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The destructive 2023 moment magnitude (M.) 7.8-7.7 earthquake doublet ruptured multiple segments of
the East Anatolian Fault system in Turkey. We integrate multi-scale seismic and space-geodetic
observations with multi-fault kinematic inversions and dynamic rupture modeling to unravel the events’
complex rupture history and stress-mediated fault interactions. Our analysis reveals three sub-shear slip
episodes during the initial M, 7.8 earthquake with delayed rupture initiation to the southwest. The M, 7.7
event occurred 9 hours later with larger slip and supershear rupture on its western branch. Mechanically
consistent dynamic models accounting for fault interactions can explain the unexpected rupture paths, and
require a heterogeneous background stress. Our results highlight the importance of combining near- and

far-field observations with data-driven and physics-based models for seismic hazard assessment.

The moment magnitude (M) 7.8 and 7.7 Kahramanmarag
earthquakes in Turkey on February 6, 2023, caused enormous
destruction and tens of thousands of casualties from col-
lapsed structures, and were one of the deadliest natural dis-
asters for Turkey and Syria over the last millennium (7). The
Kahramanmaras sequence is the first great earthquake dou-
blet with a combined moment magnitude of 8 recorded in a
continental strike-slip fault system. Unlike regular after-
shocks that are over one order of magnitude smaller than
their mainshock, doublet events pose a greater hazard as they
can cause more severe damage by striking already weakened
buildings and structures. We show that the Kahramanmaras
earthquake doublet involved a remarkable sequence of sub-
events that occurred with varying rupture velocities, geome-
tries, and time delays on branched fault segments, which
challenge our understanding of earthquake interactions and
the dynamics of rupture propagation.

Seismologists commonly approximate earthquakes as
point sources or as slip along a single fault with fixed rupture
velocity. However, large earthquakes often rupture multiple
fault segments within a complex network (2-6). Occasionally,
events of a comparable magnitude occur within minutes to
hours of the initial event, resulting in earthquake doublets
(7-9). Branching faults may further complicate rupture dy-
namics (I0-12). Whether rupture stops or continues propa-
gating at fault junctions can determine earthquakes’ eventual
size and destructive potential (13). When applied to complex
ruptures on multiple faults, conventional earthquake source
imaging often involves oversimplified assumptions, yielding
stark differences in source models and their interpretations
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(14, 15). Initial studies of the Kahramanmaras earthquakes
presented a wide range of earthquake models and interpreta-
tions (16-21), likely due to focusing on particular datasets and
aspects of the rupture process. These differences motivate
unified and self-consistent approaches that integrate diverse
datasets with state-of-the-art rupture models to advance our
understanding of the earthquake dynamics.

We perform a comprehensive investigation of the M, 7.8-
7.7 Kahramanmaras doublet using data-driven and physics-
based analyses applied to near- and far-field seismic and ge-
odetic observations. Our results reveal that the earthquakes
followed unexpected rupture trajectories, which included de-
layed backward branching, statically- and dynamically aided
triggering, and a combination of subshear and supershear
rupture episodes. These discoveries call for reevaluating the
role of cascading failure mechanisms when assessing the de-
structive potential of large earthquakes within complex fault
networks.

The geometrically complex M, 7.8-7.7 earthquake
doublet

On Feb 6, 2023, two major (moment magnitude greater
than 7) earthquakes ruptured several previously recognized
fault systems within nine hours (Fig. 1). The EAF is a mature
transform fault accommodating up to 10 mm/y of left-lateral
motion between the Arabian and Anatolian plates (22) (Fig.
1). Several M, ~7 earthquakes occurred on the EAF histori-
cally, but none ruptured the entire southern section of the
EAF (23). The estimated dimensions of the historic events
suggest that geometric complexities such as fault bends and
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step-overs may have controlled the event sizes (23, 24). The
second earthquake (M. 7.7) occurred on the Savrun-Cardak
Fault (SCF), extending ~150 km along the east-west direction
(Fig. 1). The SCF has been relatively quiescent, with only two
moderate (M, <6) events recorded in the past 100 years (25).

