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Abstract
The goal of this paper is to generalise, refine and improve results on large intersections from [2, 8]. We show that
if G is a countable discrete abelian group and 𝜑, 𝜓 : 𝐺 → 𝐺 are homomorphisms, such that at least two of the three
subgroups 𝜑(𝐺), 𝜓(𝐺) and (𝜓 − 𝜑) (𝐺) have finite index in G, then {𝜑, 𝜓} has the large intersections property.
That is, for any ergodic measure preserving system X = (𝑋,X , 𝜇, (𝑇𝑔)𝑔∈𝐺), any 𝐴 ∈ X and any 𝜀 > 0, the set

{𝑔 ∈ 𝐺 : 𝜇(𝐴 ∩ 𝑇−1
𝜑 (𝑔) 𝐴 ∩ 𝑇

−1
𝜓 (𝑔) 𝐴) > 𝜇(𝐴)

3 − 𝜀}

is syndetic (Theorem 1.11). Moreover, in the special case where 𝜑(𝑔) = 𝑎𝑔 and 𝜓(𝑔) = 𝑏𝑔 for 𝑎, 𝑏 ∈ Z, we show
that we only need one of the groups 𝑎𝐺, 𝑏𝐺 or (𝑏 − 𝑎)𝐺 to be of finite index in G (Theorem 1.13), and we show
that the property fails, in general, if all three groups are of infinite index (Theorem 1.14).

One particularly interesting case is where𝐺 = (Q>0, ·) and 𝜑(𝑔) = 𝑔, 𝜓(𝑔) = 𝑔2, which leads to a multiplicative
version of the Khintchine-type recurrence result in [8]. We also completely characterise the pairs of homomorphisms
𝜑, 𝜓 that have the large intersections property when 𝐺 = Z2.

The proofs of our main results rely on analysis of the structure of the universal characteristic factor for the
multiple ergodic averages

1
|Φ𝑁 |

∑
𝑔∈Φ𝑁

𝑇𝜑 (𝑔) 𝑓1 · 𝑇𝜓 (𝑔) 𝑓2.

In the case where G is finitely generated, the characteristic factor for such averages is the Kronecker factor. In
this paper, we study actions of groups that are not necessarily finitely generated, showing, in particular, that, by
passing to an extension of X, one can describe the characteristic factor in terms of the Conze–Lesigne factor and
the 𝜎-algebras of 𝜑(𝐺) and 𝜓(𝐺) invariant functions (Theorem 4.10).
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1. Introduction

Let (𝐺, +) be a countable discrete abelian group. A probability measure-preserving G-system, or
simply G-system for short, is a quadruple X = (𝑋,X , 𝜇, (𝑇𝑔)𝑔∈𝐺), where (𝑋,X , 𝜇) is a standard Borel
probability space (that is, up to isomorphism of measure spaces, X is a compact metric space, X is the
Borel 𝜎-algebra and 𝜇 is a regular Borel probability measure) and 𝑇𝑔 : 𝑋 → 𝑋 , 𝑔 ∈ 𝐺, are measure-
preserving transformations, such that 𝑇𝑔+ℎ = 𝑇𝑔 ◦𝑇ℎ for every 𝑔, ℎ ∈ 𝐺 and 𝑇0 = 𝐼𝑑. The transformation
𝑇𝑔 : 𝑋 → 𝑋 gives rise to a unitary operator on 𝐿2 (𝜇), which we also denote by 𝑇𝑔, given by the formula
𝑇𝑔 𝑓 (𝑥) = 𝑓 (𝑇𝑔𝑥). We say that a G-system is ergodic if the only measurable (𝑇𝑔)𝑔∈𝐺-invariant functions
are the constant functions.

1.1. Khintchine-type recurrence and the large intersections property

The starting point for the study of recurrence in ergodic theory is the Poincaré recurrence theorem,
which states that, for any measure-preserving system (𝑋,X , 𝜇, 𝑇) and any set 𝐴 ∈ X with 𝜇(𝐴) > 0,
there exists 𝑛 ∈ N, such that 𝜇(𝐴 ∩ 𝑇−𝑛𝐴) > 0.
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Khintchine’s recurrence theorem strengthens and enhances Poincaré’s recurrence theorem by
improving on the size of the intersections and the size of the set of return times.
Theorem 1.1 (Khintchine’s recurrence theorem [24]). For any measure-preserving system (𝑋,X , 𝜇, 𝑇),
any 𝐴 ∈ X and any 𝜀 > 0, the set{

𝑛 ∈ N : 𝜇(𝐴 ∩ 𝑇−𝑛𝐴) > 𝜇(𝐴)2 − 𝜀
}

has bounded gaps.
Khintchine’s recurrence theorem easily extends to general semigroups, where the appropriate coun-

terpart of ‘bounded gaps’ is the notion of syndeticity. In this paper, we deal with recurrence in countable
discrete abelian groups. A subset A of a countable discrete abelian group G is said to be syndetic if there
exists a finite set 𝐹 ⊆ 𝐺, such that 𝐴 + 𝐹 = {𝑎 + 𝑓 : 𝑎 ∈ 𝐴, 𝑓 ∈ 𝐹} = 𝐺.

It is natural to ask if recurrence theorems other than Poincaré’s recurrence theorem also have
Khintchine-type enhancements. For instance, it follows from the IP Szemerédi theorem of Furstenberg
and Katznelson [20] and also from [3, Theorem B] that, for any abelian group G, any 𝑘 ∈ N and
any family of homomorphisms 𝜑1, . . . , 𝜑𝑘 : 𝐺 → 𝐺, the following holds: if

(
𝑋,X , 𝜇, (𝑇𝑔)𝑔∈𝐺

)
is a

G-system and 𝐴 ∈ X has 𝜇(𝐴) > 0, then the set{
𝑔 ∈ 𝐺 : 𝜇

(
𝐴 ∩ 𝑇−1

𝜑1 (𝑔) 𝐴 ∩ · · · ∩ 𝑇
−1
𝜑𝑘 (𝑔) 𝐴

)
> 0
}

is syndetic.1 With the goal of Khintchine-type enhancements in mind, this motivates the following
definition:
Definition 1.2. A family of homomorphisms 𝜑1, . . . , 𝜑𝑘 : 𝐺 → 𝐺 has the large intersections property
if the following holds: for any ergodic G-system

(
𝑋,X , 𝜇, (𝑇𝑔)𝑔∈𝐺

)
, any 𝐴 ∈ X and any 𝜀 > 0, the set{

𝑔 ∈ 𝐺 : 𝜇
(
𝐴 ∩ 𝑇−1

𝜑1 (𝑔) 𝐴 ∩ · · · ∩ 𝑇
−1
𝜑𝑘 (𝑔) 𝐴

)
> 𝜇(𝐴)𝑘+1 − 𝜀

}
is syndetic.

The large intersections property is closely related to the phenomenon of popular differences in
combinatorics (see, e.g. [1, 11, 12, 25, 26]).

Determining which families of homomorphisms have the large intersections property is a challenging
problem with many surprising features. In the case 𝐺 = Z and 𝜑𝑖 (𝑛) = 𝑖𝑛, the problem was resolved
in [8].
Theorem 1.3 ([8], Theorems 1.2 and 1.3). The family {𝑛, 2𝑛, . . . , 𝑘𝑛} has the large intersections
property in Z if and only if 𝑘 ≤ 3.

Later work of Frantzikinakis [18] and of Donoso et al. [15] generalised this picture for arbitrary
homomorphisms Z→ Z, which take the form 𝑛 ↦→ 𝑎𝑛 for some 𝑎 ∈ Z.
Theorem 1.4 ([18], special case of Theorem C; [15], Theorem 1.5).
1. For any 𝑎, 𝑏 ∈ Z, the families {𝑎𝑛, 𝑏𝑛} and {𝑎𝑛, 𝑏𝑛, (𝑎 + 𝑏)𝑛} have the large intersections property

(in Z).
2. For any 𝑘 ≥ 4 and any distinct and nonzero integers 𝑎1, . . . , 𝑎𝑘 ∈ Z, the family {𝑎1𝑛, . . . , 𝑎𝑘𝑛} does

not have the large intersections property (in Z).
Remark 1.5. Finitary combinatorial work of [26, Theorem 1.6] suggests that the family {𝑎1𝑛, 𝑎2𝑛, 𝑎3𝑛}
has the large intersections property if and only if 𝑎𝑖 +𝑎 𝑗 = 𝑎𝑘 for some permutation {𝑖, 𝑗 , 𝑘} of {1, 2, 3}.

In [10], Khintchine-type recurrence results are established in the infinitely generated torsion groups
𝐺 =
⊕∞

𝑛=1 Z/𝑝Z.

1In fact, this set is an IP∗ set, which is a stronger notion of largeness that we do not address in this paper (see 20).
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Theorem 1.6 ([10], Theorems 1.12 and 1.13).

1. Fix a prime 𝑝 > 2. If 𝑐1, 𝑐2 ∈ Z/𝑝Z are distinct and nonzero, then {𝑐1𝑔, 𝑐2𝑔} has the large
intersections property in 𝐺 =

⊕∞
𝑛=1 Z/𝑝Z.

2. Fix a prime 𝑝 > 3. If 𝑐1, 𝑐2 ∈ Z/𝑝Z are distinct and nonzero and 𝑐1 + 𝑐2 ≠ 0, then {𝑐1𝑔, 𝑐2𝑔, (𝑐1 +
𝑐2)𝑔} has the large intersections property in 𝐺 =

⊕∞
𝑛=1 Z/𝑝Z.

Remark 1.7. It is conjectured in [10, Conjecture 1.14] that, if 𝑐1, 𝑐2, 𝑐3 ∈ Z/𝑝Z are distinct and nonzero
and 𝑐𝑖 + 𝑐 𝑗 ≠ 𝑐𝑘 for every permutation {𝑖, 𝑗 , 𝑘} of {1, 2, 3}, then {𝑐1𝑔, 𝑐2𝑔, 𝑐3𝑔} does not have the large
intersections property in 𝐺 =

⊕∞
𝑛=1 Z/𝑝Z.

Khintchine-type recurrence in general abelian groups was addressed in [2] and [27]. For 3-point
linear configurations, the following was shown in [2]:

Theorem 1.8 ([2], Theorem 1.10). Let G be a countable discrete abelian group. Let 𝜑, 𝜓 : 𝐺 → 𝐺 be
homomorphisms. If all three of the subgroups 𝜑(𝐺), 𝜓(𝐺) and (𝜓 − 𝜑) (𝐺) have finite index in G, then
{𝜑, 𝜓} has the large intersections property.

Remark 1.9. Earlier work of Chu demonstrates that at least some finite index condition is necessary
for large intersections. Namely, it follows from [13, Theorem 1.2] that the pair {(𝑛, 0), (0, 𝑛)}, does not
have the large intersections property in Z2 (see [2, Example 10.2]). While we do not pursue optimal
lower bounds for families lacking the large intersections property in this paper, Chu also showed
that, for the pair {(𝑛, 0), (0, 𝑛)}, the optimal lower bound is still polynomially large. In particular,
𝜇
(
𝐴 ∩ 𝑇−1

(𝑛,0) 𝐴 ∩ 𝑇
−1
(0,𝑛) 𝐴

)
> 𝜇(𝐴)4 − 𝜀 for syndetically many n (see [13, Theorem 1.1]).

For more restricted 4-point configurations, the following result was shown in [2] and independently
in [27]:

Theorem 1.10 ([2], Theorem 1.11; [27], Theorem 1.3). Let G be a countable discrete abelian group.
Let 𝑎, 𝑏 ∈ Z be distinct, nonzero integers, such that all four of the subgroups 𝑎𝐺, 𝑏𝐺, (𝑎 + 𝑏)𝐺 and
(𝑏 − 𝑎)𝐺 have finite index in G. Then {𝑎𝑔, 𝑏𝑔, (𝑎 + 𝑏)𝑔} has the large intersections property.

1.2. Main results

In this paper, we refine the understanding of Khintchine-type recurrence for 3-point configurations
in abelian groups and make substantial progress towards characterising the pairs of homomorphisms
𝜑, 𝜓 : 𝐺 → 𝐺 that have the large intersections property.

Our first result shows that the large intersections property holds for any pair of homomorphisms
{𝜑, 𝜓} so long as at least two of the three subgroups in Theorem 1.8 have finite index in G. In particular,
this shows that [2, Conjecture 10.1] is false.

Theorem 1.11. Let G be a countable discrete abelian group. Let 𝜑, 𝜓 : 𝐺 → 𝐺 be homomorphisms,
such that at least two of the three subgroups 𝜑(𝐺), 𝜓(𝐺) and (𝜓 − 𝜑) (𝐺) have finite index in G. Then
for any ergodic G-system

(
𝑋,X , 𝜇, (𝑇𝑔)𝑔∈𝐺

)
, any 𝐴 ∈ X and any 𝜀 > 0, the set{

𝑔 ∈ 𝐺 : 𝜇
(
𝐴 ∩ 𝑇−1

𝜑 (𝑔) 𝐴 ∩ 𝑇
−1
𝜓 (𝑔)𝐴

)
> 𝜇(𝐴)3 − 𝜀

}
is syndetic.

As mentioned above (see Remark 1.9), the work of Chu [13] provides a counterexample to the large
intersections property when all three subgroups 𝜑(𝐺), 𝜓(𝐺) and (𝜓 − 𝜑) (𝐺) have infinite index in G.
In this paper, we give additional counterexamples for the group 𝐺 =

⊕∞
𝑛=1 Z with homomorphisms

𝑔 ↦→ 𝑎𝑔 and 𝑔 ↦→ 𝑏𝑔 for some 𝑎, 𝑏 ∈ Z (see Theorem 1.14 below). A natural question to ask, then, is
what happens when only one of the subgroups 𝜑(𝐺), 𝜓(𝐺) or (𝜓 − 𝜑) (𝐺) has finite index. Namely:
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Question 1.12. Let G be a countable discrete abelian group, and let 𝜑 : 𝐺 → 𝐺, 𝜓 : 𝐺 → 𝐺 be
homomorphisms, such that at least one of the subgroups 𝜑(𝐺), 𝜓(𝐺) or (𝜓 − 𝜑) (𝐺) has finite index
in G. Is it true that, for any ergodic G-system

(
𝑋,X , 𝜇, (𝑇𝑔)𝑔∈𝐺

)
, any 𝐴 ∈ X , and any 𝜀 > 0, the set{

𝑔 ∈ 𝐺 : 𝜇
(
𝐴 ∩ 𝑇−1

𝜑 (𝑔) 𝐴 ∩ 𝑇
−1
𝜓 (𝑔)𝐴

)
> 𝜇(𝐴)3 − 𝜀

}
is syndetic?

Note that, by symmetry, it is enough to provide an answer to Question 1.12 under the assumption
that (𝜓 − 𝜑) (𝐺) has finite index. Indeed, suppose 𝜓(𝐺) has finite index in G. Then, since (𝑇𝑔)𝑔∈𝐺 is a
measure-preserving action, we have the identity

𝜇
(
𝐴 ∩ 𝑇−1

𝜑 (𝑔) 𝐴 ∩ 𝑇
−1
𝜓 (𝑔)𝐴

)
= 𝜇
(
𝐴 ∩ 𝑇−1

−𝜑 (𝑔) 𝐴 ∩ 𝑇
−1
(𝜓−𝜑) (𝑔)𝐴

)
.

Hence, the pair {𝜑, 𝜓} has the large intersections property if and only if
{
𝜑, 𝜓
}

has the large intersections
property, where 𝜑 = −𝜑 and 𝜓 = 𝜓 − 𝜑. Moreover, we have (𝜓 − 𝜑) (𝐺) = 𝜓(𝐺), which is of finite
index. A similar argument applies when 𝜑(𝐺) has finite index.

When𝐺 = Z2, we can use additional tools from linear algebra to classify all pairs of homomorphisms
𝜑 and 𝜓, which allows us to answer Question 1.12 affirmatively in this setting. In fact, we can give
a precise description of the optimal size of intersections for all 3-point configurations in Z2 (see
Subsection 1.4 below). However, our results rely heavily on properties of 2 × 2 matrices, and it appears
that the full generality of Question 1.12 for general abelian groups and general homomoprhisms is out
of reach without developing new techniques.

On the other hand, in the special case 𝜑(𝑔) = 𝑎𝑔 and𝜓(𝑔) = 𝑏𝑔 for 𝑎, 𝑏 ∈ Z, we answer Question 1.12
affirmatively:

Theorem 1.13. Let G be a countable discrete abelian group. Let 𝑎, 𝑏 ∈ Z be integers, such that (𝑏−𝑎)𝐺
has finite index in G. Then for any ergodic G-system

(
𝑋,X , 𝜇, (𝑇𝑔)𝑔∈𝐺

)
, any 𝐴 ∈ X and any 𝜀 > 0, the

set {
𝑔 ∈ 𝐺 : 𝜇

(
𝐴 ∩ 𝑇−1

𝑎𝑔 𝐴 ∩ 𝑇−1
𝑏𝑔 𝐴
)
> 𝜇(𝐴)3 − 𝜀

}
is syndetic.

We also show that the assumption that (𝑏 − 𝑎)𝐺 has finite index in G is necessary. To see this, we
prove the following result:

Theorem 1.14. Let𝐺 =
⊕∞

𝑛=1 Z. Let 𝑙 ∈ N. There exists a number 𝑃 = 𝑃(𝑙), such that, for any 𝑎, 𝑏 ∈ N
with 𝑝 | gcd(𝑎, 𝑏) for some prime 𝑝 ≥ 𝑃, there is an ergodic G-system

(
𝑋,X , 𝜇, (𝑇𝑔)𝑔∈𝐺

)
and a set

𝐴 ∈ X with 𝜇(𝐴) > 0, such that

𝜇(𝐴 ∩ 𝑇−1
𝑎𝑔 𝐴 ∩ 𝑇−1

𝑏𝑔 𝐴) ≤ 𝜇(𝐴)
𝑙

for every 𝑔 ≠ 0.

Question 1.15. Can p in the statement of Theorem 1.14 be replaced by any natural number?

1.3. Applications to geometric progressions and other multiplicative patterns

One particularly interesting corollary of Theorem 1.13 is a multiplicative version of the following large
intersection theorem in [8]:
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Theorem 1.16 ([8], Corollary 1.5). Let 𝐸 ⊆ Z be a set of positive upper Banach density

𝑑∗(𝐸) = lim sup
𝑁−𝑀→∞

|𝐸 ∩ {𝑀, 𝑀 + 1, . . . , 𝑁 − 1}|
𝑁 − 𝑀 > 0.

Then, for any 𝜀 > 0, the set

{𝑛 ∈ Z : 𝑑∗(𝐸 ∩ (𝐸 − 𝑛) ∩ (𝐸 − 2𝑛)) > 𝑑∗(𝐸) − 𝜀}

is syndetic.

Consider the group𝐺 = (Q>0, ·). This is a multiplicative counterpart of (Z, +). In the group (Q>0, ·),
the upper Banach density of a set 𝐸 ⊆ Q>0 is given by

𝑑∗mult(𝐸) = sup
Φ

lim sup
𝑁→∞

|𝐸 ∩Φ𝑁 |
|Φ𝑁 |

, (1)

where the supremum is taken over all Følner sequences Φ = (Φ𝑁 )𝑁 ∈N in (Q>0, ·). An instructive class
of examples of Følner sequences in (Q>0, ·) is given by sequences of the form

Φ𝑁 =

{
𝑏𝑁

𝑁∏
𝑖=1

𝑞𝑟𝑖𝑖 : −𝑁 ≤ 𝑟𝑖 ≤ 𝑁
}
,

where (𝑞𝑛)𝑛∈N is a sequence of generators of (Q>0, ·) and (𝑏𝑁 )𝑁 ∈N is any sequence in Q>0. The
subscript on 𝑑∗mult is to emphasise that this density is with respect to the multiplicative structure on Q>0
rather than its additive structure. Using an ergodic version of the Furstenberg correspondence principle
(see [6, Theorem 2.8]), we deduce the following result as an immediate consequence of Theorem 1.13:

Theorem 1.17. Let 𝐸 ⊆ Q>0 be a set of positive multiplicative upper Banach density 𝑑∗mult(𝐸) > 0, and
let 𝑘 ∈ Z. Then for any 𝜀 > 0, the sets{

𝑞 ∈ Q>0 : 𝑑∗mult

(
𝐸 ∩ 𝑞−𝑘𝐸 ∩ 𝑞−(𝑘+1)𝐸

)
> 𝑑∗mult(𝐸)

3 − 𝜀
}

(2)

and {
𝑞 ∈ Q>0 : 𝑑∗mult

(
𝐸 ∩ 𝑞−1𝐸 ∩ 𝑞−𝑘𝐸

)
> 𝑑∗mult(𝐸)

3 − 𝜀
}

(3)

are syndetic.

Remark 1.18. The special case where 𝑘 = 1 in (2) or 𝑘 = 2 in (3) is related to the existence of length 3
geometric progressions in sets of positive multiplicative density. Heuristically, if E were a random set,
where each positive rational number 𝑞 ∈ Q>0 is independently chosen to be inside E with probability 𝛼,
then the expected number of geometric progressions of length 3 and quotient q would be 𝛼3. Now, fix
any set E with 𝑑∗𝑚𝑢𝑙𝑡 (𝐸) = 𝛼. Choosing 𝜀 sufficiently small, our result implies that E contains almost as
many geometric progressions with quotient q as a random set with the same density, 𝛼, for a syndetic
set of quotients.

Theorem 1.14 shows that, if n and m share a large prime factor, then {𝑞𝑛, 𝑞𝑚} does not have the large
intersections property in (Q>0, ·). What happens in the case that n and m are coprime is an interesting
question that we are unable to answer with our current methods:

Question 1.19. Suppose 𝑛, 𝑚 ∈ N are coprime. Does the pair {𝑞𝑛, 𝑞𝑚} have the large intersections
property in (Q>0, ·)?
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Since every Z-action can be lifted to a (Q>0, ·)-action (indeed, (Q>0, ·) is torsion-free, so Z embeds
as a subgroup), we see from Theorem 1.3 above that {𝑞, 𝑞2, . . . , 𝑞𝑘 } does not have the large intersections
property for 𝑘 ≥ 4. However, we can still ask about geometric progressions of length 4.

Question 1.20. Does the triple {𝑞, 𝑞2, 𝑞3} have the large intersections property in (Q>0, ·)?

For a discussion of where our methods come up short for answering Questions 1.19 and 1.20, see
Subsection 2.7 below.

1.3.1. Patterns in (N, ·)
A notion of upper Banach density can be defined in the semigroup (N, ·) by the formula in (1), where
the supremum is now taken over Følner sequences in (N, ·). Examples of Følner sequences in (N, ·)
include sequences of the form

Φ𝑁 =

{
𝑏𝑁

𝑁∏
𝑖=1

𝑝𝑟𝑖𝑖 : 0 ≤ 𝑟𝑖 ≤ 𝑁
}
,

where (𝑝𝑛)𝑛∈N is an enumeration of the prime numbers and (𝑏𝑁 )𝑁 ∈N is any sequence inN. In Section 8,
we transfer Theorems 1.11 and 1.13 to the setting of cancellative abelian semigroups. As a consequence,
we obtain the following result about geometric configurations in the multiplicative integers:

Theorem 1.21. Let 𝐸 ⊆ N be a set of positive multiplicative upper Banach density, and let 𝑘 ∈ Z. Then
for any 𝜀 > 0, the sets {

𝑚 ∈ N : 𝑑∗mult

(
𝐸 ∩ 𝐸/𝑚𝑘 ∩ 𝐸/𝑚𝑘+1

)
> 𝑑∗mult(𝐸)

3 − 𝜀
}

and {
𝑚 ∈ N : 𝑑∗mult

(
𝐸 ∩ 𝐸/𝑚 ∩ 𝐸/𝑚𝑘

)
> 𝑑∗mult(𝐸)

3 − 𝜀
}

are (multiplicatively) syndetic in (N, ·).

1.4. Applications to patterns in Z2

When 𝐺 = Z2, we are able to give a complete picture of the phenomenon of large intersections for
3-point matrix patterns, that is, patterns of the form {�𝑥, �𝑥 +𝑀1�𝑛, �𝑥 +𝑀2�𝑛}, where �𝑥, �𝑛 ∈ Z2 and 𝑀1, 𝑀2
are 2 × 2 matrices with integer entries (note that any homomorphism 𝜑 : Z2 → Z2 can be expressed as
a 2 × 2 matrix with integer entries, so matrix patterns capture all possible configurations in Z2 that can
be described within the framework of group homomorphisms).

Following [8], we say that the syndetic supremum of a bounded real-valued Z2-sequence(
𝑎𝑛,𝑚
)
(𝑛,𝑚) ∈Z2 is the quantity

synd-sup(𝑛,𝑚) ∈Z2𝑎𝑛,𝑚 := sup
{
𝑎 ∈ R :

{
(𝑛, 𝑚) ∈ Z2 : 𝑎𝑛,𝑚 > 𝑎

}
is syndetic inZ2}.

For 2×2 integer matrices 𝑀1 and 𝑀2 and 𝛼 ∈ (0, 1), we define the ergodic popular difference density by

epdd𝑀1 ,𝑀2 (𝛼) := inf synd-sup�𝑛∈Z2𝜇
(
𝐴 ∩ 𝑇−1

𝑀1 �𝑛𝐴 ∩ 𝑇
−1
𝑀2 �𝑛𝐴

)
,

where the infimum is taken over all ergodic Z2-systems (𝑋,X , 𝜇, (𝑇�𝑛)�𝑛∈Z2) and sets 𝐴 ∈ X with
𝜇(𝐴) = 𝛼. This can be seen as an ergodic-theoretic analogue to the popular difference density de-
fined in [26]. It is natural to ask if epdd𝑀1 ,𝑀2 (𝛼) coincides with the finitary combinatorial quantity
pdd𝑀1 ,𝑀2 (𝛼). Standard tools for translating between ergodic theory and combinatorics, such as Fursten-
berg’s correspondence principle, are insufficient for resolving this question, and we do not know the
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Table 1. Ergodic popular difference densities for 3-point matrix patterns in Z2.

𝑟 (𝑀1 , 𝑀2) Other conditions epdd𝑀1 ,𝑀2 (𝛼) Reason

(2, 2, 2) - 𝛼3 [2, Theorem 1.10]
(2, 2, 1) - 𝛼3 Theorem 1.11
(2, 1, 1) - 𝛼3 ‘Fubini’ for UC - lim [9]
(1, 1, 1) [𝑀1 , 𝑀2 ] = 0 < 𝛼𝑐 log(1/𝛼) Behrend-type construction [4, 8]
(1, 1, 1) [𝑀1 , 𝑀2 ] ≠ 0, 𝛼3 ‘Fubini’ for UC - lim [9]

‘row-like’
(1, 1, 1) [𝑀1 , 𝑀2 ] ≠ 0, 𝛼4−𝑜 (1) [13, Theorem 1.1],

‘column-like’ [16, Theorem 1.2]

answer in general. However, in special cases where pdd𝑀1 ,𝑀2 (𝛼) is known, it is in agreement with the
values of epdd𝑀1 ,𝑀2 (𝛼) displayed in Table 1 below, and we suspect that pdd𝑀1 ,𝑀2 (𝛼) = epdd𝑀1 ,𝑀2 (𝛼)
in the remaining cases (see Subsection 7.3 below for additional remarks on (combinatorial) popular
difference densities for matrix patterns in Z2).

Theorem 1.11 provides a sufficient condition on the matrices 𝑀1 and 𝑀2 to guarantee that
epdd𝑀1 ,𝑀2 (𝛼) ≥ 𝛼3 for 𝛼 ∈ (0, 1). We now seek to describe the quantity epdd𝑀1 ,𝑀2 (𝛼) for any pair
of 2 × 2 integer matrices 𝑀1 and 𝑀2. Table 1 summarises ergodic popular difference densities for all
3-point matrix configurations in Z2 (for matrices 𝑀1, 𝑀2, we let 𝑟 (𝑀1, 𝑀2) be a list of the ranks of 𝑀1,
𝑀2 and 𝑀2 − 𝑀1 in decreasing order, and we denote by [𝑀1, 𝑀2] the commutator 𝑀1𝑀2 − 𝑀2𝑀1).

The cases 𝑟 (𝑀1, 𝑀2) = (2, 2, 2) and 𝑟 (𝑀1, 𝑀2) = (2, 2, 1) are covered directly by [2, Theorem 1.10]
and Theorem 1.11, respectively. Indeed, a matrix M has full rank if and only if the subgroup𝑀 (Z2) ⊆ Z2

has finite index. More precisely,

[Z2 : 𝑀 (Z2)] =
{
|det(𝑀) |, if det(𝑀) ≠ 0;
∞, if det(𝑀) = 0.

The remaining cases are proved in Section 7.

1.5. Preliminary remarks on characteristic factors

In this paper, we approach multiple recurrence problems by determining and utilising the so-called
characteristic factors, which are the factors that are responsible for the limiting behaviour of the quantity

𝜇
(
𝐴 ∩ 𝑇−1

𝜑 (𝑔) 𝐴 ∩ 𝑇
−1
𝜓 (𝑔)𝐴

)
in ergodic G-systems (see Subsection 2.2 for a discussion of factors in general and Definition 3.3 for a
definition of characteristic factors). For Z-actions, there are two different approaches to characteristic
factors for linear averages, developed independently by Host and Kra [23] and by Ziegler [30], giving
rise to factors that coincide (see [5, Appendix A]). However, in the context of G-actions, where G is an
arbitrary (nonfinitely generated) countable discrete abelian group, the approaches of Host–Kra and of
Ziegler may produce different factors (see Subsection 2.6 below for more details).

Our work, thus, leads to the general open question of how, in the setup of countable discrete abelian
groups, the Host–Kra factors are related to the actual characteristic factors of the corresponding multiple
ergodic averages (the factors obtained by Ziegler’s approach). Discerning the relationship between the
Host–Kra factors and the characteristic factors may lead to a better understanding of the quantities

𝜇(𝐴 ∩ 𝑇−1
𝜑1 (𝑔) 𝐴 ∩ ... ∩ 𝑇

−1
𝜑𝑘 (𝑔) 𝐴),

where X = (𝑋,X , 𝜇, (𝑇𝑔)𝑔∈𝐺) is a G-system, 𝐴 ∈ X and 𝜑𝑖 : 𝐺 → 𝐺 are homomorphisms or, more
generally, polynomial maps.
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1.6. Structure of the paper

The paper is organised as follows. In Section 2, we introduce notation and conventions that we use
throughout the paper.

Proofs of the main results appear in Sections 3–6. First, in Section 3, we establish characteristic
factors for the multiple ergodic averages

UC - lim
𝑔∈𝐺

𝑇𝜑 (𝑔) 𝑓1 · 𝑇𝜓 (𝑔) 𝑓2

when (𝜓−𝜑) (𝐺) has finite index in G and prove Theorem 1.11. Then, in Section 4, we use an extension
trick to simplify the characteristic factors, and in Section 5, prove a new limit formula for the extension
system, leading to a proof of Theorem 1.13. Finally, we prove Theorem 1.14 in Section 6.

The final two sections contain applications of the main results. Using Theorem 1.11 together with
additional tools from [2, 8, 9, 13, 16], we compute ergodic popular difference densities for 3-point
matrix patterns in Z2. In Section 8, we extend the main results (Theorems 1.11 and 1.13) to the setting
of cancellative abelian semigroups.

2. Preliminaries

The goal of this section is to introduce some notations and objects that will play an important role in
this paper. Throughout this section, we let G denote an arbitrary countable discrete abelian group and
X = (𝑋,X , 𝜇, (𝑇𝑔)𝑔∈𝐺) a G-system.

2.1. Uniform Cesàro limits

The large intersection property of a family {𝜑1, . . . , 𝜑𝑘 } is related to the limit behaviour of the multiple
ergodic averages

1
|Φ𝑁 |

∑
𝑔∈Φ𝑁

𝑘∏
𝑖=1

𝑇𝜑𝑖 (𝑔) 𝑓𝑖 , (4)

where (Φ𝑁 )𝑁 ∈N is a Følner sequence2 in G and 𝑓1, . . . , 𝑓𝑘 ∈ 𝐿∞(𝜇). By [3] and [32], the quantity
in (4) converges in 𝐿2 (𝜇) as 𝑁 → ∞, and the limit is independent of the choice of Følner sequence
(Φ𝑁 )𝑁 ∈N. For more concise notation, we define the uniform Cesàro limit 𝑥 = UC - lim𝑔∈𝐺 𝑥𝑔 if

1
|Φ𝑁 |
∑

𝑔∈Φ𝑁
𝑥𝑔 → 𝑥 for every Følner sequence (Φ𝑁 )𝑁 ∈N in G.

One crucial tool for handling uniform Cesàro limits is the following version of the van der Corput
differencing trick:

Lemma 2.1 (van der Corput lemma, cf. [2], Lemma 2.2). Let H be a Hilbert space and G a countable
amenable group. Let (𝑢𝑔)𝑔∈𝐺 be a bounded sequence in H. If UC - lim𝑔∈𝐺

〈
𝑢𝑔+ℎ , 𝑢𝑔

〉
exists for every

ℎ ∈ 𝐺, and

UC - lim
ℎ∈𝐺

UC - lim
𝑔∈𝐺

〈
𝑢𝑔+ℎ , 𝑢𝑔

〉
= 0

then,

UC - lim
𝑔∈𝐺

𝑢𝑔 = 0

strongly.

2A sequence (Φ𝑁 )𝑁∈N of finite subsets of G is a Følner sequence if, for any 𝑥 ∈ 𝐺, | (Φ𝑁 +𝑥)
Φ𝑁 |
|Φ𝑁 | → 0 as 𝑁 →∞.
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Another useful tool for computing uniform Cesàro limits is the following ‘Fubini’ trick, which we
use extensively in Section 7:

Lemma 2.2 ([9], special case of Lemma 1.1). Let G and H be countable discrete amenable groups, and
let (𝑣ℎ,𝑔)(ℎ,𝑔) ∈𝐻×𝐺 be a bounded sequence. Suppose

UC - lim
(ℎ,𝑔) ∈𝐻×𝐺

𝑣ℎ,𝑔

exists, and for every 𝑔 ∈ 𝐺,

UC - lim
ℎ∈𝐻

𝑣ℎ,𝑔

exists. Then

UC - lim
𝑔∈𝐺

UC - lim
ℎ∈𝐻

𝑣ℎ,𝑔 = UC - lim
(ℎ,𝑔) ∈𝐻×𝐺

𝑣ℎ,𝑔 .

