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Abstract The impurity density in high-purity germanium
detectors is crucial to understand and simulate such detec-
tors. However, the information about the impurities provided
by the manufacturer, based on Hall effect measurements,
is typically limited to a few locations and comes with a
large uncertainty. As the voltage dependence of the capac-
itance matrix of a detector strongly depends on the impu-
rity density distribution, capacitance measurements can pro-
vide a path to improve the knowledge on the impurities. The
novel method presented here uses a machine-learned surro-
gate model, trained on precise GPU-accelerated capacitance
calculations, to perform full Bayesian inference of impurity
distribution parameters from capacitance measurements. All
steps use open-source Julia software packages. Capacitances
are calculated with SolidStateDetectors.jl, machine learning
is done with Flux.jl and Bayesian inference performed using
BAT.jl. The capacitance matrix of a detector and its depen-
dence on the impurity density is explained and a capacitance
bias-voltage scan of an n-type true-coaxial test detector is
presented. The study indicates that the impurity density of
the test detector also has a radial dependence.

1 Introduction

Advanced scientific applications of high-purity germanium
(HPGe) detectors often require a quantitative understanding
on how the detector signal depends on the event topology.
This requires a realistic simulation of the detector. Example
applications are searches for physics beyond the Standard
Model such as neutrinoless double-beta decay [1–5] and dark
matter [6–8]. In such rare-event searches, it is essential to

a e-mail: lhauert@mpp.mpg.de (corresponding author)

distinguish between signal and background events based on
the shape of the detector signal.

A very important input to the simulation of HPGe detec-
tors is the impurity density distribution, ζ , of the electrically
active impurities in the germanium crystal as it strongly influ-
ences the electric potential, �. The calculation of � is the first
step in the simulation of an HPGe detector. Software pack-
ages like SolidStateDetectors.jl [9] (SSD), MJDSigGen [10]
or the AGATA Detector Library [11] are able to perform a
full simulation of HPGe detectors from field calculation to
signal formation. It is crucial, though, to use the correct ζ

to obtain the correct electric field, which influences the drift
of the charge carriers and, thus, the formed pulses. Often,
the impurity density is measured via the Hall effect at dif-
ferent heights of a drawn crystal ingot by cutting thin slices
out of the ingot. However, there is a rather large uncertainty
on these impurity measurements and, in addition, assump-
tions have to be made how the impurity density changes in
between. Usually, only a linear or quadratic change of the
impurity density between the bottom and the top of a cylin-
drically shaped crystal is assumed. If an incorrect model for
ζ is assumed, wrong conclusions can be drawn in studies
involving the subsequent parts of the simulation, e.g. in stud-
ies involving the mobility tensor.

An HPGe detector is, in principle, a p− n diode operated
in reversed bias mode. The extent of the depleted volume for
different bias voltages, UB , depends on ζ . The undepleted
volumes are extensions of the detector contacts. Thus, the
capacitance between those contacts depends on UB and ζ .
Therefore, ζ can be studied by measuring the capacitance
for differentUB , a C–V curve, and comparing it to simulated
C–V curves for different ζ .

Past work by Bruyneel et al. [12,13] has shown that it
is indeed possible to determine impurity density parameters
based on C–V measurements. It was, however, limited to
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a best-fit approach without uncertainty estimates and with
very few free parameters. Moving beyond this to impurity
density models that have many free parameters and fully
exploring such parameter spaces is very challenging due to
the high numerical cost: Simulating a C–V curve requires
repeated and numerically expensive field calculations. Even
with the GPU-accelerated implementation in SSD and using
multiple GPUs in parallel, it takes a few minutes to calcu-
late one C–V curve. It is, therefore, prohibitive to perform
these calculations directly during parameter inference as a
proper exploration of the parameter space would take a very
long time. The novel method presented here circumvents this
problem by replacing the exact capacitance calculations with
a machine-learned approximation function. It comprises the
following steps:

1. Definition of a model for ζ for a detector and including
the allowed parameter space for its parameters, p.

2. Quasi-random generation of N parameters sets: X =
{pi } for i ∈ [1, N ].

3. Calculation of the capacitance, ci , via SSD for each ele-
ment of X : Y = {ci } for i ∈ [1, N ].

4. Training of a deep neural network, DNN , on the gener-
ated data set: (X |Y ).

5. Bayesian inference of the model on a measured C–V
curve using the trained DNN .

The generation ofY via field calculations can take a few days.
Afterwards, the trained DNN can predict capacitances very
quickly and with sufficient accuracy. This makes it possible
to perform a Bayesian exploration of the full parameter space.

Note that this method can be used for detector optimisation
in general: not only to fit ζ but also to find optimal values for
other design parameters of a detector.

2 Detector capacitance matrix

An HPGe detector with N ≥ 2 contacts can be seen as a
system of N conductors which are capacitively coupled. A
schematic of the capacitances for a system of two conductors
is shown in Fig. 1.

The mutual capacitance, ci j , between two conductors i
and j is defined as

ci j = ∂Qi

∂Uj
, (1)

where ∂Qi is the change in charge on conductor i for a change
in potential, ∂Uj , of conductor j . The mutual capacitance is
symmetric: ci j = c ji . The self capacitance of conductor i ,
cii , can be understood as a mutual capacitance where the
other conductor is a grounded closed surface surrounding
conductor i . In absence of any surroundings, this surface can

Fig. 1 Schematic of the capacitances for a system of two conductors on
potentials Ui with charges Qi together with the corresponding mutual,
C, and Maxwell, C∗ capacitance matrices

be imagined as a grounded sphere with an infinite radius. In
case of a typical HPGe detector in a grounded cryostat, the
surface is defined through the grounded walls of the cryostat
and the grounded parts of the holding structure of the detector.

The different ci j are the elements of the so-called mutual
capacitance matrix C. However, when working with a system
of conductors, it is usually not very practical to work with
C as the elements cannot be studied individually. Therefore,
the so-called Maxwell capacitance matrix [14],

C∗ =
⎡
⎢⎣
c∗

11 . . . c∗
1N

...
. . .

...

c∗
N1 . . . c∗

NN

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N∑
i=1

c1i −c12 . . . −c1N

−c21

N∑
i=1

c2i . . . −c2N

...
...

. . .
...