We constrain the rupture geometry based on surface
traces mapped using Synthetic Aperture Radar data (26) and
precisely relocated aftershocks (27, 28). We find that the
Kahramanmaras doublet ruptured at least six major fault seg-
ments (Fig. 1). The epicenter of the M, 7.8 earthquake is lo-
cated on a subsidiary fault, the Nurdagi-Pazarcik Fault (NPF,
fault 1 in Fig. 1A) (20), from which the rupture propagated to
the EAF, and then ruptured along the EAF to both the north-
east and southwest (faults 2 and 3), for a total length of about
300 km. Unlike the historical M~7 events, the M, 7.8 earth-
quake propagated across at least four possible geometric bar-
riers, including fault bends and stepovers.

The static slip distribution (Fig. 1B) obtained from inver-
sions of Synthetic Aperture Radar (SAR) and Global Naviga-
tion Satellite System (GNSS) data (figs. S1 to S7) shows that
the largest slip in the M, 7.8 event is on the EAF at its junc-
tion with the NPF, near the towns of Kahramanmaras and
Pazarcik, with peak slip in excess of 8 m. Most of the coseis-
mic slip is in the upper 20 km of the seismogenic layer (Fig.
1B). Slip at the surface is highly heterogeneous, consistent
with field observations (I8), but on average increasing from
the southwest to the northeast ends of the M, 7.8 rupture (fig.
S8). The area of substantial slip extends to the northeast from
the junction for about 150 km to the western tip of the 2020
M, 6.7 Elazig rupture (29) (Fig. 1A). South of the junction, the
M,, 7.8 rupture extends to the southern end of the EAF. The
average coseismic slip on the southwest branch of the M, 7.8
rupture is smaller than the average slip on the northeast
branch (Fig. 1B and fig. S2).

We resolve the spatiotemporal rupture process with a
subevent inversion method using both near- and far-field
seismic observations (30, 31). The M, 7.8 earthquake has six
subevents altogether spanning ~90 s (Fig. 2A). The M 6.8
subevent El that ruptures the NPF is followed 18 s later by
the largest subevent E2 (M, 7.5) at the NPF-EAF intersection.
The earthquake then ruptured northeastward along the EAF
for about 130 km (M, 7.5 subevent E3), as well as, after a short
delay, backward from the NPF junction for about 150 km
along the southwestern segment of the EAF, with integrated
slip equivalent to a My 7.4 earthquake (subevents E4-E6).
Teleseismic P-wave back-projection (32) confirms the rupture
process with imaged high-frequency radiation peaks outlin-
ing the major subevents (Fig. 2A) and indicating an average
rupture velocity of 3 km/s. To further constrain the slip his-
tory, we perform a joint Kinematic slip inversion of the My
7.8 earthquake constrained by far- and near-field seismic and
geodetic data (26, 33). Our kinematic inversion results agree
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with the static and subevent models (Fig. 2B). The best-fit
kinematic slip model images 10-s-delayed backward branch-
ing at the NPF-EAF intersection, toward the southwest (Fig.
2B), constrained by the strong-motion data (fig. S17). It also
indicates average rupture velocities of 3.2 km/s and 2.8 km/s
for the northeastern and southwestern branches, respectively
(fig. S18). Tracking ground motion pulses at near-fault strong
motion stations along the southwestern segment, also yields
a rupture velocity of ~3 km/s (fig. S18), confirming an overall
subshear nature. All our kinematic models consistently reveal
a ~300 km-long complex bilateral multi-segment rupture,
subshear rupture velocities, and delayed triggering of the
southwest segment of the M, 7.8 event (Fig. 2C).

