Taylor & Francis
Taylor & Francis Group

Data Science, Quality &

~lISE Transactions

IISE Transactions

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uiie21

State-space modeling for degrading systems with
stochastic neural networks and dynamic Bayesian
layers

Md Tanzin Farhat & Ramin Moghaddass

To cite this article: Md Tanzin Farhat & Ramin Moghaddass (2023): State-space modeling
for degrading systems with stochastic neural networks and dynamic Bayesian layers, IISE
Transactions, DOI: 10.1080/24725854.2023.2185323

To link to this article: https://doi.org/10.1080/24725854.2023.2185323

A
h View supplementary material (&'

@ Published online: 24 Apr 2023.

\J
CA/ Submit your article to this journal

||I| Article views: 302

A
& View related articles &'

oy

(&) View Crossmark data &'

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=uiie21

https://www.tandfonline.com/action/journalInformation?journalCode=uiie21
https://www.tandfonline.com/loi/uiie21
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/24725854.2023.2185323
https://doi.org/10.1080/24725854.2023.2185323
https://www.tandfonline.com/doi/suppl/10.1080/24725854.2023.2185323
https://www.tandfonline.com/doi/suppl/10.1080/24725854.2023.2185323
https://www.tandfonline.com/action/authorSubmission?journalCode=uiie21&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uiie21&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/24725854.2023.2185323
https://www.tandfonline.com/doi/mlt/10.1080/24725854.2023.2185323
http://crossmark.crossref.org/dialog/?doi=10.1080/24725854.2023.2185323&domain=pdf&date_stamp=2023-04-24
http://crossmark.crossref.org/dialog/?doi=10.1080/24725854.2023.2185323&domain=pdf&date_stamp=2023-04-24

IISE TRANSACTIONS
https://doi.org/10.1080/24725854.2023.2185323

Taylor & Francis
Taylor &Francis Group

‘ W) Check for updates‘

State-space modeling for degrading systems with stochastic neural networks

and dynamic Bayesian layers

Md Tanzin Farhat and Ramin Moghaddass

Department of Industrial and Systems Engineering, University of Miami, Coral Gables, FL, USA

ABSTRACT

To monitor the dynamic behavior of degrading systems over time, a flexible hierarchical discrete-
time state-space model (SSM) is introduced that can mathematically characterize the stochastic
evolution of the latent states (discrete, continuous, or hybrid) of degrading systems, dynamic
measurements collected from condition monitoring sources (e.g., sensors with mixed-type out-
puts), and the failure process. This flexible SSM is inspired by Bayesian hierarchical modeling and
recurrent neural networks without imposing prior knowledge regarding the stochastic structure of
the system dynamics and its variables. The temporal behavior of degrading systems and the rela-
tionship between variables of the corresponding system dynamics are fully characterized by sto-
chastic neural networks without having to define parametric relationships/distributions between
deterministic and stochastic variables. A Bayesian filtering-based learning method is introduced to
train the structure of the proposed framework with historical data. Also, the steps to utilize the
proposed framework for inference and prediction of the latent states and sensor outputs are dis-
cussed. Numerical experiments are provided to demonstrate the application of the proposed

ARTICLE HISTORY
Received 29 July 2022
Accepted 9 February 2023

KEYWORDS

State-space models;
Bayesian layers; recurrent
neural networks;
degradation monitoring

framework for degradation system modeling and monitoring.

1. Introduction

The development of advanced sensors, smart devices, and wire-
less/remote sensing technologies has contributed significantly
to the advancement of real-time monitoring and control of
degrading systems. Most data acquisition frameworks in condi-
tion monitoring systems can routinely collect a large amount
of the system’s operating/environmental data, which can peri-
odically deliver a potentially large volume of dynamic covari-
ates (Meeker and Hong, 2014). The success of any data
analytics approach for sensor-driven monitoring highly
depends on the ability of the models employed to mimic the
temporal and stochastic behavior of degrading systems.
Although many mathematical frameworks have been developed
for the modeling of system dynamics in degrading systems, no
single model is known to be effective in all applications. State-
Space Models (SSMs) are one of the most fundamental and
widely used tools to model time-series data and dynamic sys-
tems (Zhang et al, 2017). The popularity of SSMs stems from
the fact that they are flexible and easily interpretable (Kantas
et al, 2015) and can represent the dynamic nature of many
processes changing over time (Benidris et al, 2015). Despite
their popularity, current SSMs still have limitations that mainly
stem from assumptions about their parametric forms, types of
inputs and outputs, linearity, the Gaussian nature of system
dynamics, and other mathematically convenient, but hard-to-
justify, assumptions. This article aims to develop a flexible

approach to extend the widely used SSMs and address some of
their limitations through interpretable and dynamic hierarch-
ical modeling and recurrent neural networks, so that the com-
plex evolution of the system dynamics can be mathematically
modeled and then large-scale sequential mixed-type sensor
data can be utilized for real-time monitoring.

This article is motivated by degrading systems under
dynamic operating and environmental conditions and sensor-
based condition monitoring where accurate/sufficient know-
ledge with regard to the variables of the system dynamics (e.g.,
the parametric form and stochastic behavior of the degradation
process and sensor outputs) is not available. Also, the frame-
work is suitable for complex degrading systems where the
parametric form assumed for the degradation process and the
behavior of condition monitoring sensor outputs are hard to
justify or simply made for mathematical convenience. This art-
icle aims at developing theoretically sound and fundamentally
new methods that facilitate the implementation of large-scale,
heterogeneous, and multi-source sensor data analytics for deg-
radation monitoring. We should point out that the work in
this article is not designed to replace current state-of-the-art
SSMs for degradation monitoring. However, it is a new tool
for nonlinear and non-Gaussian systems with potentially long-
range time dependencies when no accurate/sufficient know-
ledge is available regarding the stochastic evolution of the sys-
tem dynamics.

CONTACT Ramin Moghaddass @ ramin@miami.edu

@ Supplemental data for this article is available online at https://doi.org/10.1080/24725854.2023.2185323

Copyright © 2023 “lISE”

http://crossmark.crossref.org/dialog/?doi=10.1080/24725854.2023.2185323&domain=pdf&date_stamp=2023-04-21
https://doi.org/10.1080/24725854.2023.2185323
https://doi.org/10.1080/24725854.2023.2185323
http://www.tandfonline.com

2 . M.T. FARHAT AND R. MOGHADDASS

The contributions made in the article can be summarized
as follows: First, a flexible multilayer state-space framework
is proposed for a partially observed hybrid degrading sys-
tem. This framework can characterize the stochastic relation-
ship between latent degradation states, condition monitoring
sensor outputs, control variables, and failure processes with
a dynamic Bayesian network. The proposed structure and all
its functional relationships are characterized by neural net-
works and learned directly from past data; thus, no paramet-
ric distributions or prior assumptions are needed with
regard to the stochastic behavior of the dynamic variables.
The model has the flexibility to handle missing points and
incorporate prior knowledge, when available (e.g., incorpo-
rating bounded system variables). Second, unlike most avail-
able SSMs for degrading systems, the proposed framework
can handle mixed-type (e.g., binary, categorical, continuous,
bounded) inputs/outputs, thus all types of sensor data and
system dynamics’ variables can be considered. Third, a
Bayesian filtering-based Expectation-Maximization (EM) is
proposed to fully train the structure of this framework with
past data collected for observable variables. The article also
discusses the steps to use the proposed structure for infer-
ence and prediction. Due to its generic structure, our frame-
work can cover many available SSMs for degradation
monitoring, such as hidden Markov, semi-Markov models,
and proportional hazard models as special cases (see Section
3.1 for more details). Due to its generic structure and lim-
ited assumptions, our work can be applied in many settings
where the evolution of the system dynamics can be reason-
ably represented by an SSM and when sufficient knowledge
regarding the stochastic behavior of the system is not avail-
able. The key differences between this article and works on
hybrid degrading systems (e.g., Long et al. (2022)) and fault
detection methods driven by the hybrid data (e.g., Wei et al.
(2009)) are the flexibility to define the relationship between
discrete/latent states and sensor readings only by neural net-
works, accommodating mixed-type variables, and incorpo-
rating the failure process as part of the state-space system
dynamics.

The rest of this article is organized as follows: In Section 2,
we review similar works in the literature and discuss the
limitations of available models. Section 3 discusses our pro-
posed framework for data-driven system monitoring and its
mathematical structure. Section 4 illustrates how to employ
past data to fully train the structure of the proposed frame-
work. In Section 5, we address two important problems of
inference and prediction for the proposed framework. A
comprehensive set of numerical examples is provided in
Section 6. Finally, we conclude in Section 7 and discuss our
future work.

2. Literature review
2.1. State-space modeling for degrading systems

SSMs are one of the most fundamental and prevalent tools
in engineering that can represent the dynamic nature of
many processes changing over time (Benidris et al, 2015).
Almost all discrete-time, continuous-state SSMs used for

system health monitoring can be represented by the follow-
ing form:

Xk+1 :f@x(xlzb Uik vl:k)) Vi :gﬁ)y(xlzlo Uik el:k)s (1)

where x; € R™ is the hidden system’s state/health vector at
time k, y, € R™ is the observable system outputs at time k,
u € R™ is the observable system input vector at time k,
and O, € R" and @, € R"® are the sets of model parame-
ters used in mappings f and g, respectively. Here, vy € R™
and e, € R are often i.i.d vectors that are characterized by
known probability distribution functions p,() and p.(). In
the case of a linear Gaussian SSM, f and g are linear map-
pings and p,() and p.() are Gaussian distributions (e.g.,
Rigamonti et al. (2016)). Despite its popularity, (1) has the
following limitations/assumptions when used for degrad-
ation monitoring and control. First, prior/accurate know-
ledge regarding the parametric forms of mappings f and g
and probability density functions (pdfs) p,() and p.() that
govern the stochastic evolution of the system dynamics is
not always available, particularly for non-Markovian, nonlin-
ear, and non-Gaussian systems with long-range time
dependencies. Second, more SSMs on degradation modeling
have focused on a one-dimensional latent state and a con-
tinuous observation process. Thus, they are not designed to
handle mixed-type inputs and outputs. For example, para-
metric forms of mappings f and g in (1) that can simultan-
eously characterize categorical, binary, and continuous
variables do not exist. Third, most SSMs employed for deg-
radation monitoring often assume that: (a) the system fails
when the state process or a combination of state and obser-
vation processes reaches a predefined threshold (e.g., Hu
et al. (2015)); and (b) the system is subject to only one fail-
ure mode (e.g., Wang et al. (2016)). This article proposes a
framework that deals with the above-mentioned limitations
in a flexible manner.

