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Abstract

Ongoing declines in insect populations have led to substantial concern and calls

for conservation action. However, even for relatively well studied groups, like

butterflies, information relevant to species-specific status and risk is scattered

across field guides, the scientific literature, and agency reports. Consequently,

attention and resources have been spent on a minuscule fraction of insect

diversity, including a few well studied butterflies. Here we bring together

heterogeneous sources of information for 396 butterfly species to provide the

first regional assessment of butterflies for the 11 western US states. For 184 spe-

cies, we use monitoring data to characterize historical and projected trends in

population abundance. For another 212 species (for which monitoring data are

not available, but other types of information can be collected), we use exposure

to climate change, development, geographic range, number of host plants, and

other factors to rank species for conservation concern. A phylogenetic signal is

apparent, with concentrations of declining and at-risk species in the families

Lycaenidae and Hesperiidae. A geographic bias exists in that many species that

lack monitoring data occur in the more southern states where we expect that
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impacts of warming and drying trends will be most severe. Legal protection is

rare among the taxa with the highest risk values: of the top 100 species, one is

listed as threatened under the US Endangered Species Act and one is a candi-

date for listing. Among the many taxa not currently protected, we highlight a

short list of species in decline, including Vanessa annabella, Thorybes

mexicanus, Euchloe ausonides, and Pholisora catullus. Notably, many of these

species have broad geographic ranges, which perhaps highlights a new era of

insect conservation in which small or fragmented ranges will not be the only

red flags that attract conservation attention.
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INTRODUCTION

Reductions in abundance, contractions in geographic

range, extirpation, and extinction have become common

features of wild plant and animal populations impacted by

the various stressors of the Anthropocene (Dirzo et al.,

2014; Turvey & Crees, 2019). Effects on individual

populations translate into depauperate assemblages of spe-

cies in remaining natural lands, even those far removed

from the most immediate effects of habitat destruction and

degradation (Brook et al., 2008; McLaughlin et al., 2002).

To the extent that the loss of evolutionary lineages

(populations, species, and higher taxonomic groups) is a

part of life on earth and always has been, the current mass

extinction crisis affords ecologists the chance to study

extinction as an important earth-system process (Benton,

2003). However, the need to maintain functioning natural

ecosystems is increasingly generating motivation among

scientists, the general public, and governmental bodies to

reverse or slow whatever biotic losses might still be

addressed (Naeem et al., 2016). Concern for functioning

ecosystems has been elevated in recent years by a steady

pulse of papers reporting declines in insect abundance and

diversity (Eisenhauer et al., 2019; van Klink et al., 2020;

Wagner, 2019; Wepprich et al., 2019) that have inspired

calls for new conservation attention focused on “the little

things that run the world” (Cardoso et al., 2020; Goulson,

2019; Wilson, 1987).

Effective conservation and management actions

depend not only on knowing which actions will be effec-

tive (Bladon et al., 2022), but also on prioritization of need

because resources to support conservation are always lim-

iting. Prioritization, in turn, depends on the synthesis of

multiple lines of information including population moni-

toring, natural history studies, and geographic surveys. For

insects, the taxonomic diversity is so great and the

available information is so sparse (Cardoso et al., 2011)

that proactive prioritization and conservation informed by

diverse data types has rarely been an option. As a conse-

quence, insect conservation has often been motivated

largely by fragmentation and small geographic ranges

(Diniz-Filho et al., 2010; Samways, 2007). Exceptions to

that pattern include a few European countries where stud-

ies of butterflies and a small number of other insect groups

have been sufficiently thorough in terms of natural history

and monitoring that researchers have been able to priori-

tize species for conservation attention in a way that fol-

lows the International Union for Conservation of Nature

(IUCN) and the Red List framework (Bonelli et al., 2018;

Fox et al., 2011; Franke et al., 2022; Maes et al., 2012; van

Swaay et al., 2011). That depth of species-specific informa-

tion for insects is unusual, even for butterflies, and most

countries will have a more complex mix of some monitor-

ing or observational data, natural history observations,

and expert opinion (Edge & Mecenero, 2015; Geyle et al.,

2021; New et al., 1995).

Butterflies in the western USA provide an excellent

case study for the challenge of conservation prioritization

that involves a mixture of heterogeneous data types and

sources of information. The region does include butterfly

monitoring programs, but also expansive areas that are

sparsely populated and understudied, in particular the

Intermountain West with hundreds of mountain ranges

in the nearly 500 km2 of the Great Basin Desert. The

most temporally intensive butterfly monitoring program

in the western USA is the Shapiro transect of 10 perma-

nent sites across Northern California that have been

monitored biweekly during the flight season for between

35 and 51 years (Shapiro, 2022). Many years before the

entomological world made a collective pivot to the prob-

lem of insect declines (Dirzo et al., 2014; Hallmann et al.,

2017), work with the Shapiro data documented shifting
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spring phenologies (Forister & Shapiro, 2003), and the

influence of land use and warming temperatures on

extensive declines in abundance and species richness

(Casner, Forister, O’Brien, et al., 2014; Forister et al.,

2010). More recently, patterns from the temporally inten-

sive Shapiro dataset were analyzed in parallel with geo-

graphically extensive monitoring data from the North

American Butterfly Association (NABA) and iNaturalist

observations across the 11 western states (Forister et al.,

2021). That effort quantified a compounding loss of 1.6%

fewer butterflies observed per year, consistent with rates

of loss from studies in other regions (van Klink et al.,

2020; Wepprich et al., 2019), and highlighted the negative

influence of warming and drying conditions on butterfly

populations in natural areas. However, the species

included in Forister et al. (2021) were only those com-

mon and widespread enough to be present with sufficient

frequency in monitoring databases to allow for inclusion

in statistical models. Moreover, an attempt was not made

to combine different lines of information into a ranking

of species for conservation concern.

Here we address that need by taking a multifaceted

approach to conservation prioritization that utilizes

observational data when available (for approximately half

the species) and a combination of data types for other

species, including natural history traits and quantitative

estimates of exposure to climate change and develop-

ment. We refer to these two groups of species, with and

without monitoring data, as the “A group” and the

“B group” species, respectively. These two groups are

treated throughout this paper in distinct but complemen-

tary ways, with the dual goal of presenting a unified

picture of risk for a regional butterfly fauna, but also with

the objective of providing a case study for how species

with different amounts of information can be mutually

informative when considered together in a conservation

context. The different data types studied for both A and

B group species are detailed below and are used (1) to

produce a quantitative ranking that highlights the taxa

most severely declining and most likely to face regional

extirpation or extinction in coming decades; and (2) to

identify geographic and taxonomic knowledge gaps in

our understanding of western butterflies. It is our hope

that these results will be used by conservation practi-

tioners and land managers to guide restoration and pro-

tection efforts, and will also motivate additional

monitoring and the development of new population

models that take maximum advantage of heterogeneous

data types. Throughout this paper, we use the word “risk”

(and related terms, like “risk index”) in a flexible way

that encompasses evidence of past decline, projected

declines, and combinations of traits that could predispose

species to ongoing and future declines. This flexibility is

necessary given the nature of our project encompassing

species for which different kinds and quantities of infor-

mation are available, but in all cases we intend the con-

cept of high risk to flag species that could profitably

receive careful attention from ecologists, conservation

biologists, and the general public.

MATERIALS AND METHODS

A schematic overview of our methods is shown in

Figure 1, emphasizing the flow of information from

external data sources through analyses to the generation

of quantitative risk assessment. All parts of the process

are discussed in detail here. The order of the sections

below follows the order of variables (red boxes) in

Figure 1, from left to right, starting with the process that

generates P(persistence) from the NABA data and ending

with wingspan and host range. After the creation of vari-

ables, the subsequent methods sections roughly corre-

spond to the main products (green boxes) in Figure 1,

from the creation of ranked lists to risk maps and the

visualization of phylogenetic risk.

Starting with the 875 taxa on the North American

Butterfly Association’s 2nd edition checklist of butterflies

occurring north of Mexico (NABA, 2018), we retained

396 species with resident (nonvagrant) status in the 11

western states (Washington, Oregon, California, Idaho,

Montana, Nevada, Wyoming, Colorado, Utah, New

Mexico, and Arizona) based on range maps in Glassberg

(2017), and collapsed 18 subspecies from that list into full

species. For clarity and to facilitate wide use of our

results, we also reference a second checklist by Pelham

(2022) in places where names differ.

