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ABSTRACT. This paper deals with the convergence of the Doi-Navier-Stokes
model of liquid crystals to the Ericksen-Leslie model in the limit of the Debo-
rah number tending to zero. While the literature has investigated this problem
by means of the Hilbert expansion method, we develop the moment method,
i.e. a method that exploits conservation relations obeyed by the collision oper-
ator. These are non-classical conservation relations which are associated with
a new concept, that of Generalized Collision Invariant (GCI). In this paper,
we develop the GCI concept and relate it to geometrical and analytical struc-
tures of the collision operator. Then, the derivation of the limit model using
the GCI is performed in an arbitrary number of spatial dimensions and with
non-constant and non-uniform polymer density. This non-uniformity generates
new terms in the Ericksen-Leslie model.
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1. Introduction. We consider the Doi kinetic model of liquid crystals coupled
with the Navier-Stokes equation for the fluid solvent. We investigate the limit of
the Deborah number tending to zero by means of a moment method. The limit
model is a system of fluid equations named the Ericksen-Leslie model [25, 37, 59].
In classical kinetic theory, there are two methods to derive fluid equations, the
Hilbert expansion method [7, 11, 26, 34] and the moment method [5, 52]. However,
for a number of kinetic models including the Doi model, only the Hilbert method
can be used. Indeed, the moment method is subject to a condition on the number
of conservation relations satisfied by the collision operator and this condition is not
satisfied by the Doi model. This is why the Hilbert expansion method is the only
method developed in the literature so far (see e.g. [25, 37, 59]). In the present
work, we address the question whether the moment method can be used for the Doi
kinetic model.

The moment method relies on the requirement that the space of collision invari-
ants (the quantities conserved by the collisions operator) has the same dimensions
as the number of free parameters in the local equilibrium distribution function. This
requirement is not satisfied for the Doi model. The goal of this paper is to show
that the moment method can still be used for this model but necessitates a weaker
concept of collision invariant, that of “generalized collision invariant” or GCI. This
concept has first been introduced in [23] to derive the fluid dynamic limit of the
Vicsek model [55]. Since then, the GCI concept has been applied to a variety of
collective dynamics models [17, 18, 19, 21, 22, 30]. The present work is its first
application to visco-elastic fluid models.

Visco-elastic fluids have been the subject of an abundant literature (see e.g.
[2, 3, 16, 24, 32, 58] for reviews). The Doi model is one of the most fundamen-
tal models of visco-elastic fluids [24]. It models an assembly of polymer molecules
flowing in an incompressible fluid (the solvent). The polymer molecules are as-
sumed to be rigid spheroids mutually interacting through alignment and subject
to noise. They are represented by a distribution function of their position and
orientation. After Onsager and Maier-Saupe [50, 53], alignment accounts for the
volume exclusion interaction between the molecules. Alignment is of nematic type,
i.e. invariant if the head and tail of the molecules are flipped. Following Landau
and de Gennes [16], the interaction depends on the Q-tensor, a quadratic quantity
which respects this invariance. The fluid solvent is modelled by the incompressible
Navier-Stokes equations. Polymer molecules are transported by the fluid and ro-
tated by the fluid gradients. In turn, they influence the fluid through extra-stresses
depending on their distribution function. The mathematical theory of this model
has been investigated in [45, 54, 62] and for active particles, in [13].

The Doi model involves a dimensionless parameter, the Deborah number which
describes the alignment rate of the polymer molecules. When this parameter goes
to zero, the distribution of orientations tends to a profile which depends on two pa-
rameters, the polymer density p and the polymer molecules average orientation (2
which are functions of space and time. In the case of a constant density p, it is shown
in [25, 37, 59] that the mean orientation satisfies a transport-diffusion equation. Its
coupling with the Navier-Stokes equations leads to the so-called Ericksen-Leslie sys-
tem [27, 38]. The convergence is formal in [25, 37] and rigorous in [59]. In all cases,
the method relies on the Hilbert expansion. There is an abundant mathematical
literature on the Ericksen-Leslie system per se [35, 42, 43, 44, 60].
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Here, our goal is to provide a formal convergence proof of the Doi model to the
Ericksen-Leslie model using the moment method. Specifically, we will derive the
appropriate GCI concept, discuss its rationale and relation to the Hilbert expansion
method. There are several motivations to develop a moment method even if a
Hilbert expansion theory already exists. The first one is that the GCI concept has
an underlying geometrical structure which is worth highlighting and may lead to new
structural properties of the Doi model. The second reason is that a mathematical
theory based on the moment method often requires less regularity than the Hilbert
expansion method (compare e.g. [4] with [7]). This potentially opens the way to
simpler convergence proofs from the Doi to the Ericksen-Leslie models. The third
reason is that the moment method naturally leads to the development of efficient
numerical methods [33, 39] which might enable us to handle the complexity of the
Doi kinetic model in a systematic way.

Aside to this main goal, we will pursue two secondary goals. The first one is
to provide a treatment of the small Deborah number limit in arbitrary dimension.
So far, this has only been done in dimension 3. This extension is made possible
by Wang and Hoffman [56] who have determined the spatially uniform equilibria
in any dimension. Although dimension three is the physically relevant case, there
are several reasons for considering an arbitrary dimension. The first one is that
the use of dimension 3 often conceals simple structures under dimension-specific
concepts and notations. Then, as argued in [12], the use of an arbitrary dimension
often reveals hidden and interesting mathematical properties. Finally, fluid-dynamic
equations are based on simple postulates that may be adapted to other objects such
as information flow in abstract spaces of large dimensions.

The second side goal is to investigate the effect of a spatially non-uniform den-
sity of polymer molecules. To the best of our knowledge, earlier work on the small
Deborah number limit [25, 37, 59] have assumed the density of polymer molecules
to be constant. Investigation of Ericksen-Leslie models with non-uniform order pa-
rameter has been made in the literature [8, 9, 27, 40, 41, 46], but none has explicitly
linked this non-uniform order parameter to the non-uniform polymer density (as is
should as we will see) and derived these models from kinetic theory. Non-uniform
polymer density results in modifications of the equations for the mean director 2
and for the extra-stresses that will be highlighted in this work.

The organization of this paper is as follows: Section 2 gives an exposition of
the Doi-Navier-Stokes model and the small Deborah number scaling. Section 3 is
devoted to the statement of the main result, namely the formal convergence of the
Doi-Navier-Stokes model to the Ericksen-Leslie model in the zero Deborah number
limit. Section 4 describes the local equilibria. Section 5 develops the GCI concept
for the Doi model and discusses it. In Section 6, the limiting equations of the
Doi model when the Deborah number tends to zero are derived. Conclusions and
perspectives are drawn in Section 7. Auxiliary results stated in Sections 2, 3, 5 and
6 are proved in appendices A, B, C and D respectively.

2. Kinetic model for rod-like polymer suspensions and scaling.

2.1. The Doi equation. In this paper, we consider the Doi model [16, 24, 25,
37, 54, 57, 59], where polymer molecules are identified as spheroids. We consider
the semi-dilute regime [24, 25, 57] where a volume-exclusion interaction potential
needs to be incorporated. We neglect the inertia of the polymer molecules. Follow-
ing [25, 37, 57], we describe the polymer molecules by a kinetic distribution function
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f(z,w,t) where z € R™ is the position, w € S*™! is the molecule orientation and
t > 0 is the time. We let S"~! be the unit (n — 1)-dimensional sphere and since w
and —w refer to the same molecular orientation, we impose

flzyw,t) = f(z, —w,t). (1)

Let u(x,t) € R™ be the fluid velocity. In general, the dimension n = 2 or 3 but the
theory will be developed for any value of n. The equation for f (the so-called Doi
equation) reads as follows:

Oif +Va-(uf) + V- (f (AP E=W)w) =DV - (Vo f + I@% FYLUR). (2)

Here, D denotes the rotational diffusivity, 7', the fluid temperature and kg, the
Boltzmann constant. The tensors EF and W are respectively the symmetric and
anti-symmetric parts of the velocity gradient, given by

1 1

The symbols V, and V- refer to the spatial gradient and divergence operators while
V., V.- to the gradient and divergence operators on the sphere S"~! respectively.
The notation V u refers to the gradient tensor of u defined by (Vgu);; = 05,u; and
the exponent ‘T’ indicates the transpose. The dimensionless quantity A is related to
the aspect ratio (ratio between the semi-axes) of the spheroidal polymer molecules.
Finally, P,. = Id — w ® w for w € S"~! denotes the projection operator of vectors
onto the normal hyperplane to w. Throughout this paper, Id denotes the identity
matrix and if w = (u;);=1,..» and v = (v;)i=1,....n are two vectors, u ® v denotes
their tensor product, i.e. the n x n tensor (u®wv);; = u; v,;. For two n x n tensors S
and S’, S8’ stands for the matrix product of S and S/, hence the meaning of P, F.
The surface measure on the sphere will be normalized, meaning that fSn,l dw = 1.

The quantity U ]13 is the interaction potential stemming from volume exclusion
between the polymer molecules. In the Maier-Saupe theory [50], this interaction
potential reads

1 |z — =z
R
‘w,t) = kgT —K(
Up(z,w,t) B V_/Rnxgn—l T 7

i

) (1—(w-w)?) f(2',w',t) dw' da’, (4)

where v is the potential strength. Following the formalism proposed by [25, 57],
a spatial non-locality is introduced by means of the kernel K: [0,00) — [0, 00),
& — K (&) which describes the influence of two neighboring molecules. Specifically,
two molecules separated by a distance £ influence each other with strength #K ( %),
where R is the typical interaction range. The kernel K satisfies [y, K(|z|) dz = 1.
An equivalent expression of U f’ is

n—1
],

U (w,0,1) = kpTvpff [~ (w- Qflw) + (5)

where p? and QJI? are the locally averaged particle density and orientational de
Gennes Q-tensor given by

pf(z,t) = /]R"xS"-l %K('x ;%x |> f(@' w,t) dwdz’, (6)
(of Q) (z,t) = /R“ s %K(m ;%x |) (w@w - %Id) f(@' w,t)dwdz’. (7)
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Note that Q? is a trace-free symmetric matrix obtained by averaging w®w— %Id over
the probability distribution p?(x, ) ' RT"K(|r — 2'|/R) f(2',w,t) dwdx’. Conse-
quently, thanks to the min-max theorem, its eigenvalues \ satisfy the inequality
Lot (8)
n n
The following fully local versions of the polymer density and orientational tensor:

= = 1. R
Py /Sn—l fdw RILHO pf7 (9)
1
prQy /SH (W®w Sld) fdw = lim pyQF, (10)
will also be useful. From (5), it follows that

1
kpT
so that an alternate formulation of the Doi equation (2) is given by
OWf+ Ve (uf)+ V- (f (AP, E—W)w)
=D(AuLf — 21//)55z V- (waLQ?W)). (11)

We note that Eq. (11) preserves the symmetry constraint (1). The second and
third term at the left-hand side of (11) model passive transport of the polymer
molecules by the fluid: the second term corresponds to translation of the molecules
by the fluid velocity and the third term to their rotation by the gradient of the
fluid velocity. Here, we assume that the polymer molecules can be described by
spheroids, i.e. ellipsoids, in which n — 1 semi-axes b are equal. The aspect ratio p
is the ratio a/b where a is the remaining semi-axis. The quantity A is related to p

by A = 2211 In particular, A € [-1,1] and A = 1 for infinitely thin rods, A = 0
for spheres, and A = —1 for infinitely flat disks. The rotation operator is derived
from Jeffery’s equation [36]. The first term at the right-hand side of (11) describes
Brownian effects due to rotational diffusion. We neglect translational diffusivity, as
it is usually much smaller than rotational diffusivity [16]. The second term at the
right-hand side of (11) takes into account the volume exclusion interaction between
the molecules and drives the distribution to that of a system of fully aligned polymer

molecules. To measure the degree of alignment of the molecules, one introduces

VwUf(x, w,t) = —2up? P, Q?w,

Xf = %Af with Ay = the largest eigenvalue of Q¢, (12)

where Q¢ is given by (10). This quantity can be seen as the order parameter for the
distribution f. We have x¢ € (0,1). If f is close to the uniform distribution on the
sphere, which corresponds to a fully disordered distribution of polymer orientations,
then x is close to 0. By contrast, if f is close to %((59 +0_q) where Q is any vector
on S™!, which corresponds to a fully aligned distribution of polymer orientations
in the direction £(2, then, xy is close to 1.

To ensure thermodynamic consistency, one introduces the polymer free energy
[25]:

AR@y:/" MBT(fbgfff)+1Uffhhdw
Rn xSn—1 2

From (4), it is easy to check that the quantity fR"XSn71 U f"gdm dw defined for
two functions f and g of (x,w) is a symmetric bilinear form. Then the functional
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derivative ,u? = %, also referred to as the chemical potential, is given by

n—1
uff = kpTlog f + U = kpT (log f —vpff [(w- Qfw) = *—]).  (13)
Thus,
Vo
Vw:u? = kBT (Tf

so that (2) can also be written:

— 2wpff P,uQfw), (14)

Of+Ve - (uf)+ Ve (f(AP,LE —W)w) = /@%Tv“ (f Vo). (15)

The right-hand side of (15) can be viewed as describing the steepest descent in
the direction of the minimum of the polymer free energy. This is also known as
the maximal dissipation principle. Using Green’s formula, we have the following
identity (provided f vanishes fast enough at infinity), whose proof is sketched in
Appendix A.1:

dAR R R D R|2
@ Voudr — | FE.oude— = Vo2 dedw, (16
dt /naf war /n froude =5 | g Ve [P dwde, - (16)

where af is the extra-stress tensor and Ff is a body force, given by :

oft = /S (A(w@un?)s—i- (mmjf)a) fdw, Fft = — /S  Vapf fdw. (17)

Here, for two n x n tensors S = (S;;)ij=1,..n and S’ = (Sll-j)ij:17___7n, we denote by
S 8" = Si; S}, their contraction (with the repeated index summation convention)
while S5 and S, are respectively the symmetric and antisymmetric parts of S namely
Ss=3(S+57T), Sy = 3(S—ST). Contractions and tensor products will be defined
and noted similarly for tensors of higher order.