2.2. Bayesian filtering and dynamic Bayesian networks

Bayesian modeling is one of the most powerful and widely
used frameworks for analyzing SSMs. The limitations of
conventional Bayesian techniques and their inability to deal
with high dimensional data of a mixed-type (continuous,
binary, categorical) have made their implementation in deg-
radation monitoring and control limited. A Bayesian Belief
Network (BBN) is a graphical model that allows the correl-
ation and dependencies between variables to be modeled in
a causal manner (Krieg et al., 2001). Given the generative
structure of SSMs with multiple levels, a particular type of
BBN referred to as Bayesian Hierarchical Modeling (BHM)
is a natural fit to formalize the relationship between system
variables while taking uncertainty, numerical instability, and
overfitting into account. Despite their popularity and strong
mathematical structures, BHM and BBN are subject to ser-
ious shortcomings, particularly for large-scale settings with
many variables/levels, sensor measurements, and complex
temporal structures with dependencies between variables.
The hierarchical variant of Dynamic Bayesian Networks
(DBNs), which allows for developing hierarchical models

with stochastic and deterministic nodes and temporal struc-
tures, inherently benefits from both DBN and BHM and can
address their shortcomings to a great extent. Despite its
strong and flexible mathematical structure, limited work has
been reported on Hierarchical Dynamic Bayesian Networks
(HDBNSs) for monitoring and controlling the dynamics of
degrading systems using sensor data. In this article, import-
ant layers of system dynamics in a degrading system are for-
mulated through an HDBN under the umbrella of an SSM.
Our work is different from Bayesian filtering-based methods,
such as Blom and Bloem (2007) and Schon et al. (2011),
because it does not require a predefined parametric structure
for the layers of system dynamics and has flexible/general
capabilities (e.g., mixed-type inputs/outputs and a layer for
the failure process).

2.3. Application of neural networks in state-space
modeling

When accurate knowledge to parametrically characterize
SSMs is not available, neural network-based models are
excellent tools to remedy this limitation. For example in
Wang et al. (2021), a deep neural network structure was
employed to represent nonlinear state transitions and an
observation process, and a variational autoencoder model
was introduced for learning and inference. In Bao et al
(2020), an estimation and inference algorithm for a linear
parameter-varying SSM was developed where neural net-
work structures were used to represent the state and obser-
vation processes. Reference Yang and Shi (2019) considered
a linear SSM with a known structure, and then used a linear
neural network for parameter and state estimation. A vari-
ational Bayesian inference Neural Network (BNN) to quan-
tify uncertainties in matrix function estimation for a linear
SSM was developed in Bao et al. (2021). Recurrent Neural
Networks (RNNs) have also been applied for time series
analysis in SSMs (Che et al., 2018). Despite the power to
model the time-behavior start of arbitrary dynamic systems,
typical RNNs cannot handle uncertainty in inputs and out-
puts. RNNs also cannot be used directly to analyze hierarch-
ical sequential data with both stochastic and deterministic
variables. Although the utilization of neural networks for the
identification of nonlinear systems is not new, our frame-
work has unique capabilities that make it different from
similar approaches. First, unlike most available SSMs for
nonlinear systems that include latent/hidden states and
observations, our framework can potentially accommodate
other types of variables, such as the time to reach a certain
event and the discrete status of the system representing a
switching behavior SSM. In our article, RNN is not used to
estimate the parameters of an SSM with a known structure.
Instead, it characterizes the dynamics of the system and the
relationships between variables all from past data. Our work
can handle mixed-type deterministic or stochastic inputs
and outputs as well as missing points and can incorporate
prior knowledge (if available) about the dynamics of the sys-
tem by incorporating deterministic or stochastic monoton-
icity and bounded variables. Although there are similarities

IISE TRANSACTIONS 3

between our work and the work of Xiuqin and Ying (2021)
that can be applied to hybrid systems, our model is more
flexible as it can include mixed-type inputs and outputs and
consider separate RNNs for each layer of the system dynam-
ics. Also, unlike reference Xiugin and Ying (2021) that uses
approximate variational inference for model estimation, our
model develops an EM algorithm that can be operated
according to Particle Filtering (PF). Our model has an advan-
tage over variational inference-based models that marginalize
the discrete latent variable using an approximate posterior.

Neural networks and degradation monitoring have also
been studied in the literature through physics-informed
neural network (PINN) models. In such models, some prior
knowledge regarding the physics of the degradation/failure
process or other physics principles are combined with a
neural network structure. For example in Nascimento et al.
(2021), a hybrid modeling approach that directly implements
physics within deep neural networks was developed for
Li-ion battery prognosis. In Nascimento and Viana (2020), a
cumulative damage process was modeled through a physics-
informed recurrent neural network for monitoring fatigue
crack growth in a fleet of aircraft. In Dourado and Viana
(2020), a PINN approach for missing physics estimation in
modeling a cumulative damage process was developed. In
their model, physics-informed layers are used to model rela-
tively well-understood phenomena and data-driven layers
account for hard-to-model physics. Despite similarities, our
work is different, mainly because no prior knowledge regard-
ing the physics of the degradation process is required. Also,
our model considers a multi-layer state-space degradation
process in a generative form through multi-dimensional dis-
crete and continuous latent states. However, in Dourado and
Viana (2020); Nascimento and Viana (2020); Nascimento
et al. (2021), the degradation process was considered as a
one-dimensional process with no condition monitored sen-
sors. Also, our model considers stochastic neural network
frameworks where uncertainty is handled in a structured
manner. Compared with our model, PINN models can pro-
vide more justifiable/interpretable insights and require smaller
datasets to train, which may lead to a potentially faster train-
ing phase.

2.4. Summary of the literature gap and the proposed
work

The following summarizes the limitations of the current lit-
erature for degrading systems modeled by SSMs: (i) low
flexibility and generality of available models to define the
stochastic relationships between high-dimensional sensor
data of a mixed-type (e.g., discrete and continuous) and
other multilevel latent and observable variables, (ii) hard to
justify/unrealistic parametric/distributional assumptions used
in defining the evolution of nonlinear system dynamics and
difficulty in mathematically defining the dynamic and sto-
chastic relationships between system variables, and (iii) lack
of generic learning models for SSM training and system
characterization that can fully operate based on data from
the observable processes without having to assume fixed

4 M.T. FARHAT AND R. MOGHADDASS

Table 1. The list of the main notation used in this article.

N number of time series in the train set M number of latent discrete states

my the discrete latent state (switching state) at time k Xy the continuous latent state vector at time k

Uy the controllable inputs at time k 2 the binary vector representing sensor availability at time k

Vi the observation outputs vector at time k [the binary vector representing the failure status of the system
Ok the set of parameters generated in the stochastic layers of RNNs at time k hy the hidden states of RNNs at time k

o the activation function from the input layers to the hidden layers of RNNs bp the activation function from the hidden layers to the

Wy the RNN parameters from the input layer to the hidden layers

stochastic layers of RNNs
7% the RNN parameters from the hidden layers to the output layer

parametric distributions to characterize the behavior of sys-
tem variables over time.

3. Generic stochastic SSM with RNNs

This section illustrates the structure of the proposed frame-
work. The list of the notation is in Table 1. We use upperca-
se/lowercase italic for constants/variables, italic bold for
vectors, and uppercase bold for matrices.

3.1. SSM with mixed-type sensor data

We introduce a generic SSM to model the dynamics of a
hybrid degrading system under condition monitoring. A
hybrid SSM, which is also referred to as a switching behav-
ior SSM, is a system where the latent states are represented
by both discrete and continuous states. For degrading sys-
tems, discrete states can represent system fault status (e.g.,
normal, faulty, and partially faulty) and the continuous state
can represent the latent degradation dynamics of the system.
The stochastic description of this hybrid system at time k
can be theoretically defined as follows (fixed covariates are
removed for notational convenience):

discrete latent state: my ~ pg (mi|%1.4—1, M1k—1, 1:k> €1:%)>

2)

continuous latent state: xx ~ pp (Xk|X1.k-1, M1k—1, Urk> €1:k)s

©)

observation outputs: y, Np{,y (V%10 M1 210 Uk €18

(4)

failure process: ox ~ pp (0k|01k—1, X1k M1ks Urks €1:),
(5)

where e, is the vector of uncontrollable, but observable,
operating inputs or environmental factors (also called exter-
nal factors), uy is the vector of controllable inputs, my €
{1,.., M} is the discrete latent variable (health mode), and
%, and y, are the multidimensional latent state and sensor
observation/measurement vectors, respectively. Here, vari-
able z; € {0,1}"” is a known dynamic binary vector that
denotes whether sensor outputs are available at time k (i.e.,
zx,j = 1 means the jth observation output is available at time
k). This variable has the critical role of mimicking the
behavior of real systems where sensor data are subject to
Here, observable o € {0, 1}™

missing values. vector

represents the overall system health status with regards to n,
types of failures. In other words, instead of limiting the
framework by defining somewhat unrealistic fixed and
known regions based on latent state variables (e.g., x) to
characterize n, failure modes, a stochastic process is defined
where the elements of the system dynamics are stochastically
related to the probability of each failure mode over time.
Although connecting a system’s variables to the probability
of failure has been employed many times before (e.g.,
Markov failure time process in Banjevic and Jardine (2006)),
SSMs do not explicitly use the evolution of the failure time
in the dynamics of the system. With defining this stochastic
process, we also allow users to incorporate any prior knowl-
edge/assumption (if available) regarding the evolution of the
failure process. For instance, one may impose a Cox propor-
tional hazard model, a bathtub, or a monotonic shape for
the hazard probability function. Defining this process helps
in better identification of the latent degradation states. This
is numerically shown in Section 6.1.C. The structure of the
model and inclusion of latent variables allow for marginal
dependencies between failure events (e.g., competing failures
can be modeled together). Here, py' represents a probability
mass function (pmf) for the distribution of my given
X1:k—1> M1k—1> Urk and epx. In the simplest case, pp,, can be
defined by a Markovian transition matrix P of size M x M,
where Pj; = p(my = jlmy_y =i). The probability density
function pj describes the evolution of the continuous latent
states. For instance, it can be represented by a #n,-dimen-
sional multivariate Gaussian distribution for random vector
X given Xy4—1, Mik—1, U1k and erx. The pmf o, describes
the probability distribution of failure modes given
01.k—1> X1:k—1> M1:k—1> U1.k> and ej.. Since the variables for
the observation outputs can be of different types (binary,
categorical, continuous), a combination of pmfs, pdfs, or
mixed-type probability distribution functions may be
needed to define p%y. This will be further discussed in

Section 3.2.1. The parameter sets 0, 0,, 0,, and 0, charac-
terize these pdfs.