The subsequent M, 7.7 earthquake ruptured a 150-km
long section of the west-trending SCF, within 90 km of the
M, 7.8 earthquake hypocenter. The aftershock distribution
and surface offsets indicate branching and abrupt changes in
strike at both the eastern and western ends of the M,, 7.7 rup-
ture (Fig. 1). Geodetic data and our associated static slip
model (Fig. 1B) suggest rupture along an 80-km-long segment
of the SCF system (fault 4-5 in Fig. 1), but not along the east-
ern end of the Siirgii fault that connects to the EAF. Instead,
the M, 7.7 rupture diverted sharply onto the Dogansehir
branch, which angles to the northeast (fault 6). The M 7.7
event shows a concentrated slip distribution with over 10 m
peak slip around its hypocenter, suggesting a substantially
higher stress drop than the initial M, 7.8 earthquake which
spreads lower-amplitude slip over a larger region.

Our analysis of the rupture history of the M, 7.7 event
identifies four major subevents, lasting for about 30 s (Fig.
3A). The first three subevents, E1-E3, all cluster near the epi-
center and account for over 80% of the total seismic moment,
suggesting a compact bilateral rupture in the central SCF.
The focal mechanism (strike of 237°) and location of the last
subevent (E4, M, 7.1) agree with the static slip model on the
Dogansehir branch (Fig. 1B). All subevents of both earth-
quakes have almost pure double-couple mechanisms (Figs.
2A and 3A), suggesting that the strong non-double couple
components in the Global Centroid-Moment-Tensor solu-
tions (34) (Fig. 1A) are due to highly variable rupture geome-
tries. The overall shorter duration and smaller rupture extent
of the M, 7.7 event make back-projection analysis less effec-
tive for resolving rupture details, but our kinematic finite-slip
inversion can still be applied.

The kinematic finite-fault model of the M, 7.7 earthquake
also indicates a compact slip distribution. In addition, it in-
dicates a westward rupture velocity of approximately 4.5
km/s (Fig. 3B), exceeding the shear-wave speed in the crust.
The waveforms recorded at the westward seismic stations
strongly constrain this supershear rupture episode (Fig. 3C
and fig. S19), which is consistent with analysis of high-rate
GNSS data (20). In contrast, the eastward rupture likely
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propagated at a slower velocity of 2.5 km/s. The intriguing
supershear rupture episode may imply locally higher pre-
stress (35) and high stress drop (36) as in our dynamic rup-
ture models.

Dynamics, triggering, and stress interaction of the
doublet

Dynamic rupture modeling involves simulating how
earthquakes nucleate, propagate, and arrest. Unlike purely
data-driven kinematic slip inversions, such models predict
the evolution of slip, seismic waves, and surface deformation
in a physically self-consistent manner. Detailed, physics-
based interpretations can help verify whether inferred rup-
ture scenarios are mechanically plausible, but are computa-
tionally challenging and typically take years to develop (e.g.,
10,12,13).

We present data-informed dynamic rupture simulations
of the 2023 Kahramanmaras earthquakes that illuminate
complex details of the rupture process. Our 3D dynamic rup-
ture models include stress changes computed from the slip
distribution of the static slip model (37), large-scale variabil-
ity in fault loading inferred from regional seismo-tectonics,
and the relative effects of the static and dynamic stresses of
the M, 7.8 event on the faults hosting the second earthquake
(26) (fig. S20). The dynamic rupture models independently
reproduce the main features of the kinematic models (Fig. 4
and fig. S21), providing a physics-based validation of the in-
ferred rupture histories.