2.2. The Navier-Stokes equations. The Doi equation (2) (or equivalently, (11)
or (15)) is coupled to the Navier-Stokes equation for the fluid velocity, which is
written [24, 25, 57]:

PF (afu +u- vzu) +Vep =V, - (U? + Ty + 7}»“) + FfR’ (18)
Vo -u=0. (19)

Here pp is the fluid mass density. The extra-stress tensor U? is given by (17) while 7,
and 7Ty, are contributions of the fluid and polymer molecules to the viscous stresses
respectively given by

kT
Tu:277E, ﬂ,u:CTprfE,

with the fourth order orientational tensor Tf given by

pfTy = / w® f dw. (20)
S§n—1

For a m x n tensor S, its divergence V, - S denotes the vector defined by (V, -
S); = 05,5i; (using the repeated index summation convention). As above, Ty : E
denotes the contraction of Ty and E with respect to two indices. Although Ty
is a fourth order tensor, it is symmetric, so which pair of its indices is concerned
by the contraction is indifferent. The quantity 7 is the fluid viscosity. Using the
divergence-free condition (19), we remark that V. - 7, = n Azu. The quantity ( is
a dimensionless number. In [24], for the dilute polymer regime in dimension 3, it is
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shown that ( = % But this derivation requires the use of the Oseen tensor which has
dimensional dependence [12] and thus, the value of ¢ changes with the dimension.
Moreover, even in dimension 3, in the semi-dilute regime considered here, the value
of ¢ may be different from % [24, Section 9.5.1]. So, we shall consider ¢ as a free
parameter of the model.

We have the following expression for the extra-stress:

A+1 A-1
oj?:nkBTAprer/ [%w@VwUf—F?VMU}?‘@w fdw. (21)

sn-
However, although more complicated, the following expression, which is valid if f
is a solution of the Doi equation (2), will turn out to be more useful:

kT A 2A
of = - 5pr[AEQs +QsE) + QW ~WQ + - E—2AT; : E
1
—Dy Q] +§/S 71(w®VwUf7VwU;?‘®w)fdw, (22)
where
Dt :8t+u~Vz, (23)

is the material derivative. Eq. (21) results from the first equation of (17) after inser-
tion of (14). Eq. (22) is obtained by multiplying Doi’s equation (15) by w®w — %Id
and integrating with respect to w, followed by some algebra. These computations
have been done in [25, 37, 59] for n = 3 and are sketched in Appendix A.2 for any n.

The rationale for involving a}% and F f in the coupling between the Navier-Stokes
equations (18) and the Doi equation (2) is thermodynamical consistency. Indeed, we
have the following total free energy dissipation identity (provided spatial boundary
terms vanish in the integrations by parts):

d

—&f 4Dl =0 24

i : (24)
where £ is the total free energy (sum of the fluid and polymer free energies):

1
ER(t) = / L oplul? dz + AR,

2
and DF is the total free energy dissipation:
R D R2 kgT(
DE(t) = — [\ Verf| dedo+ | (2nE: E+ psTy: (EQE))dz,
k?BT R xS§n—1 n D

where now, Ty : (E ® E) indicates the contraction of the fourth order tensors T
and F ® F with respect to all four indices. We have omitted the dependence of E
on u for simplicity.

2.3. Scaling. We now introduce a suitable scaling of this model. Let z¢, ty and pg
be space, time and polymer density units and let ug = xq/to, fo = po, o0 = kT po,
po = prud, Fy = 0o/x0, Uy = kT be units for velocity, distribution function, stress
tensor, fluid pressure, elastic force and potential respectively. Then, we introduce
the following dimensionless quantities:

1 D - R
De = —, Rezw, Er= ! , a=vpy, R=—.
Dty n kT po xg
The dimensionless quantities De, Re and Er are the classical Deborah, Reynolds
and Ericksen numbers, which respectively encode the relaxation time of the polymer

molecular assembly to equilibrium, the ratio of inertial to viscous forces in the fluid
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and the ratio between the viscous and extra stresses. The parameters o and R are
measures of the molecular interaction intensity and range respectively. The other
dimensionless parameters of the model are ¢ and A. Introducing scaled variables
' =x/xg, t' =t/typ and unknowns f(x,w,t)dzdw = pg f'(2',w,t') dz’ dw, u(x,t) =
upu/(x',t'), ..., we can deduce the following dimensionless form of the Doi model
(dropping the primes for clarity):

Of+Ve - (uf)+ Ve (f(APrE—W)w) = Dievw . (vwf+fvaJ5), (25)
with i i . )
UF = apf [~ (w- QFw) + ],

n
and ,0]1?“, QJI? given by (6), (7) with R replaced by R. The polymer free energy is
now given by

AR (1) :/Rnxsn_l(f logf—f—k%Uf‘f)dxdw

: o1, B _ SAR
and the chemical potential p F =57 by
_ _ o n—1 =
u? :logf+Uf‘:logf—a(w~p?Q?w)+osz?.
Thus, the expression at the right-hand side of (25) is equivalently written
Ve (Vof + FVLUF) = Vi - (f Vo) = Auf — 20pFVo(f B QFw).
The scaled Navier-Stokes equation reads as follows

(5ol 4 7).

1 1 1
Ou+u-VoutVap = 2= Vo (Tu+ 5 Tru) + 7ol De

Re
Ve -u=0,
Tw =2F, 7;”,u:Cprffl
with a?‘, FF given by (17) with R replaced by R and py, Ty given by (9), (20).
Expressions (21), (22) for the stress tensor are scaled into
A+1 A-1

of = nAprf+/Sn71 (S5 we VLU + == VU u| fd.

A 2A
= Degpf[A(EQf+QfE)+QfW—WQf+?E—2ATf:E
1 _ _
~D,Qy] +§/STL71(M®VMU]5—VwUf”®w)fdw, (26)

with @y still given byi(l()). The free-energy dissipation identity is still written
as (24) with £ and D now given by

_ 1 1 —
R _ 1 2 Y -)
& = 2/ ulde + o Epe
A 1 1
1 P2
T — Voult” dz d , 27
Re Er De? /RnXSn—lf| uf| T (27)

where, for a n x n tensor S, |S| denotes the Frobenius norm of S, i.e. |S|? =
Tr{STS}.
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The goal of this article is to investigate the limit of the Deborah number De

tending to zero through the use of the new “generalized collision invariant” concept.

In doing so, we will keep the parameters Re, Er and « of order unity. As for R,

following [25, 59], we make the scaling R = O(v/De). This scaling assumption is

analogous to the weakly non-local interaction scaling of the Vicsek model [20]. As
we may choose the time and space units independently, we assume:

De = ¢, R =/, € —0,

and assume Re, Er and « independent of €. A straightforward Taylor expansion
shows that

oY = pr+eBlpr+OED,  pl QY = pr Qs+ BAps Q)+ O,
where

1
8=g0 | K(a) ol e (28)
Then, we can expand U}E = UJQ +eUt + O(e?), u}ﬁ = u?c +epf + O(e?) with
v) = nol O =log f+UY 29
= Oépf[—(w'wa)‘FT], py =log f+Ug (29)
Up = pp=pBAUY. (30)
Straightforward computations show that
0 272 | 1
/S _1cu®VwUffdw:—2ozpf[Qf—|—ﬁQf—']I‘f:Qf]7 (31)
so that the left-hand side of (31) is a symmetric tensor. We deduce that the integral

term in (26) is O(e), so that O'fE = O(e). Additionally, similar computations as
for (31) lead to

/S (W@ VLU = VU @w) fdw =208 ps [Aa(prQr)Qr = QrAalpsQy)].
So, we can write 05? = 50} + O(e?) with

A 2A
o; = Pry [AEQs 4+ QfE) + QsW — WQj + B 20T E
~DiQs] + aB ps [AulprQr)Qr — QrAu(prQy)]- (32)
We also note that F]}E = V. +eFf 4 O(e?), with

n—1

Q
o} = Pf—gp?[inQf— —; F}:_/SR,IVI“}N‘*" (33)

We let p° = p® + %RelEr <p?. We will omit the tilde below for simplicity. Since the

O(e?) terms in all these developments have no contribution to the limit model when
e — 0 (at the leading order), we will just ignore them.
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We finally get the following perturbation problem:
Of*+ Ve (Wf)+ Ve (fS(AP,LE° —W*)w)

1
+2a BV - (f° PyrAsu(ppe Q) w) = - (AwfE —2aps=Vy - (fF Py Q= w)) /(34)

1
Ou® +uf - Vyu® + Vp® = Q{AIUE +

1 13
o [CVe (ppe Ty s B + Voo + FE o (35)
Vo u =0, (36)

where o}. is given by (32) and F}. by (33).
We define the transport operator T, (f) (for a given time-dependent vector field
u: R™ x [0,00) — R™) and the collision operator C(f) by

+20 8V - (f Pyr Bulpy Qf)w), (37)
C(f) = Awf - QOZPwa ' (f PwiQf w) =V, - (f vw,u?) (38)

so that (34) is written
T () = 2C(F) (40)
5A°

We note that u(} = G Is the functional derivative of the free energy A° =
lim._,o AVE given by

Ao(t):/Rn o logf—f+%U})f)dxdw, (41)

and recall that UJQ and ,uF} are given by (29). We refer to [25] for the formulation of
the free energy dissipation identity for the whole model (34)-(36).

3. Main result.

3.1. Preliminaries. The purpose of this paper is to derive the limit of model (34)-
(36) when £ — 0. Before stating the result, we need a few preliminaries. We note
that C given by (38) operates on the variable w only and leaves (z,t) as parameters.
This justifies the definition:

Definition 3.1. A function f: S"~! - R, w + f(w) is called an equilibrium of C
if and only if it satisfies

O(f) = 0. (42)

Remark 1. We note that f is an equilibrium if and only if f is a critical point of
the free energy functional A° given by (41) in the spatially homogeneous case (i.e.
when f is a function of w only and integration with respect to x in the definition of
A% is ignored) [1, 47, 48, 59]. Moreover, such equilibria will be called “stable” if they
correspond to local minimizers of this free energy (see [28] for n = 2, [1, 29, 47, 48]
for n = 3 and [31] for n = 4).

The equilibria will attract the dynamics as ¢ — 0 and their determination is of
key importance. For this purpose, we introduce the Gibbs distributions:
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Definition 3.2 (Gibbs distribution). Let S be a trace-free symmetric matrix.
Then, the Gibbs distribution G g associated with S is given by:

1
Gs(w) = Z—Sew'sw, Zg = /S » e 5% duw. (43)

Next, we introduce the

Definition 3.3 (Normalized prolate uniaxial trace-free tensor). Let € P"~! :=
S"=1/{£1}. Then, the normalized prolate uniaxial trace-free tensor in the direction
of ), Aq, is defined by

1
Aqg =00 — —Id. (44)
n
Agq is a traceless symmetric tensor with leading eigenvalue equal to ”T’l

Agq is called a uniaxial tensor because it has only two eigenvalues with one being
simple. The simple eigenvalue has associated normalized eigenvectors +{2. The
line spanned by 2 is called the axis of the uniaxial tensor. It is trace-free and
consequently, the two eigenvalues have opposite signs. It is called prolate because
the simple eigenvalue is positive (it would be called oblate in the converse case). It
is normalized meaning that its leading eigenvalue is exactly an We note that Ag
is invariant by the change Q@ — —Q showing that it actually depends on (2 seen as
an element of the projective space P"~! = S"~1/{41}.

Proposition 1 (Gibbs distributions of uniaxial tensors). The Gibbs distributions
Gy aq associated to tensors of the form 1 Aq with n > 0 are given by

1
Gyag(w) = " 7, = / e d, (45)
Zy gn-1
where the normalization constant Z, does not depend on §2 but only on 7.

Proof. Eq. (45) is obvious from (44). Defining § € (0, 7) such that cosf = (w - )
and changing w to (6,z) where z € S*~2 through w = cos 0 + sinf z, with dw =
C,sin""20df dz (C, being such that C, foﬂ sin”260do = 1 and Jon—2dz =1), we
get:

Zy = Cn/ e cos” 0 ginn=2 ¢ do,
0
which does not depend on €. O
For two functions g and ¢: S"~! — R, with ¢ > 0 a.e., we define:

~ Jon 9(W) p(w) dw
(9)e = Jsn—1 p(w) dw

We introduce the following

Definition 3.4 (Definition of Sy and S4). The quantities S3(n) and S4(n) are
defined by

Sa(n) = <P2(w ) Q)>GnA97 Sa(n) = <P4(w ’ Q)>G7,A97 (46)
where P>(X) and P2(X) are the polynomials
PAX) = —Lo(nX?-1), (47)
Py(X) L [3—6(n+2)X?+ (n+2)(n+4)X"].

(n—1)(n+1)



428 PIERRE DEGOND, AMIC FROUVELLE AND JIAN-GUO LIU

For the same reason as in Proposition 1, S5 and S4 do not depend on €. In
dimension n = 3, the polynomials P, and P, are the Legendre polynomials of
degree 2 and 4 respectively. About S, we have the following proposition, which
will be proved in Appendix B.1.

Proposition 2 (Properties of S3). (i) We have
Qa, 4, = 52(n) Aq. (48)

(ii) The order parameter (12) of the distribution pGpag, s XpG,a, = S2(1)-
(#ii) So is a mon-decreasing function from (0,00) onto (0,1), i.e. S2(0) = 0 and
So—1asn— .

