er
∇x · σ), (63)

∇x · u = 0, (64)

σ = σL + σE , (65)

σL = ρ
{
α1

(
E : (Ω⊗ Ω)

)
Ω⊗ Ω+ α2Ω⊗N + α3N ⊗ Ω

+α4E + α5(Ω⊗ Ω)E + α6E(Ω⊗ Ω)
}
, (66)

σE = −2β

α
∇x(ηΩ)∇x(ηΩ)

T

+
(n+ 1)β

nα
∇xη ⊗∇xη +

(n− 1)αβ

n
∇xρ⊗∇xρ, (67)

where W and E are given by (3), β by (28), c by (54), αk, k = 1, . . . , 6 by (55)-(58),
and N by

N = DtΩ+WΩ, (68)

with Dt given by (23).

Remark 3. Using (49), we have the following equivalent expression of σE :

σE = −2β

α
∇xΩ∇xΩ

T − (n− 1)β

nα

[
1− 1

S2
2

(
1− η

S′
2

S2

)2]∇xη ⊗∇xη,

where S′
2 denotes the derivative of S2 with respect to η. In particular, this formula

shows that the contribution of the density gradient to σE is a rank-1 tensor (which
is not obvious from (67); on the other hand, (67) has more symmetry between ∇xρ
and ∇xη).

Remark 4. In the case Λ = 0, the result is still valid, except that (62) must be
replaced by

∂tΩ+ u · ∇xΩ+WΩ− 2βc̃ PΩ⊥∆x(ηΩ) = 0,

where c̃ = (n− 1)S2(η)/⟨⟨g dŨ0

dθ ⟩⟩exp(η cos2 θ).

In the literature [37, 59], Eq. (62) is written differently. For this we need the



THE MOMENT METHOD FOR LIQUID CRYSTALS 431

Definition 3.8 (Molecular field and γ-constants). We define

γ1 =
ΛS2

c
= α3 − α2, γ2 = −ΛS2 = α6 − α5 = α2 + α3, (69)

H = 2βS2∆x(ηΩ).

The quantity H is called the molecular field.

Then, we have the following proposition, whose proof is immediate:

Proposition 5 (Equivalent form of Eq. (62)). Eq. (62) is equivalent to

PΩ⊥
(
H − γ1N − γ2EΩ

)
= 0. (70)

We compare System (61)-(67) with the literature. Ref. [37] considers a spatially
homogeneous model in dimension n = 3 with ζ = 0. Spatial homogeneity means
that ρ and Ω do not depend on x, and so H = 0, σE = 0 and N = ∂tΩ +WΩ
while E and W are constant. In this case, our model reduces to (70) (with H = 0)
and σ = σL with σL given by (66), which are the two equations obtained in [37],
provided the external magnetic field considered in [37] is set to 0. Finally, formulas
(55)-(58) for n = 3 and ζ = 0 are identical with Formula (6.2) of [37]. So, our model
is consistent with [37].

Then, Refs. [25, 59] consider a spatially non-homogeneous setting, but still with a
constant and uniform ρ (we easily see that ρ = Constant is consistent with both the
kinetic model (34) and the fluid one (61) due to the incompressibility conditions (36)
and (64)). Their setting is n = 3, ζ = 1

2 and Λ = 1. In this case, we see that formulas
(55)-(58) are identical with Formulas (2.6), (2.7) of [59]. If ρ = Constant, then, η =
Constant as well. So, the Ericksen stresses and molecular field reduce to

σE = −k∇xΩ∇xΩ
T , ρH = k∆xΩ, with k =

2β

α
η2, (71)

which are the corresponding expressions (see top of p. 7) of [59]. With these
expressions, our model reduces to (5) coupled with (63)-(66) and (71). It is identical
with the model obtained in [59].

So, our model is consistent with the literature but has two additional features:
the consideration of an arbitrary dimension n ≥ 2 and the spatial non-homogeneity
of ρ (and consequently, of η) which brings additional components to the elastic
stresses and, as we will see below, to the elastic energy. Non-uniform η has been
previously considered in [9, 8, 27, 40, 41, 46], but to the best of our knowledge, none
has explicitly linked it to the polymer density and to kinetic theory.

A well-posedness theory of System (61)-(67) is outside the scope of this paper
(see e.g. [35, 42, 43, 44, 60] for existence results of the Ericksen-Leslie system in
a variety of forms). Note however that a condition for the well-posedness of the

parabolic equation (62) is that βc
Λ > 0. This is indeed ensured by Prop. 4.

The main objective of this paper is to provide a (formal) derivation of Eqs.
(61), (62) using the moment method and the generalized collision invariant (GCI)
concept. Prior to this, in Section 4, we will return to the determination of the
stable equilibria of the Doi model and provide support to Conjecture 1 and to
Formula (49) linking ρ and η. Then, in Section 5, we develop the GCI concept and
discuss its rationale and how it can be linked to the Hilbert expansion procedure.
The derivation of (62) itself will be performed in Section 6. The second main
objective of the paper is to provide expressions for the Leslie and Ericksen stresses
in arbitrary dimension and for spatially inhomogeneous densities, which, to the
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best of our knowledge, has not been considered before. As these computations are
lengthy, they are deferred to Appendix B. Other auxiliary results can be found in
this appendix and in the subsequent ones, Appendices C and D.

3.3. Energetics of the Ericksen-Leslie system. Next, we define the following
energies:

Definition 3.9 (Oseen-Franck and Ericksen-Leslie energies). (i) The Oseen-Franck
energy is defined by:

EF =
2β

α

∫

Rn

|∇x(ηΩ)|2
2

dx− αβ
n− 1

n

∫

Rn

|∇xρ|2
2

dx− β
n+ 1

nα

∫

Rn

|∇xη|2
2

dx

=: EΩ
F + EρF + EηF . (72)

(ii) The Ericksen-Leslie energy is defined by

EEL =

∫

Rn

|u|2 dt+ 1

ReEr
EF .

Remark 5. (i) If ρ is uniformly constant (and hence, η too), EF reduces to

EF =
2βη2

α

∫

Rn

|∇xΩ|2
2

dx,

which is the classical Oseen-Franck elastic energy [25, 59]. The additional terms EρF
and EηF make up for the non-uniformity of ρ and η.
(ii) Using (49), we find an alternate expression of EF :

EF =
2β

α

∫

Rn

η2
|∇xΩ|2

2
dx+

(n− 1)β

nα

∫

Rn

(
1− 1

S2
2

(
1− η

S′
2

S2

)2) |∇xη|2
2

.

In particular, we see that this energy is positive if the following relation holds

1− 1

S2
2

(
1− η

S′
2

S2

)2 ≥ 0.

The investigation of this property is left to future work.

Now, we have the following proposition, which relates the molecular field to the
derivative of the Franck energy with respect to the orientation field Ω.

Proposition 6 (Relation between the Franck energy and the molecular field). We
have the following relation:

ρH = −δEF
δΩ

(η,Ω) =
2β

α
η∆x(ηΩ), (73)

where δEF

δΩ (η,Ω) is the functional derivative of EF with respect to the field Ω evaluated
at the pair (η,Ω).

Proof. For a n× n tensor S, we introduce the following energy density

eΩF (S) =
2β

α

|S|2
2
,

so that we can write

EΩ
F =

∫

Rn

eΩF
(
∇x(ηΩ)

)
dx.
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Now, straightforward computations show that the functional derivative δEF

δΩ is given
by

δEF
δΩ

(η,Ω) =
δEΩ
F

δΩ
(η,Ω) = −η∇x ·

(∂eΩF
∂S

(
∇x(ηΩ)

))
= −2β

α
η∆x(ηΩ) = −ρH,

where the first equality is due to the fact that the energies EρF and EηF do not depend
on Ω, and the last one, to (49). Then, Eq. (73) follows.

The following proposition gives the energy identity for the Ericksen-Leslie system.
Its proof is developed in Appendix B.4

Proposition 7 (Energy identity for the Ericksen-Leslie system). We have the fol-
lowing identity:

dEEL
dt

+DEL = 0, (74)

DEL =
1

Re

∫

Rn

|∇xu|2 dx+
1

ReEr

∫

Rn

ρ
{(
α1 +

γ22
γ1

)(
E : (Ω⊗ Ω)

)2
+ α4|E|2

+
(
α5 + α6 −

γ22
γ1

)
|EΩ|2 + 1

γ1
|PΩ⊥H|2

}
dx.

Remark 6. (i) The use of this energy identity to derive a priori bounds for the
solution of the Ericksen-Leslie equations is subject to two conditions: first, that the
Oseen-Franck energy is positive as already mentioned in Remark 5; second, that the
dissipation functional DEL is positive as well, which is not obvious given that the
coefficients are not all positive. In [59], it is shown that, in the case n = 3, ζ = 1

2
and Λ = 1, DEL is positive. Besides, conditions for the positive-definiteness of DEL
with coefficients which are not necessarily linked with a microscopic model can be
found in [60]. The inspection of the positivity of EF and DEL for the present model
is left to future work.

(ii) It is expected that this energy identity is the limit as ε→ 0 of the free-energy
dissipation identity (24) of the Doi-Navier-Stokes system. This is indeed formally
shown in [25]. However, due to the presence of the square of the Deborah number at
the denominator of (27), we expect that the limiting free-energy dissipation identity

will involve the first order correction f1 = limε→0
fε−f0

ε . Showing that the terms

involving f1 eventually vanish is not obvious and left to future work.

4. Local equilibria. In this section, we develop the rationale for Conjecture 1.
Since we aim at formal convergence results only, we suppose that the solution fε

to (40) satisfies

fε → f as ε→ 0 as smoothly as needed.

Then, from (40), it follows that f should satisfy (42), i.e. should be an equilibrium
for any (x, t). Eq. (42) leaves the dependence of f on (x, t) undetermined. Such an
equilibrium is called ‘local’ (by contrast to a global equilibrium where f should not
depend on (x, t)).

In this section, our goal is to determine the stable equilibria. Indeed, we antici-
pate that only stable equilibria can lead to a long time dynamics described by hy-
drodynamic equations. First, we should note that local equilibria are known in any
dimension n [56] (see also [15, 28, 49] for the case n = 2 and [1, 14, 29, 47, 48, 61, 63]
for the case n = 3). However, the stability of these equilibria is not known for gen-
eral dimension n but only for n = 2 [28], n = 3 [1, 29, 47, 48] and n = 4 [31].
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These results strongly support a conjecture about the stable equilibria in general
dimension n that we will make below and whose rigorous investigation is deferred to
future work. We first need to introduce a set of notations and intermediate results.

Definition 4.1 (Auxiliary operator). Let S be a trace-free symmetric matrix.
Then, the auxiliary operator LS is given by

LSf = ∇ω ·
[
GS∇ω

( f

GS

)]
. (75)

with GS given by (43).

The relation between the collision operator C(f) and the auxiliary operator LS
is given by the following lemma. Note that LS is NOT the linearization of C about
GS .

Lemma 4.2 (Relation between C and L). We have

C(f) = Lαρf Qf
f. (76)

Proof of Lemma 4.2. We can write

LSf = ∇ω ·
[
∇ωf − f∇ω

(
logGS

)]
.

But − logGS = −ω · Sω + logZS . So, − logGαρfQf
= U0

f + Z̃(f) where Z̃(f) does

not depend on ω. Thus, −∇ω(logGαρfQf
) = ∇ωU

0
f and so, LαρfQf

= C(f), thanks

to (39).
Now, we have a first result:

Lemma 4.3 (First step towards a characterization of the equilibria). (i) Let f ≥ 0,
f ̸= 0 be an equilibrium. Then, there exists ρ > 0 and a trace-free symmetric
matrix Q such that

f = ρGαρQ. (77)

(ii) Reciprocally, let f be given by (77). Then, f is an equilibrium if and only if Q
satisfies the fixed-point equation also known as the compatibility equation:

Q = QρGαρQ
, (78)

where we recall that for a distribution f , Qf is given by (10).

Proof. (i) Suppose C(f) = 0. Letting S = αρf Qf , (76) implies LSf = 0. Multi-
plying (75) by f/GS , integrating over Sn−1 and using Green’s formula leads to

∫

Sn−1

GS

∣∣∣∇ω

( f

GS

)∣∣∣
2

dω = 0.

Since the quantity inside the integral is nonnegative, and GS > 0, this implies
∇ω(

f
GS

) = 0. So, there exists ρ > 0 such that f = ρGS which leads to (77).