−cN1 −cN2 . . .
N∑
i=1

cNi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(2)

is introduced which is generally more practical as it connects
the potentials of all conductors, �U = (U1, . . . ,UN ), with the
charges on all conductors, �Q = (Q1, . . . , QN ) via

�Q = C∗ · �U . (3)

The C∗ notation can be distinguished from the C notation
through its negative off-diagonal elements with

c∗
i j = −ci j ∀ i �= j. (4)

The elements of C∗ can be calculated [15] through the
weighting potentials1 of the contacts, Wi :

c∗
i j = ε0

∫
VW

∇Wi (�r) · εr (�r) · ∇W j (�r) d�r , (5)

where ε0 is the vacuum permittivity and εr the relative per-
mittivity of the medium at position �r . The integral is over the
closed system volume VW.

1 The weighting potential Wi of contact i in an HPGe detector relates
the position of a charge to the induced signal in the contact i .
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Since the c∗
i j depend on Wi and εr (�r), they depend on the

geometry of the detector and its environment. If the detector
is not fully depleted, the contacts which are touching these
undepleted regions become enlarged, which is an effective
change of geometry. The enlargement of the contacts depends
on ζ and UB . Thus, for a detector in a fixed environment, the
capacitances become dependent on two variables:

c∗
i j = c∗

i j (ζ,UB). (6)

The absolute values of c∗
i j decrease with increasing UB .

TheUB at which the detector becomes fully depleted is called
the full-depletion voltage, U fd

B (ζ ). For UB > U fd
B (ζ ), the

values of c∗
i j basically do not change anymore. Thus, there

are lower limits on the absolute values for the elements of
C∗ for a given ζ :

cli j (ζ ) = |c∗
i j (U

fd
B (ζ ))|. (7)

It should be noted here that a capacitance is an electrostatic
quantity and is not frequency dependent. The reactance is the
quantity which introduces a frequency dependence.

3 The experimental setup K1 and the detector
Super-Siegfried

The test stand K1 is a small vacuum chamber with a cooling
finger submerged directly in a liquid-nitrogen dewar. The n-
type true-coaxial HPGe detector Super-Siegfried [16] was
mounted on a special base plate which fitted on the cooling
finger inside K1. The detector, together with the necessary
holding structure, is depicted in Fig. 2. Closely around the
holding structure a so-called hat is placed on top of the base
plate, see in Fig. 3. The hat has an inner radius of 55 mm, an
inner height of 105 mm and serves as an infrared shield. The
base plate, the holding structure and the hat are all grounded.

The detector has a length of lD = 70 mm and a radius of
37.5 mm. The borehole has a radius of 5 mm and at the top
and the bottom; it widens to a radius of 10 mm within about
3 mm. The inner borehole of Super-Siegfried is the only n+
contact and the mantle is divided into 19 p+ segments. For the
measurements presented in this paper, the segments were not
read-out separately, but were connected together into one sin-
gle p+ contact. The n+ contact is lithium drifted and the p+
segments are established through boron implantation. The
manufacturer provided two values for the impurity level at
the top and at the bottom of the detector:

ζ
top
M = 0.44 · 1010 cm−3,

ζ bot
M = 1.30 · 1010 cm−3.

The operation voltage of the detector suggested by the man-
ufacturer is 3000 V.

Fig. 2 Super-Siegfried within its grounded holding structure as
mounted on the grounded base plate

Fig. 3 Grounded infrared shield (hat) surrounding Super-Siegfried and
its holding structure

As the p+ segments are connected to form only one con-
tact, the capacitance matrix of the detector is a 2×2 matrix as
shown in Fig. 1, where the n+ and the p+ contacts are the two
conductors 1 and 2. The base plate, holding structure and hat
form the grounded shell around the two contacts. This is also
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Fig. 4 Schematic of the electronics used for the measurements of c12
of Super-Siegfried in K1

shown in Fig. 4, which shows the schematic for the measure-
ments of the mutual capacitance between the two contacts,
c12. This is similar to what has been described in [13].

UB is applied to the n+ contact and the p+ contact is held
at ground over a termination resistor, R2. A pulse generator
is connected to the p+ contact over its internal resistor, RPG,
and an additional resistor R1 which serves in combination
with R2 as a voltage divider. To measure c12, rectangular
pulses with an amplitude ofUPG were generated and injected
into the p+ contact. This corresponds to a change in the
potential U2 which translates into a change of charge on the
n+ contact, Q1, via Eq. (3):

Q1 = −c21 ·U2. (8)

Thus, given the electronic circuit, the measured capacitance,
cm

12, can be calculated for different UB from the measured
Q1(UB) as

cm
12(UB) = −Q1(UB)

U2
= −Q1(UB)

UPG ·
(

R2

RPG + R1 + R2

) , (9)

where the values for the different components are RPG =
50 �, R1 = 6190 �, R2 = 51.4 � and UPG = 126 mV.

Q1(UB) was extracted from the induced pulses in the n+
contact as follows: Then+ contact was connected to a charge-
sensitive preamplifier circuit typically used to read-out ger-
manium detectors. The amplified signals were recorded with
a sampling rate of 250 MHz and a pulse length of 20 µs by a
Struck SIS3316 [17] analog-to-digital converter unit (ADC).
The recorded pulses were inverted (⇒ −Q1 becomes +Q1

in Eq. (9)), corrected for the decay of the charge in the ampli-
fication circuit and were calibrated [18,19]. The parameters
of the decay correction and calibration of the read-out circuit
(preamplifier together with the ADC) were determined from
pulses of background gamma events of known energy of a
measurement at UB = 3000 V. An assumption made here is
that the parameters of the decay correction and calibration
are independent of UB or, respectively, c12. After the decay
correction and calibration, recorded pulses are often given

Fig. 5 Recorded response of the n+ contact of Super-Siegfried in K1
to generated rectangular pulses injected into the p+ contact for different
UB . The zoom-in plot shows the fit of Q(t), see Eq. (10), to the tail of
the pulse for UB = 25 V

Fig. 6 Schematic of the electronics describing a a fully depleted and b
an only partially depleted detector with only two contacts. The depleted
part is modeled with c12 while the undepleted part is modeled as an RC
circuit with resistance Ru and capacitance cu

in units of energy. For this study, the values were converted
into charge pulses, Q(t), in units of charge, pC, based on the
ionisation energy of germanium of 2.95 eV [20].

