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A B S T R A C T 
We present direct constraints on galaxy intrinsic alignments (IAs) using the Dark Energy Surv e y Year 3 (DES Y3), the Extended 
Baryon Oscillation Spectroscopic Surv e y (eBOSS), and its precursor, the Baryon Oscillation Spectroscopic Surv e y (BOSS). 
Our measurements incorporate photometric red sequence (redMaGiC) galaxies from DES with median redshift z ∼ 0.2–1.0, 
luminous red galaxies from eBOSS at z ∼ 0.8, and also an SDSS-III BOSS CMASS sample at z ∼ 0.5. We measure two-point 
IA correlations, which we fit using a model that includes lensing, magnification, and photometric redshift error. Fitting on scales 
6 Mpc h −1 < r p < 70 Mpc h −1 , we make a detection of IAs in each sample, at 5 σ–22 σ (assuming a simple one-parameter 
model for IAs). Using these red samples, we measure the IA–luminosity relation. Our results are statistically consistent with 
previous results, but offer a significant impro v ement in constraining power, particularly at low luminosity. With this impro v ed 
precision, we see detectable dependence on colour between broadly defined red samples. It is likely that a more sophisticated 
approach than a binary red/blue split, which jointly considers colour and luminosity dependence in the IA signal, will be needed 
in future. We also compare the various signal components at the best-fitting point in parameter space for each sample, and find 
that magnification and lensing contribute ∼ 2 –18 per cent of the total signal. As precision continues to impro v e, it will certainly 
be necessary to account for these effects in future direct IA measurements. Finally, we make equi v alent measurements on a 
sample of emission-line galaxies from eBOSS at z ∼ 0.8. We constrain the non-linear alignment amplitude to be A 1 = 0 . 07 + 0 . 32 

−0 . 42 
( | A 1 | < 0.78 at 95 per cent CL). 
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1  I N T RO D U C T I O N  
The study of cosmic shear as a probe of the large-scale structure of 
the Universe has developed rapidly over the past decade. Although its 
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potential was recognized some time ago (see e.g. Jain & Seljak 1997 ; 
Hu 1999 ), only more recently have high-precision cosmological 
constraints been possible. In the past 10 yr, data sets have grown 
to the point where weak lensing measurements alone have roughly 
comparable power to constrain certain cosmological parameters as 
the cosmic microwave background (CMB) temperature fluctuations. 
Galaxy weak lensing and the CMB are both sensitive to the amplitude 
of the matter power spectrum in the lo w-redshift Uni verse, S 8 . 
Although lensing allows one to probe the late-time matter field 
directly, the primary temperature anisotropies of the CMB provide 
a somewhat more complicated route, relying on an extrapolation 
from the surface of last scattering to the present day. Ever since the 
results of Heymans et al. ( 2013 ) lensing measurements have given 
a typically lower S 8 than the CMB; interestingly, this finding holds 
across multiple lensing surv e ys, whose members hav e implemented 
their own independent, well-tested, blind analyses (Kilbinger et al. 
2013 ; Dark Energy Surv e y Collaboration 2016 ; Jee et al. 2016 ; 
Hildebrandt et al. 2017 , 2020 ; Troxel et al. 2018 ; Hikage et al. 
2019 ; Hamana et al. 2020 ; Asgari et al. 2021 ; Amon et al. 2022 ; 
Secco, Samuroff et al. 2022 ). The current level of (dis)agreement in 
the full parameter space, as assessed using v arious dif ferent metrics 
(Lemos et al. 2021 ), is at the level of up to ∼2.5 σ (although it differs 
significantly between surv e ys and probe combinations). 

Future lensing surv e ys will have much smaller statistical uncer- 
tainties compared with the current generation, which will greatly 
increase the precision of weak lensing measurements. This will, in 
turn, impro v e our constraining power and help us make sense of 
the apparent tensions in the literature. It will also, ho we ver, require 
a much tighter control of modelling errors in order to a v oid our 
analyses becoming dominated by systematic uncertainties. Although 
much progress has been made in recent years, and the methods for 
mitigating systematics are highly sophisticated, we still have some 
way to go, as a field. One outstanding gap in our understanding 
is the treatment of intrinsic alignments (IAs; Joachimi et al. 2015 ; 
Kiessling et al. 2015 ; Kirk et al. 2015 ; Troxel & Ishak 2015 ). 

IAs are shape correlations induced not by cosmological lensing, 
but by local interactions, which can confuse the interpretation of 
the cosmic shear measurement. Most obviously, galaxies that are 
physically close by to each other experience the same background 
tidal field, which couples their intrinsic shapes, inducing what are 
known as II correlations. Additionally, GI (shear-intrinsic) correla- 
tions are generated by the fact that the same foreground matter that 
interacts with foreground galaxies also lenses background sources. 
A significant amount of literature o v er the past few years has 
focused on developing analytic models for IAs, which allow them 
to be forward modelled and marginalized in cosmological analyses 
(Catelan, Kamionkowski & Blandford 2001 ; Mackey, White & 
Kamionkowski 2002 ; Hirata & Seljak 2004 ; Bridle & King 2007 ; 
Blazek, Vlah & Seljak 2015 ; Blazek et al. 2019 ; Vlah, Chisari & 
Schmidt 2020 ; Fortuna et al. 2021a ). 

Perhaps the most well-established approach is an analytic formal- 
ism that assumes the intrinsic shapes of galaxies are linear in the 
background tidal field, and frozen at the point of galaxy formation 
(Catelan et al. 2001 ; Hirata & Seljak 2004 ). What became known 
as the linear alignment (LA) model predicts both the GI and II 
power spectra and is, by convention, normalized such that the free 
amplitude A 1 is very roughly one for a typical lensing source sample 
(i.e. a mixed colour sample, dominated by blue galaxies at z ! 1). 
A few years later, Hirata et al. ( 2007 ) and Bridle & King ( 2007 ) 
introduced a modification, whereby the full non-linear matter power 
spectrum is used in place of the linear version in the LA model 
equations. This has been shown to impro v e the performance of the 

model on scales ∼a few h −1 Mpc (Blazek, McQuinn & Seljak 2011 ). 
More recently, Blazek et al. ( 2015 , 2019 ) take further steps along 
this route. The perturbative model developed in those papers (known 
as the Tidal Alignment and Tidal Torque model, TATT) extends the 
LA model to include higher order terms. Although in principle there 
are specific physical mechanisms for how correlations that are, for 
example, quadratic in the tidal field arise, in practice the model is 
agnostic to the underlying physics. An alternative approach, which 
is more closely connected with the physics on sub-halo scales, is to 
use a version of the halo model. The basic concept was introduced 
a decade ago (Schneider & Bridle 2010 ), and more recently Fortuna 
et al. ( 2021a ) took significant steps towards developing a practical 
implementation. 

Although a useful tool for learning about IAs, pure theory cannot 
provide a complete picture. Real data are very much necessary for 
properly understanding their behaviour in the real universe. Broadly, 
measurements can be classified as direct (i.e. using a statistic that 
is dominated by IAs, with little or no contribution from lensing), or 
simultaneous (i.e. where IAs contribute only a small part of the total 
signal, and are inferred alongside cosmological and other parame- 
ters). There have also been studies that have sought to do something 
in between, using particular combinations of lensing data to try to 
isolate an IA signal (e.g. Zhang 2010 ; Blazek et al. 2012 ). By this 
definition, almost all cosmic shear studies to date are simultaneous IA 
measurements. Although comparison is complicated by non-trivial 
differences in the samples and measurement methods, as well as 
the high-dimensional model space, such constraints have typically 
found IA amplitudes for mixed lensing samples in the range A 1 
∼ 0.1–1 (Troxel et al. 2018 ; Hildebrandt et al. 2020 ; Asgari et al. 
2021 ; Secco et al. 2022 ). A smaller number of works have attempted 
to understand how IAs enter simultaneous measurements in more 
detail. F or e xample, He ymans et al. ( 2013 ) split the CFHTLenS 
source catalogue into early and late types and perform independent 
cosmic shear analyses; they report A 1 ∼ 0 in the bluer population, 
and A 1 ∼ 5 in early types (albeit with large error bars). Several 
years later, Samuroff et al. ( 2019 ) implemented a similar colour-split 
methodology to explore IAs in DES Y1, this time analysing red 
and blue galaxies along with their cross-correlations simultaneously. 
Assuming the non-linear alignment (NLA) model, that work found 
qualitatively similar results, with blue galaxies consistent with zero 
alignments and A 1 ∼ 3 in the red population. Using the TATT model, 
it found the quadratic alignment amplitude A 2 to be < 0 at the level 
of ∼2 σ in both colour samples. 

Direct measurements are typically restricted by the need for 
precise estimates for the redshifts of individual galaxies, and for 
this reason have tended to focus on bright red samples. A number of 
such studies have been carried out o v er the years (Hirata et al. 2007 ; 
Joachimi et al. 2011 ; Singh, Mandelbaum & More 2015 ; Johnston 
et al. 2019 ; Fortuna et al. 2021b ), and the alignment strength as 
a function of luminosity is relatively well measured in brighter 
populations. Since these samples tend to have compact redshift 
distributions, an y giv en study only weakly (if at all) constrains the 
redshift evolution of IAs. In the case of bluer galaxies, a handful of 
direct measurements have been attempted (Mandelbaum et al. 2011 ; 
Tone ga wa et al. 2018 ; Johnston et al. 2019 ), but the samples here are 
typically small; though they make null detections and place upper 
limits on the IA amplitude, the error bars are wide enough to allow for 
significantly non-zero values. Although analogous IA measurements 
can be and have been made on hydrodynamic simulations, these are 
limited by finite box size, difficulty in constructing realistic galaxy 
samples, and the accuracy of the simulations themselves (Codis et al. 
2015 ; Hilbert et al. 2017 ; Samuroff, Mandelbaum & Blazek 2021 ). 
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This paper falls into the category of direct measurements, and 
represents the first such e x ercise using DES. We use a combination 
of DES redMaGiC (or the ‘red sequence Matched filter Galaxy 
Catalog’; photometric, but with precise per-galaxy redshift estimates) 
and the o v erlapping BOSS and eBOSS surv e ys (spectroscopic) to 
measure IA correlations in physical space, which we then fit using 
a range of IA models. This work follows implicit IA constraints 
from DES cosmic shear (Amon et al. 2022 ; Secco et al. 2022 ) and 
g alaxy–g alaxy lensing (Prat et al. 2022 ; S ́anchez, Prat et al. 2022 ). 
We should note that, while they use the same DES catalogues, the 
samples in these earlier works are significantly different from ours, 
and so we do not expect the IA signal to be the same. 

The paper is structured as follows. In Section 2 , we describe 
the various data sets used in this work. Section 3 then outlines 
measurements on these data, including redshifts, calibrated galaxy 
shapes, and two-point correlations. In Section 4 , we set out the 
model used fit those measurements, and discuss our analysis choices 
such as priors and scale cuts; a range of validation tests of that 
theory pipeline, using real and simulated data, are outlined in 
Section 5 . Our main results are discussed in Section 6 . We conclude in 
Section 7 . 
2  DATA  
In this section, we briefly describe the data sets used in this work, 
and how the various galaxy samples are defined. 
2.1 The Dark Energy Survey Year 3 
The Dark Energy Surv e y is a 6-yr programme encompassing ∼5000 
square deg of the Southern sky using the V ́ıctor Blanco telescope 
in Chile. The approximate footprint is shown (purple) in Fig. 1 . 
Images were taken in five photometric bands ( g , r , i , z, and Y ) with 
a nominal depth of magnitude r ∼ 24.1 (at full Y6 depth); although 
all five are used for redshift estimation, galaxy shape measurements 
are limited to riz due to difficulties in accurately estimating the 
point spread function (PSF) in the g band (Jarvis et al. 2021 ), and 
shallower imaging in the Y band (45 s exposures as opposed to 
90 s in griz ). The work described in this paper is based on data 
collected during the first 3 yr of operation (the Y3 data). These 
data co v er the full area at slightly less than the full depth, with 
an average of about five exposures per galaxy. A description of 
the image processing and reduction pipeline, including background 
subtraction and object detection, can be found in Morganson et al. 
( 2018 ) and Sevilla-Noarbe, Bechtol et al. ( 2021 ). The photometric 
data set, before any further cuts, is known as the GOLD catalogue 
(Sevilla-Noarbe et al. 2021 ). In Y3, this has a limiting magnitude i ∼
23. Per-galaxy photometry measurements are obtained using multi- 
object fitting (Drlica-Wagner et al. 2018 ), and shapes are measured 
using the METACALIBRATION algorithm (Gatti, Sheldon et al. 2021 ; 
see Section 3.1 ). 
2.2 BOSS and eBOSS 
We also use galaxies from both the Baryon Oscillation Spectroscopic 
Surv e y (BOSS) and the Extended Baryon Oscillation Spectroscopic 
Surv e y (eBOSS) in this paper, and so we discuss both briefly here. 
The former is a spectroscopic sample collected as part of SDSS-III 
(Eisenstein et al. 2011 ). Imaging in five photometric bands ( ugriz ) 
and spectroscopy for BOSS were performed using the 2.5 m Sloan 
Telescope at Apache Point Observatory in New Mexico (Gunn 
et al. 2006 ; Smee et al. 2013 ). The observing program took place 

between autumn 2009 and spring 2014, and co v ered more than 1.5M 
galaxies across 10 000 square deg of high-latitude sky. One can find 
a description of the BOSS spectrographs and other details in Dawson 
et al. ( 2013 ). 

The eBOSS data are slightly more recent, being taken o v er the 
period between summer 2014 and spring 2019, as part of SDSS-IV 
(Blanton et al. 2017 ; see also Dawson et al. 2016 for a discussion of 
the differences between BOSS and eBOSS). Again, spectroscopy 
relied on the BOSS spectrographs on the Sloan Telescope. The 
method for target selection differs slightly depending on the nature 
of the galaxy sample. Emission-line galaxies (ELGs) were targeted 
from the DECam Le gac y Surv e y (DECaLS), which is deeper than 
SDSS, detections, and photometry. DECaLS was carried out using 
the DECam on the Blanco telescope, and co v ers an area of 6700 
square deg in the region −20 deg < δ < + 30 deg to a 5 σ limiting 
magnitude of 24.7, 23.9, and 23.0 in the g , r , and z bands, respectively 
(compared with 22.8, 22.3, and 20.4 for SDSS; Delubac et al. 2017 ). 
Luminous red galaxy (LRG) targets, on the other hand, were selected 
using SDSS riz imaging and infrared sky maps from the Wide-field 
Infrared Surv e y Explorer (WISE; Wright et al. 2010 ). 

The BOSS and eBOSS footprints are divided in two approximately 
equal area regions; the ELG and LRG samples used in this work come 
from the Southern Galactic Cap (SGC), which contains roughly 600 
square deg of overlap with the DES footprint. 
2.3 Primary Galaxy samples 
In this paper we consider five distinct samples (for a summary, see 
Table 1 ). These are: 

(i) eBOSS Emission Line Galaxies : Our eBOSS ELG sample 
contains ∼100 000 galaxies in the SGC region. The target selection 
process in described in more detail in Raichoor et al. ( 2017 ), and 
further discussion can be found in Tamone et al. ( 2020 ) and Raichoor 
et al. ( 2021 ). The cuts that define the sample are relativ ely comple x, 
and include a g -band magnitude limit at g = 22.8 mag, as well as 
selection in colour space designed to limit the redshift range. In total, 
we have 92 954 galaxies, with a mean redshift of about 0.8. Although 
this sample co v ers a similar range in redshift to the LRGs described 
below, they are significantly bluer than any of our other samples (both 
in apparent and rest-frame magnitudes), and are thus not expected to 
exhibit strong IAs. 

(ii) eBOSS Luminous Red Galaxies : A sample of LRGs from 
eBOSS DR16, drawn from the SGC region. Selection is performed 
using the criteria outlined in Prakash et al. ( 2016 ) (see also Ross et al. 
2020 ; Bautista et al. 2021 ; Rossi et al. 2021 for details on the LRG 
sample); the cuts are primarily on extinction-corrected magnitudes 
and colours ( z < 19.95 mag). The redshift co v erage is similar to that 
of the ELG sample, with a mean of z ∼ 0.8, and the total number of 
galaxies is 22 244. 

(iii) BOSS CMASS : The CMASS selection algorithm is de- 
scribed in detail by Reid et al. ( 2016 ) (see their section 3.3 and 
references therein). We additionally impose redshift cuts at z < 0.6 
to ensure there is no o v erlap with the eBOSS LRGs, and at z > 0.4 
to remo v e outliers below the intended CMASS redshift range as they 
may have atypical colours and luminosities compared to those within 
the intended redshift range. This leaves us with 49 820 galaxies. 

(iv) redMaGiC high- z (RMH) : A sample of red sequence galax- 
ies from the DES Y3 redMaGiC catalogue. These objects are selected 
using the algorithm outlined in Rozo et al. ( 2016 ). In brief, all 
detected galaxies are fitted using a red sequence template, yielding a 
best-fitting redshift, z redmagic , and a derived luminosity L , as well as a 
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Figure 1. The approximate footprint of the Dark Energy Surv e y (purple) and SDSS eBOSS (pink). The o v erlap in the Stripe 82 region (across the beak and 
head of the hummingbird shape) is roughly 600 square deg. 

Table 1. A summary of the properties of the shape samples used in this work. From left, we show the total number of galaxies after cuts, the area 
of the footprint in square degrees, and the mean comoving number density (averaged over redshift). The value f D indicates the number of galaxies in 
the density tracer sample relative to the size of the shape sample. Note that this reflects both the impact of METACALIBRATION cuts and, in the SDSS 
samples, the geometric selection. The ellipticity dispersion σ e is defined according to Heymans et al. 2012 (see also Gatti et al. 2021 equation 13). 
Also shown are the ensemble mean redshift 〈 z〉 , the selection response for each sample (the shear response due to the galaxy shape catalogue cuts; see 
Sheldon & Huff 2017 ), and the mean rest-frame colour and r -band magnitude. The means incorporate the weights described in Section 3.2 . 

No. of Galaxies f D Area [sq. deg.] n̄ c [10 4 h 3 Mpc −3 ] σ e Mean redshift 〈 z〉 R S × 10 4 〈 M r − M z 〉 〈 M r 〉 
redMaGiC high- z 754 574 1.13 4203 3.22 0.28 0.78 4 .8 0.43 −21.6 
redMaGiC low- z 1.61 M 1.14 4203 7.64 0.26 0.46 23 .1 0.43 −20.9 
eBOSS ELGs 92 954 1.10 604 1.95 0.24 0.84 − 4 .2 – –
eBOSS LRGs 22 244 3.03 604 0.55 0.26 0.75 − 4 .7 0.37 −21.9 
CMASS 49 820 3.35 604 4.11 0.23 0.52 − 4 .0 0.36 −21.8 

corresponding χ2 . If the galaxy falls abo v e a minimum L and below 
a maximum χ2 , it is included in the catalogue. The χ2 threshold is 
a function of redshift, such that the comoving density is constant 
(Rozo et al. 2016 , section 3.3). This process gives a set of bright red 
galaxies with both well-constrained per-object photometric redshifts 
( σ z /(1 + z) < 0.02) and well-understood redshift error. Our high- z 
sample consists of the upper two redshift bins of the lens sample 
used in Dark Energy Surv e y Collaboration ( 2022 ), cut at z > 0.6. 
The luminosity threshold is L min = L ∗, where L ∗ is a characteristic 
luminosity, as defined in Rozo et al. ( 2016 ), section 3.1. The sample 
before shape cuts comprises ∼0.8 M galaxies o v er 4203 square deg. 
The redshift distribution is relatively compact and peaks at a similar 
value to our eBOSS samples at z ∼ 0.8. 

