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ALMOST PRIMES IN ALMOST ALL SHORT INTERVALS II
KAISA MATOMAKI AND JONI TERAVAINEN

ABSTRACT. We show that, for almost all x, the interval (x, z + (log 2)*'] contains prod-
ucts of exactly two primes. This improves on a work of the second author that had 3.51
in place of 2.1. To obtain this improvement, we prove a new type II estimate. One of
the new innovations is to use Heath-Brown’s mean value theorem for sparse Dirichlet
polynomials.

1 INTRODUCTION

We shall study the distribution of Es numbers, i.e. numbers with exactly two prime
factors, in almost all short intervals. This problem has been studied in previous works of
Heath-Brown [6], Motohashi [16], Wolke [20], Harman [4], and the second author [18].

The best known result [18, Theorem 3] gives that, for almost all z, the interval (z,z +
(log 2)3-51] contains Es numbers (here, and in the rest of the paper, we say that a property
P(z) holds for almost all z if the measure of = € [1, X] for which P(z) fails is o(X) as
X — 00). In this paper, we strengthen this result by replacing the exponent 3.51 by 2.1.
In the theorem and later, p; always denotes a prime.

Theorem 1.1. There exist constants co > 0 and § > 0 such that the following holds. Let
X > 3. Then, for all but < X/(log X)? integers = € [2, X], we have

{pip2 € (z,x + (logx)z‘l]: (logac)l'o9 < p1 < (log x)1'1}| > co(log x)l'l.

One can show that the lower bound in Theorem 1.1 is of the correct order of magnitude,
although it is only for those F numbers that have a prime factor in a certain superdyadic
interval.

We remark that the limit of the approaches in [4, 18] was the exponent 3+ ¢, which could
be reached in [4] conditionally assuming the following slight strengthening of the density
hypothesis: For any ¢ > 0, there exists 6 = d(¢) > 0 such that, for any o € [1/2+¢, 1] and
T > 3, one has

(1.1) N(o,T) < T?-91=0)+o(1)

where N (o, T) is the number of zeros of the Riemann zeta-function in the rectangle {b +
it: b>o,|t| <T}.

On the other hand, a result of Selberg [17] from 1943 shows that under the Riemann
hypothesis almost all intervals (x, z+(log £)?*¢] contain primes, and this easily implies that
almost all such intervals contain Fy numbers as well (since if p € (2/2,2/2 + (log x)?*¢ /2]
is a prime, then 2p € (z,z + (logx)**¢] is an F2 number). Theorem 1.1 gets somewhat
close to the exponent of 2 + ¢, which seems to be the barrier for Fo numbers even under
the Riemann hypothesis. In fact, as discussed in Section 6, in order to obtain 2 + ¢ for
FE5 numbers, it suffices to assume the Lindel6f hypothesis which of course is a weaker
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assumption than the Riemann hypothesis. Actually we believe that the above variant of
the density hypothesis is a sufficient assumption for obtaining 2 4 € but we plan to return
to this on a later occasion.

In addition to E» numbers, also P, numbers that have at most two prime factors are
called almost primes. The question of short interval distribution for these is significantly
easier since classical sieve methods are applicable. Indeed, the first author [13] has recently
shown that, for almost all z, the interval (z,z + h(x) log 2| contains P» numbers, provided
only that h(z) — oo as x — oc.

For E5 numbers, i.e. numbers with exactly three prime factors, much shorter intervals
can be reached than for EFs numbers; the second author showed in [18] that, for almost all
z, the interval (z,z + (log z)(loglog x)%*¢] contains Es-numbers. On the other hand, for
the primes, the best known result due to Jia [11] gives that, for almost all x, the interval
(x,z + z/ 20] contains primes. Hence we understand the short interval distribution of Ej,
numbers for k > 2 significantly better than that of the primes.

We lastly note that the same method that we apply for Es numbers in almost all
intervals readily adapts to E3 numbers in all intervals. Indeed, following the proof of
Theorem 1.1 very closely, we obtain in Section 7 the following.

)1.55]

Theorem 1.2. For all large enough x, the interval (z,x + v/z(logx contains E3

numbers.

In comparison, for Fs numbers in all intervals, we are not aware of results that would go
below the interval length =< 2%-52% known for the primes (and consequently for Ey numbers)
by the work of Baker, Harman and Pintz [1].

As far as we are aware, Theorem 1.2 is the first result on E3 numbers in all intervals
of length /z(logz)¢. It would be possible to similarly adapt also earlier works on Fs
numbers in almost all short intervals, such as [18] or [4], to produce a result of this shape,
but with a larger value of c.

1.1 Proof ideas

The beginning of our argument follows [18] with some simplifications. In particular,
we first apply Harman’s sieve to find a suitable minorant p~(n) < 1p(n) and then, by
a standard application of Perron’s formula, reduce matters to mean squares of Dirichlet
polynomials. Once we have made this reduction, we need to prove that, for some € > 0,

X/h
Pi(1+it)?IP(1+it)Pdt €« ————
/Xl/looo‘ 1( T )‘ ’ ( ! )’ < (IOgX)Q—i_E,

where h = (log X)*!,
— 1 . p(n)
P(s)= Y o Pl L]

X/(2P))<n<4X/Py

p1~P1

and P; = (log X)''! (as well as other very similar claims).
Still following [18], we partition [X /1090 X /h) = T UU according to the size of P;(s),
with
T = {t € (X190 X/h]: [Py(1+it)] < P},
The integral over 7 is easily dealt with in the beginning of Section 5 — we use the pointwise
bound |P;(1+it)| < P; © and estimate the mean square of P(1 + it) using (an improved)
mean value theorem (Lemma 3.3 below).
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Let us turn to the integral over /. The minorant p~(n) is chosen so that it can be split
into appropriate type I, type I/II, and type II sums (see Proposition 2.2). We deal with
type I and type I/II sums in Sections 5.1 and 5.2 in a rather similar manner as in [18],
utilizing mean value theorems of Watt [19] and Deshouillers-Iwaniec [3] (see Lemma 3.5).

The most novel part of our argument is the treatment of our type II sums which lead
to integrals of the type

/ |Pr (1 +it)|?| M (1 + it)|?| Ma(1 + it)|*dt,
u
where, for some coefficients o, Oy,

M (s) = Z % and Ms(s) = Z %

m~M n=X/(P1 M)
with M, € [X¢/2, X?/11]. We further split U into sets Uy, o, Where
Up, g 1= {t €U |My(1+it)] € (M7, 2M] ], |May(1 + it)| € (M2, 2M5 )}
Now it suffices to show that, for any o1, o9,

o1 A 02
MM,

ooo] €4 o)1

When o; < 49/206 — 10¢ for j =1 or j = 2, we are able to use Jutila’s [12] large value
estimate to obtain a satisfactory bound (see Proposition 4.2).