2.2. Factors

A factor of X is a G-system Y = (𝑌,Y , 𝜈, (𝑆𝑔)𝑔∈𝐺) together with a measurable map 𝜋 : 𝑋 → 𝑌 , such
that 𝜋∗𝜇 = 𝜈 and 𝜋 ◦ 𝑇𝑔 = 𝑆𝑔 ◦ 𝜋 for all 𝑔 ∈ 𝐺. There is a natural one-to-one correspondence between
factors and (𝑇𝑔)𝑔∈𝐺-invariant sub-𝜎-algebras of X . Throughout the paper, we freely move between the
system Y and the 𝜎-algebra 𝜋−1 (Y) and refer to both of them as factors of X. Given 𝑓 ∈ 𝐿2 (𝜇), we
denote by 𝐸 ( 𝑓 |Y) the conditional expectation of f with respect to the 𝜎-algebra 𝜋−1 (Y). We say that f
is measurable with respect to Y if 𝑓 = 𝐸 ( 𝑓 |Y).

2.3. Factor of invariant sets

Let X = (𝑋,X , 𝜇, (𝑇𝑔)𝑔∈𝐺) be a G-system. We write I𝐺 (𝑋) for the sub-𝜎-algebra of G-invariant sets.
We say that X is ergodic if I𝐺 (𝑋) is the𝜎-algebra comprised of null and conull subsets of (𝑋,X , 𝜇). For
a subgroup 𝐻 ≤ 𝐺, we denote by I𝐻 (𝑋) the sub-𝜎-algebra of H-invariant sets. Given a homomorphism
𝜑 : 𝐺 → 𝐺, it is convenient to denote by I𝜑 (𝑋) the 𝜎-algebra I𝜑 (𝐺) (𝑋).

2.4. Host–Kra factors

The Gowers–Host–Kra seminorms are an ergodic-theoretic version of the uniformity norms introduced
by Gowers in [22]. These seminorms were first introduced by Host and Kra in [23] in the case of ergodic
Z-systems, and then generalised by Chu, Frantzikinakis and Host to Z-systems that are not necessarily
ergodic in [14]. In [10, Appendix A], a general theory of Gower–Host–Kra seminorms is developed for
(not necesssarily ergodic) G-systems, where G is an arbitrary countable discrete abelian group.

Definition 2.3. Let G be a countable discrete abelian group, and let X = (𝑋,X , 𝜇, (𝑇𝑔)𝑔∈𝐺) be a G-
system. Let 𝑓 ∈ 𝐿∞(𝑋), and let 𝑘 ≥ 1 be an integer. The Gowers–Host–Kra seminorm ‖ 𝑓 ‖𝑈 𝑘 (𝐺) of
order k of f is defined recursively by the formula

‖ 𝑓 ‖𝑈1 (𝐺) := ‖𝐸 (𝜙 |I𝐺 (𝑋))‖𝐿2

for 𝑘 = 1, and

‖ 𝑓 ‖𝑈 𝑘 (𝐺) := UC - lim
𝑔∈𝐺

(
‖Δ𝑔 𝑓 ‖2𝑘−1

𝑈 𝑘−1

)1/2𝑘
for 𝑘 > 1, where Δ𝑔 𝑓 (𝑥) = 𝑓 (𝑇𝑔𝑥) · 𝑓 (𝑥).
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In [10, Appendix A], it is shown that the Gower–Host–Kra seminorms for general G-systems are
indeed seminorms. Moreover, these seminorms correspond to factors of X.

Proposition 2.4 (cf. [10], Proposition 1.10). Let G be a countable discrete abelian group, let
X be a G-system and let 𝑘 ≥ 0. There exists a unique (up to isomorphism) factor Z𝑘 (𝑋) =(
𝑍 𝑘 (𝑋),Z 𝑘 (𝑋), 𝜇𝑘 , (𝑇 (𝑘)𝑔 )𝑔∈𝐺

)
of X with the property that for every 𝑓 ∈ 𝐿∞(𝑋), ‖ 𝑓 ‖𝑈 𝑘+1 (𝑋 ) = 0

if and only if 𝐸 ( 𝑓 |Z 𝑘 (𝑋)) = 0.

The factors Z𝑘 guaranteed by Proposition 2.4 are called the Host–Kra factors of X.
Let X =

(
𝑋,X , 𝜇, (𝑇𝑔)𝑔∈𝐺

)
be a G-system. Then, Z0 (𝑋) is the same as the 𝜎-algebra I𝐺 (𝑋). In

particular, if X is ergodic, then Z0 (𝑋) is trivial. In the literature, Z1 (𝑋) is often called the Kronecker
factor, and Z2(𝑋) the Conze–Lesigne or quasi-affine factor of X.

We summarise some basic results about the Host–Kra factors.

Theorem 2.5. Let G be a countable discrete abelian group, and let X = (𝑋,X , 𝜇, (𝑇𝑔)𝑔∈𝐺) be a ergodic
G-system. Then,

(i) For every 𝑘 ≥ 1, Z 𝑘−1(𝑋) � Z 𝑘 (𝑋). In other words, Z𝑘−1 (𝑋) is a factor of Z𝑘 (𝑋). In particular,
I (𝑋) � Z 𝑘 (𝑋) for every 𝑘 ≥ 0.

(ii) The Kronecker factor of X is isomorphic to a rotation on a compact abelian group. Namely, there
exists a homomorphism 𝛼 : 𝐺 → 𝑍 into a compact abelian group (𝑍, +), such that Z1(𝑋) is
isomorphic to (𝑍, (𝑅𝑔)𝑔∈𝐺), where 𝑅𝑔𝑧 = 𝑧 + 𝛼(𝑔).

(iii) For every 𝑘 ≥ 1, if X is ergodic, then Z𝑘 (𝑋) is an extension of Z𝑘−1(𝑋) by a compact abelian
group (𝐻, +) and a cocycle 𝜌 : 𝐺 × 𝑍 𝑘−1(𝑋) → 𝐻. Namely, 𝑍 𝑘 (𝑋) = 𝑍 𝑘−1(𝑋) × 𝐻 as measure
spaces, and the action is given by 𝑇 (𝑘)𝑔 (𝑧, ℎ) = (𝑇 (𝑘−1)

𝑔 𝑧, ℎ + 𝜌(𝑔, 𝑧)).

Proof. The proof of (𝑖) is an immediate consequence of the monotonicity of the seminorms (see [23,
Corollary 4.4]). The proof of (𝑖𝑖) in the generality of countable discrete abelian groups can be found
in [2, Lemma 2.4]. The proof of (𝑖𝑖𝑖) can be found for Z-actions in [23, Proposition 6.3], and the same
proof works for arbitrary countable discrete abelian groups. �

2.5. Joins and meets of factors

Let G be a countable discrete abelian group, let X = (𝑋,X , 𝜇, (𝑇𝑔)𝑔∈𝐺) be a G-system and let 𝜑, 𝜓 :
𝐺 → 𝐺 be arbitrary homomorphisms.

1. LetZ1
𝜑 (𝑋), or justZ𝜑 (𝑋), denote the𝜎-algebra of the Kronecker factor of X with respect to the action

of 𝜑(𝐺), that is, the 𝜎-algebra of the factor Z1
𝜑 (𝑋) obtained by applying Proposition 2.4 for the

G-system (𝑋,X , 𝜇, (𝑇𝜑 (𝑔) )𝑔∈𝐺) and 𝑘 = 1. More generally, let H be a subgroup of G and 𝑘 ≥ 1, we
let Z 𝑘

𝐻 (𝑋) denote the 𝜎-algebra of the k-th Host–Kra factor Z𝑘
𝐻 (𝑋) with respect to the action of H.

2. Let A, A1,A2 be 𝜎-algebras on X. Then,
◦ We write A � X if the 𝜎-algebra A is a sub-𝜎-algebra of X .
◦ We let A1 ∨A2 denote the join of A1 and A2, that is, the 𝜎-algebra generated by A1 and A2 in X .
◦ We let A1 ∧A2 denote the meet of A1 and A2, that is, the maximal 𝜎-algebra which is also a

sub-𝜎-algebra of A1 and A2.
◦ We say that A1 and A2 are 𝜇-independent if their meet is trivial modulo 𝜇-null sets.
◦ More generally, we say that A1 and A2 are relatively independent over the 𝜎-algebra A if
A1 ∧A2 � A.

3. We let I𝜑,𝜓 (𝑋) denote the meet of I𝜑 (𝑋) and I𝜓 (𝑋) and Z𝜑,𝜓 (𝑋) the meet of Z𝜑 (𝑋) and Z𝜓 (𝑋).
We let Z𝜑,𝜓 (𝑋) denote the factor of X which corresponds to the 𝜎-algebra Z𝜑,𝜓 (𝑋).

The next two lemmas give convenient alternative descriptions of independent and relatively inde-
pendent 𝜎-algebras. These results are classical and can be found, for example, in [31, Proposition 1.4];
we provide short proofs for the convenience of the reader.
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Proposition 2.6 (Independent 𝜎-algebras). Let X = (𝑋,X , 𝜇) be a probability space. Two 𝜎-algebras
A1 and A2 on X are 𝜇-independent if and only if the following equivalent conditions hold:

(i) Any function 𝑓 ∈ 𝐿∞(𝑋) measurable with respect to A1 and A2 simultaneously is a constant
𝜇-almost everywhere.

(ii) If 𝑓 ∈ 𝐿∞(𝑋) is measurable with respect to A1 and 𝑔 ∈ 𝐿∞(𝑋) is measurable with respect to A2,
then ∫

𝑋
𝑓 · 𝑔 𝑑𝜇 =

∫
𝑋
𝑓 𝑑𝜇 ·

∫
𝑋
𝑔 𝑑𝜇.

Proof. The first definition of independence above is clearly equivalent to (i). We prove the equivalence
between (i) and (ii).

(i)⇒ (ii).∫
𝑋
𝑓 · 𝑔 𝑑𝜇 =

∫
𝑋
𝐸 ( 𝑓 |A2) · 𝑔 𝑑𝜇 =

∫
𝑋
𝐸 ( 𝑓 |A2) 𝑑𝜇 ·

∫
𝑋
𝑔 𝑑𝜇 =

∫
𝑋
𝑓 𝑑𝜇 ·

∫
𝑋
𝑔 𝑑𝜇,

where the second equality holds since 𝐸 ( 𝑓 |A2) is a constant 𝜇-a.e. by (i).
For (ii)⇒ (i), let 𝑓̃ = 𝑓 −

∫
𝑓 𝑑𝜇. Then,

‖ 𝑓̃ ‖2
𝐿2 (𝜇) =

∫
| 𝑓̃ |2 𝑑𝜇 =

����∫
𝑋
𝑓̃ 𝑑𝜇

����2 = 0.

We conclude that 𝑓 =
∫
𝑓 𝑑𝜇. �

Proposition 2.7 (Relatively independent 𝜎-algebras). Let X = (𝑋,X , 𝜇) be a probability space. Let
A1,A2 be two 𝜎-algebras on X, and let A be a third 𝜎-algebra, such that A � A1 ∧A2. Then, A1 and
A2 are relatively independent with respect to A if the following equivalent conditions hold:

(i) Any function 𝑓 ∈ 𝐿∞(𝑋) measurable with respect to A1 and A2 simultaneously is measurable with
respect to A.

(ii) If f is measurable with respect to A1 and g is measurable with respect to A2, then

𝐸 ( 𝑓 𝑔 |A) = 𝐸 ( 𝑓 |A) · 𝐸 (𝑔 |A).

Proof. Condition (𝑖) is equivalent to the definition of relative independence above. Therefore, it is
enough to prove the equivalence of (𝑖) and (𝑖𝑖).

(i)⇒(ii). We have 𝐸 ( 𝑓 𝑔 |A1) = 𝑓 · 𝐸 (𝑔 |A1) = 𝑓 · 𝐸 (𝑔 |A), where the last equality follows from (𝑖).
Now, by taking the conditional expectation over A, we have

𝐸 ( 𝑓 𝑔 |A) = 𝐸 ( 𝑓 |A) · 𝐸 (𝑔 |A).

(ii)⇒ (i). Let 𝑓̃ = 𝑓 − 𝐸 ( 𝑓 |A). Then 𝐸 (| 𝑓̃ |2 |A) = 𝐸 ( 𝑓̃ |A)2 = 0. In particular,
∫
| 𝑓̃ |2𝑑𝜇 = 0, thus,

𝑓 = 𝐸 ( 𝑓 |A). �

2.6. Characteristic factors

Let X = (𝑋,X , 𝜇, 𝑇) be an invertible ergodic measure preserving system and 𝑓1, ..., 𝑓𝑘 ∈ 𝐿∞(𝑋), 𝑘 ≥ 0.
The convergence of the multiple ergodic averages

1
𝑁

𝑁−1∑
𝑛=0

𝑘∏
𝑖=1

𝑇 𝑖𝑛 𝑓𝑖 (5)
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in 𝐿2 (𝜇) for general k was established by Host and Kra [23] and independently, though somewhat later,
by Ziegler [30].

Host and Kra proved convergence by showing that the averages in (5) are controlled by the Gowers–
Host–Kra seminorms defined above. This reduces the general convergence problem to convergence
under the additional assumption that each function 𝑓𝑖 is measurable with respect to the Host–Kra factor.

Ziegler, on the other hand, studied the universal (minimal) characteristic factors for the multiple
ergodic averages

1
𝑁

𝑁−1∑
𝑛=0

𝑘∏
𝑖=1

𝑇𝑎𝑖𝑛 𝑓𝑖 ,

where 𝑎1, ..., 𝑎𝑘 ∈ Z are distinct and nonzero. These are the minimal factors Z𝑘−1(𝑋), such that

lim
𝑁→∞

1
𝑁

𝑁−1∑
𝑛=0

𝑘∏
𝑖=1

𝑇𝑎𝑖𝑛 𝑓𝑖 = 0

whenever 𝐸 ( 𝑓𝑖 |Z𝑘−1 (𝑋)) = 0 for some i.
In [5, Appendix A], Leibman proved that, for Z-systems, the factors studied by Host and Kra coincide

with the factors studied by Ziegler, thus giving these factors the name Host–Kra–Ziegler factors. Using
Følner sequences in order to define averages, one can generalise the above to arbitrary countable discrete
abelian groups (or even more generally, to amenable groups). However, in the setting of general abelian
groups, Host–Kra factors may no longer coincide with the characteristic factors for averages of the form

UC - lim
𝑔∈𝐺

𝑘∏
𝑖=1

𝑇𝑎𝑖𝑔 𝑓𝑖 .

We give a very simple example. Let p be a prime number and F𝑝 be the group with p elements. We
denote by F∞𝑝 the direct sum of countably many copies of F𝑝 . In [10], it is shown that there are many
nontrivial ergodic F∞𝑝 -systems with nontrivial Host–Kra factors Z 𝑘 (𝑋) for any 𝑘 ≥ 0. However, the
only characteristic factor for the average

UC - lim
𝑔∈𝐺

𝑇𝑔 𝑓1 · ... · 𝑇𝑝𝑔 𝑓𝑝

is X . Indeed, since 𝑇𝑝𝑔 = 𝐼𝑑, the average is nonzero for every 𝑓𝑝 ≠ 0, assuming that 𝑓1 = ... = 𝑓𝑝−1 = 1
(say). To overcome this technicality, one may restrict to the case where 𝑘 < 𝑝, but the situation is not
that simple for arbitrary countable discrete abelian groups, and, in general, Host–Kra factors may not
coincide with the universal characteristic factors.

This phenomenon was not studied previously in the literature, but it plays an important role in this
paper. More specifically, we study how the Host–Kra factor Z1 (𝑋), which coincides with the classical
Kronecker factor, is related to the the universal characteristic factor, Z1(𝑋), for the average

UC - lim
𝑔∈𝐺

𝑇𝑔 𝑓1𝑇2𝑔 𝑓2,

where 𝑓1, 𝑓2 ∈ 𝐿∞(𝜇), in the setting of actions of countable discrete abelian groups. One of our main
tools is a result which asserts, roughly speaking, that by adding eigenfunctions to the system X, one has
that the characteristic factor Z1(𝑋) is generated by the Host–Kra factor Z1 (𝑋) and the 𝜎-algebra of
2𝐺-invariant functions. We also give an example that illustrates the necessity of adding eigenfunctions
to the system (see Example 4.1).
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2.7. Seminorms for multiplicative configurations

We now give a brief explanation of where our methods come up short of fully answering Questions 1.19
and 1.20. As discussed above, our approach to the large intersections property is to study families of
seminorms and their corresponding characteristic factors. However, in the case of Questions 1.19 and
1.20, these seminorms have somewhat exotic behaviour.

For example, Question 1.19 is related to the averages

UC - lim
𝑞∈Q>0

𝑓1(𝑇𝑞𝑛𝑥) 𝑓2 (𝑇𝑞𝑚𝑥) (6)

for some ergodic (Q>0, ·)-system. An application of the van der Corput lemma (Lemma 2.1) shows
that (6) is equal to zero if

UC - lim
𝑞∈Q>0

����∫ Δ𝑞𝑚 𝑓1 · 𝐸 (Δ𝑞𝑚 𝑓2 |I𝑞𝑛−𝑚 (𝑋)) 𝑑𝜇
���� = 0.

If the action of 𝑇𝑞𝑛−𝑚 , 𝑞 ∈ (Q>0, ·), were ergodic (e.g. if 𝑛 = 𝑚 + 1), then the above expression is
manageable as we will see in this paper. Presumably, if n and m are coprime, then this expression may
also be manageable, but we do not see how.

Question 1.20 is related to the average

UC - lim
𝑞∈Q>0

𝑇𝑞 𝑓1𝑇𝑞2 𝑓2𝑇𝑞3 𝑓3. (7)

Using the van der Corput lemma, the Cauchy–Schwarz inequality and then the van der Corput lemma
again, we see that the average in (7) is zero if

UC - lim
𝑞1∈Q>0

����UC - lim
𝑞2∈Q>0

∫
Δ𝑞2

1
Δ𝑞3

2
𝑓3 𝑑𝜇

���� = 0.

If in the expression above we had 𝑞2
1, 𝑞

2
2, or 𝑞3

1, 𝑞
3
2, then this expression would be related to the Gowers–

Host–Kra seminorm of 𝑓3 with respect to the action of all squares or cubes of (Q>0, ·). The above
quantity is therefore some combination of the two. Again, presumably, the fact that 2 and 3 are coprime
may be useful to analyse these seminorms. Studying the structure of these new peculiar seminorms is
an interesting problem that we do not pursue in this paper.

3. Theorem 1.11

We first give a brief overview of the proof of Theorem 1.11. Let X = (𝑋,X , 𝜇, (𝑇𝑔)𝑔∈𝐺) be an ergodic
G-system, and let 𝜑, 𝜓 : 𝐺 → 𝐺 be arbitrary homomorphisms, such that (𝜓 − 𝜑) (𝐺) has finite index in
G. The key component in the proof of Theorem 1.11 is the analysis of the limit behaviour of the multiple
ergodic averages

UC - lim
𝑔∈𝐺

𝑓1(𝑇𝜑 (𝑔)𝑥) · 𝑓2(𝑇𝜓 (𝑔)𝑥) (8)

for 𝑓1, 𝑓2 ∈ 𝐿∞(𝑋). Standard arguments using the van der Corput lemma (Proposition 3.5) show that

UC - lim
𝑔∈𝐺

𝑓1(𝑇𝜑 (𝑔)𝑥) · 𝑓2(𝑇𝜓 (𝑔)𝑥) =

UC - lim
𝑔∈𝐺

𝐸 ( 𝑓1 |Z𝜑 (𝑋)) (𝑇𝜑 (𝑔) (𝑥))𝐸 ( 𝑓2 |Z𝜓 (𝑋)) (𝑇𝜓 (𝑔) (𝑥))
, (9)

where Z𝜑 (𝑋) and Z𝜓 (𝑋) are the 𝜎-algebras of the Kronecker factors of X with respect to the actions
of 𝜑(𝐺) and 𝜓(𝐺), respectively (see Subsection 2.5).
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In Theorem 1.11, we assume, furthermore, that 𝜑(𝐺) has finite index in G. In this case, the factor
Z𝜑 (𝑋) coincides withZ1

𝐺 (𝑋), the Kronecker factor of X with respect to the action of G (see Lemma 3.6).
Our main observation is that one can replace Z𝜓 (𝑋) in (9) with a smaller factor. As an illustration, we
give the following example:

Example 3.1. Consider the additive group 𝐺 =
⊕∞

𝑗=1 Z/4Z. We use 𝑖 ∈ C to denote the square root
of −1, and for every natural number 𝑛 ∈ N, we let 𝐶𝑛 denote the group of roots of unity of degree n. We
define an action of G on 𝑋 =

(∏
𝑗∈N𝐶4

)
× 𝐶2 by

𝑇𝑔 (x, 𝑦) =
(
(𝑖𝑔 𝑗 𝑥 𝑗 ) 𝑗∈N, 𝑦 ·

∏
𝑗∈N

(𝑥2𝑔 𝑗

𝑗 · 𝑖𝑔
2
𝑗−𝑔 𝑗 )
)
,

where x = (𝑥1, 𝑥2, ...) ∈
∏

𝑗∈N 𝐶4 and 𝑔 = (𝑔1, 𝑔2, ...) is any representation of g in
⊕∞

𝑗=1 Z/4Z. The
system (𝑋, (𝑇𝑔)𝑔∈𝐺) is a group extension of its Kronecker factor 𝑍𝐺 (𝑋) =

∏
𝑗∈N 𝐶4 by the cocycle

𝜎 : 𝐺 ×
∏
𝑗∈N

𝐶4 → 𝐶2,

𝜎(𝑔, x) =
∏
𝑗∈N

(𝑥2𝑔 𝑗

𝑗 · 𝑖𝑔
2
𝑗−𝑔 𝑗 ).

Let 𝜓(𝑔) = 2𝑔. We observe that the function 𝑓 (x, 𝑦) = 𝑦 is orthogonal to 𝐿2 (𝑍1 (𝑋)). On the other
hand, we have

𝑇2𝑔 𝑓 (x, 𝑦) = 𝜎(2𝑔, x) · 𝑦 =
∏
𝑗∈N

(𝑥4𝑔 𝑗

𝑗 · 𝑖4𝑔
2
𝑗−2𝑔 𝑗 ) · 𝑦 =

∏
𝑗∈N

(−1)𝑔 𝑗 𝑦 =
∏
𝑗∈N

(−1)𝑔 𝑗 𝑓 (x, 𝑦).

In other words, f is an eigenfunction with respect to the action of 𝜓(𝐺) on X with eigenvalue 𝜆(2𝑔) =∏
𝑗∈N (−1)𝑔 𝑗 . Therefore, f is measurable with respect to Z𝜓 (𝑋), and we see that Z1 (𝑋) ≠ Z𝜓 (𝑋).

Now, let 𝜑(𝑔) = 𝑔. We claim that f does not contribute to (8). Namely, we have that

UC - lim
𝑔∈𝐺

𝑇𝑔 𝑓1𝑇2𝑔 𝑓 = 0

for every bounded function 𝑓1. Indeed, by (9), it is enough to check this equality in the case where 𝑓1 is
an eigenfunction with respect to the action of G. Let 𝜒(𝑔) be the eigenvalue of 𝑓1, we see that

UC - lim
𝑔∈𝐺

𝑇𝑔 𝑓1𝑇2𝑔 𝑓 = 𝑓1 · 𝑓 · UC - lim
𝑔∈𝐺

𝜒(𝑔) · 𝜆(2𝑔).

The eigenfunctions of X take the form ℎ(x, 𝑦) =
∏𝑛

𝑖=1 𝑥
𝑙𝑖
𝑖 for some 𝑛 ∈ N and 𝑙1, ..., 𝑙𝑛 ∈ {0, 1, 2, 3}.

Therefore, 𝑔 ↦→ 𝜒(𝑔)𝜆(2𝑔) is a nontrivial character of G and so

UC - lim
𝑔∈𝐺

𝜒(𝑔)𝜆(2𝑔) = 0.

Remark 3.2. In the example above, the factor Z1 (𝑋) is isomorphic to
∏

𝑗∈N 𝐶4 equipped with the action
𝑇 (1)𝑔 𝑥 = (𝑖𝑔 𝑗 · 𝑥 𝑗 ) 𝑗∈N, while Z2 (𝑋) = X. On the other hand, for the 2𝐺-system

(
𝑋, (𝑇𝑔)𝑔∈2𝐺

)
, we have

Z1
2𝐺 (𝑋) = X.

Example 3.1 suggests that a 𝜓(𝐺)-eigenfunction contributes to (8) if and only if its eigenvalue
coincides with an eigenvalue of the G-action. In practice, we use a result of Frantzikinakis and Host [19]
to decompose 𝑓2 into a linear combination of eigenfunctions (see Proposition 3.12). However, since
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the action of 𝜓(𝐺) may not be ergodic, we have to include in our analysis the case where the 𝜓(𝐺)-
eigenvalue, 𝜆(𝜓(𝑔)), is not a constant in X, but rather a 𝜓(𝐺)-invariant function. We let Z̃𝜓 (𝑋) be the
sub-𝜎-algebra ofZ𝜓 (𝑋) generated by all the𝜓(𝐺)-eigenfunctions with eigenvalues𝜆(𝜓(·), 𝑥) : 𝑋 → 𝐺
that coincide with an eigenvalue with respect to the G-action for 𝜇-a.e. 𝑥 ∈ 𝑋 . We show that one can
replace Z𝜓 (𝑋) with Z̃𝜓 (𝑋) in (9). After replacing Z𝜓 (𝑋) by Z̃𝜓 (𝑋), the remainder of the proof of
Theorem 1.11 follows by modifying previous arguments used for deducing Khintchine-type recurrence
from knowledge of relevant characteristic factors (see, e.g. [2, Section 8]).

3.1. Characteristic factors

We start with a definition of characteristic factors (cf. [21, Section 3]).

Definition 3.3. Let G be a countable discrete abelian group, let 𝜑, 𝜓 : 𝐺 → 𝐺 be arbitrary homomor-
phisms and let 𝑋 = (𝑋,X , 𝜇, (𝑇𝑔)𝑔∈𝐺) be a G-system. A factor Y = (𝑌,Y , 𝜈, (𝑆𝑔)𝑔∈𝐺) of X is called a
partial characteristic factor for the pair (𝜑, 𝜓) with respect to 𝜑 if

UC - lim
𝑔∈𝐺

𝑇𝜑 (𝑔) 𝑓1𝑇𝜓 (𝑔) 𝑓2 = UC - lim
𝑔∈𝐺

𝑇𝜑 (𝑔)𝐸 ( 𝑓1 |Y)𝑇𝜓 (𝑔) 𝑓2

for every 𝑓1, 𝑓2 ∈ 𝐿∞(𝑋). We define a partial characteristic factor with respect to 𝜓 similarly and say
that Y is a characteristic factor if it is a partial characteristic factor with respect to both 𝜑 and 𝜓, that is

UC - lim
𝑔∈𝐺

𝑇𝜑 (𝑔) 𝑓1𝑇𝜓 (𝑔) 𝑓2 = UC - lim
𝑔∈𝐺

𝑇𝜑 (𝑔)𝐸 ( 𝑓1 |Y)𝑇𝜓 (𝑔)𝐸 ( 𝑓2 |Y)

for every 𝑓1, 𝑓2 ∈ 𝐿∞(𝑋).

In other words, a factor of a measure preserving system X = (𝑋,X , 𝜇, (𝑇𝑔)𝑔∈𝐺) is a characteristic
factor for a certain multiple ergodic average, if the study of the limit behaviour of the average can be
reduced to this factor. The following easy lemma is related to the well-known result of Furstenberg,
which asserts that a system X = (𝑋,X , 𝜇, 𝑇) is weakly mixing if and only if the Kronecker factor,
Z1 (𝑋), is trivial.

Lemma 3.4. Let X = (𝑋,X , 𝜇, (𝑇𝑔)𝑔∈𝐺) be a G-system, let 𝜑 : 𝐺 → 𝐺 be a homomorphism and let
𝑓 ∈ 𝐿2 (𝑋). If 𝐸 ( 𝑓 |Z𝜑 (𝑋)) = 0, then for every ℎ ∈ 𝐿2 (𝑋), we have

UC - lim
𝑔∈𝐺

����∫
𝑋
𝑇𝜑 (𝑔) 𝑓 · ℎ 𝑑𝜇

���� = 0.

Proof. Assume 𝐸 ( 𝑓 | Z𝜑 (𝑋)) = 0. Then by Proposition 2.4, ‖ 𝑓 ‖𝑈2 (𝜑 (𝐺)) = 0, that is,

UC - lim
𝑔∈𝐺

����∫
𝑋
Δ𝜑 (𝑔) 𝑓 𝑑𝜇

���� = 0.

Since UC - lim𝑔∈𝐺 |𝑎𝑔 | = 0 ⇐⇒ UC - lim𝑔∈𝐺 𝑎
2
𝑔 = 0 for every bounded complex-valued sequence

𝑔 ↦→ 𝑎𝑔, we have

UC - lim
𝑔∈𝐺

∫
𝑋×𝑋

(
𝑇𝜑 (𝑔) × 𝑇𝜑 (𝑔)

)
𝑓 ⊗ 𝑓 · 𝑓 ⊗ 𝑓 𝑑 (𝜇 × 𝜇) = 0.

The mean ergodic theorem implies that∫
𝑋2
𝐸 ( 𝑓 ⊗ 𝑓 |I𝜑×𝜑 (𝑋 × 𝑋)) · 𝑓 ⊗ 𝑓 𝑑 (𝜇 × 𝜇) = 0
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and 𝐸 ( 𝑓 ⊗ 𝑓 |I𝜑×𝜑 (𝑋 × 𝑋)) = 0. Therefore, for every ℎ ∈ 𝐿2 (𝑋), we have,

UC - lim
𝑔∈𝐺

(∫
𝑋
𝑇𝜑 (𝑔) 𝑓 · ℎ 𝑑𝜇

)2
=
∫
𝑋2
𝐸 ( 𝑓 ⊗ 𝑓 |I𝜑×𝜑 (𝑋 × 𝑋)) · ℎ ⊗ ℎ 𝑑𝜇 × 𝜇 = 0,

which implies that

UC - lim
𝑔∈𝐺

����∫
𝑋
𝑇𝜑 (𝑔) 𝑓 · ℎ 𝑑𝜇

���� = 0

as required. �

Using the van der Corput lemma (Lemma 2.1), we show that Z𝜑 (𝑋) and Z𝜓 (𝑋) are partial charac-
teristic factors for the pair (𝜑, 𝜓) with respect to 𝜑 and 𝜓, respectively.

Proposition 3.5. Let X = (𝑋,X , 𝜇, (𝑇𝑔)𝑔∈𝐺) be an ergodic G-system. Let 𝜑, 𝜓 : 𝐺 → 𝐺 be homomor-
phisms, such that (𝜓 − 𝜑) (𝐺) has finite index in G. Then, for any 𝑓1, 𝑓2 ∈ 𝐿∞(𝜇), one has

UC - lim
𝑔∈𝐺

𝑇𝜑 (𝑔) 𝑓1 · 𝑇𝜓 (𝑔) 𝑓2 = UC - lim
𝑔∈𝐺

𝑇𝜑 (𝑔)𝐸 ( 𝑓1 |Z𝜑 (𝑋)) · 𝑇𝜓 (𝑔)𝐸 ( 𝑓2 |Z𝜓 (𝑋))

in 𝐿2 (𝜇).

Proof. We follow the argument of Furstenberg and Weiss [21]. By linearity and symmetry, it is enough
to show that

UC - lim
𝑔∈𝐺

𝑇𝜑 (𝑔) 𝑓1 · 𝑇𝜓 (𝑔) 𝑓2 = 0

whenever 𝐸 ( 𝑓1 |Z𝜑 (𝑋)) = 0. Dividing through by a constant, we may assume that ‖ 𝑓𝑖 ‖∞ ≤ 1 for 𝑖 = 1, 2.
We use the van der Corput lemma with 𝑢𝑔 = 𝑇𝜑 (𝑔) 𝑓1 · 𝑇𝜓 (𝑔) 𝑓2. For every 𝑔, ℎ ∈ 𝐺, we have〈

𝑢𝑔+ℎ , 𝑢𝑔
〉
=
∫
𝑋
𝑇𝜑 (𝑔+ℎ) 𝑓1 · 𝑇𝜓 (𝑔+ℎ) 𝑓2 · 𝑇𝜑 (𝑔) 𝑓1 · 𝑇𝜓 (𝑔) 𝑓2 𝑑𝜇. (10)

Since the measure 𝜇 is 𝑇𝜑 (𝑔) -invariant, (10) is equal to∫
𝑋
𝑇𝜑 (ℎ) 𝑓1 · 𝑓1 · 𝑇(𝜓−𝜑) (𝑔)

(
𝑇𝜓 (ℎ) 𝑓1 · 𝑓2

)
𝑑𝜇.

Hence, by the mean ergodic theorem, we have

UC - lim
𝑔∈𝐺

〈
𝑢𝑔+ℎ , 𝑢𝑔

〉
=
∫
𝑋
𝑇𝜑 (ℎ) 𝑓1 · 𝑓1 · 𝐸 (𝑇𝜓 (ℎ) 𝑓2 · 𝑓2 |I𝜓−𝜑 (𝑋)).

Since 𝐻 := (𝜓 − 𝜑) (𝐺) has finite index in G and the action of G on X is ergodic, we can find a partition
𝑋 =
⋃𝑙

𝑖=1 𝐴𝑖 to H-invariant sets, where l is at most the index of H in G. Since 𝑓2 is bounded by 1,����UC - lim
𝑔∈𝐺

〈
𝑢𝑔+ℎ , 𝑢𝑔

〉���� ≤ 𝑘∑
𝑖=1

����∫
𝑋
𝑇𝜑 (ℎ) 𝑓1 · 𝑓1 · 1𝐴𝑖 𝑑𝜇

����.
Now, since 𝐸 ( 𝑓1 |𝑍𝜑 (𝑋)) = 0, Lemma 3.4 implies that UC - limℎ∈𝐺

���∫
𝑋
𝑇𝜑 (ℎ) 𝑓1 · 𝑓1 · 1𝐴𝑖𝑑𝜇

��� = 0, for
every 1 ≤ 𝑖 ≤ 𝑘 . The van der Corput lemma (Lemma 2.1) then implies that

UC - lim
𝑔∈𝐺

𝑇𝜑 (𝑔) 𝑓1 · 𝑇𝜓 (𝑔) 𝑓2 = 0,

and this completes the proof. �
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In [5, Appendix A], Leibman proved the following result in the special case where 𝐺 = Z. For the
sake of completeness, we give a proof for arbitrary countable discrete abelian G in Appendix A.