For UB ≥ U fd
B , the recorded pulses are rectangular pulses

and their amplitude corresponds to Q1. This is, however, not
the case for UB < U fd

B . This is shown for three different UB

in Fig. 5.
Partially depleted detectors have to be modeled differ-

ently [21] within an electric circuit as shown in Fig. 6.
The undepleted volume can be described as an additional

RC component introducing also a frequency dependence to
the signal and leading to longer pulses. This can be calculated
for one dimensional systems [21]. In reality, that is usually
very complicated. However, here, it is not necessary as we
are only interested in the total charge, Qt , flowing through
the circuit which can be determined by fitting the tail of Q(t)
with

Q(t) = Qt − Qu · e−t/τu , (10)
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Fig. 7 Histograms of Qt for different UB . The most dominant peak in
each spectrum comes from pulser events. The Qt from pulser events
decreases for increasing UB . For higher bias voltages, also events from
background events, mainly from environmental gammas, become vis-
ible in the range [0, 0.14] pC. The peak corresponding to events from
2614 keV gammas from the Tl208 decay is labelled. Inset: The fit to
the peak of pulser events at UB = 25 V. The fitted parameter Qµ,m

t,k=1 is
shown as a vertical line

where Qt , Qu and τu are fit parameters. This is also illustrated
in Fig. 5.

It should be noted that also single-segment to core capac-
itances could be measured by this technique if the segments
would not be combined. These capacitances would be more
sensitive to ζ in the volume close to the respective segment.
Hence, the ζ dependence on z, and even a possible depen-
dence on ϕ, could be investigated more accurately. However,
this would require to keep the other segments on the same
potential as the core. Since the segment boundaries of this
detector are very thin, ≈ 0.5 mm, such measurements would
bear a great risk to damage the detector by a possible break
through since there would be a very strong electric field of
about 6 kV/mm.

4 Measurement of the C–V curve

The detector was operated at 60 different bias voltages,

UB,k = 25 V + (k − 1) · 50 V ∀ k ∈ {1, 2, . . . , 60}. (11)

Each measurement lasted 600 s. For lower UB,k , most of the
observed pulses were induced by the pulse generator. For
increasing UB,k , more pulses induced by gammas from nat-
ural radioactivity were recorded as the depleted volume and,
thus, the active volume of the detector increased. However,
the peak created by the pulse generator was always clearly
identifiable. The spectra of Qt of all pulses from all 60 mea-
surements are shown in Fig. 7. For all measurements, the
events induced by the pulse generator form a peak. The mean
values of these peaks, Qµ,m

t,k , were determined by fits of scaled
normal distributions as shown in Fig. 7.

Fig. 8 a C–V curve of Super-Siegfried as measured in K1. The error
bars represent uncertainties conservatively determined by assuming 3%
uncertainties on Qµ,m

t,k , RPG, R1, R2 and UPG and using Gaussian error
propagation. The uncertainties are highly correlated. b Negative differ-
ences, −	cm

12/	UB , between the data points in a

Using Eq. (9), the determined Qµ,m
t,k were converted to

cm,k
12 for all UB,k . The resulting C–V curve, cm,k

12 , is shown in
Fig. 8a.

As mentioned earlier, in theory, c12 should not change
anymore for UB > U fd

B . This does not take into account
that the contacts are regions of the detector, which are doped
more than three orders of magnitude higher than the bulk.
With increasing UB , also very small volumes of the con-
tacts become depleted. However, for reasonable values of
UB below the break-through voltage, the contacts never
become completely depleted and −∂cm

12/∂UB never becomes
entirely zero. This is demonstrated in Fig. 8b. Therefore,
it is not trivial in general to define U fd

B . Here, we define it

as −	cm
12/	UB

!= 10−3 pF/V: U fd
B ≈ 2600 V. For UB >

2600 V, simulations are expected to result in a fully depleted
detector for the correct ζ .

5 Simulation of the C–V curve

The C–V curve for a given ζ was simulated with SolidStat-
eDetectors.jl (SSD). Since version v0.7, SSD can be used to
calculate C∗ of a detector while taking the influence of the
environment into account. Since v0.8, it can also perform
the required 3d field calculations for � and Wi efficiently on
GPUs.

In SSD, � and Wi are calculated by solving Gauss’s law
on adaptive 3d (cylindrical or Cartesian) grids via the itera-
tive successive over-relaxation (SOR) algorithm [19]. As the
potentials are calculated on grids, the integral in Eq. (5) is
turned into a sum over the grid of Wi . The gradient of W j is
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Fig. 9 The geometry of the HPGe detector Super-Siegfried (dark
grey), together with its holding structure and base plate (light grey)
as implemented in SSD. The blue lines are segment boundaries of the
p+ contact and the red cylinder is the n+ contact

determined through interpolation onto the grid of Wi as the
two final grids are usually not identical due to the adaptive
grid refinement.

In order to calculate the elements of the matrix via Eq. (5),
� and all Wi have to be calculated first. In contrast to Wi , �
does not occur in Eq. (5). It is, however, required to determine
the depleted volume which depends on ζ and UB [19]. This
information is then passed to the calculation of the weight-
ing potentials. In the calculation of the weighting potentials,
the relative permittivity, εr , inside undepleted volumes was
scaled by 105 as an approximation of infinity. This makes
these areas quasi-conductive and results in equal potentials
over these volumes. Thus, undepleted volumes in touch with
a contact become extensions of this contact and will be on
the same potential as applied to the contact.

The detector Super-Siegfried and the grounded holding
structure and base plate as implemented in SSD are shown
in Fig. 9. For the simulations, a cylindrical grid was chosen
and the grid was limited to the dimensions of the hat. Fixed
boundary conditions of 0 V were set at the outer edge in r
and at both edges in z to mimic the grounded closed shell of
the hat and base plate. In ϕ, the grid was limited from 0◦ to
120◦ and periodic boundary conditions were set.2

2 In order to test if 3d simulations are necessary, 2d simulations, which
are faster but ignore the holding structure and the segmentation in ϕ,
were compared to 3d simulations for several different ζ . The difference
in the simulated capacitances for the 2d and 3d cases were of the order
of 5%.