(ii) Let f be given by (77). Then, since GαρQ is a probability density, we have
ρf = ρ. Now, from the proof of Part (i), if f is an equilibrium, then f = ρfGαρf Qf

.
We deduce that GαρQf

= GαρQ, and, by taking the logarithm, that

ω · (Qf −Q)ω =
1

αρ

(
logZαρQf

− logZαρQ
)
=: µ,

where µ is a constant, independent of ω. So, Qf−Q−µ Id is the matrix of a quadratic
form which is zero on Sn−1 and so, by homogeneity, on Rn. Thus, Qf−Q−µ Id = 0
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and, owing to the fact that Qf and Q are trace-free, we have µ = 0. It follows that
Qf = Q. Replacing f by its expression (77), we get (78).

To complete the characterization of the equilibria, we need to solve the compat-
ibility equation (78). As pointed out above, this has been done in any dimension
n in [56] (see also [49] for n = 2 and [1, 29, 47, 48, 63] for n = 3). This result is
summarized without proof in the following lemma

Lemma 4.4 (Final characterization of the equilibria [56]). Let f be an an equilib-
rium. Then Qf has at most two distinct eigenvalues.

• If all eigenvalues of Qf are identical, then Qf = 0 and f = ρ is a uniform
equilibrium.

• If Qf has exactly two distinct eigenvalues, denote by λf its largest eigenvalue
and by Yf the associated eigenspace, supposed of dimension d such that 1 ≤
d ≤ n− 1. Then, 0 < λf <

1
d − 1

n and Qf is written

Qf = Bλf ,Yf
:= λf

(
PYf

− d

n− d
PY⊥

f

)
, (79)

where PYf
and PY⊥

f
are the orthogonal projections of Rn onto Yf and Y⊥

f

respectively. Then, f is of the form

f = ρnd (λf )Gαρnd (λf )Bλf ,Yf
,

where ρnd : [0, 1d − 1
n ) → [0,∞), λ 7→ ρnd (λ) is a specific function (not detailed

here except for the case d = 1, see below). Furthermore, λf is a root of the
equation

ρnd (λ) = ρ. (80)

The existence and number of classes of equilibria such that ρf = ρ are deter-
mined by the existence and number of roots λ of Eq. (80). A given root λ
gives rise to a family of equilibria parametrized by the Grassmann manifold
Gr(k, n) of d-dimensional vector subspaces Y of Rn.

Here, we are only interested in the case d = 1 as we will conjecture that this is the
only case which includes stable equilibria (see conjecture 2 below). For simplicity,
ρn stands for the function ρn1 . In the case n = 2, ρ2 is monotonously increasing and
maps [0, 12 ) onto the interval [ρ∗,+∞) with ρ∗ = ρ2(0) (see Fig. 1a). In the case

n ≥ 3, ρn is decreasing in the interval [0, λ∗] and increasing in [λ∗, 1 − 1
n ). Thus

ρ∗ = ρ(λ∗) is a global minimum of ρn (see Fig. 1b). In all cases, the equation
ρn(λ) = ρ has a solution if and only if ρ ≥ ρ∗ and this solution is unique in the case
n = 2 while, in the case n ≥ 3, there are two solutions if ρ ∈ (ρ∗, ρn(0)], and one
solution if ρ ∈ {ρ∗} ∪ (ρn(0),∞) (see [56] for details).

As already stated, for general n, the stability of the equilibria described in
Lemma 4.4 is not known yet. However, their stability is known for n = 2 [28],
n = 3 [1, 29, 47, 48] and n = 4 [31]. Based on these results, we formulate the follow-
ing conjecture for any dimension n ≥ 2 and refer to the above-mentioned references
for details on the notion of stability involved.

Conjecture 2 (Stable anisotropic equilibria). For any dimension n ≥ 2, the branch
of solutions to the equation ρn(λ) = ρ (which corresponds to d = 1) with largest λ,
which is defined for ρ ∈ (ρ∗,∞), corresponds to the unique class of stable anisotropic
equilibria.
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1
2

0

λ

ρ∗

ρ2

1

(a) n = 2

ρn(0)

λ∗

ρ∗

ρn

1− 1
n

λ

0

1

(b) n ≥ 3

Figure 1. Graphical representation of the function λ 7→ ρn(λ)
(after [56]). (a) case n = 2. (b) case n ≥ 3. The portions of the
curves that correspond to stable equilibria are in blue, the unstable
ones, in green.

We denote by the function λ: (ρ∗,+∞) → (λ∗, 1 − 1
n ), ρ 7→ λ(ρ), the largest

solution to ρn(λ) = ρ. With Conjecture 2, the stable equilibria f correspond to the
class of equilibria described in Lemma 4.4, Case 2, with d = 1 and λf = λ(ρ). In
this case, Yf is one-dimensional and thus, spanned by a unique normalized vector
(up to a sign) Ω ∈ Pn−1. Hence, we have PYf

= Ω ⊗ Ω and PY⊥
f

= PΩ⊥ . Then

by (79),

Qf =
n

n− 1
λ(ρ)AΩ, (81)

where AΩ is the normalized uniaxial tensor given by (44). Defining

η(ρ) =
n

n− 1
αρλ(ρ), (82)

from (78) we get that the equilibria are of the form f = ρGη(ρ)AΩ
where ρ is arbitrary

as long as λ(ρ) is defined, i.e. ρ ∈ (ρ∗,∞), and where Ω is arbitrary in Pn−1. Hence,
Conjecture 1 is a direct consequence of Conjecture 2, provided we show that the
function ρ 7→ η(ρ) is the one given by Proposition 3, which we do now:

Proof of Proposition 3. Equating (81) with (48) and using (82), we get (49). The
root with the largest η must be chosen because this corresponds to the choice of
largest λ in Conjecture 2 (as λ is proportional to η by (82)).

From (40) and Conjecture 2, we deduce the:

Corollary 1 (Local equilibria). Let f be the formal limit of fε as ε→ 0 and suppose
that uε → u smoothly. On the open set B defined by (59), f is given by (60) where
ρ = ρf : (x, t) ∈ Rn × [0,∞) 7→ [ρ∗,∞) and Ω: (x, t) ∈ Rn × [0,∞) 7→ Pn−1 are
functions such that f satisfies

Tu(f) = lim
ε→0

C(fε)

ε
. (83)
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Note that ρ = ρf is the local density associated to f , while Ω(x, t) if the axis of
the uniaxial Q-tensor Qf thanks to (48). The restriction to the set B is needed to
ensure that η(ρ(x, t)) is well-defined. The determination of the functions (ρ,Ω) such
that (83) holds is quite challenging, due to the presence of ε in the denominator at
the right-hand side. It will require the Generalized Collision Invariant concept as
detailed below.

5. Generalized collision invariants.

5.1. Collision invariant. We first recall the notion of Collision Invariant (CI).
The goal is to eliminate the singular right hand side of (83) by using integration
against appropriate test functions. More precisely we have:

Definition 5.1. A Collision Invariant (CI) ψ(ω) is a function such that
∫

Sn−1

C(f)ψ dω = 0, ∀f.

Here, we do not specify any regularity requirement on ψ since our goal is to
develop a formal theory only. If ψ is a CI, using it as a test function for (40), we
have, after integration with respect to ω and omitting ε as the identity is valid for
any ε:

∂t

(∫

Sn−1

fψ dω
)
+∇x ·

(
u

∫

Sn−1

fψ dω
)
−
∫

Sn−1

∇ωψ · (ΛPω⊥E −W )ω f dω

−2αβ

∫

Sn−1

∇ωψ · Pω⊥∆x(ρf Qf )ω f dω = 0, (84)

which is an evolution equation for the moment
∫
Sn−1 fψ dω. Since this equation

does not depend on ε, it is still verified by the solution of (83). We have an obvious
CI, namely, ψ = 1, which leads to the mass conservation (or continuity) equation

∂tρf +∇x · (ρfu) = 0. (85)

In particular, taking the limit ε → 0, it shows (61). As u is divergence free thanks
to (36), (85) can be equivalently written

Dtρf = 0, (86)

with Dt given by (23).
Any odd function ψ of ω is also a CI. However, it is not invariant when ω is

changed into −ω, a condition that has been enforced throughout this work (see e.g.
(1)). Indeed, Eq. (84) with odd functions ψ have all their terms identically zero
and do not provide any useful information. We do not have any other obvious CI.
Therefore, we are lacking an equation for Ω. In order to overcome this problem, we
use the concept of “Generalized Collision Invariant (GCI)” introduced in [23] and
adapted to the present context.

5.2. Generalized collision invariant: Definition and characterization. To
introduce the GCI concept, we first need some additional notations and definitions.

Definition 5.2 (and notations). (i) S0
n is the vector space of symmetric trace free

n× n matrices.
(ii) U0

n is the subset of S0
n consisting of tensors whose leading eigenvalue is equal to
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n−1
n and is simple.

(iii) We denote by λf the leading eigenvalue of Qf and by ηf the following quantity:

ηf = αρf
n

n− 1
λf . (87)

From (8), we have

0 ≤ n

n− 1
λf ≤ 1.

Note that in general, λf may not be simple.
(iv) If Qf ̸= 0, then λf ̸= 0 and we define the “Normalized Q-Tensor (NQT) of f”,
Σf by

Σf =
n− 1

n

Qf
λf

. (88)

Σf ∈ S0
n. Its leading eigenvalue is n−1

n which, again, may not be simple.

(vi) Let Σ ∈ U0
n. We denote by ΩΣ ∈ Pn−1 the normalized eigenvector (up to a

sign) associated with the simple eigenvalue n−1
n of Σ. Note that the tensor AΩΣ is

uniquely defined, irrespective of the choice of the sign of ΩΣ.
(v) Suppose Σf ∈ U0

n. Then, ΩΣf
is simply denoted by Ωf .

Remark 7. From (48), we get that ΣρGηAΩ
= AΩ meaning that the NQT’s of the

stable anisotropic equilibria are all equal to AΩ.

We recall that the auxiliary operator LS for S ∈ S0
n is defined by (75). The GCI

are now defined in the following

Definition 5.3. Let (η,Σ) ∈ (0,∞) × U0
n. A Generalized Collisional Invariant

(GCI) associated to the pair (η,Σ) is a function ψ such that
∫

Sn−1

(LηΣf)ψ dω = 0 for all f such that PΩ⊥
Σ
(QfΩΣ) = 0. (89)

The set of GCI associated to a given pair (η,Σ) ∈ (0,∞) × U0
n is a linear vector

space and is denoted by CηΣ.
There is a rationale for this definition, which is developed in Section 5.3 below.
The following lemma gives the equation satisfied by the GCI:

Lemma 5.4. Let (η,Σ) ∈ (0,∞) × U0
n. Then ψ ∈ CηΣ if and only if there exists

V ∈ {ΩΣ}⊥ such that

∇ω ·
(
GηΣ(ω)∇ωψ

)
= (ω · ΩΣ) (ω · V )GηΣ(ω), ∀ω ∈ Sn−1. (90)

Proof. For Ω ∈ Sn−1/{±1}, we define the following space of functions:

XΩ = {Sn−1 ∋ ω 7→ (Ω · ω) (V · ω) ∈ R | V ∈ {Ω}⊥}, (91)

The space XΩ is a finite-dimensional subspace of L2(Sn−1). We first note that for
any f ∈ L2(Sn−1), we have

PΩ⊥(QfΩ) = 0 ⇐⇒
∫

Sn−1

f(ω) (ω · V ) (ω · Ω) dω = 0, ∀V ∈ {Ω}⊥

⇐⇒ f ∈ X⊥
Ω , (92)

where the orthogonality is meant with respect to the standard L2-product on
L2(Sn−1).

On the other hand, we note that
∫
Sn−1(LηΣf)ψ dω = 0 is equivalent to saying

that f ∈ {L∗
ηΣψ}⊥ where again, the orthogonality is meant with respect to the
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standard L2-product on L2(Sn−1) and where L∗
ηΣ is the formal L2-adjoint of LηΣ,

i.e.

L∗
ηΣψ =

1

GηΣ
∇ω · (GηΣ ∇ωψ).

Therefore, thanks to (92), Condition (89) is equivalent to saying that

f ∈ X⊥
ΩΣ

=⇒ f ∈ {L∗
ηΣψ}⊥,

or in other words, that X⊥
ΩΣ

⊂ {L∗
ηΣψ}⊥. Taking the orthogonal to this relation and

noting that both XΩΣ
and Span{L∗

ηΣψ} (where for a subset B of a vector space,

Span B denotes the subspace generated by B) are finite-dimensional, hence, closed
subspaces of L2(Sn−1), we get Span{L∗

ηΣψ} ⊂ XΩΣ
. In particular, this implies

that there exists V ∈ {ΩΣ}⊥ such that L∗
ηΣψ(ω) = (ω · ΩΣ) (ω · V ), which, upon

multiplying by GηΣ, gives (90). The converse is straightforward.
Now, we give an existence theory for the solutions of (90). We denote by

H1(Sn−1) the space of square integrable functions of Sn−1 into R whose deriva-
tives are square integrable and introduce

Ḣ1(Sn−1) =
{
u ∈ H1(Sn−1)

∣∣∣
∫

Sn−1

u(ω) dω = 0
}
.

