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Abstract

Ongoing declines in insect populations have led to substantial concern and calls
for conservation action. However, even for relatively well studied groups, like
butterflies, information relevant to species-specific status and risk is scattered
across field guides, the scientific literature, and agency reports. Consequently,
attention and resources have been spent on a minuscule fraction of insect
diversity, including a few well studied butterflies. Here we bring together
heterogeneous sources of information for 396 butterfly species to provide the
first regional assessment of butterflies for the 11 western US states. For 184 spe-
cies, we use monitoring data to characterize historical and projected trends in
population abundance. For another 212 species (for which monitoring data are
not available, but other types of information can be collected), we use exposure
to climate change, development, geographic range, number of host plants, and
other factors to rank species for conservation concern. A phylogenetic signal is
apparent, with concentrations of declining and at-risk species in the families
Lycaenidae and Hesperiidae. A geographic bias exists in that many species that
lack monitoring data occur in the more southern states where we expect that
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INTRODUCTION

Reductions in abundance, contractions in geographic
range, extirpation, and extinction have become common
features of wild plant and animal populations impacted by
the various stressors of the Anthropocene (Dirzo et al.,
2014; Turvey & Crees, 2019). Effects on individual
populations translate into depauperate assemblages of spe-
cies in remaining natural lands, even those far removed
from the most immediate effects of habitat destruction and
degradation (Brook et al., 2008; McLaughlin et al., 2002).
To the extent that the loss of evolutionary lineages
(populations, species, and higher taxonomic groups) is a
part of life on earth and always has been, the current mass
extinction crisis affords ecologists the chance to study
extinction as an important earth-system process (Benton,
2003). However, the need to maintain functioning natural
ecosystems is increasingly generating motivation among
scientists, the general public, and governmental bodies to
reverse or slow whatever biotic losses might still be
addressed (Naeem et al., 2016). Concern for functioning
ecosystems has been elevated in recent years by a steady
pulse of papers reporting declines in insect abundance and
diversity (Eisenhauer et al., 2019; van Klink et al., 2020;
Wagner, 2019; Wepprich et al., 2019) that have inspired
calls for new conservation attention focused on “the little
things that run the world” (Cardoso et al., 2020; Goulson,
2019; Wilson, 1987).

Effective conservation and management actions
depend not only on knowing which actions will be effec-
tive (Bladon et al., 2022), but also on prioritization of need
because resources to support conservation are always lim-
iting. Prioritization, in turn, depends on the synthesis of
multiple lines of information including population moni-
toring, natural history studies, and geographic surveys. For
insects, the taxonomic diversity is so great and the

impacts of warming and drying trends will be most severe. Legal protection is
rare among the taxa with the highest risk values: of the top 100 species, one is
listed as threatened under the US Endangered Species Act and one is a candi-
date for listing. Among the many taxa not currently protected, we highlight a
short list of species in decline, including Vanessa annabella, Thorybes
mexicanus, Euchloe ausonides, and Pholisora catullus. Notably, many of these
species have broad geographic ranges, which perhaps highlights a new era of
insect conservation in which small or fragmented ranges will not be the only

red flags that attract conservation attention.

Anthropocene, butterfly, climate change, demographic uncertainty, extinction,
heterogeneous data, hierarchical Bayesian model, Lepidoptera, population viability analysis

available information is so sparse (Cardoso et al., 2011)
that proactive prioritization and conservation informed by
diverse data types has rarely been an option. As a conse-
quence, insect conservation has often been motivated
largely by fragmentation and small geographic ranges
(Diniz-Filho et al., 2010; Samways, 2007). Exceptions to
that pattern include a few European countries where stud-
ies of butterflies and a small number of other insect groups
have been sufficiently thorough in terms of natural history
and monitoring that researchers have been able to priori-
tize species for conservation attention in a way that fol-
lows the International Union for Conservation of Nature
(IUCN) and the Red List framework (Bonelli et al., 2018;
Fox et al., 2011; Franke et al., 2022; Maes et al., 2012; van
Swaay et al., 2011). That depth of species-specific informa-
tion for insects is unusual, even for butterflies, and most
countries will have a more complex mix of some monitor-
ing or observational data, natural history observations,
and expert opinion (Edge & Mecenero, 2015; Geyle et al.,
2021; New et al., 1995).

Butterflies in the western USA provide an excellent
case study for the challenge of conservation prioritization
that involves a mixture of heterogeneous data types and
sources of information. The region does include butterfly
monitoring programs, but also expansive areas that are
sparsely populated and understudied, in particular the
Intermountain West with hundreds of mountain ranges
in the nearly 500 km” of the Great Basin Desert. The
most temporally intensive butterfly monitoring program
in the western USA is the Shapiro transect of 10 perma-
nent sites across Northern California that have been
monitored biweekly during the flight season for between
35 and 51 years (Shapiro, 2022). Many years before the
entomological world made a collective pivot to the prob-
lem of insect declines (Dirzo et al., 2014; Hallmann et al.,
2017), work with the Shapiro data documented shifting
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spring phenologies (Forister & Shapiro, 2003), and the
influence of land use and warming temperatures on
extensive declines in abundance and species richness
(Casner, Forister, O’Brien, et al., 2014; Forister et al.,
2010). More recently, patterns from the temporally inten-
sive Shapiro dataset were analyzed in parallel with geo-
graphically extensive monitoring data from the North
American Butterfly Association (NABA) and iNaturalist
observations across the 11 western states (Forister et al.,
2021). That effort quantified a compounding loss of 1.6%
fewer butterflies observed per year, consistent with rates
of loss from studies in other regions (van Klink et al.,
2020; Wepprich et al., 2019), and highlighted the negative
influence of warming and drying conditions on butterfly
populations in natural areas. However, the species
included in Forister et al. (2021) were only those com-
mon and widespread enough to be present with sufficient
frequency in monitoring databases to allow for inclusion
in statistical models. Moreover, an attempt was not made
to combine different lines of information into a ranking
of species for conservation concern.

Here we address that need by taking a multifaceted
approach to conservation prioritization that utilizes
observational data when available (for approximately half
the species) and a combination of data types for other
species, including natural history traits and quantitative
estimates of exposure to climate change and develop-
ment. We refer to these two groups of species, with and
without monitoring data, as the “A group” and the
“B group” species, respectively. These two groups are
treated throughout this paper in distinct but complemen-
tary ways, with the dual goal of presenting a unified
picture of risk for a regional butterfly fauna, but also with
the objective of providing a case study for how species
with different amounts of information can be mutually
informative when considered together in a conservation
context. The different data types studied for both A and
B group species are detailed below and are used (1) to
produce a quantitative ranking that highlights the taxa
most severely declining and most likely to face regional
extirpation or extinction in coming decades; and (2) to
identify geographic and taxonomic knowledge gaps in
our understanding of western butterflies. It is our hope
that these results will be used by conservation practi-
tioners and land managers to guide restoration and pro-
tection efforts, and will also motivate additional
monitoring and the development of new population
models that take maximum advantage of heterogeneous
data types. Throughout this paper, we use the word “risk”
(and related terms, like “risk index”) in a flexible way
that encompasses evidence of past decline, projected
declines, and combinations of traits that could predispose
species to ongoing and future declines. This flexibility is

necessary given the nature of our project encompassing
species for which different kinds and quantities of infor-
mation are available, but in all cases we intend the con-
cept of high risk to flag species that could profitably
receive careful attention from ecologists, conservation
biologists, and the general public.

MATERIALS AND METHODS

A schematic overview of our methods is shown in
Figure 1, emphasizing the flow of information from
external data sources through analyses to the generation
of quantitative risk assessment. All parts of the process
are discussed in detail here. The order of the sections
below follows the order of variables (red boxes) in
Figure 1, from left to right, starting with the process that
generates P(persistence) from the NABA data and ending
with wingspan and host range. After the creation of vari-
ables, the subsequent methods sections roughly corre-
spond to the main products (green boxes) in Figure 1,
from the creation of ranked lists to risk maps and the
visualization of phylogenetic risk.

Starting with the 875 taxa on the North American
Butterfly Association’s 2nd edition checklist of butterflies
occurring north of Mexico (NABA, 2018), we retained
396 species with resident (nonvagrant) status in the 11
western states (Washington, Oregon, California, Idaho,
Montana, Nevada, Wyoming, Colorado, Utah, New
Mexico, and Arizona) based on range maps in Glassberg
(2017), and collapsed 18 subspecies from that list into full
species. For clarity and to facilitate wide use of our
results, we also reference a second checklist by Pelham
(2022) in places where names differ.