Of the 396 species from the NABA list, 184 were present

in monitoring databases (either the Shapiro transect or the

NABA count circles) with sufficient frequency to be used in

population models. For those species (the A group), our

approach is to rank species based on observed and forecast

population trajectories. Acknowledging the great uncer-

tainty inherent to insect time series analyses, we present the

ranking of A group species in a way that risk associated

with other variables (e.g., geographic range size) can be

evaluated by the reader.

For the 212 species in the B group (not present in

monitoring schemes in sufficient frequency for inclusion

in core population models), we have accumulated

seven variables that form a composite picture of risk:

geographic range, exposure to developed land, exposure

to climate change, average (range-wide) precipitation,

voltinism (number of generations per year), wingspan,

and host range (or “host breadth”). We combine those

seven variables into a single risk index as a weighted
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sum, where the weights are determined in part by our

previous work with western butterflies, but also by ana-

lyses of the A group (described in detail below). The

weighting scheme and other steps in data processing

involve informed, but partly subjective, judgments (see

the section below on Calculation of risk index for A and B

group species) with respect to threats to butterflies and

natural history traits that predispose butterflies to risk.

We have presented all data decisions in a transparent

way, so that the reader can judge for themselves the con-

sequences of our methods and decisions. Alternative

weights can be assigned by researchers using an online

tool (see Appendix S1), and the primary risk values that

we present here as well as the variables that contribute to

the calculation of risk are archived (Forister, 2023b). In

the sections below, we describe first the observational

datasets (NABA and Shapiro) and associated analyses,

then the seven other variables and how they are

and

F I GURE 1 Schematic overview of main inputs, processes, and products associated with the generation of risk index values. As

noted in the key, data sources are in brown, analyses (and other calculations) are in blue boxes, variables (used in the creation of the

risk index) are in red, and the primary products are in green. The central branching path illustrates the division of species into the

A and B groups, with monitoring data contributing to the A group risk assessment on the left, and other data types contributing to the

B group assessment on the right. The nine variables (in red) are identical to the columns in Figure 2, although labeled slightly

differently here, especially for the observational variables: “β year” is the year coefficient from analyses of Shapiro data summarizing

change through time, and “P(persistence)” is the probability of population persistence from 50-year forecasts. Variables on the right

(“range area,” “precipitation,” etc.) are more self-explanatory. Also note that the expert-derived geographic ranges contribute to the risk

index calculations both directly (“range area” and “voltinism”) and indirectly as indicated with connecting arrows. Finally, the “Risk

analysis” process box (toward the lower left) illustrates the analysis of A group risk that was used to partly inform the weighting scheme

for the B group species.
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combined into composite risk indices and are visualized

geographically and in a phylogenetic context.

Variable creation part 1a: North American
Butterfly Association (NABA) counts and
models

The NABA butterfly count program is a suite of hundreds

of individual locations throughout the country that are

monitored during midsummer (typically once, but in

some cases more than once) by a group of at least four

observers recording counts of all individual butterflies

seen and identified to species, in a 15-mile (24.14 km)

diameter circle. Observations from count circles in the 11

western states encompass different numbers of years at

different sites from the 1970s to the present, with the

final year in the dataset we examined being 2018 (the

data were compiled for analysis in 2019) (Oliver, 2021).

For the current project, we filtered the observations so

that we only included sites that had been monitored for

at least 10 years, with the final year being 2017 or 2018

(we did this so as not to generate forecasts for species

with a substantial recent gap in observations). More than

one monitoring day has been reported per year at a small

number of sites, and for those locations we retained only

the survey closest to the 4th of July, which is the tradi-

tional target date for these censuses. We then excluded

any site-by-species combinations in which a species was

not present for at least 10 years (not necessarily consecu-

tive years). Finally, only species meeting the latter crite-

rion for at least three locations were retained. Those

filters resulted in a dataset with 162 species from 44 loca-

tions used in the core model and associated population

forecasts (we experimented with less stringent filters but

found that model performance suffered). For species with

fewer data, we ran a second set of models with lower

thresholds, as described after the core model below.

Our previous work with the NABA data primarily

used hierarchical Bayesian linear Poisson regressions run

separately for each species (Forister et al., 2021). Here we

advance that approach using a single, multispecies model

that shares information about heterogeneity in the obser-

vation process across species observed at each site

(Riecke et al., 2021). The components of the model (each

described in turn below) include an observation

submodel, an abundance submodel, and a forecast or

simulation process that projects occupancy (the fraction

of sites with nonzero presence by species) for various

intervals of years in the future.

For the observational component, we modeled the

counts of individual butterflies (y) using a Poisson distri-

bution given the expected count of each species at each

location during each year (μt,l,s), where t, l, and s identify

the year, location, and species respectively:

yt,l,s � Poisson μt,l,s
� �

:

We modeled the expected count (μt,l,s) as a function of

an abundance index (N t,l,s), year- and location-specific

survey effort (β), and a year-specific and location-specific

random effect (δt,l) shared among species:

μt,l,s ¼ exp ln N t,l,sð Þ+ β× effortt,l + δt,lð Þ,

with a vague prior for the effect of survey effort:

β�normal 0,10ð Þ:

The empirical variable for effort is the z-standardized

total hours searched by all survey groups at a site on a

day. After accounting for the effect of survey effort, we

modeled additional variation in expected counts for

each survey or monitoring day as a random effect shared

among species. This random effect can be thought of as

the combined effects of survey-specific variation in

detection due to processes such as variation in observer

experience and local weather conditions (Riecke

et al., 2021):

δt,l �normal 0,ς2
� �

,

ς� gamma 1,1ð Þ:

For the abundance submodel, we assigned priors for ini-

tial population abundance indices for each species at

their first encounter (f sitei,speciesi) at a study site as a func-

tion of the initial survey effort and the initial count:

N f l,s,l,s � gammaðexp½lnðyf l,s,l,sÞ+ ðeffortf l,s,l,s × − 0:1Þ�,1Þ:

We modeled changes in population size (N) from 1 year

to the next for each species at each site as a function of

year (t), location (l), and a species(s)-specific population

growth rate (λ):

N t+1,l,s ¼N t,l,s × λt,l,s:

Variation in population growth rate was, in turn,

modeled as a function of a species-specific mean popula-

tion growth rate (γs), and species-specific random vari-

ance in population growth rate:

λt,l,s � lognormal γs,σ
2
s

� �
,

γs �normal 0,1ð Þ,
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σ2s � gamma 1,1ð Þ:

Finally, for each species at each location, we projected

the abundance index into the future using Monte Carlo

simulation from the posterior distributions of

species-specific population growth rate (λt,l,s), and

species-specific population growth rate variance (σ2s ):

N t+1,l,s ¼N t,l,s × λt,l,s,

λt,l,s � lognormal γs,σ
2
s

� �
:

We defined local “extirpations” as locations at which the

expected count of a species given mean effort was fewer

than 0.1 individuals, and calculated extirpation probabil-

ity for each species at 10, 20, and 50 years into the future.

Thus, one minus the extirpation probability is the proba-

bility of population persistence, and it is that value (prob-

ability of persistence) for each species from the core

NABA model that moves forward (represented by 1k

samples from the final year of the simulations) into the

calculation of the risk index for the A group species.

The above model and 50-year projections were used

for 162 species in the A group with a sufficient number of

observations (passing the filters described above); note

that the total number of A group species is 184, not

162, because another 22 species are in the A group as a

consequence of their presence only in the Shapiro dataset

(107 A group species are present in both datasets). For a

different set of 105 species in the B group, we used a less

complex model than the one described above. These spe-

cies (a subset of the B group) were present in the NABA

dataset, but with too few observations (a median pres-

ence of two sites per species) to be included in the core

NABA model. However, in the interest of presenting

maximal information on all species and using all avail-

able data, we estimated trends through time for this sub-

set of the B group; the results are reported but not

incorporated into the risk index calculation for these spe-

cies. In this model, the counts (y) were also modeled with

a Poisson distribution given the expected count for each

location and year (μt,l), where t is the year and l is the

location:

yt,l �Poisson μt,l
� �

:

The expected count (μt,l) was then modeled as a linear

function of a location-specific intercept (αl), a location-

specific year effect (β1Þ, and a site-specific effect of

effort (β2Þ:

ln μt,l
� �

¼ αl + β1,l ×yeart + β2,l × effortt,l:

The intercept and both beta coefficients were drawn from

normal priors, with the normal truncated at zero to be pos-

itive for effort (β2Þ; the means and variances of

those distributions were in turn drawn from hyperpriors

(thus estimating effects across sites) with means drawn

from normal distributions (with mean of zero and vari-

ance of 100) and variances drawn from gamma(1,1) as in

the core model above. For 35 species present at only a sin-

gle site, the model was run without the hierarchical

(across-sites) structure. The output of these secondary

models (for the 105 species) was retained as a directional

probability (the fraction of the posterior distribution above

zero for species with a positive year coefficient, and below

zero for species with a negative year coefficient).