(v) redMaGiC low- z (RML) : Our low- z redMaGiC sample is 
defined in a similar way to redMaGiC high- z, with key differences. 
Primarily, the luminosity threshold is lower at L min = 0.5 L ∗ (Dark 
Energy Surv e y Collaboration 2022 ). A cut on z redmagic is imposed at 
z < 0.6, equi v alent to the three lo wer lens bins from Dark Energy 

Surv e y Collaboration ( 2022 ). Without shape cuts, the catalogue 
contains 1.84 M objects, with a median redshift of z ∼ 0.5. 

In each case we define density and shape tracer selections. The 
former uses all galaxies passing the baseline cuts described abo v e, 
and also are not required to be within the DES-SDSS o v erlap. In 
each sample, we obtain galaxy shape estimates by matching galaxies 
to the DES Y3 METACALIBRATION catalogue (Gatti et al. 2021 ). We 
construct a KDTree of METACALIBRATION galaxy angular positions, 
which is used to locate the nearest DES neighbour for each eBOSS 
or redMaGiC object. A match tolerance of 1 arcsec is imposed to 
exclude spurious matches, and objects outside the o v erlap re gion 
between the two surv e ys. To obtain a subset of galaxies with reliable 
shapes, we then impose the cuts recommended by Gatti et al. ( 2021 ) 
(their section 4.2), which includes selections based on size and 
signal-to-noise ratio, as well as a cut designed to remo v e binary star 
contamination. We show the estimated redshift distributions n ( z) for 
each sample in the top panel of Fig. 2 (see Section 3.4 for more detail 
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Figure 2. Top: The estimated redshift distributions of the various shape 
samples used in this work. Each n ( z) is normalized to integrate to 1 o v er 
the redshift range shown. The n ( z)s for the spectroscopic samples are shown 
as shaded curves, and are estimated as the histogram of single-galaxy z 
estimates. The unshaded n ( z)s are estimated by stacking random samples 
from the redMaGiC redshift PDFs. Bottom: The same, but showing comoving 
number density as a function of redshift. Note that n c is weakly cosmology- 
dependent, and so we assume the fiducial cosmology specified in Section 4 . 
Note that both the n ( z) and n c ( z) are qualitatively the same for the density 
tracer samples. The shape cuts remo v e galaxies, but do not change the shape 
or mean redshift of these distributions significantly. 
about how these are estimated), and the comoving number density 
n c ( z) in the bottom. 
2.4 Comparison sample: LOWZ 
In addition to the five catalogues discussed abo v e, we also use 
BOSS LOWZ (Dawson et al. 2013 ) as a reference sample. The point 
of including these data is to test our measurement and inference 
pipelines by comparing against the baseline analysis of Singh et al. 
( 2015 ). LOWZ is a convenient choice for this, since there are 
relatively detailed published results using a very similar methodology 
to our own. 

LOWZ is a sample of LRGs from BOSS DR11. The sample co v ers 
a footprint of 9243 square deg and is approximately volume-limited 
o v er the redshift range 0.16 < z < 0.36; a sharp cut-off is imposed 
at these bounds. Unlike the other samples, we do not match to Y3 
METACALIBRATION to obtain shape estimates, but simply use the pre- 
e xisting catalogues (Re yes et al. 2012 ). F or all other catalogue-lev el 
quantities (redshifts, k + e -corrected magnitudes etc), we likewise 
use the pre-computed columns (see Singh et al. 2015 for details). 
After cuts, the LOWZ shape and density tracer samples contain 
159 620 and 173 854 galaxies, respectively. 
3  MEA SUREM ENTS  
3.1 Shapes 
The galaxy shapes for all samples except LOWZ are obtained by 
matching to the DES Y3 METACALIBRATION catalogue. Discussion 
of the shape measurement algorithm, and catalogue level tests, can 
be found in Gatti et al. ( 2021 ). The basic measurement is a maximum 
likelihood fit of an elliptical Gaussian to each galaxy. This process 
uses a Markov chain Monte Carlo, and is performed over multiple 

exposures and in bands riz simultaneously. In order to calibrate biases 
due to image noise, model bias, and other effects, the fit is repeated 
four times using artificially PSF-deconvolved and resheared images, 
a technique known as METACALIBRATION . For details of how the 
METACALIBRATION corrections are applied in this particular context 
see Section 3.6 ; for the general case and validation on simulations 
see Huff & Mandelbaum ( 2017 ), Sheldon & Huff ( 2017 ), and Zuntz 
et al. ( 2018 ). 
3.2 Galaxy weights 
For galaxy clustering and galaxy–shape measurements, we use the 
recommended weights for each sample. Descriptions of these can be 
found in Raichoor et al. ( 2017 ) and Ross et al. ( 2020 ) (for eBOSS), 
Reid et al. ( 2016 ) (for CMASS), and Rodr ́ıguez-Monroy et al. ( 2022 ) 
(redMaGiC). These are designed to correct for correlations between 
the observed galaxy number density and various survey properties, 
which can be induced by systematics. For the SDSS samples, there 
are additional weights designed to account for fibre collisions and 
redshift failures, which are combined as per the references abo v e. 

It is worth noting briefly that previous works (see e.g. Ross 
et al. 2020 ) identified a possible systematic due to variations in the 
redshift distributions of the eBOSS samples within the SGC and NGC 
regions, which is not explicitly corrected by the weights. Although 
relatively mild for eBOSS LRGs, it was found to be significant 
enough to need correcting for in a Redshift Space Distortion (RSD) 
analysis using the ELG sample (Tamone et al. 2020 ; Bautista et al. 
2021 ; de Mattia et al. 2021 ). We do not, ho we ver, belie ve this to 
be a significant concern for our analysis, given the fact that our 
IA constraint (from the projected shape–galaxy and shape–shape 
correlations, w g + + w ++ ) is constrained to the DES-eBOSS o v erlap 
region, which is a relatively small part of the overall eBOSS SGC 
footprint. Although we do use the full area for the g alaxy–g alaxy two- 
point measurement w gg , given that the result from ELGs is essentially 
a null detection (see Section 6.1 ), we do not expect a small systematic 
affecting the galaxy bias to be a significant factor. 

The shape catalogues for the different samples are all ultimately 
subsets of Y3 METACALIBRATION , and so we adopt the inverse 
variance weights discussed in Gatti et al. ( 2021 ). 
3.3 Magnification coefficients 
In addition to imprinting a coherent pattern in their shapes, lensing 
by large-scale structure also modulates the observed brightness and 
size of galaxies, an effect known as magnification. In order to model 
the impact on our galaxy number counts, we require an estimate for 
the slope of the faint end of the galaxy luminosity function for each of 
our density tracer samples (see e.g. Mandelbaum et al. 2005 ; Elvin- 
Poole et al. 2023 and Joachimi & Bridle 2010 ’s appendix A). Our 
fiducial estimates are derived via what we refer to as the ‘flux-only’ 
method (Elvin-Poole et al. 2023 ). In the cases of eBOSS, CMASS, 
and LOWZ the process is straightforward. For a particular catalogue 
containing N 0 galaxies, with a given pre-existing selection function, 
we apply a small achromatic shift δm to the observed magnitudes. 
We reapply the magnitude cuts using this perturbed catalogue, and 
count how many galaxies are lost to the bright-end cut δN −. The 
sign of δm is then flipped, and the process repeated to estimate the 
number shifted up o v er the faint-end threshold δN + . The total change 
in number counts is then simply: 
δN ( δκ) = δN + − δN − (1) 
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with δκ = 0.5(10 −δm /2.5 − 1). For small perturbations we can measure 
the slope of δN ( δκ)/ N 0 with δκ numerically. This gives us a quantity 
Elvin-Poole et al. ( 2023 ) referred to as C sample , which describes the 
linear response of the observed galaxy number density to a small 
change in κ . We define a quantity referred to as the magnification 
coefficient as α = C sample /2 (see Section 4 for how this enters the 
theory predictions). 

For redMaGiC, the sample selection is more comple x. F or this 
reason, we start with the Y3 GOLD catalogue (Sevilla-Noarbe et al. 
2021 ), perturb the magnitudes, and rerun the redMaGiC algorithm 
for each δm . We then estimate α in the same way as before. We find 
αRML = 1.101 for redMaGiC low- z and αRMH = 1.719 for redMaGiC 
high- z. For our LRG, ELG and CMASS samples we find αLRG = 
2.020, αELG = 1.177, and αCMASS = 0.529, respectively. 

In addition to the flux-only estimates, we have alternative values, 
derived using an algorithm called BALROG (Suchyta et al. 2016 ; 
Everett et al. 2022 ): αRMH = 2.11 ± 0.32 and αRML = 0.20 ± 0.29 for 
redMaGiC high- z and low- z. BALROG works by inserting additional 
synthetic galaxies into real photometric images. By running the 
detection and measurement processes on the altered BALROG images, 
one can sample the selection function of the surv e y and e xplore 
effects such as magnification and blending. Although these, in 
principle, capture size selection effects that the flux-only numbers 
cannot (see Elvin-Poole et al. 2023 for discussion), they are also 
relatively noisy. We also have BALROG estimates for the redMaGiC 
samples only, and not CMASS/eBOSS. We thus use the flux-only 
estimates as our fiducial choice; we do, ho we ver, confirm that in the 
two redMaGiC samples our basic conclusions are unaffected by this 
choice (see Section 6.3 ). 
3.4 Redshift distributions 
3.4.1 Spectroscopic redshifts for BOSS and eBOSS 
For details on the BOSS and eBOSS spectroscopic redshift pipelines 
see Comparat et al. ( 2016 ), Hutchinson et al. ( 2016 ), and Bolton 
et al. ( 2012 ). In brief, galaxy spectra are collected using the BOSS 
spectrographs on the Sloan Telescope (Smee et al. 2013 ); the 
instrument has two identical spectrographs, each of which has a 
red and a blue camera, collectively covering the wavelength range 
360–1040 nm, and 1000 optical fibres, 3 arcsec in diameter, and 
with a collision scale of 62 arcsec (corresponding to a physical scale 
of ∼0.6 h −1 Mpc at z = 0.8). Each object is observed in multiple 
exposures, which are 15 min in duration and can be distributed 
across several nights. All good data for a particular galaxy are co- 
added together during the spectroscopic data reduction process. Fits 
are made to each observed spectrum using a number of templates 
and combinations of templates e v aluated for all allowed redshifts. A 
point estimate redshift is then obtained by maximizing the likelihood. 
The estimated redshift distributions used in our theory modelling of 
the CMASS and eBOSS samples (the shaded curves in the top panel 
of Fig. 2 ) are, then, histograms of these point estimates. Note that in 
making these histograms, we apply the METACALIBRATION weights 
described in Section 3.2 . 
3.4.2 Photometric redshifts 
Unlike with the SDSS samples, we do not have spectroscopic 
redshifts for our DES redMaGiC samples. Rather, for each galaxy, we 
have a redshift PDF, which is obtained using DES photometry. The 
redMaGiC algorithm (Rozo et al. 2016 ) relies on the fact that red se- 
quence galaxies have a relatively tight magnitude–colour–redshift re- 

lation, which can be calibrated using o v erlapping spectroscopic data 
(Cawthon et al. 2022 ). Individual galaxies are fit using the process 
described in Section 2.3 . Where it is necessary to have point redshift 
estimates (e.g. for the binning in Section 3.6 ), we use the value that 
maximizes the likelihood, z redmagic . We follow Dark Energy Surv e y 
Collaboration ( 2022 ) and estimate the ensemble n ( z)s by stacking 
samples from the full non-Gaussian redshift PDFs (see also Porredon 
et al. 2021 for discussion). These are shown in Fig. 2 (upper panel). 

In addition to the n ( z) for each sample and point estimates 
themselves, our modelling also requires an estimate for the per- 
galaxy redshift uncertainty as a function of redshift. In the cases 
of eBOSS and CMASS, the spectral resolution allows very precise 
redshift estimates, and so we can assume this to be negligible. In the 
case of redMaGiC we obtain error estimates using a representative 
subsample of the Y3 redMaGiC catalogues with spectra (see P ande y 
et al. 2022 ). Specifically, we divide the sample into bins of z spec , 
and within each bin we e v aluate the histogram p ([ z samp − z spec ]/[1 
+ z spec ]), where z samp are the PDF draws used in estimating the n ( z) 
abo v e. Since we have four PDF samples per galaxy 1 , we compute 
four histograms, and average them, giving us a noisy estimate for the 
redshift error in the bin centred on z spec . We find that the histograms 
are well approximated by a Gaussian distribution, and so we fit 
each histogram to obtain a width σ z . This process leaves us with 
σ z ( z), an estimate for the redshift scatter as a function of redshift, 
which we interpolate and incorporate into the modelling described in 
Section 4.4.2 . Although there is some slight variation with redshift, 
a constant σ z /(1 + z) ∼ 0.01 is a reasonable approximation, with 
σ z /(1 + z) < 0.02 o v er the range z = 0.2–1.1 (see Porredon et al. 
2021 , and in particular their fig. 1 ). 
3.5 Luminosities, colours, and absolute magnitudes 
To obtain rest-frame absolute magnitudes for our galaxy catalogues, 
we first convert the best-fitting r -band fluxes from METACALIBRATION 
to apparent magnitudes, r = 30 − 2.5log f r . The corresponding 
absolute magnitude is then given by 
M i r = r i − 5 (log D l ( z i ) − 1 )− K( z i ) , (2) 
where the index i denotes a galaxy, z i is the best point estimate redshift 
for that galaxy, and D l is the corresponding luminosity distance. Note 
that D l is in units of pc h −1 . We calculate a k + e -correction K for 
each galaxy based on the redshift using the stellar synthesis models 
of Bruzual & Charlot ( 2003 ). In brief, we employ two models: one 
assuming a passi vely e volving spectral energy distribution, and the 
other passive but with a single instantaneous burst of star formation 
at z = 9.84. These models give us predicted colours and a k + e - 
correction as a function of z. For each galaxy i , we then compare the 
observed r − i colour with the model predictions; if the observed 
colour is redder than the predicted one from the passive model, we 
use that model. If it is bluer than the one from the passive plus 
star formation burst model, then we use that one. Otherwise, we 
calculate a weighted average of the two k + e -corrections. In all 
cases, we correct the magnitudes to z = 0. Note that these star 
1 This a product of how the redMaGiC lens redshift distributions were 
estimated for DES Y3. Instead of saving the full non-Gaussian PDF as a 
function of redshift, four Monte Carlo samples were saved per galaxy. These 
were then combined to give the estimate for the distribution for the o v erall 
sample n ( z). Note this is different from the methodology for the fiducial 
Y3 lens sample, MAGLIM . See e.g. section C1 of P ande y et al. ( 2022 ) and 
section B2 of Dark Energy Surv e y Collaboration ( 2022 ) for details. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/524/2/2195/7220722 by U
niversity of Pennsylvania Library user on 28 August 2023



IAs with DES and eBOSS 2201 

MNRAS 524, 2195–2223 (2023) 

Figure 3. The r -band luminosity distributions of the red samples used in 
this work. We divide each sample, with the exception of eBOSS LRGs, into 
roughly equal number bins in luminosity, as indicated by the shading. See 
Section 3.5 for details. 
formation models are designed to describe elliptical galaxies, and 
we do not apply them to our ELG sample. 

The abo v e procedure is based on the assumption that the o v erall 
stellar population in a given galaxy sample is a mixture of two sub- 
populations, such that the observed colours are a linear combination 
of the colours of those components; these observed colours are 
therefore subject to a linear combination of the associated k + 
e -corrections. Note that in practice the templates do not differ 
enormously o v er the redshift range of our samples. Indeed, we 
recompute the k + e -corrections using the two models separately, 
and find no significant change in the distributions shown in Fig. 3 . 

The luminosity relative to a pivot L 0 is then given by log ( L r / L 0 ) = 
−( M r − M 0 )/2.5, where M 0 is a fixed reference magnitude; we adopt 

Figure 4. Top: The rest-frame colour–magnitude diagram for the samples 
used in this work. The quantities here are k + e -corrected magnitudes in 
the DES filters. In the main galaxy samples (solid lines), these are estimated 
using METACALIBRATION flux es. F or LOWZ, which is kept as a validation 
sample, we use the pre-computed absolute magnitudes described in Singh 
et al. ( 2015 ). The contours are defined relative to the peak, at 0.5 ×, and 0.25 ×
the maximum density. Bottom: The equi v alent colour–magnitude space, but 
using apparent magnitudes. Note that we do not have k + e -corrections for 
eBOSS ELGs, so they appear in the lower panel only. 

a value M 0 = −22 for the sake of comparability with previous results. 
For the purposes of constraining trends in alignment properties, we 
subdivide our red galaxy samples into luminosity bins. These are 
shown in Fig. 3 , and are defined such that they contain roughly 
equal numbers of galaxies (with the exception of the bright end of 
redMaGiC high- z, where the signal-to-noise ratio was sufficient to 
allow us to further split the highest L bin in two.). Between them, our 
four samples co v er a range of roughly log ( L r / L 0 ) = [ −0.9, 0.4], with 
redMaGiC low- z in particular providing excellent coverage of the 
fainter end. We also show the rest-frame colour–magnitude diagram 
for these red samples (as well as LOWZ) in the top panel of Fig. 4 . 
As can be seen here, although we group these samples together as 
‘red’, there is some significant variation in colour at fixed luminosity. 
We will return to this in the context of our main results in Section 9. 
The lower panel shows the same colour–magnitude space, but using 
apparent magnitudes. Here, the distributions are relatively elongated, 
primarily due to the colour–redshift de generac y; that is, a galaxy of 
given rest-frame magnitude and colour observed at high redshift will 
appear both fainter and redder than the same object observed at low 
redshift. 
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3.6 Two-point correlations 
Following a number of previous IA studies, our primary measure- 
ments are constructed using a modified Landy–Szalay estimator 
(Landy & Szalay 1993 ). For two-point galaxy clustering, this has 
the form 
ξgg ( r p , ( ) = ( D − R D )( D − R D ) 

R D R D . (3) 
The measurement is made on a grid of line-of-sight and perpendicular 
(comoving) separation, r p and ( . For a particular sample of galaxies, 
we have a density tracer catalogue and a second catalogue of random 
points tracing the same footprint and redshift distribution. DD , R D D , 
and R D R D are the weighted counts of g alaxy–g alaxy, g alaxy–random, 
and random–random pairs in a given bin of r p and ( . To reduce shot 
noise, the randoms R D are o v ersampled relativ e to the actual data by 
a factor of > 10. 