Of the 396 species from the NABA list, 184 were present
in monitoring databases (either the Shapiro transect or the
NABA count circles) with sufficient frequency to be used in
population models. For those species (the A group), our
approach is to rank species based on observed and forecast
population trajectories. Acknowledging the great uncer-
tainty inherent to insect time series analyses, we present the
ranking of A group species in a way that risk associated
with other variables (e.g., geographic range size) can be
evaluated by the reader.

For the 212 species in the B group (not present in
monitoring schemes in sufficient frequency for inclusion
in core population models), we have accumulated
seven variables that form a composite picture of risk:
geographic range, exposure to developed land, exposure
to climate change, average (range-wide) precipitation,
voltinism (number of generations per year), wingspan,
and host range (or “host breadth”). We combine those
seven variables into a single risk index as a weighted
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FIGURE 1

Schematic overview of main inputs, processes, and products associated with the generation of risk index values. As

noted in the key, data sources are in brown, analyses (and other calculations) are in blue boxes, variables (used in the creation of the

risk index) are in red, and the primary products are in green. The central branching path illustrates the division of species into the

A and B groups, with monitoring data contributing to the A group risk assessment on the left, and other data types contributing to the

B group assessment on the right. The nine variables (in red) are identical to the columns in Figure 2, although labeled slightly

differently here, especially for the observational variables: “p year” is the year coefficient from analyses of Shapiro data summarizing

change through time, and “P(persistence)” is the probability of population persistence from 50-year forecasts. Variables on the right

2

(“range area,

precipitation,” etc.) are more self-explanatory. Also note that the expert-derived geographic ranges contribute to the risk

index calculations both directly (“range area” and “voltinism”) and indirectly as indicated with connecting arrows. Finally, the “Risk

analysis” process box (toward the lower left) illustrates the analysis of A group risk that was used to partly inform the weighting scheme

for the B group species.

sum, where the weights are determined in part by our
previous work with western butterflies, but also by ana-
lyses of the A group (described in detail below). The
weighting scheme and other steps in data processing
involve informed, but partly subjective, judgments (see
the section below on Calculation of risk index for A and B
group species) with respect to threats to butterflies and
natural history traits that predispose butterflies to risk.
We have presented all data decisions in a transparent

way, so that the reader can judge for themselves the con-
sequences of our methods and decisions. Alternative
weights can be assigned by researchers using an online
tool (see Appendix S1), and the primary risk values that
we present here as well as the variables that contribute to
the calculation of risk are archived (Forister, 2023b). In
the sections below, we describe first the observational
datasets (NABA and Shapiro) and associated analyses,
then the seven other variables and how they are
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combined into composite risk indices and are visualized
geographically and in a phylogenetic context.

Variable creation part 1a: North American
Butterfly Association (NABA) counts and
models

The NABA butterfly count program is a suite of hundreds
of individual locations throughout the country that are
monitored during midsummer (typically once, but in
some cases more than once) by a group of at least four
observers recording counts of all individual butterflies
seen and identified to species, in a 15-mile (24.14 km)
diameter circle. Observations from count circles in the 11
western states encompass different numbers of years at
different sites from the 1970s to the present, with the
final year in the dataset we examined being 2018 (the
data were compiled for analysis in 2019) (Oliver, 2021).
For the current project, we filtered the observations so
that we only included sites that had been monitored for
at least 10 years, with the final year being 2017 or 2018
(we did this so as not to generate forecasts for species
with a substantial recent gap in observations). More than
one monitoring day has been reported per year at a small
number of sites, and for those locations we retained only
the survey closest to the 4th of July, which is the tradi-
tional target date for these censuses. We then excluded
any site-by-species combinations in which a species was
not present for at least 10 years (not necessarily consecu-
tive years). Finally, only species meeting the latter crite-
rion for at least three locations were retained. Those
filters resulted in a dataset with 162 species from 44 loca-
tions used in the core model and associated population
forecasts (we experimented with less stringent filters but
found that model performance suffered). For species with
fewer data, we ran a second set of models with lower
thresholds, as described after the core model below.

Our previous work with the NABA data primarily
used hierarchical Bayesian linear Poisson regressions run
separately for each species (Forister et al., 2021). Here we
advance that approach using a single, multispecies model
that shares information about heterogeneity in the obser-
vation process across species observed at each site
(Riecke et al., 2021). The components of the model (each
described in turn below) include an observation
submodel, an abundance submodel, and a forecast or
simulation process that projects occupancy (the fraction
of sites with nonzero presence by species) for various
intervals of years in the future.

For the observational component, we modeled the
counts of individual butterflies (y) using a Poisson distri-
bution given the expected count of each species at each

location during each year (u, ), where ¢, [, and s identify
the year, location, and species respectively:

Yi1.s ~ Poisson (p, ).

We modeled the expected count () as a function of
an abundance index (Ny;s), year- and location-specific
survey effort (), and a year-specific and location-specific
random effect (5;;) shared among species:

Hers = exp(In(Neys) + P X efforte; +81),
with a vague prior for the effect of survey effort:
 ~normal(0,10).

The empirical variable for effort is the z-standardized
total hours searched by all survey groups at a site on a
day. After accounting for the effect of survey effort, we
modeled additional variation in expected counts for
each survey or monitoring day as a random effect shared
among species. This random effect can be thought of as
the combined effects of survey-specific variation in
detection due to processes such as variation in observer
experience and local weather conditions (Riecke
et al., 2021):

8, ~normal(0,¢?),
¢~gamma(1,1).

For the abundance submodel, we assigned priors for ini-
tial population abundance indices for each species at
their first encounter (e, species,) at @ study site as a func-
tion of the initial survey effort and the initial count:

Ny, s ~ gamma(exp[In(yy, ;) + (efforty, ;X —0.1)],1).
We modeled changes in population size (N) from 1 year
to the next for each species at each site as a function of

year (t), location (I), and a species(s)-specific population
growth rate (\):

Ny 1,Ls = Nt,l,s X xt,l,S'

Variation in population growth rate was, in turn,
modeled as a function of a species-specific mean popula-
tion growth rate (y;), and species-specific random vari-
ance in population growth rate:

15 ~lognormal (y,,67),

Y, ~normal(0,1),
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o2 ~gamma(1,1).

Finally, for each species at each location, we projected
the abundance index into the future using Monte Carlo
simulation from the posterior distributions of
species-specific population growth rate (A;;), and
species-specific population growth rate variance (c2):

Nit11s=Npis X Asps,
A5 ~lognormal (y,,07).

We defined local “extirpations” as locations at which the
expected count of a species given mean effort was fewer
than 0.1 individuals, and calculated extirpation probabil-
ity for each species at 10, 20, and 50 years into the future.
Thus, one minus the extirpation probability is the proba-
bility of population persistence, and it is that value (prob-
ability of persistence) for each species from the core
NABA model that moves forward (represented by 1k
samples from the final year of the simulations) into the
calculation of the risk index for the A group species.

The above model and 50-year projections were used
for 162 species in the A group with a sufficient number of
observations (passing the filters described above); note
that the total number of A group species is 184, not
162, because another 22 species are in the A group as a
consequence of their presence only in the Shapiro dataset
(107 A group species are present in both datasets). For a
different set of 105 species in the B group, we used a less
complex model than the one described above. These spe-
cies (a subset of the B group) were present in the NABA
dataset, but with too few observations (a median pres-
ence of two sites per species) to be included in the core
NABA model. However, in the interest of presenting
maximal information on all species and using all avail-
able data, we estimated trends through time for this sub-
set of the B group; the results are reported but not
incorporated into the risk index calculation for these spe-
cies. In this model, the counts (y) were also modeled with
a Poisson distribution given the expected count for each
location and year (y,;), where t is the year and [ is the
location:

Y.~ Poisson ().

The expected count (p,;) was then modeled as a linear
function of a location-specific intercept (oq), a location-
specific year effect (B;), and a site-specific effect of
effort (B,):

In(p,;) = oy + By X year, + B, X effort, .

The intercept and both beta coefficients were drawn from
normal priors, with the normal truncated at zero to be pos-
itive for effort (B,); the means and variances of
those distributions were in turn drawn from hyperpriors
(thus estimating effects across sites) with means drawn
from normal distributions (with mean of zero and vari-
ance of 100) and variances drawn from gamma(1,1) as in
the core model above. For 35 species present at only a sin-
gle site, the model was run without the hierarchical
(across-sites) structure. The output of these secondary
models (for the 105 species) was retained as a directional
probability (the fraction of the posterior distribution above
zero for species with a positive year coefficient, and below
zero for species with a negative year coefficient).

