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Abstract

We introduce the first complete nonparametric model for the astrophysical distribution of the binary black hole
(BBH) population. Constructed from basis splines, we use these models to conduct the most comprehensive data-
driven investigation of the BBH population to date, simultaneously fitting nonparametric models for the BBH mass
ratio, spin magnitude and misalignment, and redshift distributions. With GWTC-3, we report the same features
previously recovered with similarly flexible models of the mass distribution, most notably the peaks in merger rates
at primary masses of ∼10Me and ∼35Me. Our model reports a suppressed merger rate at low primary masses and
a mass-ratio distribution consistent with a power law. We infer a distribution for primary spin misalignments that
peaks away from alignment, supporting conclusions of recent work. We find broad agreement with the previous
inferences of the spin magnitude distribution: the majority of BBH spins are small (a< 0.5), the distribution peaks
at a∼ 0.2, and there is mild support for a nonspinning subpopulation, which may be resolved with larger catalogs.
With a modulated power law describing the BBH merger rate’s evolution in redshift, we see hints of the rate
evolution either flattening or decreasing at z∼ 0.2–0.5, but the full distribution remains entirely consistent with a
monotonically increasing power law. We conclude with a discussion of the astrophysical context of our new
findings and how nonparametric methods in gravitational-wave population inference are uniquely poised to
complement to the parametric approach as we enter the data-rich era of gravitational-wave astronomy.

Unified Astronomy Thesaurus concepts: Gravitational-wave astronomy (675); Gravitational waves (678); Black
holes (162); Compact objects (288); High energy astrophysics (739)

1. Introduction

Observations of gravitational waves (GWs) from compact
binary mergers are becoming a regular occurrence, producing a
catalog of events that recently surpassed 90 such detections
(Abbott et al. 2019a, 2021a; The LIGO Scientific Collaboration
et al. 2021a). As the catalog continues to grow, so does our
understanding of the underlying astrophysical population of
compact binaries (Abbott et al. 2019b, 2021b; The LIGO
Scientific Collaboration et al. 2021b). Following numerous
improvements to the detectors since the last observing run, the
anticipated sensitivities for the upcoming fourth observing run
of the LIGO–Virgo–KAGRA (LVK) Collaboration suggest
detection rates as high as once per day (LIGO Scientific
Collaboration et al. 2015; Acernese et al. 2015; Abbott et al.
2020a; Akutsu et al. 2021). With the formation history of these
dense objects encoded in the details of their distribution
(Rodriguez et al. 2016; Vitale et al. 2017b; Farr et al. 2017;
Zevin et al. 2017; Farr et al. 2018), the likely doubling in size
of the catalog with the next observing run could provide
another leap in our understanding of compact binary astro-
physics. Beyond formation physics, population-level inference
of the compact binary catalog has also been shown to provide
novel measurements of cosmological parameters (Farr et al.
2019; The LIGO Scientific Collaboration et al. 2021c;
Ezquiaga & Holz 2022), constrain modified gravitational-wave
propagation (Finke et al. 2022; Mancarella et al. 2022;

Okounkova et al. 2022), constrain a running Planck mass
(Lagos et al. 2019), search for evidence of ultralight bosons
through superradiance (Ng et al. 2021a, 2021b), constrain
stellar nuclear reaction rates (Farmer et al. 2019, 2020), look
for primordial black holes (Ng et al. 2021c, 2022), and to
constrain physics of neutron stars (Landry & Read 2021;
Golomb & Talbot 2022a). Through a better understanding of
the mass, spin, and redshift distributions of compact binaries
that will come with the increased catalog size, one can probe a
wide range of different physical phenomena with even greater
fidelity.
The binary black hole (BBH)mass distribution was first found

to have structure beyond a smooth power law with simpler
parametric models, exhibiting a possible high-mass truncation
and either a break or a peak at m1∼ 35–40Me (Fishbach &
Holz 2017; Talbot & Thrane 2018; Abbott et al. 2019b, 2021b).
Starting with the moderately sized catalog, GWTC-2, more
flexible models found signs of additional structure (Tiwari &
Fairhurst 2021; Edelman et al. 2022). The evidence supporting
these features, such as the peak at m1∼ 10Me, has only grown
after analyzing the latest catalog, GWTC-3, with the same
models (The LIGO Scientific Collaboration et al. 2021b;
Tiwari 2022). While this shows the usefulness of data-driven
methods with the current relatively small catalog size, they will
become more powerful with more observations. The canonical
approach to constructing population models has been to use
simple parametric descriptions (e.g., power laws, beta distribu-
tions) that aim to describe the data in the simplest way, employ
astrophysically motivated priors where appropriate, then sequen-
tially add complexities (e.g., Gaussian peaks) as the data
demand. This simple approach was necessary when data were
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scarce, but as we move into the data-rich catalog era, this
approach is already failing to scale. More flexible and scalable
methods, such as the nonparametric modeling techniques
presented in this article, will be necessary to continue to extract
the full information contained in the compact binary catalog. In
contrast to parametric models, flexible and nonparametric
models are data-driven and contribute little bias to functional
form. They additionally are particularly useful to search for
unexpected features in the data, providing meaningful insight
into features that parametric models may fail to capture.

While we eventually hope to uncover hints of binary
formation mechanisms in the mass spectrum of BBHs, the
distribution of spin properties have been of particular interest.
The measurements of spin properties of individual binaries
often have large uncertainties, but the theorized formation
channels are expected to produce distinctly different spin
distributions (Rodriguez et al. 2016; Farr et al. 2017; Zevin
et al. 2017; Farr et al. 2018; Gerosa et al. 2018). Isolated (or
field) formation scenarios predict component spins that are
preferentially aligned with the binary’s orbital angular
momentum, although some small misalignment can occur
depending on the nature of the supernova kicks as each star
collapses to a compact object (Bavera et al. 2020, 2021; Zevin
& Bavera 2022). Alternatively, dynamical formation in dense
environments where many-body interactions between compact
objects can result in binary formation and hardening (shrinking
of binary orbits) should produce binaries with components’
spins distributed isotropically (Rodriguez et al. 2016, 2019).
BBH spins have also been of controversial interest recently,
with different parametric approaches to modeling the spin
distribution coming to different conclusions. Studies have
disagreed on the possible existence of a significant zero-
spinning subpopulation, as well as the presence of significant
spin misalignment (i.e., R �cos 0.0i ) (The LIGO Scientific
Collaboration et al. 2021b; Galaudage et al. 2021; Roulet et al.
2021; Callister et al. 2022; Tong et al. 2022). Another study
recently showed that inferences of spin misalignment (or tilts)
are sensitive to modeling choices and may not peak at perfectly
aligned spins, as is often assumed (Vitale et al. 2022). While
enlightening, these recent efforts to improve BBH spin models
continue to build sequentially on previous parametric descrip-
tions (Galaudage et al. 2021; Callister et al. 2022; Vitale et al.
2022). To ensure we are extracting the full detail the catalog
has to offer, we extend our previous nonparametric modeling
techniques to include spin magnitudes and tilts, as well as the
binary mass ratio and redshift. The work of Golomb & Talbot
(2022b) was released concurrently with this work (based on our
previous work, Edelman et al. 2022), and they find similar
conclusions on the spin distribution when applying similar
flexible models constructed with cubic splines. The work
presented in this article, however, does not need to analyze a
suite of different model configurations, and it includes flexible
nonparametric models for each of the mass, spin, and redshift
distributions, rather than spin alone.