All Bayesian models were implemented using JAGS

(version 4.3) and the jagsUI package (Kellner, 2017) in R

(R Core Team, 2020). The core model (for A group spe-

cies) was run with three chains for 500k iterations, with a

250k iteration burn-in. The secondary models (for the

105 B group species with some presence in the NABA

data) were run with two chains for 2k steps and a 1k

burn-in. Model diagnostics included inspection of plots of

chain histories (all chains converged; bR<1:01), and effec-

tive sample sizes.

Variable creation part 1b: Phenology

A potential issue with once-per-year sampling, as in the

NABA data, is sensitivity to phenological shifts. For

example, earlier spring emergence associated with a

warming climate could cause a midsummer census date

to fall after a population peak, and thus appear as a

reduction in population density. This might be especially

relevant for species with fewer generations per year

(univoltine or bivoltine species) where the average flight

date tends to be correlated with the emergence date

(Wilson et al., 2007), but it could be relevant for any spe-

cies depending on the timing of peak population produc-

tivity. Conversely, we have found that earlier emergence

for multivoltine butterflies in low-elevation California

tends to be associated with elevated numbers throughout

the summer as populations have more time for growth

(Forister et al., 2018). To consider these possibilities here,

we developed an alternative version of our core Bayesian

model (described above) in which the sampling date is

included as a linear covariate with effects estimated sepa-

rately for univoltine and multivoltine species. Sampling

date in the NABA dataset varies among sites and years, and

has been advancing at the rate of a little more than 1 day

per decade when estimated across sites (Appendix S1:

Figure S1). Results from that model, including effects of
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sampling date on the different voltinism groups, were

nearly indistinguishable from the results of our primary

model (see Appendix S1: Figure S1 for this and other

relevant results), thus in the interest of parsimony we do

not include the phenological term in our core model and

results presented throughout the rest of this paper.

We also used the more temporally intensive Shapiro

dataset, with biweekly samples (described in detail in the

next section), to further explore potential biases with

once-per-year census data (as in the NABA dataset). These

analyses focused on the years since 1999 at the five

low-elevation Shapiro sites, for which counts of individuals

are available, as opposed to presence and absence observa-

tions that are available for earlier decades at all sites. Using

species with at least 10 years of data, we calculated the fol-

lowing indices for each species at each site, using generalized

linearmodels with Poisson error and a log link function:

1. rate of change in the date of the first flight, estimated

as the year coefficient from models predicting the date

of first observation in each year;

2. rate of change in total annual abundance (summed

across all visits), as the year coefficient from models

that included (in addition to year) the number of sam-

pling days as a covariate for effort;

3. rate of change similar to the previous, but instead of

total annual abundance the dependent variable was

the count of individuals on a randomly selected day

that a given species was observed in a given year; day

of the year was included as a covariate for phenology.

For the third index, change in abundance based on simu-

lated once-per-year sampling, the single day in each year

was restricted to the window between 15 June and

15 August to correspond to variation in midsummer count

circles hosted by NABA. With those three indices,

representing change in phenology, change in annual

abundance, and change in abundance on a single census

day per year, we used simple Pearson correlations to ask if

species that have emerged earlier since 1999 would appear

to be in decline based on the once-per-year sampling, as

predicted by the idea of a missed peak of abundance

(discussed above). We also asked if any trends in abun-

dance detected with the simulated single census point data

would align with change over time inferred from analysis

of counts of abundance summed over all visits in a year.

Variable creation part 2: Shapiro transect
data and models

In total, 10 long-term study sites across Northern

California have been monitored for between 35 and

51 years (depending on the site), with the presence of all

butterflies noted along fixed routes every 2 weeks during

the flight season. Data used here were compiled in 2021,

including observations through 2020 (Forister, 2023a);

earlier years were truncated so the dataset starts at 1985,

except for three sites where data collection began in

1988. Species by site combinations of at least 8 years

were retained for analyses of 133 species. Additional

details on sites, butterflies, and field methods have been

described elsewhere (Forister et al., 2010; Halsch et al.,

2021; Shapiro, 2022). In brief, data from the Shapiro

sites have been analyzed using hierarchical Bayesian

linear models in which the response variable (the num-

ber of days a species is observed in a year) is modeled as

a binomial process, with a beta coefficient from the

year-term in the linear model representing change

through time in the probability that a species is

observed (Halsch et al., 2021; Nice et al., 2014). Here we

use the version of this model and implementation as

described in Forister et al. (2021) in which the model

was run separately for each species and beta coefficients

for years are estimated within and across sites; the

higher level coefficients (across sites) are used as indices

of population change for each species across the

Northern California sites. As with the NABA models,

model diagnostics included inspection of convergence

and effective sample sizes. For downstream analyses

(the creation of the risk index for A group species), 1k

samples were retained from the posterior distributions

of the year coefficients estimated across sites for each

species. For two species, Lycaena rubidus and Agraulis

vanillae, the year coefficients were extreme outliers

(in the negative and positive direction, respectively) and

were not used in the creation of the risk index values

(described below) but we do include those coefficients

in visual summaries of patterns across species.

The year coefficients from this modeling approach

have been shown to be effective indices of change in

total abundance as reflected in total counts of individ-

uals that are available from a subset of years and sites

(Casner, Forister, Ram, & Shapiro, 2014). Unlike the

main NABA model, described in the previous section,

we have not taken a forecasting approach with the

Shapiro data. The two datasets have different strengths

and weaknesses. The strengths of the Shapiro data are

the intensity and consistency of observation, which

lend precision to estimates of species-specific change

through time. In contrast, the NABA observations are

only once per year but, because they are counts of

individuals for all years, they can be used to estimate

population growth rates (see model description above),

which can in turn be used to forecast population

occupancy.
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Variable creation parts 3 and 4: Geographic
ranges and voltinism

Expert-derived range estimates from Glassberg (2017,

2018) were generated from Keyhole Markup Language

(.kml) files for each species. The range of each species

was separated by voltinism (the number of generations

per year in different portions of the range), with spatial

polygons retained separately for univoltine, bivoltine,

and multivoltine regions. Quantitative area estimates

were then derived for each species within the USA and

Mexico using the area function in the R package raster

v3.5-11 (Hijmans et al., 2021), which estimates area based

on the size of raster cells. For species with ranges span-

ning from the 48 states into Canada and Alaska, we

scanned range maps from Scott (1986) and quantified

those northern range portions with the software ImageJ

(Collins, 2007). These area estimates were added to the

values derived from the other sources (Glassberg, 2017,

2018). In general, area estimates become biased closer to

the poles, but our use of range estimates is relative, and

we expect the imprecision to have little effect on results.

In addition to estimating the total area of geographic

ranges, the outlines of the expert-derived ranges were

used for multiple purposes, including calculating the

fraction of each range that is univoltine. For simplicity,

we focused on a univoltine versus bivoltine plus multivol-

tine comparison, rather than considering bivoltinism as a

distinct category. The outlines of the expert-derived

ranges were also used to calculate exposure to land use

and climatic variables (as described in the next section).

Note that these other lines of geographic information,

from voltinism to exposure to development and climate

change, are focused on the 11 western US states and do

not consider, for example, climate change in other

regions.

Variable creation parts 5–7: Land use,
climate, and climate change

Previous work with butterflies in our region has revealed

effects of land use and climate change that are complex,

potentially interacting, and dependent on both the spe-

cies involved and the landscape context (Casner, Forister,

O’Brien, et al., 2014; Forister et al., 2018; Halsch et al.,

2021). Summarizing exposure to land use and climate

change is not a simple task, but we have taken the rela-

tively straightforward option of using the range outline

(described in the previous section) to quantify these

stressors within the range of each species. Note that this

differs from the use of point locations to quantify proximity

to, for example, urban development (Jamwal et al., 2021).