All Bayesian models were implemented using JAGS
(version 4.3) and the jagsUI package (Kellner, 2017) in R
(R Core Team, 2020). The core model (for A group spe-
cies) was run with three chains for 500k iterations, with a
250k iteration burn-in. The secondary models (for the
105 B group species with some presence in the NABA
data) were run with two chains for 2k steps and a 1k
burn-in. Model diagnostics included inspection of plots of
chain histories (all chains converged; R< 1.01), and effec-
tive sample sizes.

Variable creation part 1b: Phenology

A potential issue with once-per-year sampling, as in the
NABA data, is sensitivity to phenological shifts. For
example, earlier spring emergence associated with a
warming climate could cause a midsummer census date
to fall after a population peak, and thus appear as a
reduction in population density. This might be especially
relevant for species with fewer generations per year
(univoltine or bivoltine species) where the average flight
date tends to be correlated with the emergence date
(Wilson et al., 2007), but it could be relevant for any spe-
cies depending on the timing of peak population produc-
tivity. Conversely, we have found that earlier emergence
for multivoltine butterflies in low-elevation California
tends to be associated with elevated numbers throughout
the summer as populations have more time for growth
(Forister et al., 2018). To consider these possibilities here,
we developed an alternative version of our core Bayesian
model (described above) in which the sampling date is
included as a linear covariate with effects estimated sepa-
rately for univoltine and multivoltine species. Sampling
date in the NABA dataset varies among sites and years, and
has been advancing at the rate of a little more than 1 day
per decade when estimated across sites (Appendix SI:
Figure S1). Results from that model, including effects of

50O suowIIO) aANEAI) d[qEardde oy £q PaIIAOS A1k SA[ONIE VO AN JO SN 10§ AIRIQIT AUIUQ KA[IAY U0 (SUOIIPUOD-PUE-SULIAYWOd o[ AeIquauluo//:sdit) SUONIPUOD) PUE SULIA L, Ay 93§ “[€202/80/10] U0 ATRIqIT SUIUQ AAJIAL *OURY BPEAIN JO ANSIOAUD Aq 4SS [ WIA/Z001 0 1/10P/WOd Ko AeIqiounuosfeumofisay/ sy woiy paproumoq *€ ‘€207 *S10LLES



ECOLOGICAL MONOGRAPHS

| 7 0f 25

sampling date on the different voltinism groups, were
nearly indistinguishable from the results of our primary
model (see Appendix S1: Figure S1 for this and other
relevant results), thus in the interest of parsimony we do
not include the phenological term in our core model and
results presented throughout the rest of this paper.

We also used the more temporally intensive Shapiro
dataset, with biweekly samples (described in detail in the
next section), to further explore potential biases with
once-per-year census data (as in the NABA dataset). These
analyses focused on the years since 1999 at the five
low-elevation Shapiro sites, for which counts of individuals
are available, as opposed to presence and absence observa-
tions that are available for earlier decades at all sites. Using
species with at least 10 years of data, we calculated the fol-
lowing indices for each species at each site, using generalized
linear models with Poisson error and a log link function:

1. rate of change in the date of the first flight, estimated
as the year coefficient from models predicting the date
of first observation in each year;

2. rate of change in total annual abundance (summed
across all visits), as the year coefficient from models
that included (in addition to year) the number of sam-
pling days as a covariate for effort;

3. rate of change similar to the previous, but instead of
total annual abundance the dependent variable was
the count of individuals on a randomly selected day
that a given species was observed in a given year; day
of the year was included as a covariate for phenology.

For the third index, change in abundance based on simu-
lated once-per-year sampling, the single day in each year
was restricted to the window between 15 June and
15 August to correspond to variation in midsummer count
circles hosted by NABA. With those three indices,
representing change in phenology, change in annual
abundance, and change in abundance on a single census
day per year, we used simple Pearson correlations to ask if
species that have emerged earlier since 1999 would appear
to be in decline based on the once-per-year sampling, as
predicted by the idea of a missed peak of abundance
(discussed above). We also asked if any trends in abun-
dance detected with the simulated single census point data
would align with change over time inferred from analysis
of counts of abundance summed over all visits in a year.

Variable creation part 2: Shapiro transect
data and models

In total, 10 long-term study sites across Northern
California have been monitored for between 35 and

51 years (depending on the site), with the presence of all
butterflies noted along fixed routes every 2 weeks during
the flight season. Data used here were compiled in 2021,
including observations through 2020 (Forister, 2023a);
earlier years were truncated so the dataset starts at 1985,
except for three sites where data collection began in
1988. Species by site combinations of at least 8 years
were retained for analyses of 133 species. Additional
details on sites, butterflies, and field methods have been
described elsewhere (Forister et al., 2010; Halsch et al.,
2021; Shapiro, 2022). In brief, data from the Shapiro
sites have been analyzed using hierarchical Bayesian
linear models in which the response variable (the num-
ber of days a species is observed in a year) is modeled as
a binomial process, with a beta coefficient from the
year-term in the linear model representing change
through time in the probability that a species is
observed (Halsch et al., 2021; Nice et al., 2014). Here we
use the version of this model and implementation as
described in Forister et al. (2021) in which the model
was run separately for each species and beta coefficients
for years are estimated within and across sites; the
higher level coefficients (across sites) are used as indices
of population change for each species across the
Northern California sites. As with the NABA models,
model diagnostics included inspection of convergence
and effective sample sizes. For downstream analyses
(the creation of the risk index for A group species), 1k
samples were retained from the posterior distributions
of the year coefficients estimated across sites for each
species. For two species, Lycaena rubidus and Agraulis
vanillae, the year coefficients were extreme outliers
(in the negative and positive direction, respectively) and
were not used in the creation of the risk index values
(described below) but we do include those coefficients
in visual summaries of patterns across species.

The year coefficients from this modeling approach
have been shown to be effective indices of change in
total abundance as reflected in total counts of individ-
uals that are available from a subset of years and sites
(Casner, Forister, Ram, & Shapiro, 2014). Unlike the
main NABA model, described in the previous section,
we have not taken a forecasting approach with the
Shapiro data. The two datasets have different strengths
and weaknesses. The strengths of the Shapiro data are
the intensity and consistency of observation, which
lend precision to estimates of species-specific change
through time. In contrast, the NABA observations are
only once per year but, because they are counts of
individuals for all years, they can be used to estimate
population growth rates (see model description above),
which can in turn be used to forecast population
occupancy.
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Variable creation parts 3 and 4: Geographic
ranges and voltinism

Expert-derived range estimates from Glassberg (2017,
2018) were generated from Keyhole Markup Language
(.kml) files for each species. The range of each species
was separated by voltinism (the number of generations
per year in different portions of the range), with spatial
polygons retained separately for univoltine, bivoltine,
and multivoltine regions. Quantitative area estimates
were then derived for each species within the USA and
Mexico using the area function in the R package raster
v3.5-11 (Hijmans et al., 2021), which estimates area based
on the size of raster cells. For species with ranges span-
ning from the 48 states into Canada and Alaska, we
scanned range maps from Scott (1986) and quantified
those northern range portions with the software ImageJ]
(Collins, 2007). These area estimates were added to the
values derived from the other sources (Glassberg, 2017,
2018). In general, area estimates become biased closer to
the poles, but our use of range estimates is relative, and
we expect the imprecision to have little effect on results.

In addition to estimating the total area of geographic
ranges, the outlines of the expert-derived ranges were
used for multiple purposes, including calculating the
fraction of each range that is univoltine. For simplicity,
we focused on a univoltine versus bivoltine plus multivol-
tine comparison, rather than considering bivoltinism as a
distinct category. The outlines of the expert-derived
ranges were also used to calculate exposure to land use
and climatic variables (as described in the next section).
Note that these other lines of geographic information,
from voltinism to exposure to development and climate
change, are focused on the 11 western US states and do
not consider, for example, climate change in other
regions.

Variable creation parts 5-7: Land use,
climate, and climate change

Previous work with butterflies in our region has revealed
effects of land use and climate change that are complex,
potentially interacting, and dependent on both the spe-
cies involved and the landscape context (Casner, Forister,
O’Brien, et al., 2014; Forister et al., 2018; Halsch et al.,
2021). Summarizing exposure to land use and climate
change is not a simple task, but we have taken the rela-
tively straightforward option of using the range outline
(described in the previous section) to quantify these
stressors within the range of each species. Note that this
differs from the use of point locations to quantify proximity
to, for example, urban development (Jamwal et al., 2021).