Our forward simulations use the complex fault geometries
of both earthquakes informed from geodetic analysis (Fig. 1)
to spontaneously replicate the moment rate release, magni-
tude, rupture velocity and delays, as well as the lack of instan-
taneous dynamic triggering of the M, 7.7 event. The dynamic
rupture synthetics produce surface displacements and slip
histories that compare well to the high-resolution geodetic
data (fig. S22), kinematic rupture representations (Fig. 4 and
fig. S21) and observed ground motions (Fig. 5 and figs. S23 to
S25). Figure 4A illustrates the modeled My, 7.8 earthquake dy-
namics. The NPF-EAF intersection slows sub-shear rupture
on the NPF which then branches with dynamically favorable
forward directivity (38) northeastward along the EAF. The
large fault branching angle poses a strong dynamic barrier in
backward-directivity (39) leading to significantly delayed
EAF rupture toward the southwest. Continuous dynamic un-
clamping, transient shear stressing and static stress build-up
at the fault intersection due to the unilaterally propagating
northeast rupture allows the rupture to eventually fracture
the EAF bilaterally (fig. S26). Rupture speed remains overall
sub-shear during the earthquake (Fig. 4B).

Dynamic rupture modeling of the M, 7.7 earthquake fea-
tures bi-lateral rupture with unequal rupture speeds, con-
firming dominant supershear westward and sub-shear

First release: 3 August 2023

science.org

eastward propagation. Our M, 7.8 dynamic rupture model
predicts a highly variable pattern of static and dynamic
stresses resolved on the faults that hosted the M, 7.7 earth-
quake (Fig. 4, C and D). The hypocentral area of the My 7.7
event experienced an increase in static Coulomb stress of sev-
eral hundred kilopascals due to the M, 7.8 earthquake, result-
ing from both an increase in shear stress and a decrease in
fault-normal compression (fig. S27). It also experienced a
much larger transient increase in the Coulomb stress of a few
megapascals due to passing seismic waves (Fig. 4D), which
nevertheless did not result in instantaneous triggering.

Discussion and Conclusions

Our analyses reveal unexpected rupture paths. The
Kahramanmaras doublet originated as a moderate event on
the NPF branch fault with a magnitude of only 6.8, yet the
rupture was able to successfully cross the junction of the NPF
and EAF, which would usually be considered a geometric bar-
rier that conditionally gates the rupture propagation (40, 41).
As a result, the earthquake intensified with the northeast-
ward propagation along the EAF, then dynamically triggered
backward rupture toward the southwest by continuously un-
clamping and stressing from the forward branch, eventually
culminating in a M, 7.8 event, with total seismic moment in-
creased by a factor of 30 compared to the initial rupture on
the NPF. In addition, the M, 7.8 earthquake increased the
Coulomb stress on the central part of the SCF, which may
have aided the nucleation of the M,, 7.7 earthquake 9 hours
later. The entire process highlights the additional hazard
brought by rupture triggering across a network of faults, chal-
lenging earthquake hazard assessments that typically do not
consider such multi-fault triggering scenarios.

The M, 7.8 earthquake involved backward fault branch-
ing, which is highly unfavorable from a dynamic perspective,
thus commonly neglected in hazard studies. Several previous
continental earthquakes, including the 1992 Landers, the
1999 Hector Mine, and the 2002 Denali earthquakes, have
also exhibited localized backward branching (10). Existing ex-
planations of this phenomenon include backward rupture
jumping induced by sudden rupture arresting or nonuniform
prestress fields caused by earthquake cycles (39, 42). Our dy-
namic rupture models indicate that backward branching dur-
ing the M, 7.8 event does not necessarily require a complex
arrangement of the receiver fault (42) or triggering of su-
pershear rupture (43). Instead, the progressive build-up of
slip on the forward branch of the EAF continuously unclamps
and stresses the backward branch of the EAF, eventually lead-
ing to delayed and self-sustained branching toward the
southwest, which is a simple yet effective mechanism.