We deal with the case 01,09 > 49/206 — 10e in Section 5.3. There (utilizing an idea
from [14]) we use the definitions of Uy, », and U to see that

Us, 05| < Mggzpf’%/ |Py(1 + it) || Mo (1 + it)|*dt
71,02
X/h
< M§“2Pfk€/ |PL(1 4 it)|?*| My (1 + it)|?dt,
x'1/1000

where we have chosen k so that Pf = X 1-0(1), Now the coefficients of Py (s)* are sup-
ported on P; = (log X)!"!-smooth numbers, so they have a very sparse support (of size
X1-1/11+40(1) 1y standard estimates on smooth numbers). At this point, we invoke a mean
value theorem for sparse Dirichlet polynomials proven recently by Heath-Brown [8] (see
Lemma 3.4 below). This leads to a satisfactory bound unless M; € [X103/594 x2/11] and
o1 > 1/2 — (log X)/(22(log M)) (see (5.12) with a = 1.1 and 6 = (log M;)/(log X)). In
the remaining range we argue similarly but use

Uy, 0| < M7t P2RE / |PL(1 + it)| %) My (1 + it)|10dt.

01,09
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1.3 Notation

We use the usual asymptotic notation <, >, =<, O(-),0(:) and use n ~ y as a shorthand
for y < n < 2y. The letters p, g, and pj;, ¢; will always denote primes.

For a claim A, we write 14 for its indicator function and for a set A we write 14(n) =
lpea. For z > 2, we write P(z) := Hp<zp and p(n,z) = 1, p(z))=1- In particular,
Buchstab’s identity states that, for any z > w > 2, we have

(1.2) p(n.2) = p(n.w) = 3 p(n/q,q).

n=qm
w<g<z

We denote by u the Mobius function and by dj the k-fold divisor function, and denote
da(n) simply by d(n). We will use occasionally the fact that dj, satisfies the submulti-
plicativity property di(mn) < dip(m)di(n) for all m,n € N. We say that a sequence
(a(n))p~n is divisor-bounded if |a(n)| < d(n)® for some fixed B. Note that if (c(n))nns
and (B(n))n~n are divisor-bounded, then (a * 8(n)),=amn is clearly also divisor-bounded.

For any multiplicative function f: N — [1,00) we have, by writing f =1xg < g =
f*p >0, the elementary upper bound

> fn) =YY" g(m) (;+O(1))<mn<1+g§f)+g§f)+...>‘

n<x m<x p<x

In particular this together with Mertens’ formula implies that, for any fixed j, k,c,d > 1,

(1.3) > dim)dr(n)? < ] (1 + JR -1 +0 (;;?)1/2>> < X(log X)I*+-1,

n<X p<X p

2 THE MINORANT FUNCTION

In this section we first construct our minorant function p~(n) < 1p(n) using Harman’s
sieve method [5]. Then in Subsection 2.1 we show that it has positive average over long
intervals and in Subsection 2.2 we show that it can be decomposed into appropriate type
I, type I/II, and type II sums.

For the construction, recall that p(n,z) = 1(, p(.))=1. Let n € [2X1/23X], z = X%/
and let € > 0 be small. Applying Buchstab’s identity (1.2) twice we obtain

Lnep = p(n, 2X%) = p(n,2) = > p(m,2)

n=qm
2<q<2X1/?
2.1
&1) Y )+ ) plm. o).
n=qig2m n=qigam
2<ga<qu<X1/4-2¢ 2<qa<q1<2X1/?
qa3<X' 12X /472 or qrgg> X1 72¢
Applying Buchstab’s identity twice more, the third term on the right-hand side equals
(2.2)
E p(mv Z) - E p(mvz) + E p(ma Q4)-
n=qi¢zm n=q1q2qsm n=q1¢2g3gam
2<qz<qu <X/ #<q3<qa<qu <X /472 2<qu<qz<qa<q1<X'/47%
q1q421<X172€ q1q421<X172€ q1q§<X1725

We define our minorant for p(n,2X 1/ 2) by discarding the last term here as well as the last
term on the right-hand side of (2.1) (both terms are nonnegative, so they can be discarded
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when we look for a minorant), and thus choose

(2.3)
W Y smat Y ama- X sme)
n=qm n=qigz2m n=q1g2g3m
2<q<2X1/? 2<ga<qr<X1/4-2¢ 2<q3<qa<qr<X /42
qras<X' Qg <X'7%

We note here for later use that, since n has < (log(3X))/(log z) prime factors that are
> z, we have the bound

log(3X

(2.4 () < 4( >) pln,2) < pln, ).

log 2z
Theorem 1.1 will follow from the following variance estimate in short intervals.

Theorem 2.1. Let € > 0 be sufficiently small, let X > 3,h = (log X )¢ with ¢ = 2.1, and
hy = X910 Let

(2.5) a€[c—1-1/10000,¢—1], and P;= (logX)*.

The function p~(n) defined in (2.3) with z = X?/11 satisfies the following three condi-
tions.

(i) For every n € [2X'/2,3X], we have
p~(n) < 1p(n).
(ii) Once X is large enough we have, for all x € (X,2X],
_ hy
> .
> r)zgg log P; log X

r<p1n<z+hi
p1~Py

(i1i) We have

1 X1 1 1
(2.6) X /X 7 Z p (n)— 7 Z p (n)| dz < (log X)2e

z<pin<lz+h 1 z<pin<z+hy
pi~P1 pi~P1
Note that property (i) is immediate from the construction above. We also remark that
a bound of < 1/(log X log P1)? for the left-hand side of (2.6) would be easy to prove;
crucially, we must beat this bound.
Let us first see how Theorem 2.1 implies Theorem 1.1.

Proof of Theorem 1.1 assuming Theorem 2.1. Let p~(n), ¢ and € be as in Theorem 2.1.
Let by = ¢ —1—1/10000, by = ¢ — 1 — 1/20000. Summing over different choices of P,
Theorem 2.1(ii) implies that there is a constant v > 0 such that

(2.7) o 3 O

rx<pin<z+hy
(log X)bl <p1<(log X)l72
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for all z € (X,2X]. On the other hand, Theorem 2.1(ii) and the Cauchy—Schwarz inequal-
ity imply that

(2.8)

2X 11 _ 1 _ X
/ 7 Z P(”)—}T1 Z p(n) dﬁ«w~

X z<pin<z+h r<pin<z+hi
(log X)b1 <p1 <(log X)b2 (log X)b1 <p1 <(log X)P2

Define the exceptional set

1
X:i=Rx>2: Z Ip(n) < 7

(&
(log z) p<pinsat(ogs)’ 2(log z)
(log 1,)67171/1000<p1 S(log x)cfl

Using the inequality 1p(n) > p~(n) and combining (2.7) and (2.8), we see that

XN(X,2X —_—.
’ ( ’ ” << (1OgX)E/2

The claim now follows by summing over dyadic intervals. O
2.1 Proof of Theorem 2.1(ii)

Let us now show that the minorant p~ satisfies condition (ii) of Theorem 2.1. Let
x € (X,2X] and let p; ~ P, be a prime. Write y = x/p; and hs = hy/p;.
Recall that p~ was constructed by discarding the last terms in (2.1) and (2.2). Hence

dYooprm= > 1- > p(m, g2) — > p(m, qa).

y<n<y+ha y<q<y-tha y<q1gam<y—+hs Y<qra2qsqam<y-+hs
ZS(]2<Q1<2X1/2 Z§q4<q3<q2<q1<xl/4—2s
¢I12X1/4_26 or q1q§2X1_25 Q1q‘21<X1*2E

These sums can be transformed into integrals involving Buchstab’s function w (defined by
w(u) = 1/u for 1 < u < 2 and extended by the delay differential equation - (uw(u)) =
w(u — 1) for uw > 2) using the prime number theorem (see e.g. [18, Lemma 16] or [5,
Section 1.4] — the fact that we work over an interval of length he = X 99/100 /p1 makes no

difference since the prime number theorem in short intervals is applicable), and we obtain

l—a1—as

h2 1/2 raa w ( o )
Z p~(n) 1- / / Lay>1/4-2¢ or ay+das>1-2e— 5 dazday
2/11 J2/11 a

:lo 6
y<n<y-+hs &Y /11 105

l—aj—as—a3—ay

1/4—2¢ raq a9 as w ” )
—/ / / / 1o¢1+4a2§1—28 2 d()z4d0[3d0[2d6¥1 + 0(1)
2/11 2/11 J2/11 J2/11 Q1 Ga30ry

—_ h2
T logy
say. Note that the integrand in I4(e) vanishes unless as < 1/5. Hence

11\° (/4 p1/5 po2  ras 11\° /1 2 1_ 233
Ii(e) < () / / / / daydasdasdag < <> ( - ) M < 0.0004.
2 2/11 J2/11 J2/11 J2/11 2 4 11 3!