Lemma 3.6. Let (𝑋,X , 𝜇, (𝑇𝑔)𝑔∈𝐺) be a G-system, and let 𝐻 ≤ 𝐺 be a subgroup of finite index. Then,
for every 𝑘 ≥ 1, one has Z 𝑘

𝐻 (𝑋) = Z 𝑘
𝐺 (𝑋).

In particular, if 𝜑(𝐺) has finite index in G, then the factor Z𝜑 (𝑋) coincides with Z (𝑋).

Corollary 3.7. Let G be a countable discrete abelian group, let 𝑋 = (𝑋,X , 𝜇, (𝑇𝑔)𝑔∈𝐺) be a G-system
and let 𝜑, 𝜓 : 𝐺 → 𝐺 be arbitrary homomorphisms, such that 𝜑(𝐺) and (𝜓 − 𝜑) (𝐺) have finite index
in G. Then, for any bounded functions 𝑓1, 𝑓2 ∈ 𝐿∞(𝑋),

UC - lim
𝑔∈𝐺

𝑇𝜑 (𝑔) 𝑓1 · 𝑇𝜓 (𝑔) 𝑓2 = UC - lim
𝑔∈𝐺

𝑇𝜑 (𝑔)𝐸 ( 𝑓1 |Z (𝑋)) · 𝑇𝜓 (𝑔)𝐸 ( 𝑓2 |Z𝜓 (𝑋)).

Let G be a countable discrete abelian group and X = (𝑋,X , 𝜇, (𝑇𝑔)𝑔∈𝐺) be an ergodic G-system. By
Theorem 2.5(ii), the Kronecker factor of X, Z1 (𝑋) is isomorphic to an ergodic rotation. Therefore, it is
convenient to identify the Kronecker factor with the system Z = (𝑍, 𝛼), where Z is a compact abelian
group and 𝛼 : 𝐺 → 𝑍 is a homomorphism, such that 𝑇1

𝑔 𝑧 = 𝑧 + 𝛼𝑔, where 𝑇1 is the G-action on Z. The
following corollary of Proposition 3.5 will be useful later on in this paper.

Proposition 3.8. Let X =
(
𝑋,X , 𝜇, (𝑇𝑔)𝑔∈𝐺

)
be an ergodic G-system with Kronecker factor Z = (𝑍, 𝛼).

Let 𝜑, 𝜓 : 𝐺 → 𝐺 be homomorphisms, such that (𝜓 − 𝜑) (𝐺) has finite index in G. Then, for any
𝑓0, 𝑓1, 𝑓2 ∈ 𝐿∞(𝜇) and any continuous function 𝜂 : 𝑍2 → C, we have

UC - lim
𝑔∈𝐺

𝜂
(
𝛼𝜑 (𝑔) , 𝛼𝜓 (𝑔)

) ∫
𝑋
𝑓0 · 𝑇𝜑 (𝑔) 𝑓1 · 𝑇𝜓 (𝑔) 𝑓2 𝑑𝜇

= UC - lim
𝑔∈𝐺

𝜂
(
𝛼𝜑 (𝑔) , 𝛼𝜓 (𝑔)

) ∫
𝑋
𝑓0 · 𝑇𝜑 (𝑔)𝐸 ( 𝑓1 |Z𝜑 (𝑋)) · 𝑇𝜓 (𝑔)𝐸 ( 𝑓2 |Z𝜓 (𝑋)) 𝑑𝜇.

Proof. By the Stone–Weierstrass theorem and linearity, we may assume 𝜂(𝑢, 𝑣) = 𝜆1(𝑢)𝜆2(𝑣) for some
characters 𝜆1, 𝜆2 ∈ 𝑍 . Let 𝜋 : 𝑋 → 𝑍 be the factor map, and let 𝜒𝑖 := 𝜆𝑖 ◦𝜋. Note that 𝑇𝑔𝜒𝑖 = 𝜆𝑖 (𝛼𝑔)𝜒𝑖 ,
so 𝜒𝑖 is a G-eigenfunction with eigenvalue 𝜆𝑖 ◦ 𝛼.

Now, set

ℎ0 := 𝜒1𝜒2 𝑓0,

ℎ1 := 𝜒1 𝑓1,

ℎ2 := 𝜒2 𝑓2.

Since 𝜒1 and 𝜒2 are measurable with respect to the Kronecker factor Z (𝑋), which is a sub-𝜎-algebra
of Z𝜑 (𝑋) and Z𝜓 (𝑋), we have the identities

𝐸 (ℎ1 |Z𝜑 (𝑋)) = 𝜒1 · 𝐸 ( 𝑓1 |Z𝜑 (𝑋)),

𝐸 (ℎ2 |Z𝜑 (𝑋)) = 𝜒2 · 𝐸 ( 𝑓2 |Z𝜑 (𝑋)).

Thus, applying Proposition 3.5 for the functions ℎ1, ℎ2 and integrating against ℎ0, we have

UC - lim
𝑔∈𝐺

𝜂
(
𝛼𝜑 (𝑔) , 𝛼𝜓 (𝑔)

) ∫
𝑋
𝑓0 · 𝑇𝜑 (𝑔) 𝑓1 · 𝑇𝜓 (𝑔) 𝑓2 𝑑𝜇

= UC - lim
𝑔∈𝐺

∫
𝑋
ℎ0 · 𝑇𝜑 (𝑔)ℎ1 · 𝑇𝜓 (𝑔)ℎ2 𝑑𝜇
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= UC - lim
𝑔∈𝐺

∫
𝑋
ℎ0 · 𝑇𝜑 (𝑔)𝐸 (ℎ1 |Z𝜑 (𝑋)) · 𝑇𝜓 (𝑔)𝐸 (ℎ2 |Z𝜓 (𝑋)) 𝑑𝜇

= UC - lim
𝑔∈𝐺

𝜂
(
𝛼𝜑 (𝑔) , 𝛼𝜓 (𝑔)

) ∫
𝑋
𝑓0 · 𝑇𝜑 (𝑔)𝐸 ( 𝑓1 |Z𝜑 (𝑋)) · 𝑇𝜓 (𝑔)𝐸 ( 𝑓2 |Z𝜓 (𝑋)) 𝑑𝜇. �

In the next section, we will study the factor Z𝜓 (𝑋) further.

3.2. Relative orthonormal basis

Let G be a countable discrete abelian group, and let X = (𝑋,X , 𝜇, (𝑇𝑔)𝑔∈𝐺) be a G-system. Under the
assumption that the system is ergodic, it is well known that the factor Z1 (𝑋) admits an orthonormal
basis of eigenfunctions. The following example demonstrates that this may fail for nonergodic systems.
Example 3.9. Let 𝑆1 = {𝑧 ∈ C : |𝑧 | = 1}. Consider 𝑋 = 𝑆1 × 𝑆1 equipped with the Borel 𝜎-algebra,
the Haar probability measure 𝜇 and the measure-preserving transformation 𝑇 (𝑥, 𝑦) = (𝑥, 𝑦 · 𝑥). Any
function 𝑓 ∈ 𝐿2 (𝑋) takes the form

𝑓 (𝑥, 𝑦) =
∑

𝑛,𝑚∈N
𝑎𝑛,𝑚𝑥

𝑛𝑦𝑚

for some 𝑎𝑛,𝑚 ∈ C with ∑
𝑛,𝑚∈N

|𝑎𝑛,𝑚 |2 < ∞. (11)

Now suppose that there exists some constant 𝑐 ∈ 𝑆1, such that 𝑇 𝑓 (𝑥, 𝑦) = 𝑐 · 𝑓 (𝑥, 𝑦) for 𝜇-a.e.
(𝑥, 𝑦) ∈ 𝑆1 × 𝑆1. By the uniqueness of the Fourier series, we deduce that

𝑎𝑛+𝑚,𝑚 = 𝑐 · 𝑎𝑛,𝑚

for every 𝑛, 𝑚 ∈ N. If 𝑚 ≠ 0, this is a contradiction to (11) unless 𝑎𝑛,𝑚 = 0. We conclude that f is an
eigenfunction if and only if it is independent of the y coordinate. In particular, 𝐿2 (𝑋) is not generated
by the eigenfunctions of X.

On the other hand, the functions {𝑥𝑛}𝑛∈N are invariant and therefore measurable with respect to
Z1 (𝑋). Moreover, the functions {𝑦𝑚}𝑛∈N satisfy Δ𝑛 (𝑦𝑚) = 𝑇𝑛 (𝑦𝑚) · 𝑦−𝑚 = 𝑥𝑛 ·𝑚, which is an invariant
function. Hence, 𝑦𝑚 is also measurable with respect to Z1 (𝑋). We thus conclude that X coincides with
Z1 (𝑋).

In order to handle nonergodic systems, Frantzikinakis and Host [19] came up with the following
definition.
Definition 3.10. Let H be a countable discrete abelian group acting on a probability space
(𝑋,X , 𝜇, (𝑇ℎ)ℎ∈𝐻 ). A relative orthonormal system is a countable family (𝜙 𝑗 ) 𝑗∈N belonging to 𝐿2 (𝜇),
such that
(i) E(

��𝜙 𝑗

��2 |I𝐻 (𝑋)) has value 0 or 1 𝜇-a.e. for every 𝑗 ∈ N;
(ii) E(𝜙 𝑗𝜙𝑘 |I𝐻 (𝑋)) = 0 𝜇-a.e. for all 𝑗 , 𝑘 ∈ N with 𝑗 ≠ 𝑘 .

The family (𝜙 𝑗 ) 𝑗∈N is also a relative orthonormal basis if it also satisfies
(iii) The linear space spanned by the set of functions{

𝜙 𝑗𝜓 : 𝑗 ∈ N, 𝜓 ∈ 𝐿∞(𝜇) is 𝐻-invariant
}

is dense in 𝐿2 (𝜇).
We also give a definition of eigenfunctions that applies to nonergodic systems.
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Definition 3.11 (H-eigenfunctions). Let H be a countable discrete abelian group and 𝑋 =
(𝑋,X , 𝜇, (𝑇ℎ)ℎ∈𝐻 ) be an H-system. We say that 𝑓 : 𝑋 → C is an H-eigenfunction if there exists
an H-invariant function 𝜆 : 𝑋 → 𝐻, such that 𝑇ℎ 𝑓 (𝑥) = 𝜆(𝑥, ℎ) · 𝑓 (𝑥) for all ℎ ∈ 𝐻 and 𝜇-a.e. 𝑥 ∈ 𝑋 .
In this case, we also say that 𝜆 is the eigenvalue of f.

Note that under the assumption that the H-action is ergodic, this definition coincides with the standard
definition of an eigenfunction. Observe, moreover, that the functions {𝑦𝑚}𝑚∈N from Example 3.9 are
eigenfunctions according to this definition.

Frantzikinakis and Host proved the following result:

Theorem 3.12 ([19], Theorem 5.2). Let X = (𝑋,X , 𝜇, (𝑇ℎ)ℎ∈𝐻 ) be an H-system. Then Z𝐻 (𝑋) admits
a relative orthonormal basis of eigenfunctions.

The proof of Theorem 3.12 is given for Z-actions in [19], but the same argument can be easily
generalised for arbitrary group actions.

3.3. Proof of Theorem 1.11

In this subsection, we prove Theorem 1.11. Example 3.1 is a good example to have in mind while
reading this section.

Let X =
(
𝑋,X , 𝜇, (𝑇𝑔)𝑔∈𝐺

)
be an ergodic G-system, and let Z = (𝑍, 𝛼) be the Kronecker factor of

X. Let 𝐴 ∈ X and 𝑓 = 1𝐴. We can write

𝑓𝑐 := 𝐸 ( 𝑓 |Z (𝑋)) =
∑
𝑖∈N

𝑎𝑖𝜁𝑖 ,

where {𝜁𝑖}𝑖∈N is an orthonormal basis of eigenfunctions and 𝑎𝑖 ∈ C. Moreover, using Theorem 3.12,

𝑓𝜓 := 𝐸 ( 𝑓𝜓 |Z𝜓 (𝑋)) =
∑
𝑖∈N

𝑏𝑖𝜉𝑖 ,

where {𝜉𝑖}𝑖∈N is a relative orthonormal basis of 𝜓(𝐺)-eigenfunctions and 𝑏𝑖 = 𝐸 ( 𝑓 · 𝜉𝑖 |I𝜓 (𝑋)) are
𝜓(𝐺)-invariant functions.

Choose 𝑁1 ∈ N sufficiently large so that����� 𝑓𝑐 − 𝑁1∑
𝑖=1

𝑎𝑖𝜁𝑖

�����
2

<
𝜀

8

and ����� 𝑓𝜓 −
(
𝑁1∑
𝑖=1

𝑏𝑖𝜉𝑖

)�����
2

<
𝜀

8
.

For each 𝑗 ∈ N, the function 𝜉 𝑗 is a 𝜓(𝐺)-eigenfunction, so we can write 𝜉 𝑗
(
𝑇𝜓 (𝑔)𝑥

)
=

𝜇 𝑗 (𝑥, 𝜓(𝑔))𝜉 𝑗 (𝑥) for some 𝜓(𝐺)-invariant function 𝜇 𝑗 : 𝑋 → �𝜓(𝐺). The group Z is compact, so
𝑍 is countable and we can write 𝑍 =

⋃
𝑛∈N 𝐹𝑛, where 𝐹1 ⊆ 𝐹2 ⊆ · · · are finite sets. Let

𝐶𝑛 :=
{
𝑔 ↦→ 𝜒1(𝛼𝜑 (𝑔) )𝜒2(𝛼𝜓 (𝑔) ) : 𝜒1, 𝜒2 ∈ 𝐹𝑛

}
,

and let 𝐶 =
⋃

𝑛∈N 𝐶𝑛. Finally, let

𝐸 𝑗 ,𝑛 :=
{
𝑥 ∈ 𝑋 : 𝜇 𝑗 (𝑥, ·) ∈ 𝐶𝑛 ∪

(
𝐺 \ 𝐶

)}
.
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Note that the complement of 𝐸 𝑗 ,𝑛 consists of all 𝑥 ∈ 𝑋 , such that 𝜇 𝑗 (𝑥, ·) belongs to a finite set. Since
𝜇 𝑗 is measurable, we conclude that so is the complement of 𝐸 𝑗 ,𝑛. Hence, 𝐸 𝑗 ,𝑛 are measurable. Since⋃∞

𝑛=1 𝐸 𝑗 ,𝑛 = 𝑋 for every 𝑗 ∈ N, there exists sufficiently large 𝑁2 ∈ N, such that(∫
𝑋\𝐸 𝑗,𝑁2

|𝑏 𝑗𝜉 𝑗 |2 𝑑𝜇
)1/2

<
𝜀

16𝑁1

for 𝑗 = 1, . . . , 𝑁1. Then, let 𝑁 ≥ max{𝑁1, 𝑁2}, such that: if 𝑇𝑔𝜁𝑖 = 𝜒(𝛼𝑔)𝜁𝑖 for some 𝑖 = 1, . . . , 𝑁1,
then 𝜒 ∈ 𝐹𝑁 .

Now, let 𝐵0 ∈ 𝑍 be a small neighborhood of 0 in Z, such that if 𝑧 ∈ 𝐵0 and 𝜒 ∈ 𝐹𝑁 , then

|𝜒(𝑧) − 1| < 𝜀

16𝑁
.

Let 𝜂0 : 𝑍 → [0,∞) be a continuous function supported on 𝐵0 normalised so that

UC - lim
𝑔∈𝐺

𝜂0 (𝛼𝜑 (𝑔) )𝜂0(𝛼𝜓 (𝑔) ) = 1.

Put 𝜂(𝑢, 𝑣) := 𝜂0 (𝑢)𝜂0(𝑣). Then, by Proposition 3.8, we have

UC - lim
𝑔∈𝐺

𝜂
(
𝛼𝜑 (𝑔) , 𝛼𝜓 (𝑔)

)
𝜇
(
𝐴 ∩ 𝑇−1

𝜑 (𝑔) 𝐴 ∩ 𝑇
−1
𝜓 (𝑔)𝐴

)
= UC - lim

𝑔∈𝐺
𝜂
(
𝛼𝜑 (𝑔) , 𝛼𝜓 (𝑔)

) ∫
𝑋
𝑓 · 𝑇𝜑 (𝑔) 𝑓𝑐 · 𝑇𝜓 (𝑔) 𝑓𝜓 𝑑𝜇

=
∫
𝑋
𝑓 · UC - lim

𝑔∈𝐺
𝜂0(𝛼𝜑 (𝑔) )𝑇𝜑 (𝑔) 𝑓𝑐 · 𝜂0(𝛼𝜓 (𝑔) )𝑇𝜓 (𝑔) 𝑓𝜓 𝑑𝜇.

From the definition of 𝐵0, if 𝛼𝜑 (𝑔) ∈ 𝐵0, then
��𝑇𝜑 (𝑔) 𝜁𝑖 − 𝜁𝑖��∞ < 𝜀

16𝑁 for 𝑖 = 1, . . . , 𝑁1. Hence, for
every 𝑔 ∈ 𝐺, since 𝜂0 is supported on 𝐵0, we have

��𝜂0 (𝛼𝜑 (𝑔) )𝑇𝜑 (𝑔) 𝑓𝑐 − 𝜂0 (𝛼𝜑 (𝑔) ) 𝑓𝑐
��

2 ≤

�����𝜂0(𝛼𝜑 (𝑔) )
(
𝑇𝜑 (𝑔) 𝑓𝑐 −

𝑁1∑
𝑖=1

𝑎𝑖𝑇𝜑 (𝑔) 𝜁𝑖

)�����
2

+

�����𝜂0 (𝛼𝜑 (𝑔) )
(
𝑁1∑
𝑖=1

𝑎𝑖𝑇𝜑 (𝑔) 𝜁𝑖 −
𝑁1∑
𝑖=1

𝑎𝑖𝜁𝑖

)�����
2

+

�����𝜂0 (𝛼𝜑 (𝑔) )
(
𝑁1∑
𝑖=1

𝑎𝑖𝜁𝑖 − 𝑓𝑐

)�����
2

≤ 𝜂0(𝛼𝜑 (𝑔) )
(����� 𝑓𝑐 − 𝑁1∑

𝑖=1
𝑎𝑖𝜁𝑖

�����
2

+ 𝑁1
𝜀

16𝑁
+

����� 𝑓𝑐 − 𝑁1∑
𝑖=1

𝑎𝑖𝜁𝑖

�����
2

)
< 𝜂0(𝛼𝜑 (𝑔) )

( 𝜀
8
+ 𝜀

16
+ 𝜀

8

)
=

5𝜀
16
𝜂0 (𝛼𝜑 (𝑔) ).

Therefore,����∫
𝑋
𝑓 · 𝜂0(𝛼𝜑 (𝑔) )𝑇𝜑 (𝑔) 𝑓𝑐 · 𝜂0 (𝛼𝜓 (𝑔) )𝑇𝜓 (𝑔) 𝑓𝜓 𝑑𝜇 −

∫
𝑋
𝑓𝑐 · 𝑓 · 𝜂

(
𝛼𝜑 (𝑔) , 𝛼𝜓 (𝑔)

)
𝑇𝜓 (𝑔) 𝑓𝜓 𝑑𝜇

����
=

����∫
𝑋
𝑓 · 𝜂0(𝛼𝜓 (𝑔) )𝑇𝜓 (𝑔) 𝑓𝜓 ·

(
𝜂0(𝛼𝜑 (𝑔) )𝑇𝜑 (𝑔) 𝑓𝑐 − 𝜂0 (𝛼𝜑 (𝑔) ) 𝑓𝑐

)
𝑑𝜇

����
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≤ 𝜂0 (𝛼𝜓 (𝑔) )
��𝜂0 (𝛼𝜑 (𝑔) )𝑇𝜑 (𝑔) 𝑓𝑐 − 𝜂0(𝛼𝜑 (𝑔) ) 𝑓𝑐

��
1

<
5𝜀
16
𝜂
(
𝛼𝜑 (𝑔) , 𝛼𝜓 (𝑔)

)
.

Taking a Cesàro average, we have the inequality

UC - lim
𝑔∈𝐺

𝜂
(
𝛼𝜑 (𝑔) , 𝛼𝜓 (𝑔)

)
𝜇
(
𝐴 ∩ 𝑇−1

𝜑 (𝑔) 𝐴 ∩ 𝑇
−1
𝜓 (𝑔)𝐴

)
>

∫
𝑋
𝑓𝑐 · 𝑓 · UC - lim

𝑔∈𝐺
𝜂
(
𝛼𝜑 (𝑔) , 𝛼𝜓 (𝑔)

)
𝑇𝜓 (𝑔) 𝑓𝜓 𝑑𝜇 −

5𝜀
16
. (12)

Now, we estimate the average

UC - lim
𝑔∈𝐺

𝜂
(
𝛼𝜑 (𝑔) , 𝛼𝜓 (𝑔)

)
𝑇𝜓 (𝑔) 𝑓𝜓 .

First, for each 𝑖 = 1, . . . , 𝑁1, we have��𝜂0(𝛼𝜓 (𝑔) )
(
𝑇𝜓 (𝑔) (𝑏𝑖𝜉𝑖) − 𝑏𝑖𝜉𝑖

)��
∞ =
��𝑏𝑖 · 𝜂0(𝛼𝜓 (𝑔) )

(
𝑇𝜓 (𝑔)𝜉𝑖 − 𝜉𝑖

)��
∞ <

𝜀

16𝑁
𝜂0(𝛼𝜓 (𝑔) ).

Next, let 1 ≤ 𝑗 ≤ 𝑁1. Write 𝑇𝜓 (𝑔) (𝑏 𝑗𝜉 𝑗 ) = 𝑏 𝑗𝜇 𝑗 (𝑥, 𝜓(𝑔))𝜓 𝑗 . If 𝜇 𝑗 (𝑥, ·) ∉ 𝐶, then for any 𝜒1, 𝜒2 ∈ 𝑍 ,
the character 𝑔 ↦→ 𝜒1(𝛼𝜑 (𝑔) )𝜒2(𝛼𝜓 (𝑔) )𝜇 𝑗 (𝑥, 𝜓(𝑔)) is nontrivial, so

UC - lim
𝑔∈𝐺

𝜒1(𝛼𝜑 (𝑔) )𝜒2(𝛼𝜓 (𝑔) )𝜇 𝑗 (𝑥, 𝜓(𝑔)) = 0.

Hence, by the Stone–Weierstrass theorem,

UC - lim
𝑔∈𝐺

𝜂
(
𝛼𝜑 (𝑔) , 𝛼𝜓 (𝑔)

)
𝜇 𝑗 (𝑥, 𝜓(𝑔)) = 0.

Therefore,

UC - lim
𝑔∈𝐺

𝜂
(
𝛼𝜑 (𝑔) , 𝛼𝜓 (𝑔)

)
𝑇𝜓 (𝑔) 𝑓𝜓 = UC - lim

𝑔∈𝐺
𝜂
(
𝛼𝜑 (𝑔) , 𝛼𝜓 (𝑔)

)
𝑇𝜓 (𝑔) 𝑓̃𝜓 ,

where 𝑓̃𝜓 = 𝐸 ( 𝑓 |Z̃𝜓 (𝑋)) and Z̃𝜓 (𝑋) is the factor generated by𝜓(𝐺)-eigenfunctions whose eigenvalues
come from C. Note that

𝑓̃𝜓 =
∑
𝑖∈N

𝑏𝑖𝜉𝑖 ,

where

𝜉 𝑗 (𝑥) =
{
𝜉 𝑗 (𝑥), 𝜇 𝑗 (𝑥, ·) ∈ 𝐶;
0, 𝜇 𝑗 (𝑥, ·) ∉ 𝐶.

We note that since C is at most countable, 𝜒̃ 𝑗 is measurable. Moreover,

𝑓̃𝜓 −
𝑁1∑
𝑖=1

𝑏𝑖𝜉𝑖 = 𝐸 ( 𝑓 −
𝑁1∑
𝑖=1

𝑏𝑖𝜉𝑖 |Z̃𝜓 (𝑋)),

so ����� 𝑓̃𝜓 − 𝑁1∑
𝑖=1

𝑏𝑖𝜉𝑖

�����
2

<
𝜀

8
.
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If 𝑥 ∈ 𝐸 𝑗 ,𝑁 , then we must have 𝜇 𝑗 (𝑥, ·) ∈ 𝐶𝑁 . That is, 𝜇 𝑗 (𝑥, 𝜓(𝑔)) = 𝜒1(𝛼𝜑 (𝑔) )𝜒2(𝛼𝜓 (𝑔) ) for some
𝜒1, 𝜒2 ∈ 𝐹𝑁 . Thus,��𝜂 (𝛼𝜑 (𝑔) , 𝛼𝜓 (𝑔) ) (𝜇 𝑗 (𝑥, 𝜓(𝑔)) − 1

) �� = ��𝜂 (𝛼𝜑 (𝑔) , 𝛼𝜓 (𝑔) ) (𝜒1(𝛼𝜑 (𝑔) )𝜒2(𝛼𝜓 (𝑔) ) − 1
) ��

≤
��𝜂 (𝛼𝜑 (𝑔) , 𝛼𝜓 (𝑔) ) (𝜒1(𝛼𝜑 (𝑔) )𝜒2(𝛼𝜓 (𝑔) ) − 𝜒2(𝛼𝜓 (𝑔) )

) ��
+
��𝜂 (𝛼𝜑 (𝑔) , 𝛼𝜓 (𝑔) ) (𝜒2(𝛼𝜓 (𝑔) ) − 1

) ��
≤ 𝜂
(
𝛼𝜑 (𝑔) , 𝛼𝜓 (𝑔)

) ( 𝜀

16𝑁
+ 𝜀

16𝑁

)
=

𝜀

8𝑁
𝜂
(
𝛼𝜑 (𝑔) , 𝛼𝜓 (𝑔)

)
.

Therefore,����𝜂 (𝛼𝜑 (𝑔) , 𝛼𝜓 (𝑔) ) (𝑇𝜓 (𝑔) (𝑏 𝑗𝜉 𝑗 ) − 𝑏 𝑗𝜉 𝑗 )����2
2

=
∫
𝑋

���𝜂 (𝛼𝜑 (𝑔) , 𝛼𝜓 (𝑔) ) (𝑇𝜓 (𝑔) (𝑏 𝑗𝜉 𝑗 ) − 𝑏 𝑗𝜉 𝑗 )���2 𝑑𝜇
=
∫
𝑋

���𝑏 𝑗 (𝑥)𝜉 𝑗 (𝑥)���2��𝜂 (𝛼𝜑 (𝑔) , 𝛼𝜓 (𝑔) ) (𝜇 𝑗 (𝑥, 𝜓(𝑔)) − 1
) ��2 𝑑𝜇(𝑥)

≤ 𝜂
(
𝛼𝜑 (𝑔) , 𝛼𝜓 (𝑔)

)2 (∫
𝐸 𝑗,𝑁

( 𝜀
8𝑁

)2���𝑏 𝑗𝜉 𝑗 ���2 𝑑𝜇 + 4
∫
𝑋\𝐸 𝑗,𝑁

���𝑏 𝑗𝜉 𝑗 ���2 𝑑𝜇)
≤ 𝜂
(
𝛼𝜑 (𝑔) , 𝛼𝜓 (𝑔)

)2 (( 𝜀
8𝑁

)2
+ 4
(
𝜀

16𝑁1

)2)
≤ 2
(
𝜀

8𝑁1
𝜂
(
𝛼𝜑 (𝑔) , 𝛼𝜓 (𝑔)

) )2
.

Putting together our estimates, we have����UC - lim
𝑔∈𝐺

𝜂
(
𝛼𝜑 (𝑔) , 𝛼𝜓 (𝑔)

)
𝑇𝜓 (𝑔) 𝑓𝜓 − 𝑓̃𝜓

����
2

=

����UC - lim
𝑔∈𝐺

𝜂
(
𝛼𝜑 (𝑔) , 𝛼𝜓 (𝑔)

)
𝑇𝜓 (𝑔) 𝑓̃𝜓 − 𝑓̃𝜓

����
2

≤

�����UC - lim
𝑔∈𝐺

𝜂
(
𝛼𝜑 (𝑔) , 𝛼𝜓 (𝑔)

)
𝑇𝜓 (𝑔) 𝑓̃𝜓 − 𝑇𝜓 (𝑔)

𝑁1∑
𝑖=1

𝑏𝑖𝜉𝑖

�����
2

+

�����UC - lim
𝑔∈𝐺

𝑁1∑
𝑖=1

𝜂
(
𝛼𝜑 (𝑔) , 𝛼𝜓 (𝑔)

) (
𝑇𝜓 (𝑔) (𝑏𝑖𝜉𝑖) − 𝑏 𝑗𝜉 𝑗

)�����
2

+

����� 𝑁1∑
𝑖=1

𝑏𝑖𝜉𝑖 − 𝑓̃𝜓

�����
2

<
𝜀

8
+ 𝑁1

√
2𝜀

8𝑁1
+ 𝜀

8
≤ (2

√
2 + 5)𝜀
16

<
𝜀

2
.

Substituting back into (12), we have

UC - lim
𝑔∈𝐺

𝜂
(
𝛼𝜑 (𝑔) , 𝛼𝜓 (𝑔)

)
𝜇
(
𝐴 ∩ 𝑇−1

𝜑 (𝑔) 𝐴 ∩ 𝑇
−1
𝜓 (𝑔)𝐴

)
>

∫
𝑋
𝑓𝑐 · 𝑓 · 𝑓̃𝜓 𝑑𝜇 −

13𝜀
16

≥ 𝜇(𝐴)3 − 13𝜀
16

. (13)
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Since UC - lim𝑔∈𝐺 𝜂
(
𝛼𝜑 (𝑔) , 𝛼𝜓 (𝑔)

)
= 1, it follows that the set{

𝑔 ∈ 𝐺 : 𝜇
(
𝐴 ∩ 𝑇−1

𝜑 (𝑔) 𝐴 ∩ 𝑇
−1
𝜓 (𝑔)𝐴

)
> 𝜇(𝐴)3 − 𝜀

}
is syndetic in G. If not, there exists a Følner sequence (Φ𝑁 )𝑁 ∈N, such that 𝜇(𝐴 ∩ 𝑇−1

𝜑 (𝑔) 𝐴 ∩ 𝑇
−1
𝜓 (𝑔)𝐴) ≤

𝜇(𝐴)3 − 𝜀 for every 𝑔 ∈
⋃

𝑁 ∈NΦ𝑁 . But then,

UC - lim
𝑔∈𝐺

𝜂
(
𝛼𝜑 (𝑔) , 𝛼𝜓 (𝑔)

)
𝜇
(
𝐴 ∩ 𝑇−1

𝜑 (𝑔) 𝐴 ∩ 𝑇
−1
𝜓 (𝑔)𝐴

)
≤ 𝜇(𝐴)3 − 𝜀,

which contradicts the inequality in (13).

4. Extensions

As we have observed in Subsection 3.3, the partial characteristic factors obtained in Proposition 3.5 are
not the minimal characteristic factors. For example, in Subsection 3.3, we proved that one can replace
Z𝜓 (𝑋) with the smaller factor Z̃𝜓 (𝑋). In this section, we develop an extension trick that will be used
to further simplify the characteristic factors. These results will be useful in the proof of Theorem 1.13,
where 𝜑(𝐺) is no longer assumed to have finite index in G. In the example below, we illustrate our main
result in the simpler case where 𝜑(𝑔) = 𝑔, 𝜓(𝑔) = 2𝑔. The following example is based on Example 3.1.

Example 4.1. Let 𝐺 =
⊕∞

𝑗=1 Z/4Z, and let 𝑋 =
(∏

𝑗∈N𝐶4

)
× 𝐶2 × 𝐶2, where the action of 𝑔 ∈ 𝐺 on

X is given by

𝑇𝑔 (x, 𝑥∞, 𝑦) =
(
(𝑖𝑔 𝑗 𝑥 𝑗 ) 𝑗∈N, 𝑥∞ ·

∞∏
𝑘=1

(−1)𝑔𝑘 , 𝑦 ·
∏
𝑗∈N

(𝑥2𝑔 𝑗

𝑗 · 𝑖𝑔
2
𝑗−𝑔 𝑗 )
)

(14)

for x = (𝑥1, 𝑥2, . . . ) ∈
∏

𝑗∈N 𝐶4, 𝑥∞ ∈ 𝐶2 and 𝑦 ∈ 𝐶2. Note that for 𝑔 = (𝑔1, 𝑔2, . . . ) ∈ 𝐺, only finitely
many of the coordinates 𝑔 𝑗 ∈ Z/4Z are nonzero, so (14) is well defined.

As in Example 3.1, the function 𝑓 (x, 𝑥∞, 𝑦) = 𝑦 is a 2𝐺-eigenfunction with eigenvalue 2𝑔 ↦→∏∞
𝑗=1 (−1)𝑔 𝑗 . However, this time, f may have a nontrivial contribution for the average. Indeed, if we let

𝑓1(x, 𝑥∞, 𝑦) = 𝑥∞, then 𝑓1 is a G-eigenfunction with eigenvalue 𝑔 ↦→
∏∞

𝑘=1(−1)𝑔𝑘 and

UC - lim
𝑔∈𝐺

𝑇𝑔 𝑓1 (x, 𝑥∞, 𝑦)𝑇2𝑔 𝑓 (x, 𝑥∞, 𝑦) = 𝑥∞ · 𝑦

is nonzero. Let 𝜑(𝑔) = 𝑔 and 𝜓(𝑔) = 2𝑔. The above computation shows that f is measurable with respect
to Z̃𝜓 where Z̃𝜓 is defined in Subsection 3.3. As a result, we deduce that Z (𝑋) ∨ I𝜓 (𝑋) ≺ Z̃𝜓 (𝑋) is
a strict inclusion.

Consider the homomorphism 𝜆 : 𝐺 → 𝑆1, 𝜆(𝑔) =
∏∞

𝑗=1 𝑖
𝑔 𝑗 and observe that 𝜆(2𝑔) =

∏∞
𝑗=1 (−1)𝑔𝑖 is

the eigenvalue of 𝑓2. We extend X to a new system 𝑋 , where 𝜆 is an eigenvalue. Let 𝑋 =
(∏

𝑗∈N 𝐶4

)
×

𝐶4 × 𝐶2, and let the action of 𝑔 ∈ 𝐺 on 𝑋 be given by

𝑆𝑔 (x, 𝑥∞, 𝑦) =
(
(𝑖𝑔 𝑗 𝑥 𝑗 ) 𝑗∈N, 𝜆(𝑔)𝑥∞, 𝑦 ·

∏
𝑗∈N

(𝑥2𝑔 𝑗

𝑗 · 𝑖𝑔
2
𝑗−𝑔 𝑗 )
)

for x = (𝑥1, 𝑥2, . . . ) ∈
∏

𝑗∈N𝐶4, 𝑥∞ ∈ 𝐶4 and 𝑦 ∈ 𝐶2. It is easy to see that X̃ = (𝑋, (𝑆𝑔)𝑔∈𝐺) is an
extension of X with respect to the factor map 𝜋(x, 𝑥∞, 𝑦) = (x, 𝑥2

∞, 𝑦). Observe that now the function
ℎ(x, 𝑥∞, 𝑦) = 𝑥∞ on 𝑋 is an eigenfunction with eigenvalue 𝜆 and we deduce that ℎ · 𝑓 ◦𝜋 is a 2𝐺-invariant
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function on 𝑋 . This means that 𝑓 ◦ 𝜋 is measurable with respect to the 𝜎-algebra 𝑍 (𝑋) ∨ I𝜓 (𝑋). In
fact, one can show that now we have an equality Z (𝑋) ∨ I𝜓 (𝑋) = Z̃𝜓 (𝑋).