The range-outline approach is a better fit for our goals

simply because all species have the same starting data

(the expert-derived ranges), which would not be true of

396 species using available point-occurrence records in,

for example, iNaturalist. For highly mobile animals, like

butterflies, the range-outline method has another

advantage in that we do not have to assume that point

locations of observations represent the only or most rel-

evant habitats.

To quantify land use change, we reclassified the 2020

Cropland Data Layer (USDA, 2020) into land cover types

of agriculture, development, or natural and seminatural

habitats using the associated Cropland Data Layer

scheme; all crops were classified as agriculture, develop-

ment of any intensity level as development, and

remaining land cover types (including pastureland) as

natural or seminatural habitat. For each species, we used

the spatial polygon generated from the range map to clip

the rasterized land cover types and calculated the propor-

tion that was agriculture or development. Because of the

form in which we acquired the spatial data, this process

was done separately for regions of different voltinism,

and these were summed to a single value for each species

(see Appendix S1: Figure S2; e.g., of range-wide exposure

to land use).

To estimate climate change exposure, we used

TerraClimate data for minimum temperature, maximum

temperature, and precipitation (Abatzoglou et al., 2018),

which we resampled from ~4 km2 spatial resolution to

~40 km2 for computational efficiency. Using multivariate

Mahalanobis distance as a measure of departure

(Abatzoglou et al., 2020; Farber & Kadmon, 2003), we cal-

culated departure from baseline conditions (1958–1987)

for the most recent 30 years (1991–2020) for each cell. To

estimate exposure to climate change, we calculated the

rate of change in departure over time using Theil–Sen

slopes (Sen, 1968; Theil, 1950) which estimate the median

slope between each pairwise set of observations and are

relatively robust to outliers near the start or end of a series.

We generated a raster of these trends in departures for the

11 western states. For each species, we then clipped the

climate departure raster layer using the species range

maps as spatial polygons and calculated the mean climate

change exposure across that portion of the range (as with

land use, this was done separately by voltinism, but then

added for a single value per species for further analyses;

see Appendix S1: Figure S2 for examples). We also calcu-

lated 30-year climate normals (1991–2020) for minimum

temperature, maximum temperature, and precipitation

annually and within each season across the entire range

for each species. Among those three variables, precipita-

tion was recently found to be predictive of changes in but-

terfly abundance across the West (Forister et al., 2021),
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thus it was used as a static description of climate for

inclusion in the composite risk index (described below).

Variable creation parts 8 and 9: Wingspan
and host range

Among the many morphological and natural history

traits that could be informative of status and risk, body

size and ecological specialization are widely studied, and

thus relevant data are available for many species. More

narrow diets are often associated with greater sensitivity

to habitat loss and other disturbances (Hughes et al.,

2000), and dispersal ability is a key determinant of

metapopulation resilience in the face of fragmentation or

other stressors. Wingspan has been shown to be a proxy

for dispersal ability in butterflies (Sekar, 2012), and the

values derived here were taken primarily from Opler

(1999), and also from Warren et al. (2013). Similarly with

diet breadth (or host range), we used a single source for

the vast majority of species (Scott, 1986), supplemented

with Brock and Kaufman (2006) and Lotts et al. (2007).

We gathered both the number of plant genera and

plant families reported as caterpillar hosts for each species,

and then calculated a combined index of host range as the

number of taxonomic families plus the natural log of the

number of genera. This calculation of taxonomic host

range puts the most weight on the number of families but

allows for some influence of the number of genera eaten.

For example, a species that uses hosts in two genera in

two families would have the range 2.69 (2 + ln(2)), while

a species that uses plants in three genera in two families

would have the range 3.10 (2 + ln(3)). We did not attempt

to gather species-level host records, for which too much

data would be missing or unreliable.

Products part 1a: Transformations prior to
risk index calculation

In total, we compiled nine variables that contribute to

the prioritization of A and B group species in different

ways: (1) 50-year occupancy projections (probabilities of

population persistence) based on NABA data; (2) historical

rates of change from the Shapiro data; (3) geographic

range based on expert assessment; (4) exposure to agricul-

tural and other developed lands; (5) exposure to climate

change; (6) average annual precipitation throughout the

range; (7) the fraction of the range with one generation

per year; (8) wingspan; and (9) an index of dietary speciali-

zation or host range (Figure 1). Prior to their use in

assigning a risk value to each species (discussed in the next

section), each variable was subjected to a specific set of

transformations that resulted in a variable with a range

0 to 1, where larger values represent greater risk.

Depending on the nature of the variable (when larger

values do or do not naturally represent higher risk), the

transformations included a change of sign, and (for all var-

iables) standardization between 0 and 1 (by dividing by

the largest value). In some cases, for highly skewed vari-

ables, a natural log transformation was applied as the first

step, and all transformations and scaling steps are illus-

trated in Appendix S1: Figure S3.

For visualization of the transformed and scaled vari-

ables and for comparison among species, we divided the

distributions (Appendix S1: Figure S3) into quantiles and

assigned circles of different sizes to the different intervals,

with larger circles indicating larger values and greater

assumed risk. For most of the variables, we found that

the following breakpoints provided a useful assignment

of circles for visualization: 0.15, 0.5, and 0.85; in other

words, the interval from 0 to 0.15 was assigned the

smallest circle (the least risk), from 0.15 to 0.5 the next

largest, and so forth. Breakpoints differed for some of the

more skewed variables (e.g., host range), but the results

are interpreted in the same way (larger circles represent

larger assumed risk).

Products part 1b: Calculation of risk index
for A and B group species

Here we discuss how the variables described in the sec-

tions above are combined into a weighted sum that

becomes the risk index for each of the 396 species. This

process happens in parallel for the A and B group species,

but these processes are not entirely disconnected, as the

monitoring-based risk index for the A group is studied in

relationship to the other variables (geographic range,

voltinism, etc.) for that group, and the lessons learned

from that analysis inform the structure of the weighted

sum for the B group species.

The A group taxa are those species for which data

were available from at least one of the monitoring pro-

grams, the Shapiro transect or the NABA network of

count circles. For these species, we calculated a weighted

sum based on those two lines of information with

weights split evenly between them: 50% NABA and 50%

Shapiro. Thus, a species with the most severe declining

values for each dataset would receive a composite risk

score of 1. To incorporate uncertainty retained from

Bayesian analyses of the NABA and Shapiro data, the

composite risk index was recalculated 1k times using 1k

samples of the relevant posterior distributions; we then

calculated a mean and 85% highest density interval of

risk for each species. Alternative weighting schemes
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among all variables (including the two monitoring

variables) can be explored using an interactive, online

tool; see Appendix S1.

The B group species are those lacking monitoring

data. Thus, we used a composite of the other seven vari-

ables to estimate risk. We experimented with a number

of weighting schemes for those seven variables and set-

tled on an approach that was partly influenced by previ-

ous research (e.g., Forister et al., 2021) but also informed

by an additional analysis of the species in the monitoring

data. Specifically (for that additional analysis), we took

the composite risk index for the A group species (based

on NABA and Shapiro data) and used a linear regression

model to determine which of the other seven variables

was the most predictive of that risk index (following gen-

eral protocols with other Bayesian models as described

above). The exact weighting scheme for B group species

(influenced partly by results of the analysis of the

A group) is described fully in the results below. Clearly

many schemes are possible for a weighted sum of seven

variables, and we report correlations among outcomes

from different schemes. Finally, many of the B group spe-

cies had some data from the NABA dataset that were not

sufficient for inclusion in our main model and occupancy

forecasts. For those species, we ran a less complex model

(described above as the secondary set of NABA models)

and reported the results along with other B group results,

but we did not incorporate those values into the B group

risk index to maintain consistency in risk index

calculations.

The calculation of the risk index for both the A and

B groups relied on a complete data matrix. For most of

the variables used for the B group, there were no miss-

ing values, specifically for all of the variables deriving in

part from the expert geographic ranges: range area,

voltinism, precipitation, development, and climate

departure (Figure 1). A few species lacked data for host

range, and these we filled with interpolation of the

median value calculated across all species. Similarly,

median interpolation was used with the observational

data and the A group species. In other words, a species

without sufficient NABA observations for analysis was

given the median value associated with that variable

(across other species in that dataset) prior to the calcula-

tion of the risk index.