We note that, when n — 0, G4, converges to the uniform probability distri-
bution on S"~!. Likewise, when n — oo, Gya, concentrates on two Dirac deltas
(8 + 6_q) which characterizes fully aligned distributions of molecules in the di-
rection 2. Therefore, So takes the value 0 on fully disordered distributions and
the value 1 on fully ordered ones. As 7 increases, G4, shows increasing order
evidenced by the increase of the order parameter S;. Now, we have the following

Proposition 3 (Implicit definition of n(p)). The implicit equation
n
Ocip = Sa(n), (49)
has at least a root n if and only if p € (p*,+00) where p* > 0. It has at most
two roots. By choosing the largest root (which is necessarily nonnegative), it defines
a smooth non-decreasing function (p*,+00) — (n*,+00), p — n(p), where n* =
lim,_,,- n(p) > 0.
This proposition is a consequence of the result of Wang and Hoffman [56] which

will be recalled in Section 4. With this, we formulate the following conjecture, which
has been verified in dimension n = 2 [28], n = 3 [1, 29, 47, 48] and n = 4 [31].

Conjecture 1 (Stable anisotropic equilibria). The set £ of stable anisotropic equi-
libria (in the sense of Remark 1) is given by

E={pGypyan | € (p*,+0), QP 1}

We will only consider anisotropic equilibria, i.e. belonging to the set £ above.
Stable isotropic equilibria (i.e. such that f = p is independent of w) do exist but
will not be used here.

Remark 2. In the case n = 3, using the change of variables z = cosf and an
integration by parts, Eq. (49) can be recast as

3e 4n?
Jo €% dz op
Upon changing n into —n and making p = 1, we recover Eq. (1.9) of [48] and Eq.
(3.2) of [59] (up to a typo in the latter: a factor 4 is missing in front of the n? term).
Now, we introduce the molecular interaction potential at equilibrium Ug

where UJQ is given by (29). Thanks to (48), (49), we have
apQc, ., = 1(p)Aq. (50)

Gnag
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Thus, introducing 6 € [0, 7] such that w - Q = cos, straightforward computations
give

0 n—1 1 n—1

UpGpa, = 0w Agw)+——ap=—n(w Q- —)+ ap  (51)
1 -1 -
so defining the function Uy(#). We note that
U,
diﬁo = 21 cos f sin 6. (52)

For two functions ¢ and 1 defined on [0, 7] with ¢ > 0, a.e., we define

o e(0)¢(6) sin™ 26 df
(edw = Ofoﬂ 5(60) s 70 a8

Thanks to these notations, we can state the

Definition 3.5 (Auxiliary function g). The function g: [0,7] — R, 6 — ¢(0), is
the unique solution (in a sense made precise in Section 5) of the elliptic equation

1 d d dUy, d dU
(siw-2920) - Lods o) Yo (53)

sin" 29 df o) do do sin?0  do

Note that, in the special case n = 3, (53) coincides with Eq. (5.31) of [37].
Thanks to g we have the following proposition, proved in Section 6.2:

Proposition 4 (Constant ¢). Assume A # 0. Then, the constant ¢ given by

.= (n — 1)AS>(n) (54)

<<g % >>exp(77 cos? 6)

is such that ¢/A > 0.

In dimension n = 3, this formula coincides with formula (5.33) of [37]. We now
introduce the following definitions

Definition 3.6 (Definition of the Leslie constants oy, & = 1,...,6). The Leslie
constants ag, k =1,...,6 are defined by

o = (C—AYS,, a2=—%(%+1)7 0432%(%_1)7 (55)
o = MM (AL A 2Ny, (57)
as = f%54+(—%+%2+%)52, (58)

where Sy and Sy are given by (46) and their dependence on 1 has been omitted for
simplicity, and where ¢ is given by (54). We note Parodi’s relation: ag—as = as+as.
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3.2. Main result: Statement and comments. Now, our aim is to prove the
following formal result:

Theorem 3.7 (Formal limit of model (34) - (36)). We assume n > 2, A # 0. For
n > 5, we assume that Conjecture 1 is true (for 2 < n < 4, this conjecture is a
theorem [1, 28, 29, 31, 47, 48]). When € — 0, we assume that (f,u®) — (f,u) as
smoothly as needed, where f(x,-,t) is a stable anisotropic local equilibrium for all
(z,t). Then, on the open set

B={(z,t) e R" x [0,00) | ps(z,t) > p*}, (59)
(where p* is defined at Proposition 3), we have
f(@,w,t) = p(a, ) Gr(p(a,6) Aga,y (W), (60)

where the function (p*,00) 3 p— n(p) € [0,00) is defined by (49). The functions
(z,t) = (p,Qu)(z,t) satisfy the following system of partial differential equations
(called the Ericksen-Leslie system):

Owp+ Vg - (pu) =0, (61)
2
1 1
o=01+0g, (65)
o =p{a1(E:(Q®0) Q@0+ Q@ N +azsN @ Q
+a B+ a5(Q@QE + asE(Q @ Q)}, (66)
2
OF = _Eﬁ Vx(UQ)Vz(UQ)T
1 -1
+W Ve @ Ven + W Vaep ® Vap, (67)

where W and E are given by (3), 8 by (28), ¢ by (54), ag, k=1,...,6 by (55)-(58),
and N by

N = D + WQ, (68)
with Dy given by (23).

Remark 3. Using (49), we have the following equivalent expression of og:

_ /
op=—2P vaVIQT—M[l—i(l—n%
2

T a no S3
where S denotes the derivative of So with respect to n. In particular, this formula
shows that the contribution of the density gradient to o is a rank-1 tensor (which
is not obvious from (67); on the other hand, (67) has more symmetry between V,p
and V7).

)’V @ Vo,

Remark 4. In the case A = 0, the result is still valid, except that (62) must be
replaced by
W+ u- -V Q4+ WQ —28¢Pqi Ay (nQ) =0,
where ¢ = (n — 1)S2(n)/{g %)}Cxp(77 cos? 0) -
In the literature [37, 59], Eq. (62) is written differently. For this we need the
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Definition 3.8 (Molecular field and «y-constants). We define

AS
o= 72:043*042, Yo = —ASy = ag — a5 = as + s, (69)

H = 28S5A.(nQ).
The quantity H is called the molecular field.
Then, we have the following proposition, whose proof is immediate:
Proposition 5 (Equivalent form of Eq. (62)). Fq. (62) is equivalent to
Poi(H — v N —%EQ) = 0. (70)

We compare System (61)-(67) with the literature. Ref. [37] considers a spatially
homogeneous model in dimension n = 3 with {( = 0. Spatial homogeneity means
that p and © do not depend on z, and so H = 0, ogp = 0 and N = 9,Q2 + WQ
while £ and W are constant. In this case, our model reduces to (70) (with H = 0)
and o = o, with o, given by (66), which are the two equations obtained in [37],
provided the external magnetic field considered in [37] is set to 0. Finally, formulas
(55)-(58) for n = 3 and ¢ = 0 are identical with Formula (6.2) of [37]. So, our model
is consistent with [37].

Then, Refs. [25, 59] consider a spatially non-homogeneous setting, but still with a
constant and uniform p (we easily see that p = Constant is consistent with both the
kinetic model (34) and the fluid one (61) due to the incompressibility conditions (36)
and (64)). Their settingisn =3, { = % and A = 1. In this case, we see that formulas
(55)-(58) are identical with Formulas (2.6), (2.7) of [59]. If p = Constant, then, n =
Constant as well. So, the Ericksen stresses and molecular field reduce to

op = —kV,QV,QL, pH =kA,Q, with k= %nz, (71)
which are the corresponding expressions (see top of p. 7) of [59]. With these
expressions, our model reduces to (5) coupled with (63)-(66) and (71). It is identical
with the model obtained in [59].

So, our model is consistent with the literature but has two additional features:
the consideration of an arbitrary dimension n > 2 and the spatial non-homogeneity
of p (and consequently, of 1) which brings additional components to the elastic
stresses and, as we will see below, to the elastic energy. Non-uniform 7 has been
previously considered in [9, 8, 27, 40, 41, 46], but to the best of our knowledge, none
has explicitly linked it to the polymer density and to kinetic theory.

A well-posedness theory of System (61)-(67) is outside the scope of this paper
(see e.g. [35, 42, 43, 44, 60] for existence results of the Ericksen-Leslie system in
a variety of forms). Note however that a condition for the well-posedness of the
parabolic equation (62) is that % > 0. This is indeed ensured by Prop. 4.

The main objective of this paper is to provide a (formal) derivation of Egs.
(61), (62) using the moment method and the generalized collision invariant (GCI)
concept. Prior to this, in Section 4, we will return to the determination of the
stable equilibria of the Doi model and provide support to Conjecture 1 and to
Formula (49) linking p and 7. Then, in Section 5, we develop the GCI concept and
discuss its rationale and how it can be linked to the Hilbert expansion procedure.
The derivation of (62) itself will be performed in Section 6. The second main
objective of the paper is to provide expressions for the Leslie and Ericksen stresses
in arbitrary dimension and for spatially inhomogeneous densities, which, to the
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best of our knowledge, has not been considered before. As these computations are
lengthy, they are deferred to Appendix B. Other auxiliary results can be found in
this appendix and in the subsequent ones, Appendices C and D.

3.3. Energetics of the Ericksen-Leslie system. Next, we define the following
energies:

Definition 3.9 (Oseen-Franck and Ericksen-Leslie energies). (i) The Oseen-Franck
energy is defined by:

2 =(nQ)]2 -1 2p|2 1 212
ep B[ IR / Vapl” 4 _ g7t / Vol
a Jgn 2 n w2 no w2
= EF+EL+EL (72)

(ii) The Ericksen-Leslie energy is defined by

1
Epr = 2dt Er.
BL /Rn ful + ReEr

Remark 5. (i) If p is uniformly constant (and hence, 7 too), £ reduces to

2617 02
gp = 200 / Vo 4,
«o n 2

which is the classical Oseen-Franck elastic energy [25, 59]. The additional terms 7.
and &}l make up for the non-uniformity of p and 7.
(ii) Using (49), we find an alternate expression of Ep:

28 [ LIV.QF  (n-1)8 LSy [Vanl?
Ep=" | g (1——1——2 )””7
L . T Tt e Rn S2 ( 7752) 2
In particular, we see that this energy is positive if the following relation holds
1 Sh\2
1——=(1-n==)">0.
S% ( 7752) —

The investigation of this property is left to future work.

Now, we have the following proposition, which relates the molecular field to the
derivative of the Franck energy with respect to the orientation field 2.

Proposition 6 (Relation between the Franck energy and the molecular field). We
have the following relation:

ot = 2 0. 0) = 2 g0) (73)

where %(n, Q) is the functional derivative of Ep with respect to the field ) evaluated
at the pair (n,).

Proof. For a n x n tensor S, we introduce the following energy density

() = 22 BL

a 2

so that we can write

L = /n e (Va(n9)) da.
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Now, straightforward computations show that the functional derivative 6665 is given
by

o0& 5EY e$ 2

O 0, 0) = S (0, 0) = Ve - (S (V2 0) ) = 2 A 9) =
where the first equality is due to the fact that the energies £7 and £}1 do not depend
on €2, and the last one, to (49). Then, Eq. (73) follows. O

The following proposition gives the energy identity for the Ericksen-Leslie system.
Its proof is developed in Appendix B.4

Proposition 7 (Energy identity for the Ericksen-Leslie system). We have the fol-
lowing identity:

&
o+ DL =0, (74)
Dop = — [ |Voul?de+ — / p{ <a1+l22>(E:(Q®Q))2+a4|E|2
Re Jr» ReEr Jgn Y1

2 1
—I—(a5 + g — l?) |EQP? + —|PQLH\2} dz
Al et

Remark 6. (i) The use of this energy identity to derive a priori bounds for the
solution of the Ericksen-Leslie equations is subject to two conditions: first, that the
Oseen-Franck energy is positive as already mentioned in Remark 5; second, that the
dissipation functional Dgy, is positive as well, which is not obvious given that the
coefficients are not all positive. In [59], it is shown that, in the case n = 3, { = %
and A = 1, Dgy, is positive. Besides, conditions for the positive-definiteness of Dy,
with coefficients which are not necessarily linked with a microscopic model can be
found in [60]. The inspection of the positivity of £ and Dgy, for the present model
is left to future work.

(ii) It is expected that this energy identity is the limit as e — 0 of the free-energy
dissipation identity (24) of the Doi-Navier-Stokes system. This is indeed formally
shown in [25]. However, due to the presence of the square of the Deborah number at
the denominator of (27), we expect that the limiting free energy dissipation identity

will involve the first order correction f! = lim._q = . Showing that the terms
involving f! eventually vanish is not obvious and left to future work.

4. Local equilibria. In this section, we develop the rationale for Conjecture 1.
Since we aim at formal convergence results only, we suppose that the solution f¢
o (40) satisfies

ff—=f as e—0 assmoothly as needed.

Then, from (40), it follows that f should satisfy (42), i.e. should be an equilibrium
for any (z,t). Eq. (42) leaves the dependence of f on (x,t) undetermined. Such an
equilibrium is called ‘local’ (by contrast to a global equilibrium where f should not
depend on (z,t)).

In this section, our goal is to determine the stable equilibria. Indeed, we antici-
pate that only stable equilibria can lead to a long time dynamics described by hy-
drodynamic equations. First, we should note that local equilibria are known in any
dimension n [56] (see also [15, 28, 49] for the case n = 2 and [1, 14, 29, 47, 48, 61, 63]
for the case n = 3). However, the stability of these equilibria is not known for gen-
eral dimension n but only for n = 2 [28], n = 3 [1, 29, 47, 48] and n = 4 [31].
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These results strongly support a conjecture about the stable equilibria in general
dimension n that we will make below and whose rigorous investigation is deferred to
future work. We first need to introduce a set of notations and intermediate results.

Definition 4.1 (Auxiliary operator). Let S be a trace-free symmetric matrix.
Then, the auxiliary operator Lg is given by

Lsf =V, - [Gsvw(GiS)] (75)

with Gg given by (43).

The relation between the collision operator C(f) and the auxiliary operator Lg
is given by the following lemma. Note that Lg is NOT the linearization of C' about
Gs.