The range-outline approach is a better fit for our goals
simply because all species have the same starting data
(the expert-derived ranges), which would not be true of
396 species using available point-occurrence records in,
for example, iNaturalist. For highly mobile animals, like
butterflies, the range-outline method has another
advantage in that we do not have to assume that point
locations of observations represent the only or most rel-
evant habitats.

To quantify land use change, we reclassified the 2020
Cropland Data Layer (USDA, 2020) into land cover types
of agriculture, development, or natural and seminatural
habitats using the associated Cropland Data Layer
scheme; all crops were classified as agriculture, develop-
ment of any intensity level as development, and
remaining land cover types (including pastureland) as
natural or seminatural habitat. For each species, we used
the spatial polygon generated from the range map to clip
the rasterized land cover types and calculated the propor-
tion that was agriculture or development. Because of the
form in which we acquired the spatial data, this process
was done separately for regions of different voltinism,
and these were summed to a single value for each species
(see Appendix S1: Figure S2; e.g., of range-wide exposure
to land use).

To estimate climate change exposure, we used
TerraClimate data for minimum temperature, maximum
temperature, and precipitation (Abatzoglou et al., 2018),
which we resampled from ~4 km® spatial resolution to
~40 km? for computational efficiency. Using multivariate
Mahalanobis distance as a measure of departure
(Abatzoglou et al., 2020; Farber & Kadmon, 2003), we cal-
culated departure from baseline conditions (1958-1987)
for the most recent 30 years (1991-2020) for each cell. To
estimate exposure to climate change, we calculated the
rate of change in departure over time using Theil-Sen
slopes (Sen, 1968; Theil, 1950) which estimate the median
slope between each pairwise set of observations and are
relatively robust to outliers near the start or end of a series.
We generated a raster of these trends in departures for the
11 western states. For each species, we then clipped the
climate departure raster layer using the species range
maps as spatial polygons and calculated the mean climate
change exposure across that portion of the range (as with
land use, this was done separately by voltinism, but then
added for a single value per species for further analyses;
see Appendix S1: Figure S2 for examples). We also calcu-
lated 30-year climate normals (1991-2020) for minimum
temperature, maximum temperature, and precipitation
annually and within each season across the entire range
for each species. Among those three variables, precipita-
tion was recently found to be predictive of changes in but-
terfly abundance across the West (Forister et al., 2021),
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thus it was used as a static description of climate for
inclusion in the composite risk index (described below).

Variable creation parts 8 and 9: Wingspan
and host range

Among the many morphological and natural history
traits that could be informative of status and risk, body
size and ecological specialization are widely studied, and
thus relevant data are available for many species. More
narrow diets are often associated with greater sensitivity
to habitat loss and other disturbances (Hughes et al.,
2000), and dispersal ability is a key determinant of
metapopulation resilience in the face of fragmentation or
other stressors. Wingspan has been shown to be a proxy
for dispersal ability in butterflies (Sekar, 2012), and the
values derived here were taken primarily from Opler
(1999), and also from Warren et al. (2013). Similarly with
diet breadth (or host range), we used a single source for
the vast majority of species (Scott, 1986), supplemented
with Brock and Kaufman (2006) and Lotts et al. (2007).

We gathered both the number of plant genera and
plant families reported as caterpillar hosts for each species,
and then calculated a combined index of host range as the
number of taxonomic families plus the natural log of the
number of genera. This calculation of taxonomic host
range puts the most weight on the number of families but
allows for some influence of the number of genera eaten.
For example, a species that uses hosts in two genera in
two families would have the range 2.69 (2 + In(2)), while
a species that uses plants in three genera in two families
would have the range 3.10 (2 + In(3)). We did not attempt
to gather species-level host records, for which too much
data would be missing or unreliable.

Products part 1a: Transformations prior to
risk index calculation

In total, we compiled nine variables that contribute to
the prioritization of A and B group species in different
ways: (1) 50-year occupancy projections (probabilities of
population persistence) based on NABA data; (2) historical
rates of change from the Shapiro data; (3) geographic
range based on expert assessment; (4) exposure to agricul-
tural and other developed lands; (5) exposure to climate
change; (6) average annual precipitation throughout the
range; (7) the fraction of the range with one generation
per year; (8) wingspan; and (9) an index of dietary speciali-
zation or host range (Figure 1). Prior to their use in
assigning a risk value to each species (discussed in the next
section), each variable was subjected to a specific set of

transformations that resulted in a variable with a range
0 to 1, where larger values represent greater risk.
Depending on the nature of the variable (when larger
values do or do not naturally represent higher risk), the
transformations included a change of sign, and (for all var-
iables) standardization between 0 and 1 (by dividing by
the largest value). In some cases, for highly skewed vari-
ables, a natural log transformation was applied as the first
step, and all transformations and scaling steps are illus-
trated in Appendix S1: Figure S3.

For visualization of the transformed and scaled vari-
ables and for comparison among species, we divided the
distributions (Appendix S1: Figure S3) into quantiles and
assigned circles of different sizes to the different intervals,
with larger circles indicating larger values and greater
assumed risk. For most of the variables, we found that
the following breakpoints provided a useful assignment
of circles for visualization: 0.15, 0.5, and 0.85; in other
words, the interval from 0 to 0.15 was assigned the
smallest circle (the least risk), from 0.15 to 0.5 the next
largest, and so forth. Breakpoints differed for some of the
more skewed variables (e.g., host range), but the results
are interpreted in the same way (larger circles represent
larger assumed risk).

Products part 1b: Calculation of risk index
for A and B group species

Here we discuss how the variables described in the sec-
tions above are combined into a weighted sum that
becomes the risk index for each of the 396 species. This
process happens in parallel for the A and B group species,
but these processes are not entirely disconnected, as the
monitoring-based risk index for the A group is studied in
relationship to the other variables (geographic range,
voltinism, etc.) for that group, and the lessons learned
from that analysis inform the structure of the weighted
sum for the B group species.

The A group taxa are those species for which data
were available from at least one of the monitoring pro-
grams, the Shapiro transect or the NABA network of
count circles. For these species, we calculated a weighted
sum based on those two lines of information with
weights split evenly between them: 50% NABA and 50%
Shapiro. Thus, a species with the most severe declining
values for each dataset would receive a composite risk
score of 1. To incorporate uncertainty retained from
Bayesian analyses of the NABA and Shapiro data, the
composite risk index was recalculated 1k times using 1k
samples of the relevant posterior distributions; we then
calculated a mean and 85% highest density interval of
risk for each species. Alternative weighting schemes
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among all variables (including the two monitoring
variables) can be explored using an interactive, online
tool; see Appendix S1.

The B group species are those lacking monitoring
data. Thus, we used a composite of the other seven vari-
ables to estimate risk. We experimented with a number
of weighting schemes for those seven variables and set-
tled on an approach that was partly influenced by previ-
ous research (e.g., Forister et al., 2021) but also informed
by an additional analysis of the species in the monitoring
data. Specifically (for that additional analysis), we took
the composite risk index for the A group species (based
on NABA and Shapiro data) and used a linear regression
model to determine which of the other seven variables
was the most predictive of that risk index (following gen-
eral protocols with other Bayesian models as described
above). The exact weighting scheme for B group species
(influenced partly by results of the analysis of the
A group) is described fully in the results below. Clearly
many schemes are possible for a weighted sum of seven
variables, and we report correlations among outcomes
from different schemes. Finally, many of the B group spe-
cies had some data from the NABA dataset that were not
sufficient for inclusion in our main model and occupancy
forecasts. For those species, we ran a less complex model
(described above as the secondary set of NABA models)
and reported the results along with other B group results,
but we did not incorporate those values into the B group
risk index to maintain consistency in risk index
calculations.

The calculation of the risk index for both the A and
B groups relied on a complete data matrix. For most of
the variables used for the B group, there were no miss-
ing values, specifically for all of the variables deriving in
part from the expert geographic ranges: range area,
voltinism, precipitation, development, and climate
departure (Figure 1). A few species lacked data for host
range, and these we filled with interpolation of the
median value calculated across all species. Similarly,
median interpolation was used with the observational
data and the A group species. In other words, a species
without sufficient NABA observations for analysis was
given the median value associated with that variable
(across other species in that dataset) prior to the calcula-
tion of the risk index.