Similarly, one can estimate the shape–density cross correlation: 
ξg+ ( r p , ( ) = S + ( D − R D ) 

R D R S , (4) 
where again D represents the density sample, and R S and R D are 
randoms matching the shape and density samples, respectively. The 
shape–shape correlation is constructed in a similar way: 
ξ++ ( r p , ( ) = S + S + 

R S R S . (5) 
We also define 

S + S + ≡ ∑ 
α,β; β (= α e + ( β| α) e + ( α| β) , (6) 

S + D ≡ ∑ 
α,β; β (= α e + ( β| α) . (7) 

Here, the sum runs o v er galaxies (or random points) at a given 
separation drawn from the two catalogues; e + ( β| α) is the tangential 
ellipticity component of galaxy i , defined by the separation vector 
with galaxy β. The quantity S + R D is the same, but using the 
positions of random points in place of galaxies. One can write down 
a set of analogous equations for ξ g ×, ξ+×, and ξ× ×, which are 
identical to the abo v e, but with galaxy ellipticities rotated by 45 
de g. An y astrophysical contribution to these, ho we v er, is e xpected to 
be negligible (due to parity arguments) and for this reason they are 
commonly used for null testing. 

The ξ ( r p , ( ) measurements are then projected along the line of 
sight as 
w ab ( r p ) = ∫ ( max 

−( max ξab ( r p , ( )d (. (8) 
We use TREECORR 2 (Jarvis, Bernstein & Jain 2004 ) for all two- 
point measurements with bin slop = 0 . 0. We use 20 logarithmically 
spaced bins in r p , o v er the range 0.1–200 h −1 Mpc. For the line- 
of-sight binning we set ( max = 100 h −1 Mpc, with 20 linearly 
spaced bins between ±( max . The resulting data vectors are shown 
in Fig. 5 . For parts of our analysis, we also use data vectors in bins 
of luminosity. These are shown in Fig. 6 . The shaded regions here 
indicate physical scales excluded from our fiducial analysis. Further 
discussion of the fits to these data can be found in Section 6 . The 
choice of ( max is driven by signal-to-noise considerations in the 
photometric samples, and follows Singh et al. ( 2015 ). We also note 
that since we are including a g alaxy–g alaxy lensing (Section 4 ) term 
2 ht tp://rmjarvis.git hub.io/TreeCor r (version 4.1.1) 

in our model, our choice here is not limited by the need to suppress 
such contributions. 

The DES shape catalogues use a technique called METACALIBRA- 
TION for accurately inferring an underlying shear signal from galaxy 
shape estimates. We apply response corrections in exactly the same 
way as in the DES Y3 cosmology analyses (Gatti et al. 2021 ). That 
is, we have a mean scale-independent factor 〈 R 〉 , which is applied at 
the level of the two-point measurements as 
ξg+ → 1 

〈 R〉 ξg+ , ξ++ → 1 
〈 R〉 2 ξ++ , (9) 

where the angular brackets indicate an average over galaxies, and 
〈 R 〉 = 〈 R γ + R sel 〉 , or the sum of a shear response and a selection 
term for the shape sample in question. 

Note that R sel corrects only for shape catalogue selection cuts. 
Since we do not have either redMaGiC re-runs or the eBOSS selection 
on sheared images, any bias induced by the basic sample selection 
is not included in this correction. That said, the estimated selection 
response for an early/late split of the DES Y1 catalogues was found 
to be of the order of 10 −4 , which is easily subdominant to our 
uncertainties (see Samuroff et al. 2019 Section 4.1 ). We thus judge 
it safe to ignore this missing correction for the purposes of our 
analysis. 

4  M O D E L L I N G  A N D  ANALYSI S  C H O I C E S  
The following section sets out our theoretical modelling choices. 
Our aim here is to connect an observed joint data vector, w gg + 
w g + + w ++ , with underlying physical quantities, which can be 
calculated from theory. Each of these data vector components is a 
combination of two observable fields ˆ δg and ˆ γ , or the observed galaxy 
o v erdensity in counts and shapes. If we assume the former is the 
sum of contributions from gravitational clustering and magnification, 
ˆ δg = δg + δµ, and the latter is the combination of intrinsic shape 
alignments and lensing, ˆ γ = γ I + γ G , we have a total of four 
correlations contributing to each observable. The sections below will 
set out how we evaluate these model ingredients 

In reality, the observed shear is weighted by the o v erdensity of 
shape galaxies, ˆ γ → (1 + δg, S ) ̂  γ (see e.g. Hirata & Seljak 2004 
equation ( 6 )). This contributes an additional IA term, which is 
explicitly included in TATT (although not NLA; Blazek et al. 2019 ). 
For conciseness, we absorb this factor into the definition of γ I 
when discussing the TATT model. Note that since the o v erdensity 
weighting applies to the total observed shear, not just the intrinsic 
component, it also gives rise to terms that scale as γ G × δg , S , an 
ef fect kno wn as source clustering. An analogous ef fect called source 
magnification enters in a similar way. These extra terms, ho we ver, 
are expected to be small at the level of projected observables, and 
so we neglect them here (see e.g. Krause et al. 2021 section 5B and 
Schmidt et al. 2009 for discussion). 

We start in Sections 4.1 –4.3 by describing how we calculate the 
3D power spectra that enter each of our models. Section 4.4 then sets 
out how these are combined and projected to give predictions for 
the observable correlations. We discuss how the covariance matrix 
of the data is estimated in Section 4.5 . Finally, Section 4.6 discusses 
how we choose a set of scale cuts, which restrict our analysis to the 
regime where our model is thought to be sufficient. 

When it is necessary to assume a background cosmology, we 
use a flat Lambda cold dark matter ( + CDM) model p cos = ( ,m , 
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Figure 5. IA correlations measured from DES Y3 and eBOSS. The rows show (top/bottom) position–shape and shape–shape correlations, as defined in the text. 
The shaded bands indicate scales excluded from our NLA (light grey) and TATT (darker grey) fits. The strong scale dependence in the measured w g + on small 
scales is thought to arise from a combination of one-halo IA correlations and non-linear galaxy bias, both of which become significant at r p < ∼1 h −1 Mpc. The 
solid lines are the best-fitting NLA predictions for each data set at r p > 6 h −1 Mpc. We also show the sum of the terms arising from lensing and magnification 
separately (the dashed lines); for clarity, this sub-dominant contribution is scaled up by a factor of 10. Note that the vertical axes vary between panels. 

Figure 6. The measured galaxy–shape correlations from redMaGiC and eBOSS LRGs. The columns (left to right) show bins of k + e -corrected r -band 
luminosity (as defined in Table 4 ). The rows show (top to bottom, colours the same as in Fig. 5 ) redMaGiC low- z (purple), redMaGiC high- z (red), CMASS 
(green), and LRGs (pink). Note that the luminosity bins are not the same in the three cases; we use the LX notation for convenience, but the bin edges and widths 
are defined for a particular sample (shown in the upper left of each panel; see also Section 3.5 for discussion of how the luminosity bins are defined). We also 
show the best-fitting NLA model prediction for each measurement (solid line). As abo v e, points within the shaded gre y re gions are excluded from the fits. Note 
that we do not fit the TATT model to our luminosity-binned measurements and so, unlike in Fig. 5 , there is only one set of grey bands shown here. 
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,b , σ 8 , h , n s , ,νh 2 ) = (0.3, 0.048, 0.82, 0.69, 0.97, 0.00083 3 ). 
Although our results are not strongly cosmology dependent, we do 
quantify the impact of this choice in Section 6 . The linear matter 
power spectrum is computed using the Boltzmann code CAMB 4 
(Lewis, Challinor & Lasenby 2000 ), with non-linear corrections 
using HALOFIT (Takahashi et al. 2012 ) (this choice is not expected 
to have a significant bearing on our results, given our scale cuts; 
see the tests in Section 4.6 ). Parameter inference is performed 
within COSMOSIS 5 (Zuntz et al. 2015 ) using the MULTINEST nested 
sampling algorithm 6 (Feroz et al. 2019 ). 
4.1 IA power spectra 
To model the power spectra of the intrinsic alignment GI and II 
signals (respectively, the correlation between γ I and γ G , and γ I 
with itself), we use the TATT model (Blazek et al. 2019 ). The 
basic idea is that the intrinsic shape field γ I can be expressed as 
an expansion in powers of the background tidal field s and matter 
o v erdensity δ: 
γ I 

ij = C 1 s ij + C 1 δδs ij + C 2 ∑ 
k s ik s kj + · · · (10) 

Note that while δ is a scalar at an y giv en position x , γ I and s are 
3 × 3 tensors. The abo v e e xpansion can be propagated to the two- 
point level to give expressions for P GI and P II (see Blazek et al. 2019 ). 
Our implementation of the TATT model is identical to that of Secco 
et al. ( 2022 ) and Krause et al. ( 2021 ). We refer the reader to those 
papers for specifics, and in particular Section D2 and equations (21) 
and (22) of Secco et al. ( 2022 ) for the full expressions. 

The TATT model has three free parameters, which we refer to as 
A 1 , A 2 , and b TA . One can also parametrize the redshift dependence of 
all the contributions, if desired, as in previous cosmological analyses. 
Since our individual samples do not have a particularly wide redshift 
range, ho we ver, this is not an especially useful thing to do in our case. 
On the other hand, one can look at the evolution between samples. 
Considering galaxies with similar colour and luminosity properties in 
Appendix E , we find no evidence for z evolution o v er a significantly 
wider range than the co v erage of any one of our samples alone. The 
two amplitudes modulate the strength of IA contributions that are 
linear and quadratic in s : 
C 1 = −A 1 ρcrit ,m C̄ 1 

D( z) C 2 = A 2 5 ρcrit ,m C̄ 1 
D 2 ( z) , (11) 

where D ( z) is the linear growth factor, ρcrit is the critical density, 
and C̄ 1 is a constant, which by convention is fixed to a value of 
5 × 10 −14 M * Mpc 2 h −2 . 7 The other parameter, b TA , is known as the 
3 This corresponds to a total sum of the neutrino masses, ∑ 

m ν = 0.077 eV. 
4 http:// camb.info/ 
5 https:// bitbucket.org/ joezuntz/cosmosis/ wiki/Home ; v1.6, ‘des-y3’ branch 
of cosmosis-standard-library, ‘develop’ branch of cosmosis 
6 v3.6; efficiency = 0.3, live points = 500 
7 Note that there are versions of this equation in the literature that feature 
the rescaled growth factor D̄ ( z) = (1 + z) D( z) in place of the unweighted 
D ( z). They are, ho we ver, consistent with the formulation shown here. One 
can work back from e.g. the pre-factor in equation (18) of Hirata & Seljak 
( 2004 ) by making the substitution ρ̄ = ρcrit × ,m (1 + z) 3 and a = 1/(1 + z). 
The factors of (1 + z) cancel, and we are left with the left-hand expression 
in equation ( 11 ). Note that there is a subtle distinction in the normalization 
convention. Although Hirata & Seljak ( 2004 ) normalize D̄ to equal 1 during 
the epoch of matter domination, more recent work (including this one and 

Table 2. The free parameters and priors for the models discussed in this 
paper. The upper three rows are IA model parameters, while the lower two 
describe galaxy bias. We include two sets of priors here: one for our TATT 
model analyses (which extends to r p > 2 h −1 Mpc), and one for NLA ( r p > 
6 h −1 Mpc). 
Parameter Description TATT Prior NLA Prior 
A 1 Lin. IA amplitude U[ −8, 8] U[ −8, 8] 
A 2 Quadratic IA amplitude U[ −8, 8] δ[0] 
b TA Density wt. coefficient U[ −6, 6] δ[0] 
b 1 Lin. galaxy bias U[0, 3] U[0, 3] 
b 2 Second-order galaxy bias U[ −3, 3] U[ −3, 3] 
density weighting coefficient, and controls the size of the C 1 δ term 
abo v e as C 1 δ = b TA C 1 . 

We also consider a nested subspace of the full TATT model. The 
simplest subspace, known as the NLA model (Bridle & King 2007 ; 
Hirata et al. 2007 ), has only one free parameter, A 1 . The γ I field is 
assumed to be purely linear in the tidal field (ef fecti vely setting C 2 = 
0, C 1 δ = 0 in equation ( 10 )), and so the IA power spectra have the 
same shape as the non-linear matter power spectra, but with a scaling 
factor applied. 

In all samples considered, we vary the IA parameters with wide 
flat priors, as given in Table 2 . 8 
4.2 Galaxy power spectrum 
Galaxy bias, or the mapping between the matter and galaxy o v erden- 
sity fields, is an important source of uncertainty in any analysis that 
relies on galaxy–shape correlations. Similar to γ I in Section 4.1 , one 
can expand the galaxy overdensity in terms of δ (McDonald 2006 ; 
Baldauf et al. 2010 ; Saito et al. 2014 ): 
δg = b 1 δ + 1 

2 b 2 (δ2 − 〈 δ2 〉 ) + 1 
2 b s 2 (s 2 − 〈 s 2 〉 ) + b 3 nl ψ + · · ·

(12) 
Here, ψ is the sum of several different third-order terms with the 
same scaling (see Saito et al. 2014 ). On large enough scales, it is 
often sufficient to assume a simple linear relation δg = b 1 δ; in this 
case the galaxy power spectrum is simply 
P δg ( k, z) = b 2 1 P δ( k, z) , (13) 
where the galaxy bias b 1 depends on the galaxy sample, but is 
independent of wave number. P δ is the non-linear matter power 
spectrum. Unfortunately, we see evidence of the need for a more 
sophisticated approach in some of our samples. This is discussed 
further in Section 4.6 , where we see that redMaGiC high- z and 
eBOSS LRGs fa v our a more complicated bias model, even on 
relatively large scales. 

Using equation ( 12 ) one can write down a more complete expres- 
sion for P δg (e.g. in Krause et al. 2021 equation 38). Our fiducial 
model for the galaxy power spectrum includes all terms in the 
e xpansion abo v e, for which we use the implementation in FASTPT 
Bridle & King 2007 ) have tended to impose D ( z = 0) = 1. This has a roughly 
30 per cent impact on the magnitude of C 1 . 
8 Note that these differ slightly from those used in Dark Energy Surv e y 
Collaboration ( 2022 ). Although the DES Y3 priors were chosen to be 
uninformative for that particular sample, we are considering significantly 
different (often much redder) populations of galaxies. We thus opt to allow 
for more extreme IA values. 
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(McEwen et al. 2016 ). Assuming co-e volution, ho we ver, we can re- 
duce the number of free parameters to two, with b s 2 = −4 / 7(1 − b 1 ) 
and b 3nl = b 1 − 1 (see Saito et al. 2014 , and also P ande y et al. 2020 
and Krause et al. 2021 for further discussion). For all samples, we 
marginalize o v er these galaxy bias parameters with wide flat priors 
b 1 = [0.05, 3], b 2 = [ −3, 3]. 

For the power spectra entering w g + we assume linear bias (despite 
using equation ( 12 ) for P δg ): 
P δg I ( k, z) = b 1 P GI ( k, z) , (14) 
and similarly, 
P δg δ( k, z) = b 1 P δ( k, z) , (15) 
where b 1 is the same as in equation ( 12 ) abo v e. In principle, non- 
linear galaxy bias, and also various cross terms between TATT 
parameters and higher order bias are expected to contribute to w g + . 
In all cases considered here, ho we ver, w g + has significantly lo wer 
signal-to-noise ratio than the equi v alent g alaxy–g alaxy correlations, 
and thus the latter dominate the fits for galaxy bias. To within the 
level of uncertainty the TATT model is able to sufficiently describe 
the potential impact of correlations between non-linear galaxy bias 
and IA through the free b TA parameter (see the similarity of these 
non-linear terms in Blazek et al. 2015 ). For fits using the NLA model, 
we exclude scales where non-linear bias correlations are significant 
(see Section 4.6 for discussion of how the scale cuts are chosen). 
Although b TA cannot absorb the non-linear bias contributions to the 
g alaxy–g alaxy lensing signal δg G so easily, this term is subdominant 
on all scales and for all samples ( ∼ 5 –10 per cent of the total w g + 
signal; see Section 6.3 ). We test the impact on the g alaxy–g alaxy 
lensing signal by substituting the non-linear bias expression from 
equation ( 12 ) into P δg δ , in place of the approximation in equation 
( 15 ). Using the best fit bias parameters for each of our samples, we 
find a roughly 10 per cent change in w δg G on scales < 6 h −1 Mpc; 
compared to the full signal including IA, ho we ver, the impact is at 
the sub- percentage level. Implementing a fully consistent non-linear 
model is a work in progress, but we do not expect this to have a 
significant impact given the statistical uncertainties in current data 
sets. 
4.3 Magnification and lensing power spectra 
As well as contributions due to galaxy clustering and intrinsic 
shape correlations, magnification can have an effect on direct IA 
measurements. Its impact is to alter the observed galaxy number 
density in a patch of sky as ˆ δg = δg + δµ. Similarly, the observed 
shear in a set of galaxies has both an IA contribution, and one from 
cosmological lensing: ˆ γ = γ I + γ G . At the two-point level, one has 
two additional terms in the gg correlation (galaxy-magnification and 
magnification-magnification; δg δµ and δµδµ), and two in the galaxy–
shape correlation (magnification-intrinsic and magnification-lensing; 
δµγ I and δµγ G ). Similarly, w ++ has contributions from the standard 
II and GI power spectra, but also a pure cosmic shear term γ G γ G . 
On large scales, the additional magnification power spectra are all 
related to galaxy and IA power spectra via magnification coefficients 
α (see Table 3 , and Joachimi & Bridle 2010 ; Joachimi et al. 2021 ; 
von Wietersheim-Kramsta et al. 2021 ; Elvin-Poole et al. 2023 for 
discussion). 