The ability to define the causal dependencies between sys-
tem variables through the Bayesian network structure helps
with the interpretability of the SSM structure used in this art-
icle. Due to the generative and flexible structure of the SSM
framework used in the article, many SSM-based models in deg-
radation modeling can be formulated as a special case of our
framework. For instance, hidden Markov models, Cox-propor-
tional hazard models, and linear state-observation models can
be easily modeled with our framework. This is because the
way these models define the relationships between the latent
degradation state and the observation process falls under the

generic system of equations defined in (2)-(5). For instance,
in Hidden Markov model-based degradation frameworks
(e.g., Zhao et al. (2021)), the discrete latent degradation state
and the multi-dimensional observation process can be defined
with (2) and (4), respectively. Typical Cox-proportional hazard
model for degradation modeling (e.g., Zheng et al. (2021)) can
be formulated by (3) to represent the continuous degradation
states or other covariates (environmental factors) and (5) to
represent the hazard process or probability of failure at any
time. Also, linear/nonlinear state-observations models used for
degradation analysis (e.g., Zhang et al. (2022)) can simply be
defined by (3) and (4) for the continuous degradation state
and the observation process, respectively. Even more advanced
nonlinear systems, such as switching Kalman filter-based mod-
els, can be formulated by (2) to represent the switching mode,
(3) to represent the state vector, and (4) to represent the obser-
vation process. The probability distribution functions can be
defined by any form of time-dependent functions (with or
without the Markov property) to incorporate time dependency
and uncertainty into any variable of interest. All variables can
theoretically be multidimensional and of any type (e.g., binary,
categorical). Inspired by the concept of hybrid systems
(Tafazoli and Sun, 2006; Orchard and Vachtsevanos, 2009), a
discrete mode variable is defined to represent discrete levels of
hidden working conditions or faults (e.g., normal and faulty)
at which the dynamics of the system may change. Such varia-
bles can also be responsible for incorporating switching behav-
iors of system dynamics within its life cycle (e.g., Peng et al.
(2018)). For notational convenience, we removed the effect of
observable vectors u; and e, from future equations. Despite its
general form, the SSM equations discussed in (2)-(5) are useful
only when it is mathematically possible to define py' ,pj , p{,y,

and py and prior knowledge regarding their parametric forms
is available.

3.2. Utilizing neural networks for stochastic system
dynamics

In many systems, accurate knowledge with regards to the
stochastic behavior of the system dynamics is not available,
and thus assuming predefined parametric forms (such as
linear and Gaussian structures) for the pdfs in (2)-(5) may
be impossible or somewhat unrealistic. In this subsection,
we show how to utilize RNNs in a stochastic manner. The
idea is discussed for pyoy, that is, the pdf that models

the temporal behavior of multidimensional sensor data. We
first consider an RNN with an input layer including
(M1 %14 21k U14- €1x] and hidden/latent layer including
neurons k,. It should be noted that the input variables
selected to define y, can be determined by the users. We
made a reasonable assumption that latent states, inputs, and
missing point indicators are sufficient to define the stochas-
tic behavior of sensor outputs y,. Here, recurrent layer h{
plays the role of the memory of the network capturing
information regarding previous time steps. To generate sen-
sor measurements y, in a stochastic manner, we include a

IISE TRANSACTIONS (&) 5

Input Layer

26

(\ v 4 -
hkil,z hk J \ hk+1,,

- 7

o) o,
@

Recurrent Layer

Stochastic Layer

z, | Zgy1 o
k v v
\<}D Yie+1

Figure 1. A simplified view of the relationship between inputs and outputs of
the observable layer y layer at time k in a RNN form. Vertices represent stochastic
variables; edges show the relationships between variables; filled circles are know-
n/observable variables; unfilled circles are hidden variables; solid lines represent
deterministic relationships; dashed lines represent stochastic relationships; and
double-lined circles/edges denote recurrent variables. The parameters that char-
acterize the uncertainty of the output variables are in the stochastic layer.
Horizontal lines represent time dependencies.

Output Layer \4 Yie-1

new layer @, which maps the neural network’s hidden
layer(s) to a probability distribution over possible outputs of
¥ as ¥ ~ 7 (y; 8,). Here 7 is a pdf that is characterized
by parameters 0{ This process can be summarized as

b = by (mis X by [W), 00 = o (e[W), (6)

Vi ~ 7 (g O 2k).- (7)

The pdf @ would take an appropriate form depending
on the type of variables in y (ie., continuous, binary, cat-
egorical) and their stochastic behavior. It is clear that the
choice of m determines the number of nodes for layer 6.
The key point is that the probability distribution
7 (yi; 0}, z) does not have any other parameters, and thus,
is fully defined from previous layers of the network. The
nonlinear deterministic mapping ¢, (e.g., LSTM or GRU)
and ¢y (e.g., sigmoid or softmax) can be chosen by the
users. In the recurrent layer of the RNN (e.g., LSTM), we
can set the lookback (e.g., window size), which is the prior
time step the model is looking back for learning the patterns
and long-term dependencies. For a degrading system, a
hypothesis could be that a longer lookback could capture
more context for predictive patterns. However, as discussed
in Section 3.3.2, activation functions ¢ should be chosen
so that parameter boundaries required in the parameter set
@ are not violated. For all other hidden layers, activation
functions can be chosen from common and easy-to-use dif-
ferentiable nonlinear activation functions, such as ReLu,
Sigmoid, or Tanh. The parameters Wj» and Wy denote the
unknown weight and the bias vectors of the corresponding
RNN. The graphical model to generate the sequence of sen-
sor observations from the corresponding RNN is shown in
Figure 1. It is interesting to note that despite the determinis-
tic relationship between the input layer and the hidden layer
of the RNN, all neurons in the hidden layer become random
variables simply because the neurons in the input layers are
random variables. For mathematical convenience, we refer
to (6) as RNN”(my,xx zk, B |Wy, Wy). Based on the
approach discussed above, the system dynamics equations can
be represented by multilayer RNNs with an input layer, one or

6 M.T. FARHAT AND R. MOGHADDASS

y
Ok-1 91:—1
v Zg—1
1 1
\ 4
Op—1 Yk-1

multiple hidden recurrent layers denoted by h, the stochastic
output layer denoted by 0, and the output layer. For example,
the evolution of the hidden degradation state at the kth time
interval is represented by RN N x(mk,l,xk,l,h{\th, We),
where the structure of the RA'A™ and latent state 6 is as fol-
lows:

RNNx(mkfbxkfla hi|whx’ WGX) - hz
= pe (M1, X1, e [Wie), O = e ([W), (8)

e P53 0) ®
For the discrete-state variable m, we have
RNN" (i1, 61, B Wy, Wor) = B!

- ¢h"’ (mkflaxkfbhzlfllwhm)) OZI = ¢0'"(hz1|wo’”), (10)

(11)

Finally, the stochastic behavior of the failure modes can be
represented by

RNNO<mk71>xk71)h{|Wh“: WH") — hi
= ¢pe (Mo X, B_ |[Wie), 0 = g (BE|Woe),

my ~ " (my; 0F).

(12)

oy ~ ‘IIO(Ok;HZ). (13)

To characterize this dynamic system (ie., (6)-(13)), the
structure of the RNNs defined by ¢y, dgn, Qprs Dy
Q> Qs Ppe» and ¢go; the number of layers and neurons
within each layer, pdfs Ty s> Mgy and e and weight
(and bias) vectors of the RNN, denoted by W = {W,
WhX, Wh)’, Whﬂ, ng, WgX, Wg}', W()D}, should be known.
The structure of this dynamic system can be shown by a
DBN in Figure 2, which has stochastic recurrent latent vari-
ables with deterministic and stochastic variables and causal
relationships. We utilize Long Short Term Memory net-
works, referred to as LSTMs, which are a powerful form of

P\ Nt

Figure 2. A system dynamics framework represented by a Bayesian network with four time-dependent layers of m, x, y, and o and the recurrent layer h. The types
of the nodes/edges are the same as Figure 1.

RNNs that can deal with the well-known RNN issues of
vanishing and exploding gradients. Using Bayesian networks
to describe the relationship between variables not only helps
with interpretability and understanding of system layers, but
also introduces unique ways to formulate a physical system
under monitoring through SSM and neural networks.

3.2.1. Defining the pdfs {=™, n*, ¥}

The vector-valued pdfs n- have a critical role in the success-
ful representation of the evolution of system dynamics. The
key idea is to define these functions in a generic way while
making sure that they are fully characterized through the
neurons in layer . We first discuss the selection of function
7 for the observation process because it is the layer that is
likely to have mixed-type variables. For example, for a con-
tinuous y, the nodes in layer @) should include the elements
of the mean vector yyk and the covariance matrix Z‘.{ (i.e.,
0{ = {,u{,):{}) of a multivariate Gaussian distribution, so
that

Ve ~ N Xp). (14)

In other words, the outcome of the RA/A” would give sto-
chastic information regarding the value of sensor outputs
represented by a mean vector and a covariance matrix. We
should highlight the fact that we do not assume that y fol-
lows a multivariate Gaussian distribution with a fixed mean
and covariance. Instead, we assumed observation outputs y,
follows a multivariate Gaussian distribution with a dynamic
mean and covariance (that is y, and y, ., do not follow the
same probability distribution). Similarly, y, of two different
systems follow different probability distribution that depends
on the history of the system. It should be pointed out that
other pdfs can be used for the stochastic layers; however, its
performance particularly for the backpropagation step should
be carefully investigated. For instance, a very generic choice
for continuous observation outputs would be a Gaussian

Mixture Model (GMM), which is known to be a universal
approximator of densities. Our framework can use a GMM
by including mixture of components in the stochastic layers.
From a feasibility point of view, one can choose any prob-
ability distribution/mass function that can be parameterized.
For a binary variable in y, we include a non-zero constant p),
in the stochastic layer @), and then use the sigmoid activa-
tion function (which ranges between zero and one) to find
the probability of y; being one as:

Pr(yx =1) = (1+ exp(p{

Here, we need a vector p,{ (ie., & = {p}}) to accommodate
multivariate binary vector y,. Finally, for a I-dimensional
categorical variable y,, we should include neurons
{d),a),...a]} in the stochastic layer @, and then use the
softmax activation function to get the probability of each
class as follows:

(15)

1 -1
Priy, = f) = exp (a{,f)(le o) S € (1)
(16)

Now for a system with n, = n.+ ny + n, variables in the
observation process, where #n, n, and n, are respectively the
number of continuous, binary, and categorical variables, the sto-
chastic layer @ would need to include a n-vector for the
mean, a n, X n, matrix for the covariance matrix, », neurons
to cover binary variables, and Z}'“lef neurons to cover cat-

egorical variables. In other words, the 6, layer of RNN”
should include all n, +n. x n, +n, +n Z}'“Zl ls neurons that

characterize the stochastic behavior of sensor outputs. We
should point out that the framework discussed above does not
assume that output variables are independent. In fact, since all
output variables are at the same level and dependent on previ-
ous layers, they are marginally dependent (or only conditionally
independent given neurons in layer 6). If prior knowledge is
available with regards to the causal dependencies between sen-
sor outputs, one can incorporate such dependencies by chang-
ing the inputs and outputs in (6)-(7). The second way to
incorporate dependency is from the probability distribution
used in the output layer that provides a joint distribution of
output variables. For instance, when multivariate Gaussian dis-
tribution is used, then the correlation between continuous sen-
sor outputs may be captured with the non-diagonal elements of
the covariance matrix. For categorical distribution, the SoftMax
function provides a joint probability distribution where the sum
of probabilities of all categories is one. Our framework can han-
dle two important special cases with respect to the observation
process, namely, missing data and bounded data. We have
shown in Appendices 1 and 2 how these concepts can be taken
into account by modifying the probability distribution func-
tions. The ability to handle these two concepts helps with
numerical stability and extends its application to more complex
degrading systems.