One of the surprising aspects of the M,, 7.7 earthquake is
that it did not rupture through the eastern Siirgii segment
and arrive at the EAF, contrary to earlier suggestions (20),
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but instead deviated to the Dogansehir branch. The InSAR,
aftershock, and seismic data clearly show such a deviation
(figs. S1 and S14). The straightforward rupture path along the
Siirgii fault was encouraged by the static stress changes due
to the M, 7.8 event (fig. S27), unlike the sharp deviation to
the Dogansehir fault which was actually unloaded by the My
7.8 event (Fig. 4D and movie S3). Possible explanations,
which may be tested by future geodetic and seismological ob-
servations, include velocity-strengthening behavior of the
eastern Siirgili segment, or local stress heterogeneity, e.g., due
to past earthquakes (44). Considerable regional stress heter-
ogeneity, as is required by our dynamic rupture models (fig.
S20), is implied by extremely complex rupture geometries in-
volving changes in the strike angle of up to 90 degrees (Fig. 1
Fig. and fig. S27) (45). Some faults in the study area, including
the EAF, exhibit shallow creep (46), however creep has to be
pervasive to potentially suppress an incoming dynamic rup-
ture. Observations spanning all phases of the earthquake cy-
cle are needed to constrain the velocity- and depth-dependent
frictional properties of active faults (47, 48). Shallow creep
might be responsible for a substantial reduction in the am-
plitude of coseismic slip in the top few kilometers of the up-
per crust (Fig. 1B), which is well resolved in our inverse
models (fig. S28). Subsequent observations will show whether
this reduction can be compensated by shallow afterslip or
constitutes a long-term shallow slip deficit (49), implying
wide-spread off-fault yielding (47, 50).

We also find intriguing variations in rupture velocity
across segments of the EAF-SCF fault network. Although the
M, 7.8 event produced extreme shaking with peak ground ac-
celerations (PGA) exceeding 1 g for near-fault stations, the ob-
served and simulated M, 7.7 ground motions are similar or
larger when compared at the same distance (Fig. 5 and figs.
S23 and S24), consistent with a potentially larger stress drop
of the M, 7.7 event. The modeled and observed M, 7.7 event
shaking shows less distance dependence, which may be due
to the effects of supershear rupture.

The western branch of the SCF experienced a supershear
rupture episode, while the eastern SCF branch and the EAF
hosted subshear ruptures with considerable delays. In gen-
eral, our modeling shows that the pre-event stress heteroge-
neities, dynamic and static redistribution of stress and the
geometry of the faults may control these diverse rupture
characteristics.