A number of different methods for constraining α have been 
discussed in the literature. We describe how we estimate α for each 
density sample in Section 3.3 . In short, our fiducial estimates are 
obtained by artificially perturbing the observed galaxy magnitudes 
(i.e. a flux-only estimate). For the two redMaGiC samples, we 

Table 3. A summary of the various contributing terms to our observables 
w gg , w g + , and w ++ . The kernel column lists all the possible combinations 
for q i a q j b in equation ( 23 ) (where each q is either the lensing kernel g or the 
galaxy PDF p ). For each one we show the kernel (either lensing efficiency 
or redshift distribution), and the rele v ant po wer spectrum included in the 
Limber integral. The pre-factors α are magnification coefficients, which 
are defined in Section 3.3 . Note that in later sections we refer to these 
terms simply by their subscripts (e.g. µµ for magnification–magnification 
correlations). 
Correlation Kernel Power Spectrum Correlation Function 
δg δg p i p j P δg w gg 
δµδµ g i g j 4( αi − 1)( αj − 1) P δ w gg 
δµδg g i p j 2( αi − 1) P δg δ w gg 
δg γ I p i p j P δg I w g + 
δµγ I g i p j 2( αi − 1) P GI w g + 
δg γ G p i g j P δg δ w g + 
δµγ G g i g j 2( αi − 1) P δ w g + 
γ I γ I p i p j P II w ++ 
γ G γ I g i p j P GI w ++ 
γ G γ G g i g j P δ w ++ 
have estimates from BALROG , which we use for validation (see 
Section 6.2.3 ). 
4.4 Modelling projected correlation functions 
4.4.1 Modelling spectroscopic data 
Gi ven po wer spectra from any model, one can convert into projected 
correlation functions of the sort discussed in Section 3.6 via Hankel 
transforms. In the case of perfect knowledge of individual galaxy 
redshifts (i.e. spectroscopic redshifts) one has: 
w ij g+ ( r p ) = −∫ 

d z W ij ( z ) ∫ d k ⊥ k ⊥ 
2 π J 2 ( k ⊥ r p ) P δg I ( k ⊥ , z) , (16) 

with the Roman indices indicating the two galaxy samples, and J ν
being a Bessel function of the first kind of order ν. The projection 
kernel is given by (see Mandelbaum et al. 2011 ’s Appendix A) 
W ij ( z ) = n i ( z ) n j ( z ) 

χ2 ( z )d χ/ d z ×
[∫ 

d z n i ( z ) n j ( z ) 
χ2 ( z )d χ/ d z 

]−1 
. (17) 

In the abo v e, n i ( z) is the estimated redshift distribution for sample i , 
and χ ( z) is the comoving line-of-sight distance corresponding to a 
redshift z. The other two-point correlations follow by analogy as: 
w ij gg ( r p ) = b i g b j g ∫ d z W ij ( z ) ∫ d k ⊥ k ⊥ 

2 π J 0 ( k ⊥ r p ) P δg ( k ⊥ , z) , (18) 
and 
w ij ++ ( r p ) = ∫ d z W ij ( z ) 

×
∫ 

d k ⊥ k ⊥ 
2 π [

J 0 ( k ⊥ r p ) + J 4 ( k ⊥ r p ) ]P II ( k ⊥ , z) . (19) 
In each case, the theory prediction amounts to a projection of a power 
spectrum along the redshift axis, and then a Bessel integral. 
4.4.2 Modelling IA correlations in the presence of photo- z error 
When dealing with spectroscopic galaxy samples, one can in general 
safely assume that the associated redshift error is much smaller than 
the distance scales of interest. This assumption does not hold for 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/524/2/2195/7220722 by U
niversity of Pennsylvania Library user on 28 August 2023



2206 S. Samuroff et al. 

MNRAS 524, 2195–2223 (2023) 

photometric samples such as redMaGiC, which means the modelling 
is slightly more complicated. The impact of redshift error is to 
scatter galaxies along the line of sight; this in effect shuffles galaxies 
between ( bins and so redistributes power out along the line of 
sight. In principle the effect should wash out when integrating 
o v er a sufficiently large range in ( . In reality, ho we ver, one must 
choose finite ( limits, and widening the integration range to large 
separations is not necessarily desirable, since it can degrade the 
signal-to-noise ratio of the measurement. This leads to an o v erall 
suppression of the measured correlations due to photo- z scatter. 
Another impact of photo- z error is that it can boost additional (non- 
IA) signals. That is, galaxy pairs allocated to small ( bins may 
actually be physically quite distant. Such pairs carry little local II 
signal, but they do tend to increase the lensing and magnification 
contributions. The consequence of this is that one must account 
for the ( cut-off in the model. To do so we follow the method 
set out in Joachimi et al. ( 2011 ), of which we provide an outline 
below. 

To begin, we compute angular spectra from the IA and galaxy–
galaxy power spectra. Incorporating all of the magnification and 
lensing contributions to number counts and shear, one has: 
C ij ˆ δg ̂ δg = C ij δg δg + C ij δµδµ

+ C ij δµδg + C ij δg δµ
(20) 

C ij ˆ δg ̂ γ = C ij 
δg γ I + C ij 

δµγ I + C ij 
δg γ G + C ij 

δµγ G (21) 
C ij ˆ γ ˆ γ = C ij 

γ I γ I + C ij 
γ I γ G + C ij 

γ G γ I + C ij 
γ G γ G , (22) 

where the subscripts δµ, γ I , δg and γ G indicate magnification, 
intrinsic shape, gravitationally induced galaxy o v erdensity and 
gravitational shear 9 Implicitly, the II term here is the E-mode 
autocorrelation, C EE 

γ I γ I . In principle, one could also include C BB 
γ I γ I , 

which can be calculated assuming a particular IA model. We do not 
include this in our model because (a) typically any IA induced B 
modes are small (Hirata & Seljak 2004 ; Blazek et al. 2019 ) and (b) 
they contribute only to w ++ , where the signal-to-noise ratio of our 
measurements is low. The Limber integrals used to compute each of 
the angular power spectra then have the form: 
C ij ab ( 1 | z 1 , z 2 ) = ∫ χhor 

0 d χ ′ q i a (χ ′ | χ ( z 1 ) ) q j b (χ ′ | χ ( z 2 ) )
χ ′ 2 

× P ab (k = 1 + 0 . 5 
χ ′ , z( χ ′ ) ) . (23) 

The kernel q is either the lensing efficiency g , or the error 
distribution p , according to Table 3 . The power spectrum P ab 
corresponding to a given C ( 1 ) are also shown in Table 3 . Here, 
p i ( z ′ | z) is the conditional probability distribution for the true redshift 
of a galaxy from sample i , which has a best-estimate redshift at z. 
The estimates for p at an y giv en z are obtained using the method 
described in Section 3.4 . Note that this is different from the more 
common form of the Limber integral in the context of cosmological 
lensing, which uses the ensemble redshift distribution n ( z), not the 
per-galaxy PDF. One can then transform from harmonic to angular 
space as follows: 
ξ

ij 
ab ( θ | z 1 , z 2 ) = 1 

2 π
∫ ∞ 

0 d 11J ν( 1θ ) C ab ( 1 | z 1 , z 2 ) , (24) 
9 Note that in the following sections, when discussing the various contributions 
to our observables, we will refer to some of these terms by their subscripts 
(i.e. µ for magnification, I for intrinsic shapes, G for lensing-induced shear). 
This helps to simplify the notation by a v oiding too many double-subscripts 
and makes the discussion clearer later on. 

where the order of the Bessel function ν depends on the type of 
correlation ( ν = 0 for ab = ˆ δg ̂  δg , ν = 2 for ab = ˆ δg ̂  γ or ν = 
(0, 4) for ab = ˆ γ ˆ γ ), as in Section 4.4.1 . As argued in Joachimi 
et al. ( 2011 ), from here one can obtain the photometric correlation 
function ξ ij 

ab ( r p , (, z m ) using a simple coordinate transformation 
(see equation A11 in that paper, which also defines z m = ( z 1 + 
z 2 )/2). Finally, the projected correlation function as a function of 
perpendicular physical separation is expressed as, 
w ij ab ( r p ) = ∫ ( max 

−( max d ( ∫ d z m W ij ( z m ) ξ ij 
ab ( r p , (, z m ) (25) 

With these ingredients, the recipe for generating a theory prediction 
for the cross correlation between photometric samples i and j is as 
follows. 

(i) Choose an initial value of ( and z m . Use Joachimi et al. 
( 2011 )’s equation A11 to obtain z 1 and z 2 , and e v aluate the per-galaxy 
error distributions for the two samples at these redshift values. 

(ii) Carry out the Limber integral in equation ( 23 ) with these error 
distributions to obtain C ( 1 | z 1 , z 2 ). 

(iii) Carry out the Hankel transform in equation ( 24 ) with the 
appropriate Bessel kernel to obtain ξ ( θ | z 1 , z 2 ). 

(iv) Perform the coordinate transform, such that ξ ( θ | z 1 , z 2 ) → 
ξ ( r p | ( , z m ). 

(v) Repeat the abo v e steps with varying ( and z m , to give a three- 
dimensional grid ξ ( r p , ( , z m ). 

(vi) Inte grate o v er the redshift kernel W( z) and then o v er line-of- 
sight separation with the appropriate ( max to obtain w ab ( r p ). 

We confirm that our implementation of this method returns the 
same results as equations ( 16 )–( 19 ) in the limit of narrow photo- z 
distributions and wide ( bounds. We also verify that, with a matching 
cosmology and set of input parameters, our modelling code can 
reproduce fig. 5 from Joachimi et al. ( 2011 ). Our fiducial modelling 
set-up is to use the steps abo v e to predict w g + and w ++ . 

For w gg , ho we ver, it is not sufficient to assume RSDs have 
negligible impact (see Appendix A and Fig. A1 ). For this reason, 
we instead choose to use a sum o v er multipoles to obtain the 
anisotropic g alaxy–g alaxy correlation ξ gg , which we then integrate 
o v er ( (equation ( A1 )-( A6 )). We do, ho we ver, still need to account 
for lensing, magnification and photo- z suppression. Unlike with w g + , 
where the combined impact of these effects are seen to have some 
non-trivial scale dependence, this is much less true for w gg ; using 
the recipe set out abo v e, we generate theory data vectors for each 
sample with and without photo- z scatter, lensing, and magnification, 
finding that correction factor, a( r p ) = w full 

gg /w gg , is flat with r p to 
good approximation o v er scales 2 < r p < 70 h −1 Mpc. Given this, 
we derive a single multiplicative factor for each sample, which 
we apply to the theory predictions as w gg → aw gg . We obtain 
a RMH = 0.83 and a RML = 0.87 for our two redMaGiC samples, 
respectively. 
4.5 Co v ariance matrix 
We estimate the covariance of our data using an analytic prescription. 
This approach has a number of advantages o v er data-based estimators 
such as jackknife, which have been widely used in the past (Hirata 
et al. 2007 ; Joachimi et al. 2011 ; Mandelbaum et al. 2011 ; Singh 
et al. 2015 ; Fortuna et al. 2021b ). For example, it can be used 
on large scales where jackknife breaks down, and it is unaffected 
by noise in the data. Note, though, we are assuming here that the 
covariance of our data is dominated by the Gaussian component, and 
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any connected 4pt and super sample covariance contributions are neg- 
ligible for our purposes (see e.g. Takada & Jain 2009 ; Takada & Hu 
2013 ). 

The covariance is assumed to be dominated by two components: 
one from cosmic variance, and one from shape and shot noise Cov = 
Co v CV + Co v SN . F or an y two elements of our data v ector in scale 
bins centred on r p, m and r p, n , the cosmic variance part is given by: 

Cov CV [w ij ( r p ,m ) w kl ( r p ,n ) ]
= 1 

A ( z c ) 
∫ 

kd k 
2 π 3 ij ( k r p ,m ) 3 kl ( k r p ,n ) 

×
[
P ik ( k ) P j l ( k ) + P il ( k ) P kj ( k ) ] , (26) 

where the lower indices define the tracer type (i.e. g or + ). The 
term 3 ij ( x ) is a Bessel function of the first kind (or a sum of two); 
specifically J 2 , J 0 and J 0 + J 4 for ij = g + , gg and ++ respectively. 
The power spectra are P δg I for ij = g + , P δg for gg and P II for 
++ . Note that we do not include secondary contributions from 
magnification and lensing, but this is not expected to significantly 
change our results. The pre-factor A is the projected comoving area 
of the footprint (including masking), at a characteristic redshift z c . 

The noise contribution is simply given by (Schneider et al. 2002 ; 
Hu & Jain 2004 ; Joachimi & Bridle 2010 ): 
Cov SN [w g+ ( r p ,m ) w g+ ( r p ,n ) ] = δmn σ 2 

ε

N g+ 
p , (27) 

Cov SN [w gg ( r p ,m ) w gg ( r p ,n ) ] = δmn 1 
N gg 

p , (28) 
Cov SN [w ++ ( r p ,m ) w ++ ( r p ,n ) ] = δmn σ 4 

ε

N ++ 
p , (29) 

for our three observables respectively. Since our measurements with 
TREECORR give us the number of galaxy pairs in each bin N p ( r p, m ) 
without extra computational cost, we use these exact numbers here. 
The shape dispersion σε is measured for each sample, using the 
Heymans et al. ( 2012 ) definition, and incorporating the correct 
response weighting (see Gatti et al. 2021 equation 13). 

We perform initial fits using a preliminary covariance matrix, 
which we then replace with an updated version with the best-fitting 
values of A 1 , b 1 , and b 2 entering equation ( 26 ) abo v e. Since w g + 
is shape noise dominated for all samples and on all but the largest 
scales (and w ++ entirely so, on all scales), this update makes little 
difference to the final IA parameter constraints. 

We compare our analytic predictions with jackknife estimates in 
Appendix C , and find good agreement on scales 2 h −1 Mpc < r p < 
70 h −1 Mpc. 
4.6 Scale cuts 
We impose scale cuts on all three of our measured correlations when 
fitting, to mitigate model uncertainty. In brief, our minimum scales 
are r p, min = (2, 6, 6) h −1 Mpc for NLA and r p, min = (2, 2, 2) h −1 Mpc 
for TATT (where the ordering is w gg , w g + , w ++ ). For the latter two 
this is driven by the fact that we know our IA models start to break 
down on certain scales, and rely on assumptions that are valid only 
in specific regimes (NLA on scales above ∼5 − 10 h −1 Mpc, TATT 
down to ∼1–2 h −1 Mpc; Bridle & King 2007 ; Blazek et al. 2015 ). 
The moti v ation behind the w gg scale cuts is discussed in more detail 
in Section 4.6.1 . 

We also impose an upper cut at 70 h −1 Mpc, a choice moti v ated 
by the null tests in Appendix B . This maximum scale is applied to 
all three correlations for all samples. Large-scale systematics, most 
prominently PSF modelling error, are known to modulate galaxy 

number counts at large r p , but are difficult to model analytically. We 
thus choose to remo v e the affected scales. 

4.6.1 Galaxy clustering 
Since scale cuts are designed to mitigate modelling uncertainty, the 
choice of r p, min for w gg is una v oidably connected to the choice of 
galaxy bias model. We first seek to test whether there are a set of 
cuts that will allow us to use a simple, scale-independent linear 
bias model. For each of our samples, one can estimate an ef fecti ve 
bias 
b ′ g ( r p ) = √ 

ˆ w gg ( r p ) 
w δδ( r p ) , (30) 

where ˆ w gg is the measured projected g alaxy–g alaxy correlation. 
The matter–matter correlation in the denominator is the theoretical 
prediction, and so assumes a particular cosmology; we test the impact 
of switching between reasonably different cosmologies (specifically, 
the best-fitting values from DES Y1 and Planck 2018), and find our 
results are only very weakly sensitive to this choice. For each sample, 
we fit b ′ g twice, once using a scale-independent constant b ′ g ( r p ) = b, 
and again using a linear-exponential function b ′ g ( r p ) = ae −r p + b. 
Although this is not a physically moti v ated bias model, it has 
qualitatively the correct behaviour, increasing rapidly on small scales 
and converging to a constant on large scales. The exact form was 
moti v ated by fig. D1 of Samuroff et al. ( 2021 ), where the bias in 
IllustrisTNG is seen to scale roughly as e −r p plus a constant. In 
each case, we compute the Bayesian Information Criterion (Schwarz 
1978 ), 
BIC = k log N pts + χ2 , (31) 
where k is the number of model parameters (either 1 or 2, in the 
constant/log-linear cases, respectively) and N pts is the number of data 
points included in the fit. The χ2 for model M is computed using the 
full data covariance matrix, as χ2 

M = [ ̂  w gg − b ′ g,M w δδ] C −1 [ ̂  w gg −
b ′ g,M w δδ]. The difference 5 BIC then gives us an indicator of which 
model is preferred by the data – that is, whether linear bias is 
sufficient, in a statistical sense, to describe the measured w gg . We 
repeat this process using a range of lower scale cuts r p, min , resulting 
in the curves shown in Fig. 7 . Although eBOSS ELGs and redMaGiC 
low- z appear to be relatively consistent with a linear bias model, even 
down to small scales, this is not true in all of our samples. The picture 
is slightly different in the case of redMaGiC high- z and eBOSS 
LRGs, with the latter in particular preferring the more complicated 
bias scaling for almost any choice of minimum scale. 

The abo v e test indicates that, at least for some of our samples, 
e ven at relati vely large scales (above 6 h −1 Mpc), the linear bias 
approximation does not provide a good description of the data. 
Moti v ated by these findings, our fiducial scale cuts are as follows. 
We fit w gg for all samples down to r p, min = 2 h −1 Mpc, with a model 
that includes non-linear galaxy bias (as described in Section 4.4 ). At 
2 h −1 Mpc we are still well outside the one-halo re gime, ev en for 
the largest objects in our samples, and so the perturbative expansion 
in equation ( 12 ) may still be sufficiently accurate. To help further 
validate this choice, we perform additional fits to w gg alone, using 
very large scales ( > 10 h −1 Mpc) and linear bias. For each sample, we 
calculate the shift relative to the b 1 value obtained using the fiducial 
set-up, and verify that it is not sufficient to produce an appreciable 
bias in w g + . 
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Figure 7. The difference in Bayesian Information Criterion between two 
simple models of ef fecti ve galaxy bias, as a function of the lower scale cut 
r p , min applied to w gg . Ne gativ e values indicate that the linear bias assumption 
is justified by the data; positive values, on the contrary, indicate that the dark- 
matter-only correlation w δδ with a scale-independent multiplicative factor 
is not a good representation of w gg . The different colours show fits to the 
g alaxy–g alaxy correlation from various DES and eBOSS samples. As in Fig. 
5 , the shaded region shows scales excluded in our fiducial analysis set-up. 
4.6.2 IA correlations 
For w g + and w ++ , r p, min = 6 h −1 Mpc for our NLA fits (see 
Section 6 ), primarily driven by IA modelling uncertainty. The TATT 
model allows us to push to slightly smaller scales, and so here we 
adopt r p, min = 2 h −1 Mpc. 

We test the robustness of our chosen w g + cuts to a number of 
unmodelled effects in Fig. 8 . Specifically, we generate theory data 
vectors containing (a) a matter power spectrum contaminated with 
OWLS-like baryonic feedback (considered as an extreme scenario; 
see the next paragraph); (b) a one-halo IA signal, and (c) projection 
effects in the 3D correlation function. In each case, we choose a 
reference IA model A 1 = 3.5 (roughly the NLA best fit for redMaGiC 
in Section 6 ). We do this using both redMaGiC high- z and redMaGiC 
low- z redshift distributions, since these are representative of the range 
in z co v ered by our samples. The fractional differences in Fig. 8 are 
calculated relative to a reference data vector, which does not contain 
the contamination. 