IISE TRANSACTIONS (&) 7

3.3. RNN training with stochastic variables in the output
layer

Although the parameters and the elements of the stochastic
RNN structures in each layer of the Bayesian network may
be different, the process to train these networks is the same.
Below, we discuss how a generic loss function can be used
as a criterion for training RA/A”. In Section 4, we discuss
how to conduct model training when only data for observ-
able layers are available. Results presented here can be
extended to RANN™, RNNY, and RNN° in a similar
manner. Typical neural networks are often trained by defin-
ing appropriate loss functions, which are chosen based on
the expected target values and how they can be compared to
true values. Typically, loss functions in deterministic neural
networks are structured in a way that the true value and the
estimated value are used to find the error or the loss.
However, in the structure used in this article, the loss func-
tion should handle the stochastic nature of three types of
variables (i.e., continuous, binary, and categorical). This
makes the selection of the appropriate loss function very
important. Due to the stochastic nature of the variables in
the output layers, the negative log of the probability of out-
put variables is considered as the loss function for model
training. This is very common across stochastic neural net-
work models. Unlike available deterministic and stochastic
neural networks, the stochastic recurrent neural network in
this article has a multiterm loss function due to the nature
of the output layer that includes multidimensional and
mixed-type variables. Such loss functions offer the flexibility
of utilizing separate loss functions for separate neurons in
the output layer. The first loss function is the binary cross-
entropy (BCE), a simple and commonly used loss function
originally defined for binary classification. This loss function
can be used to predict the probability values for all binary
variables in the system, denoted by Sy,

N T,
‘Cbm :_NZZ Zyk] log
+(1-

1 k=1 jESpin
i)

(2 yej) =

Zk]yk]))
log (1 — a(z; 5k ;) where
1

1+zjexp(—p,)’

Vi j is the true value of the jth binary variable (from set S;,) for

time series 1, N is the number of time series in the train set, and
T, is the length of the nth time series. For categorical variables
(set Sar), we treat the estimation problem as a multiclass classifi-
cation problem with the cross—entropy loss function as

:7_222 jl{zk =0}log (1 — z)

n=1 k=1 j€Scat

+ Z Lk,
c=1
zi,jexp (a))
=c {z”,-—l}}.log< ‘ :)
* () exp ()

Ecat

8 M.T. FARHAT AND R. MOGHADDASS

Here, [; is the number of categories for the jth categorical
variable. For both of the above loss functions, when an
observation is missing (i.e., when z;; = 0), then the corre-
sponding value in the loss function is zero. This ensures
that missing points do not impact the training process. The
parameters of the continuous variables are the mean and
covariance components that are defined in the output layer
of the RNN. Assuming g, as the mean vector and X as the
covariance matrix with y} as the true observation vector, the
loss function for all continuous variables can be computed
as follows:

T,

1 N
con Z

n:1 k=1

log (Pr(ykl s, X5 2))

N T,

77722 log| 2.0 |+ (ykfzkﬂk)[

n=1 k=1

—1
270k =)

Here | | is the determinant operator and X.} is the covari-
ance matrix after the effect of vector 2}, that is,

EJ =X © diag(z}) + (I, — diag(z}))
= diag(ef O X + (L 1y, —)

where © is the Hadamard product (element-wise product),
I, is an identity matrix of size ncy X fion, and diag(z}) is
a diagonal matrix with diagonal elements z}. It can be seen
that all dimensions with missing points (z=0) will be
ignored, that is, the corresponding elements in the loss func-
tions are all zero. The loss function can be easily extended
to the truncated normal distribution by dividing the loss
function into three elements as discussed in Appendix 2.
When using multiple loss functions in neural networks, each
loss function requires a weight parameter that is used while
optimizing the targets with multiple outputs and separate
loss functions. The loss weights can be considered as hyper-
parameters that need to be tuned in by cross-validation. The
overall loss function can now be represented as

Neon

‘CCOH(W) = ylﬁbin(w) + Vzﬁcat(w) + y3£c0n(W)-

The hyperparameters y;, y,, and y; are tuned using a grid
search across a validation set. Standard backpropagation uti-
lizes a gradient descent algorithm in which the weights are
updated along with the negative of the gradient of the loss
function and a combination of weights that minimizes the
predefined loss function.

3.3.1. The loss function for the failure process

The loss function discussed earlier can only handle regular
binary, categorical, and continuous variables and cannot be
used for variables that represent events with a monotonic rate
of occurrence. Due to the page limit, we discuss the structure
of the loss function for the failure process in Appendix 3.

3.3.2. Appropriate stochastic layer’s activation functions
Activation functions have a very important role in the
design and performance of the proposed framework, par-
ticularly in the control of the learning process using the
training set. In the proposed framework, the activation func-
tion used in the hidden stochastic layers (i.e., ¢4) should be
carefully chosen to make sure binary, categorical, continuous
(regular and truncated), and failure process variables are
generated in their appropriate domains. We added a discus-
sion in Appendix 4 to discuss possible activation functions
for different layers of the system dynamics. In practice, we
can conduct cross-validation to fine-tune the best activation
functions from a set of feasible ones, usually through a grid
search process.

4, Learning with data from the observable layers

The loss functions in Section 3 can only be evaluated if all varia-
bles/parameters in the inputs/output layers are known. However,
the structure of the proposed SSM is generative with multiple
latent/hidden and observable layers and variables where both
inputs and outputs can be stochastic. Thus, unlike loss functions
in well-known deterministic and stochastic neural networks, the
direct evaluation of the discussed loss functions for the purpose
of model training is not possible. Furthermore, available meth-
ods with algorithms with negative log-likelihood as the loss func-
tion can only deal with continuous or discrete variables at a time
(thus mixed-type variables cannot be handled directly). That is
why a new EM-based training algorithm is defined for model
learning. In this section, we develop an optimization approach
based on the well-known EM method that shows how the entire
structure shown in Section 3 can be characterized with historical
data obtained only from observable layers. We first assume that
there are N sequences of training data (time series) that include
sensor data yY.. ; sensor data availability vectors zf.; ; and fail-
ure data o7, , where T, is the length of the nth time series. All
other system dynamics elements, including m.r,, x1.1,, and
hidden variables in the corresponding Bayesian network are
unknown. The only unknown parameters of the proposed
framework are the weight and bias vectors of the corresponding
RNNs denoted by W. Given historical observations, the log of
the likelihood function for observed data is

ZPT()’lT 00 |[W) —
log L(W).

log L(W
(17)

W* = arg max
w

The direct evaluation of the log-likelihood in terms of W is
not possible because of latent variables and deterministic and sto-
chastic relationships among all variables. In this article, we design
an EM-based model that creates an approximation Q-function of
the likelihood that is tractable based on the structure of the pro-
posed framework. The Q-function is represented as follows:

N

> [togPr(at vt 00 W)

n=1

Q(W, Wold) — (18)

n n n n old n
Pr(alzTn |y1:T,,’Zl:T,,’ OI:T,,’ w)dalzTn’

https://doi.org/10.1080/24725854.2023.2185323

where af.;, represents all hidden variables in the model for
the nth time series with length T,. It is known that maxi-
mizing Q iteratively leads to increasing the likelihood func-
tion. Before we discuss the structure of the EM algorithm,
we show how to evaluate the O-function with available his-
torical data. From the structure of the proposed Bayesian
network, we can show that for a known set of initial values,
the following holds:

)

Ty
= Z log Pr(my|mi_1, %1, hy")
k=1

+ log Pr(xy|my_1, xx—1, hy)

IOg Pr(aljrn,ylzm Z21:T,»
(19)

+ log Pr(y;|m, xi, B,) + log Pr(ox|my, xi, hy).

Although using the above decomposition can significantly
lower the complexity of computing the Q-function, the ele-
ments in this equation contain hidden variables and still
cannot be evaluated. We will show below that the causal
dependencies between Bayesian network variables can help
with evaluating the complex integrals in the O-function. We
first show how each term in (19) can be simplified in the
Q-function. For notational convenience, we use e, to refer
to all observable variables at time k, that is, ex = [y, 2k, 0k]
and discuss the model training for just one time series with
length K. We first start with the evaluation of the elements
of the discrete mode variables as follows:

J log Pr(my|mi_1, X1, b’) Pr(ai.x|e1x WOld)daI:K

_ “J log Pr(my|me_1, %1,)

W"ld)dxk,ldmk,ldmk.

(20)

Pr(mk7 Mi—15Xk—1 |e1:ks
For the elements of the latent state x, we have

J“ log Pr(s|my_1, %1, hY)
W) dxdxe_ dmy_ .

(21)
Pr(my_1, Xk_1, Xi|€1:5,

For the elements of sensor data y, we have

JJ log Pr(y|mu, xi,) Pr(my, xi|e1x, WO dxedmy (22)

Finally, for the elements of o, we have

JJ log Pr(0k|mk,xk, hi)Pr(mk,xk|elzk, WOId) dxidmy. (23)

It should be noted that the integral terms should be con-
verted to summation for discrete variables. Although the
integrals in (20)-(23) are less complicated than their original
forms, numerically evaluating them is still intractable, due to
the existence of integration on latent variables over a poten-
tially large range of K. In this article, we utilize a PF
approach to approximate the O-function numerically
through discretization together with sequential importance
resampling. Based on the PF approach, the posterior distri-
bution of the latent variables can be computed by a
weighted sum of P samples (particles) drawn from the

IISE TRANSACTIONS (&) 9

posterior distribution. Let us denote m,ip),xlip> as the pth

sample (particle) drawn from the posterior distribution. For
instance, we can approximate Pr(x, my|e,, W) as

14
Pr(m, xile, W) ~ >~ wis <{mk,xk}, (=, m§P>}),
p=1

(24)
(p)

where w,” is the cumulative importance weights associated

with particle series {m,(f),xlgm} and § is the Dirac delta func-
tion. To avoid weight degeneracy, we can apply the resam-
pling step at the end of each step. During the resampling
step at iteration k — 1, a new set of particles is generated by
resampling with replacement P times. As a result, the par-
ticle importance weights become 1/P after resampling. By
using the transition prior density as the proposal distribu-
tion and applying resampling at each step, we have

o) = Prly o <, W

B ny(yz;g{(m) no(oz;gz(p)) (25)
Yo O 60) (o} 037))°
where @) and 07 are calculated from the updated

RNN? and RNN? in a forward manner. Since resampling
makes the resampled particles equally important, the
Q-function can be approximated as follows:

Q(W, Wold)
K P P
~ 3w
k=1 p=1q=1
K P Q
+ W,((pqx log Pr(x @)|mk l,xk l,h’,j, Wi, Wee)

Jlog Pr(mk \mk I,xk 1,hk,W;.m W)

logPr >|m£p>,x£p>,hyk, Wy, Wy)

lOgPI’ Ok |mk ,x,ip,hk, Who WgO)

(26)

and W}qux)

W wid Pr(m |, 62, B
Zg 1Wl(< >1Pr(mk |mk 1’x1(<g 1’hk)

()
Wl(cpm _ M

Zﬁ:lwglpr(xl@ |m,((g7)1,x§i)1, ki)

All particle samples are estimated based on W and after the
resampling step. Based on the above steps, the calculations
needed for the expectation step can be computed based on the
developed PF approach. The maximization steps require finding
the optimal values of W that maximize the function
Q(W, W) Since the terms for (Wiym, Wen), (Wye, W),
(Wi, Wy), and (Wye, W) are independent, we can find the
optimal values of these parameter vectors independently. It is
clear that optimizing all RNN weight and bias vectors is

(pqm)
k

where, w can be approximated as

W](Cpqm) _

wd) Pr(x |m? 50, b)

10 M.T. FARHAT AND R. MOGHADDASS

Historical Observations
(Train Set)

bR e 2) (ot o)
for Ntime series1 <n < N

Hyperparameters
Number of particles (P),

Input| Neural network structures

dropout, learning rate, etc.)