Products parts 2 and 3: Geographic and
phylogenetic visualization of risk

Finally, we asked how the composite risk indices were

distributed across the landscape and across the phylogeny

of western butterflies. From a spatial perspective, we

calculated both the cumulative estimated occurrence of

at-risk species (separately for each cell in a raster

covering the extent of the 11 western states) and the aver-

age risk among species present in a cell. We did this sepa-

rately for the A and B group species, and we restricted

analyses to only species with higher risk values by

subsetting to the upper 75th quantile of risk values sepa-

rately for each list (A and B). Within those higher risk

groups, we converted each species range map from a spa-

tial polygon to a raster layer where values within the

range were set to 1 and values outside the range to 0. We

summed these values across all rasters to produce a new

raster of cumulative estimated species occurrence

(also referred to simply as “cumulative occurrence”). To

calculate the mean risk for each cell, we divided the

cumulative risk index raster by the cumulative occur-

rence raster.

From the evolutionary perspective, we used the phy-

logeny from Zhang et al. (2019) for all 845 butterfly spe-

cies from the USA and Canada. Briefly, this tree was

based on 756 universal single-copy orthologs we identi-

fied from 36 reference genomes using OrthoMCL (Li

et al., 2003). Sequences of these orthologs were aligned

using both local (BLAST [Altschul et al., 1997]) and

global (MAFFT [Katoh et al., 2002]) alignment methods,

and only positions that were consistently aligned by both

methods were used. Sequences of nonreference species

were derived by mapping the Illumina reads to the exon

sequences of the reference species and performing

reference-guided assembly. Multiple sequence alignments

(MSA) of different orthologs were concatenated to a sin-

gle MSA. This MSA was partitioned by codon position

and used to build a tree by IQ-TREE (version 1.6.12)

(Nguyen et al., 2015) with the most suited evolutionary

model automatically found by IQ-TREE.

The phylogeny was imported as a time-calibrated

.tre file into R and pruned to our focal western butter-

flies (the combined A and B group lists, minus three

species with taxonomic conflicts). The package ggtree

(Yu et al., 2017) was used to plot a phylogeny with tips

labeled by risk categories assigned based on the

quantiles of the risk distributions separately for the

A and B group species. Specifically, species in the upper

90th quantile were labeled as “high-risk,” species

between the 75th and 90th quantiles were labeled as

“medium risk,” and species below the 75th were “low

risk.” Finally, the “phylosig()” function from phytools

(Revell, 2012) was used to calculate λ and K (with 1000

simulations for the permutation test) as measures of

phylogenetic signal for the continuous risk index across

all species, which in this context is informative with

respect to the extent to which closely related species

share similar levels of risk.
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RESULTS

We calculated an index of risk for 396 species, which

includes two groups: 184 species in the A group with

extensive monitoring data, and 212 species in the B group

without observational data (or without enough to be used

in our primary population models). The B group species

tend to have smaller geographic ranges (Appendix S1:

Figure S4a), which in part explains their reduced pres-

ence (just by geographic chance) in monitoring programs,

but the two groups differ in other ways (Appendix S1:

Figure S4). The B group species have slightly lower

exposure to development (Appendix S1: Figure S4b) and

moderately higher exposure to climate change (Appendix

S1: Figure S4c). The higher climate change exposure is

explained in part by the greater presence of more south-

ern species in the B group, as seen by latitudinal mid-

points (Appendix S1: Figure S4g) and qualitative

characterization of range (Appendix S1: Figure S4h).

For the A group species, we modeled historical and

projected population trajectories using different sources

of observational data. Consistent with previous work

with NABA data, our new model with shared

(across-species) observation heterogeneity found that a

majority of species (71%) had annual population growth

rates below replacement (Appendix S1: Figure S5). We

used those estimated annual growth rates and the most

recent year of observed counts to simulate 50 years into

the future. The median fraction of extant locations

(or probability of local persistence) per species at 50 years

was 0.60, and the fraction of extant locations was posi-

tively related to variation in historical population growth

rates among species (Appendix S1: Figure S5). Results

from analyses of Shapiro data also found that a majority

of species exhibited downward trends through time of

varying magnitude (84.5% of species had negative year

coefficients).

Our risk index and ranking were based on a combina-

tion of evidence from the NABA and Shapiro datasets,

but note that the A group species are shown in Figure 2

with risk information associated with the other seven

variables (geographic range, exposure to development,

etc.), even though the actual ranking of the A group is

based solely on the observational data. We present the

information in this way because we acknowledge the

imperfect geographic coverage of monitoring programs

and the inherent uncertainty in population models. Thus,

the reader or conservation practitioner can easily see if

two species with similar risk values in the A group (based

on NABA and Shapiro) potentially have similar risks

based on other variables like range size.

Without observational data, the ranking of B group

species required a partitioning of weights among the

other lines of information. To partly inform that process,

we used the A group species to estimate the effects of

other variables on the risk index (based on NABA and

Shapiro data). The model explained a relatively small

proportion of variance in the risk index (Appendix S1:

Table S1), but did demonstrate that smaller wingspans

(99% probability of effect) and lower range-wide precipi-

tation (98% probability of effect) were associated with risk

for the A group species. In addition, we also suspected

climate change would be important based on our previ-

ous work with western butterflies (Forister et al., 2021;

Halsch et al., 2021). This was especially true given the

large presence of B group species with ranges in the

desert southwest (Appendix S1: Figure S4h), a region

heavily impacted by warming and drying trends. We

adopted the following weighting scheme to calculate a

single risk value for species in the B group: 20% precipita-

tion, 20% wingspan, 20% climate change, 10% develop-

ment, 10% range size, 10% voltinism, and 10% host range;

correlations among the seven variables as well as the two

observational variables (for the A group) are shown in

Appendix S1: Figure S6. As a comparison to that scheme,

we also ranked the B group species with equal weights

(14.3%) among the seven variables; the resulting risk

values were correlated at r = 0.90 (t = 29.32, df = 210,

p < 0.001) with the values from the primary scheme.

With a third weighting scheme based on 50% from each

of the average range-wide precipitation and wingspan

(the two variables identified as most predictive of risk by

analysis of the A group), the correlation with the main

scheme was r = 0.57 (t = 10.16, df = 210, p < 0.001).

The top 50 species with the highest risk values from

each of the A and B groups are shown in Figure 2 (the

other species with lower risk values are listed in

Appendix S1: Figures S7–S9). For the highest-ranked

A group species, the agreement between the two monitor-

ing schemes is apparent with large “risk circles” in both

the NABA and Shapiro columns (Figure 2a). Time series

plots for two of those top species are shown in Figure 3

(Vanessa annabella) and Figure 4 (Euchloe ausonides); in

Figure 5, neutral or upward trajectories can be seen for

Poanes melane, the species with the lowest risk index

among the A group species (Appendix S1: Figure S10).

Similar plots for all other A group species are available

through an online tool (see Appendix S1). The rankings

for the A group species are shown with 85% credible inter-

vals (Figure 2a), which are broad; this uncertainty reflects

the high interannual variability inherent to the time series

data being modeled (from both NABA and Shapiro) and

should be kept in mind when interpreting the position of

species on the A group list.

It should also be remembered that the NABA data are

based on a once-per-year census scheme, which

ECOLOGICAL MONOGRAPHS 11 of 25
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potentially raises concerns with respect to phenological

shifts: if species emerge earlier in response to warming

springs, it is possible that a midsummer count could erro-

neously infer decline if occurring past the population peak

in more recent years. We took advantage of the temporally

intensive Shapiro program, where phenological shifts

have been observed (Forister & Shapiro, 2003), to simulate

once-per-year sampling dates and compare results to a

census based on biweekly counts. Contrary to the expecta-

tion that earlier emergence might lead to a mistaken infer-

ence of decline, but consistent with recent findings

(Forister et al., 2018; Macgregor et al., 2019), earlier

F I GURE 2 Legend on next page.
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emergence tended to be associated with stable or increas-

ing populations, and univoltine and bivoltine species did

not appear as outliers in that relationship (Figure 6).