Lemma 4.2 (Relation between C and L). We have
C(f) :Laprff‘ (76)

Proof of Lemma 4.2. We can write
Lsf = Vo |Vuf = [Vu(10gGs)|.

But —logGs = —w - Sw+1log Zs. So, —logGup,q; = U}) + Z(f) where Z(f) does

not depend on w. Thus, =V, (log Gay,q,) = Vo U} and 50, La,,q, = C(f), thanks

to (39). O
Now, we have a first result:

Lemma 4.3 (First step towards a characterization of the equilibria). (i) Let f > 0,
f # 0 be an equilibrium. Then, there exists p > 0 and a trace-free symmetric
matriz QQ such that

f =p GapQ~ (77)
(#) Reciprocally, let f be given by (77). Then, f is an equilibrium if and only if Q
satisfies the fized-point equation also known as the compatibility equation:

Q:QpGava (78)
where we recall that for a distribution f, Q is given by (10).

Proof. (i) Suppose C(f) = 0. Letting S = apy Qy, (76) implies Lgf = 0. Multi-
plying (75) by f/Gs, integrating over S*~! and using Green’s formula leads to

/SM GS]vw(GiS)’de:o.

Since the quantity inside the integral is nonnegative, and Gg > 0, this implies
Vw(GLS) = 0. So, there exists p > 0 such that f = p Gg which leads to (77).

(ii) Let f be given by (77). Then, since Go,q is a probability density, we have
ps = p. Now, from the proof of Part (i), if f is an equilibrium, then f = p;Ga,, q;-
We deduce that G, ,q,; = Ga,pq, and, by taking the logarithm, that

1
w (@~ Q== (log Zayo, ~ 108 Za,q) = i

where p is a constant, independent of w. So, @y —Q—p1d is the matrix of a quadratic
form which is zero on S*~! and so, by homogeneity, on R". Thus, Q;—Q—uId =0
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and, owing to the fact that Qs and @ are trace-free, we have p = 0. It follows that
Q5 = Q. Replacing f by its expression (77), we get (78). O

To complete the characterization of the equilibria, we need to solve the compat-
ibility equation (78). As pointed out above, this has been done in any dimension
n in [56] (see also [49] for n = 2 and [1, 29, 47, 48, 63] for n = 3). This result is
summarized without proof in the following lemma

Lemma 4.4 (Final characterization of the equilibria [56]). Let f be an an equilib-
rium. Then Qf has at most two distinct eigenvalues.

o If all eigenvalues of Qy are identical, then Qy = 0 and f = p is a uniform
equilibrium.

o If Q¢ has exactly two distinct eigenvalues, denote by Ay its largest eigenvalue
and by Yy the associated eigenspace, supposed of dimension d such that 1 <
d<n-—1. Then, 0 < Ay < % - % and Qg 1is written

d

Qs = Bx;y, = Ap(Py, — mpy;)7 (79)

where Py, and nyL are the orthogonal projections of R™ onto Yy and y]ﬂ-
respectively. Then, f is of the form

F=0iAr) Gaprpng) Ba, v,

where ply: [0,% — 1) —[0,00), A+ p(A) is a specific function (not detailed
here except for the case d = 1, see below). Furthermore, Ay is a root of the
equation

oi(N) = p. (30)
The existence and number of classes of equilibria such that ps = p are deter-
mined by the existence and number of roots A of Eq. (80). A given root A

gives rise to a family of equilibria parametrized by the Grassmann manifold
Gr(k,n) of d-dimensional vector subspaces Y of R™.

Here, we are only interested in the case d = 1 as we will conjecture that this is the
only case which includes stable equilibria (see conjecture 2 below). For simplicity,
p" stands for the function p7. In the case n = 2, p? is monotonously increasing and
maps [0, 1) onto the interval [p*, +00) with p* = p*(0) (see Fig. 1la). In the case
n > 3, p" is decreasing in the interval [0, \*] and increasing in [A*,1 — 1), Thus
p* = p(\*) is a global minimum of p" (see Fig. 1b). In all cases, the equation
pn(A) = p has a solution if and only if p > p* and this solution is unique in the case
n = 2 while, in the case n > 3, there are two solutions if p € (p*, p"(0)], and one
solution if p € {p*} U (p™(0), 00) (see [56] for details).

As already stated, for general n, the stability of the equilibria described in
Lemma 4.4 is not known yet. However, their stability is known for n = 2 [28],
n =31, 29, 47, 48] and n = 4 [31]. Based on these results, we formulate the follow-
ing conjecture for any dimension n > 2 and refer to the above-mentioned references
for details on the notion of stability involved.

Conjecture 2 (Stable anisotropic equilibria). For any dimension n > 2, the branch
of solutions to the equation p™(\) = p (which corresponds to d = 1) with largest X,
which is defined for p € (p*,00), corresponds to the unique class of stable anisotropic
equilibria.
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DO oo ==

(A) n=2 (B)n>3

FIGURE 1. Graphical representation of the function A — p™(A)
(after [56]). (a) case n = 2. (b) case n > 3. The portions of the
curves that correspond to stable equilibria are in blue, the unstable
ones, in green.

We denote by the function A: (p*,+00) = (A*,1 — 1) p — A(p), the largest
solution to p™(A) = p. With Conjecture 2, the stable equilibria f correspond to the
class of equilibria described in Lemma 4.4, Case 2, with d = 1 and Ay = A(p). In
this case, V¢ is one-dimensional and thus, spanned by a unique normalized vector
(up to a sign) © € P"~!. Hence, we have Py, = Q ® Q and nyL = Pg:. Then
by (79),

n

= Alp) A 81
Qp = —7Ap) Aa, (81)
where Agq is the normalized uniaxial tensor given by (44). Defining
n
n(p) = —7 apAlp), (82)

from (78) we get that the equilibria are of the form f = p G,(,) a, Where p is arbitrary
as long as A\(p) is defined, i.e. p € (p*,00), and where ) is arbitrary in P"~1. Hence,
Conjecture 1 is a direct consequence of Conjecture 2, provided we show that the
function p — n(p) is the one given by Proposition 3, which we do now:

Proof of Proposition 3. Equating (81) with (48) and using (82), we get (49). The

root with the largest n must be chosen because this corresponds to the choice of

largest A in Conjecture 2 (as A is proportional to n by (82)). O
From (40) and Conjecture 2, we deduce the:

Corollary 1 (Local equilibria). Let f be the formal limit of ¢ ase — 0 and suppose
that u® — u smoothly. On the open set B defined by (59), f is given by (60) where
p=ps: (z,t) € R" x [0,00) = [p*,00) and Q: (z,t) € R™ x [0,00) — P~ are
functions such that f satisfies
C )
Tu(f) = tim Y. (83)

e—0 £
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Note that p = py is the local density associated to f, while Q(x,t) if the axis of
the uniaxial Q-tensor Q5 thanks to (48). The restriction to the set B is needed to
ensure that n(p(z,t)) is well-defined. The determination of the functions (p, Q) such
that (83) holds is quite challenging, due to the presence of ¢ in the denominator at
the right-hand side. It will require the Generalized Collision Invariant concept as
detailed below.

5. Generalized collision invariants.

5.1. Collision invariant. We first recall the notion of Collision Invariant (CI).
The goal is to eliminate the singular right hand side of (83) by using integration
against appropriate test functions. More precisely we have:

Definition 5.1. A Collision Invariant (CI) ¢(w) is a function such that

C(f)ddw=0,  Vf.
Snfl
Here, we do not specify any regularity requirement on v since our goal is to
develop a formal theory only. If ¢ is a CI, using it as a test function for (40), we
have, after integration with respect to w and omitting € as the identity is valid for
any ¢:

at( [ dw) YV, (u Fo dw) - Vot (AP,  E — W)w f dw

Sn—1 Sn—1

—2a 3 Vot Pyt Ay(py Q) w f dw =0, (84)
Snfl
which is an evolution equation for the moment fS"—l fdw. Since this equation
does not depend on ¢, it is still verified by the solution of (83). We have an obvious
CI, namely, ¢ = 1, which leads to the mass conservation (or continuity) equation

Drps+Va - (pru) = 0. (85)

In particular, taking the limit ¢ — 0, it shows (61). As w is divergence free thanks
to (36), (85) can be equivalently written

Dtpf = 07 (86)

with D, given by (23).

Any odd function 1 of w is also a CI. However, it is not invariant when w is
changed into —w, a condition that has been enforced throughout this work (see e.g.
(1)). Indeed, Eq. (84) with odd functions ¢ have all their terms identically zero
and do not provide any useful information. We do not have any other obvious CI.
Therefore, we are lacking an equation for 2. In order to overcome this problem, we
use the concept of “Generalized Collision Invariant (GCI)” introduced in [23] and
adapted to the present context.

5.2. Generalized collision invariant: Definition and characterization. To
introduce the GCI concept, we first need some additional notations and definitions.

Definition 5.2 (and notations). (i) SC is the vector space of symmetric trace free
n X n matrices.
(ii) U2 is the subset of S° consisting of tensors whose leading eigenvalue is equal to
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L and is simple.
(iii) We denote by As the leading eigenvalue of Q¢ and by ny the following quantity:

(87)

n—21

np=apy —7 A

From (8), we have
n
0<—Ar<1.
STV S

Note that in general, Ay may not be simple.
(iv) If Qs # 0, then Ay # 0 and we define the “Normalized Q-Tensor (NQT) of f7,
Ef by

n—1 %
B n )\f '

5 (88)

¥y € 8Y. Its leading eigenvalue is "% which, again, may not be simple.

(vi) Let ¥ € U2. We denote by Qs € P"~! the normalized eigenvector (up to a
sign) associated with the simple eigenvalue 2=+ of ¥. Note that the tensor Ag, is
uniquely defined, irrespective of the choice of the sign of Qy;.

(v) Suppose ¥y € U2. Then, (s, is simply denoted by (2.

Remark 7. From (48), we get that ¥,¢,, = Ao meaning that the NQT’s of the
stable anisotropic equilibria are all equal to Agq.

We recall that the auxiliary operator Lg for S € 89 is defined by (75). The GCI
are now defined in the following

Definition 5.3. Let (7,%) € (0,00) x U2. A Generalized Collisional Invariant
(GCI) associated to the pair (n,X) is a function ¢ such that

/ (Lysf)tdw =0 forall f such that Po.(Q;Qs) = 0. (89)
S?’L—l P

The set of GCI associated to a given pair (7,%) € (0,00) x UY is a linear vector
space and is denoted by Cs.

There is a rationale for this definition, which is developed in Section 5.3 below.
The following lemma gives the equation satisfied by the GCI:

Lemma 5.4. Let (n,%) € (0,00) x U2. Then ¢ € Cys if and only if there exists
V € {Qs}t such that

Vo (Gue(@)Vut)) = (w-Qs) (w- V) Gys(w), YwesS" (90)

Proof. For Q € S"~1/{£1}, we define the following space of functions:
Xo={S""2wr (Qw) (V- -w)eR|Vec{Q}'}, (91)

The space Xq is a finite-dimensional subspace of L?(S"~1). We first note that for
any f € L2(S"~1), we have

Poi(Q) =0 <+ - f@w-V)(w-Q)dw=0, VVe{Q}*

— feiy, (92)
where the orthogonality is meant with respect to the standard L2?-product on
L2(S" 1.

On the other hand, we note that fSn_l(Lngf) ¥ dw = 0 is equivalent to saying
that f € {L:}Z’I/J}J‘ where again, the orthogonality is meant with respect to the
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standard L*-product on L*(S"~") and where Ly is the formal L?-adjoint of Lys,
ie.
. 1
anz/) = Gi Vi - (GUZ sz/))-

nx
Therefore, thanks to (92), Condition (89) is equivalent to saying that

feXy, = fe{lyv}t,

or in other words, that Xéz C {L;zw}L- Taking the orthogonal to this relation and
noting that both Xo, and Span{L;xt} (where for a subset B of a vector space,
Span B denotes the subspace generated by B) are finite-dimensional, hence, closed
subspaces of L*(S"™'), we get Span{L}y¢} C Xoy. In particular, this implies
that there exists V € {Qx}+ such that Lisy(w) = (w - Q) (w - V), which, upon
multiplying by G5, gives (90). The converse is straightforward. O

Now, we give an existence theory for the solutions of (90). We denote by
H(S"1) the space of square integrable functions of S"~! into R whose deriva-
tives are square integrable and introduce

HY(S" 1) = {u e HY(s" ) ‘ / w(w) dw = o}.
Snfl
Then we have the

Proposition 8. Let (7,X) € (0,00) x US and V € {Qs}t. Then, there exists a
unique solution of (90) in H'(S"1) denoted by 1,5, v. The linear vector space Cys;
of GCI associated with (n,X) is given by

Com = {Co+tmnyv | Co €R, V e{Qs}"}. (93)

Proof. We look for solutions of (90) in variational form. The variational formulation
reads as follows: find ¢ € H'(S"~1) such that

/ Gs V) Vo duw = 7/ Gys (W Q) (W V) 0dw, V0 € HYS™ ). (94)
Sn,—l Sn—l

By Poincaré inequality and the fact that G,x is smooth and bounded from above
and below, the bilinear form f Gpx Vo - V0 dw is continuous and coercive on
H'(S"1!). Therefore, by Lax-Milgram theorem, the variational formulation (94)
has a unique solution in H'(S*~!) denoted by Yys,v when 8 is restricted to belong
to H'(S"~1). To show that this is a solution for all § € H*(S"~!), it is enough to
show that it satisfies (94) for § = 1, i.e. that the following holds:

Gps (W- Q) (w-V) dw=0, VVe{Qs}t (95)

Snfl
Let (e1,...,e,) with e, = Qs be an ortho-normal basis of R™ consisting of
eigenvectors of 2. Let A1, ..., A\, be the associated eigenvalues. Let w = ZZ:1 W, €k

be the decomposition of w in this basis. It is enough to show (95) for V' = e; with
je{l,...,n—1}. Then, we have
1
/ Gy (w- Q) (w-e)) dw = —— el Anwl) wj wy, dw =0,
Sn—1 Zfr]Z Sn—1
thanks to the change of w,, into —w,. This shows (95) and so, the existence and
uniqueness of a solution of (90) in H!(S"~1) is proved.
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Now, all solutions in H*(S"™1) of (94) are of the form ;51 + Cy where Cy
is any constant. Collecting all the solutions for all the possible V € {Qx}+ leads
to (93) and ends the proof. O

Remark 8. We note that if Qy is changed into —{1s, 9,5 v must be changed into
s, —v. It follows that (93) remains unchanged.