Definition 4.2. Let G be a countable discrete abelian group, and let 𝜑 : 𝐺 → 𝐺 be a homomorphism.
We say that a character 𝜒 ∈ 𝐺 factors through 𝜑 is 𝜒 = 𝜆 ◦ 𝜑 for some 𝜆 ∈ 𝐺.

The main result in this section is the following theorem.

Theorem 4.3. Let X = (𝑋,X , 𝜇, (𝑇𝑔)𝑔∈𝐺) be an ergodic G-system. Let 𝜑, 𝜓 : 𝐺 → 𝐺 be homomor-
phisms. For any countable set 𝐶 ⊆ 𝐺 of characters that factor through 𝜑 and 𝜓, there exists an ergodic
extension X̃ of X with the following property: for any 𝜒 ∈ 𝐶, there exist G-eigenvalues 𝜆, 𝜇 of X̃, such
that 𝜆(𝜑(𝑔)) = 𝜇(𝜓(𝑔)) = 𝜒(𝑔).

The fact that X̃ in Theorem 4.3 is ergodic will be important in our proof. In preparation for proving
that X̃ is ergodic, we need the following definition.

Definition 4.4. Let (𝑋, 𝐺) be an ergodic system and U a compact abelian group. A cocycle is a
measurable map 𝜌 : 𝐺 × 𝑋 → 𝑈 satisfying 𝜌(𝑔 + 𝑔′, 𝑥) = 𝜌(𝑔, 𝑥) · 𝜌(𝑔′, 𝑇𝑔𝑥) for every 𝑔, 𝑔′ ∈ 𝐺 and
𝜇-a.e. 𝑥 ∈ 𝑋 . Two cocycles 𝜌, 𝜌′ : 𝐺 × 𝑋 → 𝑈 are said to be cohomologous if there exists a measurable
map 𝐹 : 𝑋 → 𝑈, such that 𝜌(𝑔, 𝑥) · 𝜌′(𝑔, 𝑥)−1 = Δ𝑔𝐹 (𝑥) for all 𝑔 ∈ 𝐺 and 𝜇-a.e. 𝑥 ∈ 𝑋 . The image of
𝜌,𝑈𝜌, is defined to be the minimal closed subgroup generated by {𝜌(𝑔, 𝑥) : 𝑔 ∈ 𝐺, 𝑥 ∈ 𝑋}. The cocycle
𝜌 is said to be minimal if it is not cohomologous to any cocycle 𝜌′ with𝑈𝜌′ � 𝑈𝜌.

In [31], Zimmer proved that every cocycle is cohomologous to a minimal cocycle and established
the following criterion for ergodicity.

Lemma 4.5 ([31], Corollary 3.8). Let X =
(
𝑋,X , 𝜇, (𝑇𝑔)𝑔∈𝐺

)
be an ergodic G-system, U a compact

abelian group and 𝜌 : 𝐺 × 𝑋 → 𝑈 a cocycle. Then, X ×𝜌 𝑈 is ergodic if and only if 𝜌 is minimal and
𝑈 = 𝑈𝜌.

We are now set to prove Theorem 4.3.

Proof of Theorem 4.3. Let {𝜒𝑖 : 𝑖 ∈ N} be an enumeration of the elements in C. By assumption, for
every 𝑖 ∈ N, there exist homomorphisms 𝜒𝜑𝑖 , 𝜒

𝜓
𝑖 : 𝐺 → 𝑆1, such that 𝜒𝜑𝑖 (𝜑(𝑔)) = 𝜒

𝜓
𝑖 (𝜓(𝑔)) = 𝜒𝑖 (𝑔).

Let 𝐼 = N × {𝜑, 𝜓}, and let 𝜒̃ : 𝐺 → (𝑆1)𝐼 be the homomorphism whose (𝑖, 𝜑)-coordinate is 𝜒𝜑𝑖
and ( 𝑗 , 𝜓)-coordinate is 𝜒𝜓𝑗 for every 𝑖, 𝑗 ∈ N. By Zimmer’s theory, there exists a minimal cocycle
𝜌 : 𝐺 × 𝑋 → (𝑆1)𝐼 which is cohomologous to 𝜒̃, where the latter is viewed as a 𝐺 × 𝑋 → (𝑆1)𝐼
function that is independent of 𝑥 ∈ 𝑋 . This means that there exists a measurable map 𝐹 : 𝑋 → (𝑆1)𝐼 ,
such that 𝜌𝑔 = 𝜒̃(𝑔) · Δ𝑔𝐹. Let V be the image of 𝜌, then, by Lemma 4.5, 𝑋 = 𝑋 ×𝜌 𝑉 is ergodic. Now,
for every coordinate 𝑡 ∈ 𝐼, consider the projection map 𝜋𝑡 : (𝑆1)𝐼 → 𝑆1. By restricting 𝜋𝑡 to V, we get
a homomorphism 𝜏𝑡 : 𝑉 → 𝑆1. Then, the function 𝜙𝑖,𝜑 (𝑥, 𝑣) := 𝜏𝑖,𝜑 (𝑣) · 𝜋𝑖,𝜑𝐹 (𝑥) is an eigenfunction
with eigenvalue Δ𝑔𝜙𝑖,𝜑 (𝑥, 𝑣) = 𝜒

𝜑
𝑖 (𝑔) and 𝜙 𝑗 ,𝜓 (𝑥, 𝑣) = 𝜏𝑗 ,𝜓 (𝑣) · 𝜋 𝑗 ,𝜓𝐹 (𝑥) is an eigenfunction with

eigenvalue Δ𝑔𝜙 𝑗 ,𝜓 (𝑥, 𝑣) = 𝜒𝜓𝑗 (𝑔). This completes the proof. �

4.1. Characteristic factors related to Theorem 1.13

The goal of this subsection is to prove a stronger version of Propositions 3.5 and 3.8 with smaller
characteristic factors. We will use the above extension theorem in order to express these characteristic
factors in terms of Z𝜑,𝜓 (𝑋) and the invariant 𝜎-algebras, I𝜑 (𝑋) and I𝜓 (𝑋). Then, using a result of
Tao and Ziegler [29] (see Theorem 4.8 below), we will reduce matters further to studying the Conze–
Lesigne factor Z2 (𝑋) with respect to the action of G, which is already well understood for arbitrary
countable discrete abelian groups (see [2], [27]).
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We start with a lemma.
Lemma 4.6. Let X = (𝑋,X , 𝜇, (𝑇𝑔)𝑔∈𝐺) be an ergodic G-system. Let I𝜑×𝜓 (𝑋 × 𝑋) denote the
𝜎-algebra of (𝑇𝜑 (𝑔) × 𝑇𝜓 (𝑔) )𝑔∈𝐺-invariant sets in 𝑋 × 𝑋 . Then,

I𝜑×𝜓 (𝑋 × 𝑋) � Z𝜑 (𝑋) × Z𝜓 (𝑋).

Proof. Let 𝑓1, 𝑓2 ∈ 𝐿∞(𝑋) be arbitrary functions and 𝑓 (𝑥, 𝑦) = 𝑓1(𝑥) 𝑓2(𝑦). Then, by the mean ergodic
theorem, we have that

𝐸 ( 𝑓 |I𝜑×𝜓 (𝑋 × 𝑋)) (𝑥, 𝑦) = UC - lim
𝑔∈𝐺

𝑇𝜑 (𝑔) 𝑓1(𝑥) · 𝑇𝜓 (𝑔) 𝑓2(𝑦)

in 𝐿2 (𝜇 × 𝜇). By the van der Corput lemma, 𝐸 ( 𝑓 |I𝜑×𝜓 (𝑋 × 𝑋)) = 0 if

UC - lim
ℎ∈𝐺

����UC - lim
𝑔∈𝐺

∫
𝑋×𝑋

𝑇𝜑 (𝑔+ℎ) 𝑓1(𝑥) · 𝑇𝜓 (𝑔+ℎ) 𝑓2(𝑦) · 𝑇𝜑 (𝑔) 𝑓1 (𝑥) · 𝑇𝜓 (𝑔) 𝑓2(𝑦)𝑑 (𝜇 × 𝜇) (𝑥, 𝑦)
���� = 0.

Since 𝜑(𝐺) × 𝜓(𝐺) is measure-preserving, the above is equal to

UC - lim
ℎ∈𝐺

(����∫
𝑋
Δ𝜑 (ℎ) 𝑓1 (𝑥)𝑑𝜇(𝑥)

����) (����∫
𝑋
Δ𝜓 (ℎ) 𝑓2(𝑦)𝑑𝜇(𝑦)

����)
which by the Cauchy–Schwarz inequality is bounded above by(

‖ 𝑓1‖𝑈2 (𝜑 (𝐺)) · ‖ 𝑓2‖𝑈2 (𝜓 (𝐺))

)1/2
.

We deduce that if 𝐸 ( 𝑓 |Z𝜑 (𝑋) ×Z𝜓 (𝑋)) = 0, then 𝐸
(
𝑓 |I𝜑×𝜓 (𝑋 × 𝑋)

)
= 0. Since linear combinations

of functions of the form 𝑓1 ⊗ 𝑓2 with 𝑓1, 𝑓2 ∈ 𝐿∞(𝑋) are dense in 𝐿∞(𝑋 × 𝑋), we deduce that the same
holds for every bounded function on 𝑋 × 𝑋 , and this completes the proof. �

Using Theorem 4.3, we can now prove the following useful result.
Lemma 4.7. Let G be a countable discrete abelian group, and let X = (𝑋,X , 𝜇, (𝑇𝑔)𝑔∈𝐺) be an ergodic
G-system. Suppose that 𝜑, 𝜓 : 𝐺 → 𝐺 are arbitrary homomorphisms, such that (𝜓 − 𝜑) (𝐺) has finite
index in G. Then, there exists an ergodic extension 𝜋 : 𝑋 → 𝑋 , such that

𝜋−1(I𝜑×𝜓 (𝑋)) �
(
Z (𝑋) ∨ I𝜑 (𝑋)

)
⊗
(
Z (𝑋) ∨ I𝜓 (𝑋)

)
.

Proof. Let {𝜁𝑖}𝑖∈N be a relative orthonormal basis of eigenfunctions for Z𝜑 (𝑋) and {𝜉𝑖}𝑖∈N be the same
for Z𝜓 (𝑋). For every 𝑖, 𝑗 ∈ N, let 𝜆𝑖 : 𝜑(𝐺) × 𝑋 → C and 𝜇 𝑗 : 𝜓(𝐺) × 𝑋 → C denote the eigenvalues
of 𝜁𝑖 and 𝜉 𝑗 , respectively. Our goal is to study the functions 𝑓 ∈ 𝐿∞(𝑋2) which are (𝑇𝜑 (𝑔) ×𝑇𝜓 (𝑔) )𝑔∈𝐺-
invariant. By Lemma 4.6, we can write any such function as

𝑓 (𝑥, 𝑦) =
∑
𝑖, 𝑗∈N

𝑐𝑖, 𝑗 (𝑥, 𝑦)𝜁𝑖 (𝑥)𝜉 𝑗 (𝑦),

where 𝑐𝑖, 𝑗 is a 𝜑(𝐺) × 𝜓(𝐺)-invariant function. Since f is 𝑇𝜑 (𝑔) × 𝑇𝜓 (𝑔) -invariant, we deduce that

𝑐𝑖, 𝑗 (𝑥, 𝑦)𝜆𝑖 (𝜑(𝑔), 𝑥)𝜇 𝑗 (𝜓(𝑔), 𝑦) = 𝑐𝑖, 𝑗 (𝑥, 𝑦).

Hypothetically, if 𝑐𝑖, 𝑗 was a constant, then unless it is zero (and then can be removed from the
summation), the equation above implies that 𝜆𝑖 (𝜑(𝑔), ·) = 𝜇 𝑗 (𝜓(𝑔), ·) = 𝜒(𝑔) for some character
𝜒 ∈ 𝐺. In this special case, we can apply Theorem 4.3 in order to find an extension where 𝜆𝑖 and 𝜇 𝑗
are eigenvalues. This means that we can express the lift of 𝜁𝑖 ⊗ 𝜉 𝑗 to 𝑋 as a product of a tensor product
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of G-eigenfunctions (whose eigenvalues are 𝜆𝑖 and 𝜇 𝑗 ) and a 𝜑(𝐺) × 𝜓(𝐺)-invariant function, which
completes the proof in this special case. Below, we generalise the above to arbitrary 𝑐𝑖, 𝑗 .

Let𝐶𝑖, 𝑗 = {(𝑥, 𝑦) ∈ 𝑋×𝑋 : 𝑐𝑖, 𝑗 (𝑥, 𝑦) ≠ 0}. Then, 𝜆𝑖 (𝜑(𝑔), 𝑥)𝜇 𝑗 (𝜓(𝑔), 𝑦) = 1 for every (𝑥, 𝑦) ∈ 𝐶𝑖, 𝑗

and all 𝑔 ∈ 𝐺. Hence, 𝑔 ↦→ 𝜆𝑖 (𝜑(𝑔), 𝑥) and 𝑔 ↦→ 𝜇 𝑗 (𝜓(𝑔), 𝑦) are equal to the same character 𝜒 ∈ 𝐺
which factors through 𝜑 and 𝜓 simultaneously for all (𝑥, 𝑦) ∈ 𝐶𝑖, 𝑗 . Now, for every 𝜒 ∈ 𝐺, we let

𝐽𝜒 = {(𝑖, 𝑗) ∈ N2 : (𝜇 × 𝜇) ({(𝑥, 𝑦) ∈ 𝑋 × 𝑋 : ∀𝑔 𝜆𝑖 (𝜑(𝑔), 𝑥) = 𝜇 𝑗 (𝜓(𝑔), 𝑦) = 𝜒(𝑔)} > 0}

and set

𝐶 := {𝜒 ∈ 𝐺 : 𝐽𝜒 ≠ ∅} and 𝐽 :=
⋃
𝜒∈𝐶

𝐽𝜒 .

Our first observation is that

𝑓 (𝑥, 𝑦) =
∑

(𝑖, 𝑗) ∈𝐽
𝑐𝑖, 𝑗 (𝑥, 𝑦)𝜁𝑖 (𝑥)𝜉 𝑗 (𝑦). (15)

Indeed, if (𝑖, 𝑗) ∉ 𝐽, then for every 𝜒, (𝑖, 𝑗) ∉ 𝐽𝜒, but then from the computation above 𝜇(𝐶𝑖, 𝑗 ) = 0 and
𝑐𝑖, 𝑗 = 0 for (𝜇 × 𝜇)-a.e. (𝑥, 𝑦) ∈ 𝑋 × 𝑋 .

Claim. The set C is at most countable.

Proof of the claim. We use the fact that in a probability space there can be at most countably many
disjoint sets of positive measure. Assume by contradiction that C is uncountable. Since there are only
countably many (𝑖, 𝑗) ∈ N2, we deduce that there exists some (𝑖0, 𝑗0) which belongs to 𝐽𝜒 for all 𝜒 in
an uncountable subset of 𝐺. But since the sets

{(𝑥, 𝑦) ∈ 𝑋 × 𝑋 : ∀𝑔 ∈ 𝐺, 𝜆𝑖 (𝜑(𝑔), 𝑥) = 𝜇 𝑗 (𝜓(𝑔), 𝑦) = 𝜒(𝑔)}

are disjoint for different 𝜒’s and of positive measure, we obtain a contradiction. This proves the claim. �

Now, we return to the proof of the lemma. Since C is at most countable, we can apply Theorem 4.3.
We see that there exists an ergodic extension 𝜋 : 𝑋 → 𝑋 , such that for every 𝜒 ∈ 𝐶, there exist
G-eigenvalues 𝜒𝜑 , 𝜒𝜓 : 𝐺 → 𝑆1 with 𝜒𝜑 (𝜑(𝑔)) = 𝜒(𝑔) and 𝜒𝜓 (𝜓(𝑔)) = 𝜒(𝑔). Let 𝑚𝜑

𝜒 , 𝑚
𝜓
𝜒 : 𝑋 → 𝑆1

be the corresponding eigenfunctions. Now, fix some (𝑖, 𝑗) ∈ 𝐽, and let 𝜒 ∈ 𝐶 be, such that 𝜆𝑖 (𝜑(𝑔), 𝑥) =
𝜇 𝑗 (𝜓(𝑔), 𝑦) = 𝜒(𝑔) whenever 𝑐𝑖, 𝑗 (𝑥, 𝑦) ≠ 0. We deduce that

(
𝑐𝑖, 𝑗 · 𝜁𝑖 ⊗ 𝜉 𝑗

)
◦ 𝜋 · 𝑚𝜑

𝜒 ⊗ 𝑚
𝜓
𝜒 is a

𝜑(𝐺) ×𝜓(𝐺)-invariant function. Since 𝑐𝑖, 𝑗 is also 𝜑(𝐺) ×𝜓(𝐺)-invariant, we deduce by equation (15)
that 𝑓 ◦ 𝜋 is a linear combination of products of eigenfunctions 𝑚𝜑

𝜒 ⊗ 𝑚
𝜓
𝜒 and some 𝜑(𝐺) × 𝜓(𝐺)-

invariant functions. Equivalently, the lift of f to 𝑋 × 𝑋 is measurable with respect to the 𝜎-algebra(
Z1 (𝑋) ∨ I𝜑 (𝑋)

)
⊗
(
Z1 (𝑋) ∨ I𝜓 (𝑋)

)
as required. �

The following result of Tao and Ziegler [29] plays in important role in our work.

Theorem 4.8 ([29], Theorem 1.19). Let G be a countable discrete abelian group, and let X =
(𝑋,X , 𝜇, (𝑇𝑔)𝑔∈𝐺) be a G-system. Let 𝐻1, 𝐻2 be two subgroups of G, and denote by 𝐻1 + 𝐻2 the
subgroup of G generated by 𝐻1 and 𝐻2. Then, for every 𝑑1, 𝑑2 ∈ N, one has

Z𝑑1
𝐻1
(𝑋) ∧ Z𝑑2

𝐻2
(𝑋) � Z𝑑1+𝑑2

𝐻1+𝐻2
(𝑋).

In particular, by setting 𝑑1 = 𝑑2 = 1 and using Lemma 3.6, we deduce:
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Lemma 4.9. Let G be a countable discrete abelian group and (𝑋,X , 𝜇, (𝑇𝑔)𝑔∈𝐺) be a G-system, and let
𝜑, 𝜓 : 𝐺 → 𝐺 be homomorphisms, such that (𝜓−𝜑) (𝐺) has finite index in G. Then,Z𝜑,𝜓 (𝑋) � Z2

𝐺 (𝑋).

We combine this with the results in Section 3 to deduce the following version of Theorem 3.5.

Theorem 4.10. Let G be a countable discrete abelian group and X = (𝑋,X , 𝜇, (𝑇𝑔)𝑔∈𝐺) be an ergodic
G-system. Suppose that 𝜑, 𝜓 : 𝐺 → 𝐺 are arbitrary homomorphisms, such that (𝜓 − 𝜑) (𝐺) has finite
index in G. There exists an ergodic extension 𝜋 : (𝑋, 𝜇) → (𝑋, 𝜇), such that for any 𝑓0, 𝑓1, 𝑓2 ∈ 𝐿∞(𝜇)

UC - lim
𝑔∈𝐺

∫
𝑋
𝑓0 · 𝑇𝜑 (𝑔) 𝑓1 · 𝑇𝜓 (𝑔) 𝑓2 𝑑𝜇 =

UC - lim
𝑔∈𝐺

∫
𝑋
𝑓̃0 · 𝑇𝜑 (𝑔)𝐸 ( 𝑓̃1 |Z2

𝐺 (𝑋) ∨ I𝜑 (𝑋)) · 𝑇𝜓 (𝑔)𝐸 ( 𝑓̃2 |Z2
𝐺 (𝑋) ∨ I𝜓 (𝑋)) 𝑑𝜇

in 𝐿2 (𝑋), where 𝑓̃𝑖 := 𝑓𝑖 ◦ 𝜋 denotes the lift of 𝑓𝑖 to the extension 𝑋 .

Recall that the factors Z𝜑 (𝑋) and Z𝜓 (𝑋) are relatively independent over Z𝜑,𝜓 (𝑋). To put this fact
to use, we need to introduce a construction known as a fibre product:

Definition 4.11 (The fibre product over a factor.). For 𝑖 = 1, 2, let Y𝑖 = (𝑌𝑖 ,Y𝑖 , 𝜇𝑖 , (𝑆 (𝑖)𝑔 )𝑔∈𝐺) be
G-systems. Suppose that Y = (𝑌,Y , 𝜈, (𝑆𝑔)𝑔∈𝐺) is a common factor, and let 𝜋𝑖 : 𝑌𝑖 → 𝑌 , 𝑖 =
1, 2 denote the factor maps. The fibre product of 𝒀1 and 𝒀2 over 𝒀 is the system Y1 ×Y Y2 =(
𝑌1 ×𝑌 𝑌2,Y1 ⊗ Y2, 𝜇1 ×𝑌 𝜇2, (𝑆 (1)𝑔 × 𝑆 (2)𝑔 )𝑔∈𝐺

)
, where

𝑌1 ×𝑌 𝑌2 = {(𝑦1, 𝑦2) ∈ 𝑌1 × 𝑌2 : 𝜋1 (𝑦1) = 𝜋2 (𝑦2)}

and

𝜇1 ×𝑌 𝜇2 =
∫
𝑌
𝜇1,𝑦 × 𝜇2,𝑦𝑑𝜈(𝑦),

where

𝜇𝑖 =
∫
𝑌
𝜇𝑖,𝑦𝑑𝜈(𝑦)

is the disintegration of the measure 𝜇𝑖 over Y for 𝑖 = 1, 2.

We will use the following result from [31]:

Theorem 4.12. Let G be a countable discrete abelian group, and let X = (𝑋,X , 𝜇, (𝑇𝑔)𝑔∈𝐺) be a
G-system. Let Y1 = (𝑌1,A1, 𝜇1, (𝑇 (1)𝑔 )𝑔∈𝐺) and Y2 = (𝑌2,A2, 𝜇2, (𝑇 (2)𝑔 )𝑔∈𝐺) be two factors of X with
factor maps 𝜋𝑖 : 𝑋 → 𝑌𝑖 for 𝑖 = 1, 2, and let Y = (𝑌, 𝜈) be their meet. Then, the 𝜎-algebra A1 ∨ A2
corresponds to the fibre product Y1 ×Y Y2.

Remark 4.13. In particular, Theorem 4.12 implies that Y1 ×Y Y2 is a factor of X. We note that Zimmer
also proved the other direction, namely, that two factors Y1 and Y2 are relatively independent over a
third factor Y if and only if the fibre product Y1 ×Y Y2 is a factor of X (see [31, Proposition 1.5]).

We also need the following result:

Theorem 4.14 (cf. [23], Proposition 4.6). Let 𝜋 : (𝑌,Y , 𝜈, (𝑆𝑔)𝑔∈𝐺) → (𝑋,X , 𝜇, (𝑇𝑔)𝑔∈𝐺) be a factor
map between G-systems, and let 𝑘 ≥ 1. Then, 𝜋−1(Z 𝑘 (𝑋)) = Z 𝑘 (𝑌 ) ∧ 𝜋−1 (X ).

Host and Kra [23] proved Theorem 4.14 for Z-actions, but the argument extends easily to arbitrary
countable discrete abelian groups.

We now have all the requisite tools to prove Theorem 4.10.
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Proof of Theorem 4.10. By the previous result, we see that if 𝑓0, 𝑓1 or 𝑓2 are orthogonal to functions
measurable with respect to the 𝜎-algebra Z𝜑 (𝑋) ∨Z𝜓 (𝑋), then the averages above are zero. Therefore,
by Theorem 4.12, the factor Z𝜑 (𝑋) ×Z𝜑,𝜓 (𝑋 ) Z𝜓 (𝑋) is a characteristic factor. We may therefore assume
without loss of generality that X = Z𝜑 (𝑋) ×Z𝜑,𝜓 (𝑋 ) Z𝜓 (𝑋). For the sake of simplicity of notations,
we write 𝜇𝜑,𝜓 for the measure 𝜇𝑍𝜑 (𝑋 ) ×𝑍𝜑,𝜓 (𝑋 ) 𝜇𝑍𝜓 (𝑋 ) on 𝑍𝜑 (𝑋 ) ×𝑍𝜑,𝜓 (𝑋 ) 𝑍𝜓 (𝑋). By linearity, it suffices
to prove the theorem in the case where 𝑓1 = 𝑓

𝜑
1 ⊗ 𝑓

𝜓
1 and 𝑓2 = 𝑓

𝜑
2 ⊗ 𝑓

𝜓
2 for some 𝑓 𝜑1 , 𝑓

𝜑
2 : 𝑍𝜑 (𝑋) → C

and 𝑓
𝜓

1 , 𝑓
𝜓

2 : 𝑍𝜓 (𝑋) → C. Then,

UC - lim
𝑔∈𝐺

∫
𝑋
𝑓0𝑇𝜑 (𝑔) 𝑓1 · 𝑇𝜓 (𝑔) 𝑓2 𝑑𝜇

= UC - lim
𝑔∈𝐺

∫
𝑍𝜑 (𝑋 )×𝑍𝜓 (𝑋 )

𝑓0 · 𝑇𝜑 (𝑔)
(
𝑓
𝜑

1 ⊗ 𝑓
𝜓

1

)
· 𝑇𝜓 (𝑔)

(
𝑓
𝜑

2 ⊗ 𝑓
𝜓

2

)
𝑑𝜇𝜑,𝜓 . (16)

By Proposition 3.5, (16) is equal to

UC - lim
𝑔∈𝐺

∫
𝑍𝜑 (𝑋 )×𝑍𝜓 (𝑋 )

𝑓0(𝑥, 𝑦) · 𝑇𝜑 (𝑔)
(
𝑓
𝜑

1 · 𝐸 ( 𝑓 𝜓1 |Z𝜑,𝜓 (𝑋))
)
(𝑥)

𝑇𝜓 (𝑔)

(
𝐸 ( 𝑓 𝜑2 |Z𝜑,𝜓 (𝑋)) · 𝑓 𝜓2

)
(𝑦) 𝑑𝜇𝜑,𝜓 (𝑥, 𝑦).

(17)

Note that we used the fact that 𝐸 (ℎ|Z𝜑,𝜓 (𝑋)) (𝑥) = 𝐸 (ℎ|Z𝜑,𝜓 (𝑋)) (𝑦) for 𝜇𝜑,𝜓 a.e. 𝑥, 𝑦. By the mean
ergodic theorem, applied to the transformation 𝑇𝜑 × 𝑇𝜓 , the limit in (17) converges to∫

𝑍𝜑 (𝑋 )×𝑍𝜓 (𝑋 )

𝑓0 · 𝐸
((
𝑓
𝜑

1 · 𝐸 ( 𝑓 𝜓1 |Z𝜑,𝜓 (𝑋)) ⊗ 𝐸 ( 𝑓 𝜑2 |Z𝜑,𝜓 (𝑋)) · 𝑓 𝜓2
)����I𝜑×𝜓 (𝑋))𝑑𝜇𝜑,𝜓 .

By Lemma 4.7, we can find an ergodic extension 𝜋 : 𝑋 → 𝑋 (independent of 𝑓0, 𝑓1, 𝑓2), such that
𝜋−1 (I𝜑×𝜓 (𝑋)) is a sub-𝜎-algebra of

(
Z (𝑋) ∨ I𝜑 (𝑋)

)
⊗
(
Z (𝑋) ∨ I𝜓 (𝑋)

)
. Now, by applying the same

argument as above with 𝑓̃0, 𝑓̃1 and 𝑓̃2 instead of 𝑓0, 𝑓1 and 𝑓2, and using Theorem 4.14 in order to replace
𝜋−1 (Z𝜑,𝜓 (𝑋)) with Z𝜑,𝜓 (𝑋), we deduce that:

UC - lim
𝑔∈𝐺

∫
𝑋
𝑓̃0 · 𝑇𝜑 (𝑔) 𝑓̃1 · 𝑇𝜓 (𝑔) 𝑓̃2 𝑑𝜇 =∫

𝑋
𝑓̃0 · 𝐸

((
𝑓̃
𝜑

1 · 𝐸 ( 𝑓̃ 𝜓1 |Z𝜑,𝜓 (𝑋)) ⊗ 𝐸 ( 𝑓̃ 𝜑2 |Z𝜑,𝜓 (𝑋)) · 𝑓̃ 𝜓2
)����𝜋−1 (I𝜑×𝜓 (𝑋)) )𝑑𝜇𝜑,𝜓 , (18)

where 𝜇𝜑,𝜓 is the lift of 𝜇𝜑,𝜓 to 𝑋 .
We return to the proof of the theorem. By linearity, it is enough to show that if 𝐸 ( 𝑓̃1 |Z2

𝐺 (𝑋) ∨
I𝜑 (𝑋)) = 0 or 𝐸 ( 𝑓̃2 |Z2

𝐺 (𝑋) ∨ I𝜓 (𝑋)) = 0, then (18) is zero. By symmetry and Lemma 4.9, we
may assume without loss of generality that 𝐸 ( 𝑓̃1 |Z𝜑,𝜓 (𝑋) ∨ I𝜑 (𝑋)) = 0. Since Z𝜑 (𝑋),Z𝜓 (𝑋) are
relatively independent over Z𝜑,𝜓 (𝑋), they are also relatively independent over the larger 𝜎-algebra
Z𝜑,𝜓 (𝑋) ∨ I𝜑 (𝑋). We deduce, by Proposition 2.7, that

𝐸 ( 𝑓̃ 𝜑1 |Z𝜑,𝜓 (𝑋) ∨ I𝜑 (𝑋)) · 𝐸 ( 𝑓̃ 𝜓1 |Z𝜑,𝜓 (𝑋) ∨ I𝜑 (𝑋)) = 0. (19)

Claim. 𝐸 ( 𝑓̃ 𝜓1 |Z𝜑,𝜓 (𝑋) ∨ I𝜑 (𝑋)) = 𝐸 ( 𝑓̃ 𝜓1 |Z𝜑,𝜓 (𝑋)).

Proof of the claim. Z𝜑,𝜓 (𝑋) ∨ I𝜑 (𝑋) is a factor of Z𝜑 (𝑋). By Theorem 4.14, 𝑓̃ 𝜓1 is measurable with
respect toZ𝜓 (𝑋), and this andZ𝜑 (𝑋) are relatively independent overZ𝜑,𝜓 (𝑋), so the claim follows. �
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Equation (19) and the claim imply that

𝑓̃
𝜑

1 · 𝐸 ( 𝑓̃ 𝜓1 |Z𝜑,𝜓 (𝑋)) =
(
𝑓̃
𝜑

1 − 𝐸 ( 𝑓̃1
𝜑 |Z𝜑,𝜓 (𝑋) ∨ I𝜑 (𝑋))

)
𝐸 ( 𝑓̃ 𝜓1 |𝑍𝜑,𝜓 (𝑋))

is orthogonal to all functions measurable with respect to Z𝜑,𝜓 (𝑋) ∨ I𝜑 (𝑋), and so it is also orthog-
onal to those measurable with respect to Z (𝑋) ∨ I𝜑 (𝑋). Since 𝜋−1 (I𝜑×𝜓 (𝑋)) is a sub-𝜎-algebra of(
Z (𝑋) ∨ I𝜑 (𝑋)

)
⊗
(
Z (𝑋) ∨ I𝜓 (𝑋)

)
, this implies that (18) is equal to zero as required. �

As a corollary, we also have the following stronger counterpart of Proposition 3.8.

Corollary 4.15. In the settings of Theorem 4.10. Let 𝜂 : 𝑍 (𝑋) → C be a continuous function and
𝑓0, 𝑓1, 𝑓2 ∈ 𝐿∞(𝑋). Let 𝛼𝑔 denote the rotation of 𝑔 ∈ 𝐺 on 𝑍 (𝑋). If 𝑎, 𝑏 ∈ Z are coprime, then

UC - lim
𝑔∈𝐺

𝜂(𝛼𝑔)
∫
𝑋
𝑓̃0 · 𝑇𝑎𝑔 𝑓̃1 · 𝑇𝑏𝑔 𝑓̃2 𝑑𝜇 =

UC - lim
𝑔∈𝐺

𝜂(𝛼𝑔)
∫
𝑋
𝑓̃0 · 𝑇𝑎𝑔𝐸 ( 𝑓̃1 |Z2

𝐺 (𝑋) ∨ I𝑎 (𝑋)) · 𝑇𝑏𝑔𝐸 ( 𝑓̃2 |Z2
𝐺 (𝑋) ∨ I𝑏 (𝑋)) 𝑑𝜇,

where 𝑓̃𝑖 = 𝑓𝑖 ◦ 𝜋 is the lift of 𝑓𝑖 to 𝑋 for 𝑖 = 0, 1, 2.