Moreover, inferences about changes in population density

over time are similar in once-per-year sampling and the

full data with many visits per year (right column of panels

in Figure 6). The role of phenological change in population

response to anthropogenic stressors, including climate

change, remains an important issue (Bonoan et al., 2021),

but does not appear to bias the results presented here (see

also Appendix S1: Figure S1 for a statistical control on phe-

nology in the core NABA population model).

Finally, we examined the distribution of the

species-level risk index geographically and phylogeneti-

cally, for which we divided the species into low-risk,

medium-risk, and high-risk categories, based on composite

risk values below the 75th quantile, between the 75th and

90th quantiles, and above the 90th, respectively. For the A

group species, the average forecast 50-year occupancy

(based on NABA data) was 33.7% of populations

extant (SD = 12.5%) for the high-risk species, 47.7%

occupancy (SD = 11.0%) for the medium-risk species, and

66.0% (SD = 13.2%) for the low-risk species. Considering

the species with medium-risk and high-risk index values

(above the 75th quantile of risk values) for the A group,

the spread of average risk across the 11 western states was

only partially associated with expected numbers of the

most at-risk species (Figure 7a,c). For example, the average

risk was high in the northern Central Valley of California

and in the northwestern region of Oregon (Figure 7a),

while the cumulative occurrence of at-risk species was

lower in those areas (Figure 7c). Similarly, the number of

at-risk species (cumulative occurrence) was high in the

Sierra Nevada, but the average risk was heterogeneously

distributed due to spatial variation in the mix of

medium-risk and high-risk species. The distributions of

risk for the B group species highlight the bias of that group

toward the most southern areas, with high average risk

along the Southern California coast (Figure 7b) and a con-

centration of at-risk species along the border between

Mexico and both Arizona and New Mexico (Figure 7d).

The phylogenetic picture of risk shows multiple clus-

ters of at-risk species, and some lineages with notably

lower risk, like much of the Nymphalidae (Figure 8). The

families sharing the disproportionate amount of risk are

the Lycaenidae (with 17% of species in the high-risk cate-

gory, above the 90th quantile of risk) and the Hesperiidae

(with 14% of species at high risk); these are followed by

the Riodinidae (with 13% of species at high risk, albeit

based on a small sample size from a family represented

by only eight species) and the Pieridae (with 9% of species

at high risk). The percentages of high-risk species in the

Papilionidae and Nymphalidae were 8% and 2%, respec-

tively (Figure 8). Tests of phylogenetic inertia were con-

sistent with the observation of phylogenetically clustered

risk (Pagel’s λ = 0.38, p < 0.001; Blomberg’s K = 0.049,

p = 0.001 based on 1k randomizations), which is evident

not only at the family level, but also at lower taxonomic

levels, including (among others) within the genera

Lycaena, Agathymus, and Eurema (Figure 8).

F I GURE 2 The top 50 species with the highest risk values are in the A group (on the left) and the B group (on the right). The two

panels have some features in common, and some unique elements. In common they both show the extent to which different variables are

associated with higher or lower risk for each species: a large circle under NABA occupancy, for example, marks a species that we infer as

being at risk because of low forecast occupancy (probability of population persistence) across currently extant locations; similarly, a large

circle under development indicates a species at risk because of high exposure to developed lands, and a large circle under geographic range

indicates corresponding risk associated with a relatively small range. The sizes of the circles were assigned separately within the two lists,

A and B group species, and thus indicate relative differences within those lists. Although all variables are shown for comparison, the overall

risk ranking for the A group species is based solely on the first two variables (NABA occupancy and Shapiro monitoring, to the left of the

vertical gray line), while the ranking for the B group species is based entirely on the other seven variables (see main text for details, and

Figure 1). Both panels also have in common the quantitative risk values shown to the right (e.g., the risk index for Vanessa annabella in

panel (a) is 0.687); note that the risk values for the A group species include 85% credible intervals (in parentheses), encompassing

uncertainty derived from Bayesian analyses of both NABA and Shapiro data. The capital letters (N, S, E, and W) running down the left side

of each panel are qualitative biogeographical descriptions indicating where the mass of a geographic range lies relative to the western USA

(N and S indicate species found primarily north and south of the USA borders with Canada and Mexico, respectively; W indicates species

with the majority of their range in our focal region; and E indicates species found either mostly in the eastern USA or with a

transcontinental distribution), and the asterisks next to species names flag taxonomic issues (see Appendix S1: Table S2). A unique element

of the panel on the left is the sample size in parentheses, for example, “(14,10)” for Vanessa annabella, which is the number of locations

from which data were included from the NABA and Shapiro datasets, respectively. Finally, on the far right of panel (b), the lambda symbols

represent the results of individual time series models run for the species present in the NABA program but without enough sites and years to

be included in the main model (and thus not a part of the A list); a blue symbol indicates a species with an 80% or greater probability of

increasing in recent years, while a red symbol indicates an 80% chance of decreasing, and black is neither increasing nor decreasing. The

other species (beyond the top 50 highest ranked shown here) are included in Appendix S1: Figures S7–S9.
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DISCUSSION

Our goal has been to organize and analyze heterogeneous

data sources in a way that allows conservation biologists

to identify the butterflies in the 11 western US states that

are most likely to suffer serious reductions in range or

population size in the coming years. It has not been our

objective in this paper to document butterfly declines or

to identify traits that make insects more or less sensitive

to population stressors, as these topics have been

addressed elsewhere in North America (Forister et al.,

2021; Schultz et al., 2019; Wepprich et al., 2019), the

F I GURE 3 Overview of site-specific trends through time for Vanessa annabella at Shapiro sites (on the left) and NABA sites (on the

right and along the bottom). Plots for Shapiro sites are shown with decreasing elevation and colored to match the elevational profile of

Northern California (cooler colors are montane sites) shown below the map of the western USA. The y-axes for Shapiro plots are the fraction

of days a species was seen at a site in a year (Shapiro data were truncated in 1984 for analyses, but earlier years are shown here and in

Figures 4 and 5). Plots for NABA sites are shown with decreasing latitude (starting with the most northern sites), from the top right to the

bottom, with symbols matching the locations shown in the central map. Values shown in NABA plots have been adjusted for variation in

sampling effort, and values plotted are total counts of individuals on a natural log scale. Also shown on the central map is the geographic

range of V. annabella (Glassberg, 2017), with the multivoltine portion of the range (closer to the coast) shown as darker gray. Adult and

caterpillar images are by Camryn Maher, copyright 2022.
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Neotropics (Janzen & Hallwachs, 2019; Salcido et al.,

2020), and numerous other parts of the world (Fox, 2013;

Nakamura, 2011; Wagner, 2019). We hope that our work

on species prioritization advances the issue for conserva-

tion practitioners using mixed data types with uneven

spatial coverage and uncertainty in historical trends.

Although some parts of the world (notably countries in

Europe) have dense coverage with standardized monitor-

ing, prioritization in most of the world will involve some

mix of monitoring and trait-based inference.

The western states have been our region of study,

rather than the entire USA, because the impacts of cli-

mate change are severe and distinct in this arid region

(Gonzalez et al., 2018), and the butterfly fauna is simi-

larly shaped by a unique topography and climatic history

(Hawkins, 2010; Shapiro, 1996). As a consequence of

expansive areas with low human population density,

about half of the butterfly species in the region are not

included in the monitoring datasets used here, yet we

have brought together information on the entire fauna

(with the exception of a few species with rare occur-

rences, mostly strays across the USA–Mexico border).

Because of this, our study has an apples-and-oranges

structure (species with and without monitoring data) that

extends to the interpretation of the risk index values and

engenders certain ironies. Chief among the ironies of our

work is the fact that we rank B group species in part by

certain variables (geographic range, exposure to climate

change, etc.) that are not strongly associated with

declines in the species for which we have historical

records (the A group). In other words, considering

Figure 2, the A group species near the top of the list do

F I GURE 4 Overview of site-specific trends through time for Euchloe ausonides at Shapiro sites (on the left) and NABA sites (on the

right). Plots for Shapiro sites are shown with decreasing elevation and colored to match the elevational profile of Northern California (cooler

colors are montane sites) shown below the map of the western USA. The y-axes for Shapiro plots are the fraction of days a species was seen

at a site in a year. Plots for NABA sites are shown with decreasing latitude (starting with the most northern sites), with symbols matching

the locations shown in the central map. Values shown in NABA plots have been adjusted for variation in sampling effort, and values plotted

are total counts of individuals on a natural log scale. The geographic range of E. ausonides (Glassberg, 2017) is shown as the gray-shaded

area on the central map. Adult and caterpillar images are by Camryn Maher, copyright 2022.
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not necessarily have the smallest ranges, and the same

can be said of other variables. Even for the two variables

(wingspan and average precipitation), which do predict

risk in the A group, the variance explained is low

(Appendix S1: Table S1) yet we still emphasize these vari-

ables in ranking the B group species. We discuss these

apparently counterintuitive decisions below, and then

discuss phylogenetic and geographic hotspots of risk.