Polynomial splines have been applied with success across
different areas of gravitational-wave astronomy. They have
been used to model the gravitational-wave data noise spectrum,
detector calibration uncertainties, coherent gravitational wave-
form deviations, and modulations to a power-law mass
distribution (Farr et al. 2015; Littenberg & Cornish 2015;
Edwards et al. 2018; Edelman et al. 2021, 2022) In this paper,
we highlight how the use of basis splines can provide a

powerful nonparametric modeling approach to the astrophysi-
cal distributions of compact binaries. We illustrate how one can
efficiently model both the mass and spin distributions of
merging compact binaries in GWTC-3 with basis splines to
infer compact binary population properties using hierarchical
Bayesian inference. We discuss our results in the context of
current literature on compact-object populations, and how this
method complements the simpler lower-dimensional para-
metric models in the short run—and will become necessary
with future catalogs. Should they appear with more observa-
tions, this data-driven approach will provide checks of our
understanding by uncovering more subtle—and potentially
unexpected—features. The rest of this article is structured as
follows: a description of the background of basis splines in
Section 2, followed by a presentation of the results of our
extensive, data-driven study of the mass and spin distributions
of BBHs in GWTC-3 in Section 3. We then discuss these
results and their astrophysical implications in Section 4, and we
finish with our conclusions in Section 5.

2. Building the Model

We construct our data-driven model with the application of
basis splines, or B-splines (de Boor 1978). B-splines of order k
are a set of order k polynomials that span the space of possible
spline functions interpolated from a given set of knot locations.
For all B-splines used in our model, we use a third-order basis,
which consists of individual cubic polynomials. The basis
representation of the splines allows for the computationally
expensive interpolation to be done in a single preprocessing
step—amortizing the cost of model evaluation during infer-
ence. To mitigate the unwanted side effects of adding extra
knots, and to avoid running a model grid of differing numbers
of knots (as in Edelman et al. 2022), we use the smoothing
prior for Bayesian P-splines (Lang & Brezger 2004; Jullion &
Lambert 2007; Eilers & Marx 2021), allowing the data to pick
the optimal scale needed to fit the present features. We discuss
basis splines, the smoothing prior, and our specific prior
choices on hyperparameters in Appendices A, B, and D.
We parameterize each binary’s mass with the primary (more

massive component) mass (m1) and the mass ratio (q=m2/m1)
with support from 0 to 1. Furthermore, we model four of the six
total spin degrees of freedom of a binary merger: the
component spin magnitudes a1 and a2, and (the cosines of)
the tilt angles of each component, Rcos 1 and Rcos 2. The tilt
angle is defined as the angle between each component’s spin
vector and the binary’s orbital angular momentum vector. We
assume the polar spin angles are uniformly distributed in the
orbital plane. For the primary mass distribution, we model the
log probability with a B-spline interpolated over knots linearly
spaced in ( )mlog 1 from a minimum black hole mass, which we
fix to 5Me, and a maximum mass, which we set to 100Me. We
then have the hyperprior on primary mass with log probability
density r �( ( ∣ )) ( ( )∣ )c cp m B mlog logk1 3 1 , where Bk=3 is the
cubic B-spline function with a vector of basis coefficients c.
We follow the same procedure for the models in mass-ratio and
spin distributions with knots spaced linearly across each
domain so that we have R RrR R�( ( ∣ )) ( ∣ )c cp Blog k 3 , where θ
can be q, a1, a2, Rcos 1, or Rcos 2. For the spin magnitude and tilt
distributions, we construct two versions of the model: first, we
model each component’s distribution as independent and
identically distributed (IID), where we have a single B-spline
model and parameters (coefficients) for each binary spin.
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Second, we model each component’s distribution to be unique,
fitting separate sets of coefficients for the B-spline models of
the primary and secondary spin distributions. Last, we fit a
population model on the redshift or luminosity distance
distribution of BBHs, assuming a ΛCDM cosmology defined
by the parameters from the Planck 2015 results (Planck
Collaboration et al. 2016). This defines an analytical mapping
between each event’s inferred luminosity distance and its
redshift, which we now use interchangeably. We take a
semiparametric approach to model the evolution of the merger
rate with redshift, following Edelman et al. (2022), that
parameterizes modulations to an underlying model with splines
(in our case, basis splines). We use the POWERLAWREDSHIFT
model as the underlying distribution to modulate, which has a
single hyperparameter, λz, and a probability density defined as

M r �
M �( )∣ ) (p z z1z

dV
dz

1
c z

(Fishbach et al. 2018). For more
detailed descriptions of each model and the specific prior
choices used for the hyperparameters, see Appendix D. Now
that we have our comprehensive data-driven population model
built, we simultaneously fit the basis spline models on the BBH
masses, spins, and redshift. We use the usual hierarchical
Bayesian inference framework (see Appendix C for a review;
Abbott et al. 2019b, 2021b; The LIGO Scientific Collaboration
et al. 2021b), to perform the most extensive characterization
of the population of BBHs to date, using the most recent
catalog of GW observations, GWTC-3 (The LIGO Scientific
Collaboration et al. 2021a).

3. Binary Black Hole Population Inference with GWTC-3

We use hierarchical Bayesian inference (see Appendix C) to
simultaneously infer the astrophysical mass, spin, and redshift
distributions of binary black holes (BBHs) given a catalog of
gravitational-wave observations. Following the same cut on the
recent GWTC-3 catalog done in the LVK’s accompanying
BBH population analysis, we have 70 possible BBH mergers
with false-alarm rates less than 1 per year (The LIGO Scientific
Collaboration et al. 2021a; LVK Collaboration 2021a; The
LIGO Scientific Collaboration et al. 2021b). Because it was
concluded to be an outlier of the rest of the BBH population in
both GWTC-2 and GWTC-3, we choose to omit the poorly

understood event, GW190814 (Abbott et al. 2020b, 2021b; The
LIGO Scientific Collaboration et al. 2021b; Essick et al. 2022).
This leaves us with a catalog of 69 confident BBH mergers,
observed over a period of about 2 yr, from which we want to
infer population properties. Following what was done in The
LIGO Scientific Collaboration et al. (2021b), for events
included in GWTC-1 (Abbott et al. 2019a), we use the
published samples that equally weight samples from analyses
with the IMRPHENOMPV2 (Hannam et al. 2014) and SEOBNRV3
(Pan et al. 2014; Taracchini et al. 2014) waveforms. For the
events from GWTC-2 (Abbott et al. 2021a), we use samples
that equally weight all available analyses using higher-order
mode waveforms (PRECESSINGIMRPHM). Finally, for new
events reported in GWTC-2.1 and GWTC-3 (The LIGO
Scientific Collaboration et al. 2021a, 2021d), we use combined
samples, equally weighted, from analyses with the IMRPHE-
NOMXPHM (Pratten et al. 2021) and the SEOBNRV4PHM
(Ossokine et al. 2020) waveform models. Our study provides
the first comprehensive data-driven investigation, simulta-
neously inferring all the BBH population distributions (i.e.,
mass, spin, and redshift), uncovering new insights and
corroborating those found with other methods. We start with
our inference of the mass distribution.