(# of hidden layers and neurons,

‘ | Grid Search
l—— Hyperparameter i
Tuning Historical Observations
| (Validation Set)

l

Initialization
Randomly generate weight vectors
W for all RNNs and

hidden variables xg" ») (" ?) for

Neural Network Output Structure
Determine the types of loss functions and activation
functions in the stochastic layers based on the types of

variables in the system dynamics

I
]

Forward Sampling for latent variables with
Particle Filtering (with resampling) using
updated RNIN™, RN N*, RNNY, RN N °

E-Step
Compute Particle Weights & Normalize

Draw new particles for latent variables
x,(cn’p), m,(cn'p) with replacement

using updated weights for all n, p, k

| Train Stochastic
RNNT, RNN*, RNNY, RN N °
‘ with historical observations & new particles

Stopping
criterion met?

Yes

Output Trained RN N™, RN N*, RNNY, RN N °]
A

Figure 3. An overview of the main steps for structure learning.

equivalent to training the corresponding RNNs with the sto-
chastic loss functions discussed earlier. The overall structure
of the proposed EM algorithm can be summarized as follows:
The algorithm starts with some initial values of the RNN
weight and bias vectors depending on the structure of the
RNNs selected for each layer. All hidden elements of the
Bayesian networks are initialized first and then calculated
according to a forward process using the RNNs parameterized
by the most updated values of the weight vectors and PF sam-
ples. Then a set of particles is generated to estimate the
Q-function. Since all particles have the same weights after
resampling, they can be used as inputs/outputs to characterize
the neural networks and update weight vectors. This process
continues until a stopping criterion is met. In this article, we
used the relative percentage decrease of the moving average of
the total loss after the maximization step falling below a prede-
fined threshold as the stopping criterion. The details of the
training algorithm are discussed in Algorithm 1 in Appendix 5.
Although the training process is an iterative process with
potentially many steps (depending on the data size and RNN
structures), it is done offline. Thus, CPU time for training is
not a serious concern in this work. Figure 3 shows an overview
of all the training steps.

5. Inference from the developed structure

In this section, we discuss how to use real-time sensor data
to generate insights for the system’s current state (filtering
problem) and the future behavior of sensor outputs (predic-
tion problem).

5.1. The filtering problem

To monitor the status of the latent variables over time, we
need to be able to derive their stochastic distributions
over time given the most updated set of observable data

(e.g., sensor outputs). Given the set of observations up to
time k, represented by e;x = [y, Z1:4> 01k, the probability
distribution of hidden variables can be computed as fol-
lows:

Pr(ak,yl:k, Z1:k> O1:k> W)
Pr(y,.4 214 01:6| W)

= fPr(alzk>y1:k> 21k 01:k| W)dalik'

(28)

, where

Pr(ak|y1:k> Z1:k> O1:k> W) =
Pr(yl;k> Z1:k> 01:k| W)

Directly evaluating the above integral over all latent vectors
is numerically impossible. Instead, we use a Bayesian filter-
ing approximation of the latent variables’ probability dis-
tribution functions. To do so, we can generate P particle
sets a®) = (m®,x)) (1<p<P) in a forward manner
based on the E-step in Algorithm 1. Now, the joint and
marginal probability distributions of m; and x; can be esti-
mated as

EP:(S {m,x}, {xk ,m,(f)})

Pr(mk = m, Xy = x|elzkr V(m,x),
p=1
P

Pr(my = mlejr, W) = E —5(m, m,(f)),

p=1

F1
Pr(x; = x|ej, W Z S(x,xP) Y(m, x).

=P

The empirical distribution of particles at any time point
can be used to derive the probability distribution of latent
states. For the most likely estimates of a; one may use the
mean, mode, or median of the updated set of particles. Also,
bootstrap methods may be used to find a prediction interval
of the latent state estimates. The particle size plays an
important role in the performance of the model and can dir-
ectly impact modeling/estimation accuracy and convergence
speed. One common approach to find the best particle size
is to use a grid search from a range of possible particle sizes
and then choose the one with the best performance on a

https://doi.org/10.1080/24725854.2023.2185323

validation set. A larger number of particles often leads to
more accurate estimates of the state of the system and a bet-
ter modeling of the complexity of the system. However,
increasing the number of particles leads to increased compu-
tation time, since more particles need to be processed.

5.2. The prediction problem

A very typical problem in SSMs is the prediction problem,
which in the context of our framework can be represented
by finding the following two important measures of interest:

Pr(yi 1 |y1p 210 016 W) and Pr(oxi1|y, 4 21k 016 W).
The idea behind these two measures is to find the condi-
tional probability of the next observations given the
observable data received up to the current time. We dis-
cuss how to estimate the first measure; the second meas-
ure can be computed in a similar manner. We will first
show that the prediction problem forms a hierarchical
Bayesian framework and then propose a PF-based
approximation trick utilizing a non-Bayesian Gaussian
mixture problem. By defining ay,; = {x41, M1} as the
unknown status of the hidden variables at time epoch
k+1, the following holds true:

Pr(y; ,lew W) = J Pr(y,1lak11, €1k, W)Pr(as1|ers, W)dag,,.
At1
Since the above integral has no closed-form solution, we can

approximate it with discrete values of c'z,(fﬁl for p € {1, ..., P},
which are the particles drawn using the observations up to
time k. Now the prediction measure can be rewritten

as Pr(y,levio W) = S0 Pr(y, |2, ere, W)Pr(al?) e, W).
Since vector d,(fjr)l should be sampled without ej.;, we
implement the following steps to generate it:

Forward Sampling for particle p :

— Generate OZ’H(P)from RNNm(m,EP),x,Ep),hkm\Whm, Won).

— Sample m;lefrom probability distribution 7™ (0}, ®)).

Generate 6},) from RNNx(m,(f),x,(f>, Wi, W),

— Sample x,(le from probability distribution (6},).

) from R/\/Ny(m,ﬁl,x,(g)l,z,fﬂ,hﬂwhy, Wy).

Generate Gyk 1

Now the term Pr(d;le|e1;k, W) can be calculated as
Pr(d!@lklik’ w) = nm(ml(ci)l; leanrl(p)) X “X("Cl(ﬁﬁ iﬂ(p))-
Given the conditional independence of a,&’jﬁl and ey, the

prediction measure can be simplified to
P
Pr(y, |eir W) = Z g <yk+1§ 0{“@)) " (ml(i)l; Olrcnﬂ(p))
=1
X (J.C](fgl; iﬂ(p)).

For a continuous feature j, the conditional variable yj,i ;
follows a Gaussian mixture with P components

IISE TRANSACTIONS 1

Yes,jlek ~ N(H{H,j(l)’oykﬂ,j(l))’ and I~ Cat(¢y,...,¢p), where

g — T 00, 0) X w0 05,)
= - 5 :
Zﬁ:lnm(”’lgl?aﬁl@) X nx(xl(le? i1 ®)

Each particle p is a component of the mixture with mean

14, " j(P) and variance ¢, %), which are the jth element

k+1,j
and the jth diagonal element of g, and X obtained for par-
ticle p. Now the marginal expected predicted value of yi.;

can be found as follows: E(yisi1,jleix) 225:1 /,tiﬂ’j(?)dbp.

The above Gaussian mixture can be used for the uncertainty
evaluation of any variable estimate. For instance, we can
also draw bootstrap samples from the corresponding
Gaussian mixture to find a conditional prediction interval
for any desired confidence level. Similar steps can be fol-
lowed to obtain non-Gaussian mixture models for binary
and categorical observations ((15) and (16)). A similar
approach can be used for ¢ > 1. In summary, once the struc-
ture of the stochastic neural networks is trained from the
algorithm discussed in Section 5, one can track two types of
key measures at any time point k, given the set of observa-
tions up to time k ([, 214 01:4]). The first measure is the
probability distribution of latent states at any time k
(xk, my). The second measure is the t — step ahead prediction
of the variables in the observable layers (e.g., y;,,). To find
these measures, we need to utilize PF and forward sampling
in the E-step to find the most likely sets of latent states” par-
ticles from time 1 to time k (and time k to time k + ¢t for
prediction). These particles are used in Sections 5.1 and 5.2
to calculate the two types of measures discussed above.

6. Numerical experiments

In this section, we provide a set of numerical experiments
using different datasets to discuss the application of the pro-
posed framework in (i) modeling state-space frameworks
without having prior knowledge regarding the stochastic
behavior of the system and (ii) modeling the stochastic evo-
lution of a degrading system and generating diagnostic and
prediction insights. The RNN structures are discussed in
Appendix 6.

A. Performance measures

The performance of our framework is analyzed for filtering
and prediction tasks. For continuous variables, we use Root
Mean Squared Error (RMSE) and the % coverage of the pre-
diction interval. Accuracy is used for binary and categorical
variables. For model training, we analyze the convergence of
the loss function for each layer and discuss relevant insights
for the learning phase for each dataset. These measures are
very common in evaluating SSMs and degradation models.
In all experiments and for all tasks, the only available data
are the outputs of the observable layers. For the model
training, we should make sure the structure of the neural
networks and hyperparameters are fine-tuned before the
steps in the EM algorithm are followed. Once the model is

https://doi.org/10.1080/24725854.2023.2185323

12 . MT.