Then we have the

Proposition 8. Let (η,Σ) ∈ (0,∞) × U0
n and V ∈ {ΩΣ}⊥. Then, there exists a

unique solution of (90) in Ḣ1(Sn−1) denoted by ψηΣ,V . The linear vector space CηΣ
of GCI associated with (η,Σ) is given by

CηΣ =
{
C0 + ψηΣ,V | C0 ∈ R, V ∈ {ΩΣ}⊥

}
. (93)

Proof. We look for solutions of (90) in variational form. The variational formulation
reads as follows: find ψ ∈ H1(Sn−1) such that
∫

Sn−1

GηΣ ∇ωψ ·∇ωθ dω = −
∫

Sn−1

GηΣ (ω ·ΩΣ) (ω ·V ) θ dω, ∀θ ∈ H1(Sn−1). (94)

By Poincaré inequality and the fact that GηΣ is smooth and bounded from above
and below, the bilinear form

∫
GηΣ ∇ωψ · ∇ωθ dω is continuous and coercive on

Ḣ1(Sn−1). Therefore, by Lax-Milgram theorem, the variational formulation (94)

has a unique solution in Ḣ1(Sn−1) denoted by ψηΣ,V when θ is restricted to belong

to Ḣ1(Sn−1). To show that this is a solution for all θ ∈ H1(Sn−1), it is enough to
show that it satisfies (94) for θ = 1, i.e. that the following holds:

∫

Sn−1

GηΣ (ω · ΩΣ) (ω · V ) dω = 0, ∀V ∈ {ΩΣ}⊥. (95)

Let (e1, . . . , en) with en = ΩΣ be an ortho-normal basis of Rn consisting of
eigenvectors of Σ. Let λ1, . . . , λn be the associated eigenvalues. Let ω =

∑n
k=1 ωk ek

be the decomposition of ω in this basis. It is enough to show (95) for V = ej with
j ∈ {1, . . . , n− 1}. Then, we have

∫

Sn−1

GηΣ (ω · ΩΣ) (ω · ej) dω =
1

ZηΣ

∫

Sn−1

eη(λ1ω
2
1+...λnω

2
n) ωj ωn dω = 0,

thanks to the change of ωn into −ωn. This shows (95) and so, the existence and

uniqueness of a solution of (90) in Ḣ1(Sn−1) is proved.
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Now, all solutions in H1(Sn−1) of (94) are of the form ψηΣ,V + C0 where C0

is any constant. Collecting all the solutions for all the possible V ∈ {ΩΣ}⊥ leads
to (93) and ends the proof.

Remark 8. We note that if ΩΣ is changed into −ΩΣ, ψηΣ,V must be changed into
ψηΣ,−V . It follows that (93) remains unchanged.

We now define a vector-valued GCI ψ⃗ηΣ in the following way

Definition 5.5. Given (η,Σ) ∈ (0,∞)×U0
n, we introduce the function ψ⃗ηΣ: Sn−1 →

Rn, defined as the unique solution (in Ḣ1(Sn−1)) of the following vector-valued
equation:

∇ω ·
(
GηΣ(ω)∇ωψ⃗ηΣ

)
= (ω · ΩΣ)PΩ⊥

Σ
ω GηΣ(ω), ∀ω ∈ Sn−1.

We note that

ψηΣ,V = ψ⃗ηΣ · V, ∀V ∈ {ΩΣ}⊥ and ψ⃗ηΣ · ΩΣ = 0,

and that ψ⃗ηΣ is changed into −ψ⃗ηΣ if ΩΣ is changed into −ΩΣ.

We can provide an explicit expression of ψ⃗ηAΩ
, for all (η,Ω) ∈ (0,∞)× Sn−1 as

the next proposition shows. Let us first define the following space:

H =
{
h : (−1, 1) → R

∣∣∣
∫ 1

−1

(1− r2)
n−1
2 |h(r)|2 dr <∞,

∫ 1

−1

(1− r2)
n+1
2 |h′(r)|2 dr <∞

}
,

where h′ denotes the derivative of h.

Proposition 9. Let (η,Ω) ∈ (0,∞)× Sn−1 be given. We have

ψ⃗ηAΩ
(ω) = hη(ω · Ω)ω⊥, (96)

where ω⊥ = PΩ⊥ω and hη is the unique solution in H of the following equation:

−(1− r2)
n−1
2 eηr

2 (
2η r2 + n− 1

)
hη

+
d

dr

[
(1− r2)

n+1
2 eηr

2 dh

dr

]
= r (1− r2)

n−1
2 eηr

2

. (97)

Furthermore, hη is odd and hη(r) ≤ 0 for r ≥ 0.

Proof. We apply [21], Proposition 4.2 (ii) (with the following changes: u → Ω,
κ
2 → η, d→ n, Γ̄∗(ψ, u) → L∗

ηAΩ
ψ). Note that these techniques were first developed

in [19, 30].

Remark 9. Formula (96) shows that the vector GCI ψ⃗ηAΩ
is invariant under ro-

tations leaving Ω fixed. This is a consequence of the fact that AΩ is uniaxial with

axis Ω. No simple formula like (96) is available for more general vector GCI ψ⃗ηΣ,
when Σ ∈ U0

n is not uniaxial. However, while we will need vector GCI for general
Σ ∈ U0

n, we will only need an explicit expression of them in the case of a uniaxial
tensor Σ = AΩ. So, Prop. 9 is enough for our purpose.

The following proposition provides an alternate equation satisfied by hη in terms
of the function g defined in (53). Its proof is easy and is sketched in Appendix C.1
for the reader’s convenience.
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Proposition 10 (Alternate equation for hη). For θ ∈ [0, π], we define the function

g(θ) = −2η hη(cos θ) sin θ. (98)

Then g satisfies the equation (53).

Finally, the following proposition will have important consequences for the deriva-
tion of the macroscopic model:

Proposition 11. Let f : Sn−1 → R be twice continuously differentiable such that

Qf ̸= 0 and Σf ∈ U0
n. Then, the vector GCI ψ⃗ηfΣf

is well-defined and we have
∫

Sn−1

C(f) ψ⃗ηfΣf
dω = 0. (99)

Remark 10. Proposition 11 expresses an important structural property of C. Let

(η,Σ) ∈ (0,∞) × U0
n. The GCI ψ⃗ηΣ cancels the collision operator acting on all

functions f which satisfy (ηf ,Σf ) = (η,Σ).

Proof. We show that PΩ⊥
f
(QfΩf ) = 0. Indeed, if this is the case, from (89), we get
∫

Sn−1

LηfΣf
f ψ⃗ηfΣf

dω = 0,

and using (76), (87) and (88), this shows (99). But, by definition, Ωf is the leading
eigenvector of Qf with eigenvalue λf . So, QfΩf = λf Ωf and thus PΩ⊥

f
(QfΩf ) = 0,

which ends the proof.
Thanks to the GCI, we can now find how (83) translates into an equation for the

Q-tensor principal direction Ω. This will be done below but first we provide some
discussion of the GCI concept.

5.3. Discussion of the GCI concept.

5.3.1. Rationale for Definition 89. First, let us note that the condition PΩ⊥
Σ
(QfΩΣ)

= 0 involved in Definition 5.3 simply means that ΩΣ is an eigenvector of Qf . We now
try to provide a geometric interpretation of Condition (89). First let us introduce
a few additional notations. We endow S0

n with the inner-product S : P = Tr{SP}
and for a subset B of S0

n, its orthogonal with respect to this inner-product is denoted
by B⊥. We recall that B⊥ is a linear subspace of S0

n and that (B⊥)⊥ = Span(B).
We now define the submanifold N of U0

n which consists of normalized prolate
uniaxial Q-tensors i.e.

N = {AΩ | Ω ∈ Pn−1} = {Ω⊗ Ω− 1

n
Id | Ω ∈ Pn−1}.

Note that N is the manifold spanned by the NQT’s of the equilibria (see Remark 7).
The mapping Pn−1 ∋ Ω 7→ AΩ ∈ N is a diffeomorphism. The tangent space of N
at AΩ is given by:

TAΩ
N = {Ω⊗ V + V ⊗ Ω | V ∈ {Ω}⊥}. (100)

Indeed, for V ∈ TΩPn−1 = {Ω}⊥, consider a curve I ∋ t 7→ ξ(t) ∈ Pn−1 where I
is an open interval of R containing 0, such that ξ(0) = Ω and ξ′(0) = V . Then,
d
dt (Aξ(t)) = Ω⊗V +V ⊗Ω, showing the claim. We denote by PTAΩ

N the orthogonal

projection of S0
n on TAΩ

N for the inner product defined just above.
We have a mapping p: U0

n → N , Σ 7→ AΩΣ . For any Ω ∈ Pn−1, the pre-
image p−1({AΩ}) is denoted by FΩ. All these pre-images are homeomorphic to
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one-another. Let us choose one of them and denote it by F . This endows U0
n of a

fiber bundle structure of base N and fiber F . Now, we have the following lemma:

Lemma 5.6. Let Ω ∈ Pn−1 be given.

(i) Let Q ∈ Sn0 . Then, PΩ⊥(QΩ) = 0 ⇐⇒ Q ∈
(
TAΩ

N
)⊥

.

(ii) FΩ is a subset of
(
TAΩN

)⊥
.

Proof. (i) Using the symmetry of Q and (100), we have:

PΩ⊥(QΩ) = 0 ⇐⇒ (QΩ) · V = 0, ∀V ∈ {Ω}⊥

⇐⇒ Q : (Ω⊗ V ) = 0, ∀V ∈ {Ω}⊥

⇐⇒ Q : (Ω⊗ V + V ⊗ Ω) = 0, ∀V ∈ {Ω}⊥

⇐⇒ Q : B = 0, ∀B ∈ TAΩ
N ⇐⇒ Q ∈

(
TAΩ

N
)⊥
,

which shows (i).
(ii) Suppose Σ ∈ FΩ. Then AΩΣ

= AΩ which implies ΩΣ = Ω (in Pn−1). Thus,

Ω is an eigenvector of Σ i.e. PΩ⊥(ΣΩ) = 0. Hence, by (i), Σ ∈
(
TAΩN

)⊥
.

So, Eq. (89) can be equivalently written:
∫

Sn−1

(LηΣf)ψ dω = 0 for all f such that Qf ∈
(
TAΩΣ

N
)⊥
. (101)

This can be geometrically interpreted as follows: to any Σ ∈ U0
n we consider its

projection (in the fiber bundle sense) p(Σ) = AΩΣ onto N . Then, (101) means that
the GCI associated to (η,Σ) are all the functions ψ whose integrals against LηΣf
cancel when Qf belongs to the orthogonal of the tangent space to N at AΩS

. This
is illustrated in Fig. 2. It is likely that this geometrical structure persists with other
collision operators as it seems to express some intrinsic geometrical constraint. This
point will be further developed in future work.

5.3.2. Relation between the GCI and the linearized collision operator. Let DfC the
linearization of the collision operator C about the distribution function f and let
DfC

∗ be its formal L2-adjoint. For a distribution function f , we call (ηf ,Σf ) the
‘moment’ of f . In this section, we show the following: suppose (η,Σ) ∈ (0,∞)×Un0 is
the moment of an equilibrium distribution function, i.e. (η,Σ) = (η(ρ), AΩ) where
(ρ,Ω) ∈ (ρ∗,∞) × Sn−1/{±1} and denote by f0 = ρGη(ρ)AΩ

the corresponding
equilibrium. Then, we have

Cη(ρ)AΩ
= ker(Df0C∗). (102)

On the other hand, if (η,Σ) is not the moment of an equilibrium, then, although
there exist Gibbs distributions f = ρGηΣ associated with (η,Σ), in general, we have

CηΣ ̸= ker(DfC
∗). (103)

Thus, a GCI associated to an arbitrary moment (η,Σ) is in general not in the
kernel of the adjoint linearized collision operator about the corresponding Gibbs
distribution. It is only so if (η,Σ) is the moment of an equilibrium in the above sense.
Consequently, GCI are different and truly more general concepts than elements of
such kernels. Likewise, Eq. (98) linking the GCI to the auxiliary function g given
by (53) is only valid for moments (η(ρ), AΩ) related to equilibria. Observe however
that we will not need to explicit the form of the GCI for general moments, but only
for those corresponding to an equilibrium (see Section 6 below).
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Σ

AΩ

TAΩ
N

FΩ

Q

Un
0

N

(
TAΩ

N
)⊥

1

Figure 2. Graphical representation of Condition (101). The am-
bient three-dimensional space in the figure represents the flat space
Sn0 in which Un0 is an imbedded manifold represented by a surface.
N is a submanifold of Un0 depicted as the curvy blue line. It endows
Un0 of a fiber bundle structure of base N . Let Σ ∈ Un0 . It projects
(in the bundle sense) onto AΩ ∈ N and so, belongs to the fiber FΩ

represented by the curvy red line. The tangent space to N at AΩ,
TAΩ

N is represented by the magenta straight line. Its orthogonal
(TAΩN )⊥ is the gray-shaded plane on the figure. It contains FΩ

by virtue of Lemma 5.6 (ii). Then, condition (101) means that the
GCI associated with (η,Σ) are the functions ψ that cancel LηΣf
for all f whose Q-tensor Qf (represented by the point Q on the
figure) belongs to (TAΩ

N )⊥.