For (a), we follow Krause et al. ( 2021 ) in taking the OWLS- 
AGN scenario (Schaye et al. 2010 ; van Daalen et al. 2011 ) as 
an upper limit on the extremity of baryon feedback in the late- 
time matter power spectrum (see also Secco et al. 2022 fig. 5 and 
the accompanying discussion). The baseline matter power spectrum 
from CAMB is modified in such a way as to preserve the original 
cosmology but introduce high- k distortions which mimic the impact 
of baryons in the OWLS hydrodynamic simulations (Dark Energy 
Surv e y Collaboration 2016 , equation 8 ). As we can see in Fig. 8 , 
baryonic feedback is entirely negligible at r p > 6 h −1 Mpc. Its impact 
increases rapidly in the intermediate (2 h −1 Mpc < r p < 6 h −1 Mpc) 
window, but is still only ∼ 2 − 5 per cent at r p = 2 h −1 Mpc, which 
is well below the level of statistical error on these scales. If we 
take the TATT best fit from each redMaGiC sample (fit on scales 
r p > 2 h −1 Mpc; see Section 6.2.2 ), we obtain 5χ2 

RMH = 0 . 05 and 
5χ2 

RML = 0 . 45. 
We carry out a similar e x ercise with small scale alignments. To get 

a rough gauge of the impact of one-halo contributions, we use the 

fitting formulae provided by Schneider & Bridle ( 2010 ). We choose 
to update the o v erall amplitude of the model to the value found by 
Singh et al. ( 2015 ) ( a h = 0.08); since this matches LOWZ LRGs, 
which are somewhat brighter and redder than any of our samples, 
we expect this to be an upper estimate for the impact of intra-halo 
physics. Shown by the dotted line in Fig. 8 , we again see the effect 
to be vanishing on scales r p > 6 h −1 Mpc and slightly larger but still 
subdominant to errors at r p > 2 h −1 Mpc. 

Finally, we also test the impact of a kind of projection effect 
that induces anisotropy in ξ g + ( r p , ( ) (dashed lines in Fig. 8 ). First 
identified by Singh & Mandelbaum ( 2016 ), the idea is that galaxy 
alignments along the ( direction cannot be measured using shapes 
measured in 2D projected space; the result is a suppression of the 
observed alignment signal that scales as f = r p / ( r 2 p + ( 2 ) 1 2 . As 
one might intuitively expect from the geometry, f diverges from 
1 as ( increases, at fixed r p . Looking at Fig. 8 we can see that 
the impact is primarily at large r p . To understand this, consider 
the fact that particular ( scales do not contribute equally to the 
projected correlation at all r p (for an illustration of this, see Singh & 
Mandelbaum 2016 fig. 10c). That is, at r p = 1 h −1 Mpc, even 
considerable suppression at large ( matters very little; that regime 
contributes almost nothing to the line-of-sight integral, since ξ g + 
scales approximately as 1/ r 2 , which at small r p and large ( is 
essentially 1/ ( 2 . At r p = 30 h −1 Mpc, on the other hand, large ( 
scales contribute much more. Although the geometric suppression at 
a given ( is less important for this larger r p value, the background 
scaling of ξ g + dominates, and so the o v erall impact on w g + is 
larger. This can be modelled in an analogous way to RSDs in galaxy 
clustering. Although not included in our fiducial model, we can 
assess the impact in the NLA case using the recipe set out in Singh & 
Mandelbaum ( 2016 ), section 2.3. Fortunately we see the impact 
is largely contained at separations abo v e r p > 70 h −1 Mpc, which 
are already remo v ed by the upper r p cut. Within the range of scales 
used for our fits, the impact is comfortably smaller than our error 
bars. 
5  PIPELINE  TESTING  
In this section, we describe the various tests of the analysis pipeline, 
and the measurements themselves. These include tests of the theory 
predictions by comparing different code implementations. We seek 
to validate the pipeline by reanalysing an existing data set and 
comparing with published results. Finally, we discuss null tests on 
the data, designed to be sensitive to residual systematics. 
5.1 Reanalysing LOWZ 
For the purposes of validating our measurements and demonstrating 
comparability with previous results, we partially reanalyse the BOSS 
LOWZ catalogues of Singh et al. ( 2015 ) (see also Section 2 ). LOWZ 
makes a good test data set for several reasons – not least that it has 
documented, relatively high-signal-to-noise ratio w g + measurements 
in the literature, and the redshift catalogue is publicly available. We 
repeat all measurement steps downstream from shape catalogues 
using our pipeline, and then fit the resulting correlation functions 
with our modelling set-up. At the level of data vectors, our pipeline 
can reproduce the galaxy clustering and galaxy–shape correlations, 
w gg and w g + , of Singh et al. ( 2015 ) to sub- per cent precision on 
scales [2,70] h −1 Mpc. 

We also analyse the LOWZ data on large scales, and compare our 
results to those of Singh et al. ( 2015 ); when matching their analysis 
choices exactly (NLA model, linear bias, r p > 6 h −1 Mpc), we reco v er 
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Figure 8. The impact of higher order effects on galaxy–shape correlations. We include both redMaGiC high- z and redMaGiC low- z to show that our conclusions 
hold across the redshift range of our samples. As before, the shaded bands indicate scales remo v ed in our fiducial NLA (light grey) and TATT (dark grey) 
analyses. We include here the impact of baryonic feedback, as represented by OWLS-AGN (solid line); the impact of one-halo alignment physics, as represented 
by the model of Schneider & Bridle ( 2010 ) (dotted), and signal boosting due to anisotropy in the 3D correlation (Singh & Mandelbaum 2016 ; dashed). 
In all cases, the unmodelled effects appear at the level of a few per cent or less on the scales we use, which is below the level of our statistical precision 
( σw g + /w g + ∼ 10 –15 per cent on scales r p > 2 h −1 Mpc). 
their reported best fit in the A 1 − b 1 plane to << 1 σ . Our fiducial 
analysis configuration differs from the published LOWZ paper in a 
number of ways. Most significantly, these include: 

(i) Our assumed cosmology is that set out in Section 4 , instead of 
WMAP9 (Hinshaw et al. 2013 ). This results in a slight increase in 
the amplitude of the matter power spectrum, which in turn results 
in a slightly lower alignment amplitude. Note that our fiducial 
cosmology includes massive neutrinos, which modify the non-linear 
P ( k ) slightly. The difference in h also alters the measurement of the 
two-point functions earlier in the pipeline (via the redshift to distance 
conversion), although this difference is minimal. 

(ii) Our fiducial data vector includes g alaxy–g alaxy, g alaxy–
shape, and shape–shape correlations, whereas Singh et al. ( 2015 ) 
include only the former two. 

(iii) We use the Takahashi et al. ( 2012 ) version of halofit to 
compute the non-linear matter power spectrum, whereas Singh et al. 
( 2015 ) use a slightly older release (Smith et al. 2003 ). 

(iv) We use an analytic calculation to estimate the data vector co- 
variance matrix, instead of jackknife. While the two agree relatively 
well, slight differences in the relative weighting of different scales in 
both w gg and w ++ are apparent. 

(v) We include contributions from lensing and magnification 
in our model. Although this has little impact on a low-redshift 
spectroscopic data set such as LOWZ, it has a larger bearing on 
our eBOSS and redMaGiC samples. 

We show a more detailed comparison at the parameter level in 
Appendix C . In short, when matching the analysis choices of Singh 
et al. ( 2015 ), we can reproduce their published IA results almost 
exactly. Switching to our fiducial NLA set-up produces a very similar 
result, with a small reduction in the size of the error bars. 

5.2 Null tests 
A number of systematics (e.g. PSF modelling errors) can lead to a 
non-zero mean shear. Unlike multiplicative biases, we can look for 
such effects directly using the data. We find no evidence of such a 
signal in any of the samples considered here, with |〈 e i 〉| ∼ 10 −4 in 
all cases. A number of other tests for systematic induced signals are 
presented in Gatti et al. ( 2021 ); they find no evidence for correlations 
between the response-corrected shear and PSF shape and size, or for 
a statistically significant B-mode signal. 

We also measure one additional null signal. Constructing w g ×
involves the same basic quantities as w g + , but measuring the shape 
component that is rotated 45 deg with respect to the radial/tangential 
direction. Like lensing, astrophysical processes such as IAs, to 
first order, should induce only tangential/radial correlations. 10 Non- 
zero detection of a cross signal, then, is a red flag for residual 
measurement systematics. For all samples considered, we find these 
additional measurements to be consistent with zero within the scales 
r p < 70 h −1 Mpc. Details of the measurements can be found in 
Appendix B . 
6  RESULTS  
This section presents the results of our analyses on the various 
samples. Although we will focus on IAs, it is worth bearing in mind 
that each analysis also includes two free galaxy bias parameters. The 
10 Although some IA models predict a non-zero B-mode contribution (see e.g. 
Catelan et al. 2001 ; Hirata & Seljak 2004 ; Blazek et al. 2019 ), which translates 
into correlations in the cross ellipticity component, such effects appear only 
in the II alignment spectra. Given that our constraints are dominated by g 
+ correlations, these terms are thought to be easily subdominant to noise in 
current surv e ys. 
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Figure 10. 68 per cent and 95 per cent confidence intervals for the TATT 
model constraints from our two DES Y3 redMaGiC samples, on scales r p 
> 2 h −1 Mpc. As before, we show redMaGiC high- z in red and redMaGiC 
low- z in purple. For comparison, the marginalized NLA constraints on A 1 
are shown as dashed curves in the upper left panel. Note that the scales here 
differ from the fiducial NLA analyses, and so the best fits are different from 
those shown in Table 4 . The dotted black lines mark the zero-points for the 
non-NLA parameters. 
constraints on the bias parameters are strongly dominated by w gg , 
and so they contribute relatively little to the marginal uncertainties 
on IA parameters. The bias does, ho we ver, also enter w g + , and so 
it is important to model it accurately. In every case, the linear bias 
falls within the bounds of expectation from previous studies ( b 1 ∼
1.5–2.0, depending on the sample), and b 2 is small ( b 2 ∼ 0–0.3). We 
note that all samples appear to be fit reasonably well by our model 
(as quantified by the best χ2 obtained from fits to the joint w gg + 
w g + + w ++ data v ector). F or more detail on the bias constraints, 
see Appendix D . It is also worth bearing in mind that all parameters 
(bias and IA) are constrained within the prior bounds. As we note 
below, although some samples provide only weak constraints, the 
priors in Table 2 are sufficiently wide to allow the contours to close 
in all cases. In Section 6.1 , we discuss our results on ELGs, which 
amount to a null detection. We then mo v e on to the various red 
samples in Section 6.2 , presenting first large-scale results using NLA 
in Section 6.2.1 , and then extending to slightly smaller scales with 
TATT in Section 6.2.2 . Section 6.3 then considers more carefully the 
level of contribution from lensing and magnification. 
6.1 Emission-line galaxies 
Our first, and perhaps easiest to interpret, results are based on eBOSS 
ELGs. The data vector is shown in blue in Fig. 5 . We fit the NLA 
model on large scales (the unshaded region in Fig. 5 ), and obtain a 
null detection, 
A ELG 

1 = −0 . 42 + 0 . 50 
−0 . 50 ( r p > 6 h −1 Mpc ) (32) 

with χ2 /dof = 1.17 (with a corresponding p -value p = 0.32). This 
is e xpected, giv en the sample: a non-zero IA signal has never been 

detected in ELGs (or in any colour-selected sample of blue galaxies 
more generally; Mandelbaum et al. 2011 ; Johnston et al. 2019 ; 
Samuroff et al. 2019 ). The additional (non δg I) terms are also seen to 
be small, for a number of reasons: first, the magnification coefficient 
is small ( α − 1) ∼ 0.1, for ELGs, which scales down the µI and µG 
contributions. Second, the limits of the line-of-sight integral tend 
to suppress the lensing contributions to the signal; integrated out to 
( max = 1000 h −1 Mpc, µG tends to dominate on larger scales. In 
practice, ho we v er, with inte gral limits at ±100 h −1 Mpc, the largest 
term by some way is δg I, with w δg I / ( w δg G + w µG + w µI ) ∼ 14 at 6 
h −1 Mpc (as e v aluated at the best-fitting parameters). Similarly, for 
the shape–shape correlation, the ratio of II to other terms is ∼18. The 
end result is a combined best-fitting theory prediction that is below 
the level of shape noise. 

Since the signal-to-noise is relatively low, and there is no visible 
structure in w g + , we also repeat our NLA fits with slightly less 
stringent cuts, r p > 2 h −1 Mpc. This tightens the bounds on the 
alignment amplitude to 
A ELG 

1 = 0 . 07 + 0 . 32 
−0 . 42 ( r p > 2 h −1 Mpc ) (33) 

Indeed, even considering scales down to 0.1 h −1 Mpc in Fig. 5 , we 
still see no hints of signal in w g + or w ++ . Computing the null χ2 
on all scales r p < 70 h −1 Mpc, we find χ2 = 17.5 for 16 data points 
( p = 0.42). This is interesting, since it suggests that there is not a 
strongly scale-dependent one halo (1h) signal of the sort seen in the 
redMaGiC and CMASS samples (or at least, not one that is detectable 
abo v e the level of shape noise). 

In terms of sample, the closest results in the literature are those 
of Mandelbaum et al. ( 2011 ) and Tone ga wa et al. ( 2018 ). These 
both use blue ELGs, from WiggleZ and Subaru, respectively, and 
also make null detections of A M11 

1 = 0 . 15 + 1 . 03 
−1 . 07 and A T18 

1 = 0 . 49 + 3 . 56 
−3 . 56 , 

respectively. Our results tighten the null constraint, imposing an 
upper limit of | A 1 | < 0.78 at 95 per cent CL. In terms of redshift, our 
eBOSS ELG measurements sits between the earlier two ( z ∼ 0.8, 
compared with z ∼ 0.5 for WiggleZ and z ∼ 1.4 for Subaru). It is 
worth e x ercising some caution here, ho we ver, since in both cases it 
is not clear that the sample matches ours closely. In particular, the 
Mandelbaum et al. ( 2011 ) sample is a relatively bright selection 
of starburst galaxies with specific colour cuts (see their section 
3.1). That said, the best-fitting bias values are relatively similar 
to our own ( b 1 ∼ 1.4 for eBOSS ELGs, b 1 ∼ 1.5 for WiggleZ). 
The Tone ga wa et al. ( 2018 ) sample on the other hand has both a 
complicated spectroscopic selection function, and additional shape 
catalogue cuts that remo v e ∼ 50 per cent of objects. Although all 
three results (including our own) present IA results consistent with 
zero in blue-ish samples across a range of redshifts, it is not clear the 
results are directly equi v alent. 

It is also worth stressing here that although very different from 
(and much bluer than) an LRG or redMaGiC type sample, eBOSS 
ELGs are not e xactly representativ e of a typical weak lensing 
catalogue either. Indeed, the eBOSS ELG selection is designed to 
facilitate a high S/N BAO measurement, and is based on the presence 
of particular emission lines, as determined via a complex set of 
magnitude and colour cuts (Raichoor et al. 2017 ). The completeness 
of the sample given the cut is difficult to quantify (Guo et al. 2019 ). In 
contrast, lensing samples tend to have much simpler (if any) colour 
selection, and cuts designed to minimize lensing measurement biases 
and optimize a weak lensing measurement. The two are designed for 
different scientific purposes, and so we should not expect them to 
match. For this reason, caution is required when trying to extrapolate 
these results. 
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Figure 11. The impact of lensing and magnification on our best-fitting theory data vectors. Each contribution to w g + is shown as a fraction of the total 
signal ( δg I + δg G + µG + µI). Clockwise from top left, we have redMaGiC low- z (purple), CMASS (green), eBOSS LRGs (pink), eBOSS ELGs (blue), and 
redMaGiC high- z (red). In the left-hand column we show our two photometric samples, which are more strongly affected by lensing and magnification. On the 
right are our three spectroscopic samples. Within each column, the samples are arranged vertically by redshift, starting with low-redshift samples at the top. As 
in previous figures, the shaded bands represent scales excluded from fits to these data vectors. Different line styles indicate different signal components, with 
the sum of the non δg I terms shown as a solid line. Note that the µI term is negligible on all scales and for all samples, and so we do not show it separately. In 
the two redMaGiC cases, we include a second solid line (black). This demonstrates the impact of using an alternative estimate for the magnification coefficients 
α, obtained using BALROG source injection. Unlike in the other samples, the CMASS µG term is positive. This is because the magnification coefficient for this 
particular sample is small ( α < 1, see Section 3.3 ); in physical terms this means the geometric effect from magnification, which expands the apparent area of a 
patch of sky, outweighs the boost in number density due to the brightening of the apparent galaxy fluxes. Note that the scale on the vertical axis differs between 
panels. 
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Table 4. NLA model constraints from the various red galaxy samples 
discussed in this work, as a function of r -band luminosity. The upper four 
rows refer to the full samples, while the lower 12 refer to subsets in luminosity 
bins, as defined in Section 3.5 and Fig. 6 . The first three columns show the 
mean luminosity, redshift, and rest-frame colour of each sample. The final 
two are the posterior mean IA amplitude, and the corresponding p -value. In 
all cases the model is seen to provide a reasonable fit to the data. These fits 
were performed using large scales only ( r p > 6 h −1 Mpc) in w g + and w ++ . 
Sample 〈 L r 〉 / L 0 〈 z〉 〈 M r − M z 〉 A 1 p ( > χ2 ) 
RMH (all L ) 0.68 0.78 0.43 3 . 54 + 0 . 18 

−0 . 18 0.20 
RML (all L ) 0.40 0.46 0.43 3 . 34 + 0 . 13 

−0 . 13 0.12 
CMASS (all L ) 0.84 0.52 0.36 2 . 72 + 0 . 47 

−0 . 47 0.10 
LRGs (all L ) 1.20 0.75 0.39 5 . 78 + 1 . 19 

−1 . 19 0.89 
RMH L 0 0.49 0.77 0.44 3 . 47 + 0 . 34 

−0 . 34 0.11 
RMH L 1 0.63 0.77 0.42 3 . 01 + 0 . 31 

−0 . 30 0.52 
RMH L 2 0.83 0.78 0.44 4 . 13 + 0 . 33 

−0 . 34 0.15 
RMH L 3 1.16 0.78 0.45 5 . 22 + 1 . 11 

−1 . 11 0.40 
RML L 0 0.19 0.32 0.50 1 . 95 + 0 . 23 

−0 . 23 0.28 
RML L 1 0.26 0.43 0.42 2 . 86 + 0 . 29 

−0 . 29 0.22 
RML L 2 0.35 0.47 0.40 3 . 01 + 0 . 52 

−0 . 51 0.62 
RML L 3 0.49 0.50 0.40 4 . 39 + 0 . 20 

−0 . 20 0.79 
RML L 4 0.73 0.53 0.40 5 . 00 + 0 . 20 

−0 . 21 0.14 
CMASS L 0 0.52 0.48 0.42 2 . 23 + 0 . 92 

−0 . 92 0.47 
CMASS L 1 0.79 0.52 0.36 3 . 00 + 0 . 62 

−0 . 61 0.47 
CMASS L 2 1.24 0.55 0.29 3 . 78 + 0 . 49 

−0 . 49 0.70 
6.2 Red Galaxies 
6.2.1 Constraints on large-scale IAs 
We next consider our other galaxy samples, redMaGiC, eBOSS 
LRGs, and CMASS, which we fit on large scales (again, > 6 h −1 Mpc) 
using NLA. In each case, we find a clear detection, with our three- 
parameter model of the joint data vector ( A 1 , b 1 , b 2 ) providing a 
good χ2 /dof. The constraints and the goodness-of-fit statistics can 
be found in the upper four rows of Table 4 . Defining the signal-to- 
noise according to equation ( 2 ) of Becker et al. ( 2016 ), 11 we find 
S / N = 22 in redMaGiC low- z and S / N = 18 in redMaGiC high- 
z. Given the smaller area, the detections in our SDSS samples are 
slightly weaker, at S / N = 6 for CMASS and S / N = 5 for eBOSS 
LRGs. The best-fitting model predictions can be seen in Fig. 5 . As 
we saw with the ELGs in Section 6.1 , CMASS and eBOSS LRGs are 
dominated by the primary IA signal ( δg I for w g + , II for w ++ ). For 
redMaGiC, ho we ver, the picture is slightly different; photo- z scatter 
tends to increase the maximum distance galaxies can be physically 
separated (by shifting well-separated objects below ( max ), and so 
boosts the lensing and magnification terms. With redMaGiC low- z 
this is partly cancelled out by the fact that α is very close to 1, 
and that the mean redshift is relatively low. These things are less 
true for redMaGiC high- z, ho we ver, and so we see a stronger δg G 
contribution. The δg I signal is also slightly stronger, ho we ver, and 
11 The expression is S/N = ( ̂  w C −1 w model ) / ( w model C −1 w model ) 1 2 , where ˆ w is 
the observed (noisy) data vector, w model is the best-fitting theory prediction, 
and C −1 is the inverted covariance matrix. This is slightly different from the 
common definition using ˆ w only, which is known to be biased high if noise 
is present. 