FARHAT AND R. MOGHADDASS

(a) (b) (c) 12 (d)
12y 04y '
1 1 ! 1
: : 00 & :
1 -06
1 1 é 1
1 1 ! 10| §
101 i I '
! -0.8[! 0.07) 4 !
i i ! i
L]
9 H -1.0[L} 81
1) 1 1 0.06 * 1
8 8 | : !
a 4 -1.2] | ! !
1 1 1
71 : 005 4 o
) -1.4] ‘q.
o ’. A *:
\ -16| 0.04 . f'ﬁ%‘ 4 4
L]
;) ¥ A
Ny, 1]
v 18 PR S ¥
4 e, 0.03 ,
0 25 50 75 0 25 50 75 0 25 50 75 0 25 50 75
lterations

Figure 4. The improvement of the loss functions over iterations of the EM algorithm. (a)-(c) are for the loss functions for RNAN*, RNN?, RNN?, and (d) is the

direct sum of (a)-(c).

-#-- continuous 1 3
0.18 continuous 2 0.19 I
- continuous 3 ‘ !
-+~ continuous 4 1 Q
-4-- continuous 5 0.18 l' ..
0.16 P
1
e 017 1)
A " ¢ &
Wot4l | Lpe) %) °
g A =0.16 .
@ v H
. (N
0.12 “\"\ 0.15),u\'\
09
“‘""’\,ﬂ\ 0.14 " i ?
0.10 00%000,000090409%0,,000090%05 4000000000000 000 L] ‘”.\) 1
018 Vi *'"" h‘wﬁ‘"'
N N :
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Iterations Iterations

Figure 5. The improvement of the RMSE for (a) five continuous sensor outputs and (b) latent state x.

trained, we can use the results provided in Section 5 and the
trained network for inference and prediction.

6.1. A simulated hybrid degrading system (dataset 1)

We consider a hybrid SSM to simulate multiple runs to fail-
ure time series for a degrading system. The stochastic layers
at cycle k include a latent continuous degradation state pro-
cess Xy, a latent binary discrete-state process my (i.e., faulty
or normal), a latent hazard process A;, a 14-dimensional
observation process y, representing mixed-type sensor data
(five dependent continuous sensors, four binary sensors, and
five categorical sensors), and the binary working status pro-
cess oy representing the overall system’s working conditions

(i.e., working or failure). The structure of this system is
summarized in Appendix 7.

A. Model training

At each step of the learning algorithm, the training model
tries to optimize the model structures RNN™*”° To
show how efficient the algorithm improves each model, the

loss function values over EM iterations, and their direct sum
are shown in Figure 4. It can be seen that while each mod-
el’s loss value has some fluctuations, the overall loss has a
decreasing trend and converges around 75 iterations. To
better demonstrate the efficiency of the training algorithm,
we also recorded the RMSE between the true and estimated
continuous sensor values and the latent x values over the
iterations of the EM algorithm. As shown in Figure 5, the
RMSEs tend to decrease for all cases, which verifies that
model structures are better trained after each iteration of the
EM algorithm. For categorical and binary attributes, we
recorded the accuracy of the sensor outputs after each iter-
ation of the algorithm. Results in Figure 6 show that the
overall accuracy of sensor outputs improves iteration by iter-
ation. The relatively low accuracy for categorical sensor out-
puts is due to the nature of categorical sensor outputs that
have multiple discrete outcomes. In summary, we can verify
that the proposed framework is able to characterize the sto-
chastic behavior of the system without using prior know-

ledge or parametric distribution after a reasonable number
of iterations.

https://doi.org/10.1080/24725854.2023.2185323

B. Filtering and prediction power

To show how well the trained framework can represent the
evolution of the system over time, we evaluated its perform-
ance in terms of predicting sensor values and estimating

y, peuteess
0.85
0.80 L
0.75
)
©
30.70
o
<
0.65
0.60
0.55
0 10 20 30 40 50 60 70
Iterations

—s— binary 2
—+— binary 3

—e— categorical 5 —e— binary 4

—e— binary 1

—— categorical 3
—— categorical 4

—4+— categorical 1
—+— categorical 2

Figure 6. The improvement of accuracy for four binary and five categorical sen-
sor outputs over EM iterations.

IISE TRANSACTIONS 13

latent state variables in the test set. In Figure 7, we show the
estimated/true sensor values for five continuous sensor out-
puts and the corresponding 95% prediction intervals for a
sample times series in the test set. Results in Figure 7 show
that the estimated values are very close to true values and the
prediction intervals cover the estimated values pretty well.
We prepared a similar plot for the latent state x in Figure 8
for six test time series. We can observe from this figure that
although the coverage for this latent state is relatively lower
compared to the cases for sensor outputs, the trends of the
estimated and true x are very similar and the differences
become smaller as we approach the end of the lifetimes.
Since x values are normalized in the simulation phase and are
hidden in the training phase, there is no guarantee that latent
state x is identifiable. Because of this, we only expect the esti-
mates to be a reasonable representation of the degradation
process. For the discrete latent state m, we plotted the estima-
ted/true m for six sample time series in Figure 9. Results indi-
cate the model’s reasonable performance in detecting the true
latent state m and the transition time from a normal state to

Continuous 5

Continuous 1

Continuous 2

Continuous 3

Continuous 4

w08 P 08 0.8 0.8 - 08|
° C WA et Laprieten o gresinge i ggginicls uagtaesyr
2 06 = i 06 'hm"‘ i 06 o= it 06 I.‘: os| it
x>5 04 i 04 "'.‘ 04 it 04 it 04 i
S i it i i it
g 02 ;l'l:.{w . 02 / . 02 iy 0.2 L.L 02 ¢! N
2 oo V! 0.0 WW& 0.0) 0.0 L) 0.0 L“‘M.'w'b-
0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
Figure 7. Comparison between true and estimated sensor values and the 95% prediction intervals.
10 TS1 TS2 TS3 1o TS4 0 TS5 TS6
o 08| A 08| oq .' P 08 o,
08"S_ﬂ.ﬂ 1 “"F . "‘ 08 .“"hn‘x;.‘ 08 ‘Io"" .
T | -y IR S " ! | "
° -.i y :nfh.: ‘l.,'i. o6 \. ,’(.)',' \ i. ¥¥.b' w " ““. I.H f
= L] 06 { LR A 06l W LV '] W 0.6]
% 08 ‘.‘ h\ "y 'i.: : L4 0.6 I .-'.H
o ' ' \ iy
£ o [¥ -t 1'- N
° L 04 \ \ 04 [04 ! 04 [N
S os LY L boA h 04 ¥ A -
> Oy “touk &, o i Lo Lo
o} ok LA™ - L LA
o W W y LYol W
LAY 02 L% o2 ' 02 S i"l. 02 \
0.2] J ‘#‘g e 02 o A 5
) o A \ % N
VY, e oo % i N
" {3 \ i AR
00 x o0 w 00 u ' 00 ﬁ 00 L d
0 10 20 30 0 10 20 0 10 20 0 10 20 30 0 10 20 30 0 10 20
Time
--=- True --+-- Estimate 95% prediction interval
Figure 8. Comparison between true and estimated values of latent state x and the 95% prediction intervals.
TS1 TS2 TS3 TS4 TS5 TS6
1 yessssssssssssssssses | Esssssssssssssaanse 1 pepasssssssssanss | | 3 1 :
i : 5 ! i !
1 H I ! 1 |
o) H 1 H i |]
° | ! H 1 i H
o i ! H i | !
= ' i ! | | !
< ! | ! ! ! i
g : | : l ! ’
[0} ! | i ! ! 1
< ! | i ! ! |
) i ! | 1 1 !
2 i ! ! | | 1
5 | # | l : |
2 ! ! i ! i !
a | | ! ! ! i
1 | 1 i 1 H
i ! i ! i !
! i K i i i
o —1 0| snsssne 0| snsssnnnid ()| essesssssssssssssssssts o ——) 0| snsuané
0 10 20 30 0 10 20 0 10 20 0 10 20 30 0 10 20 30 0 10 20
Time
--=-- True --e-- Estimate

Figure 9. Comparison between the true and estimated values for the latent state m for six time series.

14 M.T. FARHAT AND R. MOGHADDASS

Table 2. The overall performance of the proposed model for different types of variables.

RMSE - Continuous Sensors

Accuracy (%) - Binary Sensors

Set Y1 Y2 V3 Ya Vs Ve ¥7 Vs Yo
(Train,Test) (0.1,0.109) (0.095,0.1) (0.088,0.094) (0.09,0.096) (0.089,0.096) (82.2,83.1) (81.1,82.4) (86.5,86.3) (88,87.6)
Accuracy (%) - Categorical Sensors RMSE Accuracy (%)

Yia latent state x

Set Y10 yn Yi2 13 latent state m
(Train,Test) (63.5,65.2) (63.9,63.5) (64.6,61.8) (63.4,61.3) (63.0,60.8) (0.131,0.128) (94.1,95.5)
Continuous 1 Continuous 2 Continuous 3 Continuous 4 Continuous 5

TS1

0.8

Ts2 06
0.4

0.2

0 100 200

0 100 200

Figure 10. Sample CMAPSS true and estimated sensor values and their 95% prediction intervals in FDOO1.

a faulty state. A summary of the performance measures calcu-
lated for the entire test set is shown in Table 2. From the
results, we can confirm the reasonable performance of the
proposed framework in terms of predicting mixed-type sensor
values, latent states x, and latent state m.

C. The effect of including the failure process

To show how including the failure process o can impact the
performance of our model, we conducted the same experi-
ment discussed earlier but excluded layer o from the system
dynamics. We first calculated the errors of estimation for
sensor values in the test set (RMSE for continuous outputs
and accuracy for discrete outputs). Due to the page limit, we
discuss the results in detail in Appendix 8. In summary,
including model o helps with a better overall fit, particularly
a better estimation of latent states and preventing overfit-
ting. Without process o, there is no data in the model that
can encourage a monotonic trend for the latent degradation
state x. Including process o can also help with predictive
maintenance tasks, such as the remaining useful life predic-
tion (out of the scope of this paper).

6.2. The CMAPSS turbofan engine degradation dataset
(Dataset 2)

The experiments in this section are based on a widely used
CMAPSS turbofan engine degradation dataset provided by
the NASA Ames Research Center (Saxena and Goebel, 2008).
This dataset consists of multiple multivariate time series from
a fleet of engines of the same type. Each time series starts
with an unknown level of initial wear and manufacturing
variation implying the randomness of the engine’s degrad-
ation. In all engines, a fault initiates at some unknown point
and grows until system failure. There are four datasets,
referred to as FD001-FD004, with different numbers of oper-
ational settings and fault modes and 21 sensor measurements.
In our experiments, we focused only on 14 non-constant

sensor outputs for process y;. Datasets FD001-FD004 have 1,
6, 1, and 6 operational settings (i.e., ux € {1,...,6}), respect-
ively. Datasets FD00O1 and FDO002 have one fault mode (HPC
Degradation) whereas FD003 and FD004 have two modes
(HPC Degradation and Fan Degradation). These fault modes
are treated as part of the discrete latent state my (ie.,
my € {Normal, HPC Degradation, Fan Degradation}). We
have considered 50 time series for training and another 50
time series for testing. Similar to the simulated dataset, we
evaluate the performance of the model in terms of model
training, filtering, and prediction. We have assumed a
dynamic system based on Figure 2 with multiple layers of
stochastic variables, that is, a latent discrete state (1), a latent
continuous state (x), a multidimensional observation process
(y), and a failure process (0). We also included operational
settings as inputs for all neural networks. We conducted
hyperparameter-tuning with grid search. Due to the page
limit, we present some results in the Appendices. All categor-
ical features (discrete latent states and discrete sensor out-
puts) are processed through one-hot encoding when used as
inputs in the neural network models.