We now define a vector-valued GCI 1/7,]2 in the following way

Definition 5.5. Given (1,%) € (0, 00)xUY, we introduce the function d_fngz snt —
R", defined as the unique solution (in H!(S"~!)) of the following vector-valued
equation:

V- (an(w)vwl/_fng) = (- Qs) Ppuw Gyxn(w), Ywe snt
We note that
Uonv =dyn -V, WV €{Qu}t and s Qn =0,
and that 15772 is changed into —’(/7772 if Qy is changed into —Qy.
We can provide an explicit expression of 1/77,,49, for all (n,Q) € (0,00) x S~ 1 as
the next proposition shows. Let us first define the following space:

H = {h;(—1,1)—>R]/_11(1—r2)

n

= |h(r)|2 dr < oo,

/1 (1 —7“2)%r1 |n' ()| dr < oo},

-1

where A’ denotes the derivative of h.
Proposition 9. Let (1,9Q) € (0,00) x S*~! be given. We have
'IZWAQ (OJ) = hn (w : Q) wi, (96)

where w) = Porw and hy, is the unique solution in ‘H of the following equation:
—(1— 72)% e’ (2nr2 +n— 1) oy

d
+— {(1 —r?)

”
Furthermore, hy, is odd and hy(r) <0 for r > 0.

n dh n—
e %} =r(1- 7"2)71 e (97)

Proof. We apply [21], Proposition 4.2 (ii) (with the following changes: u — 2,
5 =, d—n, I"(,u) = L} 4 ). Note that these techniques were first developed
in [19, 30]. O

Remark 9. Formula (96) shows that the vector GCI 1;,, Aq 1s invariant under ro-
tations leaving €) fixed. This is a consequence of the fact that Aq is uniaxial with
axis . No simple formula like (96) is available for more general vector GCI 157,2,
when ¥ € UY is not uniaxial. However, while we will need vector GCI for general
¥ € U, we will only need an explicit expression of them in the case of a uniaxial
tensor ¥ = Agq. So, Prop. 9 is enough for our purpose.

The following proposition provides an alternate equation satisfied by h,, in terms
of the function g defined in (53). Its proof is easy and is sketched in Appendix C.1
for the reader’s convenience.
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Proposition 10 (Alternate equation for h,). For 6 € [0, ], we define the function
g(0) = —2n hy(cos ) sin#. (98)
Then g satisfies the equation (53).

Finally, the following proposition will have important consequences for the deriva-
tion of the macroscopic model:

Proposition 11. Let f: S"~! — R be twice continuously differentiable such that
Q¢ # 0 and S5 € UY. Then, the vector GCI ty,s, 18 well-defined and we have

/SH C(f)thy,s, dw = 0. (99)

Remark 10. Proposition 11 expresses an important structural property of C. Let
(n,2) € (0,00) x UY. The GCI 1,5 cancels the collision operator acting on all
functions f which satisfy (ns,Z¢) = (1, %).

Proof. We show that PQ}_ (Q#82) = 0. Indeed, if this is the case, from (89), we get

/Sn_1 LT]fof(lZ;anf dw = 07

and using (76), (87) and (88), this shows (99). But, by definition, 2 is the leading
eigenvector of Q¢ with eigenvalue A¢. So, Q Q2 = Ay Qs and thus PQ% Q) =0,
which ends the proof. ' O

Thanks to the GCI, we can now find how (83) translates into an equation for the
Q-tensor principal direction 2. This will be done below but first we provide some
discussion of the GCI concept.

5.3. Discussion of the GCI concept.

5.3.1. Rationale for Definition 89. First, let us note that the condition Py (Q/82x)
= 0 involved in Definition 5.3 simply means that {1y, is an eigenvector of Q) . We now
try to provide a geometric interpretation of Condition (89). First let us introduce
a few additional notations. We endow S with the inner-product S : P = Tr{SP}
and for a subset B of S, its orthogonal with respect to this inner-product is denoted
by BL. We recall that B is a linear subspace of S? and that (B+)% = Span(B).

We now define the submanifold N of ¢ which consists of normalized prolate
uniaxial Q-tensors i.e.

1
/\/':{AQ|QEP”‘1}={Q®Q—EId\QeJP’"‘l}.

Note that A/ is the manifold spanned by the NQT’s of the equilibria (see Remark 7).
The mapping P"~! 3 Q — Aq € N is a diffeomorphism. The tangent space of N
at Aq is given by:
TaocN ={Q@V+V Q| Ve {Qlt] (100)
Indeed, for V € ToP"~! = {Q}L, consider a curve I > t +— £(t) € P"~! where [
is an open interval of R containing 0, such that £(0) = Q and £'(0) = V. Then,
4 (Agry) = Q@V +V @1, showing the claim. We denote by Pr,  n the orthogonal
projection of 89 on T4, N for the inner product defined just above.
We have a mapping p: U? — N, ¥ — Aq,. For any Q € P"~! the pre-
image p~'({Aq}) is denoted by Fq. All these pre-images are homeomorphic to
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one-another. Let us choose one of them and denote it by F. This endows U° of a
fiber bundle structure of base N and fiber . Now, we have the following lemma:

Lemma 5.6. Let Q € P"~! be given.
(i) Let Q € 8. Then, Pa: (QQ) =0 <= Q € (Ta,N)*
(i) Fq is a subset of (TAQ./\/')L.

Proof. (i) Using the symmetry of @ and (100), we have:
Poi(QQ) =0 <— (QQ)-V =0, VVe{Q}t
= Q:(Q®V)=0, VYVe{o}*
= Q:(ARV4+VeQ) =0, VYVe{0}*
< Q:B=0, VBeTy N < Q¢ (TAQN)L,
which shows (i).
(ii) Suppose ¥ € Fq. Then Aq, = Aq which implies Qx; = Q (in P*~1). Thus,
) is an eigenvector of ¥ i.e. Po. (X)) = 0. Hence, by (i), ¥ € (TAQN)L. O
So, Eq. (89) can be equivalently written:

/ (Lysf)¢pdw =0 forall f such that Qs € (TAQEN)J'. (101)
S’n—l

This can be geometrically interpreted as follows: to any ¥ € U? we consider its
projection (in the fiber bundle sense) p(X) = Aq,, onto N. Then, (101) means that
the GCI associated to (n,X) are all the functions ¢ whose integrals against L,y f
cancel when @)y belongs to the orthogonal of the tangent space to N at Aq. This
is illustrated in Fig. 2. It is likely that this geometrical structure persists with other
collision operators as it seems to express some intrinsic geometrical constraint. This
point will be further developed in future work.

5.3.2. Relation between the GCI and the linearized collision operator. Let D¢C the
linearization of the collision operator C' about the distribution function f and let
D;C* be its formal L?-adjoint. For a distribution function f, we call (ns,X¢) the
‘moment’ of f. In this section, we show the following: suppose (1, £) € (0, co) xUJ is
the moment of an equilibrium distribution function, i.e. (n,%) = (n(p), Aq) where
(p, Q) € (p*,00) x S"~!1/{£1} and denote by fO = pG,()a, the corresponding
equilibrium. Then, we have

Cn(p)AQ = ker(DfoC’*). (102)

On the other hand, if (n,X) is not the moment of an equilibrium, then, although
there exist Gibbs distributions f = pG,x. associated with (n, X), in general, we have

Cys: # ker(D;C™). (103)

Thus, a GCI associated to an arbitrary moment (7,%) is in general not in the
kernel of the adjoint linearized collision operator about the corresponding Gibbs
distribution. It is only so if (1, X) is the moment of an equilibrium in the above sense.
Consequently, GCI are different and truly more general concepts than elements of
such kernels. Likewise, Eq. (98) linking the GCI to the auxiliary function g given
by (53) is only valid for moments (n(p), Aq) related to equilibria. Observe however
that we will not need to explicit the form of the GCI for general moments, but only
for those corresponding to an equilibrium (see Section 6 below).
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FIGURE 2. Graphical representation of Condition (101). The am-
bient three-dimensional space in the figure represents the flat space
S in which U’ is an imbedded manifold represented by a surface.
N is a submanifold of U depicted as the curvy blue line. Tt endows
U of a fiber bundle structure of base N'. Let ¥ € U}. It projects
(in the bundle sense) onto Ag € M and so, belongs to the fiber Fq
represented by the curvy red line. The tangent space to N at Aq,
Ta,N is represented by the magenta straight line. Its orthogonal
(TaoN)* is the gray-shaded plane on the figure. It contains Fgq
by virtue of Lemma 5.6 (ii). Then, condition (101) means that the
GCI associated with (7,X) are the functions ¢ that cancel L,x f
for all f whose Q-tensor Qs (represented by the point Q on the
figure) belongs to (Ta,N) .

Formula (102) is unsurprising. Indeed, Eq. (62) has been shown in [37, 59] using
the Hilbert expansion method. This method corresponds to inserting the Hilbert
expansion f€ = fO + efl + O(¢?) into the kinetic equation (40) and matching
identical powers of €. We get

C(f% =o, DCof' =Ty f°,

for the terms of order e~1 and € respectively (note that we also need to Hilbert-
expand the velocity u®). Now, the first equation implies that f° is an equilibrium
o = pPGy(p)Aq- Then, one looks for a necessary and sufficient condition for the
existence of a solution f!' to the second equation. Assuming that Im DCjo =
(ker DCJ’ZO)J- (which can be proved via a careful study of the spectral properties of
DC'o, see [59]), such a condition is

/ Ty fO1hdw =0, Vi € kerDCfo.
S”_l

Since this is also what we get when 1) ranges in C,(,)4,, (see Eq. (121) below), Eq.
(102) must be true. However, it would be desirable to have a direct proof of (102).
This is our goal here. As a by-product, we will also see why we have (103). We first
compute the adjoint linearized collision operator.
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Lemma 5.7 (Adjoint linearized collision operator). Let p € (0,00), S € Sf. We
have

DpasCg(w) = Liyq, e, 9(@) —ap (pQ)asLyg : w @ w, (104)
where Gg is defined by (43), the auziliary operator L by (75) and L* is its formal
L2-adjoint. Here (PQ)GsLyg stands for the right-hand side of (10) with f replaced
by GsL%g (note that PGsLyg = 0 so that QgL is not defined but (pQ)GSng itself
is well-defined).

Proof. From (39) and the fact that U ]9 depends linearly on f, we get

DpasCf =V - (Vaf + fVuUig, + pGsVLUY). (105)
We note that Vo U, = —V.(log GQPQPGS). Inserting this into (105), we get
DysCf = Lapq,e, [+ pGs L5UY. (106)

Thanks to (29), we also note that LEU}) = Lg[j}) with (7]9 = —a(w- prQsw). Thus,
using (106), Stokes formula and that Lg(Gsg) = GsLgg, we get
D,y Cf g dw :/ fL;prGSgdw+p/ UYGs Lygdw.
S§n—1 S§n—1 S§n—1

Inserting the expression of (7]9 into this formula, using the expression (10) of psQ
and exchanging w and ' in the resulting integral, we are led to (104). O

Now, in the case of an equilibrium, we compute the kernel of the adjoint linearized
collision operator:

Lemma 5.8 (kernel of DpC* when f° is an equilibrium). Let p € (p*,o0) and
Qe S/ {£1}. Let f0 = PGypyaq be an equilibrium of C, where the function
p — 1n(p) is defined in Prop. 3. Define /\;p@ to be the space of functions ¢ : w +—
o(w) which satisfy

pw) = ap(pQ)a,age WO W, YweS' L (107)

Then we have
g € ker (DPGW(KJ)AQ C*) = / ) Lypyagfgdw=0, Vfe /'E'pL’Q, (108)
sn-
where the orthogonality is with respect to the standard L?(S™~1)-inner product.

Proof. Defining S = n(p)Aq, we have

aprGs = O(prGnAQ = UAQ = Sa (109)
thanks to (48) and (49). Thus, thanks to (104), we are led to
D,cC*g(w) = L*g(w) — ap (pQ)cr+g : w @ w, (110)

where here and in the remainder of the proof, we omit the dependence of n on p,
as well as the index nAq on L* and G and the indices p, 2 on X for clarity.
For any smooth enough function f, we have by the Stokes formula:

/ Lfgdw= fL*gdw:/ fodw,
gn—1 §n—1 §n—1

with ¢ = L*g. Thanks to (110) and the fact that g € kerD,oC*, ¢ satisfies (107),
sop € X. If fe XL, we deduce that J Lf gdw = 0, which shows the left-to-right
implication of (108).
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Conversely suppose that g is such that [ Lfgdw =0, Vf € Xt ie.
feXt = fe{Lg}*.
Taking the orthogonals, we get
Span{L*g} C X.

Indeed, both Span {L*¢} and X are finite-dimensional, hence closed. This is obvious

for the former which is one-dimensional. For the latter, by (107), X is included in

the space of quadratic polynomials in w, which is a finite-dimensional space. So,

defining ¢ = L*g, we have ¢ € X. Replacing o by its expression in terms of g

in (107), we get D,gC*(g) = 0, which shows the right-to-left implication of (108)

and ends the proof. O
Next, we prove an alternate characterization of the space )EPVQ.