Fig. 10 One-dimensional illustration of the envisioned modelling of
the n+ layer for future simulations with SSD via a continuous increase
of the impurity density from the impurity density of the bulk, ζbulk , to the
impurity density of the n+ contact. The hard transition corresponds to
the current implementation of the n+ layer in SSD, where the potential
values inside the contact volume are fixed to the set contact potential

It is very important to define the geometry of the detec-
tor, especially the geometry of the contacts, as realistically
possible as it also influences the capacitance. Particularly, cl12
depends on the exact geometry. For all simulations presented
in this paper, the p+ contacts of the detector were fixed to
a thickness of 0.5 µm as measured previously [19]. Lithium
drifted contacts typically have thicknesses of O(mm). This
thickness was not measured previously since irradiation of
the inner borehole is not simple to achieve. Since the n+ con-
tact thickness, dLi, is on the mm scale, it impacts cl12 on a
measurable scale. The n+ contact geometry is implemented
as a tube with the inner radius being fixed at the borehole of
the detector. The thickness of the tube, dLi, is a free param-
eter in the fit presented in this paper. The contact does not
cover the widening of the borehole. At the bottom and the
top of the contact, the outer edge of the tube is rounded off.

In the field calculation, the potential values of grid points
inside the defined volumes of the contacts are fixed to the
potential applied to the corresponding contact. In principle,
the n+ contact could instead be modeled through ζ . The
current implementation of a fixed potential inside the vol-
ume corresponds to a jump from the bulk impurity density
to infinity at the surface of the contact volume as shown in
Fig. 10. In future, it is envisioned to smooth this hard edge
transition by adding some continuous function to the impu-
rity at the n+ contact.3 This smooth edge transition is also
shown in Fig. 10. However, this is not yet part of the studies
presented in this paper.

In SSD, custom signed impurity-densities can be defined
where the sign of the given density determines the sign of
the fixed space charges of the minority charge carriers at
the specific location. Thus, the sign is used to specify the
type (n or p) of the semiconductor at a specific location,

3 The p+ contact thickness is on a much smaller scale, O(µm), and,
thus, it would not be feasible to resolve a smooth edge transition on that
scale.
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Fig. 11 Cross-section of Super-Siegfried mounted in K1 at ϕ = 36.7◦
showing the undepleted volumes for ζM and selected UB,k in steps of
250 V (200 V for the last step to 2975 V) as differently shaded areas

�r = (r, ϕ, z):

ζ(�r) > 0 cm−3 ⇔ n-type region, (12)

ζ(�r) < 0 cm−3 ⇔ p-type region. (13)

Typically, in simulations of HPGe detectors, a simple lin-
ear or quadratic change of ζ is assumed along the crystal
pulling axis z, based on certain levels of impurity provided
by the manufacturer for some z values. A radial component is
usually not assumed. Thus, for the detector Super-Siegfried,
the signed impurity-density model based on manufacturer
values becomes

ζM(z) = ζ bot
M + ζ

top
M − ζ bot

M

lD
· z, (14)

which comprises a linear profile in z and no modulation in r .
The depleted volumes for ζM and dLi = 1 mm were cal-

culated with SSD for all UB,k . The undepleted volumes are
shown in Fig. 11 for selected UB,k .

It shows how the detector depletes from the mantle of the
detector towards the borehole. It also shows that even for a
bias voltage of 2975 V the detector does not become fully
depleted. Thus, the overall impurity level of ζM seems to be
too high since U fd

B was determined to be ≈ 2600 V.

Fig. 12 C–V curve, cs,k
12 , as simulated with SSD for ζM together with

the measured C–V curve, cm,k
12 , already shown in Fig. 8a

The simulated C–V curve, cs,k
12 , in comparison to the mea-

sured C–V curve, is shown in Fig. 12. An uncertainty of

σ s
c (c

s
12) = cs

12 · 1% + 1 pF (15)

is assigned to cs,k
12 . The absolute uncertainty of 1 pF is moti-

vated by a possible imperfect implementation of the geom-
etry in comparison to reality. The 1% relative uncertainty is
motivated by studies on the simulated capacitance for dif-
ferent levels of the fineness of the final grids of the calcu-
lated fields. A relative uncertainty is chosen for this source
of uncertainty because the depleted volume is smaller for
lower bias voltages (larger capacitances) requiring a finer
refinement. In SSD, the refinement of the grids in the field
calculations can be tuned [22]. The following settings were
used for the simulations presented in this paper:

convergence_limit = 10−7,

re f inement_limits = [0.2, 0.2, 0.1, 0.1, 0.1,

0.05, 0.03, 0.02, 0.01],
max_distance_ratio = 3.0,

min_t ick_distance = (10µm, 1◦, 10µm).

Figure 12 shows that the simulation predicts that the detec-
tor is not yet fully depleted for any UB,k as the simulated C–
V curve still decreases and does not reach its lower limit at
UB,60. However, atUB,60, the simulated capacitance is lower
than the measured capacitance limit cl,m12 = cm,60

12 . This indi-
cates that dLi might be larger or that the implemented geome-
try does not perfectly describe reality. For low bias voltages,
cs,k

12 is larger than cm,k
12 . This means that the detector depletes

faster in reality than in the simulation, indicating that the ζM

is too large at larger radii.
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Fig. 13 Capacitances cs
12 for (UB = 25 V, dLi = 1 mm) and for differ-

ent constant levels of ζc as simulated with SSD. The vertical solid lines
mark the parameter space of the impurity level where c12 is sensitive to
ζ . The impurity levels ζ bot

M and ζ
top
M provided by the manufacturer are

also indicated

6 Model function for the impurity density

The comparison between cm,k
12 and cs,k

12 for ζM suggests that
the impurity density is not that high and not constant in r and
a more complex model for ζ is required.

Assuming a constant impurity density ζc, the range of
sensitivity of the voltage scan to the absolute impurity levels
can be estimated. For this, cs

12 is calculated for (UB = 25 V,
dLi = 1 mm) and for different ζc as shown in Fig. 13.