A. Model training

To check whether the proposed framework can train the
structure of the engine degradation systems using historical
data, we monitored the change in (i) the loss functions for
RNN, RNN?, RNN?’, and total loss and (ii) the change
in the RMSEs of estimated sensor values. Due to the similar-
ity of the results of our experiments to the ones presented
in Section 6.1.A and also due to the page limit, we discussed
the results for the model training in Appendix 9. We should
point out the results for FD001-FD004 were very similar in
terms of model training convergence.

B. Prediction power for sensor observations
Since for this dataset, latent states are not known, we discuss
the prediction power of the model only for observable

IISE TRANSACTIONS

® 15

Table 3. Estimation error and prediction interval coverage for sensor outputs in datasets FD001-FD004.

Sensor Measurements

Dataset Measure
Y2 Y3 Ya Y7 Y8 Yo yn Y12 Y13 Y14 Y15 Y17 Y20 Y21
FDOO1 RMSE (Train) 0.092 0.088 0.069 0.067 0.050 0.056 0.061 0.066 0.049 0.057 0.078 0.081 0.079 0.083
RMSE (Test) 0.092 0089 0.071 0.068 0.052 0.059 0.064 0.067 0.051 0.059 0.079 0.081 0.080 0.085
95% Pl Coverage (Train) 94.8 95.0 95.0 94.7 95.1 95.1 95.0 95.3 95.0 95.2 94.8 94.5 95.0 95.1
95% Pl Coverage (Test) 94.7 94.6 94.4 95.4 94.2 94.3 94.3 94.7 84.6 94.4 95.4 94.2 94.3 94.3
FD002 RMSE (Train) 0.0029 0.0111 0.0100 0.0010 0.0005 0.0127 0.0088 0.0008 0.0382 0.0339 0.0079 0.0103 0.0035 0.0035
RMSE (Test) 0.0029 0.0112 0.0102 0.0010 0.0005 0.0114 0.0089 0.0008 0.0390 0.0301 0.0080 0.0103 0.0035 0.0035
95% Pl Coverage (Train) 95.4 95.0 94.6 94.2 90.8 96.1 94.6 93.8 80.5 95.9 94.4 95.0 94.9 94.7
95% Pl Coverage (Test) 95.1 94.7 94.2 94.2 88.6 95.8 94.6 93.4 81.2 96.6 94.3 94.8 94.8 94.8
FD003 RMSE (Train) 0.0720 0.0811 0.0684 0.0316 0.0326 0.0492 0.0663 0.0292 0.0332 0.0477 0.0524 0.0907 0.0650 0.0589
RMSE (Test) 0.0742 0.0817 0.0683 0.0300 0.0318 0.0548 0.0679 0.0273 0.0321 0.0538 0.0528 0.0898 0.0640 0.0602
95% Pl Coverage (Train) 94.9 95.1 94.8 94.6 94.9 95.7 94.6 94.5 94.9 95.3 94.6 94.9 95.0 94.8
95% Pl Coverage (Test) 94.2 94.8 94.7 93.5 933 94.0 94.1 933 94.1 93.8 94.5 95.3 95.4 94.2
FD004 RMSE (Train) 0.0031 0.0115 0.0111 0.0033 0.0009 0.0111 0.0103 0.0033 0.0005 0.0312 0.0175 0.0107 0.0048 0.0047
RMSE (Test) 0.0032 0.0116 0.0114 0.0031 0.0009 0.0102 0.0106 0.0032 0.0004 0.0282 0.0175 0.0108 0.0048 0.0047
95% Pl Coverage (Train) 93.5 93.9 94.6 95.5 38.6 96.0 95.0 95.4 95.6 96.9 95.9 93.9 95.2 95.5
95% Pl Coverage (Test) 92.5 93.7 93.9 96.1 417 96.2 94.0 95.9 96.3 97.0 96.5 93.1 95.0 95.5
TS1 TS2 TS3 TS4 TS5 TS6
1 — — - 1 p— 1 - 1 -
(0]
©
o
€
S
‘©
2
i)
o
?
2
0 0 0 0 0 0
0 100 200 0 200 0 100 200 O 50 100 0 100 200 0 100 200
Time
--e-- Estimate

Figure 11. The estimated values of the discrete latent states for six samples in FD0O1.

variables. To do so, we first show two sample time series
(TS1-TS2) with true and estimated sensor values and their cor-
responding 95% prediction intervals in Figure 10 for FDOOI.
Similar results are provided for FD002-FD004 in Appendix 10.
In Table 3, we summarized the RMSE values for all 14 sensor
outputs for both train and test sets in FD001-FD004. From
Figure 10 and Table 3, we can conclude that the model per-
forms (and generalize) well in terms of predicting sensor values.
Also, it is clear that the errors are smaller for some sensor out-
puts, but overall, almost all errors are within a very low range.
This is a significant result because a model is trained that can
mimic the stochastic behavior of all sensors without imposing
prior assumptions (distributional or parametric) about the sys-
tem dynamics and its stochastic behavior. Also, we can see
from Table 3 that the coverage probability of prediction inter-
vals (PI) is very close to the nominal confidence of 95%. It
should be pointed out that the sensor values for FD002 and
FD004 are very sensitive to operational settings and they are
relatively easier to predict. That is why the true and estimated
values are very close to each other (see Table 3) and confidence
intervals (see Figures 5-7 in Appendix 10) are very narrow.

C. Insights for latent variables
There are two types of latent state variables (the discrete
latent state and the continuous latent state). In Figure 11,

we show the estimated values for the discrete state (m) for
six sample time series in FDOOl. It can be seen that the
change in the discrete binary state occurs toward the end of
the engine lifetimes. This observation is very consistent
across all engines in the train and test sets in FD001, which
is subject to one fault mode. We also evaluated the behavior
of the latent state x (normalized between zero and one) for
all test time series in FDOOl. As shown in Figure 12, the
latent state has a monotonic decreasing trend with minor
fluctuations. For engines with smaller lifetimes, the degrad-
ation is faster (see for instance TS4), which is compatible
with our expectation of latent degradation in such systems.
We also found that for all engines, the failure occurs when
this latent degradation state is close to 0.1. This is an
important finding, particularly for decision making and pre-
ventive maintenance. We also checked the behavior of the
latent hazard function and found consistent and reasonable
trends for all engines. Due to the page limit, more results
and discussions, including for FD002-FD004, are given in
Appendix 11. Results in the Appendix also help with under-
stating the usefulness of defining the failure process (o) and
the overall interpretability of the results for FD001-FDO004,
particularly with respect to the monotonic (decreasing)
behavior of the continuous latent state and the increasing
trend of the log-hazard probability values.

16 M.T. FARHAT AND R. MOGHADDASS
TS1 TS2 TS3 TS4 TS5 TS6
10 1.0|
* .
W : %’,‘ 08 08
[0}
T o8 b 06 » 06 \ 06 % z
@ ‘ 06 z 08 .
g - E
£
K ‘& e
O 04
> ‘ 04 ' 04 04 \ s 0a
o . $
02 '\ 02 ‘\ 0.2 02 ® 02 § 02 !
\ \ \ \
0 50 100 150 200 0 100 200 0 50 100 150 200 0 50 100 0 100 200 0 50 100 150 200
Time
--+-- Estimate 95% prediction interval

Figure 12. The estimated values of the continuous latent state x for 6 samples in FD0O1.

Table 4. Comparison with variational inference-based hybrid SSMs over five experiment runs.

Benchmark Models

Proposed Work

Measure D3SN SNLDS Run 1 Run 2 Run 3 Run 4 Run 5 Average STDEV

Forecasting RMSE for y 15.142 £ 1.084 16.541 £0.024 14.4707 13.2252 12.3841 17.1151 14.1583 14.27068 1.788

duration of m=0 82112717 1.282+0.001 6.79 20.5 10.0 9.14 11.04 11.49 5.273

duration of m=1 8.296 +2.624 1.925+0.012 10.41 21.08 19.94 9.0 11.64 14.41 5.657

Accuracy for m 0.777 £0.028 0.543 £0.001 0.7916 0.8597 0.8176 0.8257 0.8457 0.82806 0.026

F1 score 0.768 +0.022 0.549 +0.001 0.8213 0.8659 0.8602 0.8036 0.8451 0.83922 0.026

Filtering Accuracy for m 0.843+0.017 0.692 +0.003 0.824 0.888 0.836 0.868 0.86 0.8552 0.025
F1 score 0.821+0.025 0.544 +0.002 0.8508 0.8923 0.8734 0.8429 0.8577 0.86342 0.02

6.3. Comparison with similar models

The proposed framework is recommended for systems that
can be modeled through an SSM structure when no prior
information is available regarding the parametric form or
distributions of latent and observable layers of the system
dynamics. Although the framework discussed in this article
is not developed to replace existing SSMs, its competitive-
ness compared to similar models is numerically evaluated.

6.3.1. Neural network-based nonlinear switching SSMs

We compare our work with the results provided in Xiugin
and Ying (2021) (referred to as DS3M), which also includes
results from Dong et al. (2020) (referred to as SNLDS). Both
of these references utilize neural networks for a hybrid SSM
with discrete and continuous latent states. These methods
have been shown to outperform a few other SSM-based time
series methods (Xiuqin and Ying, 2021). We chose these
models because they are nonlinear, can incorporate discrete
and continuous latent states, and their structures are based
on neural networks. Both DS3M and SNLDS have used a
variational inference approach for training and inference.
For a better comparison, we used the same toy example
structure given in Xiuqin and Ying (2021) and compared
our model with the results shown in that paper. First, we
simulated time series of length 2000 cycles for five inde-
pendent runs from a nonlinear hybrid SSM given in
Appendix 12. Similar to Xiugin and Ying (2021), we consid-
ered 1000, 500, and 500 samples for training, validation, and
testing. Results are shown in Table 4 for five experimental
runs of our model, which includes the one-step-ahead

prediction of y (represented by RMSE), one-step-ahead pre-
diction of m (represented by accuracy and F1 score), and fil-
tering of discrete state m (represented by accuracy and
RMSE). We also report the mean duration at each level of
discrete state m given the theoretical mean of 20 for both
m=0 and m=1 (i.e.,, 1/0.05). It can be seen from Table 4
that our model performs slightly better than both DS3N and
SNLDS in terms of forecasting and filtering for both m and
y. However, our results seem to have higher variances,
which could be due to the stochastic nature of PF and ran-
domness in the expectation step of the training phase. One
potential solution is to increase the number of particles or
change the stopping criterion of the algorithm for a better
convergence. Also, our model is more flexible as it considers
one RNN structure for each layer of system dynamics. Both
DS3N and SNLDS marginalize the discrete latent variable
which can lead to bias when the discrete state has a complex
impact on other layers. In other words, the effective repara-
meterization of the posterior q(my.1,x1.7|y;.7) (even without
the layer of failure process) remains a challenge in vari-
ational inference-based works, such as Dong et al. (2020)
and Xiuqin and Ying (2021).