Lemma 5.9. Let p, Q, f° and n as in Lemma 5.8. Then,

X0 = Xq, (111)
where Xq is defined by (91).
Proof. Let o € X (using the simplified notations of the previous proof). From (107),

we have p(w) = K : w ® w where K = ap(pQ)c,. Hence, K satisfies the fixed
point equation

K= ap (pQ)GK:w®w’ (112)
which implies that
TrK = 0. (113)
Using (10), (20) and (113), we can develop (112) into:
K=apTg,,, + K. (114)
According to (156), there are three real numbers ay, k = 1,...,3, such that
Te,a, = 01 2% +6a; (R0 Q®1d), +3a3(Id@1d) . (115)

We uniquely define V € {Q}+ and r € Rby KQ = rQ+V. inserting (115) into (114)
and using (113), we get

1 1
(% —ag)K:a2 QV+V o)+ 5((&1 +4a2)r Q@ Q +aprld)  (116)

We now state the following lemma, whose proof can be found in Appendix C.2

Lemma 5.10. We have
1
— — a3 = 0 117
2oy % az # 0, (117)

a1 + (n+ 4)ag = Sa(n). (118)
Using (117), Eq. (116) leads to
1
K:Q®V—|—V®Q—|—g[(a1+4a2)rQ®Q+a2rId].
2

With (113), we get

1
0=TrK = — [(al + (n+ 4)a2)] T,
2&2
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which, with (118) and the fact that Sa(n) # 0 (see Prop. 2 (iii)), leads to r = 0 and
K=QaV+Ve

Thus,

p=2(Q w) (V- w). (119)
Reciprocally, by similar but simpler computations, we easily get that ¢ given
by (119) with arbitrary V € {Q}* satisfies (112). In the end, we find

X ={(2-w)(V-w) | Ve{Q}'}= A,
which ends the proof. O
We can now state the following

Theorem 5.11. Let f0 = PGy(p)aq be an equilibrium of C. Then, we have
Co(p) g = ker (D ),

PGn(p)Ag

where Cp () aq, 15 the space of GCI associated with the equilibrium moments (n(p), Aq)
(see Definition 5.3).
Proof. Indeed, we have the sequence of equivalences:

¥ is a GCI associated with (n(p), Aq) <

— (feXé — Ln(p)AQf@/;dw:O)

S§n—1

— (f € Xty — Ly(pyan f 1 dw = o)

Sn—1
< ¢ € ker (DPGn<a)AQ c*),
where the first equivalence comes from (89) and (92), the second one from (111)
and the third one, from (108). This ends the proof. O

The key property which led to Theorem 5.11 in the case where f° is an equilib-
rium is (109). It gave rise to the structure

DpGC*g = Sﬁ(w) —ap (pQ)th fw®w, (120)

with ¢ = L*g which led to the definition of the space .)EPVQ. Now, if (n,X) is not a
moment of an equilibrium, we have apQ,cs # S as the equality is a characterization
of the moments of equilibria. Then, by inspection of (104), we see that the structure
(120) is lost and the proof cannot be continued. These considerations strongly
support (103). Indeed, we have the following counter-example in dimension n = 3
whose proof can be found in Appendix C.3.

Proposition 12. Let n = 3. Let f = pGya,, where n # n(p) (in other words, in
spite of being a Gibbs distribution, [ is not an equilibrium). Then we have (103)
(’wz’th Y= AQ)

So, the space of GCI C,x; is related to important structural properties of C' such
as Prop. 99. By contrast, the space ker (D;C*) does not play any particular role.
The exception is when the Gibbs distribution pGys; is an equilibrium, in which case
the two spaces are equal. This shows that GCI are a more relevant and general
concept than the space ker (DyC*) which appears in the Hilbert method.
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6. Equation for the Q-tensor axis direction ().

6.1. Abstract derivation. In this section, we provide an abstract set of equations
allowing us to determine the evolution equation for the Q-tensor axis direction €.
We recall the expression (37) of T, (f). We have the:

Proposition 13. Let f = lim._,o f¢ with f(z,w,t) = p(z,t) Gn(p(x,t))An(w,n(w) for
all (z,t) € B where B is given by (59) and the function p — n(p) is defined in
Prop. 3. Then, we have

/S  Tu(pl@s ) Grpa ) Aage ) it Aage o (@) dw = 0, (121)

where Jn(p(x,t))An(z,t) is the vector GCI associated with (n(p(x,t)), Ag(z,t)) (see Sec-
tion 5.2).

Remark 11. We note that (121) is unchanged if Q(z,t), and consequently JAQ(“V
are changed in their opposites.

Proof. Let (z,t) € B be given. For simplicity, in the proof, we omit the variables
(x,t). We also denote p° := pfe, Q° := Qse, A° := A<, etc. and p := py, Q := Qy,
A= Ay, etc. By the fact that f© — f, we get p°Q° — pQ = p "5\ Aq, with

A = %’:)). Since p # 0 (because (x,t) € B) and A is a simple eigenvalue of @,
then, for ¢ small enough, p* # 0, Q° — @ and X° is a simple eigenvalue of Q¢
such that A* — X\ (because the subset of SO of matrices which have simple leading
eigenvalue is an open set). Thus, ¥ = Z—;\i ¢ is defined, belongs to U and is such
that ¥ — ¥ = Ag ase — 0.

By the smoothness of ¢ with respect to £, we can find a smooth lifting of
Qs € P into QF € S*~!. Thus, we can form the GCI 1/7,7525 using this smooth
determination of Qx- (remember that we need to fix the sign of Qy- because the
sign of 1/7,,525 depends on it). This makes 1/7,,525 a smooth function of € (because
15,,5 is a smooth function of (1, S) € [0,00) x U) such that 1/777525 — ’l[;nAn when
e —= 0.

Thanks to (99), we have

C(f{-:) 'l/_;nezs dw = 0.
S§n—1

So, multiplying (40) by 'lz_;naza, integrating the resulting expression with respect to w
leads to

/ Toe (f5) e dw = 0.
§n—1

Now letting ¢ — 0, with u® — u, f© = pGypyag, 1° — n(p), X° — Aq, 1/_1;7525 —
Jn(p)AQ, we get (121). This ends the proof. O

6.2. Derivation of the equation for (). In this section, we derive the explicit
equation for 2 by inserting expression (96) into the abstract formulation (121) and
compute the integral explicitly. This is summarized in the following

Proposition 14. Let f = lim._,o f¢ = p(as,t)G,,(p(m))Amz,t) as giwen in Corol-
lary 1. Then, Q satisfies (62)
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Proof of Proposition 14. For simplicity, we omit the dependencies of  and A on p,
of h,, on (w-Q), of Gpa, on w and of p and Q on (z,t). Inserting (96) into (121),
we get:

Vo 1:/ lTu(PGnAQ)hnWLdWZO' (122)
We define :

D; = 9i+u-Vg,

Af = Vo (f(AP,LE—W)w),

Bf = 208V (fPorls(prQf)w),
so that To,(f) = D.f + Af + Bf and

Vo = / (Dy + A+ B)(pGyaq) hywy dw =V + VP +vP. (123)
Snfl

Using (86) which gives Dyp = 0 and D;n = n' Dyp = 0, where 1’ is the derivative
of n with respect to p, we get
Dy(p GUAQ) = pGrag 2 (w- Q) (Porw) - D2,

where we have used that the denominator of (45) does not depend on 2. Then, we
apply (141) and the fact that D is orthogonal to Q and get

vV =5 D,q, (124)
with

- 2
== ’”’1 Gyag hy (@ Q) (1= (w-Q)?) duw. (125)
- Sn—l

Next, we have
A(p GﬂAsz) =V, (P GnAsz (APwLE - W)w)
=pGya, [VulogGhay) - (AP,LE—W)w + V- (AP,LE — W)w)].

First, we compute V, - ((APWLE — W)w) Let X = AE — W for simplicity and
let (e;)i=1,...,n be the canonical basis of R™. Define X; = 2?21 Xijej. Then, we
can write X = " e, ® X;. Then, P, Xw = > (X, - w) P,re;. We note
that Vy, - Pyie; = Ay(w-e;)) = —(n — 1) (w - ¢;) because (w - e;) is a spherical
harmonic of degree 1 hence an eigenfunction of the spherical laplacian associated
to the eigenvalue —(n — 1). Thus,

Vo (P Xw) = f: [PwLXZ- Puiei—(n—1) (X w) (w- ei)}

i=1

= Z X,L'J' (PwLei 'PWLEJ‘ - (TL - 1) wiwj)) = Z XZ((S” - Tl(.diw]')

i, j=1 i, j=1
=TrX —nX : (wQ®w),

where d;; is the Kronecker symbol and TrX is the trace of X. Now, with X =
AE — W, owing to the facts that TrX = AV, - u = 0 and remembering that F is
symmetric and W antisymmetric, we get

AlpGrag) = pGnag 2n(w-Q) Py Q- (APuE = W)w —nAE : (w@w)]
= pGnAQ{A[Qn(w QPN 0w-—nww|: E-2n(w-Q)(P,rQ®w): W}
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Using the decomposition (142), we get P, 1 Q = (1 — (w-Q2)?) Q— (w-Q)w,, and so,
Alp GTIAQ)

= pGra, 2n(w- Q) [A(l— —2(w~Q)2) ((UJ_®Q):E+(WJ_®Q):W:|

n
Ui

+ even tensor powers of w .
Now, multiplying by hw, and integrating over w, the resulting odd tensor powers
of w, vanish in the integration thanks to (140). Thanks to (141), we find that

‘/552) = ";/1 WQ + 5’3/\ PQL EQ, (126)
with
- n., ~
Vo= (1 5) M= 2%, (127)
- 2
Yo = " ipl - GUAQ h’77 (w . Q)3 (1 _ (w . Q)Z) dw. (128)

The computation of Vé3) is the same as that of Vg(f) with AE — W replaced
by 2a8 Az (pQac, ., ). Since Az (pQg, ., ) is a symmetric trace-free tensor, we get
from (126):

Ve = 20833 Por (Aa(pQar, 0 )0)-
With (50), we get
@Ay (pQa,a,) = Ba(nAa) = Agn Aq + 4{((Vzn : VI)Q) 29
+21 (Va2)" (V) + [(A.Q) ® Q] ), (129)

where the index s means the symmetric part of a tensor (i.e. Sy = (S + S7) for
an n X n matrix S). Then, owing to the fact that any derivative of £ is orthogonal
to 2, we have

aAw(pQG,,AQ)Q = Aan —+ Q(an . va:)Q +n (AwQ + (Q : AzQ) Q)7
and with (82),

aPq. (Am(pQGnAQ)Q) =2(Van: Vo) Q40 Por AQ = Por Ay (nQ).
It follows that

VY = 2895 Por A, (n9). (130)
Inserting (124), (126), (130), into (123), we get
Vo =31 (D2 + WQ) + 33 Por (AEQ + 28 Ay (1€2)).

So, with (122) and (127), we get (62) with

c=—AZ —A(Z-14222), (131)
ga! n ga!
Now, the following formulas are shown in the Appendix D.1:
- _ pS2(n) . P Uy
= 22210 =—— P (g =2) e 132
3 277 ) 71 277(” _ 1) <<g 46 >>en 052 0 ( )
Thus, (131) leads to (54) and ends the proof. O

We now investigate under which conditions § is non-negative:

Proof of Proposition j. From Prop. 2 (iii), we know that the (n — 1)Ss(n) > 0.

Now, Prop. 9 and Eqs. (98) and (52) show that both ¢(#) and dgg‘] (0) have the sign
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of cosf. This implies that 9(9)%(9) is positive on [0, 7] and consequently, that
the denominator of (54) is positive. Altogether, this shows that £ > 0 and ends
the proof. O

7. Conclusion. We have investigated the passage from the Doi-Navier-Stokes mo-
del of liquid crystals to the Ericksen-Leslie system when the Deborah number goes
to zero. By contrast to previous literature, we have developed a moment method,
exploiting the conservations satisfied by the collision operator. These conservations
are of a non-classical type and have required the development of a new concept, the
generalized collision invariants. Their link to geometrical and analytical structures
of the collision operator has been discussed and their use for the derivation of
the limit model has been detailed. This derivation has been achieved in arbitrary
dimensions and assuming a full spatio-temporal dependence of the polymer molecule
density. The latter generates additional terms in the Ericksen stresses that have
not been previously described in the literature.

This works opens many research directions. The first one is the development
of a rigorous convergence result using this moment method. This is a quite chal-
lenging task but one may hope that, if successful, it would lead to a result in a
weaker setting than the currently available results. The energetic properties of the
limit model must be investigated. A proof that the extra terms appearing in the
Oseen-Franck energy due to the spatio-temporal dependence of the polymer mole-
cule density lead to a positive energy is missing at the present time. This would be
a necessary step for a well-posedness theory of the resulting Ericksen-Leslie system.
In spite of using Q-tensors as auxiliary quantities, the Doi model and its limit, the
Ericksen-Leslie system are, in essence, vector models, i.e. models for polymer ori-
entations only. Currently, attempts are being made to build truly tensorial models
in association with Landau-de Gennes energies i.e. energies depending on the local
average Q-tensor and its gradients. This is clearly an interesting playground to test
the applicability of the GCI concept to more general situations.

Appendix A. Appendix to Section 2 on Doi’s model.