3.1. Binary Black Hole Masses

Figure 1 shows the primary mass distribution inferred with
our B-spline model (red), where we see features consistent with
those inferred by the POWERLAWPEAK and POWERLAWSPLINE
mass models (Talbot & Thrane 2018; LVK Collaboration
2021b; Abbott et al. 2021b; The LIGO Scientific Collaboration
et al. 2021b; Edelman et al. 2022). In particular, our B-spline
model finds peaks in merger rate density as a function of primary
mass at both ∼10Me and ∼35Me, agreeing with those reported
using the same data set in The LIGO Scientific Collaboration
et al. (2021b). The B-spline model finds the same feature at
∼18Me as the POWERLAWSPLINE model, but remains consis-
tent with the POWERLAWPEAK model; the mass distribution is
more uncertain in this region. For each of these features, we find
the local maximums occurring at primary masses of �

�
:M9.9 0.48

0.67 ,

�
�

:M19 2.3
3.2 , and �

�
:M33 3.0

2.1 , all at 90% credibility. We find the
largest disagreement at low masses, where the power-law-based

Figure 1. The marginal primary mass distribution inferred with the B-spline model (red), with 64 knots spaced linearly in logm1, from 5 Me to 100 Me. The solid line
shows the population predictive distribution (PPD), and the shaded region the 90% credible interval. We show the inferred PPD from the POWERLAWPEAK (blue) and
POWERLAWSPLINE (green) models from the LVK’s GWTC-3 population analyses (The LIGO Scientific Collaboration et al. 2021b). The icons link to the code used to
generate this figure and to Zenodo entries of any public data used. ✎
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models show a higher rate below ∼8–9Me. This is partly due to
the minimum mass hyperparameter (where the power law
“begins”) serving as the minimum allowable primary and
secondary masses of the catalog. This leads to inferences of mmin
below the minimum observed primary mass in the catalog,
which is ∼6.4Me, to account for secondary BBH masses lower
than that. We choose to fix the minimum black hole mass for
both primary and secondaries to 5Me, similar to the inferred
minimum mass in The LIGO Scientific Collaboration et al.
(2021b). The lack of observations of binaries with low primary
mass makes rate estimates in this region strongly model-
dependent, while our flexible model provides an informed upper
limit on the rate in this region, given the selection effects and
that there are no observations. We could be seeing signs of a
decrease in merger rate from a “lower-mass gap” between
neutron star and BH masses, or we could be seeing fluctuations
due to low-number statistics (van Son et al. 2022a). Either way,
we expect this to be resolved with future catalog updates. We
also find no evidence for a sharp fall-off in merger rate either
following the pileup at ∼35Me—expected if such a pileup were
due to pulsational pair-instability supernovae (PPISNe)—or
where the maximum-mass truncations of the power-law models
are inferred. The lack of any high-mass truncation, along with
the peak at ∼35Me (significantly lower than expected from
PPISNe) may pose challenges for conventional stellar evolution
theory. This could be hinting at the presence of subpopulations
that avoid pair-instability supernovae during binary formation,
but the confirmation of the existence of such subpopulations
cannot be determined with the current catalog.

The marginal mass-ratio distribution inferred by the B-spline
model is shown in Figure 2. These results suggest we may be
seeing the first signs of departure from a simple power-law
behavior. We find potential signs of a plateau or decrease in the
merger rate near equal mass ratios, as well as a broader tail
toward unequal mass ratios than the power-law-based models
find, although a smooth power law is still consistent with these
results, given the large uncertainties. Our results also suggest a

shallower slope from q∼ 0.3 to q∼ 0.7, though uncertainty is
larger in this region. The sharp decrease in rate just below
q∼ 0.5 is due to the minimum mass-ratio truncation defined by

�q m
mmin
min

1
. When marginalizing over the primary mass

distribution with a strong peak at 10Me, the mass-ratio
distribution truncates at q∼ 0.5: the minimum mass, 5Me,
divided by the most common primary mass, ∼10Me.

3.2. Binary Black Hole Spins

3.2.1. Spin Magnitude

The DEFAULT spin model (used by The LIGO Scientific
Collaboration et al. 2021b) describes the spin magnitude of
both components as identical and independently distributed
(IID) nonsingular beta distributions (Talbot & Thrane 2017;
Wysocki et al. 2019). The beta distribution provides a simple
two-parameter model that can produce a wide range of
functional forms on the unit interval. However, the constraint
that keeps the beta distribution nonsingular (i.e., α> 1 and
β> 1) enforces a spin magnitude that always has p(ai= 0)= 0.
Recent studies have proposed the possible existence of a
distinct subpopulation of nonspinning or negligibly spinning
black holes that can elude discovery with such a model (Fuller
& Ma 2019; Galaudage et al. 2021; Roulet et al. 2021; Callister
et al. 2022; Tong et al. 2022).
We model the spin magnitude distributions as IID B-spline

distributions. Figure 3 shows the spin magnitude distribution
inferred with the B-spline model, compared with the DEFAULT
model from The LIGO Scientific Collaboration et al. (2021b).
The B-spline model results are consistent with those using the
beta distribution, peaking near a∼ 0.2, with 90% of BBH spins
below �

�0.71 0.14
0.13 at 90% credibility. The B-spline model does not

impose vanishing support at the extremal values like the beta
distribution, allowing it to probe the zero-spin question. We find
broad support, with large variance, for nonzero probabilities at
ai= 0, but cannot confidently determine the presence of a
significant nonspinning subpopulation, corroborating similar

Figure 2. The marginal mass-ratio distribution inferred with the B-spline
model (red), with 18 knots spaced linearly in q, from 0.05 to 1. The solid line
shows the population predictive distribution (PPD), and the shaded region
shows the 90% credible interval. We show the inferred PPD from the
POWERLAWPEAK (blue) and POWERLAWSPLINE (green) models from the
LVK’s GWTC-3 population analyses (The LIGO Scientific Collaboration
et al. 2021b). The icons link to the code used to generate this figure and to
Zenodo entries of any public data used. ✎

Figure 3. The spin magnitude distribution inferred with the B-spline model
(red) with 16 knots spaced linearly from 0 to 1, assuming the components are
IID. The solid line shows the population predictive distribution (PPD), and the
shaded region shows the 90% credible interval. For comparison, we show the
PPD inferred via the DEFAULT (blue) model from the LVK’s GWTC-3
population analyses (The LIGO Scientific Collaboration et al. 2021b). The
icons link to the code used to generate this figure and to Zenodo entries of any
public data used. ✎
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recent conclusions (Galaudage et al. 2021; Callister et al. 2022;
Tong et al. 2022; Mould et al. 2022). We repeat the same
analysis with independent B-spline distributions for each spin
magnitude component. In Figure 4, we show the inferred
primary (orange), and secondary (olive) spin magnitude
distributions inferred when relaxing the IID assumption along
with summary statistics of the infer redspin distribtuions in
Table 1. We find no signs that the spin magnitude distributions
differ between the primary and secondary component black
holes in BBHs, with both component distributions being
consistent with the inferred IID model in Figure 3,with similar
support at near-vanishing spins. The secondary spin magnitude
distribution is more uncertain due to the higher measurement
uncertainty when inferring the secondary spins of BBH systems
(Vitale et al. 2014, 2017a). The PPD of the secondary
distribution peaksat smaller spin magnitudes (a∼ 0.15) than
the primary distribution or B-spline IID spin magnitude
distribution in Figure 3, although the distributions are broadly
consistent with each other considering the large uncertainties.
Future signs of component spin magnitude distributions that are
uniquely distributed can be produced through mass-ratio reversal
in isolated binary evolution (Mould et al. 2022).