Formula (102) is unsurprising. Indeed, Eq. (62) has been shown in [37, 59] using
the Hilbert expansion method. This method corresponds to inserting the Hilbert
expansion fε = f0 + εf1 + O(ε2) into the kinetic equation (40) and matching
identical powers of ε. We get

C(f0) = 0, DCf0f1 = Tu0f0,

for the terms of order ε−1 and ε0 respectively (note that we also need to Hilbert-
expand the velocity uε). Now, the first equation implies that f0 is an equilibrium
f0 = ρGη(ρ)AΩ

. Then, one looks for a necessary and sufficient condition for the

existence of a solution f1 to the second equation. Assuming that Im DCf0 =

(ker DC∗
f0)⊥ (which can be proved via a careful study of the spectral properties of

DCf0 , see [59]), such a condition is
∫

Sn−1

Tu0f0 ψ dω = 0, ∀ψ ∈ kerDC∗
f0 .

Since this is also what we get when ψ ranges in Cη(ρ)AΩ
(see Eq. (121) below), Eq.

(102) must be true. However, it would be desirable to have a direct proof of (102).
This is our goal here. As a by-product, we will also see why we have (103). We first
compute the adjoint linearized collision operator.
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Lemma 5.7 (Adjoint linearized collision operator). Let ρ ∈ (0,∞), S ∈ Sn0 . We
have

DρGS
C∗g(ω) = L∗

αρQρGS
g(ω)− αρ (ρQ)GSL∗

Sg
: ω ⊗ ω, (104)

where GS is defined by (43), the auxiliary operator L by (75) and L∗ is its formal
L2-adjoint. Here (ρQ)GSL∗

Sg
stands for the right-hand side of (10) with f replaced

by GSL
∗
Sg (note that ρGSL∗

Sg
= 0 so that QGSL∗

Sg
is not defined but (ρQ)GSL∗

Sg
itself

is well-defined).

Proof. From (39) and the fact that U0
f depends linearly on f , we get

DρGS
Cf = ∇ω ·

(
∇ωf + f∇ωU

0
ρGS

+ ρGS∇ωU
0
f

)
. (105)

We note that ∇ωU
0
ρGS

= −∇ω

(
logGαρQρGS

)
. Inserting this into (105), we get

DρGS
Cf = LαρQρGS

f + ρGS L
∗
SU

0
f . (106)

Thanks to (29), we also note that L∗
SU

0
f = L∗

SŬ
0
f with Ŭ0

f = −α(ω · ρfQfω). Thus,
using (106), Stokes formula and that LS(GSg) = GSL

∗
Sg, we get

∫

Sn−1

DρGS
Cf g dω =

∫

Sn−1

f L∗
αρQρGS

g dω + ρ

∫

Sn−1

Ŭ0
f GS L

∗
Sg dω.

Inserting the expression of Ŭ0
f into this formula, using the expression (10) of ρfQf

and exchanging ω and ω′ in the resulting integral, we are led to (104).
Now, in the case of an equilibrium, we compute the kernel of the adjoint linearized

collision operator:

Lemma 5.8 (kernel of Df0C∗ when f0 is an equilibrium). Let ρ ∈ (ρ∗,∞) and
Ω ∈ Sn−1/{±1}. Let f0 = ρGη(ρ)AΩ

be an equilibrium of C, where the function

ρ 7→ η(ρ) is defined in Prop. 3. Define X̃ρ,Ω to be the space of functions φ : ω 7→
φ(ω) which satisfy

φ(ω) = αρ (ρQ)Gη(ρ)AΩ
φ : ω ⊗ ω, ∀ω ∈ Sn−1. (107)

Then we have

g ∈ ker
(
DρGη(ρ)AΩ

C∗) ⇐⇒
∫

Sn−1

Lη(ρ)AΩ
f g dω = 0, ∀f ∈ X̃⊥

ρ,Ω, (108)

where the orthogonality is with respect to the standard L2(Sn−1)-inner product.

Proof. Defining S = η(ρ)AΩ, we have

αρQρGS
= αρQρGηAΩ

= ηAΩ = S, (109)

thanks to (48) and (49). Thus, thanks to (104), we are led to

DρGC
∗g(ω) = L∗g(ω)− αρ (ρQ)GL∗g : ω ⊗ ω, (110)

where here and in the remainder of the proof, we omit the dependence of η on ρ,
as well as the index ηAΩ on L∗ and G and the indices ρ, Ω on X̃ for clarity.

For any smooth enough function f , we have by the Stokes formula:∫

Sn−1

Lf g dω =

∫

Sn−1

f L∗g dω =

∫

Sn−1

f φ dω,

with φ = L∗g. Thanks to (110) and the fact that g ∈ kerDρGC
∗, φ satisfies (107),

so φ ∈ X̃ . If f ∈ X̃⊥, we deduce that
∫
Lf g dω = 0, which shows the left-to-right

implication of (108).
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Conversely suppose that g is such that
∫
Lf g dω = 0, ∀f ∈ X̃⊥, i.e.

f ∈ X̃⊥ =⇒ f ∈ {L∗g}⊥.
Taking the orthogonals, we get

Span{L∗g} ⊂ X̃ .
Indeed, both Span {L∗g} and X̃ are finite-dimensional, hence closed. This is obvious

for the former which is one-dimensional. For the latter, by (107), X̃ is included in
the space of quadratic polynomials in ω, which is a finite-dimensional space. So,
defining φ = L∗g, we have φ ∈ X̃ . Replacing φ by its expression in terms of g
in (107), we get DρGC

∗(g) = 0, which shows the right-to-left implication of (108)
and ends the proof.

Next, we prove an alternate characterization of the space X̃ρ,Ω.
Lemma 5.9. Let ρ, Ω, f0 and η as in Lemma 5.8. Then,

X̃ρ,Ω = XΩ, (111)

where XΩ is defined by (91).

Proof. Let φ ∈ X̃ (using the simplified notations of the previous proof). From (107),
we have φ(ω) = K : ω ⊗ ω where K = αρ (ρQ)Gφ. Hence, K satisfies the fixed
point equation

K = αρ
(
ρQ

)
GK:ω⊗ω, (112)

which implies that

TrK = 0. (113)

Using (10), (20) and (113), we can develop (112) into:

K = αρTGηAΩ
: K. (114)

According to (156), there are three real numbers ak, k = 1, . . . , 3, such that

TGηAΩ
= a1 Ω

⊗4 + 6a2
(
Ω⊗ Ω⊗ Id

)
s
+ 3a3

(
Id⊗ Id

)
s
. (115)

We uniquely define V ∈ {Ω}⊥ and r ∈ R byKΩ = rΩ+V . inserting (115) into (114)
and using (113), we get

( 1

2αρ
− a3

)
K = a2 (Ω⊗ V + V ⊗ Ω) +

1

2

(
(a1 + 4a2)rΩ⊗ Ω+ a2r Id

)
(116)

We now state the following lemma, whose proof can be found in Appendix C.2

Lemma 5.10. We have

1

2αρ
− a3 = a2 ̸= 0, (117)

a1 + (n+ 4)a2 = S2(η). (118)

Using (117), Eq. (116) leads to

K = Ω⊗ V + V ⊗ Ω+
1

2a2

[
(a1 + 4a2)rΩ⊗ Ω+ a2r Id

]
.

With (113), we get

0 = TrK =
1

2a2

[
(a1 + (n+ 4)a2)

]
r,
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which, with (118) and the fact that S2(η) ̸= 0 (see Prop. 2 (iii)), leads to r = 0 and

K = Ω⊗ V + V ⊗ Ω.

Thus,

φ = 2 (Ω · ω) (V · ω). (119)

Reciprocally, by similar but simpler computations, we easily get that φ given
by (119) with arbitrary V ∈ {Ω}⊥ satisfies (112). In the end, we find

X̃ = {(Ω · ω) (V · ω)
∣∣ V ∈ {Ω}⊥} = XΩ,

which ends the proof.
We can now state the following

Theorem 5.11. Let f0 = ρGη(ρ)AΩ
be an equilibrium of C. Then, we have

Cη(ρ)AΩ
= ker

(
DρGη(ρ)AΩ

C∗),
where Cη(ρ)AΩ

is the space of GCI associated with the equilibrium moments (η(ρ), AΩ)
(see Definition 5.3).

Proof. Indeed, we have the sequence of equivalences:

ψ is a GCI associated with (η(ρ), AΩ) ⇐⇒

⇐⇒
(
f ∈ X⊥

Ω =⇒
∫

Sn−1

Lη(ρ)AΩ
f ψ dω = 0

)

⇐⇒
(
f ∈ X̃⊥

ρ,Ω =⇒
∫

Sn−1

Lη(ρ)AΩ
f ψ dω = 0

)

⇐⇒ ψ ∈ ker
(
DρGη(ρ)AΩ

C∗),
where the first equivalence comes from (89) and (92), the second one from (111)
and the third one, from (108). This ends the proof.

The key property which led to Theorem 5.11 in the case where f0 is an equilib-
rium is (109). It gave rise to the structure

DρGC
∗g = φ(ω)− αρ (ρQ)Gφ : ω ⊗ ω, (120)

with φ = L∗g which led to the definition of the space X̃ρ,Ω. Now, if (η,Σ) is not a
moment of an equilibrium, we have αρQρGS

̸= S as the equality is a characterization
of the moments of equilibria. Then, by inspection of (104), we see that the structure
(120) is lost and the proof cannot be continued. These considerations strongly
support (103). Indeed, we have the following counter-example in dimension n = 3
whose proof can be found in Appendix C.3.

Proposition 12. Let n = 3. Let f = ρGηAΩ
where η ̸= η(ρ) (in other words, in

spite of being a Gibbs distribution, f is not an equilibrium). Then we have (103)
(with Σ = AΩ).

So, the space of GCI CηΣ is related to important structural properties of C such
as Prop. 99. By contrast, the space ker (DfC

∗) does not play any particular role.
The exception is when the Gibbs distribution ρGηΣ is an equilibrium, in which case
the two spaces are equal. This shows that GCI are a more relevant and general
concept than the space ker (DfC

∗) which appears in the Hilbert method.
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6. Equation for the Q-tensor axis direction Ω.

6.1. Abstract derivation. In this section, we provide an abstract set of equations
allowing us to determine the evolution equation for the Q-tensor axis direction Ω.
We recall the expression (37) of Tu(f). We have the:

Proposition 13. Let f = limε→0 f
ε with f(x, ω, t) = ρ(x, t) Gη(ρ(x,t))AΩ(x,t)

(ω) for

all (x, t) ∈ B where B is given by (59) and the function ρ 7→ η(ρ) is defined in
Prop. 3. Then, we have

∫

Sn−1

Tu
(
ρ(x, t)Gη(ρ(x,t))AΩ(x,t)

)
ψ⃗η(ρ(x,t))AΩ(x,t)

(ω) dω = 0, (121)

where ψ⃗η(ρ(x,t))AΩ(x,t)
is the vector GCI associated with (η(ρ(x, t)), AΩ(x,t)) (see Sec-

tion 5.2).

Remark 11. We note that (121) is unchanged if Ω(x, t), and consequently ψ⃗AΩ(x,t)
,

are changed in their opposites.