(1= Ix(e) = La(e) +o(1)),
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Furthermore, a numerical calculation! shows that I>(0) < 0.99, so that, taking ¢ > 0 small
enough (and using continuity in ) we have for any = ~ X with X large,

1 hy
~(n) > 0.009% >
>, =z 3 p1log(X/p1) ~ 200log P log X

z<pin<lz+hy p1~Pp
p1~Pr

where we used Mertens’ theorem to obtain the last inequality.

2.2 Reduction to type I, type I/II, and type II sums

Most of the rest of the paper is devoted to showing that the function p~ constructed
above satisfies Theorem 2.1(iii). We fix once and for all

(2.9) 64 := (log X)~104

and shall, for technical reasons, restrict many variables into Jd4-adic intervals (IV, (1 +
d4)N]. The following proposition gives a decomposition of p~ into convenient type I, type
I/I1, and type II terms.

Proposition 2.2 (Decomposition of the minorant). Let ¢ > 0 be fized and small enough,
and let A>5. Let X > 3, 29 = exp((log X)/(loglog X)3), and z = X*™. Let p~ be as
n (2.3). Let Y € (X'7¢/100 X /2]. Then there exists a set F (depending on X and Y)
consisting of O(exp((loglog X)®)) functions f: N — C such that

P (n)luev/2,av) Z f(n) + cn,
feF
where ¢y, are supported on (Y/4,8Y] and satisfy

2.10 | K
(2.10) Z|| ATy

Furthermore, for each f € F one of the following holds for some divisor-bounded coef-
ficients aum, B :

(i) (Type I case)

f(n) = Z QAm,y

n=mimso
my~Mq
Ma<ma<(14-54) Mo

with My < X'/2%¢ and My My € (Y/2,4Y].
(ii) (Type 1/II case)
f(n) = Z am15m2

n=mimams
my~My, mao~Mo
M3<M3§(1+5A)M3
with
MMy < X'75, My < XY475 and M M;Ms € (Y/2,4Y].

IThe Mathematica code for computing the integral can be found along with the arXiv submission of
this paper.
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(iii) (Type II case) For some R € {1,...,[18% |},

log zo

f (n) = Z QAmy ﬂmg

n=mimsa
My<mi<(1+64) M
mao~ Mo
with
X2 < My <z, MM,e (Y/2,4Y],

and

(2.11) - 3 1
m=q1-qr
Q;<¢<Q;(1+d4)
where Qj € [20,2) and Q1 ---Qr = M;.

Proposition 2.2 will quickly follow from the following lemma.
Lemma 2.3. Let A> 5. Let X > 3, z = exp((log X)/(loglog X)3), 20 < 21 < X'/3, and
D = exp((log X)/(loglog X)).

(i) Let au, be bounded. Then, for any n € (X991 4X], we have

(2.12) Z amp(k,z1) = Z ampu(e) — Z Z amp(k, Q) + cn,

n=mk n=emk Q:(1+§A)j n=qmk
e|lP(z0),e<D 20<Q<z1 Q<g<Q(1+624)

where ¢, are such that, for any Y € (X919 4X], one has

Y

2
C LA — 5.
nzN;,‘ nl A 10g3AX

(ii) Let o, be bounded and supported on (m,P(z1)) = 1, and let L = Llohg)g‘;é)j Then,
for any n € (X991 4X], we have

L

Z amp(k,z1) = Z(*l)é Z Z amp(e) + cn,

n=mk /=0 Je<-<j1 n=emkqi---qp
Qu=(1404)7 e|P(z0),e<D
20<Qp<<Q1<21 Qu<qu<(14+04)Qu

where ¢, are such that, for any Y € (X991 4X], one has

D lenl® <4 1§4X

n~Y 0g
Proof. Let us consider the left-hand side of (2.12). We first use Buchstab’s identity and
then split the arising prime variable ¢ into short intervals. This gives

> amp(k,z1) = Y amp(k,20) = > Y amp(k,q).

n=mk n=mk Q:(1+5A)j n=qmk

20« 20<q<z1
Trog SO 6 0201 44.4)
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Hence the formula (2.12) holds with ¢, = ¢1, + c2,n + €3, Where

Clp = Z amp(k, zp) — Z amp(e),

n=mk n=emk
e|P(20),e<D

Comi= Y. Yoo amek,Q = Y Y. awk Q)

Q=(1+34)  n=amk Q=(1+d4)?  nzamk
Z Z z
s Qs 0 0 iy
C3n = Z Z amp(k, Q) — Z Z amp(k,q).
Q=(1434)  nZgmk Q=(1+d4)?  nzamk
20 z20q<z 20 z20<q<z
xS9O 0 02Q1 o) THx SO G421 46a)

Note that, for each j = 1,2, 3, we have |c;,| < d3(n) and hence part (i) follows if we show
that, for any Y € (X99/100,4X] and any j = 1,2,3, we have

(2.13) > ds(n)lejm| <a

3A v
vy log”* X

Let us first consider ¢; ,,. By [7, Lemma 15] (alternatively see [5, Lemma 4.1]) we have,
for any £ € N,

pllzo)— 3wl 3L

e|(¢,P(z0)) e|(¢,P(20))
e<D D<e<Dzg

so that

< S 1< Y dw).

n=emk n=ek
e|P(z0), D<e<Dzg e|P(z0), D<e<Dzg

Hence by (1.3)

D dsm)leral < Y ds(n) Y dk) < Y ds(e) Y d(k)ds(k)
n=ek

n~Y n~Y = e|P(z0) k~Y/e
e|P(20) D<e<Dzp
D<e<Dzg
ds(e
<Ylog’Y Y 3(e).
e[ P(zo0)
D<e<Dzg

By [5, Lemma 4.3] (a standard application of Rankin’s trick), this is < Y log 34V
Let us now turn to cz,. We have

(2.14) lcon| < > dk)+ > d(k).

n=qk n=qk
% <q<zo(1+04) 12g<z1 (1494)
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The contribution of the second term in (2.14) to the left-hand side of (2.13) with j = 2 is
thus by (1.3)

<Y odsn) Y dk) < > > ds(k)d(k)

n~Y n=qk 21<q<z1(14+84) k~Y/q
21<q<z1(14624)
1 Y
Yiog’Y S ——
< Ylog > << (log X724
Z1§q<21(1+5A)

The contribution of the first term in (2.14) to the left-hand side of (2.13) with j = 2 can
be similarly shown to be < Y (log X )34

Consider finally c3,,. If c3, # 0, then, for some @ as in the definition of c3 ,,, the integer
n has at least two prime factors from (Q,Q(1 + d4)]. Hence

lesnl < Y > d(k).