For dLi = 1 mm, the simulated limit capacitance, cl,s12 , can
be calculated with ζc = 0 cm−3. Even for ζc = 108 cm−3,
cs

12 ≈ cl,s12 meaning that the detector is already fully depleted
at UB = 25 V. Thus, this level can be seen as a lower limit,
ζl , for the parameter space of impurity levels,

ζl := 108 cm−3. (16)

At ζc = 1011 cm−3, cs
12 is much larger than the measured

capacitance at UB = 25 V. Thus, this level can be seen as an
upper limit, ζu, for the parameter space of impurity levels,

ζu := 1011 cm−3. (17)

Figure 13 also shows that a logarithmic change in ζc between
ζl and ζu results in a change of cs

12 on a linear scale. Therefore,
the (r, z)-dependent signed impurity-density, ζRZ(r, z|s), is
defined as

ζRZ(r, z|g) = tanh(g · x(r, z)) · 10|x(r,z)|, (18)

where g is set to 1000 for this study and x(r, z) is a function to
and above −ζl . model ζRZ on a logarithmic scale.4 The sign
of x(r, z) is used to determine the type of the semiconductor
at (r, z), see Eqs. (12) and (13).

4 This function ζRZ(r, z|g) was chosen to be differentiable as certain
optimisation techniques require a gradient. The value of g was chosen
in order to yield a sharp (but differentiable) transition from −ζl to ζl .

Fig. 14 Signed impurity-density ζRZ(T (y)), see Eq. (18), on the left
axis and the parameter transformation x = T (y), see Eq. (20), on the
right axis as a function of y

According to the simulation, the measurement is not sensi-
tive to impurity densities below ζl and above −ζl .5 A param-
eter transformation, T , is defined to model ζRZ between
[−ζu, ζu] and significantly reduce the influence of the param-
eter interval [−ζl , ζl ]:

x(r, z) = T (y(r, z)), (19)

T (y|v, xl , xu) = sign(y) · xl · |y| 1
v + (xu − xl) · y, (20)

with xl = log10(ζl · cm3) = 8, xu = log10(ζu · cm3) = 11,
v = 1000 and y(r, z) is a function to model ζRZ on the linear
interval [−1, 1]. The transformation is shown in Fig. 14. A
linear change in y will result in a logarithmic change in ζRZ

which causes a change in c12 on a linear scale.
The spatial dependence of the model ζRZ(r, z) is imple-

mented as a spatial dependence of y:

y(r, z) = ybot(r) + ytop(r) − ybot(r)

lD
· z (21)

where the r dependence is modeled by ybot(r) at z = 0 mm
and ytop(r) at z = lD. Both, ybot(r) and ytop(r), are modeled
as two cubic splines defined for four specific radial positions
rb,1 = 20 mm, rb,2 = 28 mm, rb,3 = 33 mm and rb,4 =
37.5 mm.6 The gradient of the splines at their left boundary,
rb,1, is set to zero, the gradient at the right boundary, r =
37.5 mm, is not fixed.

Thus, the model is defined by a set of 8 parameters, pζ ,
either defined in impurity levels

pζ =
(
ζ bot

1 , ζ bot
2 , ζ bot

3 , ζ bot
4 , ζ

top
1 , ζ

top
2 , ζ

top
3 , ζ

top
4

)
, (22)

5 The same sensitivity is assumed for p-type densities as for the inverted
system, inverted charge distribution and contact potentials, the same
values for the capacitances will be calculated.
6 These positions were chosen after performing initial tests which indi-
cated that the ζ dependence on r is larger close to the mantle than close
to the borehole.
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Fig. 15 Example impurity distribution ζRZ for pζ,E as a function of a
z and b r . See text for details

or in values of y,

pζy =
(
ybot

1 , ybot
2 , ybot

3 , ybot
4 , ytop

1 , ytop
2 , ytop

3 , ytop
4

)
, (23)

as they can be transformed into each other via Eqs. (18)–(20)
and their inverse functions.

An example impurity distribution of ζRZ based on the val-
ues provided by the manufacturer is shown in Fig. 15 with

pζ,E =
(
ζ bot

M , ζ bot
M , ζ bot

M /10,−ζ
top
M , ζ

top
M , ζ

top
M , ζ

top
M /10,−ζ bot

M

)
.

The model allows to modulate the bulk impurity density of
a detector including a possible boundary between n-type and
p-type volumes as demonstrated with the example density,
see Fig. 15. There, the main bulk of the detector is n-type
but is p-type close to the mantle. For this detector, such a p-
type volume close to the mantle is motivated by two aspects.
First, when pulling the crystal via the Czochralski method,
there could be some radial modulation of the impurities due
to the process. Especially, since natural germanium is p-type
and n-type dopants have to be added to the molten germa-
nium. Secondly, the p+ contacts are heavily over-doped lay-
ers,O(1012 cm−3) or even higher. The thickness of the unde-
pleted boron layers is very small, 0.5 µm, but there could be
diffusion. This could lead to impurities reaching the mag-
nitude of the bulk densities, O(108−10 cm−3), penetrating
deeper, O(mm), into the n-type germanium leading to com-
pensation and type conversion.

7 Deep neural network for fast capacitance predictions

For a given set of values for (dLi, pζy ), a C–V curve can be
calculated with SSD and, in principle, a fit to the measured
C–V curve could be done. However, for each UB,k three 3d
field calculations would need to be performed resulting in
180 field calculations for the whole measured C–V curve.
Even though each set of three 3d field calculations (with the
specified refinement settings) takes less than a minute on a
GPU7 in SSD, it would not be feasible to set up an optimiser
or a Bayesian fit.8

Therefore, a deep neural network, DNN , was developed
which is able to predict the capacitance, cp

12, for a set of
parameters (dLi, pζy ) much faster, O(µs). Here, UB is added
to the input parameters of the model. Even though this adds
an extra dimension to the model, it simplifies the output as
only one capacitance is predicted instead of a whole C–V
curve:

pD = (dLi, pζy ,UB), (24)

cp
12 = DNN (pD). (25)

The impurity model parameters pD form a 10-dimensional
parameter space PD. The following uniform distributions
U(a, b) were chosen to quasi-randomly draw sets of input
parameters for the generation of the training and test capac-
ity datasets:

dLi ∼ U(0.2 mm, 5 mm),

ybot
1 ∼ U(0.018566145, 1) ⇔ ζ bot

1 ∈ [ζl , ζu],
ybot

2 ∼ U(0.018566145, 1) ⇔ ζ bot
2 ∈ [ζl , ζu],

ybot
3 ∼ U(−1, 1) ⇔ ζ bot

3 ∈ [−ζu, ζu],
ybot

4 ∼ U(−1, 1) ⇔ ζ bot
4 ∈ [−ζu, ζu],

ytop
1 ∼ U(0.018566145, 1) ⇔ ζ

top
1 ∈ [ζl , ζu],

ytop
2 ∼ U(0.018566145, 1) ⇔ ζ

top
2 ∈ [ζl , ζu],

ytop
3 ∼ U(−1, 1) ⇔ ζ

top
3 ∈ [−ζu, ζu],

ytop
4 ∼ U(−1, 1) ⇔ ζ

top
4 ∈ [−ζu, ζu],

UB ∼ U(10 V, 3000 V).