Proof. Let (x, t) ∈ B be given. For simplicity, in the proof, we omit the variables
(x, t). We also denote ρε := ρfε , Qε := Qfε , λε := λfε , etc. and ρ := ρf , Q := Qf ,
λ := λf , etc. By the fact that fε → f , we get ρεQε → ρQ = ρ n

n−1λAΩ, with
n
n−1λ = η(ρ)

αρ . Since ρ ̸= 0 (because (x, t) ∈ B) and λ is a simple eigenvalue of Q,

then, for ε small enough, ρε ̸= 0, Qε → Q and λε is a simple eigenvalue of Qε

such that λε → λ (because the subset of S0
n of matrices which have simple leading

eigenvalue is an open set). Thus, Σε = n−1
nλεQ

ε is defined, belongs to U0
n and is such

that Σε → Σ = AΩ as ε→ 0.
By the smoothness of Σε with respect to ε, we can find a smooth lifting of

ΩΣε ∈ Pn−1 into Ωε ∈ Sn−1. Thus, we can form the GCI ψ⃗ηεΣε using this smooth
determination of ΩΣε (remember that we need to fix the sign of ΩΣε because the

sign of ψ⃗ηεΣε depends on it). This makes ψ⃗ηεΣε a smooth function of ε (because

ψ⃗ηS is a smooth function of (η, S) ∈ [0,∞) × Un0 ) such that ψ⃗ηεΣε → ψ⃗ηAΩ
when

ε→ 0.
Thanks to (99), we have

∫

Sn−1

C(fε) ψ⃗ηεΣε dω = 0.

So, multiplying (40) by ψ⃗ηεΣε , integrating the resulting expression with respect to ω
leads to ∫

Sn−1

Tuε(fε) ψ⃗ηεΣε dω = 0.

Now letting ε → 0, with uε → u, fε → ρGη(ρ)AΩ
, ηε → η(ρ), Σε → AΩ, ψ⃗ηεΣε →

ψ⃗η(ρ)AΩ
, we get (121). This ends the proof.

6.2. Derivation of the equation for Ω. In this section, we derive the explicit
equation for Ω by inserting expression (96) into the abstract formulation (121) and
compute the integral explicitly. This is summarized in the following

Proposition 14. Let f = limε→0 f
ε = ρ(x, t)Gη(ρ(x,t))AΩ(x,t)

as given in Corol-

lary 1. Then, Ω satisfies (62)
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Proof of Proposition 14. For simplicity, we omit the dependencies of η and λ on ρ,
of hη on (ω · Ω), of GηAΩ on ω and of ρ and Ω on (x, t). Inserting (96) into (121),
we get:

VΩ :=

∫

Sn−1

Tu(ρGηAΩ)hη ω⊥ dω = 0. (122)

We define

Dt = ∂t + u · ∇x,

Af = ∇ω ·
(
f (ΛPω⊥E −W )ω

)
,

Bf = 2αβ∇ω ·
(
f Pω⊥∆x(ρf Qf )ω

)
,

so that Tu(f) = Dtf +Af +Bf and

VΩ =

∫

Sn−1

(Dt +A+B)(ρGηAΩ
)hη ω⊥ dω = V

(1)
Ω + V

(2)
Ω + V

(3)
Ω . (123)

Using (86) which gives Dtρ = 0 and Dtη = η′Dtρ = 0, where η′ is the derivative
of η with respect to ρ, we get

Dt(ρGηAΩ
) = ρGηAΩ

2η (ω · Ω) (PΩ⊥ω) ·DtΩ,

where we have used that the denominator of (45) does not depend on Ω. Then, we
apply (141) and the fact that DtΩ is orthogonal to Ω and get

V
(1)
Ω = γ̃1DtΩ, (124)

with

γ̃1 =
2 η ρ

n− 1

∫

Sn−1

GηAΩ hη (ω · Ω) (1− (ω · Ω)2) dω. (125)

Next, we have

A(ρGηAΩ
) = ∇ω ·

(
ρGηAΩ

(ΛPω⊥E −W )ω
)

= ρGηAΩ

[
∇ω(logGηAΩ) · (ΛPω⊥E −W )ω +∇ω ·

(
(ΛPω⊥E −W )ω

)]
.

First, we compute ∇ω ·
(
(ΛPω⊥E −W )ω

)
. Let X = ΛE −W for simplicity and

let (ei)i=1,...,n be the canonical basis of Rn. Define Xi =
∑n
j=1Xij ej . Then, we

can write X =
∑n
i=1 ei ⊗ Xi. Then, Pω⊥X ω =

∑n
i=1(Xi · ω)Pω⊥ei. We note

that ∇ω · Pω⊥ei = ∆ω(ω · ei) = −(n − 1) (ω · ei) because (ω · ei) is a spherical
harmonic of degree 1 hence an eigenfunction of the spherical laplacian associated
to the eigenvalue −(n− 1). Thus,

∇ω · (Pω⊥X ω) =
n∑

i=1

[
Pω⊥Xi · Pω⊥ei − (n− 1) (Xi · ω) (ω · ei)

]

=
n∑

i, j=1

Xij (Pω⊥ei · Pω⊥ej − (n− 1)ωi ωj)) =
n∑

i, j=1

Xij(δij − nωi ωj)

= TrX − nX : (ω ⊗ ω),

where δij is the Kronecker symbol and TrX is the trace of X. Now, with X =
ΛE −W , owing to the facts that TrX = Λ∇x · u = 0 and remembering that E is
symmetric and W , antisymmetric, we get

A(ρGηAΩ
) = ρGηAΩ

[
2η (ω · Ω)Pω⊥Ω · (ΛPω⊥E −W )ω − nΛE : (ω ⊗ ω)

]

= ρGηAΩ

{
Λ
[
2 η (ω · Ω)Pω⊥Ω⊗ ω − nω ⊗ ω

]
: E − 2 η (ω · Ω) (Pω⊥Ω⊗ ω) :W

}
.



THE MOMENT METHOD FOR LIQUID CRYSTALS 449

Using the decomposition (142), we get Pω⊥Ω = (1− (ω ·Ω)2) Ω− (ω ·Ω)ω⊥, and so,

A(ρGηAΩ
)

= ρGηAΩ
2η(ω · Ω)

[
Λ
(
1− n

η
− 2(ω · Ω)2

)
(ω⊥ ⊗ Ω) : E + (ω⊥ ⊗ Ω) :W

]

+ even tensor powers of ω⊥.

Now, multiplying by hω⊥ and integrating over ω, the resulting odd tensor powers
of ω⊥ vanish in the integration thanks to (140). Thanks to (141), we find that

V
(2)
Ω = γ̃1WΩ+ γ̃3ΛPΩ⊥EΩ, (126)

with

γ̃3 =
(
1− n

η

)
γ̃1 − 2 γ̃2, (127)

γ̃2 =
2 η ρ

n− 1

∫

Sn−1

GηAΩ hη (ω · Ω)3 (1− (ω · Ω)2) dω. (128)

The computation of V
(3)
Ω is the same as that of V

(2)
Ω with ΛE − W replaced

by 2αβ∆x(ρQGηAΩ
). Since ∆x(ρQGηAΩ

) is a symmetric trace-free tensor, we get

from (126):

V
(3)
Ω = 2αβγ̃3 PΩ⊥

(
∆x(ρQGηAΩ

)Ω
)
.

With (50), we get

α∆x(ρQGηAΩ
) = ∆x(ηAΩ) = ∆xη AΩ + 4

[((
∇xη · ∇x

)
Ω
)
⊗ Ω

]
s

+2η
(
(∇xΩ)

T (∇xΩ) +
[
(∆xΩ)⊗ Ω

]
s

)
, (129)

where the index s means the symmetric part of a tensor (i.e. Ss =
1
2 (S + ST ) for

an n× n matrix S). Then, owing to the fact that any derivative of Ω is orthogonal
to Ω, we have

α∆x(ρQGηAΩ
)Ω = ∆xηΩ+ 2

(
∇xη · ∇x

)
Ω+ η

(
∆xΩ+ (Ω ·∆xΩ)Ω

)
,

and with (82),

αPΩ⊥
(
∆x(ρQGηAΩ

)Ω
)
= 2

(
∇xη · ∇x

)
Ω+ η PΩ⊥∆xΩ = PΩ⊥∆x(ηΩ).

It follows that
V

(3)
Ω = 2βγ̃3 PΩ⊥∆x(ηΩ). (130)

Inserting (124), (126), (130), into (123), we get

VΩ = γ̃1
(
DtΩ+WΩ

)
+ γ̃3 PΩ⊥

(
ΛEΩ+ 2β∆x(ηΩ)

)
.

So, with (122) and (127), we get (62) with

c = −Λ
γ̃3
γ̃1

= Λ
(n
η
− 1 + 2

γ̃2
γ̃1

)
. (131)

Now, the following formulas are shown in the Appendix D.1:

γ̃3 =
ρS2(η)

2η
, γ̃1 = − ρ

2η(n− 1)
⟨⟨g dŨ0

dθ
⟩⟩eη cos2 θ . (132)

Thus, (131) leads to (54) and ends the proof.
We now investigate under which conditions c

Λ is non-negative:

Proof of Proposition 4. From Prop. 2 (iii), we know that the (n − 1)S2(η) > 0.

Now, Prop. 9 and Eqs. (98) and (52) show that both g(θ) and dŨ0

dθ (θ) have the sign
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of cos θ. This implies that g(θ)dŨ0

dθ (θ) is positive on [0, π] and consequently, that
the denominator of (54) is positive. Altogether, this shows that c

Λ > 0 and ends
the proof.

7. Conclusion. We have investigated the passage from the Doi-Navier-Stokes mo-
del of liquid crystals to the Ericksen-Leslie system when the Deborah number goes
to zero. By contrast to previous literature, we have developed a moment method,
exploiting the conservations satisfied by the collision operator. These conservations
are of a non-classical type and have required the development of a new concept, the
generalized collision invariants. Their link to geometrical and analytical structures
of the collision operator has been discussed and their use for the derivation of
the limit model has been detailed. This derivation has been achieved in arbitrary
dimensions and assuming a full spatio-temporal dependence of the polymer molecule
density. The latter generates additional terms in the Ericksen stresses that have
not been previously described in the literature.

This works opens many research directions. The first one is the development
of a rigorous convergence result using this moment method. This is a quite chal-
lenging task but one may hope that, if successful, it would lead to a result in a
weaker setting than the currently available results. The energetic properties of the
limit model must be investigated. A proof that the extra terms appearing in the
Oseen-Franck energy due to the spatio-temporal dependence of the polymer mole-
cule density lead to a positive energy is missing at the present time. This would be
a necessary step for a well-posedness theory of the resulting Ericksen-Leslie system.
In spite of using Q-tensors as auxiliary quantities, the Doi model and its limit, the
Ericksen-Leslie system are, in essence, vector models, i.e. models for polymer ori-
entations only. Currently, attempts are being made to build truly tensorial models
in association with Landau-de Gennes energies i.e. energies depending on the local
average Q-tensor and its gradients. This is clearly an interesting playground to test
the applicability of the GCI concept to more general situations.

Appendix A. Appendix to Section 2 on Doi’s model.

A.1. Proof of the virtual work principle (16). We have, with (15):

dAR

dt
=

〈δAR

δf
(f),

∂f

∂t

〉
=

∫

Rn×Sn−1

µRf
∂f

∂t
dx dω

=

∫

Rn×Sn−1

µRf

{
−∇x · (u f)−∇ω ·

(
f (ΛPω⊥E −W )ω

)

+
D

kBT
∇ω ·

(
f ∇ωµ

R
f

)}
dx dω

=: I + II + III

Using Stokes’s formula, assuming that all terms vanish at infinity and with (17), we
find

I = −
∫

Rn

FRf · u dx, III = − D

kBT

∫

Rn×Sn−1

f |∇ωµ
R
f |2 dx dω.

Then, using Stokes’s formula, the fact that ∇ωµ
R
f ·ω = 0 and straightforward tensor

algebra, we have

II =

∫

Rn×Sn−1

f (ΛE −W )ω · ∇ωµ
R
f dx dω
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=

∫

Rn

(∫

Sn−1

f
(
ω ⊗∇ωµ

R
f

)
dω

)
: (ΛE +W ) dx

=

∫

Rn

(∫

Sn−1

f
[Λ + 1

2

(
ω ⊗∇ωµ

R
f

)
+

Λ− 1

2

(
∇ωµ

R
f ⊗ ω

)]
dω

)
: ∇xu dx

=

∫

Rn

(∫

Sn−1

f
[
Λ
(
ω ⊗∇ωµ

R
f

)
s
−

(
ω ⊗∇ωµ

R
f

)
a

]
dω

)
: ∇xu dx

=

∫

Rn

σRf : ∇xu dx.

This leads to (16).

A.2. Proofs of Formulas (21) and (22) for the extra-stresses. We begin with
a Lemma:

Lemma A.1. Let f and φ: Sn−1 → R be two smooth functions. Then, we have
∫

Sn−1

∇ωf φ dω = −
∫

Sn−1

f ∇ωφdω + (n− 1)

∫

Sn−1

f φω dω. (133)

Proof. Let B ∈ Rn be a fixed vector and denote by X the left-hand side of (133).
Then, using Stokes formula, we have

X ·B =

∫

Sn−1

∇ωf ·B φdω =

∫

Sn−1

∇ωf · Pω⊥B φdω

= −
∫

Sn−1

f ∇ω · (Pω⊥B φ) dω

= −
∫

Sn−1

f ∇ω · (Pω⊥B)φdω −
∫

Sn−1

f Pω⊥B · ∇ωφdω.