Q (14+84)7 n=qiq2k

1+5 <Q<z Q<n<q2<Q(1+04)

Hence, using (1.3) again,

Z d3 |63 n| < Z d3 Z Z d(k‘)

n~Y n~Y Q:(1+5A)j n=q1q2k
QR<q1<q2<Q(146.4)

< > > > d(k)ds(k)

1+5 <q1<z1(1464) @2€[q1,q1(14+84)] k~Y/(q1q2)

< Y(logY)® > > S —

34 v
Th; S <21 (1404) 2€[01,01(1+04)] 0192 log™" X

1+

This finishes the proof of part (i).
To prove part (ii), we claim that for any J > 0 we have

(2.15)
J
> amp(kz) =) (-1 Y > amule)
n=mk /=0 Je<--<J1 n=emkqi---qp
Qu=(1+54)%u e|P(z0),e<D
20<Qe<-<Q1<21 Qu<qu<(1+64)Qu
+(—1)7! > > amp(k, Qr41) + cpg
Jr+1<-<j1 n=mkqi--qj41

Qu:(1+6A)ju Qu<QuS(1+6A)Qu
20<Qy+1<<Q1<21

with ¢y, ; satisfying for any Y € (X99/100 4X] the bound

Y log(4X) ] Z0<i<s %
2
(2.16) > el <a (fog XA [ W .

log z
Y g 20
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For J = 0, we have this by part (i). Supposing then that we have this for some J, the
case J + 1 follows by applying part (i) with z; = @ 41 to the new sequence

I
Q. = g E O,

Jr+1<<j1 T=Mmq1-qJ+1
Q’u:(1+5A)Ju
205Q j41<-+<Q1<21

which is bounded by [(log4X)/(log29)]”*! times the maximum of «,,. Hence, (2.15)
holds with the bound (2.16).

Part (ii) follows from (2.15) and (2.16) with J = L, since ((log4X)/(log zo) + 1)2* =
(log X)"(l) and since for J = L the last sum in (2.15) is empty, as a number n < 4X
cannot have more than L prime factors that are > zg. ]

Proof of Proposition 2.2. Recall from (2.3) that
p-(n)=p(n,2)— > p(m,z)+ > plm,z) - > p(m, 2).

n=gm n=q1gam n=q1g2q3m
z<q<2X1/? 2<ga<qi<X1/4-2 2<q3<qa<qr<X1/4-2
Qg <X'7% Qay<X'7%¢

Let us concentrate on the third term, the other terms being treated similarly (except
the fourth term leads to type I/II sums instead of type I sums). We first split the variables
q1 and ¢o into d4-adic ranges and write

Lue(v/2,4v] Z p(m, z)
n=qiqa2m
2<ga<qr<X1/472¢
qra<X'7%

(2.17) = loe(v/2,4v) Z Z p(m, z) 4+ dy p.

Q1=(1464)71,Q2=(1+64)72 n=q1q92m
Z<Q2<Q1<Xl/4—2£ ) QJ<qJ§(1+5A)QJ

Q1Q3< X172

We can show that the mean square of dy 5, is small by arguing as when we treated c3, in
the proof of Lemma 2.3, so dy 5, can be included in ¢, in the statement of Proposition 2.2.

Applying Lemma 2.3(ii) (taking cu, = lpm—g,q.ep,, Where Py is defined by the summa-
tion conditions above) and splitting also the arising variables e and k from Lemma 2.3
into J4-adic intervals, we see that the main term in (2.17) is a linear combination of an
acceptable error and

log(2/20) \" 3 5
L 2o\e/=0)
< (log(l o) (log X)?log D < exp((loglog X)?)
terms of the form

Lue(y/2,4v] Z (e,

n=eq1q2kq} -q,
e|P(z0),E<e<E(1+d4)
Q<q;<(1+04)Q;
Qu<q, <(1464)Q7,
K<k<K(1+64)

where £ < L,

z2< Qo < Q1 <X1/4_26, Q1Q§<X1_2‘€, 20<Q)<--<Q)<zand E<D.
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Parts of the linear combination where EQ1Q2KQ --- Q) & (Y/2,4Y] make an accept-
able contribution arguing as with ¢z, in the proof of Lemma 2.3. Once we have imposed
this condition, a similar argument allows us to dispose of the factor 1,¢(y/2.4y]-

When Q] -+ Q) < X*/2, we have EQ1Q2Q) - -- Q) < X¥/2%¢ and hence we have a type
I sum. On the other hand, when @ --- Q) > X¢/2, one can find I C {1,...,¢} such that
Xe/2 < [Lic; @; < 2z and hence we have a type II sum. O

3 MEAN VALUE THEOREMS FOR DIRICHLET POLYNOMIALS

As usual, the variance estimate in Theorem 2.1(iii) is reduced to a mean square estimate
for corresponding Dirichlet polynomials. For the following lemma, see e.g. [18, Lemma 1].

Lemma 3.1 (Reduction to Dirichlet polynomials). Let X > 3, Ty = X'/1090 gnd let
e > 0 be small enough but fized. Let ¢ = 2.1,h = (log X) a € [c—1—1/10000,c — 1], and
P, = (log X)®. Define

Ps)= Y & Pe= 3 p;(sn).

pi~P Pl X/(2P))<n<4X/Py

Suppose that, for any T > X/h,

1
X/h (log X)2te

T
/ |Py(1+it)2|P(1 4 4t)|2dt <
To

Then (2.6) holds.

In this section we collect some mean value theorems for Dirichlet polynomials that we
shall need. Let us start with the standard mean value theorem (see [10, Theorem 9.1]).

Lemma 3.2 (Mean value theorem for Dirichlet polynomials). Let N,T > 1 and A(s) =
> n<n @nn” %, Then

T

/ APt = 2T+ O(N) 3 Janl.
-T n<N

We will also need the following variant, which works better when a,, has sparse support.

Lemma 3.3 (Improved mean value theorem). Let N,T > 1 and A(s) = >,y ann™°
Then -

/y WP <TY Jal +T 33 Janllantsl

- n<N 0<|k|<N/T n<N
Proof. This follows from [10, Lemma 7.1] taking Y = 107 and z,, = % logm there. [

The following sparse mean value estimate of Heath-Brown [8] plays an important role
in our arguments.

Lemma 3.4 (Heath-Brown’s sparse mean value estimate). Let T > M > 1, let M C
[M,T] be a set of integers, and let N > 2. Let

= Z emm”°  with |gp| <1
meM
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and
A(s) = Z apn”?®
n~N
for some a, € R. Then we have, for any n > 0,
(3.1)

T 2 7/4rp3 /4
/ |M(1+it) 2| AL + it)[*dt <, ((W') + (NT)" (M’T - M7 T )) max | ay|?.
-T n

M M?2N M?2N

Moreover, if N > T?/3 or |M| < T3, the third term on the right-hand side of (3.1) can
be deleted.