Note that the distributions of ζ
bot/top
n are not uniform due

to the nonlinear transformation defined between ybot/top
n and

ζ
bot/top
n .

7 For the calculations presented in this paper the following Nvidia GPUs
were used: 4 GTX 1080 Ti, 2 Quadro RTX 8000, 6 Tesla V100, 4 RTX
3090 and 2 A100.
8 Faster 2d simulations would bear an additional uncertainty, as men-
tioned in Sect. 5, and would still not be fast enough to be used directly
in an optimisation or a Bayesian fit.
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The distribution of dLi is chosen based on typical lithium
layer thickness values.UB has to cover all values ofUB,k . As
Super-Siegfried is ann-type germanium detector, the range of
the four parameters describing the density towards the bore-
hole, at the top and bottom, are limited to the y region corre-
sponding to an n-type density. The four parameters describ-
ing the density towards the mantle at the top and bottom,
however, are allowed to include p-type impurity levels.

All individual parameter distributions can easily be trans-
formed to uniform distributions U(0, 1) on [0, 1]. Therefore,
PD can be transformed into the 10-dimensional hypercube
[0, 1]10 with a parameter distribution U(0, 1)10. In order to
create a dataset to train the DNN , Ns = 60000 samples,
were drawn according to

ui ∼ U(0, 1)10 ∀ i ∈ {1, 2, . . . , Ns} (26)

via the quasi-random Golden Sequence [23,24] sampling
algorithm. It generates samples that are very evenly spaced
in the unit hypercube.

Machine learning algorithms sometimes fail for parameter
spaces with hard edges. Therefore, another transformation,
TN , was introduced to transform the ui into unbound param-
eter intervals, [−∞,∞], such that each of the elements of
uNi is normally distributed around 0 with a standard deviation
of 1:

uNi = TN (ui ). (27)

Each uNi still corresponds to a specific (dLi, pζ ,UB). For
all uNi , the respective cs

12 is calculated with SSD to produce
a labelled data set,

Du =
{
(uNi |cs,i

12 )
}

∀ i ∈ {1, 2, . . . , Ns}, (28)

which is divided into a training and a test set with a typical
ratio of 80:20,

Dtrain
u =

{
(uNi |cs,i

12 )
}

∀ i ∈ {1, 2, . . . , 0.8 · Ns}, (29)

Dtest
u =

{
(uNi |cs,i

12 )
}

∀ i ∈ {0.8 · Ns + 1, . . . , Ns}. (30)

The distribution of generated samples of ζ bot
1 and ζ bot

4 for
Du and Dtest

u are shown in Fig. 16. For both sets, the param-
eters are properly distributed over the respective parameter
intervals.

For machine learning, the Flux.jl [25,26] package was
used and the following configuration of DNN was found to
produce good predictions for c12:

• Number of nodes per layer: [10, 128, 128, 128, 128, 128,
1];

• Type of all layers: Dense layer;
• Activation function for all but the last layer: GELU;
• No activation for the last layer.

Fig. 16 Distributions of ζ bot
1 and ζ bot

4 from the samples ofDu andDtest
u

Fig. 17 Learning curves of Dtrain
u and Dtest

u . The vertical dashed lines
mark the transitions between the three training cycles

The function to minimise,

loss(cp
12, c

s
12) = log(((cp

12 − cs
12)/pF)2/h + 1) · h, (31)

was chosen as the loss function [27] with h = 4.
The training of theDNN was performed with the samples

of Dtrain
u in 3 subsequent optimisation cycles. The ADAM

optimiser algorithm was used with the learning rates η, num-
ber of epochs and batch sizes:

1. η = 10−2, 20 epochs and a batch size of 2048;
2. η = 10−3, 80 epochs and a batch size of 1024;
3. η = 10−4, 40 epochs and a batch size of 512.

The learning curves, i.e. the mean of the loss of all samples
of a set after each epoch, of the training and test set are shown
in Fig. 17.

The predicted capacitances of the trained model over the
corresponding “true” value cs

12 are shown in Fig. 18 as a
scatter plot. A perfect model would produce only points on
the diagonal line cp

12 = cs
12. Most of the points lie close to

that diagonal line and only a few points are further away,
so-called outliers.

The distribution of absolute and relative difference
between cp

12 and cs
12 for the training and test set are shown in

Fig. 19.
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Fig. 18 Scatter plot of cp
12 over cs

12 for the samples of Dtrain
u and Dtest

u
after the training of DNN

Fig. 19 Distribution of a absolute and b relative differences between
cp

12 and cs
12 for the samples of Dtrain

u and Dtest
u . A Gaussian approxima-

tion of the relative differences of Dtest
u is shown in b

A Gaussian approximation is fitted to the distribution of
relative differences between cp

12 and cs
12 for the samples of the

test set. The determined standard deviation of the Gaussian
of 1.5% is used to estimate the uncertainty on the predicted
value cp

12:

σ
p
c (cp

12) = cp
12 · 1.5%. (32)

A relative uncertainty was chosen to account for the increas-
ing difference between cp

12 and cs
12 for larger cs

12 as visible in
Fig. 18. However, at capacitances above ≈ 500 pF an uncer-
tainty of 1.5% seems to be an underestimation. This is mostly
due to the small number of training samples with large capac-
itances. To improve the predictions for larger cs

12, the distri-
butions from which the training samples are generated could
be tuned in the future, such that more samples with larger
capacitances are generated, e.g., more samples at lower bias
voltages.