3.2.2. Spin Orientation

The DEFAULT spin model (used in Abbott et al. 2021b; The
LIGO Scientific Collaboration et al. 2021b) also assumes the
spin orientation of both components are identical and
independently distributed (IID), with a mixture model over
an aligned and an isotropic component. The aligned component
is modeled with a truncated Gaussian distribution with mean at

R �cos 1 and variance as a free hyperparameter to be fit
(Talbot & Thrane 2017; Wysocki et al. 2019; Abbott et al.
2021b; The LIGO Scientific Collaboration et al. 2021b). This
provides a simple two-parameter model motivated by simple
distributions expected from the two main formation scenario
families, allowing for a straightforward interpretation of results.
One possible limitation, however, is that by construction this
distribution is forced to peak at perfectly aligned spins, i.e.,

R �cos 1. While this may be a reasonable assumption, Vitale
et al. (2022) recently extended the model space of parametric
descriptions used to model the spin orientation distribution and
found considerable evidence that the distribution peaks away
from R �cos 1. Again, this provides a clear use case where
data-driven models can help us understand the population.
Figure 5 shows the spin orientation distribution inferred with

the IID spin B-spline model, compared with the DEFAULT model
from The LIGO Scientific Collaboration et al. (2021b). The
B-spline inferences have large uncertainties but start to show the
same features as found and discussed in Vitale et al. (2022). As
shown in Table 2, we find a distribution that, instead of
intrinsically peaking at R �cos 1, is found to peak at

Rcos = �
�0.44 0.53

0.56, at 90% credibility. We find less, but still
considerable, support for misaligned spins (i.e., R �cos 0),
consistent with other recent studies (Abbott et al. 2021b; The
LIGO Scientific Collaboration et al. 2021b; Callister et al. 2022).
Specifically, we find that the fraction of misaligned systems is

R�fcos 0 = �
�0.35 0.11

0.11, compared to R�fcos 0 = �
�0.44 0.11

0.052 with the
DEFAULT model from The LIGO Scientific Collaboration et al.
(2021b). This implies the presence of an isotropic component as
expected by dynamical formation channels, albeit less than with
the DEFAULT model. To quantify the amount of isotropy in the
tilt distribution, we calculate Ylog10 , where Y is the ratio of
nearly aligned tilts to nearly antialigned ones, introduced in
Vitale et al. (2022) and defined as

¨

¨

R R

R R
w

�

�

( )

( )
( )Y

d p

d p

cos cos

cos cos
. 10.9

1.0

1.0

0.9

The log of this quantity, Ylog10 , is 0 for a tilt distribution that is
purely isotropic, negative when antialigned values are favored,
and positive when aligned tilts are favored. We find a

Ylog10 = �
�0.24 0.46

0.46, exhibiting a slight preference for aligned tilts.
We also model each component’s orientation distribution

with an independent B-spline model as done above, and show
the inferred primary (orange) and secondary (olive) distribu-
tions in Figure 6. The orientation distributions are broadly

Figure 4. The primary (orange) and secondary (olive) spin magnitude
distributions inferred with the B-spline model with 16 knots spaced linearly
from 0 to 1. The solid line shows the population predictive distribution (PPD),
and the shaded region shows the 90% credible interval. For comparison, we
show the PPD inferred via the DEFAULT (blue) model from the LVK’s GWTC-
3 population analyses (The LIGO Scientific Collaboration et al. 2021b). The
icons link to the code used to generate this figure and to Zenodo entries of any
public data used. ✎

Figure 5. The spin orientation distribution inferred with the B-spline model
(red), with 16 knots spaced linearly from −1 to 1, and assuming the
components are IID. The solid line shows the population predictive distribution
(PPD), and the shaded region shows the 90% credible interval. For comparison,
we show the PPD inferred via the DEFAULT (blue) model from the LVK’s
GWTC-3 population analyses (The LIGO Scientific Collaboration
et al. 2021b). The icons link to the code used to generate this figure and to
Zenodo entries of any public data used. ✎
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consistent with each other and the DEFAULT model’s PPD,
given the wide credible intervals. We find the two distributions
to peak at Rcos 1 = �

�0.16 0.84
0.84 and Rcos 2 = �

�0.38 1.0
0.62, showing

that the primary distribution peak is inferred further away from
the assumed R �cos 1 with the DEFAULT model. There is
also significant (albeit uncertain) evidence of spin misalign-
ment in each distribution, with the fraction of misaligned
primary and secondary components being found as R �fcos 01

=

�
�0.43 0.16

0.19 and R �fcos 02
= �

�0.38 0.15
0.18. We again calculate Ylog10

for each component distribution and find Ylog10 1 = �
�0.12 0.53

0.5

and Ylog10 2 = �
�0.18 0.54

0.53.

3.3. The Effective Spin Dimension

While the component spin magnitudes and tilts are more
directly tied to formation physics, they are typically poorly
measured. The best-measured spin quantity, which enters at the
highest post-Newtonian order, is the effective spin:
D � R R�

�
a qa

qeff
cos cos

1
1 1 2 2 . There is additionally an effective preces-

sing spin parameter, ⎡⎣ ⎤⎦D R R� �
�

a qamax sin , sinq
qp 1 1

3 4
4 3 2 2 , that

quantifies the amount of spin precession given the systemʼs mass
ratio and component spin magnitudes and orientation. Figure 7
shows the inferred effective spin and precessing spin distributions
with the two versions of our B-spline models (red and purple),
along with results on the DEFAULT (Talbot & Thrane 2017) and
GAUSSIAN (Miller et al. 2020) models from The LIGO Scientific
Collaboration et al. (2021b). We find considerable agreement
among the effective spin distributions, but the more flexible
B-spline models in component spins more closely resemble results
from the DEFAULT model, also using the component spins.
Table 2 shows summary statitics of the effective spin dimension
distributions. The B-spline model finds shapes very similar to
those of the other models, with a single peak centered at χeff=

�
�0.039 0.038

0.034, compared to χeff= �
�0.017 0.022

0.034 with the DEFAULT

model and χeff= �
�0.06 0.037

0.029 with the GAUSSIAN χeff models
from The LIGO Scientific Collaboration et al. (2021b). As for
spin misalignment, we calculate the fraction of systems with
effective spins that are misaligned (i.e., χeff< 0) and find similar
agreement with previous work (Abbott et al. 2021b; The LIGO
Scientific Collaboration et al. 2021b; Callister et al. 2022). We
find for the B-spline model D �f 0eff