Proof. This follows quickly from [8, Theorem 4]. Firstly, by symmetry, it suffices to
consider the integral over [0,7']. Secondly, by writing A(s) = A(s) maxy, |a,| with A(s) of
the form ),y ann™° with |a,| < 1, it suffices to consider the case |a,| < 1. Next, by
writing

an = a,‘f —a,
with a € [0,1] and applying the triangle inequality, it suffices to consider the case a,, €
[0,1]. Lastly, we can write

M, (it mM
M(1+z‘t):ﬂ with Mi(it) = » Em it
M
meM
and
. Aq (it . . anN —i
Al +it) = 1]57 ) with Ay (it) = Z n~"

n~N
to reduce matters to an integral over the 0-line. Now the claim follows from [8, Theorem
4(iii)] (with n/2 in place of 7). O

To obtain Type I and Type I/II information we use twisted moment estimates due to
Watt [19] and Deshouillers-Iwaniec [3].

Lemma 3.5. Let A,N,N',T > 1 with N < N' <2N. Let
N(s) = Z n= % A(s) = Z amm=®
N<n<N’ m~A

with a,, complex numbers, and let € > 0.

(i) (Watt’s theorem) We have

T
2\ |4 SN2
/ IN(14at)[*A(1 4 it)| dt<<T5< =+ 7

T/2

(ii) (Deshouillers—Iwaniec theorem) We have

T + A2/ T+A> )
max |, |
m

T
/ IN(1 4 at)|[*|A(1 + it)|2dt < T° (

T+ A2TV2 4 ASAT3/4 T4 A\ 1 3 fan?
Am|”.
T/2

N2A tria )2

m~A
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Remark 3.6. Although the A dependence is weaker in Lemma 3.5(ii) than in Lemma 3.5(i),
the fact that Lemma 3.5(ii) involves the #2 norm of the coefficient sequence rather than
the maximum makes it more suited for our type I estimates in Section 5.1, where we es-
sentially end up taking A(s) = P;(s)¥ with Py(s) = > pp, p° and PF ~ T/, Indeed,
in this situation, taking the maximum of the coefficient sequence would lead to a loss in
the estimate.

Proof of Lemma 3.5. Suppose first that N < T. Then, by the approximate functional
equation, we can further reduce to N < T2 (cf. [5, formula (5.6.12)]). Parts (i) and (ii)
then follow from the works of Watt [19] and Deshouillers—Iwaniec [3], respectively (one can
apply partial summation to change the line of integration and then use [19, (4.7)] and [3,

(14)]).
Suppose then that N > T. For N > T > |t|, we have the bound
; 1
(3.2) Z n i« m;

N<n<N'

this follows e.g. from [10, Corollary 8.11]. The claimed estimates then follow from (3.2)

and the mean value theorem (Lemma 3.2) applied to A(1 + it). O
4 LARGE VALUES OF DIRICHLET POLYNOMIALS

Lemma 4.1 (”Density hypothesis” for Dirichlet polynomials). Let ¢ > 0 be small but
fized, and let T'> N > 2. Let N(s) =), nann~° with a, divisor-bounded. Assume that
T1-2/10 > N > T79/11-10¢ and
5e < o <49/206 — be.
Then we have
2
{t € [-T,T]: IN(1+it)] > N7} <« T2 /5,
Proof. Write
T = {te[-T.T]: IN(L+it) > N},
We apply Jutila’s large values estimate (see [10, Theorem 9.10]) with k = 7,

’an|2 (IOg N>O(1) —0
G:Z 2 < N and V=N"°.

This gives

T < (VT30 (GN+ <GN>_1/k GANT <GN>4k T >

V2 V2 V6 V2 N2k
< T</200 (NQU LT N(6-2/To-2 | TN(&FQ)-?) < T2‘7’52/5,
as desired. g
Lemma 4.1 allows us to handle large values of Dirichlet polynomials in our type II sums.
Proposition 4.2 (Type II estimate). Let ¢ > 0 be small enough but fived. Let T > 3,
and let
Mi(s) = Z a—msl and Ms(s) = Z P

m2

S

ml m2

mi NM1 m2NM2
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with My My = T(og T)°Y) and with (am,) and (Bm,) divisor-bounded. Suppose that

and
o =49/206 — 10e.

LetU C [0,T] be a measurable set such that, for each t € U, one has either |M;(1+ it)| >
M7 or |My(1+it)] > My°. Then

(4.1) / | My (1 + it) 2| My (1 + it)|2dt < T~5/10 4 (1og T)OW sup [ M; (1 + it) [
u teu

Remark 4.3. The key aspect in Proposition 4.2 is the value of o, which we want to
maximize, as the value of o eventually plays an important role in determining our exponent
¢ in Theorem 2.1 in Subsection 5.3.

In [18], integrals of the type (4.1) were estimated by using a pointwise bound on M (1+
it) and the Haldsz—Montgomery inequality on the sparse mean square of My (1+it), whereas
in the proof of Proposition 4.2 we obtain stronger estimates by first splitting the integral
into pieces according to the sizes of M;(1+it), Ma(1+4t) and then applying Jutila’s large
values estimate.

Proof. It suffices to show that, for any one-spaced subset 7 C U, we have

STIMIA + i) P Ma(1 + it)? < T/ + (log T)OW sup [My (1 + it) 2.
teT telu
We partition T = T1 U T2 U T3, where
Ti={t € T: |M(1+4it)| > M or |My(1 +it)| > M, 1%},
To:={teT: T < |M(1+it)] < M and T7! < |My(1 +it)| < M, *%},
Ts:={tecT:|M(1+it)] < Tt or|My(l+it) <T '}
Trivially

) . 1 1
>+ PR+ i) < T = - (10gT)OW < .
teT3

Let us turn to 7;. Let ¢; := [(logT")/(log M;)] for j =1,2. Now

ITi] < MPO S T IMy (1 + i) P+ M%) | Mo (1 + it) 2.
teT teT

Note that ¢; < 1 and thus the coefficients of M;(s)% are divisor-bounded. Hence by the
discrete mean value theorem [10, Theorem 9.4], for j = 1,2,

| log TYOM)
MjQOEZJ Z M (1+ )25 < T(T + (2Mj)£j)(ogﬁ « T
J
teT J

Hence |T;| < T°%.
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Using the pointwise bound for M;(1 + it) and the Haldsz—Montgomery inequality
(see [10, Theorem 9.6]) for Ma(1 + it), we obtain that

T1/2
11+t 2(1 4+ 1t)|” < sup |My(1 4t + og
My(1 + it)|?|Ma(1 + it)|? i (14 7 log T)°™)
byt teu My

< (log T)°W sup | M (1 + it)|?.
tel

Hence we can concentrate on 7. We partition the set 73 into < (logT)? sets of the
form

Toor,o0 ={t € Ta: |Mi(1+it)] € (M{ 7", 2M{ Y], |Ma(1+it)| € (M 7%, 2M, %]},

Note that the set is non-empty only if 01, 09 > 10e and min{oy, 02} < o+1/log M;. If o1 <
02, we choose an integer 1 < £ < 1 such that M{ € [T5/6=¢ T=/2] and apply Lemma 4.1
to My (1+it)* (note that the coefficients of M (s)¢ are divisor-bounded). If o3 < o1 we ap-
ply Lemma 4.1 to My(14it) (which has length € [T%"=¢(log T)~OM), T1=¢/5(log T)°M)).
We obtain
Taior | € T2 o002} =0,

and consequently

STIML(1+ i) P Ma(1 + it)[? < (log T)2 My 27 My 222 min{onoe}=<2/5  p=e?/10,

teT2

This completes the proof. O

5 PROOF OF THEOREM 2.1

Let ¢ = 2.1, a € [c—1—1/10000,c — 1], h = (logX)¢ and P; = (log X)® as in
Theorem 2.1, and let p~ be as in (2.3) (with z = X%/'1). Write