8 Bayesian fits of the impurity density

A predicted C–V curve cp,k
12 can now be produced for a given

set of (dLi, pζ ) by evaluating the trained network DNN at
(dLi, pζ ,UB,k) for all k.

For each predicted cp
12, an uncertainty is estimated by

Gaussian error propagation of the three different sources of
uncertainty:

σc(c
p
12)

2 = σm
c (cp

12)
2 + σ s

c (c
p
12)

2 + σ
p
c (cp

12)
2, (33)

where σ s
c is the uncertainty due to SSD, see Eq. (15), and σ

p
c

is the uncertainty due toDNN , see Eq. (32). The uncertainty
due to the measurements, σm

c , is motivated by the conserva-
tively estimated uncertainty on cm

12, see Sect. 4:

σm
c (cp

12) = cp
12 · 3%. (34)

The likelihood L of a predicted C–V curve cp,k
12 can then be

defined as

L(cp,k
12 ) =

60∏
k=1

N
(
cp,k

12 , σc(c
p,k
12 )

)
(cm,k

12 ), (35)

which is the product over all k of normal distributions with
mean value cp,k

12 and standard deviation σc(c
p,k
12 ) evaluated at

cm,k
12 .

The software package BAT.jl [28] was used to perform
Bayesian fits for two different cases of ζRZ: One without any
radial dependence of the impurity density, BZ, and one with
a radial dependence through all 8 parameters of pζ , BRZ.

The Metropolis-Hastings sampling algorithm, as imple-
mented by BAT.jl, was used with 8 chains and about 300,000
samples were accepted for both cases. Thus, about 1 mil-
lion CV curves were predicted in total. It would take about
10 years to calculate these directly without the DNN .

8.1 Bayesian fit of the impurity density without radial
dependence

For BZ, the model for the fit only has 3 parameters:

pBZ = (dLi, ζ
bot, ζ top), (36)
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Table 1 Prior distribution for all parameters from BZ. See main text
for reasoning

Prior distribution

dLi dLi ∼ U(0.2 mm, 5 mm)

ζ bot ybot ∼ Nt (0.7062704, 0.4)

ζ top ytop ∼ Nt (0.55060154, 0.4)

Fig. 20 Prior distribution and marginalised posterior distribution of
dLi from BZ. The smallest intervals (SI) containing certain amounts of
probability are shown as shaded areas

where the two parameters for the impurity density level are
used at all rb,i at the top and bottom in the ζRZ model, respec-
tively. A flat prior was chosen for dLi. For ζ bot and ζ top, the
prior distributions were chosen as broad truncated9 normal
distributions, Nt , in y around the respective y for the impu-
rity levels provided by the manufacturer ζ bot

M and ζ
top
M . The

broadness was chosen to express the large uncertainty on the
values provided by the manufacturer and such that the entire
parameter space was tested. The prior distributions for all
three parameters are listed in Table 1.

The marginalised posterior distribution and the prior dis-
tribution of dLi is shown in Fig. 20. The fit indicates a thick-
ness of about 3 mm, which is quite thick. However, this
parameter of the model is mainly sensitive to the end of
the C–V curve and probably heavily impacted by possible
imperfections of the implementation of the geometry of the
detector. In addition, the detector is old and some growth of
dLi is expected.

The prior distributions and marginalised posterior distri-
butions of ζ bot and ζ top are shown in Fig. 21.

The posterior distributions peaks are not too far away from
ζ

top
M and ζ bot

M . However, there are two modes in both poste-
rior distributions. This is also visible in the 2d-marginalised
posterior distribution of ζ bot and ζ top in Fig. 22. The second
mode can be explained by the symmetry of the setup. The
detector could basically be physically inverted such that the
top and bottom would be switched.

9 All truncated distributions presented in this paper are cut off at the
endpoints of the interval of the respective parameter space.

Fig. 21 a Prior distributions and b marginalised posterior distributions
for ζ bot and ζ top from BZ

Fig. 22 2d-marginalised posterior distribution of ζ top and ζ bot of BZ.
The smallest intervals (SI) containing certain amounts of probability
are shown as shaded areas

The posterior predictive of the difference between the pre-
dicted and measured capacitances, cp

12 − cm
12, is shown in

Fig. 23. At voltages above 1000 V the posterior predictive is
centred around 0. However, below 1000 V, it becomes very
clear that the model with no radial dependence is not able to
describe the measured C–V curve as the predictions do not
describe the measurements. Lower bias voltages correspond
to larger radii as the depleted region grows from the mantle
towards the borehole, see Fig. 11. Thus, a radial dependence
of the impurities towards larger radii is again suggested. The
impurity density ζRZ for the global mode of the fit BZ is
shown in Fig. 24.
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Fig. 23 Posterior predictive of the difference between the predicted,
cp

12, and measured, cm
12, capacitances from BZ. The shaded bands mark

areas of how probable a value of cp
12 − cm

12 is based on the posterior
of BZ

Fig. 24 ζRZ for the global mode from BZ as a function of a z and b r

8.2 Bayesian fit of the impurity density with radial
dependence

For BRZ, the model for the fit has 9 parameters:

pBRZ = (dLi, pζ ). (37)

The prior distributions for all parameters are shown in
Table 2. For dLi , a flat prior was chosen. For the 6 param-
eters ζ

top/bot
1−3 , truncated normal distributions based on the

marginalised posterior distributions of ζ bot and ζ top from BZ

were chosen. For the two parameters ζ
top/bot
4 , broad truncated

normal distributions centred around 0 were chosen based on

Table 2 Prior distribution for all parameters from BRZ. See main text
for reasoning

Prior distribution

dLi dLi ∼ U(0.2 mm, 5 mm)

ζ bot
1 ybot

1 ∼ Nt (0.6563343, 0.1)

ζ bot
2 ybot

2 ∼ Nt (0.6563343, 0.1)

ζ bot
3 ybot

3 ∼ Nt (0.6563343, 0.1)

ζ bot
4 ybot

4 ∼ Nt (0, 1.0)

ζ
top
1 ytop

1 ∼ Nt (0.56663054, 0.1)

ζ
top
2 ytop

2 ∼ Nt (0.56663054, 0.1)

ζ
top
3 ytop

3 ∼ Nt (0.56663054, 0.1)

ζ
top
4 ytop

4 ∼ Nt (0, 1.0)

Fig. 25 Prior distribution and marginalised posterior distribution of
dLi from BRZ. The smallest intervals (SI) containing certain amounts
of probability are shown as shaded areas

the conclusions drawn from BZ, that assumed impurities in
BZ were too high at larger radii.