We have

∇ω · (Pω⊥B) = ∇ω · ∇ω (ω ·B) = ∆ω (ω ·B) = −(n− 1)ω ·B,
where the last identity follows from the fact that the function ω 7→ ω·B is a spherical
harmonic of degree 1. Thus,

X ·B = (n− 1)

∫

Sn−1

f φω ·B dω −
∫

Sn−1

f ∇ωφ ·B dω,

which leads to (133).

Proof of (21). Inserting (13) into the first equation of (17), we have σRf = Λσ̄s+ σ̄a
with

σ̄ =

∫

Sn−1

f(ω ⊗∇ωµ
R
f ) dω

= kBT

∫

Sn−1

ω ⊗∇ωf dω +

∫

Sn−1

f (ω ⊗∇ωU
R
f ) dω. (134)

Using (133) with φ = ωi, we get
∫

Sn−1

ωi∇ωf dω = −
∫

Sn−1

∇ωωi f dω + (n− 1)

∫

Sn−1

f ω ωi dω

= −
∫

Sn−1

Pω⊥ei f dω + (n− 1)

∫

Sn−1

f ω (ω · ei) dω
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= −
∫

Sn−1

(
ei − (ei · ω)ω

)
f dω + (n− 1)

∫

Sn−1

f (ei · ω)ω dω

= n

∫

Sn−1

f
(
ω (ω · ei)−

1

n
ei
)
dω,

where ei denotes the i-th vector of the canonical basis of Rn. In view of (10), it
follows that

∫
Sn−1 ω ⊗∇ωf dω = nρfQf . Inserting this in (134) leads to

σ̄ = nkBTρfQf +

∫

Sn−1

f (ω ⊗∇ωU
R
f ) dω,

which, in turn, leads to (21).

Proof of (22). We multiply Doi’s equation (15) by ω ⊗ ω − 1
n Id and integrate it

with respect to ω. This leads to

0 =

∫

Sn−1

(∂tf +∇x · (uf))
(
ω ⊗ ω − 1

n
Id
)
dω

+

∫

Sn−1

∇ω ·
(
f(ΛPω⊥E −W )ω

) (
ω ⊗ ω − 1

n
Id
)
dω

− D

kBT

∫

Sn−1

∇ω · (f ∇ωµ
R
f )

(
ω ⊗ ω − 1

n
Id
)
dω

=: I + II− D

kBT
III. (135)

Using (19), for any smooth function g(x, t), we have ∂tg +∇x · (ug) = Dtg, where
Dt is given by (23). It follows that I = Dt(ρfQf ) and, using (86), that

I = ρf DtQf . (136)

Using Stokes theorem, we get:

IIIij =

∫

Sn−1

∇ω · (f ∇ωµ
R
f )ωi ωj dω = −

∫

Sn−1

f ∇ωµ
R
f · ∇ω(ωi ωj) dω

= −
∫

Sn−1

f ∇ωµ
R
f · (ωjPω⊥ei + ωiPω⊥ej) dω

= −
∫

Sn−1

f (ωj∇ωµ
R
f · ei + ωi∇ωµ

R
f · ej) dω = − 2

Λ

(
(σRf )s

)
ij
, (137)

where again, ei denotes the i-th vector of the canonical basis of Rn. Now, similarly
to III, we have,

IIij =

∫

Sn−1

∇ω ·
(
f(ΛPω⊥E −W )ω

)
ωi ωj dω

= −
∫

Sn−1

f
(
(ΛPω⊥E −W )ω

)
· (ωiej + ωjei) dω

= −
∫

Sn−1

f
(
(ΛE −W )(ω ⊗ ω) + (ω ⊗ ω)(ΛE +W )− 2Λω⊗4 : E

)
ij
dω,

which leads to

II = ρf
(
− Λ(EQf +QfE) +WQf −QfW − 2Λ

n
E + 2ΛTf : E

)
. (138)

Finally, using (21), the antisymmetric part of σRf is given by:

(σRf )a =
1

2

∫

Sn−1

(ω ⊗∇ωU
R
f −∇ωU

R
f ⊗ ω) f dω. (139)
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Now, inserting (136), (137), (138) and (139) into (135) leads to (22).

Appendix B. Appendix to Section 3 on main result.

B.1. Proof of Prop. 2 on properties of S2. The proof uses Lemma 4.1 of [21]
which we recall here without proof.

Lemma B.1. Let n ≥ 2. Define ω⊥ = PΩ⊥ω. For any function k: [−1, 1] → R,
r 7→ k(r), we have:

∫

Sn−1

k(ω · Ω)ω⊗(2k+1)
⊥ dω = 0, ∀k ∈ N, (140)

∫

Sn−1

k(ω · Ω)ω⊥ ⊗ ω⊥ dω =
1

n− 1

∫

Sn−1

k(ω · Ω) (1− (ω · Ω)2) dω PΩ⊥ . (141)

Proof of Proposition 2. (i) The decomposition

ω = (ω · Ω)Ω + ω⊥, (142)

leads to

ω ⊗ ω = (ω · Ω)2 Ω⊗ Ω+ (ω · Ω) (ω⊥ ⊗ Ω+ Ω⊗ ω⊥) + ω⊥ ⊗ ω⊥. (143)

We insert (143) into (10) with f = ρGηAΩ . Thanks to (45), ρGηAΩ is a function
of ω · Ω only. So, the contribution of the middle term of (143) vanishes thanks
to (140) and the contribution of the last term can be computed using (141). Using
that PΩ⊥ = Id− Ω⊗ Ω, we get

QGηAΩ
=

〈
(ω · Ω)2

〉
GηAΩ

Ω⊗ Ω+
1

n− 1

〈
1− (ω · Ω)2

〉
GηAΩ

(
Id− Ω⊗ Ω

)
− 1

n
Id.

Rearranging these terms, we find (48).

(ii) The leading eigenvalue of QGηAΩ
is n−1

n S2(η) and is associated with the eigen-

vector Ω. Thus, by virtue of (12), the order parameter χρGηAΩ
is equal to S2(η).

(iii) We first compute S2(0). When η = 0, we have GηAΩ = 1. Thus, S2(0) =
⟨(n(ω · Ω)2 − 1)/(n − 1)⟩1 =: r/s, where, using the spherical coordinates as in the
proof of Proposition 1, the numerator r is given by

r =

∫ π

0

(n cos2 θ − 1) sinn−2 θ dθ = (n− 1)Wn−2 − nWn.

Here, Wn is twice the Wallis integral Wn =
∫ π
0
sinn θ dθ. From the well-known

recursion formula for the Wallis integral (which can be easily proved by integration
by parts): Wn = n−1

n Wn−2, we get that r = 0 and thus, that S2(0) = 0.
We now show that S′

2(η) ≥ 0, for all η ≥ 0, where the prime denotes the derivative
with respect to η. We have S2(η) = 1 − n

n−1 ⟨1 − (ω · Ω)2⟩GηAΩ
=: 1 − n

n−1F (η).

We show that F ′ ≤ 0. Using again spherical coordinates, we have F = In/In−2

with In(η) =
∫ π/2
0

exp(η cos2 θ) sinn θ dθ (by symmetry, we can reduce the interval

of integration to [0, π/2]). Thus, F ′ = (I ′nIn−2 − I ′n−2In)/I
2
n−2 =: A/I2n−2. We

check the sign of the numerator A. We have

A(η) =

∫

[0,π2 ]2
eη(cos

2 θ+cos2 θ′) sinn−2 θ sinn−2 θ′ sin2 θ (cos2 θ − cos2 θ′) dθ dθ′ =

1

2

∫

[0,π2 ]2
eη(cos

2 θ+cos2 θ′) sinn−2 θ sinn−2 θ′ (sin2 θ − sin2 θ′) (cos2 θ − cos2 θ′) dθ dθ′,
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where we pass from the first to the second line by exchanging θ and θ′. Since sin is
increasing and cos is decreasing on [0, π2 ], we have A ≤ 0.

Finally, when η → ∞, the measure GηAΩ
dω concentrates onto the sum of Dirac

deltas 1
2 (δΩ + δ−Ω). Since P2(±1) = 1, it follows that S2 → 1 when η → ∞. This

ends the proof.

B.2. Proof of Eq. (66) for the Leslie stresses. We have fε → f as ε → 0
with f given by (60). We will abbreviate GηAΩ

into G for simplicity. We define

σ = lim
ε→0

(
ζ ρfεTfε : Eε + σ1

fε

)
= ζ ρTG : E + σ1

ρG.

From (32), we get

σ = ρ
{Λ2

2
(EQG +QGE) +

Λ

2
(QGW −WQG) +

Λ2

n
E

+(ζ − Λ2)TG : E − Λ

2
DtQG + αβ

[
∆x(ρQG)QG −QG∆x(ρQG)

]}
. (144)

Now, for a generic distribution function f , we introduce the fourth-order tensorial
order parameter given by

Qf = Tf −
6

n+ 4
(⟨ω ⊗ ω⟩f ⊗ Id)s +

3

(n+ 2)(n+ 4)
(Id⊗ Id)s. (145)

Here, (⟨ω⊗ω⟩f ⊗ Id)s and (Id⊗ Id)s denote the symmetrizations of the fourth-order
tensors ⟨ω ⊗ ω⟩f ⊗ Id and Id⊗ Id respectively. Specifically,

6
(
(⟨ω ⊗ ω⟩f ⊗ Id⊗ Id)s

)
ijkℓ

= ⟨ωiωj⟩f δkℓ + ⟨ωiωk⟩f δjℓ + ⟨ωiωℓ⟩f δjk
+⟨ωjωk⟩f δiℓ + ⟨ωjωℓ⟩f δik + ⟨ωkωℓ⟩f δij ,

3
(
(Id⊗ Id)s

)
ijkℓ

= δijδkℓ + δikδjℓ + δiℓδjk,

where δ denotes the Kronecker symbol. Eq. (145) corresponds to the decomposi-
tion of Tf into irreducible tensors, i.e. invariant tensors under the action of the
orthogonal group. The coefficients of the decomposition can be obtained by the re-
quirement that the contraction of Qf with respect to any two indices is zero. Owing
to the fact that ⟨ω ⊗ ω⟩f = Qf +

1
n Id, we get

Qf = Tf −
6

n+ 4
(Qf ⊗ Id)s −

3

n(n+ 2)
(Id⊗ Id)s, (146)

where the definition of (Qf ⊗ Id)s is similar to that of (⟨ω⊗ ω⟩f ⊗ Id⊗ Id)s. Then,
using (146), we have

Tf : E = Qf : E +
2

n+ 4
(EQf +QfE) +

2

n(n+ 2)
E +

1

n+ 4
(Qf : E)Id.

Inserting this identity (with f = G) into (144), we get

σ = ρ
{(Λ2

2
+

2(ζ − Λ2)

n+ 4

)
(EQG +QGE) +

Λ

2
(QGW −WQG)

+
1

n

(
Λ2 +

2(ζ − Λ2)

n+ 2

)
E + (ζ − Λ2)QG : E +

ζ − Λ2

n+ 4
(QG : E) Id

−Λ

2
DtQG + αβ

[
∆x(ρQG)QG −QG∆x(ρQG)

]}
. (147)

Now, we state two lemmas whose proofs are deferred to the end of the present
proof
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Lemma B.2. We have

QGηAΩ
= S4(η)AΩ, (148)

where S4(η) is given by (46) and where

AΩ = Ω⊗4 − 6

n+ 4
(Ω⊗ Ω⊗ Id)s +

3

(n+ 2)(n+ 4)
(Id⊗ Id)s. (149)

Lemma B.3. We have

ραβ
[
∆x(ρQG)QG −QG∆x(ρQG)

]
= ρ

ΛS2(η)

2

[1
c
(N ⊗ Ω− Ω⊗N)

−
(
E(Ω⊗ Ω)− (Ω⊗ Ω)E

)]
, (150)

with N given by (68).

From (148) and (149), it follows that

QG : E = S4

{(
E : (Ω⊗ Ω)

)
Ω⊗ Ω− 2

n+ 4

[
(Ω⊗ Ω)E + E(Ω⊗ Ω)

]

− 1

n+ 4

(
E : (Ω⊗ Ω)

)
Id +

2

(n+ 2)(n+ 4)
E
}
, (151)

where the dependence of S4 on η is omitted for simplicity. Likewise, with (48), we
get

EQG +QGE = S2

[
(Ω⊗ Ω)E + E(Ω⊗ Ω)− 2

n
E
]
, (152)

QGW −WQG = S2

[
(Ω⊗ Ω)W −W (Ω⊗ Ω)

]
, (153)

DtQG = S2

[
DtΩ⊗ Ω+ Ω⊗DtΩ)

]
. (154)

In (154), we have used that DtS2(η(ρ)) =
dS2

dη (η(ρ)) dηdρ (ρ)Dtρ = 0 thanks to (86).