A.1. Proof of the virtual work principle (16). We have, with (15):

dA® AR Of\ rOf
i < 5f (f)’5>_/nxgn_l“f ot v

/I;nxgn—l /L?{ - v@ . (uf) - vw . (f (APWLE— W)Ld)

D
=: I4+II+1II

Using Stokes’s formula, assuming that all terms vanish at infinity and with (17), we

find

D
I=— [ FE.oude, NI=-—— V% dx dw.
/71 f kBT RnxS§n—1 f | Wluf |

Then, using Stokes’s formula, the fact that V,, ,ujlf” -w = 0 and straightforward tensor
algebra, we have

I = / fAE = W)w - Vg dedw
”XS"_l
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/ flwe un?) dw) c(AE+W)dx
n S7L—1

A+1 A—1
/Sn,l [T(w @ Vo) + T(un? ®w)} dw) : Vaudz

~

f [A(w ® un?)s — (w ® un?)a} dw) :Veudr
gn-1

This leads to (16). O

A.2. Proofs of Formulas (21) and (22) for the extra-stresses. We begin with
a Lemma:

Lemma A.1. Let f and ¢: S* ! — R be two smooth functions. Then, we have

Vofedw=— fVepdw+ (n—1) fowdw. (133)
S§n—1 S§n—1 S§n—1

Proof. Let B € R™ be a fixed vector and denote by X the left-hand side of (133).
Then, using Stokes formula, we have

X-B = wa~Bcpdw:/ Vof P,.Bpdw
S§n—1 S§n—1
= - Ve (P,.By)dw
Sn—1
= - Ve (PyiB)pdw— fP,iB-V,pdw.
Sn—l Sn—l

We have
Vo (PotB)=V, - Vy(w-B)=A,(w-B)=—-(n—-1)w- B,
where the last identity follows from the fact that the function w — w- B is a spherical

harmonic of degree 1. Thus,

X -B=(n-1) fow-Bdw— f Vup - Bdw,
Sn—l Sn—l
which leads to (133). O
Proof of (21). Inserting (13) into the first equation of (17), we have a? =Aos+0,
with '

g = / f(w@un?‘)dw
§n—1

= k;BT/ w®V,fdw+ f(w@VwU;{) dw. (134)
S§n—1 S§n—1
Using (133) with ¢ = w;, we get
/ w; Vofdo = — waifdw—i—(n—l)/ fww; dw
Sn—1 §n—1 §n—1

= —/ Pwleifdw—&-(n—l) fw(w'ei)dw
gn—1

§n—1
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= —/ (ei—(ei'w)w)fder(n—l)/ f (e w)wdw
S?’L*l

Sn—l
= n/ f(w(w~ei)flei) dw,
§n—1 n

where e; denotes the i-th vector of the canonical basis of R". In view of (10), it
follows that [, , w ® V. fdw =npsQy. Inserting this in (134) leads to

& — nkuTpsQ; + / f(w® VoUR) do,
Sn—l

which, in turn, leads to (21). O

Proof of (22). We multiply Doi’s equation (15) by w ® w — %Id and integrate it
with respect to w. This leads to

0 = ‘/Snil(atf—i—vm-(uf))(w@w—%Id)dw

+ V- (f(APwLE — W)w) (w Qw — %Id) dw
Snfl
D

1
R
kBT §n—1 Vw (f kuf) (w ® w n d) dOJ

D
= I4+1II—-—=IIL 135
Using (19), for any smooth function g(x,t), we have d;g + V.. - (ug) = D;g, where
D, is given by (23). It follows that I = D;(p;Q) and, using (86), that
1= s DIy, (136)
Using Stokes theorem, we get:

IIIU = \ R (f Vwﬂ?) w; Wy dw = — wau}?‘ : Vw(wi wj) dw
Sn—1 §n—1

= - wa,u]Ic% “(wjPyre; +wiP,yie;) dw
Snfl
2
- B S§n—1 f (wjkul? e + wszu? ) ej) dw = _X((O-fR)S)2]7 (137)

where again, e; denotes the i-th vector of the canonical basis of R™. Now, similarly
to III, we have,

iy

Vo (f(AP,LE - W)w) w; wj dw
S§n—1

= —/ F (AP, E = W)w) - (wie; 4+ wje;) dw
§n—1
_ _/)‘HME—WQ@®wH%w®MME+WU—Mwm:mmmg
§n—1
which leads to
2A
H:pf(—A(EQf+QfE)+WQf—QfW—?E%—QATf:E). (138)
Finally, using (21), the antisymmetric part of 0]13 is given by:

1
(ﬁnzié4w®vdﬁ—VJ¢®mfm. (139)
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Now, inserting (136), (137), (138) and (139) into (135) leads to (22). O

Appendix B. Appendix to Section 3 on main result.

B.1. Proof of Prop. 2 on properties of S;. The proof uses Lemma 4.1 of [21]
which we recall here without proof.

Lemma B.1. Let n > 2. Define wy = Pgiw. For any function k: [—1,1] — R,
r — k(r), we have:

/ k(w- Q)W dw =0, VkeN, (140)
Sn—l

1
n—1

/ klw-Qw Qw, dw= / Ew-Q) (1 — (w-Q)?)dw Por. (141)
S’n,—l Sn—l

Proof of Proposition 2. (i) The decomposition
w=(w- V4w, (142)
leads to
WwRWw=w- 20?220+ (w- VW, R2+QRw,)+w, ®w,. (143)

We insert (143) into (10) with f = pGpa,. Thanks to (45), pG 4, is a function
of w-Q only. So, the contribution of the middle term of (143) vanishes thanks
to (140) and the contribution of the last term can be computed using (141). Using
that Por =1d — Q ® Q, we get

1 1
Qoyuy = (@D Q00+ —=(1- -0, (W-069) -1

Rearranging these terms, we find (48).

(ii) The leading eigenvalue of Qg, ,, is 2=1G,(n) and is associated with the eigen-

vector 2. Thus, by virtue of (12), the order parameter x,q, ., is equal to Sa(n).
(ili) We first compute S5(0). When n = 0, we have G4, = 1. Thus, S2(0) =
{((n(w- Q)2 —1)/(n —1)); =: r/s, where, using the spherical coordinates as in the
proof of Proposition 1, the numerator r is given by

r= / (ncos?f —1) sin"20df = (n — 1)Wy,_y — nW,,.
0

Here, W,, is twice the Wallis integral W, = foﬂ sin” 0df. From the well-known
recursion formula for the Wallis integral (which can be easily proved by integration
by parts): W,, = "T_an,g, we get that r = 0 and thus, that S3(0) = 0.

We now show that S5(n) > 0, for all > 0, where the prime denotes the derivative
with respect to 7. We have Sy(n) = 1 — 25 (1 — (w- )*)q,,, = 1 - 25 F(1).

We show that F’ < 0. Using again spherical coordinates, we have F = I,,/I, o

with I,,(n) = fow/2 exp(ncos? ) sin™ 0 df (by symmetry, we can reduce the interval
of integration to [0,7/2]). Thus, F' = (I/I,—o — I/, _,1,)/I2_5 = AJI2_,. We
check the sign of the numerator A. We have

An) = / en(cos™ Ocos® 0) inn=2 9 Ginn=2 ¢/ 4in2 9 (cos? @ — cos® ') d df’ =
[0,3]?

/ en(cos” 0cos® 0) inn=2 9 Ginn=2 ¢/ (sin2 § — sin2 0') (cos2 O — cos2 0') db 6,
[0,5]?

M| —
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where we pass from the first to the second line by exchanging 6 and €’. Since sin is
increasing and cos is decreasing on [0, 7], we have A <0.

Finally, when 7 — oo, the measure G4, dw concentrates onto the sum of Dirac
deltas 3(6 + 6_q). Since Py(+1) = 1, it follows that So — 1 when n — oco. This
ends the proof. O

B.2. Proof of Eq. (66) for the Leslie stresses. We have f¢ — fase — 0
with f given by (60). We will abbreviate G4, into G for simplicity. We define
: ) 1y _ . 1
o= ;I_I:’(l) (CprTfs . E* —l—afg) =(pTg: E+0,q.

From (32), we get
2 2

A A A
o= {5 (EQc +QoE) + QW - WQo) + —-E

+(( = M)Tg: E— %DtQG + af[A:(pQc)Qc — Qe (pQc)] } (144)

Now, for a generic distribution function f, we introduce the fourth-order tensorial
order parameter given by

6
Qf:T *m(<w®w>f®ld)s+m

Here, ((w®@w) s ®1d)s and (Id®Id)s denote the symmetrizations of the fourth-order
tensors (w ® w) s ® Id and Id ® Id respectively. Specifically,

6(woweld® Id)s)ijkg = (Wiwj) 7 O + (wiw) § Ij0 + (wiwe) § O
(wjwr) £ 0ie + (wjwe) £ Ok, + (Wrwe) 5 Gij
3((Mdw® Id)s)ijkf = 0;0k0 + 0irdje + 030k,

Id®Id),.  (145)

where 0 denotes the Kronecker symbol. Eq. (145) corresponds to the decomposi-
tion of Ty into irreducible tensors, i.e. invariant tensors under the action of the
orthogonal group. The coefficients of the decomposition can be obtained by the re-
quirement that the contraction of Qy with respect to any two indices is zero. Owing
to the fact that (w ® w); = Qy + 11d, we get
6 3
=Ty - —— Id)s — ——(Id ®Id)s, 146
Qr =Ty - —~@Qreld) n(n+2)( ®1d) (146)
where the definition of (Q; ® Id)s is similar to that of ((w ® w)f ® Id ®Id)s. Then,
using (146), we have

2 2 1
Ty E=Qf: E+ m(EQf-l-QfE)-l- n(n+2)E+ n+4(Qf s B)Id.
Inserting this identity (with f = G) into (144), we get

A? — A2 A

o = P{(7 + Q(Cni_w))(EQG +QcE) + E(QGW -WQq)
1 2(¢ — A?) ) ¢ — A2 _
A
-5 DiQa + aB[A.(pQa)Qc — Qeda(pQa)] }- (147)

Now, we state two lemmas whose proofs are deferred to the end of the present
proof
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Lemma B.2. We have

Qcaq = S4(n) Ag, (148)
where Sg(n) is given by (46) and where
6 3
Ag = Q% — Q20eI1d)s + ——————(Id ® 1d),. 149
Lemma B.3. We have
AS 1
paB[As(pQc)Qc — Qe (pQc)] = p ;(77) [E(N ®Q-Q®N)

~(BQ®9) - (Qe)E)|, (150)
with N given by (68).
From (148) and (149), it follows that

Qe:E = 54{(E:(Q@Q))Q®Q—%[(Q®Q)E+E(9®Q)]
2

where the dependence of Sy on 7 is omitted for simplicity. Likewise, with (48), we
get

EQc +Qcl = 52[Q®QE+E(Q®Q)—EE] (152)

QW —WQa = S:[(QaW -W(Q ), (153)

DiQc = S5:[DiQ2®Q+ Qe D). (154)

In (154), we have used that D;S2(n(p)) = %(n(p)) ‘;—Z(p) Dyp = 0 thanks to (86).

Inserting Eqgs. (150) to (154) into (147), we get 0 = o, + V¢ where ¢ is a scalar
function which can be absorbed in the pressure, and oy, is given by (66) with the
constants, ag, k =1,...,6 given by (55)-(58). This ends the proof. O
Proof of Lemma B.2. Using (146), (48), (46) and (47), we get that

655 655 3
—To , — Q20 ®Id), _
Qcaq Gnao = 14 Qeaeld), + (n(n +4) n(n+2)
6(n(X?) —1)

= TG"AQ - (n—1)(n+4) Qe0eld),

6(n(X?) —1) 3
+((n —Dn(n+4) nn+ 2)) (Id @ Id)s, (155)

where X = w-Q and where we drop the index G, 4,, on the brackets (-). Now, using
the decomposition (142), we get

:<X4>Q®4+(<X2w¢®w> (Q®Q) + (W),

) (Id ® 1d),

Tg

nAq

We use (141) to compute (X?w; ® w, ). To evaluate <wj8i4> we recall the last part
of Lemma 4.1 of [21] without proof: with the notations of Lemma B.1, we have

4 3k(w-Q) (1 — (w-0Q)%)2
[ e et [ SEEEEEEEEE o (o o o),
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This leads to
6<X2(1 —X2))
n—1

3((1 - X?)?%)

Te (n—1)(n+1)

= (X" Q%4 (Q0Q@PyL) + (Por®PqoL).,.

nAqQ

Using that Po1r =1d — Q ® Q, we obtain

6(X?(1 - X?)  3(1-X?*?
T = X4 — O®4
Gnag (< ) n—1 (n— 1)(n+1))
6(X2(1-X?))  6(1—X?)?
- NeNeId
+( n—1 (n—l)(n+1))( ®Q@ld),
3((1—X?)?)
—— (I Id) . 1
CER ST (156)
Now, inserting (156) into (155), we get (148). O
Proof of Lemma B.3. Thanks to (50) and (129), we have
a®pA(pQa)Qc = 1A (nAa) Ag
2(n—1 2 2
—n|Aun A + % (Van- V)2 Q= = Q® (Van - Vo)2 - ;”vaTva
-1
+%Aw9 ®0— %Q ® A+ A Q) Q@ Q] . (157)

Let M be the tensor given by the left-hand side of (150). Using (62) and (49), it
follows from (157) that

M = % [z((vxn.vx)mm—ﬂ@(Vanx)ﬂ) +U(AxQ®Q—Q®AfQ)}
= g [Ax(nﬂ) ® (n€2) — (n$2) ®Ax(nﬂ)]
= o [(E-pura) om0 - 0o (T - Pyka)]
pAS,

= 5 K%—PQLEQ)Q@Q—Q@(g—PﬂLEQ)] (158)

Then, we note that there exists a real number z such that
(Pt EQ)@Q=(EQ)0+2000=FE(Qe Q)+ 201 Q,

and that the same real number z is involved in the expression of Q ® (Po1 ER), so
that we get

(PorEQ) @0 - Q@ (Pt EQ) =EQ®Q) — (2 Q)E.

Inserting this expression into (158), we get (150) which ends the proof of the Lemma.
O

B.3. Proof of Eq. (67) for the Ericksen stresses. We now compute lim._,q F}E

= F;}G,,AQ' Thanks to (33), (30) and (51), we have

1 _ 1
FpG’ﬂAQ - p<vaPG71AQ>GnAQ

ﬂp{<vaa:(77(W ! Q)2>G

— %VIAE [n+(n—1)ap]}. (159)

nAq
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We compute, using the repeated index summation convention:

Ou, [As(n(w- )] = 2(w-Q) 0, Qwin 851_%47 +(w-2)?*03

KRtV Ratv}
40,5, Qp w1k O, Quwie Opyn +4(w-Q) 07, O wr, 8a,1

4(w- Q) 0y, U w_s aﬁﬂjn + 205, Qe wig O, QwieOr,m
482%6; O Wi 61]. Qewien+ 2(w . Q) 82j3¢j Q. wy 8T177

+ + o+

+ 207, Qw0 Qwien+2(w-Q) 83, . Qwrn. (160)
Thanks to (46) and (47), we have the following identities
(n — 1)32 + 1
n )

n—1

(W Dy, =

Furthermore, the decomposition (142) and the fact that |Q*> = 1, lead to the
following identities

(1= (@- )6, = (1—8).