(5.1) Pi(s)= 3 pls and P(s)= % pn(sn).

pi~P L X/(2P1)<n<4X/Py

Let also
To= XY and Ty =X.
By Lemma 3.1 it suffices to show that there exists e > 0 such that, for any T' > X/h,

T . . T 1
(5.2) /T (LRI + i0Pdt €  e
If T'> Ty, the mean value theorem (Lemma 3.2) and (2.4) imply that
/T |PL(1+it)2[P(1+ i) Pdt < (T + X) ) el
T — n2 X (log X)2+z-:/10

since h = (log X )¢ > (log X)2+¢/10,
Hence we can assume that 7' € [X/h,T;]. We separate into two cases according to the
size of Pi(1 +it). Let [Ty, T1] = T UU, where

U= {te[ly,Ti): |P(1+it)] > P ")
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Recall from (2.4) that [p~(n)| < p(n,z), so that by the improved mean value theorem
(Lemma 3.3) and a simple sieve upper bound (similar to e.g. [10, Theorem 6.7]) we have
for any T € [X/h,T1],

T 1 B
/ |P(1 +it)[?dt < T 3 L=t
X/(2P1)<n<4X /Py
Ln(n+k),P(2))=1
T Lin(ntk),P(2)=1
+ > > e

0<|k|<4X/(P\T) X/(2P1)<n<4X/P;

P s E—
XlogX = (log X)?

e/10

Using also the pointwise estimate |P(1 4+ it)| < P,
any T € [X/h,T1],

1 TP 1
Pi(1+it)2|P(1+it)Pdt < ( + >
/Tm[TO,T]| i 1P ) ple/5 XlogX = (log X)?2
- 1 Th/logX , 1 7 1
(log X)a</5 \ XlogX = (log X)? X/h (log X)2+e/5”

Hence, it suffices to show that

for t € T and (2.5), we obtain, for

/ |P(1 +it)]2dt < (log X)1°.
u
Let A be sufficiently large. Recall the decomposition of p~ (n)lne(y/gAy] from Propo-

sition 2.2. We pick Y = X/P; and let ¢, and F be as in Proposition 2.2. By the mean
value theorem (Lemma 3.2), and (2.10)

? X\ /P \?
Cn, -
/ Z it dt < (Tl + P1> <Xl> E len|? <4 (log X))~
u

n nXX/Pl
Hence, recalling that |F| < exp((loglog X)), it suffices to show that, for any f € F, we
have

(5.3) /u |F (1 + it)|?dt < exp(—(loglog X)),

where

F(s) =3 11

n
We split into three cases as in Proposition 2.2. In all three cases we utilize, similarly
to [14], the fact that |Pi(1 + it)| > Pl_g/10 for every t € U through inserting a factor
|P1(1 + it)|** P?** for an appropriate k to the left-hand side of (5.3).
5.1 Type I case
Now F(s) = Mi(s)Ma(s) with
a
M (s) = Z WT:; and My(s) = Z
! 2<(1+64

m1NM1 M2<m

1

S?
m
)My 2
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where My < XY+ MMy € (X/(2Py),4X/P)], and 4 is given by (2.9). Tt suffices to
show that, for any T' € [Ty, T1], we have

/ ML (14 i) 2| Ma(1 + it) 2dt < exp(—(log log X)®)(log X) 1.
UN(T 2T

N log T1/10
| logP |’

so that M := PF € [TY/10 PyTY19]. Let

Let

M) =Rt= Y

PF<m<(2P)F

say. Note that since P; = (log X)* we have

log M log M 1
bo| < k! < exp(klog k) = 1 < M'/e
|bm| < k! < exp(klogk) = exp <logP1 oglogpl> < ,

so that
(5.4) D bl < MYES by | < MYVOPF = M,

m

By definition we have, for every t € U,
IM(1+it)] > M~/ — 1< MYO\MQ1 +it)].
Using this and the Cauchy—Schwarz inequality we obtain

/ | My (1 4 it)|?| Ma(1 + 4t)|2dt
UN[T,2T)

1/2 1/2
<M/ (/ [Mo(1+ i) M (1 + z’t>|2dt> (/ M (1 + z’t)“dt) :
UN(T,2T] UN(T,2T]

We apply the Deshouillers-Iwaniec mean value bound (Lemma 3.5(ii)) together with (5.4)
to the first term and the mean value theorem (Lemma 3.2) to the second term, obtaining
that the above is

1/2 1/2
< MENOTE <T+MQT”2JrM‘r’/“T?’/4 T+M> /(20) (T+M12) / .

M2M RN M?

Let us first note that since M < T3, the contribution corresponding to the term (7" +
M)/(T*M) is

(T + M)(T + Mf)>1/2 pi/ea) o MV ! !

TAMM? 7= S <

e/10e _
<M T( R < X

The remaining terms are maximal when 7' is maximal, i.e. T = 77 = X. In this case
T+ M?>T? 4 M/AT3/* < T and M7 < X426 < T'2¢ and the bound we obtain is

£ 3
< M7 <M12M22M11/“> < 5=
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Remark 5.1. One could slightly loosen the condition M; < X'/2t¢. The above ar-

gument with & such that P} ~ T'/5=¢ would allow one to handle type I sums for
M, < X1/2+(1-1/a)/10-10¢

5.2 Type I/II case
Now F'(s) = Mi(s)Msy(s)Ms(s) with

_ QU _ Oy _ 1
Ml(S) - Z mi ) MQ(S) - Z mg ) M3(5) - Z mig
mi~M; mo~ Mo Ms<m3<(1+354)Ms
and
(5.5) MMy < X175, My < XY47¢ and M;MyMs e (X/(2P)),4X/Py).

Similarly to Section 5.1, it suffices to show that, for any T" € [Ty, T1], we have
/ | M7 (1 + it)|?|Ma(1 + it)|?|M3(1 + it)|?dt < exp(—(loglog X)®)(log X)~!
UN[T,2T]
We argue similarly to the type I case in Section 5.1, but this time taking M(s) := Py(s)*
with
b log T¢/?
| logP |’

so that M := PF € [T*/2, PyT¢/?]. By the Cauchy-Schwarz inequality, we have

/ ML (1 + it) | Ma(1 + it) 2| Ms (1 + it) 2t
UN[T,2T)

1/2 1/2
<M ( / [Ms(1+ it) || Ma(1 +z’t>|2dt> ( / My (1 + it)| [ MM (1 +it>|2dt> ~
UN[T,27) UN[T,27)

By Watt’s bound (Lemma 3.5(i)), the mean value theorem (Lemma 3.2) and (5.4), this is

1/2 1/2
« ME/107E/100 T+ M3T'? T+ My T+ MMM\ Mo
M2M, T7M, MZMyM

Let us first note that since M < T¢, the contribution corresponding to the term (7" +
M) /(T*Ms) is

1/2 a)te

TAMZMZM i S 77 <X

The remaining terms are maximal when T is maximal, i.e. T = T; = X. In this case
T+ Z\J%Tl/2 < T and M12M2M < T, and the bound we obtain is