Inserting Eqs. (150) to (154) into (147), we get σ = σL +∇xφ where φ is a scalar
function which can be absorbed in the pressure, and σL is given by (66) with the
constants, αk, k = 1, . . . , 6 given by (55)-(58). This ends the proof.

Proof of Lemma B.2. Using (146), (48), (46) and (47), we get that

QGηAΩ
= TGηAΩ

− 6S2

n+ 4
(Ω⊗ Ω⊗ Id)s +

( 6S2

n(n+ 4)
− 3

n(n+ 2)

)
(Id⊗ Id)s

= TGηAΩ
− 6

(
n⟨X2⟩ − 1

)

(n− 1)(n+ 4)
(Ω⊗ Ω⊗ Id)s

+
( 6

(
n⟨X2⟩ − 1

)

(n− 1)n(n+ 4)
− 3

n(n+ 2)

)
(Id⊗ Id)s, (155)

where X = ω ·Ω and where we drop the index GηAΩ on the brackets ⟨·⟩. Now, using
the decomposition (142), we get

TGηAΩ
= ⟨X4⟩Ω⊗4 +

(
⟨X2ω⊥ ⊗ ω⊥⟩ ⊗ (Ω⊗ Ω)

)
s
+

〈
ω⊗4
⊥

〉
.

We use (141) to compute ⟨X2ω⊥ ⊗ ω⊥⟩. To evaluate
〈
ω⊗4
⊥

〉
we recall the last part

of Lemma 4.1 of [21] without proof: with the notations of Lemma B.1, we have
∫

Sn−1

k(ω · Ω)ω⊗4
⊥ dω =

∫

Sn−1

3 k(ω · Ω) (1− (ω · Ω)2)2
(n− 1)(n+ 1)

dω
(
PΩ⊥ ⊗ PΩ⊥

)
s
.
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This leads to

TGηAΩ
= ⟨X4⟩Ω⊗4+

6 ⟨X2(1−X2)⟩
n− 1

(
Ω⊗Ω⊗PΩ⊥

)
s
+

3 ⟨(1−X2)2⟩
(n− 1)(n+ 1)

(
PΩ⊥⊗PΩ⊥

)
s
.

Using that PΩ⊥ = Id− Ω⊗ Ω, we obtain

TGηAΩ
=

(
⟨X4⟩ − 6 ⟨X2(1−X2)⟩

n− 1
+

3 ⟨(1−X2)2⟩
(n− 1)(n+ 1)

)
Ω⊗4

+
(6 ⟨X2(1−X2)⟩

n− 1
− 6 ⟨(1−X2)2⟩

(n− 1)(n+ 1)

) (
Ω⊗ Ω⊗ Id

)
s

+
3 ⟨(1−X2)2⟩
(n− 1)(n+ 1)

(
Id⊗ Id

)
s
. (156)

Now, inserting (156) into (155), we get (148).

Proof of Lemma B.3. Thanks to (50) and (129), we have

α2ρ∆x(ρQG)QG = η∆x(ηAΩ)AΩ

= η
[
∆xη A

2
Ω +

2(n− 1)

n
(∇xη · ∇x)Ω⊗ Ω− 2

n
Ω⊗ (∇xη · ∇x)Ω− 2η

n
∇xΩ

T∇xΩ

+
η(n− 1)

n
∆xΩ⊗ Ω− η

n
Ω⊗∆xΩ+ η(Ω ·∆xΩ)Ω⊗ Ω

]
. (157)

Let M be the tensor given by the left-hand side of (150). Using (62) and (49), it
follows from (157) that

M =
βη

α

[
2
(
(∇xη · ∇x)Ω⊗ Ω− Ω⊗ (∇xη · ∇x)Ω

)
+ η

(
∆xΩ⊗ Ω− Ω⊗∆xΩ

)]

=
β

α

[
∆x(ηΩ)⊗ (ηΩ)− (ηΩ)⊗∆x(ηΩ)

]

=
Λ

2α

[(N
c

− PΩ⊥EΩ
)
⊗ (ηΩ)− (ηΩ)⊗

(N
c

− PΩ⊥EΩ
)]

=
ρΛS2

2

[(N
c

− PΩ⊥EΩ
)
⊗ Ω− Ω⊗

(N
c

− PΩ⊥EΩ
)]
. (158)

Then, we note that there exists a real number z such that

(PΩ⊥EΩ)⊗ Ω = (EΩ)⊗ Ω+ zΩ⊗ Ω = E(Ω⊗ Ω) + zΩ⊗ Ω,

and that the same real number z is involved in the expression of Ω ⊗ (PΩ⊥EΩ), so
that we get

(PΩ⊥EΩ)⊗ Ω− Ω⊗ (PΩ⊥EΩ) = E(Ω⊗ Ω)− (Ω⊗ Ω)E.

Inserting this expression into (158), we get (150) which ends the proof of the Lemma.

B.3. Proof of Eq. (67) for the Ericksen stresses. We now compute limε→0 F
1
fε

= F 1
ρGηAΩ

. Thanks to (33), (30) and (51), we have

F 1
ρGηAΩ

= −ρ
〈
∇xµ

1
ρGηAΩ

〉
GηAΩ

= βρ
{〈

∇x∆x(η(ω · Ω)2
〉
GηAΩ

− 1

n
∇x∆x

[
η + (n− 1)αρ

]}
. (159)
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We compute, using the repeated index summation convention:

∂xi

[
∆x

(
η(ω · Ω)2

)]
= 2(ω · Ω) ∂xi

Ωk ω⊥k ∂
2
xjxj

η + (ω · Ω)2 ∂3xixjxj
η

+ 4 ∂xi
Ωk ω⊥k ∂xj

Ωℓ ω⊥ℓ ∂xj
η + 4 (ω · Ω) ∂2xixj

Ωk ωk ∂xj
η

+ 4 (ω · Ω) ∂xjΩk ω⊥k ∂
2
xixj

η + 2 ∂xjΩk ω⊥k ∂xjΩℓ ω⊥ℓ ∂xiη

+ 4 ∂2xixj
Ωk ωk ∂xj

Ωℓ ω⊥ℓ η + 2(ω · Ω) ∂2xjxj
Ωk ωk ∂xi

η

+ 2 ∂2xjxj
Ωk ωk ∂xiΩℓ ω⊥ℓ η + 2(ω · Ω) ∂3xixjxj

Ωk ωk η. (160)

Thanks to (46) and (47), we have the following identities

⟨(ω · Ω)2⟩GηAΩ
=

(n− 1)S2 + 1

n
, ⟨1− (ω · Ω)2⟩GηAΩ

=
n− 1

n
(1− S2).

Furthermore, the decomposition (142) and the fact that |Ω|2 = 1, lead to the
following identities

∂xi
Ωk Ωk = 0, ∂2xixj

Ωk Ωk = −∂xi
Ωk ∂xj

Ωk,

(Pω⊥)kℓ∂xj
Ωℓ = ∂xj

Ωk, ∂2xixj
Ωk ∂xj

Ωk =
1

2
∂xi

(∂xj
Ωk ∂xj

Ωk)

∂3xixjxj
Ωk Ωk = −∂xj

(∂xi
Ωk ∂xj

Ωk)−
1

2
∂xi

(∂xj
Ωk ∂xj

Ωk),

∂2xjxj
Ωk ∂xi

Ωk = ∂xj
(∂xi

Ωk ∂xj
Ωk)−

1

2
∂xi

(∂xj
Ωk ∂xj

Ωk).

Thus, taking the bracket ⟨·⟩GηAΩ
of (160), noting that all odd powers of ω · Ω or

of ω⊥ vanish by antisymmetry and using (141) and the previous identities, we finally
get

〈
∇x∆x

(
η(ω · Ω)2

)〉
GηAΩ

=
(n− 1)S2 + 1

n
∇x∆xη

− 2S2

(
2∇xΩ∇xΩ

T + |∇xΩ|2Id
)
∇xη

− S2∇x ·
(
2∇xΩ∇xΩ

T + |∇xΩ|2Id
)
η.

Inserting this equation into (159), using (49) and noting that for a n× n tensor S
and a scalar φ, we have ∇x · (Sφ) = (∇x · S)φ+ ST∇xφ, we get

F 1
ρGηAΩ

= −β
α
∇x ·

[
η2
(
2∇xΩ∇xΩ

T + |∇xΩ|2Id
)]

+β
{n− 1

nα
η∇x∆xη −

(n− 1)α

n
ρ∇x∆xρ

}
. (161)

The first of the following identities follows again from the fact that |Ω|2 = 1 and
the second one is just straightforward algebra (which will also be applied with ρ
replacing η):

η2∇xΩ∇xΩ
T = ∇x(ηΩ)∇x(ηΩ)

T −∇xη ⊗∇xη,

η∇x∆xη = −∇x · (∇xη ⊗∇xη) +∇x

(
η∆xη +

1

2
|∇xη|2

)
.

Inserting these identities into (161), we get F 1
ρGηAΩ

= ∇x · σE +∇xφ, where σE is

given by (67) and φ is a scalar function (different from the one appearing at the end
of Section B.2) which can be absorbed in the pressure p. This ends the proof.
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B.4. Proof of the energy identity (74). Taking the dot product of (63) with
u, integrating with respect to x on Rn and using Stokes formula assuming that the
spatial boundary terms vanish at infinity, we get

d

dt

∫

Rn

|u|2
2

dx+
1

Re

∫

Rn

|∇xu|2 dx+
1

ReEr

∫

Rn

(σL + σE) : ∇xu dx = 0. (162)

We first compute the contribution of the Leslie stresses. Using the symmetry of
E and Ω⊗ Ω, we first have

[
α1

(
E : (Ω⊗ Ω)

)
Ω⊗ Ω+ α4E

]
: ∇xu = α1

(
E : (Ω⊗ Ω)

)2
+ α4|E|2. (163)

Then, we remark that
(
(Ω⊗ Ω)E

)
: ∇xu = |EΩ|2 − (EΩ) · (WΩ),

(
E(Ω⊗ Ω)

)
: ∇xu = |EΩ|2 + (EΩ) · (WΩ),

which, with the second equation (69), gives
[
α5(Ω⊗ Ω)E + α6E(Ω⊗ Ω)

]
: ∇xu = (α5 + α6)|EΩ|2 + γ2(EΩ) · (WΩ). (164)

Also, with (70), we have

N = −γ2
γ1
PΩ⊥EΩ+

1

γ1
PΩ⊥H := N1 +N2.

Remarking that (Ω⊗ Ω) :W = 0 by the antisymmetry of W , we get

(Ω⊗N1) : ∇xu = −γ2
γ1

[
Ω⊗

(
EΩ− (Ω · EΩ)Ω

)]
: (E +W )

= −γ2
γ1

[
|EΩ|2 −

(
E : (Ω⊗ Ω)

)2 − (EΩ) · (WΩ)
]
,

and similarly

(N1 ⊗ Ω) : ∇xu = −γ2
γ1

[
|EΩ|2 −

(
E : (Ω⊗ Ω)

)2
+ (EΩ) · (WΩ)

]
,

which, using (69), gives

[
α2Ω⊗N1+α3N1⊗Ω

]
: ∇xu = −γ

2
2

γ1

[
|EΩ|2−

(
E : (Ω⊗Ω)

)2]−γ2(EΩ)·(WΩ). (165)

Then, using (69), we compute

[
α2Ω⊗N2 + α3N2 ⊗ Ω

]
: ∇xu =

1

γ1

[
α2Ω⊗ PΩ⊥H + α3PΩ⊥H ⊗ Ω

]
: (E +W )

=
1

γ1

[
(α2 + α3)(PΩ⊥H ⊗ Ω) : E + (α3 − α2)(PΩ⊥H ⊗ Ω) :W

]

= PΩ⊥H ·
[γ2
γ1
EΩ+WΩ

]
= PΩ⊥H · PΩ⊥

[γ2
γ1
EΩ+WΩ

]

=
1

γ1
|PΩ⊥H|2 −H ·

(
∂tΩ+ u · ∇xΩ), (166)

where, for the last equality, we have used (70) and (68) and the fact that ∂tΩ+u·∇xΩ
is normal to Ω. Then, collecting (163) to (166) and using (66) leads to

∫

Rn

σL : ∇xu dx =

∫

Rn

ρ
{(
α1 +

γ22
γ1

)(
E : (Ω⊗ Ω)