Proof. Since 𝜂 is measurable with respect to Z (𝑋), it is a linear combination of characters. Therefore,
it is enough to prove the equality in the special case where 𝜂 itself is a character. Then, since a and b are
coprime, we can find 𝑡, 𝑠 ∈ Z, such that 𝑡𝑎 + 𝑠𝑏 = 1. Set ℎ0 = 𝑓̃0 · 𝜂−(𝑡+𝑠) , ℎ1 = 𝑓̃1 · 𝜂𝑠 and ℎ2 = 𝑓̃2 · 𝜂𝑡 .
Arguing as in Theorem 4.10, we have

UC - lim
𝑔∈𝐺

∫
𝑋
ℎ0 · 𝑇𝑎𝑔ℎ1 · 𝑇𝑏𝑔ℎ2 𝑑𝜇 =

UC - lim
𝑔∈𝐺

∫
𝑋
ℎ0 · 𝑇𝑎𝑔𝐸 (ℎ1 |Z2

𝐺 (𝑋) ∨ I𝑎 (𝑋)) · 𝑇𝑏𝑔𝐸 (ℎ2 |Z2
𝐺 (𝑋) ∨ I𝑏 (𝑋)) 𝑑𝜇. (20)

Now, since 𝜂 is measurable with respect to Z (𝑋), it is also measurable with respect to Z2
𝐺 (𝑋) ∨ I𝑎 (𝑋)

and Z2
𝐺 (𝑋) ∨ I𝑏 (𝑋), so the claim follows by rewriting ℎ𝑖 in terms of 𝜂 and 𝑓̃𝑖 on both sides of

equation (20). �

5. A limit formula for {𝑎𝑔, 𝑏𝑔}

Let G be a countable discrete abelian group and X = (𝑋,X , 𝜇, (𝑇𝑔)𝑔∈𝐺) be an ergodic G-system. In
this section, we restrict ourselves to the homomorphisms 𝜑(𝑔) = 𝑎𝑔, 𝜓(𝑔) = 𝑏𝑔, where 𝑎, 𝑏 ∈ Z. By
Theorem 4.10, we see that it is enough to analyse the ergodic average

UC - lim
𝑔∈𝐺

𝑇𝑎𝑔 𝑓1 · 𝑇𝑏𝑔 𝑓2 (21)

in the case where X is a Conze–Lesigne system (i.e. 𝑋 = 𝑍2 (𝑋)).
Under certain assumptions on a and b, two different (but related) formulas were obtained previously

in [2] and in [27] (see Theorems 5.1 and 5.2 below). Neither of the previously obtained formulas is
sufficient for our purposes, so we prove a new one in this section.

5.1. Previous limit formulas

Assuming all of the subgroups 𝑎𝐺, 𝑏𝐺, (𝑎 + 𝑏)𝐺 and (𝑏 − 𝑎)𝐺 have finite index in G, a limit formula
was obtained in [2] for the multiple ergodic averages in (21) by analysing a Mackey group associated to
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the abelian extension corresponding to the Conze–Lesigne factor (the relevant terminology is defined
in the next subsection). For compact groups Z and H, let M(𝑍, 𝐻) denote the space of measurable
functions 𝑓 : 𝑍 → 𝐻 equipped with the topology of convergence in measure (with respect to the Haar
probability measure).

Theorem 5.1 ([2], Theorem 7.1). Let G be a countable discrete abelian group. Let 𝑎, 𝑏 ∈ Z, such
that 𝑎𝐺, 𝑏𝐺, (𝑎 + 𝑏)𝐺 and (𝑏 − 𝑎)𝐺 have finite index in G. Let 𝑘 ′1 = −𝑎𝑏(𝑎 + 𝑏), 𝑘 ′2 = 𝑎𝑏(𝑎 + 𝑏)
and 𝑘 ′3 = −𝑎𝑏(𝑏 − 𝑎). Set 𝐷 = gcd(𝑘 ′1, 𝑘

′
2, 𝑘

′
3) and 𝑘𝑖 =

𝑘′𝑖
𝐷 for 𝑖 = 1, 2, 3. Let 𝑐1, 𝑐2, 𝑐3 ∈ Z so that∑3

𝑖=1 𝑘𝑖𝑐𝑖 = 1. Let X = Z ×𝜎 𝐻 be as in Theorem 2.5(iii). There is a function 𝜓 : 𝑍 × 𝑍 → 𝐻, such
that 𝜓(0, 𝑧) = 0 for every 𝑧 ∈ 𝑍 and 𝑡 ↦→ 𝜓(𝑡, ·) is a continuous map from Z to M(𝑍, 𝐻), and for every
𝑓1, 𝑓2, 𝑓3 ∈ 𝐿∞(𝜇),

UC - lim
𝑔∈𝐺

𝑓1(𝑇𝑎𝑔𝑥) 𝑓2 (𝑇𝑏𝑔𝑥) 𝑓3(𝑇(𝑎+𝑏)𝑔𝑥) =
∫
𝑍×𝐻 2

3∏
𝑖=1

𝑓𝑖 (𝑧 + 𝑎𝑖𝑡, ℎ + 𝑑𝑖𝑢 + 𝑎2
𝑖 𝑣 + 𝑐𝑖𝜓(𝑡, 𝑧) 𝑑𝑢 𝑑𝑣 𝑑𝑡,

in 𝐿2 (𝜇), where 𝑥 = (𝑧, ℎ) ∈ 𝑍 × 𝐻, and 𝑎1 = 𝑎, 𝑎2 = 𝑏, 𝑎3 = 𝑎 + 𝑏.

Assuming that (𝑏 − 𝑎) is even, the last author proved the following result.

Theorem 5.2 ([27], Corollary 6.2). Let G be a countable discrete abelian group. Let 𝑎, 𝑏 ∈ Z be, such
that (𝑏 − 𝑎) is even and (𝑏 − 𝑎)𝐺 has finite index in G. Let X = (𝑋,X , 𝜇, (𝑇𝑔)𝑔∈𝐺) be an ergodic G-
system, such that X = Z2 (𝑋). Then, there exists an ergodic extension 𝜋 : 𝑌 → 𝑋 which is isomorphic
to a 2-step nilpotent coset system3 and for every 𝑓1, 𝑓2, 𝑓3 ∈ 𝐿∞(𝑋),

UC - lim
𝑔∈𝐺

𝑓̃1(𝑇𝑎𝑔𝑦Γ) 𝑓2 (𝑇𝑏𝑔𝑦Γ) 𝑓3(𝑇(𝑎+𝑏)𝑔𝑦Γ) =∫
G/Γ

∫
G2

𝑓̃1(𝑦𝑦𝑎1 𝑦
(𝑎2)
2 ) 𝑓̃2(𝑦𝑦𝑏1 𝑦

(𝑏2)
2 Γ) 𝑓̃3(𝑦𝑦𝑎+𝑏1 𝑦

(𝑎+𝑏2 )
2 Γ) 𝑑𝜇G2 (𝑦2) 𝑑𝜇G/Γ (𝑦Γ).

The above formula fails if 𝑏 − 𝑎 is odd (see [27, Example 6.3]).
Observe that in the formulas in Theorems 5.1 and 5.2, we can take 𝑓3 ≡ 1 and get a limit formula for

the averages we are interested in. However, for the sake of our argument, we need a limit formula for
every 𝑎, 𝑏 ∈ Z regardless of the indices of the subgroups 𝑎𝐺, 𝑏𝐺 and (𝑎 ± 𝑏)𝐺 and the parity of 𝑏 − 𝑎.
Below, we remove the finite index assumptions in Theorem 5.1.

5.2. Mackey group

Let G be a countable discrete abelian group, and let X = (𝑋,X , 𝜇, (𝑇𝑔)𝑔∈𝐺) be an ergodic G-system.
Suppose that 𝑋 = 𝑍2 (𝑋), then, by Theorem 2.5, we can write X = Z ×𝜎 𝐻, where Z = (𝑍, 𝛼) is the
Kronecker factor, H is a compact abelian group and 𝜎 : 𝐺 × 𝑍 → 𝐻 is a cocycle.

We now define a Mackey group associated to the cocycle 𝜎. Let

𝑊 = 𝑊 (𝑎, 𝑏) := {(𝑧 + 𝑎𝑡, 𝑧 + 𝑏𝑡) : 𝑧, 𝑡 ∈ 𝑍},

and define 𝑆𝑔𝑤 = (𝑤1 + 𝛼𝑎𝑔, 𝑤2 + 𝛼𝑏𝑔) for 𝑔 ∈ 𝐺, 𝑤 = (𝑤1, 𝑤2) ∈ 𝑊 . Let 𝜎̃𝑔 (𝑤) :=(
𝜎𝑎𝑔 (𝑤1), 𝜎𝑏𝑔 (𝑤2)

)
. Then the Mackey group 𝑀 = 𝑀 (𝑎, 𝑏) is the closed subgroup of H with annihilator

given by

𝑀⊥ :=
{
𝜒̃ ∈ 𝐻2 : 𝜒̃ ◦ 𝜎̃ is a coboundary over (𝑊, 𝑆)

}
.

3The exact definition is given in [27]. We do not use this notion elsewhere in the paper.
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We will show that the Mackey group is a product of subgroups of H. For 𝑐 ∈ Z, let 𝑀𝑐 ≤ 𝐻 be the
closed subgroup with annihilator

𝑀⊥
𝑐 :=

{
𝜒 ∈ 𝐻 : (𝑔, 𝑧) ↦→ 𝜒

(
𝜎𝑐𝑔 (𝑧)

)
is a coboundary over (𝑍, 𝛼)

}
.

Proposition 5.3. Let 𝑎, 𝑏 ∈ Z be coprime, and let 𝑀 = 𝑀 (𝑎, 𝑏) be the Mackey group. Then 𝑀 =
𝑀𝑎 × 𝑀𝑏 .

The proof of Proposition 5.3 relies heavily on results from [2, Section 7], which we restate here for
ease of reference.

5.3. Cocycle identities

The following result gives a convenient characterisation of coboundaries (recall that a cocycle
𝜌 : 𝐺 × 𝑍 → 𝑆1 is a coboundary if 𝜌𝑔 = Δ𝑔𝐹 for some measurable function 𝐹 : 𝑍 → 𝑆1).

Proposition 5.4 ([2], Proposition 7.12). Let Z be a Kronecker system and 𝜌 : 𝐺 × 𝑍 → 𝑆1 a cocycle.
The following are equivalent:

(i) 𝜌 is a coboundary;
(ii) for any sequence (𝑔𝑛)𝑛∈N in G with 𝛼𝑔𝑛 → 0 in Z, we have 𝜌𝑔𝑛 (𝑧) → 1 in 𝐿2 (𝑍).

The next proposition gives three equivalent characterisations of Conze–Lesigne (or quasi-affine)
cocycles.

Proposition 5.5 ([2], Proposition 7.15). Let Z be an ergodic Kronecker system and 𝜌 : 𝐺 × 𝑍 → 𝑆1 a
cocycle. The following are equivalent:

(i) for any sequence (𝑔𝑛)𝑛∈N in G with 𝛼𝑔𝑛 → 0 in Z, there is a sequence (𝜔𝑛)𝑛∈N of affine functions,
such that 𝜔𝑛𝜌𝑔𝑛 (𝑧) → 1 in 𝐿2 (𝑍);

(ii) for every 𝑡 ∈ 𝑍 ,

𝜌𝑔 (𝑧 + 𝑡)
𝜌𝑔 (𝑧)

is cohomologous to a character;
(iii) there is a Borel set 𝐴 ⊆ 𝑍 with 𝑚𝑍 (𝐴) > 0, such that

𝜌𝑔 (𝑧 + 𝑡)
𝜌𝑔 (𝑧)

is cohomologous to a character for every 𝑡 ∈ 𝐴.

Lemma 5.6 ([2], Lemma 7.19). Let Z be an ergodic Kronecker system and 𝜌 : 𝐺 × 𝑍 → 𝑆1 a cocycle.
Suppose

(
𝛼𝑔𝑛
)

converges (to 0) in Z and 𝜔𝑛 (𝑧) = 𝑐𝑛𝜆𝑛 (𝑧) are affine functions, such that
(
𝜔𝑛𝜌𝑔𝑛

)
converges (to 1) in 𝐿2 (𝑍). Then, for every 𝑎 ∈ N,

𝑐𝑎𝑛𝜆𝑛

((
𝑎

2

)
𝛼𝑔𝑛

)
𝜆𝑎𝑛 (𝑧)𝜌𝑎𝑔𝑛 (𝑧)

converges (to 1) in 𝐿2 (𝑍).

Lemma 5.7 ([2], Lemma 7.23). Let Z ×𝜎 𝐻 be an ergodic Conze–Lesigne G-system. Suppose 𝑎 ∈ Z
and 𝑎𝐺 has finite index in G. Then, 𝑎𝐻 = 𝐻.
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Lemma 5.8 ([2], Lemma 7.25). Let Z be a compact abelian group. Let 𝑐1, 𝑐2 ∈ 𝑆1 and 𝜆1, 𝜆2 ∈ 𝑍 .
If 𝜆1 ≠ 𝜆2, then

‖𝑐1𝜆1 − 𝑐2𝜆2‖𝐿2 (𝑍 ) =
√

2.

5.4. Proof of Proposition 5.3

We will prove Proposition 5.3 via the next three lemmas. Rather than proving directly that𝑀 = 𝑀𝑎×𝑀𝑏 ,
we will instead show the dual identity 𝑀⊥ = 𝑀⊥

𝑎 × 𝑀⊥
𝑏 . First, we show 𝑀⊥

𝑎 × 𝑀⊥
𝑏 ⊆ 𝑀⊥:

Lemma 5.9. In the setup of Proposition 5.3, 𝑀⊥
𝑎 × 𝑀⊥

𝑏 ⊆ 𝑀⊥.

Proof. Let 𝜒1 ∈ 𝑀⊥
𝑎 and 𝜒2 ∈ 𝑀⊥

𝑏 . We want to show 𝜒̃ = 𝜒1 ⊗ 𝜒2 ∈ 𝑀⊥. Let (𝑔𝑛)𝑛∈N be a sequence in
G, such that (𝛼𝑎𝑔𝑛 , 𝛼𝑏𝑔𝑛 ) → 0 in W. By Proposition 5.4, it suffices to show

𝜒̃ ◦ 𝜎̃𝑔𝑛 (𝑤) → 1 (22)

in 𝐿2 (𝑊). Now, since a and b are coprime, we have 𝛼𝑔𝑛 → 0 in Z. Since 𝜒1 ∈ 𝑀⊥
𝑎 , it follows that

𝜒1
(
𝜎𝑎𝑔𝑛 (𝑧)

)
→ 1 (23)

in 𝐿2 (𝑍) by Proposition 5.4. Similarly,

𝜒2
(
𝜎𝑏𝑔𝑛 (𝑧)

)
→ 1 (24)

in 𝐿2 (𝑍). Combining (23) and (24), we have

𝜒1
(
𝜎𝑎𝑔𝑛 (𝑧 + 𝑎𝑡)

)
𝜒2
(
𝜎𝑏𝑔𝑛 (𝑧 + 𝑏𝑡)

)
→ 1

in 𝐿2 (𝑍 × 𝑍). That is, (22) holds. �

Before establishing the reverse inclusion, 𝑀⊥ ⊆ 𝑀⊥
𝑎 × 𝑀⊥

𝑏 , we need the following result:

Lemma 5.10. In the setup of Proposition 5.3,

𝑀⊥ ⊆
{
𝜒1 ⊗ 𝜒2 ∈ 𝐻2 : 𝜒𝑎1 = 𝜒𝑏2 = 1

}
.

Proof. Let 𝜒̃ = 𝜒1 ⊗ 𝜒2 ∈ 𝑀⊥. By the argument in the proof of [2, Theorem 7.26], we have 𝜒𝑎1 𝜒
𝑏
2 =

𝜒𝑎
2

1 𝜒𝑏
2

2 = 1. Therefore,

𝜒𝑎 (𝑏−𝑎)1 = 𝜒𝑎𝑏1 𝜒−𝑎
2

1 =
(
𝜒𝑎1 𝜒

𝑏
2

)𝑏 (
𝜒𝑎

2

1 𝜒𝑏
2

2

)−1
= 1.

By assumption, (𝑏 − 𝑎)𝐺 has finite index in G. It follows that 𝐻 does not contain any (𝑏 − 𝑎)-torsion
elements (see Lemma 5.7), so 𝜒𝑎1 = 1. We immediately deduce 𝜒𝑏2 = 𝜒−𝑎1 = 1 as well. �

Lemma 5.11. In the setup of Proposition 5.3, 𝑀⊥ ⊆ 𝑀⊥
𝑎 × 𝑀⊥

𝑏 .

Proof. Let 𝜒̃ = 𝜒1 ⊗ 𝜒2 ∈ 𝑀⊥. We want to show 𝜒1 ∈ 𝑀⊥
𝑎 and 𝜒2 ∈ 𝑀⊥

𝑏 . For notational convenience,
let 𝑎1 = 𝑎 and 𝑎2 = 𝑏. Let (𝑔𝑛)𝑛∈N be a sequence in G, such that 𝛼𝑔𝑛 → 0 in Z. By Proposition 5.4, it
suffices to show

𝜒𝑖
(
𝜎𝑎𝑖𝑔𝑛 (𝑧)

)
→ 1 (25)

in 𝐿2 (𝑍) for 𝑖 = 1, 2.
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Now, (𝛼𝑎𝑔𝑛 , 𝛼𝑏𝑔𝑛 ) → 0 in W, so

𝜒̃ ◦ 𝜎̃𝑔𝑛 (𝑤) → 1 (26)

in 𝐿2 (𝑊) by Proposition 5.4. Moreover, since 𝜒𝑖 ◦ 𝜎 is a Conze–Lesigne cocycle, we have

𝑐𝑖,𝑛𝜆𝑖,𝑛 (𝑧)𝜒𝑖
(
𝜎𝑔𝑛 (𝑧)

)
→ 1 (27)

in 𝐿2 (𝑍) for some sequences (𝑐𝑖,𝑛)𝑛∈N in 𝑆1 and
(
𝜆𝑖,𝑛
)
𝑛∈N in 𝑍 (see Proposition 5.5).

It follows by Lemma 5.6 that

𝑐𝑎𝑖𝑖,𝑛𝜆
(𝑎𝑖2 )
𝑖,𝑛

(
𝛼𝑔𝑛
)
𝜆𝑎𝑖,𝑛 (𝑧)𝜒𝑖

(
𝜎𝑎𝑖𝑔𝑛 (𝑧)

)
→ 1 (28)

in 𝐿2 (𝑍). On the other hand, by Lemma 5.10, we have 𝜒𝑎𝑖𝑖 = 1, so raising (27) to the 𝑎𝑖-th power gives

𝑐𝑎𝑖𝑖,𝑛𝜆
𝑎𝑖
𝑖,𝑛 (𝑧) → 1

in 𝐿2 (𝑍). Hence, by Lemma 5.8, 𝜆𝑎𝑖𝑖,𝑛 = 1 for all sufficiently large n, and 𝑐𝑎𝑖𝑖,𝑛 → 1. Therefore, (28)
simplifies to

𝑑𝑖,𝑛𝜒𝑖
(
𝜎𝑎𝑖𝑔𝑛 (𝑧)

)
→ 1 (29)

in 𝐿2 (𝑍), where 𝑑𝑖,𝑛 = 𝜆
(𝑎𝑖2 )
𝑖,𝑛

(
𝛼𝑔𝑛
)
.

The numbers a and b are coprime, so at least one of them is odd. Without loss of generality, assume
a is odd. Then a divides

(𝑎
2
)
, so 𝜆(

𝑎
2)

1,𝑛 = 1. Hence, 𝑑1,𝑛 = 1 for all large n, so (25) follows from (29) for
𝑖 = 1. It remains to show if (25) holds for 𝑖 = 2.

Combining the identities in (29) for 𝑖 = 1, 2 and using 𝑑1,𝑛 = 1, we have

𝑑2,𝑛𝜒1
(
𝜎𝑎𝑔𝑛 (𝑧 + 𝑎𝑡)

)
𝜒2
(
𝜎𝑏𝑔𝑛 (𝑧 + 𝑏𝑡)

)
→ 1

in 𝐿2 (𝑍 × 𝑍). That is,

𝑑2,𝑛 𝜒̃ ◦ 𝜎̃𝑔𝑛 (𝑤) → 1

in 𝐿2 (𝑊). Comparing with (26), this implies 𝑑2,𝑛 → 1. Therefore, (25) follows from (29) for 𝑖 = 2. �

Proposition 5.3 follows immediately from Lemmas 5.9 and 5.11.

5.5. Limit formula

With the help of Proposition 5.3, we will now prove a limit formula for the averages
UC - lim𝑔∈𝐺 𝑇𝑎𝑔 𝑓1𝑇𝑏𝑔 𝑓2. We need to define one more object related to the cocycle 𝜎 before stating the
limit formula. For a compact space K, let M(𝑍, 𝐾) denote the space of measurable functions 𝑍 → 𝐾
equipped with the topology of convergence in measure.

Proposition 5.12. Let X = Z ×𝜎 𝐻 be an ergodic Conze–Lesigne system. Let 𝑐 ∈ Z. There exists a
function 𝜓𝑐 : 𝑍 × 𝑍 → 𝐻/𝑀𝑐 , such that

(1) for every 𝑔 ∈ 𝐺,

𝜓𝑐 (𝛼𝑔, 𝑧) ≡ 𝜎𝑐𝑔 (𝑧) (mod 𝑀𝑐),

and
(2) the map 𝑍 � 𝑡 ↦→ 𝜓𝑐 (𝑡, ·) ∈ M(𝑍, 𝐻/𝑀𝑐) is continuous.
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In order to prove Proposition 5.12, we use the following characterisation of convergence in measure:

Lemma 5.13 ([2], 7.28). Let ( 𝑓𝑛)𝑛∈N be a sequence of functions inM(𝑍, 𝐻). Then 𝑓𝑛 → 𝑓 inM(𝑍, 𝐻)
if and only if 𝜒 ◦ 𝑓𝑛 → 𝜒 ◦ 𝑓 in 𝐿2 (𝑍) for every character 𝜒 ∈ 𝐻.

Proof of Proposition 5.12. Given a sequence (𝑔𝑛)𝑛∈N in G, such that (𝛼𝑔𝑛 )𝑛∈N is convergent in Z, we
want to show that the sequence (

𝜎𝑐𝑔𝑛 (𝑧)
)
𝑛∈N

converges in M(𝑍, 𝐻/𝑀𝑐). Equivalently, by Lemma 5.13, we must show that(
𝜒
(
𝜎𝑐𝑔𝑛 (𝑧)

) )
𝑛∈N

converges in 𝐿2 (𝑍) for every 𝜒 ∈!𝐻/𝑀𝑐 = 𝑀⊥
𝑐 .

Let 𝜒 ∈ 𝑀⊥
𝑎 . By the definition of 𝑀𝑐 , the cocycle 𝜒

(
𝜎𝑐𝑔 (𝑧)

)
is a coboundary over (𝑍, 𝛼). Hence,

by Proposition 5.4, there is a continuous map 𝑡 ↦→ 𝜑(𝑡, ·) ∈ 𝐿2 (𝑍), such that 𝜑(𝛼𝑔, 𝑧) = 𝜒
(
𝜎𝑐𝑔 (𝑧)

)
.

Therefore,

𝜒
(
𝜎𝑐𝑔𝑛 (𝑧)

)
→ 𝜑(𝑡, 𝑧)

in 𝐿2 (𝑍), where 𝑡 = lim𝑛→∞ 𝛼𝑔𝑛 ∈ 𝑍 . �

By the Kuratowski and Ryll-Nardzewski measurable selection theorem (see [28, Section 5.2]), there
exists a measurable map 𝜄𝑎 : 𝐻/𝑀𝑎 → 𝐻, such that 𝜋𝑎 (𝜄𝑎 (𝑥)) = 𝑥, where 𝜋𝑎 is the canonical projection
𝜋𝑎 : 𝐻 → 𝐻/𝑀𝑎. Let 𝜓1 = 𝜄𝑎 ◦ 𝜓𝑎 and 𝜓2 = 𝜄𝑏 ◦ 𝜓𝑏 . We can now state and prove a general limit
formula for Conze–Lesigne systems:

Theorem 5.14. Let X = Z×𝜎 𝐻 be an ergodic Conze–Lesigne system. Let 𝑎, 𝑏 ∈ 𝑍 . Let 𝑀 = 𝑀 (𝑎, 𝑏) =
𝑀𝑎 × 𝑀𝑏 . Then for any 𝑓1, 𝑓2 ∈ 𝐿∞(𝜇), we have

UC - lim
𝑔∈𝐺

𝑓1 (𝑇𝑎𝑔 (𝑧, 𝑥)) 𝑓2(𝑇𝑏𝑔 (𝑧, 𝑥))

=
∫
𝑍×𝑀𝑎×𝑀𝑏

𝑓1(𝑧 + 𝑎𝑡, 𝑥 + 𝑢 + 𝜓1 (𝑡, 𝑧)) 𝑓2(𝑧 + 𝑏𝑡, 𝑥 + 𝑣 + 𝜓2 (𝑡, 𝑧)) 𝑑𝑡 𝑑𝑢 𝑑𝑣 (30)

in 𝐿2 (𝑍 × 𝐻).

Remark 5.15. We have defined the functions 𝜓𝑖 by lifting 𝜓𝑎 and 𝜓𝑏 to the group H from 𝐻/𝑀𝑎

and 𝐻/𝑀𝑏 respectively. If 𝜓 ′1 is another functions with 𝜋𝑎 (𝜓 ′1) = 𝜓𝑎, then for any 𝑡, 𝑧 ∈ 𝑍 , we have
𝜓 ′1 (𝑡, 𝑧) − 𝜓1 (𝑡, 𝑧) ∈ 𝑀𝑎. Since the Haar measure on 𝑀𝑎 is invariant under shifts coming from 𝑀𝑎, the
expression on the right-hand side of (30) is unchanged when 𝜓1 is replaced by 𝜓 ′1. The same is true for
replacing 𝜓2 by 𝜓 ′2, so it does not matter which lifts of 𝜓𝑎 and 𝜓𝑏 we choose.

Proof. For notational convenience, let 𝜓 = (𝜓1, 𝜓2) : 𝑍 × 𝑍 → 𝐻2, and let 𝑚𝑀 denote the Haar
measure on the Mackey group 𝑀 = 𝑀𝑎 × 𝑀𝑏 .

It suffices to prove the formula in (30) for functions of the form 𝑓𝑖 (𝑧, 𝑥) = 𝜔𝑖 (𝑧)𝜒𝑖 (𝑥) with 𝜔𝑖 ∈
𝐿∞(𝑍) and 𝜒𝑖 ∈ 𝐻. In this case, the right-hand side of (30) is equal to∫

𝑍
𝜔1(𝑧 + 𝑎𝑡)𝜔2(𝑧 + 𝑏𝑡)𝜒1(𝑥)𝜒2 (𝑥) 𝜒̃(𝜓(𝑡, 𝑧)) 𝑑𝑡

∫
𝑀
𝜒̃ 𝑑𝑚𝑀 ,

where 𝜒̃ = 𝜒1 ⊗ 𝜒2 ∈ 𝐻2.
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We now consider two cases. First, if 𝜒̃ ∉ 𝑀⊥, then
∫
𝑀
𝜒̃ 𝑑𝑚𝑀 = 0, so the right-hand side of (30) is

equal to zero. Moreover, for every 𝜆 ∈ 𝑀⊥ and almost every 𝑧, 𝑡 ∈ 𝑍 , we have∫
𝐻 2

𝑓1 (𝑧 + 𝑎𝑡, 𝑥) 𝑓2(𝑧 + 𝑏𝑡, 𝑦)𝜆(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 = 𝜔1 (𝑧 + 𝑎𝑡)𝜔2(𝑧 + 𝑏𝑡)
∫
𝐻 2
𝜒̃(𝑥, 𝑦)𝜆(𝑥, 𝑦) = 0.

Therefore, the left-hand side of (30) is also zero (see [2, Proposition 7.10]).
Now suppose 𝜒̃ ∈ 𝑀⊥ so that

∫
𝑀
𝜒̃ 𝑑𝑚𝑀 = 1. For 𝑔 ∈ 𝐺 and (𝑧, 𝑥) ∈ 𝑍 × 𝐻, we can write

𝑓1(𝑇𝑎𝑔 (𝑧, 𝑥)) 𝑓2(𝑇𝑏𝑔 (𝑧, 𝑥)) = 𝜔1(𝑧 + 𝛼𝑎𝑔)𝜔2(𝑧 + 𝛼𝑏𝑔)𝜒1(𝑥)𝜒2 (𝑥) 𝜒̃(𝜎𝑎𝑔 (𝑧), 𝜎𝑏𝑔 (𝑧)).

Thus, letting

𝜑𝑡 (𝑧, 𝑥) := 𝜔1 (𝑧 + 𝑎𝑡)𝜔2(𝑧 + 𝑏𝑡)𝜒1(𝑥)𝜒2(𝑥) 𝜒̃(𝜓(𝑡, 𝑧)),

we have

𝑓1(𝑇𝑎𝑔 (𝑧, 𝑥)) 𝑓2(𝑇𝑏𝑔 (𝑧, 𝑥)) = 𝜑𝛼𝑔 (𝑧, 𝑥).

Since 𝜒 annihilates the Mackey group M, we see by Proposition 5.12(ii) that 𝑍 � 𝑡 ↦→ 𝜒̃(𝜓(𝑡, ·)) ∈ 𝐿2 (𝑍)
is continuous, and so 𝑍 � 𝑡 ↦→ 𝜑𝑡 ∈ 𝐿2 (𝑍 × 𝐻) is also continuous. Therefore, for any 𝜉 ∈ 𝐿2 (𝑍 × 𝐻),
since the system (𝑍, 𝛼) is uniquely ergodic, we have

UC - lim
𝑔∈𝐺

〈
𝜑𝛼𝑔 , 𝜉

〉
=
∫
𝑍
〈𝜑𝑡 , 𝜉〉 𝑑𝑡.

That is

UC - lim
𝑔∈𝐺

𝜑𝛼𝑔 (𝑧, 𝑥) =
∫
𝑍
𝜑𝑡 (𝑧, 𝑥) 𝑑𝑡 (31)

weakly in 𝐿2 (𝑍 × 𝐻). By more general results on norm convergence on multiple ergodic averages (see
[3, 32]), it follows that (31) holds strongly. The right-hand side of (30) is also equal to

∫
𝑍
𝜑𝑡 (𝑧, 𝑥) 𝑑𝑡, so

the formula in (30) holds when 𝜒̃ ∈ 𝑀⊥. �

5.6. Proof of Theorem 1.13

We first prove the theorem in the special case where a and b are coprime.
Let 𝑓 = 1𝐴. By Theorem 4.15, there is an extension X̃ of X, such that

UC - lim
𝑔∈𝐺

𝜂(𝛼𝑔)
∫
𝑋
𝑓̃ · 𝑇𝑎𝑔 𝑓̃ · 𝑇𝑏𝑔 𝑓̃ 𝑑𝜇

= UC - lim
𝑔∈𝐺

𝜂(𝛼𝑔)
∫
𝑋
𝑓̃ · 𝑇𝑎𝑔𝐸 ( 𝑓̃ |Z2

𝐺 (𝑋)) ∨ I𝑎 (𝑋)) · 𝑇𝑎𝑔𝐸 ( 𝑓̃ |Z2
𝐺 (𝑋) ∨ I𝑏 (𝑋)) 𝑑𝜇,

where 𝑓̃ is the lift of f to 𝑋 . For notational convenience, let 𝑓̃𝑎 := 𝐸 ( 𝑓̃ |Z2
𝐺 (𝑋) ∨ I𝑎 (𝑋)) and 𝑓̃𝑏 :=

𝐸 ( 𝑓̃ |Z2
𝐺 (𝑋) ∨ I𝑏 (𝑋)). We can therefore write

𝑓̃𝑎 =
∑
𝑖∈N

𝑐𝑖ℎ𝑖 ,

𝑓̃𝑏 =
∑
𝑗∈N

𝑑 𝑗 𝑘 𝑗 ,

where each 𝑐𝑖 is 𝑎𝐺-invariant, 𝑑 𝑗 is 𝑏𝐺-invariant and ℎ𝑖 , 𝑘 𝑗 areZ2
𝐺 (𝑋)-measurable. By Theorem 2.5(iii),

we can write Z2
𝐺 (𝑋) = Z̃ ×𝜎 𝐻. Then, by Theorem 5.14,
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UC - lim
𝑔∈𝐺

𝜂(𝛼𝑔) 𝜇
(
𝐴 ∩ 𝑇−1

𝑎𝑔 𝐴 ∩ 𝑇−1
𝑏𝑔 𝐴
)

= UC - lim
𝑔∈𝐺

𝜂(𝛼𝑔)
∫
𝑋
𝑓̃ · 𝑇𝑎𝑔 𝑓̃𝑎 · 𝑇𝑎𝑔 𝑓̃𝑏 𝑑𝜇

=
∑
𝑖, 𝑗∈N

∫
𝑋
𝑐𝑖𝑑 𝑗 𝑓̃ · UC - lim

𝑔∈𝐺
𝜂(𝛼𝑔) 𝑇𝑎𝑔ℎ𝑖 · 𝑇𝑏𝑔𝑘 𝑗 𝑑𝜇

=
∑
𝑖, 𝑗∈N

∫
𝑋×𝑍×𝑀𝑎×𝑀𝑏

𝑐𝑖 (𝑥)𝑑 𝑗 (𝑥) 𝑓̃ (𝑥)𝜂(𝑡)ℎ𝑖 (𝜋𝑍 (𝑥) + 𝑎𝑡, 𝜋𝐻 (𝑥) + 𝑢 + 𝜓1 (𝑡, 𝑧))

𝑘 𝑗 (𝜋𝑍 (𝑥) + 𝑏𝑡, 𝜋𝐻 (𝑥) + 𝑣 + 𝜓2(𝑡, 𝑧)) 𝑑𝜇(𝑥) 𝑑𝑡 𝑑𝑢 𝑑𝑣,

where (𝜋𝑍 (𝑥), 𝜋𝐻 (𝑥)) ∈ 𝑍 × 𝐻 is the projection of 𝑥 ∈ 𝑋 onto the Conze–Lesigne factor 𝑍 × 𝐻. By
choosing 𝜂 : 𝑍 → [0,∞) concentrated on a small neighborhood of 0 (as in the proof of Theorem 1.11;
see Subsection 3.3), it remains to show the inequality:∑

𝑖, 𝑗

∫
𝑋×𝑀𝑎×𝑀𝑏

𝑐𝑖 (𝑥)𝑑 𝑗 (𝑥) 𝑓̃ (𝑥)ℎ𝑖 (𝜋𝑍 (𝑥), 𝜋𝐻 (𝑥) + 𝑢)𝑘 𝑗 (𝜋𝑍 (𝑥), 𝜋𝐻 (𝑥) + 𝑣) 𝑑𝜇(𝑥) 𝑑𝑢 𝑑𝑣 ≥ 𝜇(𝐴)3.