The Kahramanmaras doublet ruptured multiple faults in
distinct slip episodes, likely involving complex stress-trigger-
ing processes across different temporal and spatial scales.
Such processes resulted in the increased rupture length and
seismic moment of the Turkey earthquake doublet, and a sub-
stantially larger destructive potential compared with the
“typical” M. ~7 historical earthquakes in the region (23).
Such a variability might be interpreted in terms of the super-
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cycle model (51). By using integrated methods that combine
near- and far-field seismic and geodetic observations and in-
vestigating data-derived models and physics-based rupture
simulations, we show that stress interactions, and static and
dynamic triggering worked together across a complex fault
system, resulting in a cascade of rupture with a larger than
usual total rupture length and moment magnitude. Our study
shows that complementary data-driven and physics-based
analyses, which in isolation often lead to non-unique or even
contradictory results, can jointly and efficiently unravel
highly complex earthquake dynamics based on dense near-
field observations. The unusual static and dynamic interac-
tions during and between the events of the Kahramanmaras
doublet call for reassessment of common assumptions built
into seismic hazard assessments.
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Fig. 1. A multi-fault earthquake doublet. (A) Tectonic background and aftershock seismicity of the study area
near Kahramanmaras, Turkey. Red and purple stars indicate the My 7.8 and 7.7 earthquake epicenters from the
Turkey Disaster and Emergency Management Authority (563), and beachballs show focal mechanisms from the
Global Centroid Moment Tensor catalog, respectively. Red and purple lines show surface ruptures identified from
SAR data (26). Yellow dots show aftershocks for the period between the My, 7.8 and 7.7 earthquakes and black
dots are aftershocks following the M., 7.7 event (28). The blue line and beachball denote the rupture extent and
focal mechanism of the 2020 M,, 6.7 Elazig earthquake (29). Inset shows the regional tectonics and major plate
boundary faults (solid black lines). Red outline denotes the study area. (B) Finite-fault model of the 2023 doublet
derived from inversions of space geodetic (INSAR and GNSS) data. Fault segment numbers correspond to those
shown in panel (A), in order of their rupture time: 1 - Nurdagi-Pazarcik Fault, 2 and 3 - East Anatolian Fault, 4-6 -
Savrun-Cardak Fault. The inset panel shows the along-strike averaged coseismic slip normalized by the maximum
slip amplitude, as a function of depth (49).
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Fig. 2. Complex slip evolution of the M., 7.8 earthquake, including delayed initiation of slip. (A) Subevent
model from near- and far-field seismic observations and back-projection results, suggesting that the My 7.8
earthquake initiated on the NPF-1 (fault 1 in Fig. 1B), then propagated bilaterally, NE along the EAF-2 (fault 2)
and SW along the EAF-3 (fault 3). The rupture of fault 2 terminates around 50 s, while rupture of fault 3 continues
for an additional 30 s. (B) Rupture history within different time intervals from our kinematic slip inversion of far-
and near-field seismic and geodetic data. We infer rupture velocities of 3.2 and 2.8 km/s for the NE and SW
episodes, respectively, and a10 s delay in the onset of the SW rupture along EAF-3 with respect to the NE rupture
along EAF-2. The slip distribution within each time interval agrees with the subevent (black circles) inversion.
(C) Subevents, back-projection locations and times, and finite-fault velocities (in B) consistently indicate
delayed initiation of slip on branch EAF-3.
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Fig. 3. Asymmetric kinematics of the M,, 7.7 earthquake. (A) Three subevents close to the hypocenter suggest
a bilateral rupture. The fourth event images the rupture of the Dogansehir branch (fault 6 in Fig. 1B). (B)
Asymmetric bilateral rupture velocities of the My 7.7 event. The westward rupture has an inferred supershear
velocity of 4.5 km/s, whereas a subshear velocity is seen toward the east (2.5 km/s). Note that subevent
locations are based on their seismic moment centroids. The slip may not be the largest at the centroid location,
specifically for bilateral ruptures. For example, E3 (10-30 s) averages slip pulses of both the westward supershear
and the eastward subshear rupture. (C) A westward supershear rupture velocity (red waveforms) better explains
observed waveforms (black) at near-fault strong motion stations to the west (triangles in A) than a subshear
rupture (blue).
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Fig. 4. 3D dynamic rupture scenarios and stress-mediated interactions of the M, 7.8 and 7.7 earthquakes.
(A) Snapshots of absolute slip rate evolution in the My, 7.8 dynamic rupture scenario (movie S1). (B) Modeled
rupture speeds in linked dynamic rupture simulations (54) of both earthquakes indicating dominantly sub-
shear rupture speeds but sustained westward supershear during the My, 7.7 scenario (fig. S21 and movie S2).
(C) Peak absolute dynamic shear stress perturbation reaching up to 7 MPa measured in the direction of
maximum initial traction. Inset: Evolution of dynamic shear stress and fault strength at the M., 7.7 hypocenter
(black star). (D) Static Coulomb failure stress changes ACFS assuming a static friction coefficient of 0.6.
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Fig. 5. Peak ground velocities (PGV) plotted against Joyner-Boore distance (R;s) for the M,, 7.8 (A) and M.,
7.7 (B) earthquakes. Observed PGVs from strong motion accelerometers are indicated by open black circles,
and simulated PGVs from the dynamic rupture simulations are indicated by open blue squares. We bin the PGV
data by Rjs and plot the medians for each distance bin (solid markers). The red curve indicates PGV predicted
by a ground motion model (55) assuming an average shear wave velocity for the top 30 m of soil (VSso) of 760
m/s, with the shaded area denoting its uncertainty. All PGV are rotationally independent geometric mean values
(GMRotD50). We include simulated and observed data at the same locations, respectively.
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