< ME/107E/100 ( T° )1/2 _
MMM 1/

By (5.5) this is < X /100,



20 KaisA MATOMAKI AND JONI TERAVAINEN

5.3 Type II case
Now F(s) = Mj(s)Ma(s) with

o B
Mys)= D, T M= ) TE
My <ma(rsa)ian T Mg Msy 2
1 1> A 1
for some R € {1,..., Lll(?f;oJ} and

X2 <M <z and MM, e (X/(2P)),4X/P],
where zy = exp((log X)/(loglog X)3), z = X?/" and a,,, are as in (2.11).
Recall that U C [Ty, Ty] = [X/19% X]. Let us partition U = Uy Ul UUs, where
U = {t €U |Mi(1 +it)| > M1—49/206+105 or [My(1 +it)| > M2—49/206+105}7
Up = {t €U: X~ < [My(1+it)] < My P01 and X1 < |My(1 + it)] < My 92007107,
Us :={t eU: [M(1+it)] < X' or |[My(1+it) < X'}
Proposition 4.2 immediately implies that

|M (1 + it)|2| Ma(1 + i) 2dt < exp(—(log X)/10),
Uy

since

(5.6) sup |My(1 + it)| < exp(—2(log X)1/10)

To<t<Ti

as a corollary of the Vinogradov—Korobov zero-free region (see e.g. [5, Lemma 1.5]). Fur-
thermore trivially

1
-\ 12 2\ (2 L o(1)
/3|M1(1—|—zt)\ |Ma(1 +it)]°dt < X X2 (log X) < X1z

Hence we can concentrate on Us. We split it into < (log X)? sets of the form

(5.7)
Us oy, = {t € Up: [My(L+it)| € (M7 2M; '], [Ma(L + it)| € (M 72, 20, ]},

By the definition of Uy, this is non-empty only when o; > 49/206 — 10¢ for j = 1,2. In
order to deduce (5.3), it now suffices to show that, for any o1, 09 > 49/206 — 10e, we have

(5.8) Uz 51 00| < Z\41201M2202 exp(—(loglog X)7).
Let
log T1
k=|—
10g(2P1)
and M = Pl € [T1/(2%P1),T1/2%). Define

s k
M(s) = Pl/i!) = emm ™,

say, where &, € [0, 1] and M consists of products of k primes from (P;,2P;]. In particular,
all m € M are 2P;-smooth, so that

|M‘ < Ml—l/a+0(1)
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by a standard upper bound for the number of smooth numbers (see e.g. [9, (1.14)]).
Moreover, M C (Pf,(2P)*] C [M,Ty] and, by the definition of U,

—e/10
k!
Next we bound |Us ;, 4, | in two different ways. First, by (5.7) and (5.9), we have

(5.9) |M(1+it)] > > Me/10=Vato() for all ¢ e U.

Us 5, 0y | < ME/5H2/ato() pp202 / |Mo(1 + it)[2| M (1 + it)|dt.

u2,o'1,02

By Lemma 3.4 applied with N = M, (and noting that |M| < Tll/3 and M € [Tll_52, Ti)),

we see that
2
T,
U,y | < ME/5F2/at0(1) 202 ((W!> Lo Ml 1>

M M? M,

1+€/10 5 1
<< M€/5+0(1) <M220'2 + TEWle\gUQ/a)
2
Hence (5.8) holds provided that
M20’1 3
(5.10) M < o and Ml « B e

1
Since M € [T11_52,T1], My > Tf/Q and o1 > 49/206—10e > 1/5+42¢, the first claim always
holds when ¢ is sufficiently small. The second claim holds for sufficiently small € when
1
> 1—9(1—20’1)—67

a

where we have denoted

5.11 i
(5.11) log X 2711

Hence we can from now on assume that

H:IOnge I:E 2]

1 49 1
12 1-2 >1—-—-— — —10¢, - | .
(5.12) o( o1) > i and o1 € [206 05,2>
On the other hand, using (5.7) and (5.9) and arguing similarly as before, we see that
(U, | < M52 atol) 00 / |My(1 +t)["| M (1 + it)*dt
Z/{2,o'1,o'2

Tl/a+3€
< Me/oHe) pplbos <1 + L ) .
My

Since M; < T12/11+E/2, the second term dominates when a < 11/10. Hence (5.8) holds if

1 4 —
T/ < MPTS V2,

Recalling (5.11) and that oo > 49/206 — 10¢, this holds if

49 1 49 49 1
— 0+(1—-0)-2-— > —425c <— 4(1—201)0+—+0(1—-2 - — —+25e.
(5—801)0+( ) 506 > -t 5e ( o1) +103+ < 206) > 5e
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Now the left-hand side is increasing in 6 (since o1 < 1/2), so using (5.12) it suffices to
have

4 49 1 1—-2-42
4——48++<1——5>206>+255.
a a

103 1—20 a
Since o1 > 49/206 — 10g, this holds if
6 49
h |
. <5+ 103 00e,

which in turn holds for € > 0 small enough if

103
— 4+ 100e.
a > o + 100e
But 402 < 1.1 —1/10000, and the claim follows.
Remark 5.2. We note that in general if one had Proposition 4.2 with ¢ in place of 49/206
and 0 in place of 2/11 (with 1/5 + 2e < o < 1/2), then the first part of the argument in
Subsection 5.3 would imply that one can deal with type II sums with one variable from
[X©/2, X?] with the exponent
1

1-6(1—-20)—c¢

in Theorem 2.1 (with a € [¢ — 1 — 2, ¢ — 1] in place of (2.5)).

(5.13) c=1+

Remark 5.3. One could optimize the argument in several ways, but we have decided not
to do so, as our relatively clean argument already gives a very substantial improvement
over [18].

For example, one could prove stronger variants of Lemma 4.1 inside the set U by using
amplification by Pj(1 + it)kPlk /10 inside the proof of Jutila’s large value result and then
replacing Jutila’s application of fourth moment of zeta by the Deshouillers—Iwaniec theo-
rem (Lemma 3.5(ii)) or by Heath-Brown’s sparse mean value theorem (Lemma 3.4). This
would lead to a slight improvement of Proposition 4.2.

Furthermore, one could obtain better large value results by taking better into account
the shape and length of the polynomials M;(s) and Mas(s). In particular, in the proof
of Proposition 4.2 one could get a better lower bound for large values of M;(s) since
Mf > T5/6 > 79/ 50 better large value theorems are available for Ml(s)e than for
Ms(s). On the other hand, for Ma(s) it might be of benefit to decompose it further into
a product of Dirichlet polynomials and apply large value theorems for its components.

6 REsuLTs WITH HEATH-BROWN’S IDENTITY

Instead of using Harman’s sieve, one could use Heath-Brown’s identity. This way the
argument would be somewhat simpler, but one would only obtain Theorem 1.1 with a
somewhat larger interval length (log ac)2+3/ 13+¢ More precisely, one would obtain

(6.1) {pip2 € (x,z+ h]: (logx)* < p; < (loga:)‘”e/Q}] >,

log

for all but <« X/(log X)? integers z € [2, X], with h = (logz)?*t3/13+¢ and a = 1 + 3/13.
On the other hand, assuming the Lindelof hypothesis, one can use Heath-Brown’s identity
to obtain h = (logx)**¢ and a = 1 +¢/2.
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We sketch the proofs here: It suffices to show that, with P; € ((log X)?, (log X)**¢],
hy = X99/100 b — (log X)%*! and a as in one of the above claims,

2
1 /2 1 1
= - Aln) — — A)| de < ————
xl b X am-g 3 am) < g
rz<pin<z+h z<pin<x+hi
p1~P1 p1~P1

where A(n) is the von Mangoldt function. We reduce to mean squares of Dirichlet polyno-
mials as in Lemma 3.1 (but with A in place of p~ and (log X)~¢ in place of (log X)~27¢)
and handle fT as in Section 5.