6.3.2. Deep nonlinear SSMs

Neural networks and deep learning have been used for sys-
tem identification to characterize the stochastic evolution of
typical dynamic systems with only a latent state (x) and an
observation process (y). Here, we compare our work with
the results in Gedon et al. (2021) (referred to as VAE-
RNN), which is a deep learning model, that combines RNNs
with variational autoencoder (VAE) to characterize

nonlinear SSMs. We also compare our model with results
provided in Gedon et al. (2021) for other variations of
VAE-RNN, referred to as variational RNN (VRNN) (Chung
et al, 2015), and stochastic RNN, referred to as STORN.
We used the Narendra-Li Benchmark dataset used in Gedon
et al. (2021), which is a highly nonlinear system with two
layers of dependent hidden states, a 1-dimensional observa-
tion process yi, and a known control input of uy at time k.
We discuss the results in Appendix 13.

7. Conclusions and future work

This article introduces a new framework for modeling
degrading systems through a state-space structure that
includes multiple layers of latent, observable, and control-
lable variables and inputs/outputs. The framework has gen-
eric characteristics that are inspired by BHM and recurrent
neural networks. The temporal behavior of system dynamics
and the relationship between variables are characterized by
stochastic neural networks and trained with data. Numerical
experiments demonstrated the application of the proposed
framework on modeling state-space degrading systems without
having prior knowledge regarding the stochastic behavior of
such systems and on modeling the stochastic evolution of a
degrading system and generating diagnostic and prediction
insights. The framework developed in this article has two
main limitations. First, it requires a larger amount of training
data compared with fully parametric models. Second, the
model training phase is an iterative process that may converge
slowly partially due to the stochastic nature of system’s inputs
and outputs and the quality of the initialized solution. In
future, we will study how parallel computing and vectorization
can be utilized within the Bayesian structure of the system to
speed up the learning process and to develop a training frame-
work that can work with limited data. Also, we will explore
the use of the proposed framework for predictive analytics
(mainly for remaining useful life prediction).

Funding

This material is based upon work supported by the National Science
Foundation under Grant No. (1846975).

References

Banjevic, D. and Jardine, A. (2006) Calculation of reliability function
and remaining useful life for a Markov failure time process. IMA
Journal of Management Mathematics, 17(2), 115-130.

Bao, Y., Velni, J., Basina, A. and Shahbakhti, M. (2020) Identification
of state-space linear parameter-varying models using artificial neural
networks. IFAC-PapersOnLine, 53(2), 5286-5291.

Bao, Y., Velni, J. and Shahbakhti, M. (2021) Epistemic uncertainty quan-
tification in state-space LPV model identification using Bayesian
neural networks. IEEE Control Systems Letters, 5(2), 719-724.

Benidris, M., Elsaiah, S. and Mitra, J. (2015) Power system reliability
evaluation using a state space classification technique and particle
swarm optimisation search method. IET Generation, Transmission
and Distribution, 9(14), 1865-1873.

Blom, H.A. and Bloem, E. (2007) Exact Bayesian and particle filtering
of stochastic hybrid systems. IEEE Transactions on Aerospace and
Electronic Systems, 43(1), 55-70.

IISE TRANSACTIONS 17

Che, Z., Purushotham, S., Cho, K., Sontag, D. and Liu, Y. (2018)
Recurrent neural networks for multivariate time series with missing
values. Scientific Reports, 8, 1-12.

Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A.C. and Bengio, Y. (2015)
A Recurrent Latent Variable Model for Sequential Data, in C. Cortes, N.
Lawrence, D. Lee, M. Sugiyama and R. Garnett (eds.), Advances in Neural
Information Processing Systems, Volume 28. Curran Associates, Inc.

Dong, Z., Seybold, B., Murphy, K. and Bui, H. (2020, 13-18 July)
Collapsed amortized variational inference for switching nonlinear
dynamical systems, in Proceedings of the 37th International
Conference on Machine Learning, PMLR, Virtual, pp. 2638-2647.

Dourado, A. and Viana, F.A. (2020) Physics-informed neural networks
for missing physics estimation in cumulative damage models: A case
study in corrosion fatigue. Journal of Computing and Information
Science in Engineering, 20(6), 1-15.

Gedon, D., Wahlstrom, N., Schon, T.B. and Ljung, L. (2021) Deep state
space models for nonlinear system identification. arXiv, 2003.14162.

Hu, Y., Baraldi, P., Di Maio, F. and Zio, E. (2015) A particle filtering
and kernel smoothing-based approach for new design component
prognostics. Reliability Engineering & System Safety, 134, 19-31.

Kantas, N., Doucet, A., Singh, S., Maciejowski, J. and Chopin, N.
(2015) On particle methods for parameter estimation in state-space
models. Statistical Science, 30(3), 328-351.

Krieg, M., Science, D., (Australia), Electronics, T.O. and Laboratory,
S.R. (2001) A tutorial on Bayesian belief networks/Mark L Krieg.
DSTO Electronics and Surveillance Research Laboratory, Surveillance
Systems Division Edinburgh, S. Aust.

Long, J., Chen, C, Liu, Z,, Guo, J. and Chen, W. (2022) Stochastic
hybrid system approach to task-orientated remaining useful life pre-
diction wunder time-varying operating conditions. Reliability
Engineering and System Safety, 225, 108568.

Meeker, W. and Hong, Y. (2014) Reliability meets big data:
Opportunities and challenges. Quality Engineering, 26(1), 102-116.
Nascimento, R.G., Corbetta, M., Kulkarni, C.S. and Viana, F.A. (2021)
Hybrid physics-informed neural networks for lithium-ion battery

modeling and prognosis. Journal of Power Sources, 513, 1-13.

Nascimento, R.G. and Viana, F.A.C. (2020) Cumulative damage modeling
with recurrent neural networks. AIAA Journal, 58(12), 5459 - 5471.

Orchard, M. and Vachtsevanos, G. (2009) A particle-filtering approach
for on-line fault diagnosis and failure prognosis. Transactions of the
Institute of Measurement and Control, 31(3-4), 221-246.

Peng, Y., Wang, Y. and Zi, Y. (2018) Switching state-space degradation
model with recursive filter for prognostics of remaining useful life.
IEEE Transactions on Industrial Informatics, 15, 822-832.

Rigamonti, M., Baraldi, P., Astigarraga, D. and Galarza, A. (2016)
Particle filter-based prognostics for an electrolytic capacitor working
in variable operating conditions. IEEE Transactions on Power
Electronics, 31(2), 1567-1575.

Saxena, A. and Goebel, K. (2008) Turbofan engine degradation simula-
tion data set. NASA Ames Prognostics Data Repository, NASA
Ames Research Center, Moffett Field, CA.

Schon, T., Wills, A. and Ninness, B. (2011) System identification of
nonlinear state-space models. Automatica, 47(1), 39-49.

Tafazoli, S. and Sun, X. (2006) Hybrid system state tracking and fault
detection using particle filters. IEEE Transactions on Control Systems
Technology, 14(6), 1078-1087.

Wang, H., Huang, H., Li, Y. and Yang, Y. (2016) Condition-based
maintenance with scheduling threshold and maintenance threshold.
IEEE Transactions on Reliability, 65(2), 513-524.

Wang, K., Chen, J., Song, Z., Wang, Y. and Yang, C. (2021) Deep
neural network-embedded stochastic nonlinear state-space models
and their applications to process monitoring. IEEE Transactions on
Neural Networks and Learning Systems, 1, 1-13.

Wei, T., Huang, Y. and Chen, C.L.P. (2009) Adaptive sensor fault
detection and identification using particle filter algorithms. IEEE
Transactions on Systems, Man and Cybernetics Part C: Applications
and Reviews, 39(2), 201-213.

Xiugin, X. and Ying, C. (2021) Deep switching state space model
DS3M for nonlinear time series forecasting with regime switching.
CoRR abs/2106.02329.

18 M.T. FARHAT AND R. MOGHADDASS

Yang, Y. and Shi, Y. (2019) State and parameter estimation algorithm
for state space model based on linear neural network and Kalman
filter, in Proceedings of 2019 IEEE International Conference on
Mechatronics and Automation, ICMA 2019, IEEE Press, Piscataway,
NJ, PP. 2314-2318.

Zhang, C., Chen, N. and Li, Z. (2017) State space modeling of autocorre-
lated multivariate Poisson counts. IISE Transactions, 49(5), 518-531.
Zhang, Y., Tu, L, Xue, Z, Li, S, Tian, L. and Zheng, X. (2022) Weight

optimized unscented Kalman filter for degradation trend prediction of

lithium-ion battery with error compensation strategy. Energy, 251,
123890.

Zhao, Y., Gao, W. and Smidts, C. (2021) Sequential Bayesian infer-
ence of transition rates in the hidden Markov model for multi-
state system degradation. Reliability Engineering and System
Safety, 214, 107662.

Zheng, H., Kong, X, Xu, H. and Yang, J. (2021) Reliability analysis of products
based on proportional hazard model with degradation trend and environ-
mental factor. Reliability Engineering and System Safety, 216, 107964.

	Abstract
	Introduction
	Literature review
	State-space modeling for degrading systems
	Bayesian filtering and dynamic Bayesian networks
	Application of neural networks in state-space modeling
	Summary of the literature gap and the proposed work

	Generic stochastic SSM with RNNs
	SSM with mixed-type sensor data
	Utilizing neural networks for stochastic system dynamics
	Defining the pdfs {πm,πx,πy}

	RNN training with stochastic variables in the output layer
	The loss function for the failure process
	Appropriate stochastic layer’s activation functions

	Learning with data from the observable layers
	Inference from the developed structure
	The filtering problem
	The prediction problem

	Numerical experiments
	Outline placeholder
	Performance measures

	A simulated hybrid degrading system (dataset 1)
	Model training
	Filtering and prediction power
	The effect of including the failure process

	The CMAPSS turbofan engine degradation dataset (Dataset 2)
	Model training
	Prediction power for sensor observations
	Insights for latent variables

	Comparison with similar models
	Neural network-based nonlinear switching SSMs
	Deep nonlinear SSMs

	Conclusions and future work
	Funding
	References