= �
�0.34 0.11

0.11, compared to

D �f 0eff
= �

�0.43 0.13
0.059 and D �f 0eff

= �
�0.28 0.13

0.15 with the DEFAULT

and GAUSSIAN models from The LIGO Scientific Collaboration
et al. (2021b). The precessing spin distributions inferred with the
B-spline models exhibit a shape similar to that of the DEFAULT

Table 2
Summary of the Effective Spin Distributions

Model χeff,peak D �f 0eff D ��f 0.3eff fdyn fHM

B-spline IID �
�0.039 0.038

0.034
�
�0.34 0.11

0.11
�
�0.019 0.012

0.021
�
�0.69 0.22

0.22
�
�0.12 0.074

0.13

B-spline Ind �
�0.023 0.034

0.034
�
�0.41 0.088

0.083
�
�0.035 0.018

0.027
�
�0.82 0.18

0.17
�
�0.22 0.11

0.17

DEFAULT (The LIGO Scientific Collaboration et al. 2021b) �
�0.017 0.022

0.034
�
�0.43 0.13

0.059
�
�0.013 0.0095

0.017
�
�0.87 0.26

0.12
�
�0.081 0.059

0.11

GAUSSIAN (The LIGO Scientific Collaboration et al. 2021b) �
�0.06 0.037

0.029
�
�0.28 0.13

0.15
�
�0.00024 0.00024

0.0081
�
�0.55 0.26

0.3
�
�0.0015 0.0015

0.051

Note. Inferred with the B-spline model variations, along with the DEFAULT and GAUSSIAN models from The LIGO Scientific Collaboration et al. (2021b).

Table 1
Summary of Component Spin Distributions

Model apeak a90% Rcos peak R�fcos 0 Ylog10

B-spline IID �
�0.19 0.16

0.12
�
�0.71 0.14

0.13
�
�0.44 0.53

0.56
�
�0.35 0.11

0.11
�
�0.24 0.46

0.46

B-spline Ind(primary) �
�0.2 0.2

0.24
�
�0.77 0.13

0.11
�
�0.16 0.84

0.84
�
�0.43 0.16

0.19
�
�0.12 0.53

0.5

B-spline Ind(secondary) �
�0.17 0.17

0.29
�
�0.8 0.14

0.1
�
�0.38 1.0

0.62
�
�0.38 0.15

0.18
�
�0.18 0.54

0.53

DEFAULT (The LIGO Scientific Collaboration et al. 2021b) �
�0.16 0.13

0.11
�
�0.53 0.073

0.098
�
�1.0 0.0

0.0
�
�0.44 0.12

0.052
�
�0.19 0.17

0.4

Note. Inferred from both the independent and IID component spin B-spline models and the DEFAULT spin model from The LIGO Scientific Collaboration et al.
(2021b).

Figure 6. The primary (orange) and secondary (olive) spin orientation
distributions inferred with the B-spline model with 16 knots spaced linearly
from -1 to 1. The solid line shows the population predictive distribution (PPD),
and the shaded region shows the 90% credible interval. For comparison, we
show the PPD inferred via the DEFAULT (blue) model from the LVK’s GWTC-
3 population analyses (The LIGO Scientific Collaboration et al. 2021b). The
icons link to the code used to generate this figure and to Zenodo entries of any
public data used. ✎
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model, but with a much fatter tail toward highly precessing
systems, driven by the extra support for highly spinning
components seen in Figures 3 and 4.

3.4. Merger Rate Evolution with Redshift

Recent analysis of the GWTC-3 BBH population has shown
evidence for an increasing merger rate with redshift, nearly
ruling out a merger rate that is constant with comoving volume
(Fishbach et al. 2018; The LIGO Scientific Collaboration et al.
2021b). When extending the power-law form of the previously
used model to have a modulation that we model with B-splines,
the merger rate as a function of redshift in Figure 8 shows mild
support for features departing from the underlying power law.
In particular, we see a small increase in merger rate from
z∼ 0.09 to z∼ 0.2 (where we best constrain the rate), followed
by a plateau in the rate from z∼ 0.2 to z∼ 0.4. At larger
redshifts, where we begin to have sparse observations, we see
no sign of departure from the power law as the rate continues to
increase with redshift. The underlying power-law slope of our
B-spline modulated model is consistent with the GWTC-3
results with the underlying model by itself: the POWERLA-
WREDSHIFT model found λz= �

�2.7 1.9
1.8 when inferred with the

POWERLAWPEAK mass and DEFAULT spin models. Our more
flexible model infers a power-law slope of λz= �

�2.1 2.5
2.2. We

show the basis spline modulations or departure from the power
law in Figure 9, compared to the prior—showing where we
cannot constrain any significant deviations from the simpler
parametric power-law model. The extra freedom of our model
does inflate the uncertainty in its rate estimates, especially at
z∼ 0, where there are not any observations in the catalog. We
find a local (z= 0) merger rate of*0 = �

� � �20 Gpc yr12
29 3 1 using

the B-spline modulation model, as compared to
*0 = �

� � �17 Gpc yr6.7
10 3 1 for the GWTC-3 result.

4. Astrophysical Implications

The collective distribution of BBH source properties
provides a useful probe of the complex and uncertain
astrophysics that govern their formation and evolution until
merger (Rodriguez et al. 2016; Farr et al. 2017; Zevin et al.
2017). Our analysis with the newly constructed B-spline

models uncovers hints of new features in the population (e.g.,
in mass ratio and redshift), corroborates important conclusions
of recent work, and provides a robust data-driven framework
for future population studies.
The results presented in Section 3.1 illustrate a mass

distribution wider than that inferred with power-law-based
models in The LIGO Scientific Collaboration et al. (2021b), and
a suppressed merger rate at low primary masses (i.e., �8Me),
showing possible signs of binary selection effects or the
purported low-mass gap between neutron stars and black holes
(Fishbach et al. 2020; van Son et al. 2022a; Farah et al. 2022).
While isolated formation is able to predict the 10Me peak
(Antonini & Gieles 2020), cluster and dynamical formation
scenarios struggle to predict a peak in the BH mass distribution
less than 15–20Me (Hong et al. 2018; Rodriguez et al. 2019).
Globular cluster formation is expected to produce more top-
heavy mass distributions than isolated, and recent studies have
shown suppressed BBH merger rates at lower (m� 15Me)
masses when compared to predictions from the isolated channel
(Rodriguez et al. 2015; Belczynski et al. 2016; Rodriguez et al.
2019; Bavera et al. 2021). BBHs that form near active galactic
nuclei (AGN) can preferentially produce higher-mass black
holes (Yang et al. 2019; Tagawa et al. 2021; Ford &
McKernan 2022). We do not find any evidence for a truncation
or rapid decline in the merger rate as a function of mass, which
stellar evolution theory predicts due to pair-instability super-
novae (PISNe; Heger & Woosley 2002; Woosley et al. 2002;
Heger et al. 2003; Spera & Mapelli 2017; Stevenson et al. 2019).
The original motivation for the peak in the POWERLAWPEAK
model (Talbot & Thrane 2018) was to represent a possible
“pileup” of masses just before such truncation, because massive
stars just light enough to avoid PISN will shed large amounts of
mass in a series of “pulses” before collapsing to BHs, in a
process called pulsational pair-instability supernova (PPISN)
(Woosley 2017; Farmer et al. 2019; Woosley 2019). While the
predictions of the mass scale where pair-instability kicks in are
uncertain and depend on poorly understood physics like nuclear
reaction rates of carbon and oxygen in the core of stars, models
have a hard time producing this peak lower than m∼ 40Me
(Belczynski et al. 2016; Farmer et al. 2019; Marchant et al.
2019; Farmer et al. 2020; Renzo et al. 2020). The lack of a