(32)

Let W1 be the 𝜎-algebra generated by functions 𝑓 ∈ 𝐿∞(𝑍 × 𝐻), such that 𝑓 (𝑧, 𝑥 + 𝑦) = 𝑓 (𝑧, 𝑥) for
every 𝑦 ∈ 𝑀𝑎. Similarly, let W2 be the 𝜎-algebra generated by functions 𝑓 ∈ 𝐿∞(𝑍 × 𝐻), such that
𝑓 (𝑧, 𝑥 + 𝑦) = 𝑓 (𝑧, 𝑥) for every 𝑦 ∈ 𝑀𝑏 . Then the left-hand side of (32) is equal to∫

𝑋
𝑓̃ · 𝐸 ( 𝑓̃ |W1 ∨ I𝑎) · 𝐸 ( 𝑓̃ |W2 ∨ I𝑏) 𝑑𝜇. (33)

By [13, Lemma 1.6], the quantity in (33) is bounded below by
(∫

𝑋
𝑓̃ 𝑑𝜇
)3

= 𝜇(𝐴)3, so (32) holds.
Now suppose 𝑎, 𝑏 ∈ Z are arbitrary integers and write 𝑎 = 𝑎′ · 𝑑 and 𝑏 = 𝑏′ · 𝑑, where 𝑑 = gcd(𝑎, 𝑏)

and 𝑎′, 𝑏′ are coprime. Since (𝑏 − 𝑎)𝐺 has finite index in G, we deduce that so does 𝑑𝐺. Therefore, we
can find finitely many ergodic 𝑑𝐺-invariant measures {𝜇𝑖}𝑙𝑖=1, such that 𝜇 = 1

𝑙

∑𝑙
𝑖=1 𝜇𝑖 and all of the

systems X𝑖 = (𝑋,X , 𝜇𝑖 , 𝑑𝐺) admit the same Kronecker factor. By the argument above, we can find a
suitable 𝜂 satisfying:

UC - lim
𝑔∈𝑑𝐺

𝜂(𝛼𝑔)𝜇𝑖 (𝐴 ∩ 𝑇−1
𝑎′𝑔𝐴 ∩ 𝑇−1

𝑏′𝑔𝐴) > 𝜇𝑖 (𝐴)
3 − 𝜀

for all 𝑖 = 1, ..., 𝑙, and UC - lim𝑔∈𝑑𝐺 𝜂(𝛼𝑔) = 1. Therefore, by Jensen’s inequality, we have

UC - lim
𝑔∈𝑑𝐺

𝜂(𝛼𝑔)𝜇(𝐴 ∩ 𝑇−1
𝑎′𝑔𝐴 ∩ 𝑇−1

𝑏′𝑔𝐴) > 𝜇(𝐴)
3 − 𝜀.

As in the proof of Theorem 1.11, we conclude that

{𝑔 ∈ 𝑑𝐺 : 𝜇(𝐴 ∩ 𝑇−1
𝑎′𝑔𝐴 ∩ 𝑇−1

𝑏′𝑔𝐴) > 𝜇(𝐴)
3 − 𝜀}

is syndetic. Since 𝑑𝐺 has finite index in G, this implies that

{𝑔 ∈ 𝐺 : 𝜇(𝐴 ∩ 𝑇−1
𝑎𝑔 𝐴 ∩ 𝑇−1

𝑏𝑔 𝐴) > 𝜇(𝐴)
3 − 𝜀}

is syndetic, as required. �
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6. Proof of Theorem 1.14

In this section, we prove Theorem 1.14, restated here for the convenience of the reader:

Theorem 6.1 (Theorem 1.14). Let 𝐺 =
⊕∞

𝑛=1 Z. Let 𝑙 ∈ N. There exists 𝑃 = 𝑃(𝑙), such that, for any
𝑎, 𝑏 ∈ N with 𝑝 | gcd(𝑎, 𝑏) for some prime 𝑝 ≥ 𝑃, there is an ergodic G-system

(
𝑋,X , 𝜇, (𝑇𝑔)𝑔∈𝐺

)
and

a set 𝐴 ∈ X with 𝜇(𝐴) > 0, such that

𝜇(𝐴 ∩ 𝑇−1
𝑎𝑔 𝐴 ∩ 𝑇−1

𝑏𝑔 𝐴) ≤ 𝜇(𝐴)
𝑙

for every 𝑔 ≠ 0.

Rather than constructing a
⊕∞

𝑛=1 Z-system directly, we will instead construct a
⊕∞

𝑛=1 Z/𝑝2Z-system.
Since

⊕∞
𝑛=1 Z/𝑝2Z is a quotient of

⊕∞
𝑛=1 Z, the system we construct can be lifted to an ergodic

⊕∞
𝑛=1 Z-

system. Hence, Theorem 1.14 follows from:

Theorem 6.2. For any 𝑎, 𝑏, 𝑙 ∈ N, there exists a prime p (sufficiently large), an ergodic
⊕∞

𝑛=1 Z/𝑝2Z-
system X =

(
𝑋,X , 𝜇, (𝑇𝑔)𝑔∈⊕∞

𝑛=1 Z/𝑝2Z

)
and a set 𝐴 ∈ X with 𝜇(𝐴) > 0, such that

𝜇(𝐴 ∩ 𝑇−1
𝑝𝑎𝑔𝐴 ∩ 𝑇−1

𝑝𝑏𝑔𝐴) ≤ 𝜇(𝐴)
𝑙

for every 𝑔 ≠ 0.

The proof of Theorem 6.2 is based on the following result of Behrend [4].

Theorem 6.3. Let 𝑎, 𝑏 ∈ N be distinct and nonzero. There is an absolute constant 𝑐 > 0, such that: for
every 𝑁 ∈ N, there is a subset 𝐵 ⊆ {0, 1, ..., 𝑁 − 1}, such that |𝐵| > 𝑁 · 𝑒−𝑐

√
log(𝑁 ) and B contains no

configurations of the form {𝑛, 𝑛 + 𝑎𝑚, 𝑛 + 𝑏𝑚} for 𝑚 ≠ 0.

For every prime number p, let 𝐶𝑝 = {𝑧 ∈ C : 𝑧𝑝 = 1} denote the group of all roots of unity of order
p and let 𝜔𝑝 = 𝑒2𝜋𝑖/𝑝 be the first p-th root of unity in C. The following is an immediate corollary of
Behrend’s theorem.

Lemma 6.4. Let 𝑎, 𝑏 ∈ N be distinct, then, for every l, there exists a sufficiently large prime p and a
subset 𝐵 ⊆ 𝐶𝑝 of size |𝐵| > 𝑝1− 1

𝑙−1 which contains no configurations of the form {𝑦, 𝑦 · 𝑥𝑎, 𝑦 · 𝑥𝑏} for
𝑥 ≠ 1.

Throughout this section, we let T𝑝 := 𝐶N𝑝 and 𝐺 𝑝 :=
⊕

𝑖∈𝐼 Z/𝑝Z.
We start by giving a proof that the large intersection property fails for nonergodic systems.

Lemma 6.5. Let 𝑎, 𝑏 ∈ Z be distinct and nonzero. For every 𝐿 ∈ N, there is a 𝑃 = 𝑃(𝐿), such that
for every prime 𝑝 ≥ 𝑃, there is a 𝐺 𝑝-system (𝑋,X , 𝜇, (𝑇𝑔)𝑔∈𝐺𝑝 ), such that, for every 𝑙 ≤ 𝐿, there is a
measurable set 𝐴 = 𝐴(𝑙) with 𝜇(𝐴) > 0 and

𝜇(𝐴 ∩ 𝑇𝑎𝑔𝐴 ∩ 𝑇𝑏𝑔𝐴) ≤ 𝜇(𝐴)𝑙

for every 𝑔 ≠ 0.

This result was previously established in [2, Proposition 10.11], but we give a different proof that
will be useful later on.

Proof. Let p be a prime number, and let 𝑋𝑝 = T𝑝 × 𝐶𝑝 . We equip 𝑋𝑝 with the Borel 𝜎-algebra, the
Haar measure 𝜇 and the action of 𝐺 𝑝 by

𝑇𝑔 (𝑥, 𝑢) = (𝑥,
∞∏
𝑖=1

𝑥
𝑔𝑖
𝑖 𝑢).
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Now, fix a subset 𝐵 ⊆ 𝐶𝑝 which avoids configurations of the form {𝑦, 𝑦 · 𝑥𝑎, 𝑦 · 𝑥𝑏} whenever 𝑥 ≠ 1,
and let 𝐴 = T𝑝 × 𝐵. It is easy to see that 𝜇(𝐴) = |𝐵 |

𝑝 and we have

𝜇(𝐴 ∩ 𝑇𝑎𝑔𝐴 ∩ 𝑇𝑏𝑔𝐴) =
∫
T 2
𝑝

1𝐵 (𝑦)1𝐵

(
𝑦
∏
𝑖∈𝐼

𝑥𝑎𝑔𝑖

)
1𝐵

(
𝑦
∏
𝑖∈𝐼

𝑥𝑏𝑔𝑖

)
𝑑𝑥𝑑𝑦 =

∫
T 2
𝑝

1𝐵 (𝑦)1𝐵
"#$𝑦 · "#$

∏
{𝑖 : 𝑔𝑖≠0}

𝑥𝑖
%&'
𝑎%&'1𝐵

"##$𝑦 ·
"#$
∏

{𝑖 : 𝑔𝑖≠0}
𝑥𝑖
%&'
𝑏%&&'𝑑𝑥𝑑𝑦 =

𝜇T 2
𝑝

"##$
⎧⎪⎪⎨⎪⎪⎩(𝑦, 𝑥) ∈ T 2

𝑝 :
⎧⎪⎪⎨⎪⎪⎩𝑦, 𝑦 · "#$

∏
{𝑖 : 𝑔𝑖≠0}

𝑥𝑖
%&'
𝑎

, 𝑦 · "#$
∏

{𝑖 : 𝑔𝑖≠0}
𝑥𝑖
%&'
𝑏⎫⎪⎪⎬⎪⎪⎭ ⊂ 𝐵

⎫⎪⎪⎬⎪⎪⎭
%&&'.

But,
{
𝑦, 𝑦 ·

(∏
{𝑖 : 𝑔𝑖≠0} 𝑥𝑖

)𝑎
, 𝑦 ·
(∏

{𝑖 : 𝑔𝑖≠0} 𝑥𝑖
)𝑏}

⊂ 𝐵 if and only if
∏

{𝑖 : 𝑔𝑖≠0} 𝑥𝑖 = 1. Since 𝑔 ≠ 0, we

deduce that 𝜇(𝐴 ∩𝑇𝑎𝑔𝐴 ∩𝑇𝑏𝑔𝐴) = |𝐵 |
𝑝2 = 𝑝𝑙−2

|𝐵 |𝑙−1 𝜇(𝐴)𝑙 . Now, choose P sufficiently large for which there

exists a set B with |𝐵| > 𝑝1− 1
𝑙−1 (Lemma 6.4). Then, 𝜇(𝐴 ∩ 𝑇𝑎𝑔𝐴 ∩ 𝑇𝑏𝑔𝐴) < 𝜇(𝐴)𝑙 as required. �

Roughly speaking, the idea in this section is to construct an ergodic p-th root for the system above.
We fix some P sufficiently large as in Lemma 6.5, and let 𝑝 > 𝑃 be a prime number. For convenience

of notations, we let 𝜔 = 𝑒2𝜋𝑖/𝑝 and 𝜂 = 𝑒2𝜋𝑖/𝑝2 . We define an action of 𝐺 =
⊕

𝑛∈N Z/𝑝2Z on T by
setting 𝑆𝑔𝑥 = 𝜁 (𝑔)𝑥, where 𝜁 (𝑔) = (𝜂𝑝𝑔𝑖 )𝑖∈N = (𝜔𝑔𝑖 )𝑖∈N. Since the image of 𝜁 is dense in T , the action
is ergodic.

Now, we extend this action to the product space 𝑋 = T × 𝐶𝑝2 . Let 𝜑 : 𝐶𝑝 → 𝐶𝑝2 be the map

𝜑(𝑒
2𝜋𝑖𝑥
𝑝 ) = 𝑒

2𝜋𝑖 |𝑥 |𝑝
𝑝2 ,

where |𝑥 |𝑝 = 𝑥 mod 𝑝. Then, 𝜑 is a cross-section of the canonical projection 𝐶𝑝2 → 𝐶𝑝 , and we have
that 𝜑(𝑥) 𝑝 = 𝑥, and 𝜑(𝜔) = 𝜂. Our goal is to define an action (𝑇𝑔)𝑔∈𝐺 on X, such that 𝑇𝑝𝑔 (𝑡, 𝑢) =
(𝑡,
∏

𝑖∈N 𝑡
𝑝𝑔𝑖
𝑖 · 𝑢).

We do so in two steps. We define an action 𝑇 ′𝑔 on X which satisfies that 𝑇 ′𝑒𝑖 (𝑡, 𝑢) = (𝑆𝑒𝑖 𝑡, 𝜑(𝑡𝑖)𝑢), for
every 𝑖 ∈ N, where 𝑒𝑖 ∈

⊕∞
𝑛=1 Z/𝑝𝑛Z is the i-th unit vector. Writing 𝑔 =

∑
𝑖∈N 𝑔𝑖𝑒𝑖 and using the group

law, we get the following action:

𝑇 ′𝑔 (𝑡, 𝑢) =
"#$𝑆𝑔𝑡,

∞∏
𝑗=1

𝑔 𝑗−1∏
𝑘=0

𝜑(𝜔𝑘 𝑡 𝑗 ) · 𝑢
%&', (34)

where an empty product
∏−1

𝑘=0 𝑥𝑘 is equal to 1.
Unfortunately, this action is not what we are looking for. Indeed,

(𝑇 ′𝑒 𝑗
) 𝑝 (𝑡, 𝑢) = (𝑡,

𝑝−1∏
𝑘=0

𝜑(𝜔𝑘 · 𝑡 𝑗 )𝑢) = (𝑡, 𝑡 𝑗 · 𝜂(
𝑝
2) · 𝑢).

To fix that, we let 𝜉 = 𝜔
1−𝑝

2 be a p-th root of 𝜂(
𝑝
2) and change the action accordingly:

𝑇𝑔 (𝑡, 𝑢) =
"#$𝑆𝑔𝑡,

∞∏
𝑗=1

"#$
𝑔 𝑗−1∏
𝑘=0

𝜑(𝜔𝑘 𝑡 𝑗 ) · 𝜉𝑔 𝑗 %&' · 𝑢%&'. (35)
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Lemma 6.6. For every 𝑡 ∈ T , 𝑢 ∈ 𝐶𝑝2 and 𝑔 ∈ 𝐺, we have

𝑇𝑝𝑔 (𝑡, 𝑢) = (𝑡, 𝑡 𝑝𝑔𝑢). (36)

Proof. The proof is a direct computation. Indeed, it suffices to prove that (36) holds for 𝑔 = 𝑒 𝑗 for every
𝑗 ∈ N. Let 𝑗 ∈ N be arbitrary. Since 𝜔 is of order p, 𝑆𝑝𝑔𝑡 = 𝑡. As for the second coordinate, observe that

𝑝−1∏
𝑘=0

𝜑(𝜔𝑘 𝑡 𝑗 ) · 𝜉 𝑝 = 𝜉 𝑝 · 𝜂(
𝑝
2) · 𝑡 𝑗 = 𝑡 𝑗 .

The first equality follows because the product is independent on 𝑡 𝑗 and always equals to 𝜑(𝜔) · ... ·
𝜑(𝜔𝑝−1) = 𝜂(

𝑝
2) , and the last equality follows from the definition of 𝜉. This completes the proof of the

lemma. �

The main difficulty in the proof is showing that this action is ergodic.
Lemma 6.7. The action in (35) on X is ergodic.
Proof. We use Zimmer’s criterion for ergodicity [31, Lemma 4.5]. Since the action of G on T is ergodic,
it is enough to show that the cocycle𝜎 : 𝐺×T → 𝐶𝑝2 ,𝜎(𝑔, 𝑡) =

∏∞
𝑖=1
∏𝑔 𝑗−1

𝑘=0 𝜑(𝜔𝑘 𝑡 𝑗 ) is minimal. Since
𝐶𝑝 is the largest proper subgroup of 𝐶𝑝2 , it is enough to show that 𝜎 is not cohomologous to a cocycle
taking values in 𝐶𝑝 . Suppose, by contradiction, that there exists a cocycle 𝜏 : T → 𝐶𝑝 cohomologous
to 𝜎. Since 𝜏𝑝 = 1, we deduce that 𝜎(𝑔, 𝑡) 𝑝 =

∏∞
𝑖=1 𝜔

(𝑔𝑖2 ) 𝑡𝑔𝑖𝑖 𝜉
𝑝𝑔𝑖 is a coboundary. Therefore, there

exists 𝐹 : T → 𝑆1, such that

𝜎𝑝 (𝑔, 𝑡) =
𝐹 (𝑆𝑔𝑡)
𝐹 (𝑡) (37)

for every 𝑔 ∈ 𝐺 and 𝑡 ∈ 𝑇 . Observe that for every 𝑔, ℎ ∈ 𝐺, Δℎ𝜎
𝑝 (𝑔, 𝑡) is a constant in t. Therefore,

by (37), Δℎ1Δℎ2𝐹 is a constant for every ℎ1, ℎ2 ∈ 𝐺. Let 𝑠 ∈ T and define Δ𝑠𝐹 (𝑥) = 𝐹 (𝑠𝑥)
𝐹 (𝑥) . We claim

that Δ𝑠𝐹 (𝑥) is an eigenfunction. Let 𝑔1, 𝑔2 ∈ 𝐺, then Δ𝑔1Δ𝑔2Δ𝑠𝐹 (𝑥) = Δ𝑠Δ𝑔1Δ𝑔2𝐹 (𝑥) = 1. Hence, by
ergodicity, Δ𝑔2Δ𝑠𝐹 is constant and Δ𝑠𝐹 is an eigenfunction for every 𝑠 ∈ 𝑍 . Recall that translations by
𝑠 ∈ 𝑍 are continuous with respect to the 𝐿2-norm. In particular, there exists an open subgroup 𝑈 ≤ T ,
such that

‖Δ𝑠𝐹 − 1‖𝐿2 (𝜇T ) <
√

2 (38)

for all 𝑠 ∈ 𝑈. By ergodicity, the multiplicity of each eigenvalue is 1. Since eigenfunctions with different
eigenvalues are orthogonal, it follows that Δ𝑠𝐹 is a constant for all 𝑠 ∈ 𝑈. Otherwise, Δ𝑠𝐹 is orthogonal
to 1, and then

‖Δ𝑠𝐹 − 1‖2
𝐿2 (𝜇T ) = ‖Δ𝑠𝐹‖2

𝐿2 + ‖1‖2
𝐿2 = 2

which contradicts (38). Now, choose 𝑔 ∈ 𝐺, such that
∏∞

𝑖=1 𝜔
𝑔𝑖 ∈ 𝑈 (such g must exist by density).

Then, if we take 𝑠 = 𝜔𝑔, equation (37) implies that 𝜎𝑝 (𝑔, ·) is a constant. As 𝜎𝑝 (𝑔, 𝑡) clearly depends
on t, this is a contradiction. �

We now complete the proof of Theorem 6.2. Let 𝐵 ⊆ 𝐶𝑝 be as in Lemma 6.4. Let 𝜋 : 𝐶𝑝2 → 𝐶𝑝 be
the map 𝜋𝑖 (𝑥) = 𝑥𝑝1 , and let 𝐴 = T × 𝐵, where 𝐵 = 𝜋−1 (𝐵). Then, 𝜇𝑋 (𝐴) = |𝐵 |

𝑝 , and, as in the proof of
Lemma 6.5,

𝜇𝑋 (𝐴 ∩ 𝑇𝑎𝑝𝑔𝐴 ∩ 𝑇𝑏𝑝𝑔𝐴) =
|𝐵|
𝑝2 =

𝑝𝑙−2

|𝐵|𝑙−1 𝜇𝑋 (𝐴)
𝑙 < 𝜇𝑋 (𝐴)𝑙 .

This completes the proof. �
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7. 3-point configurations in Z2

In this section, we establish ergodic popular difference densities for all 3-point matrix patterns in Z2.
The results are summarised in Table 1 in the Introduction.

7.1. Ergodic popular difference densities when 𝑟 (𝑀1, 𝑀2) = (2, 1, 1)

The following theorem gives an affirmative answer to Question 1.12 for the group 𝐺 = Z2:

Theorem 7.1. Suppose 𝑀1 and 𝑀2 are 2 × 2 matrices, such that 𝑟 (𝑀1, 𝑀2) = (2, 1, 1). Then, for any
𝛼 ∈ (0, 1), epdd𝑀1 ,𝑀2 (𝛼) = 𝛼

3.

An example of the configurations handled by Theorem 7.1 is the class of all axis-aligned right
triangles in Z2, {(𝑎, 𝑏), (𝑎 + 𝑛, 𝑏), (𝑎, 𝑏 + 𝑚)}, which corresponds to the choice of matrices

𝑀1 =

(
1 0
0 0

)
and 𝑀2 =

(
0 0
0 1

)
.

Proof of Theorem 7.1. Without loss of generality, we may assume rk(𝑀1) = rk(𝑀2) = 1 and rk(𝑀2 −
𝑀1) = 2. Indeed, if rk(𝑀1) = 2, we may rearrange the expression

𝜇
(
𝐴 ∩ 𝑇−1

𝑀1 �𝑛𝐴 ∩ 𝑇
−1
𝑀2 �𝑛𝐴

)
= 𝜇
(
𝐴 ∩ 𝑇−1

(𝑀1−𝑀2) �𝑛𝐴 ∩ 𝑇
−1
−𝑀2 �𝑛𝐴

)
and the new matrices 𝑁1 = 𝑀1 − 𝑀2 and 𝑁2 = −𝑀2 satisfy the desired conditions.

We now break the proof into two cases depending on the diagonalisability of 𝑀1 and 𝑀2. Note that,
since 𝑀𝑖 has rank 1, its characteristic polynomial is of the form 𝑥(𝑥 − 𝑎) for some 𝑎 ∈ Z. Hence, if 𝑀𝑖

has a nonzero eigenvalue, then it has an integer eigenvalue (in this case, equal to a) and is diagonalisable.

Case 1: 𝑀1 or 𝑀2 has a nonzero eigenvalue.
Without loss of generality, we may assume that 𝑀1 has a nonzero eigenvalue and is therefore

diagonalisable. Hence, there is a nonsingular 2 × 2 integer matrix P, an integer 𝑎 ∈ Z and a rank 1
matrix 𝑁2 with integer entries, such that

𝑀1𝑃 = 𝑃

(
𝑎 0
0 0

)
, 𝑀2𝑃 = 𝑃𝑁2 and rk

(
𝑁2 −

(
𝑎 0
0 0

))
= 2.

It is straightforward to check that, in order to satisfy the constraints on rank, 𝑁2 must be of the form

𝑁2 =

(
𝑐𝑑 𝑐
𝑏𝑑 𝑏

)
with 𝑏 ≠ 0. By changing to the basis

( 1
−𝑑
)
,
(0
1
)
, we may further assume 𝑑 = 0.

Suppose (𝑋,X , 𝜇, (𝑇�𝑛)�𝑛∈Z2) is a measure-preserving Z2-system (we do not need to assume that the
system is ergodic here), and let 𝐴 ∈ X with 𝜇(𝐴) = 𝛼. Define a new Z2-action by 𝑆 �𝑛 := 𝑇𝑃 �𝑛. Then,

UC - lim
�𝑛∈Z2

𝜇
(
𝐴 ∩ 𝑇−1

𝑀1𝑃 �𝑛𝐴 ∩ 𝑇
−1
𝑀2𝑃 �𝑛𝐴

)
= UC - lim

�𝑛∈Z2
𝜇
(
𝐴 ∩ 𝑆−1

(𝑎𝑛1 ,0)𝐴 ∩ 𝑆
−1
(𝑐𝑛2 ,𝑏𝑛2) 𝐴

)
.

Now put 𝑆1 := 𝑆 (𝑎,0) and 𝑆2 := 𝑆 (𝑐,𝑏) . By Lemma 2.2 and the mean ergodic theorem, we have

UC - lim
�𝑛∈Z2

𝜇
(
𝐴 ∩ 𝑇−1

𝑀1𝑃 �𝑛𝐴 ∩ 𝑇
−1
𝑀2𝑃 �𝑛𝐴

)
= UC - lim

𝑛2∈Z
UC - lim

𝑛1∈Z
𝜇
(
𝐴 ∩ 𝑆−𝑛1

1 𝐴 ∩ 𝑆−𝑛2
2 𝐴
)

=
∫
𝑋

1𝐴 · 𝐸 (1𝐴 | I (𝑆1)) · 𝐸 (1𝐴 | I (𝑆2))

≥ 𝛼3,
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where the inequality in the last line follows from [13, Lemma 1.6]. Therefore, for any 𝜀 > 0, the set

𝑅𝜀 :=
{
�𝑛 ∈ Z2 : 𝜇

(
𝐴 ∩ 𝑇−1

𝑀1𝑃 �𝑛𝐴 ∩ 𝑇
−1
𝑀2𝑃 �𝑛𝐴

)
> 𝛼3 − 𝜀

}
is syndetic. Noting that P is nonsingular, it follows that the set 𝑃(𝑅𝜀) is also syndetic in Z2. But for any
�𝑚 ∈ 𝑃(𝑅𝜀), we have

𝜇
(
𝐴 ∩ 𝑇−1

𝑀1 �𝑚𝐴 ∩ 𝑇
−1
𝑀2 �𝑚𝐴

)
> 𝛼3 − 𝜀.

This shows epdd𝑀1 ,𝑀2 (𝛼) ≥ 𝛼
3.

To see the upper bound epdd𝑀1 ,𝑀2
(𝛼) ≤ 𝛼3, let (𝑋,X , 𝜇, (𝑇�𝑛)�𝑛∈Z2) be mixing of order 3. Then, for

any 𝐴 ∈ X , we have 𝜇
(
𝐴 ∩ 𝑇−1

�𝑛 𝐴 ∩ 𝑇−1
�𝑚 𝐴
)
→ 𝜇(𝐴)3 as �𝑛, �𝑚, �𝑚 − �𝑛→∞. Let P be a nonsingular 2× 2

matrix with integer entries and 𝑎, 𝑏, 𝑐 ∈ Z with 𝑎, 𝑏 ≠ 0, such that

𝑃𝑀1 =

(
𝑎 0
0 0

)
𝑃 and 𝑃𝑀2 =

(
0 𝑐
0 𝑏

)
𝑃.

The group of transformations 𝑇�𝑛 := 𝑇𝑃 �𝑛 is still mixing of order 3. Write �𝑚 = 𝑃�𝑛 for �𝑛 ∈ Z2. If 𝑚1 →∞
and 𝑚2 →∞, then

𝜇
(
𝐴 ∩ 𝑇−1

𝑀1 �𝑛𝐴 ∩ 𝑇
−1
𝑀2 �𝑛𝐴

)
= 𝜇
(
𝐴 ∩ 𝑇−1

(𝑎𝑚1 ,0) 𝐴 ∩ 𝑇
−1
(𝑐𝑚2 ,𝑏𝑚2) 𝐴

)
→ 𝜇(𝐴)3.

Hence, for any 𝜀 > 0, there is a finite set 𝐹 ⊆ Z, such that{
�𝑛 ∈ Z2 : 𝜇

(
𝐴 ∩ 𝑇−1

𝑀1 �𝑛𝐴 ∩ 𝑇
−1
𝑀2 �𝑛𝐴

)
> 𝜇(𝐴)3 + 𝜀

}
⊆
{
�𝑛 ∈ Z2 : 𝑃�𝑛 ∈ (𝐹 × Z) ∪ (Z × 𝐹)

}
.

A union of finitely many lines in Z2 is not syndetic, so

synd-sup�𝑛∈Z2𝜇
(
𝐴 ∩ 𝑇−1

𝑀1 �𝑛𝐴 ∩ 𝑇
−1
𝑀2 �𝑛𝐴

)
≤ 𝜇(𝐴)3.

Case 2: 𝑀1 and 𝑀2 have no nonzero eigenvalues.
Since 𝑀1 has rank 1, there is a nonsingular 2 × 2 integer matrix P, a nonzero integer 𝑎 ∈ Z and a

rank 1 matrix 𝑁2 with integer entries and characteristic polynomial 𝑥2, such that

𝑀1𝑃 = 𝑃

(
0 𝑎
0 0

)
, 𝑀2𝑃 = 𝑃𝑁2 and rk

(
𝑁2 −

(
0 𝑎
0 0

))
= 2.

Write

𝑁2 =

(
𝑠 𝑡
𝑢 𝑣

)
.

Since 𝑁2 has characteristic polynomial 𝑥2, we have 𝑠 + 𝑣 = 0 and 𝑠𝑣 = 𝑡𝑢. Therefore, if 𝑢 = 0, then
𝑠 = 𝑣 = 0. But then

𝑁2 −
(

0 𝑎
0 0

)
=

(
0 𝑡 − 𝑎
0 0

)
has rank at most 1. Thus, we must have 𝑢 ≠ 0. It follows that 𝑁2 can be written in the form

𝑁2 =

(
𝑑𝑏 −𝑑2𝑏
𝑏 −𝑑𝑏

)
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for some 𝑏, 𝑑 with 𝑏 ≠ 0. Changing to the basis
(1
0
)
,
(𝑑
1
)
, we may assume 𝑑 = 0 so that

𝑁2 =

(
0 0
𝑏 0

)
.

Given a Z2-system (𝑋,X , 𝜇, (𝑇�𝑛)�𝑛∈Z2), note that

𝜇
(
𝐴 ∩ 𝑇−1

𝑁1 �𝑛𝐴 ∩ 𝑇
−1
𝑁2 �𝑛𝐴

)
= 𝜇
(
𝐴 ∩ 𝑇−1

(𝑎𝑛2 ,0) 𝐴 ∩ 𝑇
−1
(0,𝑏𝑛1) 𝐴

)
.

Hence, replacing (𝑛1, 𝑛2) by (𝑛2, 𝑛1), we reduce to Case 1. �

7.2. Ergodic popular difference densities when 𝑟 (𝑀1, 𝑀2) = (1, 1, 1)

For matrix configurations with 𝑟 (𝑀1, 𝑀2) = (1, 1, 1), we must distinguish between several cases. First,
when 𝑀1 and 𝑀2 commute, a construction based on Behrend’s theorem shows that the ergodic popular
difference density decays faster than any polynomial:

Theorem 7.2. Suppose𝑀1 and𝑀2 are commuting 2×2 matrices, such that 𝑟 (𝑀1, 𝑀2) = (1, 1, 1). Then,
for any sufficiently small 𝛼 ∈ (0, 1), epdd𝑀1 ,𝑀2 (𝛼) < 𝛼

𝑐 log(1/𝛼) , where 𝑐 > 0 is an absolute constant.

Theorem 7.2 applies to collinear 3-point configurations up to scaling and translation.

Proof of Theorem 7.2. We first distinguish between two cases depending on diagonalisability of 𝑀1 and
𝑀2.

Case 1: 𝑀1 or 𝑀2 has a nonzero eigenvalue.
Without loss of generality, assume 𝑀1 has a nonzero eigenvalue and is therefore diagonalisable.

Since 𝑀2 and 𝑀2 − 𝑀1 are also rank 1 and commute with 𝑀1, there exists a nonsingular 2 × 2 matrix
P with integer entries and 𝑎, 𝑏 ∈ Z be distinct and nonzero, such that

𝑃𝑀1 =

(
𝑎 0
0 0

)
𝑃 and 𝑃𝑀2 =

(
𝑏 0
0 0

)
𝑃. (39)

Case 2: 𝑀1 and 𝑀2 have no nonzero eigenvalues.
Using the condition 𝑟 (𝑀1, 𝑀2) = (1, 1, 1), there is a nonsingular 2 × 2 integer matrix P, a nonzero

integer 𝑎 ∈ Z and a rank 1 matrix 𝑁2 with integer entries and characteristic polynomial 𝑥2, such that

𝑀1𝑃 = 𝑃

(
0 𝑎
0 0

)
, 𝑀2𝑃 = 𝑃𝑁2 and rk

(
𝑁2 −

(
0 𝑎
0 0

))
= 1.

Moreover, 𝑁2 commutes with the matrix
(

0 𝑎
0 0

)
. Write

𝑁2 =

(
𝑠 𝑡
𝑢 𝑣

)
.

Note that [(
0 𝑎
0 0

)
,

(
𝑠 𝑡
𝑢 𝑣

)]
=

(
𝑎𝑢 𝑎(𝑣 − 𝑠)
0 𝑎𝑢

)
,
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so 𝑢 = 0 and 𝑣 = 𝑠. On the other hand, since 𝑁2 has characteristic polynomial 𝑥2, we have 𝑠 + 𝑣 = 0 and
𝑠𝑣 = 𝑡𝑢. Hence, 𝑠 = 𝑣 = 0, and 𝑁2 is of the form

𝑁2 =

(
0 𝑏
0 0

)
with 𝑏 ∉ {0, 𝑎}.

Now, replacing (𝑛1, 𝑛2) ∈ Z2 by (𝑛2, 𝑛1) ∈ Z2 and using the identity(
0 𝑐
0 0

) (
𝑛2
𝑛1

)
=

(
𝑐 0
0 0

) (
𝑛1
𝑛2

)
for 𝑐 ∈ Z, we can reduce Case 2 to Case 1.

Without loss of generality, let P be a nonsingular 2 × 2 matrix with integer entries and 𝑎, 𝑏 ∈ Z
distinct and nonzero, such that (39) holds. Put 𝑑 := |det(𝑃) | ∈ N.

Define 𝑆 : T2 → T2 by 𝑆(𝑥, 𝑦) := (𝑥, 𝑦 + 𝑥). Let 𝑅 : T2 → T2 be the transformation 𝑅(𝑥, 𝑦) =
(2𝑥, 2𝑦+𝑥). Both S and R preserve the Haar probability measure 𝜇 onT2. We claim that the (Z≥0)2-action
generated by S and R is ergodic (with respect to 𝜇). To see this, suppose 𝑓 ∈ 𝐿2 (T2) is simultaneously
S- and R-invariant, and expand f as a Fourier series

𝑓 (𝑥, 𝑦) =
∑
𝑛,𝑚

𝑐𝑛,𝑚𝑒(𝑛𝑥 + 𝑚𝑦),

where 𝑒(𝑡) := 𝑒(2𝜋𝑖𝑡). Then

(𝑆 𝑓 ) (𝑥, 𝑦) =
∑
𝑛,𝑚

𝑐𝑛,𝑚𝑒((𝑛 + 𝑚)𝑥 + 𝑚𝑦) =
∑
𝑛,𝑚

𝑐𝑛−𝑚,𝑚𝑒(𝑛𝑥 + 𝑚𝑦).

Therefore, since 𝑆 𝑓 = 𝑓 , we have 𝑐𝑛,𝑚 = 𝑐𝑛−𝑚,𝑚 for all 𝑛, 𝑚 ∈ Z. By Parseval’s identity,
∑

𝑛,𝑚 |𝑐𝑛,𝑚 |2 =
‖ 𝑓 ‖2

2 < ∞, so 𝑐𝑛,𝑚 = 0 whenever 𝑚 ≠ 0. That is, 𝑓 (𝑥, 𝑦) =
∑

𝑛 𝑐𝑛,0𝑒(𝑛𝑥). Now,

(𝑅 𝑓 ) (𝑥, 𝑦) =
∑
𝑛

𝑐𝑛,0𝑒(2𝑛𝑥).