Figure 9. IA strength as a function of k + e -corrected r -band luminosity in 
red galaxies. By convention, the luminosities are defined relative to a pivot 
L 0 , which corresponds to an absolute magnitude M r = −22. Open points 
sho w pre vious results from the literature (as indicated in the le gend). F or 
illustrative purposes we also show two power-law fits from the literature, 
one fit to GAMA + SDSS at low-mid L (dotted blue), and the other to 
MegaZ at high L (solid purple). The filled points show our measurements 
on redMaGiC low- z (stars; five points), redMaGiC high- z (red dots, four 
points), eBOSS LRGs (pink triangle; one point), and CMASS (green upside 
down triangles; three points). Note that all results shown here assume the 
one-parameter NLA model. 
the additional terms still account for only order of a few per cent of 
the total signal. 

Another useful e x ercise is to divide the samples into luminosity 
bins, and map out the dependence of the alignment signal. For 
each of the bins shown in Figs 3 and 6 , we fit an NLA amplitude 
(we also fit for galaxy bias, but since we only split the shape 
sample by luminosity, that does not change significantly between 
L bins). The results are shown in Fig. 9 , with numerical parameter 
constraints in Table 4 . Note that we also include a selection of 
previous measurements from the literature, denoted by open points. 
There are a number of trends worth considering here. First, taken 
naively, our results are consistent with the qualitative picture of a 
broken power-law dependence on luminosity: the trend in A 1 below 
log L / L 0 ∼ −0.2 is much shallower than abo v e it. The ( L / L 0 ) β power- 
law parametrization was first introduced as an empirical scaling by 
Joachimi et al. ( 2011 ). Although there is little physical moti v ation, it 
has been adopted relatively widely both in direct IA measurements 
(Singh et al. 2015 ; Johnston et al. 2019 ; Fortuna et al. 2021b ) 
and in forecasts (Krause, Eifler & Blazek 2016 ; Fortuna et al. 
2021a ), as it was simple to implement and appeared to fit the 
av ailable data relati vely well. In recent years, the picture has become 
more complicated, as evidence has begun to emerge of a weaker 
relationship at low L (see e.g. Johnston et al. 2019 ). Again, ho we ver, 
this is empirical, and there is no first-principles reason to expect 
a double power law in particular (or any other form). Our results 
appear to reinforce that e vidence. Our redMaGiC lo w- z sample in 
particular provides a significant improvement in the constraints on the 
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fainter end of the A 1 –L relation (by a factor of 3 or more in the error 
bars). At the brighter end, our CMASS, LRG, and redMaGiC high- z 
samples also appear qualitatively consistent with previous results, 
following a considerably steeper slope. Taken at face v alue, gi ven 
the error bars, we could interpret this as ruling out a single power law 
with relatively high significance. We stress, ho we ver, that it is worth 
being cautious here. Despite all being ‘red’, there are differences 
between the composition of the samples, as we will come to below –
it is possible these population differences may be partly responsible 
for the apparent trends in L –A 1 space. For this reason, we do not 
present the best-fitting constraints on β, but rather a more qualitative 
discussion of how to interpret our results. 

It is noticeable that CMASS (and to a lesser extent redMaGiC 
high- z) tends to lie roughly ∼1–3 σ below the best-fitting single 
power law from the literature (the purple line in Fig. 9 ). Since the 
error bars here are mostly shape noise dominated and the luminosity 
bins are disjoint, the points should also be uncorrelated to good 
approximation, meaning it is unlikely this is random scatter. We can 
perhaps understand these trends in terms of colour differences. In the 
upper panel of Fig. 4 we can see that CMASS is considerably bluer 
than LOWZ. Indeed, while most extreme for CMASS, all of our 
samples tend to peak lower than LOWZ in M r − M z space. Not only 
this, there is also some difference in colour between luminosity bins 
for a given sample. For example, the galaxies in the upper CMASS 
bin ( L 2), on average, have slightly bluer rest-frame magnitudes than 
the lower two bins. Although for the sake of convenience, it has been 
useful to split galaxies into binary ‘red’ and ‘blue’ categories, our 
results suggest that this may be an o v ersimplification for modelling 
purposes, given the precision of current data sets. They suggest that 
a more sophisticated modelling may be needed, which accounts for 
colour and luminosity (and potentially other properties such as satel- 
lite fraction) simultaneously. This will be the focus of future work. 

We can compare these results with those of Singh et al. ( 2015 ), 
who consider colour bins within the LOWZ LRG sample. Although 
that work reported no clear trend across five bins in g − i rest-frame 
colour, it should be noted that LOWZ co v ers a fairly narrow range 
in colour space (see the black contour in Fig. 4 ). Even the bluest bin 
in that paper still represents a relatively bright red sample compared 
with the galaxies considered here. It seems plausible that our wider 
co v erage allows us to see a trend that is not detectable in a relatively 
homogeneous sample like LOWZ. We thus consider the two results 
qualitatively consistent. 

One other feature worth mentioning, although we do not seek to 
quantify it, is the behaviour of w g + on very small scales. Both red- 
MaGiC samples appear to exhibit a strongly luminosity-dependent 
1h contribution to w g + (Fig. 5 , purple and red). Noticeably, the RML 
L3 and RMH L0 bins, though having very similar mean luminosities, 
hav e qualitativ ely different one halo signals. In the case of eBOSS 
LRGs and CMASS we see no such trends, but this is quite possibly 
simply the result of low S / N , even on smaller scales. In all of these 
cases, it is worth bearing in mind that the density tracer samples 
differ. Although the differences between the small scale behaviour 
of w g + in the various bins/samples could be a result of the 1h IA 
signals, they could also be partly down to differences in the small- 
scale galaxy–halo connection. A full halo model that includes IA 
could potentially distinguish these effects – we leave this topic for 
future investigation. 

We also briefly test for redshift evolution in our red galaxy 
samples. Since we are interested in isolating inherent evolution 
in the IA signal (as opposed to changes in sample composition), 
we compare samples at roughly the same luminosity . Specifically , 
we define two narrow bins in Fig. 9 (one in the low-luminosity 

regime, at log L / L 0 ∼ −0.3, and the other at higher L , log L / L 0 ∼
−0.05). Plotting out A 1 ( z) in these two slices, we find no evidence 
for redshift evolution o v er the range z = [0.25, 0.8]. Although we 
see the same trend with CMASS being slightly lower than other 
samples at the same L , there is no evidence that this is the result of 
an underlying redshift trend. Since there is no statistically significant 
correlation, we do not include the figure in the main body of the 
paper; for completeness, ho we ver, it is sho wn along with redshift 
power-law constraints in Appendix E , Fig. E1 . 
6.2.2 Model comparison: NLA and TATT 
In Section 6.2.1 , we explored the behaviour of IAs on very large 
scales, where the NLA model is thought to be sufficient. We next 
turn to a slightly different question: on what scales precisely does 
the simple model break down? Based on theory, there is thought to 
be an intermediate regime, outside the one halo regime, but where 
higher order correlations (such as those included in the TATT model) 
become significant. It is still, ho we ver, and open question as to how 
significant and on exactly which scales. 

To explore this, we repeat our analysis with the minimum scale 
reduced slightly to r p > 2 h −1 Mpc in w g + and w ++ . Note that 
the cuts on w gg are fixed, and the modelling there does not change 
(i.e. there are al w ays tw o free galaxy bias parameters). For each 
sample, we fit both NLA (one free IA parameter) and TATT (three 
IA parameters). Our results are summarized in Fig. 10 . 

Unsurprisingly given Fig. 5 , CMASS, eBOSS ELGs, and eBOSS 
LRGs pro vide v ery broad constraints on the TATT parameters, 
and so are not shown. The signal-to-noise in these samples is still 
relati vely lo w. Although one can fit a single amplitude relatively 
well, there is little constraining power left for the shape of the 
correlation function. The picture is slightly dif ferent, ho we ver, in our 
redMaGiC samples. The cosmological volume here is significantly 
larger, and the S / N higher. Starting with the slightly larger sample, 
redMaGiC low- z, we find 
A RML 

2 = 1 . 24 + 0 . 74 
−0 . 80 b RML 

TA = −0 . 43 + 0 . 18 
−0 . 13 . (34) 

In words, our measurements fa v our (albeit relatively weakly) a 
combination A 2 > 0 and b TA < 0. Comparing with the NLA fits 
on the same scales, we find p ( > 5χ2 ) = 0.01 ( χ2 

NLA = 31 . 2 and 
χ2 

TATT = 21 . 9). 
In the case of redMaGiC high- z, the data appear to prefer a non- 

zero b TA at the level of roughly 2.5 σ , with 
A RMH 

2 = −0 . 36 + 1 . 63 
−1 . 64 b RMH 

TA = 0 . 92 + 0 . 41 
−0 . 36 . (35) 

Again, comparing the TATT and NLA fits, we obtain p ( > 5χ2 ) = 
0.00004, suggesting a statistically significant preference for TATT on 
these scales; the respective goodness-of-fit statistics are χ2 

NLA = 33 . 9 
and χ2 

TATT = 13 . 6, and 5 dof = 2. 
Interestingly, the deviations from NLA manifest in quite different 

ways at the data vector level (see Fig. 5 ). In the case of redMaGiC 
high- z, the positive b TA increases the power on intermediate scales 
(2 h −1 Mpc < r p < 10 h −1 Mpc), resulting in a significantly flatter 
w g + . For redMaGiC low- z, on the other hand, we see the opposite 
effect; a reduction in the amplitude of w g + in the (2 h −1 Mpc < r p 
< 6 h −1 Mpc) range is accompanied by a slight increase around 20–
30 h −1 Mpc. This gives a slightly steeper theory prediction, which 
matches the shape of the measured correlation relatively well. Taken 
together, this amounts to a ∼3.8 σ difference in b TA between the two 
redMaGiC samples. 

Although interesting, it is worth being cautious here. Since TATT 
is a relatively flexible model (albeit a physically moti v ated one), it 
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is possible that non-zero A 2 and b TA values could arise due to other 
untreated systematics. Baryonic physics, for example, tends to appear 
on small-intermediate scales, and modulates the power spectrum in 
a scale-dependent way. It is also true, ho we ver, that baryons tend 
to suppress power on smaller scales; this is the case in (almost) all 
hydrodynamic simulations at all redshifts. Since redMaGiC high- 
z prefers a TATT model that does the opposite (relative to NLA), 
it seems unlikely that baryons are driving the non-zero b TA value 
here. Even considering the redMaGiC low- z case, it seems very 
unlikely that we are simply seeing residual baryonic feedback. In 
Section 4.6 , we saw that the OWLS-AGN scenario (itself an extreme 
case) produced at most 5χ2 = 0.45 at the TATT best fits quoted 
abo v e. The difference between the NLA and TATT goodness of fit 
are more than an order of magnitude larger than this; for baryonic 
feedback alone to explain the non-zero TATT parameters would 
require a significantly more extreme scenario than OWLS-AGN. 

Another possible effect here is non-linear galaxy bias. Our model 
for it is incomplete in the sense that while we include non-linear bias 
in our w gg model, only b 1 enters the w g + prediction. Incorporating 
non-linear bias, and all the TATT-bias cross terms, into the w g + 
model is the focus of ongoing work. We can, ho we ver, make a rough 
estimate for the impact based on our w gg fits. For redMaGiC low- z, 
we find the data consistent with linear bias ( b 2 = −0.09 ± 0.07). The 
equi v alent v alue for redMaGiC high- z is slightly larger, but still small 
b 2 = 0.39 ± 0.08. Since the additional terms contributing to w g + 
will be proportional to b 2 multiplied by the various IA coefficients, it 
seems likely that they should be relatively small compared with the 
IA-only contributions. 

Finally, we also consider the possibility that our results here could 
be the result of a non-local lensing contribution from small scales. 
Such contributions add to the g alaxy–g alaxy lensing ( g G) term, 
and tend to boost its power on small to intermediate scales (see 
e.g. Baldauf et al. 2010 ; MacCrann et al. 2020 ). F ortunately, ev en 
considerably different halo mass profiles produce approximately the 
same contribution on scales well outside the virial radius, behaving 
ef fecti vely as an enclosed point mass and scaling as 1 /r 2 p . To test this, 
we generate NLA-only theory data vectors from the NLA fits on large 
scales; we add a point mass term (equations 7 and 8 of MacCrann et al. 
2020 ), and adjust δM until the NLA + PM theory prediction for w g + 
matches the data on scales 2 h −1 Mpc > r p > 6 h −1 Mpc. Although 
a 1 /r 2 p scaling can match the data in the redMaGiC high- z case, we 
find the mass required to do this is ∼3 × 10 15 M * h −1 , which is 
much larger than the typical halo mass expected for DES redMaGiC 
(see, for e xample, P ande y et al. 2022 ; Zachare gkas et al. 2022 ). This 
would also require the point mass contribution to dominate g G out 
to scales of ∼20 h −1 Mpc, which again is not thought to be realistic. 
Moreo v er, the point mass explanation should lead to an excess w g + 
on small scales for both redMaGiC samples, contrary to the observed 
behaviour. For all of these reasons, we conclude that a point mass 
term cannot explain the deviations from NLA on small scales for 
redMaGiC high- z. 

Overall, these tests seem to suggest a real IA signal (or, at 
least, a significant systematic that we have not considered). This is 
interesting from a modelling perspective. It implies some dependence 
in the TATT parameters with galaxy properties ( b TA most obviously, 
going from ne gativ e in redMaGiC lo w- z to positi ve in redMaGiC 
high- z, but also potentially A 2 ). As we discussed in the previous 
section, the redMaGiC high- and low- z samples differ in redshift, 
but also in galaxy properties like colour and luminosity. Although, 
gi ven this, dif ferences some what expected, this is not something on 
which there are previous results to guide us. Disentangling what 

exactly is driving the differences is an interesting question, but a 
potentially difficult one to answer. We leave this for future work. 
6.2.3 Robustness to cosmology and X lens 
In this section, we seek to test the robustness of our analysis to 
various sources of systematic error. One such potential contaminant 
is the effect known as X lens . One can find e xtensiv e early discussion 
in the DES Y3 results papers (Dark Energy Surv e y Collaboration 
2022 ; P ande y et al. 2022 ), but essentially X lens is a multiplicative 
factor of unknown origin between the amplitudes of the galaxy–
galaxy lensing and galaxy clustering measurements. This offset 
was seen to be scale- and redshift-independent, and to impact only 
Y3 redMaGiC, and not the fiducial magnitude-limited lens sample, 
MAGLIM . Subsequent tests have pointed towards a systematic in the 
photometry, which affects the redMaGiC selection (see P ande y et al. 
2022 Sec. VG). The magnitude of X lens is constrained relatively well 
by the 3 × 2pt data in Dark Energy Surv e y Collaboration 2022 , 
to X lens = 0 . 877 + 0 . 026 

−0 . 019 , which is roughly the size of the fractional 
error bar, ( w g+ − σw g+ ) /w g+ , for our redMaGiC samples in the 
range 2 h −1 Mpc < r p < 70 h −1 Mpc. Since it is scale-independent, 
we expect the impact to be completely degenerate with A 1 . Given 
these things, we do not expect X lens to have a qualitative impact 
on our results. Although it may modulate the best fit A 1 in our 
redMaGiC (not CMASS or eBOSS) at the level of ∼ 10 per cent , 
comparison between samples is already uncertain to at least this level 
due to differences in colour space. Given that the TATT parameters 
primarily alter the shape of w g + , we do not expect X lens to alter the 
findings of Section 6.2.2 . 

We also briefly consider the impact of our choice of cosmology; 
to fit for IAs, we need to assume a particular set of cosmological 
parameters (e.g. for calculating the matter power spectrum). As 
discussed in Section 4 , we assume a flat + CDM universe with 
massive neutrinos and a clustering amplitude σ 8 similar to that 
reported by Planck. For each of our samples, in addition to the 
best-fitting NLA data vector, we generate a second with a perturbed 
cosmology; for this we choose the DES Y3 1 × 2pt best fit. By 
comparing w gg at the two cosmologies, we can compute an ef fecti ve 
shift in large-scale bias 5 b 1 . This in hand, plus the observed impact 
on w g + , we can estimate the shift in the best fit A 1 . The end result 
is a change of at most one or two per cent. That is, the difference 
between plausible cosmologies is not sufficient to significantly affect 
our results. 
6.3 Assessing the contribution of magnification and lensing 
In addition to the main IA signal, our measurements have contribu- 
tions from lensing and magnification (see the discussion in Section 4 ). 
These are al w ays included in our modelling, but it is interesting to 
briefly discuss their effect. The fractional impact of the various terms 
is shown in Fig. 11 . Note that the data vectors here are evaluated at 
the NLA best fit for each sample, and so b 1 and A 1 differ somewhat 
between the panels. 

Consider first the two photometric samples, redMaGiC low- z and 
redMaGiC high- z (upper two panels, purple and red in Fig. 11 ). Here, 
we see a total non- δg I contribution of roughly 8 per cent and 4 per cent 
in the high- and lo w- z samples, respecti v ely. F or conte xt, the 1 σ
uncertainty on A 1 in these samples is ∼ 4 –5 per cent (see Table 4 ); 
including these effects in the modelling of w g + is clearly necessary 
to a v oid bias at the current precision. The closest comparison in the 
literature is fig. 5 in Joachimi et al. ( 2011 ); again, we confirm that 
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our pipeline can reproduce those results. We see a similar ordering 
of the terms to their figure, with δg G dominant, followed by µG, and 
with µI the smallest, at sub- per cent level (although note there are 
some important differences between the comparison in Fig. 11 and 
that of Joachimi et al. 2011 , and so one should not expect the details 
to match perfectly). 

In the two left-hand panels, we also show the results of the 
same e x ercise, but using alternativ e estimates for the magnification 
coefficients from BALROG (black lines; see Section 3.3 for the 
actual values). Note that α is the only quantity that changes here; 
we do not refit the data vectors, and so the dominant δg I term 
in the denominator is fixed. The new α values are thought to 
include additional effects omitted by the flux-only method described 
in Section 3.3 . Unfortunately, ho we ver, we do not have BALROG 
injections co v ering the whole DES footprint, and so the resulting 
estimates are noisy. We also cannot easily produce BALROG mocks 
closely matching our CMASS and eBOSS samples, which somewhat 
limits its use for our purposes. The o v erall impact, ho we ver, is seen to 
be relatively small. That is, while ignoring magnification altogether 
could have a significant impact on our results, the choice of one α
estimate o v er another is unlikely to. 