Let L € N be fixed and Y = X/P;. Applying Heath-Brown’s identity [10, Propo-
sition 13.37] and splitting the variables into short intervals gives a set F consisting of
(log X)©94.r() functions f: N — C such that

A()lne(y/2,ay) = Z f(n) +cn
fer
where ¢, is as in Proposition 2.2 and each f is of the form
f=aWx . xa®
for some ¢ < 2L with each a() (n) one of L, (146N 1087 LN, (146.4) Vi) OF (i, (146,4) Vi (7).
Moreover Nj...N; <Y and, for each i with a()(n) = L, (1464)N; 1 (n), we have N; <
yUlL,
6.1 Unconditional result with h = (logz)2t3/13+¢

For the unconditional result we choose L = 3 in Heath-Brown’s identity. If X/10 <
N; < X1/3 for some j, then f(n) is a type II sum

Z Qmy ﬁmg

n=mima
Mi<m1<(14+54)M;
man~ Mo

with oy, either 1, logm; or p(m;) and
X0 < My < XY3 and MM, e (X/(2P1),4X/P).

Otherwise the product of two largest /N; must be > X 1-4¢/10 /Py and hence we have a

type I sum
E Qm, OF g O, log mo
n=mims: n=mimsas
my~M; my~M;
Ma<ma<(14-64) Mo Ma<ma<(14-84) Mo

with My < XY/2+e and My M, € (X/(2P1),4X/Py]. The type I sums can be handled as
before (using partial summation in the second case).

For type II sums we argue similarly to Section 5.3, but use a variant of Lemma 4.1, where
Ti=e/> > N > T2/3 and 5e < 0 < 7/32 — 10e. Such a variant follows from Bourgain’s
zero density estimate [2, Lemma 4.60]. The coefficients oy, are of different shape than
previously. However, this is not an issue since M;(s) still satisfies (5.6) and furthermore,
since M; > X/ in the proof of the variant of Proposition 4.2 the parameter ¢; is
bounded, so that the coefficients of Mj(s)“ are divisor-bounded.
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Now we have in (5.13) # = 1/3 and ¢ = 7/32 — 10 which, after adjusting ¢, gives
Theorem 2.1 with c=2+3/13+¢c. anda € [c — 1 —¢/2,c— 1]

6.2 The Lindel6f hypothesis implies h = (log x)?*¢

To obtain the result under the Lindel6f hypothesis, we apply Heath-Brown’s identity
with L = [1/¢]. Now if X¥/(08) < N; < X© for some j, then f(n) is a type II sum

Z Qmyy ﬁmg

n=mima
My<m1<(14-64) M
monr~~Mso

with a,,, either 1, logm; or u(m;) and
X/U0L) < My < X5 and MM, € (X/(2P1),4X/Py).

In this case we have in (5.13) § = ¢ (and can take e.g. ¢ = 7/32 — 10¢) which, after
adjusting ¢, gives c =2 + €.

Hence we can assume that all the factors longer than X°/(19L) have coefficients 1 or log.
Now if N; > X1/2-¢ for some j, then we have a type I sum which can be dealt with as
before.

In the remaining case we have, for some ¢ € {2,...,2L}, a type I; sum of the form

Z akﬁnu cee 6m4

n=kmimao---my
k~K
Mj<mj§(1+5A)Mj
with K < X*/° My,...,M, € (X, X2, KM, My---M, € (X/(2P),4X/P;], and

B, € {1,logm;}.
Under the Lindelof hypothesis we have, for j =1,...,¢,

. t+1)7/10 1
Brm; <. (|t] +1) N
Z Lt IVRE |
Mj<m;<(1464)M; ] j

(this follows e.g. from [10, (9.21)] and partial summation). For those ¢ for which the
second term dominates for some j, we can bound all the other Dirichlet polynomials
trivially, obtaining a contribution of

/T1 Mdt < L
Ty |t[2 Tol/2

Otherwise we essentially have in (5.13) 6 € (¢,1/2 —¢] and ¢ = 1/2 — ¢ which, after
adjusting ¢, gives again Theorem 2.1 with c=2+¢. anda € [c—1—¢/2,¢c—1].

7 ALL INTERVALS

We lastly turn to the proof of Theorem 1.2, which closely follows the proof of Theo-
rem 1.1.
Let a=1.1,c=1+4a/2, h = /z(logz)°, and P; = (logz)®. We will show that

N h
hl: p1 ~ Pi,pa ~ '
{p1p2p3 € (z,x+h]:m 1,P2 92 } (log Py)(log )2
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Let p~ be the same minorant function as in Theorem 2.1 but with v/ P} in place of X,

i.e. p~ is defined by (2.3) with X = /zP; and z = \/xPlz/H. Then it suffices to show
that

Yo o )> "

M DN N2 "
x<p1pan<z+h (log P1)(log z)
p1~Py

p2~y/x/P1/2

By a slight variant of Theorem 2.1(ii) which is proved in the same way, this reduces to
showing that

1 - 1 - :
PY = Y oo ()

z<p1p2n<z+h ! z<p1pen<z+hi
p1~Py p1~Py
pa~y/z/P1/2 p2~y/z/P1/2

where hy = 299/100 " Next we sketch the standard deduction to mean values of Dirichlet
polynomials. Write

Pi(s):= Y p° Ps):= Y p° Pls):= > p~(n)n”%
p1~Pr par~a/x/P1 /2 Vz/P1/2<n<d\/z/P;

and «a(s) = Pi(s)Py(s)P(s). Using Perron’s formula (see e.g. [15, Corollary 5.3], noting
that the coefficients of «(s) are bounded and supported on m < x), and dealing with the
integral over [—Tp, Tp| similarly to e.g. [5, Proof of Lemma 7.2]), it suffices to show, for
some small € > 0,

1 z(log )10 z
/ IPL(1 +it)[| Po(1 + it)||P(1 +it)|min{ h} dt <

1
h )z, |t|” (log x)2te/2’

where Ty = z'/190, Considering separately the integral over [Tp,z/h] and splitting the

remaining integral over (x/h, z(logz)'°] dyadically into < loglog = integrals, we see that
it suffices to show that, for any T € [z/h, z(log x)!°], we have

T
T 1
7.1 P (14 at)||Po(1 +4t)||P(1 + 4t)|dt . .
(7.1) P IR PO it <
Note that by the improved mean value theorem (Lemma 3.3) we have, for T' > z/h,
T
T 1 T 1
Py(1+it)dt < + < — -
/To‘ 2( ) Va/Plogz  (logz)? — x/h (logx)?

since h = v/z P log x. Hence, applying the Cauchy—Schwarz inequality to (7.1), it suffices
to prove that, for any T' > x/h,

T
T 1
Pi(1+it)2|P(1 + it)|Pdt < — 5=
/TO’ 1( +Z)" ( +Z)| << x/h(logx)Q"'Qa

But since a = 1.1, this is essentially the claim (5.2) that was proved in Section 5 (after
adjusting e and replacing X with \/xP}).
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