Hence, since 𝑅 𝑓 = 𝑓 , we have 𝑐2𝑛,0 = 𝑐𝑛,0 for every 𝑛 ∈ Z. Applying Parseval’s identity once again,
we conclude that 𝑐𝑛,0 = 0 for 𝑛 ≠ 0. Thus, 𝑓 (𝑥, 𝑦) = 𝑐0,0 is a constant function.

Fix 𝛼 ∈ (0, 1). By [8, Theorem 1.3], there exists a set 𝐴 ⊆ T2 with 𝜇(𝐴) = 𝛼, such that
𝜇
(
𝐴 ∩ 𝑆−𝑎𝑛𝐴 ∩ 𝑆−𝑏𝑛𝐴

)
< 𝛼𝑐 log(1/𝛼) for 𝑛 ≠ 0, where 𝑐 > 0 is an absolute constant.4

Let (𝑋,X , 𝜈, (𝑇�𝑛)�𝑛∈Z2) be an ergodic Z2-system and 𝐵 ∈ X with 𝜈(𝐵) = 𝛼, such that

𝜈
(
𝐵 ∩ 𝑇−1

�𝑛 𝐵 ∩ 𝑇−1
�𝑚 𝐵
)
= 𝜇(𝐴 ∩ 𝑆−𝑛1𝑅−𝑛2𝐴 ∩ 𝑆−𝑚1𝑅−𝑚2𝐴)

for every �𝑛, �𝑚 ∈ Z × Z≥0 (note that, because R is noninvertible, we cannot simply take 𝑋 = T2, 𝜈 = 𝜇,
𝐵 = 𝐴 and 𝑇�𝑛 = 𝑆𝑛1𝑅𝑛2 ). Then, let 𝑇�𝑛 := 𝑇𝑃 �𝑛 for �𝑛 ∈ Z2.

Since [Z2 : 𝑃(Z2)] = |det(𝑃) | = 𝑑 < ∞, the system
(
𝑋,X , 𝜈, (𝑇�𝑛)�𝑛∈Z2

)
has at most d ergodic

components. Hence, we may write the ergodic decomposition as 𝜈 = 1
𝑘

∑𝑘
𝑖=1 𝜈𝑖 for some 𝑘 ≤ 𝑑 and

some measure 𝜈𝑖 . For some 1 ≤ 𝑖 ≤ 𝑘 , we must have 𝜈𝑖 (𝐵) ≥ 𝛼. Without loss of generality, we may
therefore assume 𝜈1(𝐵) ≥ 𝛼.

4The statement of [8, Theorem 1.3] only gives a bound of the form 𝛼𝑙 rather than 𝛼𝑐 log(1/𝛼) . However, as noted in [8]
immediately after the statement, the construction of the set A gives this stronger bound via Behrend’s theorem on sets without
3-term arithmetic progressions [4]. Additionally, [8, Theorem 1.3] is only stated for the case 𝑎 = 1, 𝑏 = 2, but the same method
works for general 𝑎, 𝑏 (see, e.g. [2, Section 11]).

https://doi.org/10.1017/fms.2022.97 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.97


Forum of Mathematics, Sigma 45

Let �𝑛 ∈ Z2 \ {0}. Let �𝑚 = 𝑃�𝑛 ∈ Z2. Then

𝜈1

(
𝐵 ∩ 𝑇−1

𝑀1 �𝑛𝐵 ∩ 𝑇
−1
𝑀2 �𝑛𝐵

)
= 𝜈1

(
𝐵 ∩ 𝑇−1

(𝑎𝑚1 ,0)𝐵 ∩ 𝑇
−1
(𝑏𝑚1 ,0)𝐵

)
≤ 𝑑 · 𝜇

(
𝐴 ∩ 𝑆−𝑎𝑚1𝐴 ∩ 𝑆−𝑏𝑚1𝐴

)
.

Hence, if 𝜈1

(
𝐵 ∩ 𝑇−1

𝑀1 �𝑛
𝐵 ∩ 𝑇−1

𝑀2 �𝑛
𝐵
)
> 𝑑 · 𝛼𝑐 log(1/𝛼) , then 𝑚1 = 0. But since P is nonsingular,{
�𝑛 ∈ Z2 : 𝑃�𝑛 ∈ {0} × Z

}
= Q�𝑣 ∩ Z2,

where �𝑣 is the vector 𝑃−1 (0
1
)
∈ Q2. Such a set is never syndetic, so epdd𝑀1 ,𝑀2 (𝛼) ≤ 𝑑 · 𝛼

𝑐 log(1/𝛼) . For
𝑐′ < 𝑐 and 𝛼 sufficiently small, one has 𝑑 · 𝛼𝑐 log(1/𝛼) < 𝛼𝑐

′ log(1/𝛼) , so this completes the proof. �

Now suppose 𝑟 (𝑀1, 𝑀2) = (1, 1, 1), and 𝑀1 and 𝑀2 do not commute. In this case, 𝑀1 or 𝑀2 must be
diagonalisable,5 so we assume without loss of generality that 𝑀1 is diagonalisable. We then distinguish
between two cases, depending on the form of 𝑀2 when 𝑀1 is diagonalised. Call the pair of matrices
(𝑀1, 𝑀2) row-like if there is a nonsingular 2 × 2 matrix P with rational entries and rational numbers
𝑎, 𝑏, 𝑐 ∈ Q with 𝑎, 𝑏 ≠ 0, such that

𝑃𝑀1𝑃
−1 =

(
𝑎 0
0 0

)
and 𝑃𝑀2𝑃

−1 =

(
𝑐 𝑏
0 0

)
.

Similarly, call the pair (𝑀1, 𝑀2) column-like if there is a nonsingular 2×2 matrix P with rational entries
and rational numbers 𝑎, 𝑏, 𝑐 ∈ Q with 𝑎, 𝑏 ≠ 0, such that

𝑃𝑀1𝑃
−1 =

(
𝑎 0
0 0

)
and 𝑃𝑀2𝑃

−1 =

(
𝑐 0
𝑏 0

)
.

For row-like configurations, we can use the ‘Fubini’ property of uniform Cesàro limits (Lemma 2.2)
to show epdd(𝛼) = 𝛼3:

Theorem 7.3. Suppose 𝑀1 and 𝑀2 are 2 × 2 matrices with 𝑟 (𝑀1, 𝑀2) = (1, 1, 1), such that (𝑀1, 𝑀2)
is row-like. Then, for any 𝛼 ∈ (0, 1), epdd𝑀1 ,𝑀2 (𝛼) = 𝛼

3.

Proof. Let P be a nonsingular 2 × 2 matrix with integer entries, such that

𝑀1𝑃 = 𝑃

(
𝑎 0
0 0

)
and 𝑀2𝑃 = 𝑃

(
𝑐 𝑏
0 0

)
.

By changing to the basis
( 𝑏
−𝑐
)
,
(0
1
)
, we may assume 𝑐 = 0.

Let (𝑋,X , 𝜇, (𝑇�𝑛)�𝑛∈Z2) be a measure-preserving system, and let 𝐴 ∈ X with 𝜇(𝐴) = 𝛼 > 0. Define
a new Z2-action by 𝑇�𝑛 := 𝑇𝑃 �𝑛, and let 𝑆 := 𝑇(1,0) . Then

𝜇
(
𝐴 ∩ 𝑇−1

𝑀1𝑃 �𝑛𝐴 ∩ 𝑇
−1
𝑀2𝑃 �𝑛𝐴

)
= 𝜇
(
𝐴 ∩ 𝑆−𝑎𝑛1𝐴 ∩ 𝑆−𝑏𝑛2𝐴

)
.

5If neither 𝑀1 nor 𝑀2 are diagonalisable, then they both have characteristic polynomial 𝑥2. By a change of basis, we may

assume 𝑀1 is in its Jordan form 𝑀1 =

(
0 1
0 0

)
. Write 𝑀2 =

(
𝑎 𝑏
𝑐 𝑑

)
. The condition rk(𝑀2) = rk(𝑀2 − 𝑀1) = 1 implies that

𝑎𝑑 − 𝑏𝑐 = 𝑎𝑑 − (𝑏 − 1)𝑐 = 0, so 𝑐 = 0 and 𝑎𝑑 = 0. Moreover, since 𝑀2 has characteristic polynomial 𝑥2, we have 𝑎 + 𝑑 = 0.

Hence, 𝑀2 =

(
0 𝑏
0 0

)
. But then 𝑀2 commutes with 𝑀1.
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Thus, by Lemma 2.2, we have

UC - lim
�𝑛∈Z2

𝜇
(
𝐴 ∩ 𝑇−1

𝑀1𝑃 �𝑛𝐴 ∩ 𝑇
−1
𝑀2𝑃 �𝑛𝐴

)
≥ 𝛼3.

Since P is nonsingular, it follows that

synd-sup�𝑛∈Z2𝜇
(
𝐴 ∩ 𝑇−1

𝑀1 �𝑛𝐴 ∩ 𝑇
−1
𝑀2 �𝑛𝐴

)
≥ 𝛼3.

Now we will show epdd𝑀1 ,𝑀2 (𝛼) ≤ 𝛼
3. Let P be a nonsingular 2× 2 matrix with integer entries and

𝑎, 𝑏, 𝑐 ∈ Z with 𝑎, 𝑏 ≠ 0, such that

𝑃𝑀1 =

(
𝑎 0
0 0

)
𝑃 and 𝑃𝑀2 =

(
0 𝑏
0 0

)
𝑃.

Let (𝑋,X , 𝜇, 𝑆, 𝑅) be an ergodic Z2-system, such that S is mixing of order 3. Define 𝑇�𝑛 := 𝑆𝑛1𝑅𝑛2 and
𝑇�𝑛 := 𝑇𝑃 �𝑛 for �𝑛 ∈ Z2. Then, for 𝐴 ∈ X and �𝑚 = 𝑃�𝑛 ∈ Z2, we have

𝜇
(
𝐴 ∩ 𝑇−1

𝑀1 �𝑛𝐴 ∩ 𝑇
−1
𝑀2 �𝑛𝐴

)
= 𝜇
(
𝐴 ∩ 𝑆−𝑎𝑚1𝐴 ∩ 𝑆−𝑏𝑚2𝐴

)
.

Since S is mixing of order 3, given 𝜀 > 0, there exists a finite set 𝐹 ⊆ Z, such that{
�𝑛 ∈ Z2 : 𝜇

(
𝐴 ∩ 𝑇−1

𝑀1 �𝑛𝐴 ∩ 𝑇
−1
𝑀2 �𝑛𝐴

)
> 𝜇(𝐴)3 + 𝜀

}
⊆ 𝑃−1

({
�𝑚 ∈ Z2 : 𝑚1 ∈ 𝐹, 𝑚2 ∈ 𝐹, or 𝑏𝑚2 − 𝑎𝑚1 ∈ 𝐹

})
.

This set is a union of finitely many lines in Z2, so it is not syndetic. Hence,

synd-sup�𝑛∈Z2𝜇
(
𝐴 ∩ 𝑇−1

𝑀1 �𝑛𝐴 ∩ 𝑇
−1
𝑀2 �𝑛𝐴

)
≤ 𝜇(𝐴)3. �

The prototypical column-like configuration is the class of axis-aligned isosceles right triangles, for
which it is known by previous work of Chu [13] and Donoso and Sun [16] that 𝛼4 ≤ epdd(𝛼) ≤ 𝛼4−𝑜 (1) ,
where the 𝑜(1) term refers to a small positive value tending to 0 as 𝛼→ 0. We prove that these bounds
extend to all column-like configurations:

Theorem 7.4. Suppose 𝑀1 and 𝑀2 are 2×2 matrices with 𝑟 (𝑀1, 𝑀2) = (1, 1, 1), such that (𝑀1, 𝑀2) is
column-like. Then, for any 𝛼 ∈ (0, 1), epdd𝑀1 ,𝑀2 (𝛼) ≥ 𝛼

4. Moreover, for any 𝑙 < 4 and all sufficiently
small 𝛼 (depending on l), one has epdd𝑀1 ,𝑀2 (𝛼) ≤ 𝛼

𝑙 .

Proof. Let (𝑋,X , 𝜇, (𝑇�𝑛)�𝑛∈Z2) be an ergodic Z2-system. Since the pair (𝑀1, 𝑀2) is column-like, there
exists a nonsingular 2 × 2 matrix P with integer entries and integers 𝑎, 𝑏, 𝑐 ∈ Z with 𝑎, 𝑏 ≠ 0, such that

𝑀1𝑃 = 𝑃

(
𝑎 0
0 0

)
and 𝑀2𝑃 = 𝑃

(
𝑐 0
𝑏 0

)
.

Then, for any �𝑛 ∈ Z2, we have

𝜇
(
𝐴 ∩ 𝑇−1

𝑀1𝑃 �𝑛𝐴 ∩ 𝑇
−1
𝑀2𝑃 �𝑛𝐴

)
= 𝜇
(
𝐴 ∩ 𝑇−1

𝑃 (𝑎𝑛1 ,0) 𝐴 ∩ 𝑇
−1
𝑃 (𝑐𝑛1 ,𝑏𝑛1) 𝐴

)
.

Letting 𝑆 := 𝑇𝑃 (𝑎,0) and 𝑅 := 𝑇𝑃 (𝑐,𝑏) , we therefore have the identity

𝜇
(
𝐴 ∩ 𝑇−1

𝑀1𝑃 �𝑛𝐴 ∩ 𝑇
−1
𝑀2𝑃 �𝑛𝐴

)
= 𝜇(𝐴 ∩ 𝑆−𝑛1𝐴 ∩ 𝑅−𝑛1𝐴).
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Now, since T is ergodic and P is nonsingular, the Z2-action generated by S and R has finitely many
ergodic components. Thus, by [13, Theorem 1.1],{

𝑛 ∈ Z : 𝜇(𝐴 ∩ 𝑆−𝑛𝐴 ∩ 𝑅−𝑛𝐴) ≥ 𝜇(𝐴)4
}

is syndetic in Z.6 It follows that{
�𝑛 ∈ Z2 : 𝜇

(
𝐴 ∩ 𝑇−1

𝑀1 �𝑛𝐴 ∩ 𝑇
−1
𝑀2 �𝑛𝐴

)
≥ 𝜇(𝐴)4

}
is syndetic in Z2. Hence, epdd𝑀1 ,𝑀2 (𝛼) ≥ 𝛼

4.
Let 𝑙 < 4. By [16, Theorem 1.2], there exists an ergodic Z2-system (𝑋,X , 𝜇, 𝑆, 𝑅) and a set 𝐴 ∈ X ,

such that 𝜇(𝐴 ∩ 𝑆−𝑛𝐴 ∩ 𝑅−𝑛𝐴) < 𝜇(𝐴)𝑙 for every 𝑛 ≠ 0. Since the pair (𝑀1, 𝑀2) is column-like, there
is a nonsingular 2 × 2 matrix P with integer entries and integers 𝑎, 𝑏, 𝑐 ∈ Z with 𝑎, 𝑏 ≠ 0, such that

𝑃𝑀1 =

(
𝑎 0
0 0

)
𝑃 and 𝑃𝑀2 =

(
𝑐 0
𝑏 0

)
𝑃.

Define 𝑇�𝑛 := 𝑆𝑏𝑛1 (𝑅𝑎𝑆−𝑐)𝑛2 , and let 𝑇�𝑛 := 𝑇𝑃 �𝑛 for 𝑛 ∈ Z2. Note that
(
𝑋,X , 𝜇, (𝑇�𝑛)�𝑛∈Z2

)
has finitely

many ergodic components. To be more precise, the ergodic decomposition has the form 𝜇 = 1
𝑘

∑𝑘
𝑖=1 𝜇𝑖

with 𝑘 ≤ 𝑑 := |𝑎𝑏 det(𝑃) |. Without loss of generality, we may assume 𝜇1 (𝐴) ≥ 𝜇(𝐴).
Now, for any �𝑛 ≠ 0, we have

𝜇1

(
𝐴 ∩ 𝑇−1

𝑀1 �𝑛𝐴 ∩ 𝑇
−1
𝑀2 �𝑛𝐴

)
≤ 𝑑 · 𝜇

(
𝐴 ∩ 𝑆−𝑎𝑏𝑚1𝐴 ∩ 𝑅−𝑎𝑏𝑚1𝐴

)
,

where �𝑚 = 𝑃�𝑛 ∈ Z2. Therefore,{
�𝑛 ∈ Z2 : 𝜇1

(
𝐴 ∩ 𝑇−1

𝑀1 �𝑛𝐴 ∩ 𝑇
−1
𝑀2 �𝑛𝐴

)
≥ 𝑑 · 𝜇1 (𝐴)𝑙

}
⊆
{
�𝑛 ∈ Z2 : 𝑃�𝑛 ∈ {0} × Z

}
⊆ Q�𝑣 ∩ Z2,

where �𝑣 = 𝑃−1 (0
1
)
∈ Q2. The set Q�𝑣 ∩ Z2 is not syndetic, so this shows epdd𝑀1 ,𝑀2 (𝛼) ≤ 𝑑 · 𝛼𝑙 for

𝛼 = 𝜇(𝐴). Moreover, for any 𝑙 ′ < 𝑙, we have the inequality 𝑑 ·𝛼𝑙 < 𝛼𝑙′ for all𝛼 > 0 sufficiently small. �

7.3. Finitary combinatorial consequences and open questions

There are two cases in which our ergodic-theoretic results directly imply finitary combinatorial ana-
logues. Namely, when 𝑟 (𝑀1, 𝑀2) = (2, 1, 1) and when (𝑀1, 𝑀2) is a row-like pair of noncommuting
matrices with 𝑟 (𝑀1, 𝑀2) = (1, 1, 1), we establish the bound epdd𝑀1 ,𝑀2 (𝛼) ≥ 𝛼3 with the help of the
‘Fubini’ property for uniform Cesàro limits (Lemma 2.2), and this allows us to avoid assuming that the
underlying Z2-system is ergodic. For this reason, we can obtain the following combinatorial result:

Theorem 7.5. Let 𝑀1, 𝑀2 be 2 × 2 matrices with integer entries. Suppose that either

(i) 𝑟 (𝑀1, 𝑀2) = (2, 1, 1), or
(ii) 𝑟 (𝑀1, 𝑀2) = (1, 1, 1), 𝑀1 and 𝑀2 do not commute, and (𝑀1, 𝑀2) is row-like.

Then, for any 𝛼, 𝜀 > 0, there exists 𝑁0 = 𝑁0 (𝛼, 𝜀) ∈ N, such that, if 𝑁 ≥ 𝑁0 and 𝐴 ⊆ {1, . . . , 𝑁}2 has
|𝐴| ≥ 𝛼𝑁2, then there exists �𝑛 ∈ Z2 with 𝑀1�𝑛, 𝑀2�𝑛, (𝑀2 − 𝑀1) �𝑛 ≠ 0, such that��{�𝑥 ∈ Z2 : {�𝑥, �𝑥 + 𝑀1�𝑛, �𝑥 + 𝑀2�𝑛} ⊆ 𝐴

}�� > (𝛼3 − 𝜀)𝑁2.

6In [13], it is assumed that the system (𝑋,X , 𝜇, 𝑆, 𝑅) is ergodic. However, the proof easily extends to the case that the system
has finitely many ergodic components by noting that all of the ergodic components will have the same Kronecker factor.
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Proof. Let 𝛼, 𝜀 > 0, and suppose no such 𝑁0 exists. Then, there is an increasing sequence (𝑁𝑘 )𝑘∈N in
N and sets 𝐴𝑘 ⊆ {1, . . . , 𝑁𝑘 }2 with |𝐴𝑘 | ≥ 𝛼𝑁2

𝑘 , such that

|𝐴𝑘 ∩ (𝐴𝑘 − 𝑀1�𝑛) ∩ (𝐴𝑘 − 𝑀2�𝑛) | ≤ (𝛼3 − 𝜀)𝑁2
𝑘

whenever 𝑀1�𝑛, 𝑀2�𝑛, (𝑀2 − 𝑀1) �𝑛 ≠ 0.
For notational convenience, let 𝐴𝑘,0 := Z2 \ 𝐴𝑘 and 𝐴𝑘,1 := 𝐴𝑘 . By passing to a subsequence if

necessary, we may assume without loss of generality that

lim
𝑘→∞

�� (𝐴𝑘,𝑖1 − �𝑛1
)
∩ · · · ∩

(
𝐴𝑘,𝑖𝑟 − �𝑛𝑟

)
∩ {1, . . . , 𝑁𝑘 }2

��
𝑁2
𝑘

(40)

exists for all 𝑟 ∈ N, �𝑛1, . . . , �𝑛𝑟 ∈ Z2 and 𝑖1, . . . , 𝑖𝑟 ∈ {0, 1}. Hence, we may define a measure 𝜇 on the
sequence space {0, 1}Z2 by setting

𝜇({𝑥 ∈ 𝑋 : 𝑥(�𝑛1) = 𝑖1, . . . , 𝑥(�𝑛𝑟 ) = 𝑖𝑟 })

equal to the limit in (40) and extending with the use of Kolmogorov’s extension theorem. Since(
{1, . . . , 𝑁𝑘 }2)

𝑘∈N is a Følner sequence in Z2, the measure 𝜇 is invariant under the shift transformations
(𝑇�𝑛𝑥) ( �𝑚) := 𝑥( �𝑚 + �𝑛).

Let 𝐴 := {𝑥 ∈ 𝑋 : 𝑥(�0) = 1}. Then 𝜇(𝐴) = lim𝑘→∞
|𝐴𝑘 |
𝑁 2

𝑘

≥ 𝛼. On the other hand, if 𝑀1�𝑛, 𝑀2�𝑛, (𝑀2−
𝑀1) �𝑛 ≠ 0, then

𝜇
(
𝐴 ∩ 𝑇−1

𝑀1 �𝑛𝐴 ∩ 𝑇
−1
𝑀2 �𝑛𝐴

)
= 𝜇
(
{𝑥 ∈ 𝑋 : 𝑥(�0) = 𝑥(𝑀1�𝑛) = 𝑥(𝑀2�𝑛) = 1}

)
= lim

𝑘→∞

|𝐴𝑘 ∩ (𝐴𝑘 − 𝑀1�𝑛) ∩ (𝐴𝑘 − 𝑀2�𝑛) |
𝑁2
𝑘

≤ 𝛼3 − 𝜀.

Hence,

𝑅𝜀 :=
{
�𝑛 ∈ Z2 : 𝜇

(
𝐴 ∩ 𝑇−1

𝑀1 �𝑛𝐴 ∩ 𝑇
−1
𝑀2 �𝑛𝐴

)
> 𝜇(𝐴)3 − 𝜀

}
⊆ ker(𝑀1) ∪ ker(𝑀2) ∪ ker(𝑀2 − 𝑀1).

But by the proofs of Theorems 7.1 and 7.3, 𝑅𝜀 is a syndetic subset of Z2, so this is a contradiction. �

For general 3-point matrix patterns in Z2, it remains an open problem to fully determine (finitary
combinatorial) popular difference densities. One particularly attractive case, which can be seen as a
finitary version of Question 1.12 for the group 𝐺 = Z2, is the following:

Conjecture 7.6. Let 𝑀1 and 𝑀2 be 2× 2 matrices with integer entries, such that 𝑀2 −𝑀1 has full rank.
Then, for any 𝛼, 𝜀 > 0, there exists 𝑁0 = 𝑁0 (𝛼, 𝜀) ∈ N, such that, if 𝑁 ≥ 𝑁0 and 𝐴 ⊆ {1, . . . , 𝑁}2 has
cardinality |𝐴| ≥ 𝛼𝑁2, then there exists �𝑛 ∈ Z2 with 𝑀1�𝑛, 𝑀2�𝑛 ≠ 0, such that��{�𝑥 ∈ Z2 : {�𝑥, �𝑥 + 𝑀1�𝑛, �𝑥 + 𝑀2�𝑛} ⊆ 𝐴

}�� > (𝛼3 − 𝜀)𝑁2.

The special case when 𝑀1, 𝑀2 and 𝑀2 − 𝑀1 are all invertible, Conjecture 7.6 was verified by [12,
Theorem 1.1]. Moreover, Theorem 7.5 shows that Conjecture 7.6 holds when 𝑀1 and 𝑀2 are both rank
1 matrices. The most interesting remaining case is when 𝑀1 has full rank and 𝑀2 is a rank 1 matrix.

Finally, the column-like family of configurations {(𝑎, 𝑏), (𝑎+𝑛, 𝑏), (𝑎, 𝑏+𝑛)}, known as corners, has
been well studied from the perspective of popular differences in finitary combinatorics. In particular, it
is known that the popular difference density for corners is of the form 𝛼4−𝑜 (1) (see [11] and also [17, 25]

https://doi.org/10.1017/fms.2022.97 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.97


Forum of Mathematics, Sigma 49

for an analogous result in a finite characteristic setting). To the authors’ knowledge, such results are not
known for general column-like matrix patterns, but we anticipate that techniques for handling corners
should apply in this generality with only minor modifications needed.

8. Khintchine-type recurrence for actions of semigroups

As a consequence of Theorem 1.13, we obtain the following combinatorial result. For any set 𝐸 ⊆ Q>0
of positive multiplicative upper Banach density 𝑑∗𝑚𝑢𝑙𝑡 (𝐸) > 0 and any 𝜀 > 0, there exists 𝑞 ∈ Q>0 \ {1},
such that

𝑑∗𝑚𝑢𝑙𝑡

(
𝐸 ∩ 𝑞−1𝐸 ∩ 𝑞−2𝐸

)
> 𝑑∗𝑚𝑢𝑙𝑡 (𝐸)

3 − 𝜀

(in fact, the set of such q is multiplicatively syndetic). More generally, for any countable field F, any set
𝐸 ⊆ F× of positive multiplicative upper Banach density 𝑑∗𝑚𝑢𝑙𝑡 (𝐸) > 0 and any 𝜀 > 0, the set of 𝑥 ∈ F×,
such that

𝑑∗𝑚𝑢𝑙𝑡

(
𝐸 ∩ 𝑥−1𝐸 ∩ 𝑥−2𝐸

)
> 𝑑∗𝑚𝑢𝑙𝑡 (𝐸)

3 − 𝜀

is multiplicatively syndetic.7 This is suggestive of the following problem. Let R be an integral domain
(for example, R can be the ring Z, the ring of integers of a number field or the polynomial ring F[𝑡] over
a finite field F). Given a set 𝐸 ⊆ 𝑅× of positive multiplicative upper Banach density 𝑑∗𝑅,𝑚𝑢𝑙𝑡 (𝐸) > 0
and 𝜀 > 0, does there exist 𝑟 ∈ 𝑅 \ {1}, such that

𝑑∗𝑅,𝑚𝑢𝑙𝑡

(
𝐸 ∩ 𝐸/𝑟 ∩ 𝐸/𝑟2

)
> 𝑑∗𝑅,𝑚𝑢𝑙𝑡 (𝐸)

3 − 𝜀,

where 𝐸/𝑟 := {𝑡 ∈ 𝑅 : 𝑟𝑡 ∈ 𝐸} for 𝑟 ∈ 𝑅? The goal of this section is to transfer our results into the
setting of cancellative abelian semigroups in order to answer this question affirmatively.

8.1. The group generated by a cancellative abelian semigroup

Let (𝑆, +) be a countable cancellative abelian semigroup. That is, S is a countable set equipped with a
commutative and associative binary operation +, such that if 𝑠 + 𝑡 = 𝑠 + 𝑟 for some 𝑟, 𝑠, 𝑡 ∈ 𝑆, then 𝑡 = 𝑟.

We can define a group 𝐺𝑆 as the set of formal differences {𝑠 − 𝑡 : 𝑠, 𝑡 ∈ 𝑆} where we identify
𝑠 − 𝑡 and 𝑠′ − 𝑡 ′ if 𝑠 + 𝑡 ′ = 𝑠′ + 𝑡. More formally, we may define an equivalence relation ∼ on 𝑆2 by
(𝑠, 𝑡) ∼ (𝑠′, 𝑡 ′) if 𝑠 + 𝑡 ′ = 𝑠′ + 𝑡. Then 𝐺𝑆 is the set of equivalence classes 𝑆2/∼ with the operation
[(𝑠, 𝑡)] + [(𝑠′, 𝑡 ′)] := [(𝑠 + 𝑠′, 𝑡 + 𝑡 ′)]. It is easy to check that this operation is well defined because S is
cancellative. Moreover,𝐺𝑆 has an identity 0 := [(𝑠, 𝑠)], and for any 𝑠, 𝑡 ∈ 𝑆, we have [(𝑠, 𝑡)]+[(𝑡, 𝑠)] = 0.
Thus, 𝐺𝑆 is a group. Note that there is a natural embedding 𝑆 → 𝐺𝑆 given by 𝑠 ↦→ [(𝑠 + 𝑠, 𝑠)].

8.2. Notions of largeness

For a set 𝐸 ⊆ 𝑆 and an element 𝑡 ∈ 𝑆, let 𝐸 − 𝑡 := {𝑠 ∈ 𝑆 : 𝑠 + 𝑡 ∈ 𝐸} and 𝐸 + 𝑡 := {𝑠 + 𝑡 : 𝑠 ∈ 𝑆}. The
following definition summarises combinatorial notions of largeness that we will use, some of which are
defined above in the setting of abelian groups.
Definition 8.1. Let (𝑆, +) be a countable cancellative abelian semigroup.
◦ A set 𝐸 ⊆ 𝑆 is syndetic if there are finitely many elements 𝑡1, . . . , 𝑡𝑘 ∈ 𝑆, such that

⋃𝑘
𝑖=1 (𝐸 − 𝑡𝑖) = 𝑆.

◦ A set 𝑇 ⊆ 𝑆 is thick if for any finite set 𝐹 ⊆ 𝑆, there exists 𝑡 ∈ 𝑆, such that 𝐹 + 𝑡 ⊆ 𝑇 .

7In fact, our results show that for any 𝑘 ∈ N, 𝑑∗mult

(
𝐸 ∩ 𝑥−𝑘𝐸 ∩ 𝑥−(𝑘+1)𝐸

)
and 𝑑∗mult

(
𝐸 ∩ 𝑥−1𝐸 ∩ 𝑥−𝑘𝐸

)
can be made

arbitrarily close to 𝑑∗mult (𝐸)
3 for a multiplicatively syndetic set of 𝑥 ∈ F×. On the other hand, by Theorem 1.14, there are

𝑛, 𝑚 ∈ N, such that 𝑑∗mult (𝐸 ∩ 𝑥−𝑛𝐸 ∩ 𝑥−𝑚𝐸) is much smaller than 𝑑∗mult (𝐸)
3 for all 𝑥 ≠ 1.
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◦ A set 𝑃 ⊆ 𝑆 is piecewise syndetic if there is a syndetic set 𝐸 ⊆ 𝑆 and a thick set 𝑇 ⊆ 𝑆, such that
𝑃 = 𝐸 ∩ 𝑇 .

◦ A sequence (𝐹𝑁 )𝑁 ∈N of finite subsets of S is a Følner sequence if, for any 𝑡 ∈ 𝑆,

| (𝐹𝑁 + 𝑡)
𝐹𝑁 |
|𝐹𝑁 |

→ 0.

◦ The lower Banach density of a set 𝐸 ⊆ 𝑆 is the quantity

𝑑∗(𝐸) := inf
{
lim inf
𝑁→∞

|𝐸 ∩ 𝐹𝑁 |
|𝐹𝑁 |

: (𝐹𝑁 )𝑁 ∈N is a Følner sequence in 𝑆
}
.

◦ The upper Banach density of a set 𝐸 ⊆ 𝑆 is the quantity

𝑑∗(𝐸) := sup
{
lim sup
𝑁→∞

|𝐸 ∩ 𝐹𝑁 |
|𝐹𝑁 |

: (𝐹𝑁 )𝑁 ∈N is a Følner sequence in 𝑆
}
.

The following is a standard characterisation of syndetic and thick sets (see, e.g. [7, Section 2]).

Proposition 8.2. Let (𝑆, +) be a countable cancellative abelian semigroup.

1. E is syndetic if and only if 𝑑∗(𝐸) > 0 if and only if 𝐸 ∩ 𝑇 ≠ ∅ for any thick set 𝑇 ⊆ 𝑆;
2. T is thick if and only if 𝑑∗(𝑇) = 1 if and only if 𝑇 ∩ 𝐸 ≠ ∅ for any syndetic set 𝐸 ⊆ 𝑆.

Lemma 8.3. Let (𝑆, +) be a countable cancellative abelian semigroup. Then S is thick in 𝐺𝑆 .

Proof. Let 𝐹 ⊆ 𝐺𝑆 be a finite set. Write 𝐹 = {𝑠𝑖 − 𝑡𝑖 : 1 ≤ 𝑖 ≤ 𝑘}, where 𝑠𝑖 , 𝑡𝑖 ∈ 𝑆. Put 𝑡 =
∑𝑘

𝑖=1 𝑡𝑖 ∈ 𝑆.
Then

𝐹 + 𝑡 =
{
𝑠𝑖 +
∑
𝑗≠𝑖

𝑡 𝑗 : 1 ≤ 𝑖 ≤ 𝑘
}
⊆ 𝑆.

�

The fact that S is thick in 𝐺𝑆 is closely related to the fact that any Følner sequence in S is also a
Følner sequence in 𝐺𝑆 , from which we deduce the following density result:

Proposition 8.4. Let 𝐸 ⊆ 𝑆. Then 𝑑∗𝑆 (𝐸) = 𝑑
∗
𝐺𝑆
(𝐸).

Proof. To show the inequality 𝑑∗𝐺𝑆
(𝐸) ≥ 𝑑∗𝑆 (𝐸), it suffices to show that any Følner sequence in S is a

Følner sequence in 𝐺𝑆 . Let (𝐹𝑁 )𝑁 ∈N be a Følner sequence in S, and let 𝑥 ∈ 𝐺𝑆 . We want to show

| (𝐹𝑁 + 𝑥)
𝐹𝑁 |
|𝐹𝑁 |

→ 0.

Write 𝑥 = 𝑠 − 𝑡 with 𝑠, 𝑡 ∈ 𝑆. Then

| (𝐹𝑁 + 𝑥)
𝐹𝑁 |
|𝐹𝑁 |

=
| (𝐹𝑁 + 𝑠)
(𝐹𝑁 + 𝑡) |

|𝐹𝑁 |
≤ |(𝐹𝑁 + 𝑠)
𝐹𝑁 |

|𝐹𝑁 |
+ |𝐹𝑁
(𝐹𝑁 + 𝑡) |

|𝐹𝑁 |
→ 0.