Although it is common to assume spectroscopic IA measurements 
are immune to lensing effects, we see in Fig. 11 that this is not entirely 
the case. The two main terms are the same as with redMaGiC: µG and 
δg G. It is interesting that the latter (dashed) still dominates; even in 
the case of very narrow per-galaxy redshift distributions, where p ( z) 
→ δz , the ensemble redshift distribution is sufficiently broad to allow 
a non-negligible g alaxy–g alaxy lensing contribution. The µG term 
(dotted), we also note, does not depend on the quality of the redshifts. 
Galaxies along the same line of sight are affected by magnification 
and lensing due to the same foreground structure, which modulates 
w g + at the level of a few per cent at z ∼ 0.8. 

It is worth briefly considering what these results mean for future IA 
measurements. The Stage IV spectroscopic surv e y DESI is expected 
to obtain spectra for a sample of LRGs o v er a comparable redshift 
range to ours, but for a considerably wider area and greater number 
density ( n c ∼ 6 × 10 −4 h 3 Mpc −3 o v er 14 000 square deg; Zhou 
et al. 2020 ). Similarly, one can expect at least an order of magnitude 
increase in the number of ELGs available for the type of measurement 
we perform here (Raichoor et al. 2020 ). Euclid and the Roman 
Space Telescope will also have spectroscopic instruments, which 
will further add to the pool of data available for IA measurements. 
Likewise, Stage IV photometric surv e ys such as Rubin, Euclid, 
and Roman will probe a similar selection of galaxies to DES, but 
o v er a much wider area and to a greater depth (see, for example, 
Euclid Collaboration 2021 ). These will allow measurements using 
a redMaGiC-like sample similar to ours, but with significantly 
impro v ed S/N and finer binning in colour/redshift/luminosity. Used 
together – with photometry providing shape inference, and accu- 
rate redshift information from either spectroscopic data or high- 
quality photometric measurements – the next generation of sur- 
v e ys will provide a powerful tool for studying IAs. Given what 
we see here, it seems very likely that direct IA measurements 
using these upcoming data will need to account for lensing and 
magnification. 

It is finally worth noting that any data-based estimates of mag- 
nification will have some level of noise; this is most obvious for 
our BALROG estimates (due to the limited area), but it is also true 
at some level for the flux-only method. As future data sets become 
more constraining it will likely be necessary to properly charac- 
terize this uncertainty, and marginalize o v er α either directly or 
analytically. 

7  C O N C L U S I O N S  
This paper presents direct constraints on IAs from the Dark En- 
ergy Surv e y Year 3 shape catalogues. The Y3 METACALIBRATION 
catalogue is used to provide shape estimates for 2.4M redMaGiC 
galaxies from across the DES footprint, as well as ∼50 000 CMASS 
galaxies, ∼22 000 eBOSS LRGs, and ∼100 000 ELGs. We make a 
high significance detection of IAs in all of these samples, with the 
exception of eBOSS ELGs, where we place upper bounds on the 
magnitude of the possible alignment amplitude. 

The key conclusions of this paper are: 
(i) Fitting for A 1 in red galaxies, our data support the qualitative 

picture of a broken power law in r -band luminosity of the form 
A 1 ∝ L β , with β differing between high and low L . Our redMaGiC 
low −z sample provides a significant improvement constraints at the 
faint end of the A 1 –L relation, where the slope is shallower than at 
the bright end (by a factor of several; see Fig. 9 ). 

(ii) Amongst red galaxy samples, ho we ver, we find noticeable 
colour dependence in the IA–luminosity trend. This is most obvious 
in CMASS and redMaGiC high- z, which both lie below the bulk 
of previous measurements at a similar L . These differences can be 
qualitativ ely e xplained by differences in the colour space distribu- 
tions. This raises potential questions about the sufficiency of a simple 
red/blue binary split for modelling IAs, and whether joint modelling 
of luminosity and colour dependence may be needed. 

(iii) We find no statistically significant signal in our ELG sample 
on any scale. Using the combination of w g + and w ++ , we impose 
an upper limit on the large-scale NLA amplitude in ELGs at | A 1 | < 
0.3 (68 per cent CL). This is an impro v ement on the null constraint 
from WiggleZ at | A 1 | < 1.03 (Mandelbaum et al. 2011 ). 

(iv) The one-parameter NLA model is seen to fit all of our 
red galaxy samples reasonably on scales r p > 6 h −1 Mpc. In our 
redMaGiC samples, which give the highest signal-to-noise measure- 
ments, we do see deviations from the NLA prediction in the range 
2–6 h −1 Mpc. These deviations are more pronounced in the higher 
redMaGiC redshift sample. 

(v) Allowing additional flexibility via the TATT model, we can 
obtain a good fit to both redMaGiC samples on intermediate scales, 
r p = 2–6 h −1 Mpc. We thus place constraints on the additional 
parameters (see Fig. 10 ). 

(vi) We show that lensing and magnification can have a potentially 
significant impact on direct IA measurements. The extra terms are 
dominated by a g alaxy–g alaxy lensing like contribution δg G, and the 
magnification-lensing cross correlation, δµG. Together they make up 
∼ 2 –20 per cent of the total signal, depending on the sample. This is 
rele v ant for our higher S/N samples, and will certainly be significant 
for future measurements of a similar kind, even those relying only 
on spectroscopic samples. 

A weak lensing cosmology analysis is underway using the Dark 
Energy Surv e y Year 6 data, and similar efforts are ongoing on 
the KiDS le gac y and HSC Y3 results. Understanding astrophysical 
systematics such as IAs, on both large and small scales, will clearly 
be important for the success of these ongoing cosmology projects, as 
well as future surv e ys such as the Vera C. Rubin Observatory Le gac y 
Surv e y of Space and Time (LSST), Euclid, and the Nancy Grace 
Roman Space Telescope. Our ability to accurately model IAs and 
mitigate their impact is, ho we ver, still some what limited; e ven gi ven 
detailed information about the redshift and rest-frame colour of a 
sample (which typically is not available in a photometric surv e y), we 
do not have sufficient a priori understanding of the physical processes 
to predict the IA signal for an arbitrary selection of galaxies. We can, 
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ho we ver, make measurements of IAs in a range of samples, and map 
out the dependence on galaxy properties. In this way, we can start 
to build up a phenomenological understanding of IAs, which will 
feed into the next generation of analyses. The longer term goal is to 
develop more accurate models of IAs on all scales but also, ideally, 
to deri ve informati ve priors on their parameters. This paper aims to 
contribute to this task using some of the most constraining current 
data sets. 

Our results provide a small step towards a more complete under- 
standing of IAs in lensing surv e ys. In particular, we present results 
from new data sets that allow a substantially impro v ed constraint on 
the faint end of the L –A 1 relation, and at intermediate redshifts. This 
is important, as the extrapolation into this regime is still a significant 
uncertainty in both model building and model sufficiency testing 
for future surv e ys. There are also a number of natural extensions to 
the work presented here. One obvious example is the development 
of a simple model that can account for both colour and redshift 
dependence in our red samples simultaneously. This is the focus of 
ongoing work. 
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GOLD catalogues have been public since 2022 February, and can 
be found at https:// des.ncsa.illinois.edu/ releases/y3a2 . Catalogues 
for the eBOSS LRG and ELG samples (including randoms, but 
without shapes) are available from https:// data.sdss.org/ sas/ dr16/e 
boss/lss/catalogs/ DR16/ . For the equi v alent CMASS catalogues see 
https:// data.sdss.org/ sas/ dr12/boss/ lss/ . 
REFER ENCES  
Amon A. et al., 2022, Phys. Rev. D , 105, 023514 
Asgari M. et al., 2021, A&A , 645, A104 
Baldauf T. , Smith R. E., Seljak U., Mandelbaum R., 2010, Phys. Rev. D , 81, 

063531 
Bautista J. E. et al., 2021, MNRAS , 500, 736 
Becker M. R. et al., 2016, Phys. Rev. D , 94, 022002 
Blanton M. R. et al., 2017, AJ , 154, 28 
Blazek J. , McQuinn M., Seljak U., 2011, J. Cosmol. Astropart. Phys. , 2011, 

010 
Blazek J. , Mandelbaum R., Seljak U., Nakajima R., 2012, J. Cosmol. 

Astropart. Phys. , 2012, 041 
Blazek J. , Vlah Z., Seljak U., 2015, J. Cosmol. Astropart. Phys. , 2015, 015 
Blazek J. A. , MacCrann N., Troxel M. A., Fang X., 2019, Phys. Rev. D , 100, 

103506 
Bolton A. S. et al., 2012, AJ , 144, 144 
Bridle S. , King L., 2007, New J. Phys. , 9, 444 
Bruzual G. , Charlot S., 2003, MNRAS , 344, 1000 
Catelan P. , Kamionkowski M., Blandford R. D., 2001, MNRAS , 320, L7 
Cawthon R. et al., 2022, MNRAS , 513, 5517 
Codis S. et al., 2015, MNRAS , 448, 3391 
Comparat J. et al., 2016, A&A , 592, A121 
Dark Energy Surv e y Collaboration , 2016, Phys. Rev. D , 94, 022001 
Dark Energy Surv e y Collaboration , 2022, Phys. Rev. D , 105, 023520 
Dawson K. S. et al., 2013, AJ , 145, 10 
Dawson K. S. et al., 2016, AJ , 151, 44 
de Mattia A. et al., 2021, MNRAS , 501, 5616 
Delubac T. et al., 2017, MNRAS , 465, 1831 
Drlica-Wagner A. et al., 2018, ApJS , 235, 33 
Eisenstein D. J. et al., 2011, AJ , 142, 72 
Elvin-Poole J. et al., 2023, MNRAS , 523, 3649 
Euclid Collaboration , 2021, A&A , 655, A44 
Everett S. et al., 2022, ApJS , 258, 15 
Feroz F. , Hobson M. P., Cameron E., Pettitt A. N., 2019, Open J. Astrophys. , 

2, 10 
Fortuna M. C. , Hoekstra H., Joachimi B., Johnston H., Chisari N. E., Georgiou 

C., Mahony C., 2021a, MNRAS , 501, 2983 
Fortuna M. C. et al., 2021b, A&A , 654, A76 
Gatti M. et al., 2021, MNRAS , 504, 4312 
Gunn J. E. et al., 2006, AJ , 131, 2332 
Guo H. et al., 2019, ApJ , 871, 147 
Hamana T. et al., 2020, PASJ , 72, 16 
Heymans C. et al., 2012, MNRAS , 427, 146 
Heymans C. et al., 2013, MNRAS , 432, 2433 
Hikage C. et al., 2019, PASJ , 71, 43 
Hilbert S. , Xu D., Schneider P., Springel V ., V ogelsberger M., Hernquist L., 

2017, MNRAS , 468, 790 
Hildebrandt H. et al., 2017, MNRAS , 465, 1454 
Hildebrandt H. et al., 2020, A&A , 633, A69 
Hinshaw G. et al., 2013, ApJS , 208, 19 
Hirata C. M. , Seljak U., 2004, Phys. Rev. D , 70, 063526 
Hirata C. M. , Mandelbaum R., Ishak M., Seljak U., Nichol R., Pimbblet K. 

A., Ross N. P., Wake D., 2007, MNRAS , 381, 1197 
Hu W. , 1999, ApJ , 522, L21 
Hu W. , Jain B., 2004, Phys. Rev. D , 70, 043009 
Huff E. , Mandelbaum R., 2017, preprint ( arXiv:1702.02600 ) 
Hutchinson T. A. et al., 2016, AJ , 152, 205 
Jain B. , Seljak U., 1997, ApJ , 484, 560 
Jarvis M. , Bernstein G., Jain B., 2004, MNRAS , 352, 338 

Jarvis M. et al., 2021, MNRAS , 501, 1282 
Jee M. J. , Tyson J. A., Hilbert S., Schneider M. D., Schmidt S., Wittman D., 

2016, ApJ , 824, 77 
Joachimi B. , Bridle S. L., 2010, A&A , 523, A1 
Joachimi B. , Mandelbaum R., Bridle S. L., 2011, A&A , 527, A26 
Joachimi B. et al., 2015, Space Sci. Rev. , 193, 1 
Joachimi B. et al., 2021, A&A , 646, A129 
Johnston H. et al., 2019, A&A , 624, A30 
Kaiser N. , 1987, MNRAS , 227, 1 
Kiessling A. et al., 2015, Space Sci. Rev. , 193, 67 
Kilbinger M. et al., 2013, MNRAS , 430, 2200 
Kirk D. et al., 2015, Space Sci. Rev. , 193, 139 
Krause E. , Eifler T., Blazek J., 2016, MNRAS , 456, 207 
Krause E. et al., 2021, preprint ( arXiv:2105.13548 ) 
Landy S. D. , Szalay A. S., 1993, ApJ , 412, 64 
Lemos P. et al., 2021, MNRAS , 505, 6179 
Lewis A. , 2019, preprint ( arXiv:1910.13970 ) 
Lewis A. , Challinor A., Lasenby A., 2000, ApJ , 538, 473 
MacCrann N. , Blazek J., Jain B., Krause E., 2020, MNRAS , 491, 5498 
Mackey J. , White M., Kamionkowski M., 2002, MNRAS , 332, 788 
Mandelbaum R. et al., 2005, MNRAS , 361, 1287 
Mandelbaum R. et al., 2011, MNRAS , 410, 844 
McDonald P. , 2006, Phys. Rev. D , 74, 103512 
McEwen J. E. , Fang X., Hirata C. M., Blazek J. A., 2016, J. Cosmol. Astropart. 

Phys. , 2016, 015 
Morganson E. et al., 2018, PASP , 130, 074501 
P ande y S. et al., 2020, Phys. Rev. D , 102, 123522 
P ande y S. et al., 2022, Phys. Rev. D , 106, 043520 
Porredon A. et al., 2021, Phys. Rev. D , 103, 043503 
Prakash A. et al., 2016, ApJS , 224, 34 
Prat J. et al., 2022, Phys. Rev. D , 105, 083528 
Raichoor A. et al., 2017, MNRAS , 471, 3955 
Raichoor A. et al., 2020, Res. Notes Am. Astron. Soc. , 4, 180 
Raichoor A. et al., 2021, MNRAS , 500, 3254 
Reid B. et al., 2016, MNRAS , 455, 1553 
Reyes R. , Mandelbaum R., Gunn J. E., Nakajima R., Seljak U., Hirata C. M., 

2012, MNRAS , 425, 2610 
Rodr ́ıguez-Monroy M. et al., 2022, MNRAS , 511, 2665 
Ross A. J. et al., 2020, MNRAS , 498, 2354 
Rossi G. et al., 2021, MNRAS , 505, 377 
Rozo E. et al., 2016, MNRAS , 461, 1431 
Saito S. , Baldauf T., Vlah Z., Seljak U. c. v., Okumura T., McDonald P., 2014, 

Phys. Rev. D , 90, 123522 
Samuroff S. et al., 2019, MNRAS , 489, 5453 
Samuroff S. , Mandelbaum R., Blazek J., 2021, MNRAS , 508, 637 
S ́anchez C. et al., 2022, Phys. Rev. D , 105, 083529 
Schaye J. et al., 2010, MNRAS , 402, 1536 
Schmidt F. , Rozo E., Dodelson S., Hui L., Sheldon E., 2009, ApJ , 702, 593 
Schneider M. D. , Bridle S., 2010, MNRAS , 402, 2127 
Schneider P. , van Waerbeke L., Kilbinger M., Mellier Y., 2002, A&A , 396, 1 
Schwarz G. , 1978, Ann. Stat. , 6, 461 
Secco L. F. et al., 2022, Phys. Rev. D , 105, 023515 
Sevilla-Noarbe I. et al., 2021, ApJS , 254, 24 
Sheldon E. S. , Huff E. M., 2017, ApJ , 841, 24 
Singh S. , Mandelbaum R., 2016, MNRAS , 457, 2301 
Singh S. , Mandelbaum R., More S., 2015, MNRAS , 450, 2195 
Smee S. A. et al., 2013, AJ , 146, 32 
Smith R. E. et al., 2003, MNRAS , 341, 1311 
Suchyta E. et al., 2016, MNRAS , 457, 786 
Takada M. , Hu W., 2013, Phys. Rev. D , 87, 123504 
Takada M. , Jain B., 2009, MNRAS , 395, 2065 
Takahashi R. , Sato M., Nishimichi T., Taruya A., Oguri M., 2012, ApJ , 761, 

152 
Tamone A. et al., 2020, MNRAS , 499, 5527 
Tone ga wa M. , Okumura T ., Totani T ., Dalton G., Glazebrook K., Yabe K., 