Products parts 2 and 3: Geographic and
phylogenetic visualization of risk

Finally, we asked how the composite risk indices were
distributed across the landscape and across the phylogeny
of western butterflies. From a spatial perspective, we

calculated both the cumulative estimated occurrence of
at-risk species (separately for each cell in a raster
covering the extent of the 11 western states) and the aver-
age risk among species present in a cell. We did this sepa-
rately for the A and B group species, and we restricted
analyses to only species with higher risk values by
subsetting to the upper 75th quantile of risk values sepa-
rately for each list (A and B). Within those higher risk
groups, we converted each species range map from a spa-
tial polygon to a raster layer where values within the
range were set to 1 and values outside the range to 0. We
summed these values across all rasters to produce a new
raster of cumulative estimated species occurrence
(also referred to simply as “cumulative occurrence”). To
calculate the mean risk for each cell, we divided the
cumulative risk index raster by the cumulative occur-
rence raster.

From the evolutionary perspective, we used the phy-
logeny from Zhang et al. (2019) for all 845 butterfly spe-
cies from the USA and Canada. Briefly, this tree was
based on 756 universal single-copy orthologs we identi-
fied from 36 reference genomes using OrthoMCL (Li
et al., 2003). Sequences of these orthologs were aligned
using both local (BLAST [Altschul et al., 1997]) and
global (MAFFT [Katoh et al., 2002]) alignment methods,
and only positions that were consistently aligned by both
methods were used. Sequences of nonreference species
were derived by mapping the Illumina reads to the exon
sequences of the reference species and performing
reference-guided assembly. Multiple sequence alignments
(MSA) of different orthologs were concatenated to a sin-
gle MSA. This MSA was partitioned by codon position
and used to build a tree by IQ-TREE (version 1.6.12)
(Nguyen et al., 2015) with the most suited evolutionary
model automatically found by IQ-TREE.

The phylogeny was imported as a time-calibrated
.tre file into R and pruned to our focal western butter-
flies (the combined A and B group lists, minus three
species with taxonomic conflicts). The package ggtree
(Yu et al., 2017) was used to plot a phylogeny with tips
labeled by risk categories assigned based on the
quantiles of the risk distributions separately for the
A and B group species. Specifically, species in the upper
90th quantile were labeled as ‘“high-risk,” species
between the 75th and 90th quantiles were labeled as
“medium risk,” and species below the 75th were “low
risk.” Finally, the “phylosig()” function from phytools
(Revell, 2012) was used to calculate A and K (with 1000
simulations for the permutation test) as measures of
phylogenetic signal for the continuous risk index across
all species, which in this context is informative with
respect to the extent to which closely related species
share similar levels of risk.
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RESULTS

We calculated an index of risk for 396 species, which
includes two groups: 184 species in the A group with
extensive monitoring data, and 212 species in the B group
without observational data (or without enough to be used
in our primary population models). The B group species
tend to have smaller geographic ranges (Appendix SI:
Figure S4a), which in part explains their reduced pres-
ence (just by geographic chance) in monitoring programs,
but the two groups differ in other ways (Appendix S1:
Figure S4). The B group species have slightly lower
exposure to development (Appendix S1: Figure S4b) and
moderately higher exposure to climate change (Appendix
S1: Figure S4c). The higher climate change exposure is
explained in part by the greater presence of more south-
ern species in the B group, as seen by latitudinal mid-
points (Appendix S1: Figure S4g) and qualitative
characterization of range (Appendix S1: Figure S4h).

For the A group species, we modeled historical and
projected population trajectories using different sources
of observational data. Consistent with previous work
with NABA data, our new model with shared
(across-species) observation heterogeneity found that a
majority of species (71%) had annual population growth
rates below replacement (Appendix S1: Figure S5). We
used those estimated annual growth rates and the most
recent year of observed counts to simulate 50 years into
the future. The median fraction of extant locations
(or probability of local persistence) per species at 50 years
was 0.60, and the fraction of extant locations was posi-
tively related to variation in historical population growth
rates among species (Appendix S1: Figure S5). Results
from analyses of Shapiro data also found that a majority
of species exhibited downward trends through time of
varying magnitude (84.5% of species had negative year
coefficients).

Our risk index and ranking were based on a combina-
tion of evidence from the NABA and Shapiro datasets,
but note that the A group species are shown in Figure 2
with risk information associated with the other seven
variables (geographic range, exposure to development,
etc.), even though the actual ranking of the A group is
based solely on the observational data. We present the
information in this way because we acknowledge the
imperfect geographic coverage of monitoring programs
and the inherent uncertainty in population models. Thus,
the reader or conservation practitioner can easily see if
two species with similar risk values in the A group (based
on NABA and Shapiro) potentially have similar risks
based on other variables like range size.

Without observational data, the ranking of B group
species required a partitioning of weights among the

other lines of information. To partly inform that process,
we used the A group species to estimate the effects of
other variables on the risk index (based on NABA and
Shapiro data). The model explained a relatively small
proportion of variance in the risk index (Appendix SI:
Table S1), but did demonstrate that smaller wingspans
(99% probability of effect) and lower range-wide precipi-
tation (98% probability of effect) were associated with risk
for the A group species. In addition, we also suspected
climate change would be important based on our previ-
ous work with western butterflies (Forister et al., 2021;
Halsch et al., 2021). This was especially true given the
large presence of B group species with ranges in the
desert southwest (Appendix S1: Figure S4h), a region
heavily impacted by warming and drying trends. We
adopted the following weighting scheme to calculate a
single risk value for species in the B group: 20% precipita-
tion, 20% wingspan, 20% climate change, 10% develop-
ment, 10% range size, 10% voltinism, and 10% host range;
correlations among the seven variables as well as the two
observational variables (for the A group) are shown in
Appendix S1: Figure S6. As a comparison to that scheme,
we also ranked the B group species with equal weights
(14.3%) among the seven variables; the resulting risk
values were correlated at r = 0.90 (t = 29.32, df = 210,
p < 0.001) with the values from the primary scheme.
With a third weighting scheme based on 50% from each
of the average range-wide precipitation and wingspan
(the two variables identified as most predictive of risk by
analysis of the A group), the correlation with the main
scheme was r = 0.57 (t = 10.16, df = 210, p < 0.001).

The top 50 species with the highest risk values from
each of the A and B groups are shown in Figure 2 (the
other species with lower risk values are listed in
Appendix S1: Figures S7-S9). For the highest-ranked
A group species, the agreement between the two monitor-
ing schemes is apparent with large “risk circles” in both
the NABA and Shapiro columns (Figure 2a). Time series
plots for two of those top species are shown in Figure 3
(Vanessa annabella) and Figure 4 (Euchloe ausonides); in
Figure 5, neutral or upward trajectories can be seen for
Poanes melane, the species with the lowest risk index
among the A group species (Appendix S1: Figure S10).
Similar plots for all other A group species are available
through an online tool (see Appendix S1). The rankings
for the A group species are shown with 85% credible inter-
vals (Figure 2a), which are broad; this uncertainty reflects
the high interannual variability inherent to the time series
data being modeled (from both NABA and Shapiro) and
should be kept in mind when interpreting the position of
species on the A group list.

It should also be remembered that the NABA data are
based on a once-per-year census scheme, which
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potentially raises concerns with respect to phenological
shifts: if species emerge earlier in response to warming
springs, it is possible that a midsummer count could erro-
neously infer decline if occurring past the population peak
in more recent years. We took advantage of the temporally
intensive Shapiro program, where phenological shifts
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Lycaena hermes™ W -
Nastra julia S -
Amblyscirtes elissa* S -
Satyrium ilavia W -
Agathymus evansi S
Copaeodes minimus™ S
Panoquina errans S -
Amblyscirtes nereus S
Emesis ares™ S 1
Agathymus polingi S -
Piruna cingo™ S
Euphilotes rita W
Atrytonopsis pittacus S
Satyrium polingi S -
Callophrys fotis W A
Chlosyne californica W -
Strymon istapa S
Eurema nise™ S 1
Amblyscirtes fimbriata S
Agathymus mariae S -
Agathymus aryxna S
Atrytonopsis lunus S

Pyrrhopyge araxes* S -
Chiomara asychis* S
S -
Pyrgus xanthus W
Calephelis wrighti W
Paramacera allyni S
Euphilotes spaldingi W
Atrytonopsis deva S -
Agathymus stephensi S
Notamblyscirtes simius W -
Callophrys mcfarlandi W
Amblyscirtes oslari W
Strymon avalona W -
Gyrocheilus patrobas S

Agathymus alliae W -
Eurema proterpia™ S -
Polites rhesus W
Oarisma edwardsii* S
Euphyes bimacula E A
Hesperopsis libya W
Phyciodes batesii N
Amblyscirtes phylace W -
Philotiella speciosa W
Calephelis arizonensis S
Eurema dina™ s

Geographic range
Development
Climate departure
Precipitation
Voltinism
Wingspan

Host range

:

:

Megathymus ursus S -

have been observed (Forister & Shapiro, 2003), to simulate
once-per-year sampling dates and compare results to a
census based on biweekly counts. Contrary to the expecta-
tion that earlier emergence might lead to a mistaken infer-
ence of decline, but consistent with recent findings
(Forister et al., 2018; Macgregor et al., 2019), earlier
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emergence tended to be associated with stable or increas-
ing populations, and univoltine and bivoltine species did
not appear as outliers in that relationship (Figure 6).
Moreover, inferences about changes in population density
over time are similar in once-per-year sampling and the
full data with many visits per year (right column of panels
in Figure 6). The role of phenological change in population
response to anthropogenic stressors, including climate
change, remains an important issue (Bonoan et al., 2021),
but does not appear to bias the results presented here (see
also Appendix S1: Figure S1 for a statistical control on phe-
nology in the core NABA population model).