00 = 0, 02, Qu Q= —0,, % 0, U,
1
(P )ke0u; 2 = Ou, i, 00, U O Y = §3zi(amj9kazjﬁk)
1
00, U U = famj(aziakamjm)fiazi(axj@kazjﬂk),

02 0., = axj(aziszkaxjak)—lazi(ax_jﬂkazj@k).

;T 2

Thus, taking the bracket (-)g,,  of (160), noting that all odd powers of w - Q or
of w, vanish by antisymmetry and using (141) and the previous identities, we finally
get

(Voo (nw- %)) = %WAM

nAQ
— 252V, V.7 +|V,Q’1d) V.7
— S5V, (2V,QV,Q" + |V, QP 1d)n.

Inserting this equation into (159), using (49) and noting that for a n x n tensor S
and a scalar ¢, we have V, - (S¢) = (V.- S)p + STV, we get

Foga, = —gm : [n2 (2v.0v,0f + \VwQ\QId)}
+5{L_177VIA177 - MWIAIP}. (161)
no n

The first of the following identities follows again from the fact that |Q|> = 1 and
the second one is just straightforward algebra (which will also be applied with p
replacing 7):

7PVQVAT = Vo(Q) Va(n)" = Van @ Van,
1
nvazn = -V, (VM @ VM) +V, (UAHI + §|vr77|2)

Inserting these identities into (161), we get F f}Gn g

given by (67) and ¢ is a scalar function (different from the one appearing at the end
of Section B.2) which can be absorbed in the pressure p. This ends the proof. O

=V, -0+ V,p, where og is
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B.4. Proof of the energy identity (74). Taking the dot product of (63) with
u, integrating with respect to  on R™ and using Stokes formula assuming that the
spatial boundary terms vanish at infinity, we get

d |u|? 1 9 1
— —d — Lu|?d —_— :Veudr = 0. 162
dt R 2 T Re R |V U| S ReEr R (UL + O—E) Voudr 0 ( 6 )

We first compute the contribution of the Leslie stresses. Using the symmetry of
E and Q ® Q, we first have

(1 (E: (Q20)Q00+aE] : Viu=o1(E: (Q29)  + B, (163)
Then, we remark that
(Q@ME) :V,u = |BQP - (EQ)- (WQ),
(EQ®Q):Vou = |BEQP+(EQ) (WQ),
which, with the second equation (69), gives
[a5(2®@ Q)E + asE(Q® Q)] : Vou = (a5 + ag) [EQ? + 12 (EQ) - (WQ).  (164)
Also, with (70), we have

1

N=-2p, EQ+ =Py H:= N, + Ny.
! B!

Remarking that (Q ® ) : W = 0 by the antisymmetry of W, we get

Q&N :Vou = —%[Q@(EQ—(Q~EQ)Q)]:(E+W)
1
= —BEapP - (E: (Q20)’ - (EQ)- (W),

ga!
and similarly

(N1 ®Q) : Vyu = —% [[EQP — (B: (Q29)” + (BEQ) - (WQ)],
which, using (69), gives
[02Q@N1+asN1®Q] : Vou = f[|EQ|2(E : (Q@Q))Q} —v2(EQ)-(WQ). (165)
Then, using (69), we compute

1
(0202 ® Na + azNa © Q] : Vu = - (020 @ Por H 4 asPor H® Q] : (E+ W)
1

= %[(az +a3)(Por HR® Q) : E+ (a3 — a2)(Por H® Q) : W]

= Py H - [%EQ +WQ] = Py H- Py [%EQ + WO

1
= 7|PmH|2 —H - (0Q4u-V,Q), (166)
1

where, for the last equality, we have used (70) and (68) and the fact that 9, Q4u-V,Q
is normal to Q. Then, collecting (163) to (166) and using (66) leads to

2
. _ 72 . 2 2
/naL.undx—/np{(oq—&—%)(E.(Q@)Q)) + a4l E|

2
1
+<a5 + o — 12)|EQ|2 + —|Pou H> — H- (9,Q+u- vmg)} dz. (167)
71 71
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Expression (67) for the Ericksen stresses involves three terms which we will denote
by 0%, o, of in the order in which they appear in this expression. We compute the
contribution of each term successively. We have, using Stokes’s formula, (73), (64)
and assuming that the boundary terms vanish at infinity:

/ a% : Veudr = f% (Vz(nQ)Vz(nQ)T) : Veudx
=20 [ {8 (0 V2 19) + Vo () (- Vo)V (1)) d

. {nAz(nQ) (- V)Q) + As(n) - Q(u- Vo) + V- (uw)}daz

a Jgn
- / pH - ((u-V.)Q) do + %/R Au(n9) - Q (u- Vo) da. (168)

A similar computation gives
/n ok Vyudr = —% . Agn(u-Vy)nde, (169)
/n of  Voudy — —M [ Aep(u-Vopds. (170)

Now, we consider the Oseen-Franck energy and successively compute the time
derivative of each of the terms in (72). We first have, thanks to Stokes’s formula:

s 2 2
d—f = 28 Tr{V,(nQ) (8tvm(n(2))T} dx = _ Ay (M) - 0(nSY) de,
(0% R™ (6% R~
With (73), this leads to:
Q
2
&y + / pH - 0,Qdx + 28 AL (nQ) - QOndx = 0. (171)
dt n O Jrn
Straightforwardly, we get
dél (n+1)8
_— = Agm- d = , 172
dt no R™ 0 O dr 0 (172)
d&r -1
dép _(n—1)ap Ayp- Opdr = 0. (173)
dt n Rn

Now, adding (162), (171), (172), (173) together, using (167), (168), (169), (170)
to eliminate oy and og and finally using that Dy;p = 0 and Dyn = Z—ZDtp =0, we
get Eq. (74). O

Appendix C. Appendix to Section 5 on GCI.

C.1. Proof of Proposition 10. We first note that Eq. (97) which defines h, can
be alternately written as (dropping the index 7 for simplicity):

(L=r)h" + (201 —r*) = (n+ 1)) rh — (2pr* + n—1) h=r. (174)
With (98), we have
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Then,
1 / —1 —1
W) = _7[_ g'(cos™'r) rg(cos™'r) 7
2n 1—172 (1 —1r2)3/2
W) = 1 {g”(cos_1 r) 3r g'(cos™tr) (14 2r?)g(cos™! r)}
B 2n L (1 —r2)3/2 (1—1r2)2 (1 —1r2)5/2

Inserting these expressions in (174) and changing r into cos 6, we get

cosf (n—2— 2nsin®6 -2
g+ ( . 7 ) g — n 5— g = —2n cosf sin6, (175)
sin 0 sin“ 0

But, we have

1 9 / cos 0
n"20d) =g’ _9 '
sin" "2 6 (sm g ) 9"+ n=2) sing?
With this and (52), we realize that (175) is nothing but (53). O

C.2. Proof of Lemma 5.10. We use the same notations as in the proof of Lemma
B.2. From (156), we get

ea 6(XPO-X?) | 3((1-X?)?)
e (n—1(n+1) (176)
_xra-x7)  (-X7)?)
42 = n—1 B (n—1)(n+1)’ (a7
o (1=X%)?
T n—1)(n+1)

Thus, with the change to spherical coordinates used in the proof of Prop. 1, an
integration by parts, and Egs. (46), (47) and (49), we get

2 _ 2 s
as+az = (71 = X)) = Cn / e"%5" 0 0052 0 sin™ 0 dO
C /7T 2
S e 9 (ncos®f — 1) sin” "2 6db
20— nZy Jo ( )
1o Sm) 1

2n n-—1 2n 2ap’ (178)

which shows the equality in (117).
Now, we have, thanks to (178)

(n—1)(n+ 1)y = (n+2)(X?(1 - X?)) — (1 - X2 = "2

(nX?—1)—(1-X?).
Thanks to (46), (47), we have (X?) = L(1+ (n—1)S2(n)). So,

on(n+ nas = % [(n(n +2) + 20)(X2) — (n+ 2+ 2p)]
(n(n +2) +21)S2(n) — 2n.
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Thus, with the change to spherical coordinates used in the proof of Prop. 1, we
have

2n(n — 1)(n + 1)nZ,C; tas =

= eneos” o [(n(n +2) +2n) (ncos® — 1) — 2(n — 1)n] sin" >0 df
0

/ eneos” 9 n(n+2)(ncos® 6 — 1) + 2nn(cos® 0 — 1)] sin™ 2 6 do

[}

/ orcos” 0 Qn (n + 2)ncos? @ sin? @ — 2nn sin® 0] sin" "2 0 df
=27

/ eneos” o ((n+2)cos®0 — 1) sin™ 0 df

The passage between the third and fourth lines uses the same integration by parts
as in (178). The other equalities are just simple algebraic rearrangements. Com-
paring with (46), (47), we notice that the integral of the last line is equal to the

S("+2) which is the quantity S, in dimension n + 2 up to a prefactor

quantity
(n+1)Z,C,'. Thus, we have ag = Szn+2)/( 1). Now, we can apply Prop. 2 (iii)
and conclude that 0<ax < r In particular, ag # 0, which finishes to show (117).

Finally, it is a simple algebra, using (176) and (177) to show that

(nX?-1)

Nao —
a1+ (n+4)ag ——

= 52(n),
showing (118). This ends the proof. O

C.3. Proof of Prop. 12. Let f = pGya, with n # n(p). This means that (49) is
not satisfied. In other words,

' = apSa(n) # . (179)
From (48), it follows that apQ,q, ., = 7' Aq. So, with (104), we get
DG, a, C*g(w) = Ly 4,9(w) — ap (pQ)c GragLya e WO W (180)

Suppose that g is a GCI associated with (1, Ag). Then, by (90), there exists V €
{Q}+ such that

GWAQL;Ang(w-Q) (w-V)Gpag- (181)

By a similar computation (using the same notations) to what was done in the proof
of Lemma 5.9, we get

P (PQ)G ag g W OW = 2aplaz+az)(w- Q) (w-V)

= L) w ). (182)

For the second equality, we have used that as + a3 = S2(n) (see the proof of
Lemma 5.10 in Appendix C.2) and (179). On the other hand, simple algebraic
manipulations and the use of (181) show that

L;;’Ang(w) = ;Agg( ) + 2(77/ - ﬂ)(w : Q) w*Q Vg
(w- Q) (@-V)+2(0 = n)(w- QP Q-Vug.  (183)
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Inserting (182) and (183) into (180) gives
N 1
Dy, C9() = O = 1) D) = (@ V) + 2P0 Vg

Suppose now that g is also an element of ker (D,q, Aq C*). This implies that

1
2P,.Q-V,g9= Q—(W-V). (184)
n
From now on, we restrict to dimension n = 3 and use the spherical coordinates (6, ¢)
associated to the cartesian basis (V, W, ) with pole at  (defining W = Q x V,
using the symbol x for the cross product). In these coordinates, (184) is written in
terms of §(0, ) = g(w) according to

1
Oyg = — cos p.
2n
Thus,

: 1
g0,0) = o 6 cosp + h(p),

where h is an arbitrary function. The smoothness of g at w = ) requires h = 0.
However, we see that g cannot be smooth at w = —Q (i.e. for § = 7) because the
function 0 cos ¢ does not tend to a constant when 8 — 7. However, by the elliptic
regularity theorem, g € C°°(S"~1). This is a contradiction. This means that the
only possible solution is when V =0, i.e.

CﬁAQ N ker (DPGnAQ c*) = {O}
Since Cpa,, # {0}, this shows (103) (with ¥ = Aq) and ends the proof. O

Appendix D. Appendix to Section 6 on the derivation of the equation
for Q.

D.1. Proof of Eq. (132). We first consider 45. With (127), (128) and (125), and
using the spherical coordinates and the notations C,, and Z,, described in the proof
of Prop. 1 as well as the change r = cosf, we have (dropping the indices nAq to G
and n to h for simplicity):

Fg = p Gh(w-Q)(1— (w-Q)?) (217(1 —2(w-Q)?) - Qn) dw
n—1 §n—1
- 2 G 1(1 — )T e r (2n(1 — 2r) — 2n) hdr (185)
- on—-1 Zy Jo K ’

Besides, multiplying Eq. (97) by r, integrating with respect to r € [0, 1], and noting
that, thanks to two successive integration by parts we have

n—1

1 1
/ r((1- r2) s e W) dr = / (1—r2)"z ey (2n(1 —r?) = (n+ 1)) hdr,
0 0
we get

n—1

L 1
/ (1—r2)" = e (2n(1 —2r%) — 2n) hdr = / (1= " r2dr.  (186)
0 0
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Inserting (186) into (185) and integrating by parts once more, we get

g = P 2 (1fr)ge’7’“rdr
B nf1§n277 (1*72)%367"2(717"2*1)!17“
_ ﬁ/ oMw- QP -1 p(Paw- D) _ pSa(n)
2n Jgn—1 n—1 2n 2n

where, in the last line, we have reverted back to the variable w and used (46)
and (47). This shows the first equation in Formula (132).
We now consider 4;. Changing to spherical coordinates in (125), we get

2 n [ , .
A= - ipl gn eneos™ o h(cos 8) cos @ sin™ 6 db.

Using (98) and (52), this can be changed into

~ 14 C’fl " ncos? 0 dﬁo on—2

= 0) — s 6df

n (n—1) Z, /0 ‘ 9(0) a
But from (45), we have g—z = [l e cos®0 4in"=2 df, which leads to the second
equation in Formula (132). O
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