The prior distribution and marginalised posterior distribu-
tion of dLi are shown in Fig. 25. The posterior distribution is
very similar to the case without radial dependence.

The prior distributions and marginalised posterior distri-
butions for the 8 parameters of ζ

top/bot
1−4 are shown in Fig. 26.

The two posterior distributions at rb,1 are very similar to
the posterior distributions of the case without radial depen-
dence. That was expected since the posterior predictive of the
first case indicated that no modulation is required at smaller
radii but is required at larger radii. This is also indicated by
the posterior distribution of the two parameters ζ

top/bot
4 which

describe the impurity density at the mantle of the detector.
The two posterior distributions are very broad, but favour a
very low impurity density and even a possible p-type volume
close to the mantle. The broadness comes from the increasing
estimated relative uncertainty on the predicted capacitances
towards lower bias voltages because the capacitance becomes
in general larger towards lower bias voltages. Another reason
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Fig. 26 Prior distributions and marginalised posterior densities of the 8 parameters describing ζRZ of BRZ. The ζ -axes cover the total parameter
space for all parameters. The smallest intervals (SI) containing certain amounts of probability are shown as shaded areas

Fig. 27 Posterior predictive of the difference between the predicted
and measured capacitances of BRZ. The shaded bands mark areas of
how probable a value of cp

12 − cm
12 is based on the posterior of BRZ

for the broadness is that the two parameters are only sensitive
to the first few data points of the measured C–V curve.

The posterior predictive of the difference between the pre-
dicted and measured capacitances, cp

12 − cm
12, is shown in

Fig. 27.
In contrast to the BZ model, the bands are centred around

zero for all bias voltages. The predictions become less precise
towards lower bias voltages due to the previously explained
reasons for the broadness of the marginalised posterior dis-
tributions of ζ

top
4 and ζ bot

4 .
The impurity density ζRZ for the global mode of the fit is

shown in Fig. 28.

9 Impact of impurity densities on pulse formation

The electric field, �E , and the pulses of one event spawned at
(r = 37 mm, ϕ = 30◦, z = 35 mm) were simulated with SSD
for three different ζ at the operation voltage of 3000 V:

Fig. 28 Global mode of the fitted impurity density of BRZ

123



Eur. Phys. J. C (2023) 83 :352 Page 15 of 16 352

Fig. 29 a The electric field strength at (ϕ = 30◦, z = 35 mm) over
r and b normalised pulses of the n+ contact of an event spawned at
(r = 37 mm, ϕ = 30◦, z = 35 mm) as simulated with SSD for the three
different impurity density distributions ζBZ , ζBRZ and ζ ∗

M

• ζM with dLi = 3 mm: ζ ∗
M,10

• ζRZ for the global mode of BZ: ζBZ ,
• ζRZ for the global mode of BRZ: ζBRZ .

The electric field strength at (ϕ = 30◦, z = 35 mm) over
r and the normalised pulses from the n+ contact of the sim-
ulated event are shown in Fig. 29 for the three different ζ

models.
The electric field strength close to the contacts differs sig-

nificantly for the three cases. The field strength from ζBZ is
significantly less radius dependent than that from ζ ∗

M. This
causes the pulse to become faster at the end. The radial
decrease of impurities in ζBRZ further reduces | �E | close to p+
contact. The field strength close to the n+ is further increased.
Nevertheless, the pulses for ζBZ and ζBRZ are very similar.

However, the effect of ζ on the simulated pulses also
depends on the charge drift model describing the mobil-
ity tensor and its dependence on the electric field. For the
simulated pulses shown in Fig. 29b, the charge drift model
from the AGATA Detector Library [11,29] as implemented in
SSD [9] was used with its default parameters. The differences
in the pulses for the three ζ models show how important it is
to use the correct impurity density distribution when using
pulse shapes from measurements to tune the parameters of
the drift model.

10 This was done in order to have approximately the same dLi for all
models.

10 Summary and outlook

The capacitance matrix of a germanium detector was
explained in detail and it was shown how the capacitances
depend on the depletion of the detector and, thus, on the
impurity density distribution of the crystal. The setup K1 and
the true-coaxial n-type germanium detector Super-Siegfried
were introduced and it was explained how to measure one
of the elements of the capacitance matrix of the detector
for different bias voltages. The measured C–V curve was
compared to a C–V curve simulated for the impurity density
distribution as provided by manufacturer. The comparison
suggested a radial dependence of impurity densities. This
was confirmed by a Bayesian fit which optimised the impu-
rity density model with only a dependence on the z-axis of
the detector. A model including a radial dependence of the
impurity density was introduced. The Bayesian fit of this
model to the measured C–V curve provided a good descrip-
tion of the data. This indicates that the crystal under study
really has an r dependent impurity density distribution with
a very low level of electrically active impurities close to the
detector edge.

A novel method was introduced that uses a deep neural
network, trained on GPU-accelerated capacitance calcula-
tions, to enable full Bayesian parameter inference on com-
plex impurity density models.

The possibility to determine impurity density distributions
from capacitance measurements opens a road to study mobil-
ity tensors and drift models by comparing measured and sim-
ulated pulses without the uncertainties otherwise introduced
by the lack of knowledge on these impurity densities. The
knowledge of the impurity densities is also important for
pulse-shape analysis used in rare-event searches where the
exact understanding of the pulse formation is critical to dis-
criminate between signal and background events.

It should be noted that the method presented here can also
be used to optimise general detector properties during the
detector design phase. In addition, the method has the poten-
tial to determine impurity distributions based on impurity-
sensitive detector properties other than capacitance. Inferring
impurity from voltage-dependent properties like the shape of
the depletion volume, determined by Compton scanning, or
the total active volume will be the subject of future work.

Data Availability Statement This manuscript has no associated data
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in a self explanatory format which would allow it to become public. In
the case of interest, the authors should be contacted.]
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