Hence, (𝐹𝑁 )𝑁 ∈N is a Følner sequence in 𝐺𝑆 as claimed.
Now we show the reverse inequality 𝑑∗𝑆 (𝐸) ≥ 𝑑∗𝐺𝑆

(𝐸). If 𝑑∗𝐺𝑆
(𝐸) = 0, there is nothing to show, so

assume 𝑑∗𝐺𝑆
(𝐸) > 0. Let m be an invariant mean on 𝐺𝑆 , such that 𝑚(𝐸) = 𝑑∗𝐺𝑆

(𝐸). Put 𝑐 = 𝑚(𝑆) ≥
𝑚(𝐸) > 0. Then, 𝑚 := 1

𝑐𝑚 is an invariant mean on S. Moreover, 𝑚(𝐸) = 1
𝑐𝑚(𝐸) ≥ 𝑚(𝐸) = 𝑑

∗
𝐺𝑆
(𝐸).

Therefore, 𝑑∗𝑆 (𝐸) ≥ 𝑚(𝐸) ≥ 𝑑
∗
𝐺𝑆
(𝐸). �

Lemma 8.5. Suppose 𝐸 ⊆ 𝐺𝑆 is syndetic in 𝐺𝑆 . Then, 𝐸 ∩ 𝑆 is syndetic in S.
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Proof. Let 𝑥1, . . . , 𝑥𝑘 ∈ 𝐺𝑆 , such that
⋃𝑘

𝑖=1 (𝐸 − 𝑥𝑖) = 𝐺𝑆 . By Lemma 8.3, S is thick, so we may
assume 𝑥𝑖 ∈ 𝑆 for each 𝑖 = 1, . . . , 𝑘 . We claim

𝑘⋃
𝑖=1

((𝐸 ∩ 𝑆) − 𝑥𝑖) ⊇ 𝑆.

It suffices to check (𝐸 ∩ 𝑆) − 𝑥𝑖 ⊇ (𝐸 − 𝑥𝑖) ∩ 𝑆 for each 𝑖 = 1, . . . , 𝑘 . Suppose 𝑦 ∈ (𝐸 − 𝑥𝑖) ∩ 𝑆, and
let 𝑡 ∈ 𝐸 , such that 𝑡 − 𝑥𝑖 = 𝑦. Then, 𝑡 = 𝑦 + 𝑥𝑖 ∈ 𝑆 + 𝑆 ⊆ 𝑆. Hence, 𝑦 ∈ (𝐸 ∩ 𝑆) − 𝑥𝑖 as desired. �

8.3. Extending main results to actions of cancellative abelian semigroups

Any homomorphism 𝜑 : 𝑆 → 𝑆 extends uniquely to a homomorphism 𝜑 : 𝐺𝑆 → 𝐺𝑆 via 𝜑(𝑠 − 𝑡) =
𝜑(𝑠) − 𝜑(𝑡). To extend our Khintchine-type results to the semigroup setting, we need a condition on 𝜑
characterising when 𝜑(𝐺𝑆) has finite index in 𝐺𝑆 .

Proposition 8.6. Let (𝑆, +) be a countable cancellative abelian semigroup. Let 𝜑 : 𝑆 → 𝑆 be a
homomorphism, and let 𝜑 : 𝐺𝑆 → 𝐺𝑆 be the group homomorphism 𝜑(𝑠 − 𝑡) := 𝜑(𝑠) − 𝜑(𝑡). The
following are equivalent:

(i) 𝜑(𝑆) is a piecewise syndetic subset of S;
(ii) 𝜑(𝐺𝑆) has finite index in 𝐺𝑆 .

Proof. Let 𝑇 := 𝜑(𝑆), and let 𝐻 := 𝜑(𝐺𝑆). Note that 𝐻 = 𝑇 − 𝑇 = 𝐺𝑇 .
(i) =⇒ (ii). Suppose T is piecewise syndetic in S. Then, 𝑑∗𝑆 (𝑇) > 0. Thus, by Proposition 8.4,

𝑑∗𝐺𝑆
(𝐻) ≥ 𝑑∗𝐺𝑆

(𝑇) = 𝑑∗𝑆 (𝑇) > 0. But in the group 𝐺𝑆 , we have the identity

𝑑∗𝐺𝑆
(𝐻) = 1

[𝐺𝑆 : 𝐻] ,

so [𝐺𝑆 : 𝐻] < ∞.
(ii) =⇒ (i). Suppose H has finite index in 𝐺𝑆 . Then, H is a syndetic subset of 𝐺𝑆 , so 𝐻 ∩ 𝑆 is

syndetic in S by Lemma 8.5. Moreover, by Lemma 8.3, T is a thick subset of H. Let 𝑇 := 𝑇 ∪ (𝑆 \ 𝐻)
so that 𝑇 = 𝑇 ∩ (𝐻 ∩ 𝑆). We claim that 𝑇 is thick in S.

Let 𝐹 ⊆ 𝑆 be a finite set. Put 𝐹1 = 𝐹 ∩𝐻 and 𝐹2 = 𝐹 \𝐻. Since T is a thick subset of H, there exists
𝑥 ∈ 𝐻, such that 𝐹1+𝑥 ⊆ 𝑇 . Write 𝑥 = 𝑠−𝑡with 𝑠, 𝑡 ∈ 𝑇 ⊆ 𝐻∩𝑆. Then, 𝐹1+𝑠 = 𝐹1+𝑥+𝑡 ⊆ 𝑇+𝑡 ⊆ 𝑇 . Now,
since 𝑠 ∈ 𝐻∩𝑆 and H is a group, we have 𝐹2+𝑠 ⊆ 𝑆\𝐻. Thus, 𝐹+𝑠 = (𝐹1+𝑠)∪(𝐹2+𝑠) ⊆ 𝑇∪(𝑆\𝐻) = 𝑇 .

This shows that 𝑇 is a thick subset of S, so 𝑇 = 𝑇 ∩ (𝐻 ∩ 𝑆) is piecewise syndetic in S. �

Now we can extend Theorems 1.11 and 1.13 to the semigroup setting:

Theorem 8.7. Let (𝑆, +) be a countable cancellative abelian semigroup. Let 𝜑, 𝜓 : 𝑆 → 𝑆 be homo-
morphisms. If at least two of the three subsemigroups 𝜑(𝑆), 𝜓(𝑆) and (𝜑+𝜓) (𝑆) are piecewise syndetic
in S, then, for any set 𝐸 ⊆ 𝑆 with positive upper Banach density 𝑑∗𝑆 (𝐸) > 0 and any 𝜀 > 0, the set{

𝑠 ∈ 𝑆 : 𝑑∗𝑆 (𝐸 ∩ (𝐸 − 𝜑(𝑠)) ∩ (𝐸 − (𝜑 + 𝜓) (𝑠))) > 𝑑
∗
𝑆 (𝐸)

3 − 𝜀
}

is syndetic in S.

Remark 8.8. We use the pair {𝜑, 𝜑 +𝜓} rather than {𝜑, 𝜓} since the difference 𝜓 − 𝜑 is not necessarily
defined as a map into S.

Proof. By Proposition 8.4, we have 𝛿 := 𝑑∗𝐺𝑆
(𝐸) = 𝑑∗𝑆 (𝐸) > 0. Let 𝜑 and 𝜓 be the extensions of 𝜑 and

𝜓 to 𝐺𝑆 . By Proposition 8.6, at least two of the subgroups 𝜑(𝐺𝑆), 𝜓(𝐺𝑆) and
(
𝜑 + 𝜓

)
(𝐺𝑆) have finite

https://doi.org/10.1017/fms.2022.97 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.97


52 E. Ackelsberg, V. Bergelson and O. Shalom

index in 𝐺𝑆 . Hence, by Theorem 1.11, the set

𝑅 :=
{
𝑔 ∈ 𝐺𝑆 : 𝑑∗𝐺𝑆

(
𝐸 ∩ (𝐸 − 𝜑(𝑔)) ∩

(
𝐸 −
(
𝜑 + 𝜓

)
(𝑔)
))
> 𝛿3 − 𝜀

}
is syndetic in 𝐺𝑆 .

By Lemma 8.5, the set 𝑅 ∩ 𝑆 is syndetic in S. But

𝑅 ∩ 𝑆 =
{
𝑠 ∈ 𝑆 : 𝑑∗𝑆 (𝐸 ∩ (𝐸 − 𝜑(𝑠)) ∩ (𝐸 − (𝜑 + 𝜓) (𝑠))) > 𝛿

3 − 𝜀
}
,

so this completes the proof. �

Theorem 8.9. Let (𝑆, +) be a countable cancellative abelian semigroup. Let 𝑎, 𝑏 ∈ N. If at least one
of the three subsemigroups 𝑎𝑆, 𝑏𝑆 or (𝑎 + 𝑏)𝑆 is piecewise syndetic in S, then, for any set 𝐸 ⊆ 𝑆 with
positive upper Banach density 𝑑∗𝑆 (𝐸) > 0 and any 𝜀 > 0, the set{

𝑠 ∈ 𝑆 : 𝑑∗𝑆 (𝐸 ∩ (𝐸 − 𝑎𝑠) ∩ (𝐸 − (𝑎 + 𝑏)𝑠)) > 𝑑
∗
𝑆 (𝐸)

3 − 𝜀
}

is syndetic in S.

Proof. The proof is identical to the proof of Theorem 8.7, except one must use Theorem 1.13 in place
of Theorem 1.11. �

8.4. Two combinatorial questions

Applying Theorem 8.9 in the semigroup (N, ·), for any 𝐸 ⊆ Nwith positive multiplicative upper Banach
density 𝑑∗𝑚𝑢𝑙𝑡 (𝐸) > 0, any 𝑘 ∈ N and any 𝜀 > 0, the set of 𝑚 ∈ N, such that

𝑑∗𝑚𝑢𝑙𝑡

(
𝐸 ∩ 𝐸/𝑚𝑘 ∩ 𝐸/𝑚𝑘+1

)
> 𝑑∗𝑚𝑢𝑙𝑡 (𝐸)

3 − 𝜀

is multiplicatively syndetic in N. It is natural to ask if a finitary variant of this result holds.

Question 8.10. Let 𝑝1, 𝑝2, . . . be an enumeration of the positive prime numbers. Let 𝛿, 𝜀 > 0, and let
𝑘 ∈ N. Does there exists 𝑁 = 𝑁 (𝑘, 𝛿, 𝜀) ∈ N, such that the following holds: for any 𝑛 ≥ 𝑁 and any set
𝐴 ⊆
{
𝑝𝑟1

1 . . . 𝑝
𝑟𝑛
𝑛 : 0 ≤ 𝑟𝑖 ≤ 𝑛

}
with |𝐴| ≥ 𝛿𝑛𝑛, there exists 𝑦 ∈ N \ {1}, such that��{𝑥 ∈ N : {𝑥, 𝑥𝑦𝑘 , 𝑥𝑦𝑘+1} ⊆ 𝐴

}�� > (𝛿3 − 𝜀
)
𝑛𝑛.

Now, we describe an application of Theorem 8.7. Let 𝑝1, 𝑝2, . . . and 𝑞1, 𝑞2, . . . be enumerations
of the positive prime numbers. The map 𝜑 : N → N defined by 𝜑

(∏𝑛
𝑖=1 𝑝

𝑟𝑖
𝑖

)
:=
∏𝑛

𝑖=1 𝑞
𝑟𝑖
𝑖 is an

automorphism of the semigroup (N, ·). Hence, by Theorem 8.7, if 𝐸 ⊆ N has positive multiplicative
upper Banach density 𝑑∗𝑚𝑢𝑙𝑡 (𝐸) > 0 and 𝜀 > 0, then there is a multiplicatively syndetic set of numbers
𝑦 =
∏𝑛

𝑖=1 𝑝
𝑟𝑖
𝑖 ∈ N, such that

𝑑∗𝑚𝑢𝑙𝑡

({
𝑥 ∈ N :

{
𝑥, 𝑥

𝑛∏
𝑖=1

𝑝𝑟𝑖𝑖 , 𝑥
𝑛∏
𝑖=1

𝑞𝑟𝑖𝑖

}
⊆ 𝐸
})

> 𝑑∗𝑚𝑢𝑙𝑡 (𝐸)
3 − 𝜀. (41)

The IP Szemerédi theorem of Furstenberg and Katznelson [20] implies that, for any 𝑘 ∈ N and any
multiplicative automorphisms 𝜑1, . . . , 𝜑𝑘 : N→ N, the set of 𝑚 ∈ N, such that

𝑑∗𝑚𝑢𝑙𝑡 (𝐸 ∩ 𝐸/𝜑1 (𝑚) ∩ · · · ∩ 𝐸/𝜑𝑘 (𝑚)) > 0

is a multiplicative IP∗ set and, hence, multiplicatively syndetic. It is therefore natural to ask if a large
intersections variant holds for families of more than two multiplicative automorphisms:
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Question 8.11. Let 𝑝1, 𝑝2, . . . be the enumeration of the positive prime numbers in increasing order.
For each 𝑗 ∈ N, let 𝑞 𝑗 ,1, 𝑞 𝑗 ,2, . . . be a distinct enumeration of the positive prime numbers. For which
𝑘 ∈ N does the following hold: for any 𝐸 ⊆ N with 𝑑∗𝑚𝑢𝑙𝑡 (𝐸) > 0 and any 𝜀 > 0, there exists
𝑦 =
∏𝑛

𝑖=1 𝑝
𝑟𝑖
𝑖 ∈ N \ {1}, such that

𝑑∗𝑚𝑢𝑙𝑡

({
𝑥 ∈ N :

{
𝑥, 𝑥

𝑛∏
𝑖=1

𝑞𝑟𝑖1,𝑖 , 𝑥
𝑛∏
𝑖=1

𝑞𝑟𝑖2,𝑖 , . . . , 𝑥
𝑛∏
𝑖=1

𝑞𝑟𝑖𝑘,𝑖

}
⊆ 𝐸
})

> 𝑑∗𝑚𝑢𝑙𝑡 (𝐸)
𝑘+1 − 𝜀. (42)

Note that (42) holds for 𝑘 ≤ 2 (see (41) and the discussion above).

A. Proof of Lemma 3.6

In this section we prove Lemma 3.6, restated here for the convenience of the reader:
Lemma A.1 (Lemma 3.5). Let (𝑋,X , 𝜇, (𝑇𝑔)𝑔∈𝐺) be a G-system, and let 𝐻 ≤ 𝐺 be a subgroup of finite
index. Then, for every 𝑘 ≥ 1, one has Z 𝑘

𝐻 (𝑋) = Z 𝑘
𝐺 (𝑋).

We follow the arguments in [5, Appendix A] and generalise them to arbitrary countable discrete
abelian groups. We start with some background related to the Host–Kra parallelepipeds construction.
Definition A.2. Let G be a countable discrete abelian group, and let X = (𝑋,X , 𝜇, (𝑇𝑔)) be a G-system.
For every 𝑘 ≥ 0, we define a G-system X[𝑘 ]

𝐺 = (𝑋 [𝑘 ] ,X [𝑘 ] , 𝜇 [𝑘 ] , (𝑇 [𝑘 ]𝑔 )𝑔∈𝐺) inductively by setting
𝑋 [0]
𝐺 = 𝑋 , and 𝑋 [𝑘+1]

𝐺 = 𝑋 [𝑘 ]
𝐺 ×I (𝑋 [𝑘 ]

𝐺
) 𝑋

[𝑘 ]
𝐺 , where I (𝑋 [𝑘 ]

𝐺 ) is the 𝜎-algebra of (𝑇 [𝑘 ]𝑔 )𝑔∈𝐺-invariant
functions.

Host and Kra [23] proved the following result for Z-systems, but the same proof works for arbitrary
countable discrete abelian groups.
Theorem A.3 ([23], Proposition 4.7). Z 𝑘

𝐺 (𝑋) is the minimal 𝜎-algebra with the property that I (𝑋 [𝑘 ] )
is a sub-𝜎-algebra of (Z 𝑘

𝐺 (𝑋))
[𝑘 ] .

Let 𝑋 =
⋃

𝛼∈𝐽 𝑋𝛼 be a partition of X to G-invariant sets. Then, 𝑋 [𝑘 ]
𝐺 =

⋃
𝛼∈𝐽 𝑋

[𝑘 ]
𝛼 , I (𝑋 [𝑘 ] ) =∨

𝛼∈𝐽 I (𝑋 [𝑘 ]
𝛼 ) and Z 𝑘

𝐺 (𝑋) =
∨

𝛼∈𝐽 Z 𝑘
𝐺 (𝑋𝛼). Therefore, by the ergodic decomposition, it is enough to

prove Lemma 3.6 in the case where the G-action is ergodic.
The following lemma gives the easy inclusion in Lemma 3.6.

Lemma A.4. In the setting of Lemma 3.6, Z 𝑘
𝐺 (𝑋) � Z 𝑘

𝐻 (𝑋).

Proof. The proof is immediate by Theorem A.3 and since any (𝑇 [𝑘 ]𝑔 )𝑔∈𝐺-invariant function is also a
(𝑇 [𝑘 ]ℎ )ℎ∈𝐻 -invariant function. �

We need the following observation.
Lemma A.5. Let G be a countable discrete abelian group, let X = (𝑋,X , 𝜇, (𝑇𝑔)𝑔∈𝐺) be an ergodic
measure preserving G-system and let 𝐻 ≤ 𝐺 be a subgroup of finite index. Then, I𝐻 (𝑋) � Z𝐺 (𝑋).
Proof. The group 𝐺/𝐻 acts ergodically by unitary transformations on H = 𝐿2 (𝑋, I𝐻 , 𝜇 |I𝐻 ). Since
𝐺/𝐻 is a finite abelian group, the unitary representation splits into a direct sum of one-dimensional
irreducible representations. In other words, H is generated by eigenfunctions of the action of 𝐺/𝐻,
which are measurable with respect to Z𝐺 (𝑋). This completes the proof. �

Now, we prove the 𝑘 = 1 case of Lemma 3.6 under the additional assumption that the action of H is
ergodic.
Lemma A.6. Let G be countable discrete abelian groups, and let 𝐻 ≤ 𝐺 be a finite index subgroup.
Let X = (𝑋,X , 𝜇, (𝑇𝑔)𝑔∈𝐺) be an ergodic G-system, and suppose the action of H is ergodic. Then,
Z𝐻 (𝑋) = Z𝐺 (𝑋).
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Proof. The group 𝐺/𝐻 is finite, and therefore it is a direct product of finite cyclic groups. In particular,
we can find 𝑑 ∈ N and a sequence of subgroups 𝐻0 = 𝐻 ≤ 𝐻1 ≤ · · · ≤ 𝐻𝑑 ≤ 𝐺, such that 𝐺/𝐻𝑑 and
𝐻𝑖/𝐻𝑖−1, 1 ≤ 𝑖 ≤ 𝑑, are cyclic groups of prime order. Using a proof by induction on d, we may assume
without loss of generality that 𝐺/𝐻 is cyclic and of prime order. Let 𝑔0 ∈ 𝐺 be a representative of a
generator of 𝐺/𝐻 and 𝑙 := [𝐺 : 𝐻] be a prime number. By the ergodicity of H, the 𝜎-algebra Z𝐻 (𝑋)
is generated by H-eigenfunctions. Hence, it is enough to show that every H-eigenfunction f is a linear
combination of G-eigenfunctions. Let 𝜆 : 𝐻 → 𝑆1 be the eigenvalue of f, and observe that for any l-th
root 𝜔 ∈ 𝑆1 of 𝜆(𝑙𝑔0), the function

𝑓 + 𝜔 · 𝑇𝑔0 𝑓 + ... + 𝜔𝑙−1 · 𝑇(𝑙−1)𝑔0 𝑓

is a G-eigenfunction. Now, since

𝑓 =
∑

𝜔∈𝑆1 : 𝜔𝑙=𝜆(𝑙𝑔0)
𝑓 + 𝜔 · 𝑇𝑔0 𝑓 + ... + 𝜔𝑙−1 · 𝑇(𝑙−1)𝑔0 𝑓 ,

f is measurable with respect to Z𝐺 (𝑋), and this completes the proof. �

Let G be a countable discrete abelian group, and let X = (𝑋,X , 𝜇, (𝑇𝑔)𝑔∈𝐺) be a G-system. If the
system X is ergodic, it follows from the definition that 𝑋 [1]

𝐺 is the Cartesian product of X with itself, and
the measure is the product measure. As a consequence of Lemma A.6, we have:

Lemma A.7. If the action of H on X is ergodic, then

I (𝑋 [1]
𝐻 ) = I (𝑋 [1]

𝐺 ).

Proof. The inclusion I (𝑋 [1]
𝐺 ) � I (𝑋 [1]

𝐻 )) is trivial. Now, let 𝑓 : 𝑋×𝑋 → C be a (𝑇ℎ×𝑇ℎ)ℎ∈𝐻 invariant
function. By Lemma A.6, we can find an orthonormal basis of G-eigenfunctions { 𝑓𝑖}𝑖∈N for Z𝐻 (𝑋).
By Lemma 4.6, there exist constants 𝑎𝑖, 𝑗 ∈ C for all 𝑖, 𝑗 ∈ N, such that

𝑓 (𝑥, 𝑦) =
∞∑
𝑖=1

𝑎𝑖, 𝑗 𝑓𝑖 (𝑥) 𝑓 𝑗 (𝑦).

Applying the H-action and using the uniqueness of the decomposition, we see that 𝑎𝑖, 𝑗 = 0 unless 𝑖 = 𝑗 .
In particular, f is spanned by the G-invariant functions 𝑓𝑖 ⊗ 𝑓𝑖 . Thus, f is measurable with respect to
I (𝑋2

𝐺) and the claim follows. �

We use Lemma A.7 to prove the following:

Proposition A.8. If the action of H on X is ergodic, then for 𝑘 ≥ 0, one has

I (𝑋 [𝑘 ]
𝐻 ) = I (𝑋 [𝑘 ]

𝐺 ) and 𝜇 [𝑘 ]𝐺 = 𝜇 [𝑘 ]𝐻 .

Proof. We prove the claim by induction on k. The case 𝑘 = 0 is trivial.
Assume that for some 𝑘 ≥ 0, I (𝑋 [𝑘 ]

𝐻 ) = I (𝑋 [𝑘 ]
𝐺 ) and 𝜇 [𝑘 ]𝐺 = 𝜇 [𝑘 ]𝐻 . It is immediate that

𝜇 [𝑘+1]
𝐺 = 𝜇 [𝑘 ]𝐺 ×I (𝑋 [𝑘 ]

𝐺
) 𝜇

[𝑘 ]
𝐺 = 𝜇 [𝑘 ]𝐻 ×I (𝑋 [𝑘 ]

𝐻 ) 𝜇
[𝑘 ]
𝐻 = 𝜇 [𝑘+1]

𝐻 .

By the ergodic decomposition theorem, applied with respect to the 𝜎-algebra I (𝑋 [𝑘 ]
𝐺 ), we can find

a partition 𝑋 [𝑘 ]
𝐺 =

⋃
𝛼∈𝐽 𝑋𝛼 of 𝑋 [𝑘 ]

𝐺 to (𝑇 [𝑘 ]𝑔 )𝑔∈𝐺 invariant sets. Let 𝑆𝛼𝑔 be the restriction of 𝑇 [𝑘 ]𝑔 to the
set 𝑋𝛼. By the induction hypothesis, the action of (𝑆𝛼ℎ )ℎ∈𝐻 on 𝑋𝛼 is ergodic. Hence, by Lemma A.7,
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we have

I (𝑋 [𝑘+1]
𝐻 ) =

⋃
𝛼∈𝐽

I𝐻 (𝑋 [1]
𝛼 )) =

⋃
𝛼∈𝐽

I𝐺 (𝑋 [1]
𝛼 ) = I (𝑋 [𝑘+1

𝐺 ),

as required. �

Proposition A.8 establishes Lemma 3.6 in the case where the action of H is ergodic. Now, we assume
that the H-action is nonergodic. As in the proof of Lemma A.6, we may assume without loss of generality
that 𝐺/𝐻 is cyclic of order l for some prime l. In particular, there exists a partition 𝑋 =

⋃
𝑖∈Z/𝑙Z 𝑋𝑖 into

H-invariant sets and some 𝑔0 ∈ 𝐺, such that 𝑇𝑔0𝑋𝑖 = 𝑋𝑖+1, 𝑖 ∈ Z/𝑙Z.
We need the following technical lemma.

Lemma A.9. Let G be a countable discrete abelian group, and let Y = (𝑌,Y , 𝜈, (𝑇𝑔)𝑔∈𝐺) be an ergodic
G-system. Suppose that there exists some 𝑔0 ∈ 𝐺 and H-invariant subsets 𝑌𝑖 , such that 𝑌 =

⋃
𝑖∈Z/𝑙Z𝑌𝑖

and𝑇𝑔0𝑌𝑖 = 𝑌𝑖+1 for 𝑖 ∈ Z/𝑙Z. Then,𝑌×I𝐺 (𝑌 )𝑌 =
⋃

𝑖, 𝑗∈Z/𝑙Z𝑌𝑖, 𝑗 where𝑌𝑖,𝑖 = 𝑌𝑖×I𝐻 (𝑌𝑖)𝑌𝑖 and𝑇𝑠𝑔0×𝑇𝑡𝑔0

is an isomorphism between 𝑌𝑖,𝑖 and 𝑌𝑖+𝑠,𝑖+𝑡 , 𝑖 ∈ Z/𝑙Z.

Proof. Let 𝐴 ∈ I𝐺 (𝑌 ) be a measurable G-invariant subset of Y. For each 0 ≤ 𝑖 ≤ 𝑙 − 1, 𝐴𝑖 = 𝐴 ∩ 𝑌𝑖
is an H-invariant set. In particular, 𝐴0 is H-invariant and 𝐴𝑖 = 𝑇𝑖𝑔0𝐴0. We deduce that the mapping
𝐴 ↦→ 𝐴 ∩𝑌0 is an isomorphism between I𝐺 (𝑌 ) and I𝐻 (𝑌0). Using the ergodic decomposition, we can
find a partition

𝑌0 =
⋃
𝛼∈𝐼

𝑌0,𝛼

of 𝑌0 to H-invariant sets. For every 𝛼 ∈ 𝐼, and 𝑖 ≠ 0, let 𝑌𝑖,𝛼 = 𝑇𝑖𝑔0𝑌0,𝛼 and 𝑌𝛼 =
⋃

𝑖∈Z/𝑙Z𝑌𝑖,𝛼. Then,
𝑌 =

⋃
𝛼∈𝐼 𝑌𝛼 is the ergodic decomposition of Y with respect to the factor I𝐺 (𝑌 ). Thus, if we let

𝑌𝑖, 𝑗 =
⋃

𝛼∈𝐼 𝑌𝑖,𝛼 × 𝑌 𝑗 ,𝛼, we have,

𝑌 [1]𝐺 =
⋃
𝛼∈𝐼

(𝑌𝛼 ×I𝐺 (𝑌𝛼) 𝑌𝛼) =
⋃
𝛼∈𝐼

⋃
𝑖, 𝑗∈Z/𝑙Z

(𝑌𝑖,𝛼 × 𝑌 𝑗 ,𝛼) =
⋃

𝑖, 𝑗∈Z/𝑙Z

⋃
𝛼∈𝐼

(𝑌𝑖,𝛼 × 𝑌 𝑗 ,𝛼) =
⋃

𝑖, 𝑗∈Z/𝑙Z
𝑌𝑖, 𝑗 .

In particular, 𝑌𝑖,𝑖 =
⋃

𝛼∈𝐼 (𝑌𝑖,𝛼 × 𝑌𝑖,𝛼) = 𝑌𝑖 × 𝑌𝑖 , as required. �

Recall that 𝐺 =
⋃𝑙−1

𝑖=0 𝑖𝑔0 + 𝐻. It follows from Lemma A.9 that for 𝑖, 𝑗 ∈ Z/𝑙Z,

(𝑇𝑔0 × 𝑇𝑔0 ) (𝑌𝑖 ×I𝐻 (𝑌 ) 𝑌 𝑗 ) = 𝑌𝑖+1, 𝑗+1.

Therefore, the subsets 𝑉𝑖 =
⋃

𝑗∈Z/𝑙Z𝑌 𝑗 , 𝑗+𝑖 , 𝑖 ∈ Z/𝑙Z form a partition of 𝑌 ×I𝐺 (𝑌 ) 𝑌 into (𝑇𝑔 × 𝑇𝑔)𝑔∈𝐺-
invariant sets. Furthermore, Id × 𝑇𝑖𝑔0 is an isomorphism between 𝑉0 and 𝑉𝑖 .

We use Lemma A.9 to show the following:

Lemma A.10. Let X = (𝑋,X , 𝜇, (𝑇𝑔)𝑔∈𝐺) be an ergodic G-system. Let 𝑋 =
⋃

𝑖∈Z/𝑙Z 𝑋𝑖 be a partition
into H-invariant sets and let 𝑔0 ∈ 𝐺 be as above. Then, for any 𝑘 ≥ 0, there exists a partition 𝑋 [𝑘 ]

𝐺 =⋃
𝑗∈(Z/𝑙Z)𝑘 𝑊 𝑗 , into (𝑇 [𝑘 ]𝑔 )𝑔∈𝐺-invariant sets, such that 𝑊0 =

⋃
𝑖∈Z/𝑙Z(𝑋𝑖)

[𝑘 ]
𝐻 and 𝑇 [𝑘 ]𝑔0

(
(𝑋𝑖) [𝑘 ]𝐻

)
=

(𝑋𝑖+1) [𝑘 ]𝐻 . Furthermore, for every 𝑗 ∈ (Z/𝑙Z)𝑘 , there exists an isomorphism of measure spaces 𝜏𝑗 :
𝑊0 → 𝑊 𝑗 , which in every coordinate of 𝑋 [𝑘 ] is a power of 𝑇𝑔0 .

Proof. We induct on k. The case 𝑘 = 0 is trivial.
Assume that the claim holds for some 𝑘 ≥ 0. Then

𝑋 [𝑘+1]
𝐺 = 𝑋 [𝑘 ]

𝐺 ×I (𝑋 [𝑘 ]
𝐺

) 𝑋
[𝑘 ]
𝐺 =

⋃
𝑗∈(Z/𝑙Z)𝑘

(𝑊 𝑗 ×I (𝑊𝑗 ) 𝑊 𝑗 ).
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Fix 𝑗 ∈ (Z/𝑙Z)𝑘 . Since the isomorphism 𝜏𝑗 : 𝑊0 → 𝑊 𝑗 commutes with (𝑇 [𝑘 ]𝑔 )𝑔∈𝐺 , it induces an
isomorphism 𝜏𝑗 × 𝜏𝑗 : 𝑊0 ×I (𝑊0) 𝑊0 → 𝑊 𝑗 ×I (𝑊𝑗 ) 𝑊 𝑗 . By assumption,𝑊0 =

⋃
𝑖∈Z/𝑙Z(𝑋𝑖)

[𝑘 ]
𝐻 , and by

Lemma A.9,𝑊0 ×I (𝑊0) 𝑊0 can be partitioned into (𝑇 [𝑘+1]
𝑔 )𝑔∈𝐺-invariant sets {𝑉𝑖}𝑖∈Z/𝑙Z, such that

𝑉0 =
⋃

𝑖∈Z/𝑙Z

(
(𝑋𝑖) [𝑘 ]𝐻 ×I

(
(𝑋𝑖 ) [𝑘 ]𝐻

) (𝑋𝑖) [𝑘 ]𝐻

)
=
⋃

𝑖∈Z/𝑙Z
(𝑋𝑖) [𝑘+1]

𝐻 .

Moreover, 𝑉0 is isomorphic to 𝑉 𝑗 via an isomorphism whose projections are powers of 𝑇 [𝑘 ]𝑔0 . Since 𝑊0
is isomorphic to𝑊 𝑗 , this completes the proof. �

We recall that it suffices to establish the proof of Lemma 3.6 in the case where the G-action is ergodic
and 𝐺/𝐻 is a cyclic group of order l for some 𝑙 > 0. As before, we find a partition 𝑋 =

⋃
𝑖∈Z/𝑙Z 𝑋𝑖 of X

into H-invariant sets and some 𝑔0 ∈ 𝐺, such that 𝑇𝑔0 (𝑋𝑖) = 𝑋𝑖+1 for 𝑖 ∈ Z/𝑙Z.

Proof of Lemma 3.6. Let 𝑘 ≥ 0, and let {𝑊𝑖}𝑖∈(Z/𝑙Z)𝑘 be as in Lemma A.10. Since 𝑋0, ..., 𝑋𝑙−1

are disjoint (𝑇ℎ)ℎ∈𝐻 -invariant subsets of X, we have I (𝑋 [𝑘 ]
𝐻 ) =

∏
𝑖∈Z/𝑙Z I

(
(𝑋𝑖) [𝑘 ]𝐻

)
and 𝑍 𝑘

𝐻 (𝑋) =∏
𝑖∈Z/𝑙Z 𝑍

𝑘
𝐻 (𝑋𝑖). Let B be a (𝑇 [𝑘 ]ℎ )ℎ∈𝐻 -invariant subset of (𝑋𝑖) [𝑘 ]𝐻 . For every 𝑗 ∈ Z/𝑙Z, let 𝐴 𝑗 =

(𝑇 [𝑘 ]( 𝑗−𝑖)𝑔0
) (𝐵) and 𝐴 =

⋃
𝑗∈Z/𝑙Z 𝐴 𝑗 . By definition, 𝐴 ⊆ 𝑊0 is a (𝑇 [𝑘 ]𝑔 )𝑔∈𝐺-invariant set. Therefore, by

Theorem A.3, 𝐴 ∈
(
Z 𝑘
𝐺 (𝑋)

) [𝑘 ]
. Since 𝑋𝑖 is (𝑇 [𝑘 ]ℎ )-invariant, by Lemma A.5, 𝑋𝑖 ∈ Z1

𝐺 (𝑋). Therefore,

𝐵 = 𝐴𝑖 = 𝐴∩ (𝑋𝑖) [𝑘 ]𝐻 is an element of
(
Z 𝑘
𝐺 (𝑋)

) [𝑘 ]
. Since B is arbitrary, and this holds for all 𝑖 ∈ Z/𝑙Z,

we deduce that I (𝑋 [𝑘 ]
𝐻 ) � Z 𝑘

𝐺 (𝑋). By Theorem A.3, we have Z 𝑘
𝐻 (𝑋) � Z 𝑘

𝐺 (𝑋). Lemma A.4 provides
the other inclusion, and this completes the proof. �
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