2018, PASJ , 70, 41 
Troxel M. A. , Ishak M., 2015, Phys. Rep. , 558, 1 
Troxel M. A. et al., 2018, Phys. Rev. D , 98, 043528 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/524/2/2195/7220722 by U
niversity of Pennsylvania Library user on 28 August 2023

https://des.ncsa.illinois.edu/releases/y3a2
https://data.sdss.org/sas/dr16/eboss/lss/catalogs/DR16/
https://data.sdss.org/sas/dr12/boss/lss/
http://dx.doi.org/10.1103/PhysRevD.105.023514
http://dx.doi.org/10.1051/0004-6361/202039070
http://dx.doi.org/10.1103/PhysRevD.81.063531
http://dx.doi.org/10.1093/mnras/staa2800
http://dx.doi.org/10.1103/PhysRevD.94.022002
http://dx.doi.org/10.3847/1538-3881/aa7567
http://dx.doi.org/10.1088/1475-7516/2011/05/010
http://dx.doi.org/10.1088/1475-7516/2012/05/041
http://dx.doi.org/10.1088/1475-7516/2015/08/015
http://dx.doi.org/10.1103/PhysRevD.100.103506
http://dx.doi.org/10.1088/0004-6256/144/5/144
http://dx.doi.org/10.1088/1367-2630/9/12/444
http://dx.doi.org/10.1046/j.1365-8711.2003.06897.x
http://dx.doi.org/10.1046/j.1365-8711.2001.04105.x
http://dx.doi.org/10.1093/mnras/stac1160
http://dx.doi.org/10.1093/mnras/stv231
http://dx.doi.org/10.1051/0004-6361/201527377
http://dx.doi.org/10.1103/PhysRevD.94.022001
http://dx.doi.org/10.1103/PhysRevD.105.023520
http://dx.doi.org/10.1088/0004-6256/145/1/10
http://dx.doi.org/10.3847/0004-6256/151/2/44
http://dx.doi.org/10.1093/mnras/staa3891
http://dx.doi.org/10.1093/mnras/stw2741
http://dx.doi.org/10.3847/1538-4365/aab4f5
http://dx.doi.org/10.1088/0004-6256/142/3/72
http://dx.doi.org/10.1093/mnras/stad1594
http://dx.doi.org/10.1051/0004-6361/202141061
http://dx.doi.org/10.3847/1538-4365/ac26c1
http://dx.doi.org/10.21105/astro.1306.2144
http://dx.doi.org/10.1093/mnras/staa3802
http://dx.doi.org/10.1051/0004-6361/202140706
http://dx.doi.org/10.1093/mnras/stab918
http://dx.doi.org/10.1086/500975
http://dx.doi.org/10.3847/1538-4357/aaf9ad
http://dx.doi.org/10.1093/pasj/psz138
http://dx.doi.org/10.1111/j.1365-2966.2012.21952.x
http://dx.doi.org/10.1093/mnras/stt601
http://dx.doi.org/10.1093/pasj/psz010
http://dx.doi.org/10.1093/mnras/stx482
http://dx.doi.org/10.1093/mnras/stw2805
http://dx.doi.org/10.1051/0004-6361/201834878
http://dx.doi.org/10.1088/0067-0049/208/2/19
http://dx.doi.org/10.1103/PhysRevD.70.063526
http://dx.doi.org/10.1111/j.1365-2966.2007.12312.x
http://dx.doi.org/10.1086/312210
http://dx.doi.org/10.1103/PhysRevD.70.043009
http://arxiv.org/abs/1702.02600
http://dx.doi.org/10.3847/0004-6256/152/6/205
http://dx.doi.org/10.1086/304372
http://dx.doi.org/10.1111/j.1365-2966.2004.07926.x
http://dx.doi.org/10.1093/mnras/staa3679
http://dx.doi.org/10.3847/0004-637X/824/2/77
http://dx.doi.org/10.1051/0004-6361/200913657
http://dx.doi.org/10.1051/0004-6361/201015621
http://dx.doi.org/10.1007/s11214-015-0177-4
http://dx.doi.org/10.1051/0004-6361/202038831
http://dx.doi.org/10.1051/0004-6361/201834714
http://dx.doi.org/10.1093/mnras/227.1.1
http://dx.doi.org/10.1007/s11214-015-0203-6
http://dx.doi.org/10.1093/mnras/stt041
http://dx.doi.org/10.1007/s11214-015-0213-4
http://dx.doi.org/10.1093/mnras/stv2615
http://arxiv.org/abs/2105.13548
http://dx.doi.org/10.1086/172900
http://dx.doi.org/10.1093/mnras/stab1670
http://arxiv.org/abs/1910.13970
http://dx.doi.org/10.1086/309179
http://dx.doi.org/10.1093/mnras/stz2761
http://dx.doi.org/10.1046/j.1365-8711.2002.05337.x
http://dx.doi.org/10.1111/j.1365-2966.2005.09282.x
http://dx.doi.org/10.1111/j.1365-2966.2010.17485.x
http://dx.doi.org/10.1103/PhysRevD.74.103512
http://dx.doi.org/10.1088/1475-7516/2016/09/015
http://dx.doi.org/10.1088/1538-3873/aab4ef
http://dx.doi.org/10.1103/PhysRevD.102.123522
http://dx.doi.org/10.1103/PhysRevD.106.043520
http://dx.doi.org/10.1103/PhysRevD.103.043503
http://dx.doi.org/10.3847/0067-0049/224/2/34
http://dx.doi.org/10.1103/PhysRevD.105.083528
http://dx.doi.org/10.1093/mnras/stx1790
http://dx.doi.org/10.3847/2515-5172/abc078
http://dx.doi.org/10.1093/mnras/staa3336
http://dx.doi.org/10.1093/mnras/stv2382
http://dx.doi.org/10.1111/j.1365-2966.2012.21472.x
http://dx.doi.org/10.1093/mnras/stac104
http://dx.doi.org/10.1093/mnras/staa2416
http://dx.doi.org/10.1093/mnras/staa3955
http://dx.doi.org/10.1093/mnras/stw1281
http://dx.doi.org/10.1103/PhysRevD.90.123522
http://dx.doi.org/10.1093/mnras/stz2197
http://dx.doi.org/10.1093/mnras/stab2520
http://dx.doi.org/10.1103/PhysRevD.105.083529
http://dx.doi.org/10.1111/j.1365-2966.2009.16029.x
http://dx.doi.org/10.1088/0004-637X/702/1/593
http://dx.doi.org/10.1111/j.1365-2966.2009.15956.x
http://dx.doi.org/10.1051/0004-6361:20021341
http://dx.doi.org/10.1214/aos/1176344136
http://dx.doi.org/10.1103/PhysRevD.105.023515
http://dx.doi.org/10.3847/1538-4365/abeb66
http://dx.doi.org/10.3847/1538-4357/aa704b
http://dx.doi.org/10.1093/mnras/stw144
http://dx.doi.org/10.1093/mnras/stv778
http://dx.doi.org/10.1088/0004-6256/146/2/32
http://dx.doi.org/10.1046/j.1365-8711.2003.06503.x
http://dx.doi.org/10.1093/mnras/stv2953
http://dx.doi.org/10.1103/PhysRevD.87.123504
http://dx.doi.org/10.1111/j.1365-2966.2009.14504.x
http://dx.doi.org/10.1088/0004-637X/761/2/152
http://dx.doi.org/10.1093/mnras/staa3050
http://dx.doi.org/10.1093/pasj/psy030
http://dx.doi.org/10.1016/j.physrep.2014.11.001
http://dx.doi.org/10.1103/PhysRevD.98.043528


2218 S. Samuroff et al. 

MNRAS 524, 2195–2223 (2023) 

van Daalen M. P. , Schaye J., Booth C. M., Dalla Vecchia C., 2011, MNRAS , 
415, 3649 

Vlah Z. , Chisari N. E., Schmidt F., 2020, J. Cosmol. Astropart. Phys. , 2020, 
025 

von Wietersheim-Kramsta M. et al., 2021, MNRAS , 504, 
1452 

Wright E. L. et al., 2010, AJ , 140, 1868 
Zacharegkas G. et al., 2022, MNRAS , 509, 3119 
Zhang P. , 2010, ApJ , 720, 1090 
Zhou R. et al., 2020, Res. Notes Am. Astron. Soc. , 4, 181 
Zuntz J. et al., 2015, Astron. Comput. , 12, 45 
Zuntz J. et al., 2018, MNRAS , 481, 1149 

APPENDIX  A :  M O D E L L I N G  REDSHIFT  SPAC E  DI STORTI ONS  A N D  IA  ANISOTROPY  
In this appendix we set out the formalism used to estimate the impact of RSDs and anisotropic IAs on our results (see also Singh & Mandelbaum 
2016 ). One can write the redshift-space g alaxy–g alaxy power spectrum in terms of the (isotropic) real space equivalent in the form 
P gg,s ( k) = ( 1 + βa µ) ( 1 + βb µ) P gg ( k) , (A1) 
with galaxy samples a , b and βa ≡ f ( z)/ b g , a , the ratio of the logarithmic growth rate to the linear galaxy bias. The factor µ is the cosine of the 
angle between mode k and the axis of the line of sight ̂  z , µ = ˆ k · ˆ z . This is an approximation that applies on linear scales, but begins to break 
down at large k (Kaiser 1987 ). In general, one can decompose equation ( A1 ) in terms of Legendre polynomials P 1 , 
P gg,s ( k) = [ 

2 ∑ 
1 = 0 αab 

2 1 P 2 1 
] 

P gg ( k) . (A2) 
That is, the sum of monopole, quadrupole, and hexadecupole contributions. Note that in the case that 1 = 0, β = 0, the abo v e rev erts to the 
isotropic case and P gg , s = P gg . The coefficients have the same form as equations 48–50 of Baldauf et al. ( 2010 ) for even values of 1 , 
αab 

2 1 = 
 
   
   

1 + 1 
3 ( βa + βb ) + 1 

5 βa βb 1 = 0 
2 
3 ( βa + βb ) + 4 

7 βa βb 1 = 1 
8 
35 βa βb 1 = 2 , (A3) 

and are zero otherwise. The configuration space equi v alent of equation ( A2 ) has a similar form 
ξgg,s ( r p , ( ) = 2 ∑ 

1 = 0 αab 
2 1 P 2 1 ξgg, 2 1 ( r p , ( ) , (A4) 

with 
ξgg, 2 1 ( r p , ( ) = ( −1) 1 

2 π
∫ 

k 2 P gg ( k ) j 2 1 ( k r)d k . (A5) 
The integration kernel j µ is a spherical Bessel function of the first kind of order µ, and it is this that determines the shape of each term. Putting 
these pieces together, and integrating over line-of-sight separation, one finally obtains the expression 
w gg ( r p ) = 2 ∑ 

1 = 0 
( −1) 1 

2 π α2 1 P 2 1 ∫ ( max 
−( max 

∫ 
k 2 P gg ( k) j 2 1 ( kr)d kd ( (A6) 

Although RSDs themselves do not have a significant impact on w g + (see Singh et al. 2015 ), there is an analogous effect due to the projection 
of 3D shapes into 2D space. This suppresses the observed alignment strength at | ( | > 0, and so alters the shape of ξ g + in the r p − ( plane 

Figure A1. The fractional impact of RSDs and projection effects on projected g alaxy–g alaxy and galaxy–shape correlation functions. Note that the difference 
is defined as the magnitude of the difference between theory predictions (in either w g + or w gg , as labelled) with and without RSDs/projection effects 
5w ab = | w RSD 

ab − w no RSD 
ab | . The theory predictions are generated at our fiducial cosmology and A 1 = 1. We show both high- and low- z redMaGiC samples to 

illustrate the impact of (quite significant) differences in the redshift distributions. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/524/2/2195/7220722 by U
niversity of Pennsylvania Library user on 28 August 2023

http://dx.doi.org/10.1111/j.1365-2966.2011.18981.x
http://dx.doi.org/10.1088/1475-7516/2020/01/025
http://dx.doi.org/10.1093/mnras/stab1000
http://dx.doi.org/10.1088/0004-6256/140/6/1868
http://dx.doi.org/10.1093/mnras/stab3155
http://dx.doi.org/10.1088/0004-637X/720/2/1090
http://dx.doi.org/10.3847/2515-5172/abc0f4
http://dx.doi.org/10.1016/j.ascom.2015.05.005
http://dx.doi.org/10.1093/mnras/sty2219


IAs with DES and eBOSS 2219 

MNRAS 524, 2195–2223 (2023) 

(see the discussion in Section 4.6.2 ). The impact can be modelled in a very similar way to with RSDs (Singh & Mandelbaum 2016 , section 
2.3 and equation 13). 

Fig. A1 shows the absolute impact of the additional RSD signal and the projection effect described abo v e (note that RSDs and IA anisotropy 
work in opposite directions, and so the sign of the two eddects in Fig. A1 are different). RSDs have an impact on w gg at the level of tens 
of per cent on scales r p > 6 h −1 Mpc. We thus expect to be sensitive to their impact, and include them in our fiducial model. In the case of w g + 
we see an impact on very large scales, dropping away below ∼70 h −1 Mpc. Given that we impose an upper scale cut at r p = 70 h −1 Mpc, due 
to possible large-scale systematics, we do not consider it necessary to include IA anisotropy in our fiducial model for w g + . 
APPEN D IX  B:  N U L L  TESTS  
Before carrying out our analysis, we carried our various validation tests. Among those was a null test, constructed by repeating our w g + 
measurements, but using shapes measured at 45 deg to the tangential/radial direction. In the absence of systematics, this should return no 
signal. 

Figure B1. Cross shear correlations. The measurements shown are computed in the same way as w g + (see equation ( 16 )), but with the galaxy shapes rotated 
by 45 deg. This is meant as a null test, since to first order neither IAs nor gravitational lensing produce such correlations. The coloured shaded regions show the 
estimated shape + shot noise uncertainty for each sample. The grey shaded bands indicate scales discarded in our two analysis set-ups. In each case, the quoted 
null χ2 is computed on all scales r p < 70 h −1 Mpc. 

The results for our five samples are shown in Fig. B1 . The error bands here are calculated assuming shape (and shot) noise only, using the 
observed number of galaxy pairs in each r p bin. In the case of the two redMaGiC samples, we see a slight increase in (ne gativ e) power on very 
large scales. The reason for this apparent signal is not known for certain. We treat it as an unknown systematic, and simply choose to remo v e 
the affected scales. After imposing an upper limit at r p < 70 h −1 Mpc, we find w g × to be consistent with zero on all surviving scales. The null 
χ2 values are shown for each sample in Fig. B1 . Even in the case with the worst goodness of fit, redMaGiC high z, we find a χ2 /dof = 24.1/16, 
giving a corresponding p -value p = 0.09. 
APPEN D IX  C :  C O M PA R I S O N  WITH  L OW Z  
As discussed in Section 5 , we carry out several layers of pipeline testing and validation using LOWZ. The LOWZ LRG sample is useful for 
this, in that it is a relatively well-understood data set, which gives a high signal-to-noise w g + signal. Crucially, there are also published IA 
measurements to which we can compare (Singh et al. 2015 ). 

In addition to the data v ector lev el comparison described in Section 5 , we also use the LOWZ data to help validate our analytic covariance 
estimates. LOWZ co v ers a broad more or less contiguous footprint, making jackknife estimates viable. We divide that footprint into 100 
patches using a k -means algorithm, and iteratively remeasure the whole data vector ( w gg + w g + + w ++ ) in each. The diagonal elements of the 
resulting jackknife covariance matrix are compared to our analytic estimate in Fig. C1 . As expected the latter is somewhat smoother. The two 
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Figure C1. A comparison of the square root of the LOWZ covariance diagonals obtained using two methods. From top we show w g + , w gg , and w ++ . In each 
case the shaded gre y re gions indicate scales excluded from our large-scale IA fits. We see very good agreement between the two estimates on the scales of 
interest. 
diverge slightly on very large scales, where the approximations behind the jackknife method break down. On the scales of interest, ho we ver, 
we see very good agreement. 

We also carry out an end-to-end reanalysis of LOWZ using our pipeline. Starting with galaxy catalogues and randoms, we remeasure the 
joint data vector. Using our analytic covariance matrix, and the modelling pipeline set out in Section 4 , we obtain parameter constraints. The 
results of this e x ercise are summarized in Fig. C2 . In black we show the published IA and bias results from Singh et al. ( 2015 ); note that the 
fits for b 1 and A 1 were performed serially, and so we have a point with error bars instead of a full contour. The open blue contour shows the 
result of analysing the LOWZ data using our pipeline, but with all the analysis choices matched to those of Singh et al. ( 2015 ). These are 
detailed in Section 5 , but include the choice of cosmology and the version of HALOFIT . We see good agreement in both parameters. 

The filled contours then show the impact of switching to our analysis choices, assuming the NLA and TATT models. The former (dark 
purple) gives a very similar A 1 constraint to the original Singh et al. ( 2015 ) analysis. This is reassuring, in the sense that it suggests the 
new results from our pipeline are readily comparable with those in the literature. The lighter purple contours show the impact of opening 
up the TATT parameter space, and also extending the minimum scale in w g + and w ++ down to 2 h −1 Mpc. The marginalized A 1 constraint 
is broadened and shifted downwards slightly, primarily due to the de generac y with A 2 . It is interesting to briefly note here that although the 
contours on the extra parameters ( A 2 and b TA ) are not symmetric about zero, they are totally consistent with zero. That is, the LOWZ data do 
not appear to require additional terms beyond the NLA model to describe scales down to 2 h −1 Mpc. 
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Figure C2. 68 per cent and 95 per cent confidence intervals from our reanalysis of the SDSS LOWZ data. The black cross represents the published constraint 
on A 1 and galaxy bias from Singh et al. ( 2015 ). In blue (open contours) we show the result of fitting the LOWZ data vector using analysis choices matched to 
those of Singh et al. ( 2015 ). We reco v er the best-fitting A 1 well. The filled contours then show the result of switching to our preferred analysis settings, using 
the NLA and TATT models. 
APPEN D IX  D :  C O N S T R A I N T S  O N  G A L A X Y  BI AS  
In all samples, and for all fits, we include in our model free parameters for galaxy bias. Although the bias constraints are almost entirely 
dominated by the w gg part of the data vector, we allow bias to vary alongside our IA parameters. Justified by the e x ercise in Section 4.6.1 , our 
model includes two free parameters: b 1 and b 2 (there are additional terms in the expression for P δg , but the model is fully specified by the two 
values; see Section 4.2 ). 

The main galaxy bias results from each of our samples are presented in Table D1 . In each case, the model provides a reasonable fit to the 
joint data vector. The redMaGiC numbers here are qualitatively consistent with those presented in the upper panel of Dark Energy Surv e y 
Collaboration ( 2022 )’s fig. 8 (the pale purple points). That there are some small differences in the actual numbers in not surprising, given the 
different nature of the analysis (e.g. we are assuming a particular fixed cosmology). The values are roughly in line with the expectation for 
these sorts of galaxy samples. 

Table D1. Constraints on galaxy bias from our various density 
tracer samples. 
Sample b 1 b 2 
redMaGiC low- z 1 . 59 + 0 . 01 

−0 . 01 −0 . 09 + 0 . 07 
−0 . 07 

redMaGiC high- z 1 . 81 + 0 . 01 
−0 . 01 0 . 39 + 0 . 08 

−0 . 07 
eBOSS LRGs 2 . 20 + 0 . 03 

−0 . 03 0 . 34 + 0 . 17 
−0 . 16 

eBOSS ELGs 1 . 37 + 0 . 06 
−0 . 03 −0 . 84 + 0 . 74 

−0 . 64 
CMASS 1 . 97 + 0 . 02 

−0 . 02 0 . 01 + 0 . 13 
−0 . 15 
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APPENDIX  E:  REDSHIFT  D E P E N D E N C E  O F  A L I G N M E N T S  IN  R E D  G A L A X I E S  
In this appendix we illustrate the redshift dependence of our red samples. Fig. E1 is the counterpart to Fig. 9 , but showing the trend with 
redshift rather than luminosity. The colour scheme for the different samples is the same in the two. 

For the sake of comparability, we define two narrow bins in L r , and consider the redshift dependence in each. As explained in Section 6.2.1 , 
these are centred on log L / L 0 ∼ −0.3 and log L / L 0 ∼ −0.05, respectively. The samples included in these two bins are shown in the upper/lower 
panels of Fig. E1 (labelled ‘Low L ’ and ‘High L ’). The idea here is to separate inherent evolution in redshift (i.e. in a fixed sample with 
unchanging observable properties) from the evolution of galaxy selection with z. 

As we can see here, there is no clear trend o v er the baseline of the samples, in either luminosity bin. If one fits a slope in redshift of the form 
A 1 ( z) ∝ [(1 + z) / (1 + z 0 )] η1 , where z 0 = 0.62, the results are consistent with η1 = 0. Specifically, we find η1 = −0.37 ± 0.94 in the lower L 
bin, and η1 = −0.05 ± 0.73 in the upper L bin. 

Figure E1. IA strength as a function of estimated mean redshift in red galaxies. To a v oid complication due to evolution in galaxy properties, we take only points 
within two narrow bands in L / L 0 . See Section 6.2.1 for discussion. We show the best-fitting power-law slopes, fit to each panel; in both cases the power-law 
index η1 is consistent with zero to /1 σ . 
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