Figure 7. The effective (left) and precessing (right) spin distributions inferred with the B-spline IID spin model (red). The solid line shows the population predictive
distribution (PPD), and the shaded region shows the 90% credible interval. We show the inferred PPDs from the independent component spin B-spline model (purple),
and both the DEFAULT (blue) model and the Gaussian (green) model from the LVK’s GWTC-3 population analyses (The LIGO Scientific Collaboration et al. 2021b).
The icons link to the code used to generate this figure and to Zenodo entries of any public data used. ✎
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truncation could point toward a higher prevalence of dynamical
processes that can produce black holes in mass ranges stellar
collapse cannot, such as hierarchical mergers of BHs (Fishbach
& Holz 2017; Doctor et al. 2020; Kimball et al. 2020; Doctor
et al. 2021; Kimball et al. 2021; Fishbach et al. 2022), very low-
metallicity Population III stars (Belczynski 2020; Farrell et al.
2021), new beyond-standard-model physics (Croon et al. 2020;
Sakstein et al. 2020), or black hole accretion of BHs in gaseous
environments such as AGNs (McKernan et al. 2020; Secunda
et al. 2020; Cruz-Osorio et al. 2021).

Our constraints on the mass-ratio distribution are not yet
precise enough to claim definitive departures from power-law
behavior, but they do suggest possible plateaus in the rate at
several mass ratios, including equal mass. These features
should sharpen (or resolve) with future updates to the catalog.

Section 3.2 focused on inferences of the spin distributions of
black holes, observing evidence of spin misalignment, spin
antialignment, and suppressed support for exactly aligned systems.
These point toward a significant contribution to the population
from dynamical formation processes, agreeing with conclusions
drawn about the mass distribution inference of Section 3.1. While
field formation is expected to produce systems with preferentially
aligned spins due to tidal interactions, observational evidence
suggests that tides may not be able to realign spins in all systems as
some isolated population models assume. Additionally, because of
uncertain knowledge of supernovae kicks, isolated formation can
produce systems with negative but small effective spins. Consistent
with recent studies, we report an effective spin distribution that is
not symmetric about zero, disfavoring a scenario in which all
BBHs are formed dynamically (Abbott et al. 2021b; The LIGO
Scientific Collaboration et al. 2021b; Callister et al. 2022).
Following the rules in Fishbach et al. (2022), we place
conservative upper bounds on the fraction of hierarchical mergers,
fHM, and the fraction of dynamically formed BBHs, fdyn, with the
B-spline χeff model constraining fHM< 0.058 and fdyn< 0.52 at
90% credibility. This is consistent with the 90% credible interval
found from the GWTC-2 analysis, 0.25� fdyn� 0.93 (Abbott
et al. 2021b).
Finally, Section 3.4 shows the potentially interesting

evolution of the BBH merger rate with redshift. Though
uncertainties are still large, we may be seeing the first signs of
departure from following the star formation rate, which could
help in distinguishing different subpopulations should they
exist (van Son et al. 2022b). Again, we expect these features to
be resolved with future catalogs.

5. Conclusions

Nonparametric and data-driven statistical modeling methods
have been put to use with great success across the ever-growing
field of gravitational waves (Farr et al. 2015; Littenberg &
Cornish 2015; Doctor et al. 2017; Mandel et al. 2017; Edwards
et al. 2018; Edelman et al. 2021; Tiwari 2021; Tiwari &
Fairhurst 2021; Vitale et al. 2021; Edelman et al. 2022; Payne &
Thrane 2022; Tiwari 2022). We presented a case study exploring
how basis splines make for an especially powerful and efficient
data-driven method of characterizing the binary black hole
population observed with gravitational waves, along with the
associated open-source software GWInferno, which implements
the models described in this paper and performs hierarchical
Bayesian inference with NUMPYRO and JAX3 (Phan et al. 2019;
Bingham et al. 2019). Our study paves the way as the first
completely nonparametric compact-object population study,
employing data-driven models for each of the hierarchically
modeled population distributions. A complete understanding of
the population properties of compact objects will help to
advance poorly understood areas of stellar and nuclear
astrophysics and provide a novel independent cosmological
probe. With the coming influx of new data with the LVK’s next
observing run, development of model-agnostic methods, such
as the one we proposed here, will become necessary to
efficiently make sense of the vast amounts of data and to
extract as much information as possible from the population.

We thank Tom Callister, Will Farr, Maya Fishbach, Salvatore
Vitale, and Jaxen Godfrey for useful discussions during the

Figure 8. The BBH merger rate as a function of redshift. We show the B-spline
model (red) with 16 knots spaced linearly in ( )zlog , from the minimum to the
maximum observed redshifts. The solid line shows the population predictive
distribution (PPD), and the shaded region shows the 90% credible interval. We
show the inferred 90% credible interval from the POWERLAWREDSHIFT model
from the LVK’s GWTC-3 population analyses in blue and a power law with
exponent of 2.7 in gray, representing the expected star formation rate (Madau
& Dickinson 2014; The LIGO Scientific Collaboration et al. 2021b). The icons
link to the code used to generate this figure and to Zenodo entries of any public
data used. ✎

Figure 9. The B-spline modulation to the underlying power law in redshift,
(red). The solid line shows the population predictive distribution (PPD), and the
shaded region the 90% credible interval. We show the 90% credible interval of
the prior predictive distribution in dashed black lines. The icons link to the code
used to generate this figure and to Zenodo entries of any public data used. ✎
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Appendix A
Basis Splines

A common nonparametric method used in many statistical
applications is that of basis splines. A spline function of order k
is a piece-wise polynomial of order k polynomials stitched
together from defined “knot” locations across the domain. They
provide a useful and cheap way to interpolate generically
smooth functions from a finite sampling of “knot” heights.
Basis splines of order k are a set of order k polynomials that
form a complete basis for any spline function of order k.
Therefore, given an array of knot locations, t or knot vector,
there exists a single unique linear combination of basis splines
for every possible spline function interpolated from t. To
construct a basis of n components and knots, t0, t1,K,ti+k, we
use the Cox–de Boor recursion formula (de Boor 1978;
Ramsay 1988). The recursion starts with the k= 0 (constant)
case and recursively constructs the basis components of higher
orders. The base case and recursion relation that generates this
particular basis are defined as