Finally, we examined the distribution of the
species-level risk index geographically and phylogeneti-
cally, for which we divided the species into low-risk,
medium-risk, and high-risk categories, based on composite
risk values below the 75th quantile, between the 75th and
90th quantiles, and above the 90th, respectively. For the A
group species, the average forecast 50-year occupancy
(based on NABA data) was 33.7% of populations
extant (SD = 12.5%) for the high-risk species, 47.7%
occupancy (SD = 11.0%) for the medium-risk species, and
66.0% (SD = 13.2%) for the low-risk species. Considering
the species with medium-risk and high-risk index values
(above the 75th quantile of risk values) for the A group,
the spread of average risk across the 11 western states was
only partially associated with expected numbers of the
most at-risk species (Figure 7a,c). For example, the average
risk was high in the northern Central Valley of California
and in the northwestern region of Oregon (Figure 7a),

while the cumulative occurrence of at-risk species was
lower in those areas (Figure 7c). Similarly, the number of
at-risk species (cumulative occurrence) was high in the
Sierra Nevada, but the average risk was heterogeneously
distributed due to spatial variation in the mix of
medium-risk and high-risk species. The distributions of
risk for the B group species highlight the bias of that group
toward the most southern areas, with high average risk
along the Southern California coast (Figure 7b) and a con-
centration of at-risk species along the border between
Mexico and both Arizona and New Mexico (Figure 7d).

The phylogenetic picture of risk shows multiple clus-
ters of at-risk species, and some lineages with notably
lower risk, like much of the Nymphalidae (Figure 8). The
families sharing the disproportionate amount of risk are
the Lycaenidae (with 17% of species in the high-risk cate-
gory, above the 90th quantile of risk) and the Hesperiidae
(with 14% of species at high risk); these are followed by
the Riodinidae (with 13% of species at high risk, albeit
based on a small sample size from a family represented
by only eight species) and the Pieridae (with 9% of species
at high risk). The percentages of high-risk species in the
Papilionidae and Nymphalidae were 8% and 2%, respec-
tively (Figure 8). Tests of phylogenetic inertia were con-
sistent with the observation of phylogenetically clustered
risk (Pagel’s A = 0.38, p < 0.001; Blomberg’s K = 0.049,
p = 0.001 based on 1k randomizations), which is evident
not only at the family level, but also at lower taxonomic
levels, including (among others) within the genera
Lycaena, Agathymus, and Eurema (Figure 8).

FIGURE 2 The top 50 species with the highest risk values are in the A group (on the left) and the B group (on the right). The two
panels have some features in common, and some unique elements. In common they both show the extent to which different variables are

associated with higher or lower risk for each species: a large circle under NABA occupancy, for example, marks a species that we infer as

being at risk because of low forecast occupancy (probability of population persistence) across currently extant locations; similarly, a large
circle under development indicates a species at risk because of high exposure to developed lands, and a large circle under geographic range
indicates corresponding risk associated with a relatively small range. The sizes of the circles were assigned separately within the two lists,

A and B group species, and thus indicate relative differences within those lists. Although all variables are shown for comparison, the overall
risk ranking for the A group species is based solely on the first two variables (NABA occupancy and Shapiro monitoring, to the left of the
vertical gray line), while the ranking for the B group species is based entirely on the other seven variables (see main text for details, and

Figure 1). Both panels also have in common the quantitative risk values shown to the right (e.g., the risk index for Vanessa annabella in
panel (a) is 0.687); note that the risk values for the A group species include 85% credible intervals (in parentheses), encompassing
uncertainty derived from Bayesian analyses of both NABA and Shapiro data. The capital letters (N, S, E, and W) running down the left side
of each panel are qualitative biogeographical descriptions indicating where the mass of a geographic range lies relative to the western USA
(N and S indicate species found primarily north and south of the USA borders with Canada and Mexico, respectively; W indicates species
with the majority of their range in our focal region; and E indicates species found either mostly in the eastern USA or with a

transcontinental distribution), and the asterisks next to species names flag taxonomic issues (see Appendix S1: Table S2). A unique element
of the panel on the left is the sample size in parentheses, for example, “(14,10)” for Vanessa annabella, which is the number of locations
from which data were included from the NABA and Shapiro datasets, respectively. Finally, on the far right of panel (b), the lambda symbols

represent the results of individual time series models run for the species present in the NABA program but without enough sites and years to
be included in the main model (and thus not a part of the A list); a blue symbol indicates a species with an 80% or greater probability of
increasing in recent years, while a red symbol indicates an 80% chance of decreasing, and black is neither increasing nor decreasing. The
other species (beyond the top 50 highest ranked shown here) are included in Appendix S1: Figures S7-S9.
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FIGURE 3

Overview of site-specific trends through time for Vanessa annabella at Shapiro sites (on the left) and NABA sites (on the

right and along the bottom). Plots for Shapiro sites are shown with decreasing elevation and colored to match the elevational profile of
Northern California (cooler colors are montane sites) shown below the map of the western USA. The y-axes for Shapiro plots are the fraction
of days a species was seen at a site in a year (Shapiro data were truncated in 1984 for analyses, but earlier years are shown here and in
Figures 4 and 5). Plots for NABA sites are shown with decreasing latitude (starting with the most northern sites), from the top right to the
bottom, with symbols matching the locations shown in the central map. Values shown in NABA plots have been adjusted for variation in
sampling effort, and values plotted are total counts of individuals on a natural log scale. Also shown on the central map is the geographic
range of V. annabella (Glassberg, 2017), with the multivoltine portion of the range (closer to the coast) shown as darker gray. Adult and
caterpillar images are by Camryn Maher, copyright 2022.

DISCUSSION

Our goal has been to organize and analyze heterogeneous
data sources in a way that allows conservation biologists
to identify the butterflies in the 11 western US states that
are most likely to suffer serious reductions in range or

population size in the coming years. It has not been our
objective in this paper to document butterfly declines or
to identify traits that make insects more or less sensitive

to population stressors,

as these topics have been

addressed elsewhere in North America (Forister et al.,

2021; Schultz et al.,

2019; Wepprich et al.,

2019), the
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FIGURE 4 Overview of site-specific trends through time for Euchloe ausonides at Shapiro sites (on the left) and NABA sites (on the

right). Plots for Shapiro sites are shown with decreasing elevation and colored to match the elevational profile of Northern California (cooler

colors are montane sites) shown below the map of the western USA. The y-axes for Shapiro plots are the fraction of days a species was seen

at a site in a year. Plots for NABA sites are shown with decreasing latitude (starting with the most northern sites), with symbols matching

the locations shown in the central map. Values shown in NABA plots have been adjusted for variation in sampling effort, and values plotted

are total counts of individuals on a natural log scale. The geographic range of E. ausonides (Glassberg, 2017) is shown as the gray-shaded

area on the central map. Adult and caterpillar images are by Camryn Maher, copyright 2022.

Neotropics (Janzen & Hallwachs, 2019; Salcido et al.,
2020), and numerous other parts of the world (Fox, 2013;
Nakamura, 2011; Wagner, 2019). We hope that our work
on species prioritization advances the issue for conserva-
tion practitioners using mixed data types with uneven
spatial coverage and uncertainty in historical trends.
Although some parts of the world (notably countries in
Europe) have dense coverage with standardized monitor-
ing, prioritization in most of the world will involve some
mix of monitoring and trait-based inference.