Finally, we end with a consideration of individual taxa

most deserving of attention given the available evidence.

Among the complexities of variables potentially asso-

ciated with risk, an understanding of geographic range

starts by noting that the A group species have broader

geographic ranges (Appendix S1: Figure S4a), which is

part of the reason they are present at enough NABA sites

to be included in our core population model. Thus the

fact that many of the most severely declining species are

widespread (e.g., Vanessa annabella in all 11 states) does

not diminish the logic of prioritizing B group species

based in part on small range size, which is a well known

determinant of risk (Staude et al., 2020). Similarly, the

effects of voltinism and ecological host specialization are

relatively straightforward: everything else being equal,

we expect a species with multiple generations per year

(a trait often associated with increased dispersal) and an

ability to utilize many hosts to be more resilient to any

number of stressors than another species without those

traits (Eskildsen et al., 2015). We have previously

observed the resiliency of multivoltine species during a

mega-drought in the western USA, where species with

multiple generations per year were able to take advantage

of earlier springs and greater time for population growth

to temporarily reverse downward trajectories of multiple

decades (Forister et al., 2018).

The interpretation of other variables is less straight-

forward, the most important among them being exposure

F I GURE 5 Overview of site-specific trends through time for Poanes melane at Shapiro sites (on the left) and NABA sites (on the right).

Plots for Shapiro sites are shown with decreasing elevation (cooler colors are montane sites) and colored to match the elevational profile of

Northern California shown below the map of the western USA. The y-axes for Shapiro plots are the fraction of days a species was seen at a

site in a year. Plots for NABA sites are shown with decreasing latitude (starting with the most northern sites), with symbols matching the

locations shown in the central map and insect. Values shown in NABA plots have been adjusted for variation in sampling effort, and values

plotted are total counts of individuals on a natural log scale. The geographic range of P. melane is shown as the gray shaded are on the

central map. Adult and caterpillar images are by Camryn Maher, copyright 2022.
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F I GURE 6 Analyses of phenology and abundance using Shapiro data and three variables: (1) change in annual abundance as summed

across all visits within a year, shown as “Δ abun. (all days)”; (2) change in abundance based on a single, randomly sampled day each year,

shown as “Δ abun. (one day)”; and (3) a change in the date of the first flight, shown as a “phenological shift.” The values plotted are year

coefficients for each species from models including the year predicting each of the three variables, and Pearson correlation coefficients for

each pairwise association are shown above the plots. Negative values for phenological shift indicate earlier emergence over time. For

example, in the upper row, the negative relationship in the left panel indicates that species that emerged earlier (negative values on the

x-axis) tended to become more abundant over time (positive values on the y-axis); and the same pattern is evident when the change in

abundance is estimated with the once-per-year sampling (middle panel); finally, in the right panel, it can be seen that change through time

in abundance estimated with all of the data is positively correlated with year coefficients for change in abundance estimated with the

once-per-year (NABA-style) samples. In all plots, red points are univoltine species with one generation per year, blue points are bivoltine

species, and gray points represent species with more than two generations per year. Site names are shown at the left of each row of panels.

Two outlier points (one species at Gates Canyon and one at Rancho Cordova) were strongly negative and compressed the visualization of

other species; they are excluded here although the patterns and direction of relationships are unaltered.
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to climate change. Previous work with western butterflies

has identified warming and drying conditions as

stressors, based in particular on analyses of geographic

variation among study sites in climate change effects and

changes in aggregate butterfly density (Forister et al.,

2021). At the species level (rather than the level of indi-

vidual study sites), the same signal is not as apparent in

the present study for the A group species (in other words,

the species toward the top of the A group list do not have

particularly high exposures to climate change). This is

because most of these species have large enough ranges

that their exposure to climate change (when quantified

across the entire range) includes areas with both more

and less severe warming and drying that tend to cancel

each other out at the scale of broadly distributed species.

However, the B group species have smaller and more

southern ranges (Appendix S1: Figure S4), which is a part

of the West heavily impacted by climate change

(Gonzalez et al., 2018). Thus, we believe that exposure to

climate change is well justified as a contributing factor

to risk specifically for these species for which we lack

monitoring data.

Exposure to development (urban, suburban, and agri-

cultural lands) requires similarly careful interpretation.

F I GURE 7 The geography of risk for species with values in the upper 75th quantile of risk indices as shown in Figure 2 (i.e., combining

“medium” and “high” risk categories treated separately in Figure 8). Panels (a, b) show average risk values among those high-risk species,

separately for the A and B group species, while panels (c, d) show cumulative estimated species occurrence, again for the A group and

B group species separately.
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This is chiefly because the data most well suited to

understanding the effects of habitat destruction on

insects will rarely be collected: places that have already

been developed will not be monitored, and existing moni-

toring efforts will often be located in more pristine loca-

tions even when relatively proximate to human

habitation (Wagner et al., 2021). The Shapiro dataset is

an exception, as it encompasses a severe land use gradi-

ent from the agricultural and urban Central Valley to the

undeveloped high elevations of the Sierra Nevada. From

that program, we know that land conversion and con-

tamination (with pesticides) have effects of similar mag-

nitude at low elevations (Forister et al., 2016). Although

similar information does not exist across the West, we

included exposure to development in our rankings here

for the B group species for the simple reason that com-

mon sense suggests that a range that encompasses more

development is likely to experience increasing fragmenta-

tion and contamination in the coming years relative to a

species with less exposure.

Geographic projections of risk for B group species

emphasize the southern areas of the West (Figure 7), but

also point to specific hotspots of average risk that include

the Southern California coast. Like A group species in

the Central Valley of California, that coastal region has a

low cumulative occurrence of B group species, but on

average the species that are there in the vicinity of the

Los Angeles basin score high for our risk factors. Arizona

and southwestern New Mexico have a high concentration

of B group species with high-risk factors, thus this area

should be prioritized for future monitoring efforts. For

A group species, the Sierra Nevada (especially the northern

Sierra), the Colorado Plateau, and the southern Rocky

Mountains are hotspots of declining species (Figure 7).

These same places have been identified recently as

hotspots of imperiled species in analyses that included

plants, vertebrates, freshwater invertebrates and some

terrestrial insects (Hamilton et al., 2022).

Phylogenetically, risk values are strongly clustered

within and among families, with notable concentrations

in the Lycaenidae and Hesperiidae, with the latter in part

due to both species with small southern ranges (B group

species) and species in monitoring programs with

observed declines. The phylogenetic clustering of risk

suggests that currently unknown or unmeasured

variables could, in the future, improve our ability to

model interspecific variation in population trajectories

and extinction risk. Conversely, the nonrandom distribu-

tion of risk among species and lineages suggests that spe-

cies loss might itself be clustered, leading to shifts in the

function and composition of assemblages (Sol et al.,

2017). At present, we can say that of the high-risk

category species (with risk index values above the

90th quantile), 47.5% are Hesperiidae. The family

Nymphalidae has the lowest concentration of at-risk spe-

cies, although one of the most notably declining species

is in this family. Despite being large and dispersive and

able to use a number of exotic plants as larval hosts,

Vanessa annabella is becoming hard to find across loca-

tions that include urban centers, high mountains, and

southern deserts (Figure 3).

Although V. annabella is deservedly at the top of the

risk list (Figures 2 and 3), we stress the uncertainty in the

actual risk values that we have generated, and we do not

place much weight on the exact position of species on

that list. In other words, we believe that the top species

in the A group are indeed in historical declines that are

likely to continue in the coming years, but the fact that

one species is in the 4th position versus the 10th or even

the 25th position on the list is not necessarily important.