⎧⎨⎩�
� �-( ∣ ) ( )tB x
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0, otherwise
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This is known as the “B-spline” basis, after its inventor de Boor
(de Boor 1978). The power of basis splines comes from the fact
that one only has to do the somewhat-expensive interpolation
once for each set of points at which the spline is evaluated. This
provides a considerable computational speedup as each evalua-
tion of the spline function becomes a simpler operation: a dot
product of a matrix and a vector. This straightforward operation
is also ideal for optimizations from the use of GPU accelerators,
enabling our Markov Chain Monte Carlo (MCMC) based

analyses, often with hundreds of parameters, to converge in an
hour or less. Basis splines can easily be generalized to their two-
dimensional analog, producing tensor product basis splines that,
with this computational advantage, allow for high-fidelity
modeling of two-dimensional spline functions.
Another important feature of basis splines is that, under

appropriate prior conditions, one can alleviate sensitivities to
arbitrarily chosen prior specifications that splines commonly
struggle with. Previous studies using splines had to perform
multiple analyses, varying the number of spline knots, then
either marginalized over the models or used model compar-
isons to motivate the best choice (Edelman et al. 2022). We can
avoid this step with the use of penalized splines (or P-splines)
(Lang & Brezger 2004; Jullion & Lambert 2007; Eilers &
Marx 2021), where one adds a smoothing prior comprised of
Gaussian distributions on the differences between neighboring
basis spline coefficients. This allows for knots to be densely
populated across the domain without the worry of extra
variance in the inferred spline functions. When also fitting the
scale of the smoothing prior (i.e., the width of the Gaussian
distributions on the differences), the data will inform the model
of the preferred scale of smoothing required. We discuss the
details of our smoothing prior implementation in more detail in
the next section, Appendix B, and our specific prior and the
basis choices for each model in Appendix D.

Appendix B
Penalized Splines and Smoothing Priors

Spline functions have been shown to be sensitive to the
chosen number of knots, as well as their locations or spacing (de
Boor 1978). Adding more knots increases the a priori variance in
the spline function, while the space between knots can limit the
resolution of features in the data the spline is capable of
resolving. To ensure a spline-based model is flexible enough, one
would want to add as many knots as densely as possible, but this
comes with the unwanted side effect of larger variance imposed
by the model. This can be fixed with the use of penalized splines
(P-splines) in which one applies a prior or regularization term to
the likelihood based on the difference of adjacent knot
coefficients (Eilers & Marx 2021). The linear combination of
spline basis components or the resulting spline function is flat
when the basis coefficients are equal (see Figure 10). By
penalizing the likelihood as the differences between adjacent
knot coefficients get larger, one gets a smoothing effect on the
spline function (Eilers & Marx 2021). With hierarchical
Bayesian inference as our statistical framework, we formulate
the penalized likelihood of the P-splines of Eilers & Marx (2021)
with their Bayesian analog (Lang & Brezger 2004). The
Bayesian P-spline prior places Gaussian distributions over the
rth-order differences of the coefficients (Lang & Brezger 2004;
Jullion & Lambert 2007). This is also sometimes referred to as a
Gaussian random walk prior, and is similar in spirit to a Gaussian
process prior used to regularize or smooth histogram bin heights
as done in other nonparametric population studies (Mandel et al.
2017; The LIGO Scientific Collaboration et al. 2021b). For a
spline basis with n degrees of freedom, and a difference penalty
of order of r (see Eilers & Marx 2021), the smoothing prior on
our basis spline coefficients, c, is defined as

T_ ( ) ( )&c 0, B1⎡⎣ ⎤⎦U Ur �M M( ∣ ) ( )c c D D cp exp
1
2

. B2r r
T T
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Above, Dr is the order-r difference matrix, of shape (n− r× n),
and T( )& 0, a Gaussian distribution with zero mean and
standard deviation, σ. This smoothing prior removes the strong
dependence on number and location of knots that arises with
using splines. The τλ controls the “strength” of the smoothing,
or the inverse variance of the Gaussian priors on knot
differences. We place uniform priors on τλ marginalized over
this smoothing scale hyperparameter to let the data inform the
optimal scale needed. When there are a very large number of
knots, such that the domain is densely populated with basis
coefficients, this allows the freedom for the model to find the
smoothing scale that the data prefer.

This prior is imparting a natural attraction of the coefficients
closer to each other in order to smooth the spline function, so
one must ensure that the spline function is in fact flat given all
equal coefficients. There need to be n+ k+ 1 knots to
construct an order-k basis with n degrees of freedom. Some
studies place knots on top of each other at hard parameter
boundaries (de Boor 1978; Ramsay 1988), which may seem
motivated, but this violates the above condition necessary for
the P-spline prior. We follow the distinction in Eilers & Marx
(2021) that such a smoothing prior is only valid with “proper”
spline bases. A proper basis is where all n+ k+ 1 knots are
evenly and equally spaced (see Figure 10), as opposed to
stacking them at the bounds.

Appendix C
Hierarchical Bayesian Inference

We use hierarchical Bayesian inference to infer the
population properties of compact binaries. We want to infer
the number density of merging compact binaries in the universe
and how this can change with their masses, spins, etc.
Oftentimes, it is useful to formulate the question in terms of
the merger rate, which is the number of mergers per Gpc3

comoving volume per year. For a set of hyperparameters, Λ, λ,
and overall merger rate,*, we write the overall number density

of BBH mergers in the universe as

⎛⎝ ⎞⎠R M
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where up above, we denote the comoving volume element as
dVc (Hogg 1999), and Tobs as the observing time period that
produced the catalog, with the related factor of 1+ z converting
this detector-frame time to source-frame. We assume a ΛCDM
cosmology using the cosmological parameters from Planck
Collaboration et al. (2016). We model the merger rate evolving
with redshift following a power-law distribution:

M r �
M

�( )∣ ) (p z z1dV
dz z

1
1

c (Fishbach et al. 2018). When
integrating Equation (C1) across all θ and out to some
maximum redshift, zmax, we get the total number of compact
binaries in the Universe out to that redshift. We follow previous
notations, letting {di} represent the set of data from Nobs

compact binaries observed with gravitational waves. The
merger rate is then described as an inhomogeneous Poisson
process, and after imposing the usual log-uniform prior on the
merger rate, we marginalize over the merger rate,*, and arrive
at the posterior distribution of our hyperparameters, Λ (Mandel
et al. 2019; Vitale et al. 2021):
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where above, we replaced the integrals over each event’s
likelihood with ensemble averages over Ki posterior samples
(LVK Collaboration 2021a). Here, j indexes the Ki posterior
samples from each event and π(θ, z) is the default prior used by
parameter estimations that produced the posterior samples for
each event. In the analyses of GWTC-3, either the default prior
used was uniform in detector-frame masses, component spins,

Figure 10. Plot showing a “proper” (see Appendix B) normalized B-spline basis of order 3 (cubic) with 20° of freedom and equal weights for each component. In
black, we show the resulting spline function given equal weights and denote the location of the knots with gray x symbols. The icon links to the code used to generate
this figure. ✎
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and Euclidean volume, or the posterior samples were
reweighted to such a prior before using them in our analysis.
The corresponding prior evaluated in the parameters we
hierarchically model, i.e., source-frame primary mass, mass
ratio, component spins, and redshift:

Q R R

r �

( )
( ) ( ) ( )

m q a a z

m z D z
dD
dz

, , , , cos , cos ,
1
4

1 . C3L
L

1 1 2 1 2

1
2 2

Above, DL is the luminosity distance. To carefully incorporate
selection effects to our model, we need to quantify the
detection efficiency, ξ(Λ, λ), of the search pipelines that were
used to create GWTC-3, at a given population distribution
described by Λ and λ:

¨Y M R R R M- � -( ) ( ) ( ∣ ) ( ∣ ) ( )d dzP z p p z, , . C4det

To estimate this integral, we use a software injection campaign
where gravitational waveforms from a large population of
simulated sources, which are then put into real detector data.
These data are then evaluated with the same search pipelines
that were used to produce the catalog we are analyzing, giving
us detection probabilities for these simulated waveforms. With
these search results in hand, we use importance sampling and
evaluate the integral with the Monte Carlo sum estimate, μ, and
its corresponding variance and effective number of samples:
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where the sum is only over the Nfound injections that were
successfully detected out of Ninj total injections, and pinj(θ, z) is
the reference distribution from which the injections were
drawn. We use the LVK released injection sets that describe the
detector sensitivities over the first, second, and third observing
runs (LVK Collaboration 2021c). Additionally, we follow the
procedure outlined in Farr (2019) to marginalize the uncer-
tainty in our estimate of ξ(Λ, λ), in which we verify that Neff is
sufficiently high after reweighting the injections to a given
population (i.e., Neff> 4Nobs). The total hyperposterior is

marginalized over the merger rate and the uncertainty in the
Monte Carlo integral calculating ξ(Λ, λ) (Farr 2019):

⎡⎣⎢ ⎤⎦⎥� �M
R M
Q R

N M

- r
-

� - �
�

�

� �

�

( ∣{ }) ( ∣ ) ( ∣ )
( )

( )

( ) ( )'

p d
K

p p z
z

N
N N

N

N

log , log
1

,

log ,
3

2

. C7

i
i

N

i j

K i j i j

i j i j
1 1

, ,

, ,

obs
obs obs

2

eff

eff
2

iobs

We explicitly enumerate each of the models used in this
work for p(θ|Λ), along with their respective hyperparameters
and prior distributions, in the next section. To calculate draw
samples of the hyperparameters from the hierarchical posterior
distribution shown in Equation (C7), we use the NUTS
Hamiltonian Monte Carlo sampler in NUMPYRO and JAX to
calculate likelihoods (Phan et al. 2019; Bingham et al. 2019).

Appendix D
Model and Prior Specification

For each of the distributions with basis spline distributions,
we have two fixed hyperparameters to specify. The number of
degrees of freedom, n, and the difference penalty order for the
smoothing prior, r. Additionally, one must choose a prior
distribution on the smoothing prior scale hyperparameter, τλ,
which we take to be uniform. For the primary mass
distribution, we model the log probability with a B-spline
interpolated in ( )mlog 1 spaced evenly from a minimum black
hole mass of 5Me, and maximum of 100Me. We follow a
similar scheme for the models in mass ratio and spin, except we
model the log probability with B-splines that are interpolated in
q, ai, or Rcos i space. The knots for the mass-ratio B-spline are
linearly spaced from � 0.05m

m
min

max
to 1. There is motivation for

the evolution of the merger rate with redshift to follow a power-
law form because it should be related to the star formation rate
(Madau & Dickinson 2014), motivating our adoption of a
semiparametric approach where we use B-splines to model
modulations to the simpler underlying POWERLAWREDSHIFT
model (Fishbach et al. 2018; Edelman et al. 2022). We model
modulations to the underlying probability density with the
multiplicative factor, ( )eB zlog , where ( )B zlog is the B-spline
interpolated from knots spaced linearly in zlog space. We
enumerate each of our specific model hyperparameter and prior
choices in Table 3.
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Appendix E
Posterior Predictive Checks

We follow the posterior predictive checking procedure done in
recent population studies to validate our models inferences
(Abbott et al. 2021b; Edelman et al. 2022). For each posterior
sample describing our model’s inferred population, we reweigh

the observed event samples and the found injections to that
population and draw a set of 69 (the size of the GWTC-3 BBH
catalog) samples to construct the observed and predicted
distributions we show in Figures 11 and 12. When the observed
region stays encompassed within the predicted region, the model
is performing well, which we see across each of the fit parameters.

Table 3
All Hyperparameter Prior Choices for Each of the Newly Introduced Basis Spline Models from This Article

Model Parameter Description Prior

Primary Mass Model Parameters

B-SPLINE PRIMARY c Basis coefficients ∼Smooth(τλ, σ, r, n)

τλ Smoothing prior scale ∼U(2, 1000)

r Order of the difference matrix for the smoothing prior 2

σ Width of Gaussian priors on coefficients in smoothing prior 6

n Number of knots in the basis spline 64

Mass Ratio Model Parameters

B-SPLINE RATIO c Basis coefficients ∼Smooth(τλ, σ, r, n)

τλ Smoothing prior scale ∼U(1, 100)

r Order of the difference matrix for the smoothing prior 2

σ Width of Gaussian priors on coefficients in smoothing prior 4

n Number of knots in the basis spline 18

Redshift Evolution Model Parameters

POWERLAW+B-SPLINE λ Slope of redshift evolution power law (1 + z)λ _ ( )& 0, 3

c Basis coefficients ∼Smooth(τλ, σ, r, n)

τλ Smoothing prior scale ∼U(1, 10)

r Order of the difference matrix for the smoothing prior 2

σ Width of Gaussian priors on coefficients in smoothing prior 1

n Number of knots in the basis spline 18

Spin Distribution Model Parameters

B-SPLINE MAGNITUDE c Basis coefficients ∼Smooth(τλ, σ, r, n)

τλ Smoothing prior scale ∼U(1, 10)

r Order of the difference matrix for the smoothing prior 2

σ Width of Gaussian priors on coefficients in smoothing prior 1

n Number of knots in the basis spline 18

B-SPLINE TILT c Basis coefficients ∼Smooth(τλ, σ, r, n)

τλ Smoothing prior scale ∼U(1, 10)

r Order of the difference matrix for the smoothing prior 2

σ Width of Gaussian priors on coefficients in smoothing prior 1

n Number of knots in the basis spline 18

Note. See Appendices A and B for more detailed descriptions of basis splines and smoothing prior parameters.
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Appendix F
Reproducibility

In the spirit of open-source and reproducible science, this
study was done using the reproducibility software
showyourwork (Luger et al. 2021), which leverages continuous
integration to programmatically download the data from
https://zenodo.org, create the figures, and compile the manu-
script. Each figure caption contains two links that point toward
the data set (stored on Zenodo) used in the corresponding
figure, and to the script used to make the figure (at the commit
corresponding to the current build of the article). The git
repository associated to this study is publicly available at
https://github.com/bruce-edelman/CoveringYourBasis, which
allows anyone to rebuild the entire article. The data sets and
all analysis or figure-generating scripts are all stored at
doi:10.5281/zenodo.7566301.
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