)2
+ α4|E|2

+
(
α5 + α6 −

γ22
γ1

)
|EΩ|2 + 1

γ1
|PΩ⊥H|2 −H ·

(
∂tΩ+ u · ∇xΩ)

}
dx. (167)
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Expression (67) for the Ericksen stresses involves three terms which we will denote
by σΩ

E , σ
η
E , σ

ρ
E in the order in which they appear in this expression. We compute the

contribution of each term successively. We have, using Stokes’s formula, (73), (64)
and assuming that the boundary terms vanish at infinity:∫

Rn

σΩ
E : ∇xu dx = −2β

α

∫
Rn

(
∇x(ηΩ)∇x(ηΩ)

T ) : ∇xu dx

=
2β

α

∫
Rn

{
∆x(ηΩ) ·

(
(u · ∇x)(ηΩ)

)
+∇x(ηΩ)

(
(u · ∇x)(∇x(ηΩ))

T )} dx

=
2β

α

∫
Rn

{
η∆x(ηΩ) ·

(
(u · ∇x)Ω

)
+∆x(ηΩ) · Ω(u · ∇x)η +∇x ·

(
u
|∇x(ηΩ)|2

2

)}
dx

=

∫
Rn

ρH ·
(
(u · ∇x)Ω

)
dx+

2β

α

∫
Rn

∆x(ηΩ) · Ω(u · ∇x)η dx. (168)

A similar computation gives
∫

Rn

σηE : ∇xu dx = − (n+ 1)β

nα

∫

Rn

∆xη (u · ∇x)η dx, (169)

∫

Rn

σρE : ∇xu dx = − (n− 1)αβ

n

∫

Rn

∆xρ (u · ∇x)ρ dx. (170)

Now, we consider the Oseen-Franck energy and successively compute the time
derivative of each of the terms in (72). We first have, thanks to Stokes’s formula:

dEΩ
F

dt
=

2β

α

∫

Rn

Tr
{
∇x(ηΩ)

(
∂t∇x(ηΩ)

)T}
dx = −2β

α

∫

Rn

∆x(ηΩ) · ∂t(ηΩ) dx,

With (73), this leads to:

dEΩ
F

dt
+

∫

Rn

ρH · ∂tΩ dx+
2β

α

∫

Rn

∆x(ηΩ) · Ω ∂tη dx = 0. (171)

Straightforwardly, we get

dEηF
dt

− (n+ 1)β

nα

∫

Rn

∆xη · ∂tη dx = 0, (172)

dEρF
dt

− (n− 1)αβ

n

∫

Rn

∆xρ · ∂tρ dx = 0. (173)

Now, adding (162), (171), (172), (173) together, using (167), (168), (169), (170)

to eliminate σL and σE and finally using that Dtρ = 0 and Dtη = dη
dρDtρ = 0, we

get Eq. (74).

Appendix C. Appendix to Section 5 on GCI.

C.1. Proof of Proposition 10. We first note that Eq. (97) which defines hη can
be alternately written as (dropping the index η for simplicity):

(1− r2)h′′ +
(
2η(1− r2)− (n+ 1)

)
rh′ −

(
2ηr2 + n− 1

)
h = r. (174)

With (98), we have

h(r) = − 1

2η

1√
1− r2

g(cos−1 r).
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Then,

h′(r) = − 1

2η

[
− g′(cos−1 r)

1− r2
+
r g(cos−1 r)

(1− r2)3/2

]
,

h′′(r) = − 1

2η

[g′′(cos−1 r)

(1− r2)3/2
− 3r g′(cos−1 r)

(1− r2)2
+

(1 + 2r2) g(cos−1 r)

(1− r2)5/2

]
.

Inserting these expressions in (174) and changing r into cos θ, we get

g′′ +
cos θ

(
n− 2− 2η sin2 θ

)

sin θ
g′ − n− 2

sin2 θ
g = −2η cos θ sin θ, (175)

But, we have

1

sinn−2 θ

(
sinn−2 θ g′

)′
= g′′ + (n− 2)

cos θ

sin θ
g′.

With this and (52), we realize that (175) is nothing but (53).

C.2. Proof of Lemma 5.10. We use the same notations as in the proof of Lemma
B.2. From (156), we get





a1 = ⟨X4⟩ − 6 ⟨X2(1−X2)⟩
n− 1

+
3 ⟨(1−X2)2⟩
(n− 1)(n+ 1)

,

a2 =
⟨X2(1−X2)⟩

n− 1
− ⟨(1−X2)2⟩

(n− 1)(n+ 1)
,

a3 =
⟨(1−X2)2⟩

(n− 1)(n+ 1)
,

(176)

(177)

Thus, with the change to spherical coordinates used in the proof of Prop. 1, an
integration by parts, and Eqs. (46), (47) and (49), we get

a2 + a3 =
⟨X2(1−X2)⟩

n− 1
=

Cn
(n− 1)Zη

∫ π

0

eη cos2 θ cos2 θ sinn θ dθ

=
Cn

2(n− 1)ηZη

∫ π

0

eη cos2 θ(n cos2 θ − 1) sinn−2 θ dθ

=
1

2η

⟨nX2 − 1⟩
n− 1

=
S2(η)

2η
=

1

2αρ
, (178)

which shows the equality in (117).
Now, we have, thanks to (178)

(n− 1)(n+ 1)a2 = (n+ 2)⟨X2(1−X2)⟩ − ⟨1−X2⟩ = n+ 2

2η
⟨nX2 − 1⟩ − ⟨1−X2⟩.

Thanks to (46), (47), we have ⟨X2⟩ = 1
n (1 + (n− 1)S2(η)). So,

2n(n+ 1)ηa2 =
n

n− 1

[(
n(n+ 2) + 2η

)
⟨X2⟩ − (n+ 2 + 2η)

]

= (n(n+ 2) + 2η)S2(η)− 2η.
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Thus, with the change to spherical coordinates used in the proof of Prop. 1, we
have

2n(n− 1)(n+ 1)ηZηC
−1
n a2 =

=

∫ π

0

eη cos2 θ
[
(n(n+ 2) + 2η) (n cos2 θ − 1)− 2(n− 1)η

]
sinn−2 θ dθ

=

∫ π

0

eη cos2 θ
[
n(n+ 2)(n cos2 θ − 1) + 2nη(cos2 θ − 1)

]
sinn−2 θ dθ

=

∫ π

0

eη cos2 θ
[
2n(n+ 2)η cos2 θ sin2 θ − 2nη sin2 θ

]
sinn−2 θ dθ

= 2ηn

∫ π

0

eη cos2 θ
(
(n+ 2) cos2 θ − 1

)
sinn θ dθ

The passage between the third and fourth lines uses the same integration by parts
as in (178). The other equalities are just simple algebraic rearrangements. Com-
paring with (46), (47), we notice that the integral of the last line is equal to the

quantity S
(n+2)
2 which is the quantity S2 in dimension n + 2 up to a prefactor

(n+1)ZηC
−1
n . Thus, we have a2 = S

(n+2)
2 /(n− 1). Now, we can apply Prop. 2 (iii)

and conclude that 0 < a2 <
1

n−1 . In particular, a2 ̸= 0, which finishes to show (117).

Finally, it is a simple algebra, using (176) and (177) to show that

a1 + (n+ 4)a2 =
⟨nX2 − 1⟩
n− 1

= S2(η),

showing (118). This ends the proof.

C.3. Proof of Prop. 12. Let f = ρGηAΩ
with η ̸= η(ρ). This means that (49) is

not satisfied. In other words,

η′ = αρS2(η) ̸= η. (179)

From (48), it follows that αρQρGηAΩ
= η′AΩ. So, with (104), we get

DρGηAΩ
C∗g(ω) = L∗

η′AΩ
g(ω)− αρ (ρQ)GηAΩ

L∗
ηAΩ

g : ω ⊗ ω. (180)

Suppose that g is a GCI associated with (η,AΩ). Then, by (90), there exists V ∈
{Ω}⊥ such that

GηAΩL
∗
ηAΩ

g = (ω · Ω) (ω · V )GηAΩ . (181)

By a similar computation (using the same notations) to what was done in the proof
of Lemma 5.9, we get

αρ (ρQ)GηAΩ
L∗

ηAΩ
g : ω ⊗ ω = 2αρ(a2 + a3)(ω · Ω) (ω · V )

=
η′

η
(ω · Ω) (ω · V ). (182)

For the second equality, we have used that a2 + a3 = S2(η)
η (see the proof of

Lemma 5.10 in Appendix C.2) and (179). On the other hand, simple algebraic
manipulations and the use of (181) show that

L∗
η′AΩ

g(ω) = L∗
ηAΩ

g(ω) + 2(η′ − η)(ω · Ω)Pω⊥Ω · ∇ωg

= (ω · Ω) (ω · V ) + 2(η′ − η)(ω · Ω)Pω⊥Ω · ∇ωg. (183)
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Inserting (182) and (183) into (180) gives

DρGηAΩ
C∗g(ω) = (η′ − η)(ω · Ω)

[
− 1

η
(ω · V ) + 2Pω⊥Ω · ∇ωg

]
.

Suppose now that g is also an element of ker (DρGηAΩ
C∗). This implies that

2Pω⊥Ω · ∇ωg =
1

2η
(ω · V ). (184)

From now on, we restrict to dimension n = 3 and use the spherical coordinates (θ, φ)
associated to the cartesian basis (V,W,Ω) with pole at Ω (defining W = Ω × V ,
using the symbol × for the cross product). In these coordinates, (184) is written in
terms of g̃(θ, φ) = g(ω) according to

∂θ g̃ =
1

2η
cosφ.

Thus,

g̃(θ, φ) =
1

2η
θ cosφ+ h(φ),

where h is an arbitrary function. The smoothness of g at ω = Ω requires h = 0.
However, we see that g cannot be smooth at ω = −Ω (i.e. for θ = π) because the
function θ cosφ does not tend to a constant when θ → π. However, by the elliptic
regularity theorem, g ∈ C∞(Sn−1). This is a contradiction. This means that the
only possible solution is when V = 0, i.e.

CηAΩ
∩ ker (DρGηAΩ

C∗) = {0}.

Since CηAΩ ̸= {0}, this shows (103) (with Σ = AΩ) and ends the proof.

Appendix D. Appendix to Section 6 on the derivation of the equation
for Ω.

D.1. Proof of Eq. (132). We first consider γ̃3. With (127), (128) and (125), and
using the spherical coordinates and the notations Cn and Zη described in the proof
of Prop. 1 as well as the change r = cos θ, we have (dropping the indices ηAΩ to G
and η to h for simplicity):

γ̃3 =
ρ

n− 1

∫

Sn−1

Gh (ω · Ω)
(
1− (ω · Ω)2

)(
2η

(
1− 2(ω · Ω)2

)
− 2n

)
dω

=
ρ

n− 1

Cn
Zη

∫ 1

0

(1− r2)
n−1
2 eηr

2

r
(
2η(1− 2r2)− 2n

)
h dr, (185)

Besides, multiplying Eq. (97) by r, integrating with respect to r ∈ [0, 1], and noting
that, thanks to two successive integration by parts we have
∫ 1

0

r
(
(1− r2)

n+1
2 eηr

2

h′
)′
dr =

∫ 1

0

(1− r2)
n−1
2 eηr

2

r
(
2η(1− r2)− (n+ 1)

)
h dr,

we get
∫ 1

0

(1− r2)
n−1
2 eηr

2

r
(
2η(1− 2r2)− 2n

)
h dr =

∫ 1

0

(1− r2)
n−1
2 eηr

2

r2 dr. (186)
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Inserting (186) into (185) and integrating by parts once more, we get

γ̃3 =
ρ

n− 1

Cn
Zη

∫ 1

0

(1− r2)
n−1
2 eηr

2

r2 dr

=
ρ

n− 1

Cn
Zη

1

2η

∫ 1

0

(1− r2)
n−3
2 eηr

2

(nr2 − 1) dr

=
ρ

2η

∫

Sn−1

G
n(ω · Ω)2 − 1

n− 1
dω =

ρ
〈
P2(ω · Ω)

〉
G

2η
=
ρS2(η)

2η
,

where, in the last line, we have reverted back to the variable ω and used (46)
and (47). This shows the first equation in Formula (132).

We now consider γ̃1. Changing to spherical coordinates in (125), we get

γ̃1 =
2ηρ

n− 1

Cn
Zη

∫ π

0

eη cos2 θ h(cos θ) cos θ sinn θ dθ.

Using (98) and (52), this can be changed into

γ̃1 = − ρ

2η(n− 1)

Cn
Zη

∫ π

0

eη cos2 θ g(θ)
dŨ0

dθ
sinn−2 θ dθ

But from (45), we have
Zη

Cn
=

∫ π
0
eη cos2 θ sinn−2 θ dθ, which leads to the second

equation in Formula (132).
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