Small differences in, for example, the projected 50-year

probabilities of population persistence affect the positions

of those top species which have mostly similar risk values

(and broadly overlapping credible intervals). This is why

we conservatively suggest that all the top 50 species in

the A group (Figure 2) deserve closer scrutiny and in

some cases are likely to deserve protection. The fact that

rankings should be treated as approximate is also why we

have presented other lines of information (geographic

range, host specialization, etc.) for the A group, even

though the risk index ranking is based solely on the

observational data (NABA and Shapiro) for those species.

For example, Pontia protodice and Lycaena xanthoides

have nearly identical risk indices, but the latter

(L. xanthoides) is univoltine with a smaller geographic

range, greater exposure to development, and a more spe-

cialized diet (Figure 2); these are all factors that could be

considered by conservation biologists and ecologists

interested in declining insects. With respect to current

protections, only two of the species that we have studied

F I GURE 8 The phylogenetic distribution of risk, here shown as three categories: high risk (upper 90th quantile), medium risk (75th to

90th quantiles), and low risk (below the 75th quantile). Species names in black are the A group species and others (in gray) are the B group.

Butterfly images as follows: (a) Apodemia mormo (Riodinidae); (b) Euphilotes pallescens arenamontana (Lycaenidae); (c) Euchloe ausonides

(Pieridae); (d) Polites sabuleti (Hesperiidae); (e) Adelpha bredowii (Nymphalidae); (f) Papilio rutulus (Papilionidae). Photograph credits go to

Christopher A. Halsch (panels a, c, e, f); Matthew L. Forister (panels b, d). Bootstrap support is not shown but the vast majority of nodes

have support above 0.95; see Zhang et al. (2019) for additional details.
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have status at the federal level: one of the A group species

(the monarch butterfly, Danaus plexippus) is currently a

candidate for protection under the US Endangered

Species Act (ESA), and one of the B group species,

Lycaena hermes, is currently listed as threatened.

Our presentation of the top 50 species in the A group

(Figure 2) includes sample sizes (for NABA and Shapiro

datasets) that should also be considered when judging

the evidence for risk. For example, the second and third

species on the A group list (Figure 2) are represented by

data from three or fewer sites for the NABA and Shapiro

datasets. The small samples for those species are reflected

in broad intervals around the risk values, and it can be

noted that other species in the top 10 for the A list

are known to be in decline based on evidence from

two to three times as many sites (e.g., Pholisora catullus,

Atalopedes campestris, and Euchloe ausonides). The num-

ber of sites for individual species is a reflection of more

than just the amount of information available for analy-

sis. It should be remembered that the risk associated with

the NABA data derives from a multispecies population

viability analysis. In that analysis, species with fewer sites

are more likely by chance to have lower occupancy in

forecasts than species known from a greater number of

sites. This is both a methodological feature of stochastic

simulations and also reflects a biological reality in that

more widespread species are known from a greater num-

ber of NABA sites (thus geographic range is indirectly

involved in the contribution that the NABA analyses

make to our estimate of risk).

Yet another important aspect of sample size involves

A group species not represented in both of the observa-

tional datasets; for these species, we used median inter-

polation. In other words, when calculating the risk index

for a species present in, for example, the Shapiro dataset

but not NABA, we assigned a 50-year projection value

based on the median across all other species represented

in the NABA dataset. For the present effort, we consider

this to be at least a relatively simple assumption,

although we acknowledge that future analyses could use

more sophisticated interpolation perhaps including infor-

mation from closely related species. The phylogenetic sig-

nal observed here suggests that genetic relatedness could

be a tool for dealing with uncertainty and missing data in

conservation ranking.

The weight of missing data and uncertainty of course

becomes greater when we turn to the top 50 species in the

B group (Figure 2) for which monitoring data are either

absent or insufficient for robust models. Not only is robust

observational data lacking, but so many of the B group

species are similar in having small ranges in hot and dry

parts of the region that the overall spread of risk values is

smaller than for the A group. Thus, rankings in the top

50 for the B group should be treated as approximate. For

example, Strymon avalona is restricted entirely to Catalina

Island (less than 200 km2) off the coast of Southern

California. The partly wild nature of the island gives the

species a low development score and the area happens to

be characterized by only moderate departure from the cli-

matic baseline. Thus S. avalona ranks toward the bottom

of the top 50 for the B group (Figure 2), even though that

small geographic range of course puts it at a high risk of

stochastic loss. Similarly, many of the B group species

below the top 50 have negative annual trends (indicated

by red lambda symbols to the right of the panel in

Appendix S1: Figures S7–S9), albeit based on very few

NABA sites (which is why we have shown those results,

but did not use them in the calculation of the B group risk

index). In general we hope that the data organized here

for the B group species is an inspiration for greater moni-

toring of these taxa with small ranges in regions vulnera-

ble to threats that include ongoing climate change and the

loss of natural disturbance regimes (Haddad, 2018).

CAVEATS AND CONCLUSIONS

Our synthesis of status and trends for a diverse fauna faced

many challenges, and included many sources of taxonomic

and spatial bias in the data that were available to us. We

have not undertaken a formal assessment of bias for the

temporal and other patterns reported here (Boyd et al.,

2022), largely because the number of datasets to be

assessed is large and the issue deserves another

manuscript-level treatment. In addition to sources of spa-

tial bias discussed above, including the over-representation

of widespread species in monitoring programs, we close by

noting that, even for those widespread species (well

represented in census data), the information tends to be

clustered around areas of human population density. Thus,

both broad ranges (e.g., Figure 3) and relatively more nar-

row ranges (e.g., Figure 5) are not particularly well sam-

pled in terms of the spread of monitored locations in space.

We hope that these results inspire greater investment in

state-level monitoring programs (Taron & Ries, 2015;

Wepprich et al., 2019), which could eventually fill data

gaps and lead to a national understanding of butterfly sta-

tus on par with countries in Europe. The coming years

should also see the development of new models that can

take advantage of mixed data types, including those

reported from crowd-sourced platforms (e.g., Strebel et al.,

2022). Our estimation of risk has not included exposure to

pesticides, which is available at the county level for

California, but not for other states in the region, although

we know that it is an important stressor (Forister et al.,

2016; Gilburn et al., 2015).
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Another important issue that we acknowledge is that

our estimates of exposure to development and climate

change are restricted to the portions of geographic ranges

found in the 11 western states. This was mainly motivated

by our focus on the unique exposure of the region to

warming and drying trends, but it is of course the case that

wide-ranging species might have other parts of their range

subject to divergent pressures. Future analyses of risk could

quantify the heterogeneity of stressors at continental scales.

In the meantime, it is for these reasons that we have

included our qualitative range labels (N, S, E, and W) with

our rankings (Figure 2), which the reader can use to focus

as desired on species as a function of their distribution.

The traditional focus for butterfly conservation in the

USA has been at the taxonomic level of subspecies, which

is partly a consequence of the fact that population seg-

ments cannot be listed for invertebrates (thus leaving sub-

species as the next unit below full species that can be

protected). Thus, we acknowledge that our results fall

partly outside the traditional scope of conservation work

for butterflies in the USA. It is, however, entirely likely that

compounding population losses across the wild spaces of

the region have pushed many full species to the point at

which range-wide research and conservation attention are

warranted. A notable example of this is a recent effort

focused on the conservation of the monarch butterfly,

Danaus plexippus (Pelton et al., 2019), which is indeed in

our list of the 50 most at-risk species (Figure 3). Notably,

large numbers of species are higher on the list and are

equally deserving of attention. Research in the coming

years might also profitably focus on species that appear to

be relatively stable. One example (Poanes melane) is shown

in Figure 5, and others can be found toward the end of the

ranked list of species in Appendix S1: Figure S10, including

Ochlodes agricola, Papilio rutulus, and Limenitis lorquini.

We hesitate to use the common metaphor of winners and

losers. That implies that the game is over, when of course

the Anthropocene is underway. Nevertheless, the diversity

of ecologies, morphologies, and geographic ranges among

the stable or increasing species (Appendix S1: Figure S10)

suggests that much could be learned about combinations

of traits potentially associated with resilience. It is our hope

that the results presented here are a framework that will

facilitate such work in coming decades, while acknowledg-

ing the many assumptions that have been made along the

way to synthesize diverse data and organize species by

composite risk scores.
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