The western states have been our region of study,
rather than the entire USA, because the impacts of cli-
mate change are severe and distinct in this arid region
(Gonzalez et al., 2018), and the butterfly fauna is simi-
larly shaped by a unique topography and climatic history
(Hawkins, 2010; Shapiro, 1996). As a consequence of

expansive areas with low human population density,
about half of the butterfly species in the region are not
included in the monitoring datasets used here, yet we
have brought together information on the entire fauna
(with the exception of a few species with rare occur-
rences, mostly strays across the USA-Mexico border).
Because of this, our study has an apples-and-oranges
structure (species with and without monitoring data) that
extends to the interpretation of the risk index values and
engenders certain ironies. Chief among the ironies of our
work is the fact that we rank B group species in part by
certain variables (geographic range, exposure to climate
change, etc.) that are not strongly associated with
declines in the species for which we have historical
records (the A group). In other words, considering
Figure 2, the A group species near the top of the list do
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FIGURE 5 Overview of site-specific trends through time for Poanes melane at Shapiro sites (on the left) and NABA sites (on the right).
Plots for Shapiro sites are shown with decreasing elevation (cooler colors are montane sites) and colored to match the elevational profile of

Northern California shown below the map of the western USA. The y-axes for Shapiro plots are the fraction of days a species was seen at a

site in a year. Plots for NABA sites are shown with decreasing latitude (starting with the most northern sites), with symbols matching the

locations shown in the central map and insect. Values shown in NABA plots have been adjusted for variation in sampling effort, and values
plotted are total counts of individuals on a natural log scale. The geographic range of P. melane is shown as the gray shaded are on the
central map. Adult and caterpillar images are by Camryn Maher, copyright 2022.

not necessarily have the smallest ranges, and the same
can be said of other variables. Even for the two variables
(wingspan and average precipitation), which do predict
risk in the A group, the variance explained is low
(Appendix S1: Table S1) yet we still emphasize these vari-
ables in ranking the B group species. We discuss these
apparently counterintuitive decisions below, and then
discuss phylogenetic and geographic hotspots of risk.
Finally, we end with a consideration of individual taxa
most deserving of attention given the available evidence.
Among the complexities of variables potentially asso-
ciated with risk, an understanding of geographic range
starts by noting that the A group species have broader
geographic ranges (Appendix S1: Figure S4a), which is
part of the reason they are present at enough NABA sites
to be included in our core population model. Thus the
fact that many of the most severely declining species are
widespread (e.g., Vanessa annabella in all 11 states) does

not diminish the logic of prioritizing B group species
based in part on small range size, which is a well known
determinant of risk (Staude et al., 2020). Similarly, the
effects of voltinism and ecological host specialization are
relatively straightforward: everything else being equal,
we expect a species with multiple generations per year
(a trait often associated with increased dispersal) and an
ability to utilize many hosts to be more resilient to any
number of stressors than another species without those
traits (Eskildsen et al., 2015). We have previously
observed the resiliency of multivoltine species during a
mega-drought in the western USA, where species with
multiple generations per year were able to take advantage
of earlier springs and greater time for population growth
to temporarily reverse downward trajectories of multiple
decades (Forister et al., 2018).

The interpretation of other variables is less straight-
forward, the most important among them being exposure
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FIGURE 6 Analyses of phenology and abundance using Shapiro data and three variables: (1) change in annual abundance as summed
across all visits within a year, shown as “A abun. (all days)”; (2) change in abundance based on a single, randomly sampled day each year,
shown as “A abun. (one day)”; and (3) a change in the date of the first flight, shown as a “phenological shift.” The values plotted are year
coefficients for each species from models including the year predicting each of the three variables, and Pearson correlation coefficients for
each pairwise association are shown above the plots. Negative values for phenological shift indicate earlier emergence over time. For
example, in the upper row, the negative relationship in the left panel indicates that species that emerged earlier (negative values on the
x-axis) tended to become more abundant over time (positive values on the y-axis); and the same pattern is evident when the change in
abundance is estimated with the once-per-year sampling (middle panel); finally, in the right panel, it can be seen that change through time
in abundance estimated with all of the data is positively correlated with year coefficients for change in abundance estimated with the
once-per-year (NABA-style) samples. In all plots, red points are univoltine species with one generation per year, blue points are bivoltine
species, and gray points represent species with more than two generations per year. Site names are shown at the left of each row of panels.
Two outlier points (one species at Gates Canyon and one at Rancho Cordova) were strongly negative and compressed the visualization of
other species; they are excluded here although the patterns and direction of relationships are unaltered.
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FIGURE 7 The geography of risk for species with values in the upper 75th quantile of risk indices as shown in Figure 2 (i.e., combining
“medium” and “high” risk categories treated separately in Figure 8). Panels (a, b) show average risk values among those high-risk species,
separately for the A and B group species, while panels (c, d) show cumulative estimated species occurrence, again for the A group and

B group species separately.

to climate change. Previous work with western butterflies
has identified warming and drying conditions as
stressors, based in particular on analyses of geographic
variation among study sites in climate change effects and
changes in aggregate butterfly density (Forister et al.,
2021). At the species level (rather than the level of indi-
vidual study sites), the same signal is not as apparent in
the present study for the A group species (in other words,
the species toward the top of the A group list do not have
particularly high exposures to climate change). This is
because most of these species have large enough ranges
that their exposure to climate change (when quantified

across the entire range) includes areas with both more
and less severe warming and drying that tend to cancel
each other out at the scale of broadly distributed species.
However, the B group species have smaller and more
southern ranges (Appendix S1: Figure S4), which is a part
of the West heavily impacted by climate change
(Gonzalez et al., 2018). Thus, we believe that exposure to
climate change is well justified as a contributing factor
to risk specifically for these species for which we lack
monitoring data.

Exposure to development (urban, suburban, and agri-
cultural lands) requires similarly careful interpretation.
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This is chiefly because the data most well suited to
understanding the effects of habitat destruction on
insects will rarely be collected: places that have already
been developed will not be monitored, and existing moni-
toring efforts will often be located in more pristine loca-
tions even when relatively proximate to human
habitation (Wagner et al., 2021). The Shapiro dataset is
an exception, as it encompasses a severe land use gradi-
ent from the agricultural and urban Central Valley to the
undeveloped high elevations of the Sierra Nevada. From
that program, we know that land conversion and con-
tamination (with pesticides) have effects of similar mag-
nitude at low elevations (Forister et al., 2016). Although
similar information does not exist across the West, we
included exposure to development in our rankings here
for the B group species for the simple reason that com-
mon sense suggests that a range that encompasses more
development is likely to experience increasing fragmenta-
tion and contamination in the coming years relative to a
species with less exposure.

Geographic projections of risk for B group species
emphasize the southern areas of the West (Figure 7), but
also point to specific hotspots of average risk that include
the Southern California coast. Like A group species in
the Central Valley of California, that coastal region has a
low cumulative occurrence of B group species, but on
average the species that are there in the vicinity of the
Los Angeles basin score high for our risk factors. Arizona
and southwestern New Mexico have a high concentration
of B group species with high-risk factors, thus this area
should be prioritized for future monitoring efforts. For
A group species, the Sierra Nevada (especially the northern
Sierra), the Colorado Plateau, and the southern Rocky
Mountains are hotspots of declining species (Figure 7).
These same places have been identified recently as
hotspots of imperiled species in analyses that included
plants, vertebrates, freshwater invertebrates and some
terrestrial insects (Hamilton et al., 2022).

Phylogenetically, risk values are strongly clustered
within and among families, with notable concentrations
in the Lycaenidae and Hesperiidae, with the latter in part
due to both species with small southern ranges (B group
species) and species in monitoring programs with
observed declines. The phylogenetic clustering of risk
suggests that currently unknown or unmeasured

variables could, in the future, improve our ability to
model interspecific variation in population trajectories
and extinction risk. Conversely, the nonrandom distribu-
tion of risk among species and lineages suggests that spe-
cies loss might itself be clustered, leading to shifts in the
function and composition of assemblages (Sol et al.,
2017). At present, we can say that of the high-risk
category species (with risk index values above the
90th quantile), 47.5% are Hesperiidae. The family
Nymphalidae has the lowest concentration of at-risk spe-
cies, although one of the most notably declining species
is in this family. Despite being large and dispersive and
able to use a number of exotic plants as larval hosts,
Vanessa annabella is becoming hard to find across loca-
tions that include urban centers, high mountains, and
southern deserts (Figure 3).

Although V. annabella is deservedly at the top of the
risk list (Figures 2 and 3), we stress the uncertainty in the
actual risk values that we have generated, and we do not
place much weight on the exact position of species on
that list. In other words, we believe that the top species
in the A group are indeed in historical declines that are
likely to continue in the coming years, but the fact that
one species is in the 4th position versus the 10th or even
the 25th position on the list is not necessarily important.
Small differences in, for example, the projected 50-year
probabilities of population persistence affect the positions
of those top species which have mostly similar risk values
(and broadly overlapping credible intervals). This is why
we conservatively suggest that all the top 50 species in
the A group (Figure 2) deserve closer scrutiny and in
some cases are likely to deserve protection. The fact that
rankings should be treated as approximate is also why we
have presented other lines of information (geographic
range, host specialization, etc.) for the A group, even
though the risk index ranking is based solely on the
observational data (NABA and Shapiro) for those species.
For example, Pontia protodice and Lycaena xanthoides
have nearly identical risk indices, but the latter
(L. xanthoides) is univoltine with a smaller geographic
range, greater exposure to development, and a more spe-
cialized diet (Figure 2); these are all factors that could be
considered by conservation biologists and ecologists
interested in declining insects. With respect to current
protections, only two of the species that we have studied

FIGURE 8 The phylogenetic distribution of risk, here shown as three categories: high risk (upper 90th quantile), medium risk (75th to
90th quantiles), and low risk (below the 75th quantile). Species names in black are the A group species and others (in gray) are the B group.

Butterfly images as follows: (a) Apodemia mormo (Riodinidae); (b) Euphilotes pallescens arenamontana (Lycaenidae); (c) Euchloe ausonides
(Pieridae); (d) Polites sabuleti (Hesperiidae); (e) Adelpha bredowii (Nymphalidae); (f) Papilio rutulus (Papilionidae). Photograph credits go to
Christopher A. Halsch (panels a, c, e, f); Matthew L. Forister (panels b, d). Bootstrap support is not shown but the vast majority of nodes

have support above 0.95; see Zhang et al. (2019) for additional details.
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have status at the federal level: one of the A group species
(the monarch butterfly, Danaus plexippus) is currently a
candidate for protection under the US Endangered
Species Act (ESA), and one of the B group species,
Lycaena hermes, is currently listed as threatened.

Our presentation of the top 50 species in the A group
(Figure 2) includes sample sizes (for NABA and Shapiro
datasets) that should also be considered when judging
the evidence for risk. For example, the second and third
species on the A group list (Figure 2) are represented by
data from three or fewer sites for the NABA and Shapiro
datasets. The small samples for those species are reflected
in broad intervals around the risk values, and it can be
noted that other species in the top 10 for the A list
are known to be in decline based on evidence from
two to three times as many sites (e.g., Pholisora catullus,
Atalopedes campestris, and Euchloe ausonides). The num-
ber of sites for individual species is a reflection of more
than just the amount of information available for analy-
sis. It should be remembered that the risk associated with
the NABA data derives from a multispecies population
viability analysis. In that analysis, species with fewer sites
are more likely by chance to have lower occupancy in
forecasts than species known from a greater number of
sites. This is both a methodological feature of stochastic
simulations and also reflects a biological reality in that
more widespread species are known from a greater num-
ber of NABA sites (thus geographic range is indirectly
involved in the contribution that the NABA analyses
make to our estimate of risk).

Yet another important aspect of sample size involves
A group species not represented in both of the observa-
tional datasets; for these species, we used median inter-
polation. In other words, when calculating the risk index
for a species present in, for example, the Shapiro dataset
but not NABA, we assigned a 50-year projection value
based on the median across all other species represented
in the NABA dataset. For the present effort, we consider
this to be at least a relatively simple assumption,
although we acknowledge that future analyses could use
more sophisticated interpolation perhaps including infor-
mation from closely related species. The phylogenetic sig-
nal observed here suggests that genetic relatedness could
be a tool for dealing with uncertainty and missing data in
conservation ranking.

The weight of missing data and uncertainty of course
becomes greater when we turn to the top 50 species in the
B group (Figure 2) for which monitoring data are either
absent or insufficient for robust models. Not only is robust
observational data lacking, but so many of the B group
species are similar in having small ranges in hot and dry
parts of the region that the overall spread of risk values is
smaller than for the A group. Thus, rankings in the top

50 for the B group should be treated as approximate. For
example, Strymon avalona is restricted entirely to Catalina
Island (less than 200 km?) off the coast of Southern
California. The partly wild nature of the island gives the
species a low development score and the area happens to
be characterized by only moderate departure from the cli-
matic baseline. Thus S. avalona ranks toward the bottom
of the top 50 for the B group (Figure 2), even though that
small geographic range of course puts it at a high risk of
stochastic loss. Similarly, many of the B group species
below the top 50 have negative annual trends (indicated
by red lambda symbols to the right of the panel in
Appendix S1: Figures S7-S9), albeit based on very few
NABA sites (which is why we have shown those results,
but did not use them in the calculation of the B group risk
index). In general we hope that the data organized here
for the B group species is an inspiration for greater moni-
toring of these taxa with small ranges in regions vulnera-
ble to threats that include ongoing climate change and the
loss of natural disturbance regimes (Haddad, 2018).

CAVEATS AND CONCLUSIONS

Our synthesis of status and trends for a diverse fauna faced
many challenges, and included many sources of taxonomic
and spatial bias in the data that were available to us. We
have not undertaken a formal assessment of bias for the
temporal and other patterns reported here (Boyd et al.,
2022), largely because the number of datasets to be
assessed is large and the issue deserves another
manuscript-level treatment. In addition to sources of spa-
tial bias discussed above, including the over-representation
of widespread species in monitoring programs, we close by
noting that, even for those widespread species (well
represented in census data), the information tends to be
clustered around areas of human population density. Thus,
both broad ranges (e.g., Figure 3) and relatively more nar-
row ranges (e.g., Figure 5) are not particularly well sam-
pled in terms of the spread of monitored locations in space.
We hope that these results inspire greater investment in
state-level monitoring programs (Taron & Ries, 2015;
Wepprich et al., 2019), which could eventually fill data
gaps and lead to a national understanding of butterfly sta-
tus on par with countries in Europe. The coming years
should also see the development of new models that can
take advantage of mixed data types, including those
reported from crowd-sourced platforms (e.g., Strebel et al.,
2022). Our estimation of risk has not included exposure to
pesticides, which is available at the county level for
California, but not for other states in the region, although
we know that it is an important stressor (Forister et al.,
2016; Gilburn et al., 2015).
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Another important issue that we acknowledge is that
our estimates of exposure to development and climate
change are restricted to the portions of geographic ranges
found in the 11 western states. This was mainly motivated
by our focus on the unique exposure of the region to
warming and drying trends, but it is of course the case that
wide-ranging species might have other parts of their range
subject to divergent pressures. Future analyses of risk could
quantify the heterogeneity of stressors at continental scales.
In the meantime, it is for these reasons that we have
included our qualitative range labels (N, S, E, and W) with
our rankings (Figure 2), which the reader can use to focus
as desired on species as a function of their distribution.

The traditional focus for butterfly conservation in the
USA has been at the taxonomic level of subspecies, which
is partly a consequence of the fact that population seg-
ments cannot be listed for invertebrates (thus leaving sub-
species as the next unit below full species that can be
protected). Thus, we acknowledge that our results fall
partly outside the traditional scope of conservation work
for butterflies in the USA. It is, however, entirely likely that
compounding population losses across the wild spaces of
the region have pushed many full species to the point at
which range-wide research and conservation attention are
warranted. A notable example of this is a recent effort
focused on the conservation of the monarch butterfly,
Danaus plexippus (Pelton et al., 2019), which is indeed in
our list of the 50 most at-risk species (Figure 3). Notably,
large numbers of species are higher on the list and are
equally deserving of attention. Research in the coming
years might also profitably focus on species that appear to
be relatively stable. One example (Poanes melane) is shown
in Figure 5, and others can be found toward the end of the
ranked list of species in Appendix S1: Figure S10, including
Ochlodes agricola, Papilio rutulus, and Limenitis lorquini.
We hesitate to use the common metaphor of winners and
losers. That implies that the game is over, when of course
the Anthropocene is underway. Nevertheless, the diversity
of ecologies, morphologies, and geographic ranges among
the stable or increasing species (Appendix S1: Figure S10)
suggests that much could be learned about combinations
of traits potentially associated with resilience. It is our hope
that the results presented here are a framework that will
facilitate such work in coming decades, while acknowledg-
ing the many assumptions that have been made along the
way to synthesize diverse data and organize species by
composite risk scores.
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