Eur. Phys. J. C (2023) 83:352
https://doi.org/10.1140/epjc/s10052-023-11509-8

THE EUROPEAN ()]
PHYSICAL JOURNAL C e

updates

Regular Article - Experimental Physics

Bayesian inference of high-purity germanium detector impurities
based on capacitance measurements and machine-learning

accelerated capacitance calculations

I. Abt, C. Gooch, F. Hagemann, L. Hauertmann®

, X. Liu, O. Schulz, M. Schuster

Max Planck Institut fiir Physik, Fohringer Ring 6, 80805 Munich, Germany

Received: 27 September 2022 / Accepted: 14 April 2023 / Published online: 3 May 2023

© The Author(s) 2023

Abstract The impurity density in high-purity germanium
detectors is crucial to understand and simulate such detec-
tors. However, the information about the impurities provided
by the manufacturer, based on Hall effect measurements,
is typically limited to a few locations and comes with a
large uncertainty. As the voltage dependence of the capac-
itance matrix of a detector strongly depends on the impu-
rity density distribution, capacitance measurements can pro-
vide a path to improve the knowledge on the impurities. The
novel method presented here uses a machine-learned surro-
gate model, trained on precise GPU-accelerated capacitance
calculations, to perform full Bayesian inference of impurity
distribution parameters from capacitance measurements. All
steps use open-source Julia software packages. Capacitances
are calculated with SolidStateDetectors.jl, machine learning
is done with Flux.jl and Bayesian inference performed using
BAT.jl. The capacitance matrix of a detector and its depen-
dence on the impurity density is explained and a capacitance
bias-voltage scan of an n-type true-coaxial test detector is
presented. The study indicates that the impurity density of
the test detector also has a radial dependence.

1 Introduction

Advanced scientific applications of high-purity germanium
(HPGe) detectors often require a quantitative understanding
on how the detector signal depends on the event topology.
This requires a realistic simulation of the detector. Example
applications are searches for physics beyond the Standard
Model such as neutrinoless double-beta decay [1-5] and dark
matter [6-8]. In such rare-event searches, it is essential to
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distinguish between signal and background events based on
the shape of the detector signal.

A very important input to the simulation of HPGe detec-
tors is the impurity density distribution, ¢, of the electrically
active impurities in the germanium crystal as it strongly influ-
ences the electric potential, ®. The calculation of @ is the first
step in the simulation of an HPGe detector. Software pack-
ages like SolidStateDetectors.jl [9] (SSD), MIDSigGen [10]
or the AGATA Detector Library [11] are able to perform a
full simulation of HPGe detectors from field calculation to
signal formation. It is crucial, though, to use the correct ¢
to obtain the correct electric field, which influences the drift
of the charge carriers and, thus, the formed pulses. Often,
the impurity density is measured via the Hall effect at dif-
ferent heights of a drawn crystal ingot by cutting thin slices
out of the ingot. However, there is a rather large uncertainty
on these impurity measurements and, in addition, assump-
tions have to be made how the impurity density changes in
between. Usually, only a linear or quadratic change of the
impurity density between the bottom and the top of a cylin-
drically shaped crystal is assumed. If an incorrect model for
¢ is assumed, wrong conclusions can be drawn in studies
involving the subsequent parts of the simulation, e.g. in stud-
ies involving the mobility tensor.

An HPGe detector is, in principle, a p — n diode operated
in reversed bias mode. The extent of the depleted volume for
different bias voltages, Up, depends on ¢. The undepleted
volumes are extensions of the detector contacts. Thus, the
capacitance between those contacts depends on Up and ¢.
Therefore, ¢ can be studied by measuring the capacitance
for different Up, a C—V curve, and comparing it to simulated
C-V curves for different ¢.

Past work by Bruyneel et al. [12,13] has shown that it
is indeed possible to determine impurity density parameters
based on C-V measurements. It was, however, limited to
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a best-fit approach without uncertainty estimates and with
very few free parameters. Moving beyond this to impurity
density models that have many free parameters and fully
exploring such parameter spaces is very challenging due to
the high numerical cost: Simulating a C—V curve requires
repeated and numerically expensive field calculations. Even
with the GPU-accelerated implementation in SSD and using
multiple GPUs in parallel, it takes a few minutes to calcu-
late one C-V curve. It is, therefore, prohibitive to perform
these calculations directly during parameter inference as a
proper exploration of the parameter space would take a very
long time. The novel method presented here circumvents this
problem by replacing the exact capacitance calculations with
a machine-learned approximation function. It comprises the
following steps:

1. Definition of a model for ¢ for a detector and including
the allowed parameter space for its parameters, p.

2. Quasi-random generation of N parameters sets: X =
{pi} fori e [1, N].

3. Calculation of the capacitance, c;, via SSD for each ele-
ment of X: Y = {¢;} fori € [1, N].

4. Training of a deep neural network, DA/, on the gener-
ated data set: (X1Y).

5. Bayesian inference of the model on a measured C-V
curve using the trained DA/N.

The generation of Y via field calculations can take a few days.
Afterwards, the trained DA/ can predict capacitances very
quickly and with sufficient accuracy. This makes it possible
to perform a Bayesian exploration of the full parameter space.

Note that this method can be used for detector optimisation
in general: not only to fit ¢ but also to find optimal values for
other design parameters of a detector.

2 Detector capacitance matrix

An HPGe detector with N > 2 contacts can be seen as a
system of N conductors which are capacitively coupled. A
schematic of the capacitances for a system of two conductors
is shown in Fig. 1.

The mutual capacitance, ¢;;, between two conductors i
and j is defined as

oo

- Uy’ M

Cij
where 0 Q; is the change in charge on conductor i for achange
in potential, U, of conductor j. The mutual capacitance is
symmetric: ¢;; = cj;. The self capacitance of conductor 7,
cii» can be understood as a mutual capacitance where the
other conductor is a grounded closed surface surrounding
conductor i. In absence of any surroundings, this surface can
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Fig. 1 Schematic of the capacitances for a system of two conductors on
potentials U; with charges Q; together with the corresponding mutual,
C, and Maxwell, C* capacitance matrices

be imagined as a grounded sphere with an infinite radius. In
case of a typical HPGe detector in a grounded cryostat, the
surface is defined through the grounded walls of the cryostat
and the grounded parts of the holding structure of the detector.

The different ¢;; are the elements of the so-called mutual
capacitance matrix C. However, when working with a system
of conductors, it is usually not very practical to work with
C as the elements cannot be studied individually. Therefore,
the so-called Maxwell capacitance matrix [14],

- N -
ZC[,’ —C12 ... —CIN
i=1

* * N
C ... C
. 11 1y —c21 Y. €2 ... —CN
C = = i=1 s
CN] CNN
N
—CN1 —CN2 ... ZCNi
L i=1 .

@

is introduced which is generally more practical as it connects
the potentials of all conductors, U = (Uy, ..., Uy), with the
charges on all conductors, Q = (Q1, ..., Qn) via

- =

o=c 0. 3)

The C* notation can be distinguished from the C notation
through its negative off-diagonal elements with

Vi#j. @)

The elements of C* can be calculated [15] through the
weighting potentials! of the contacts, W;:

* —_— ..
Cij = —Cij

CZ‘,- = 60/ VW;(F) - €. (F) - VW, (F) dF, (3)
Vw

where ¢ is the vacuum permittivity and €, the relative per-
mittivity of the medium at position 7. The integral is over the
closed system volume Vyy.

! The weighting potential W; of contact i in an HPGe detector relates
the position of a charge to the induced signal in the contact i.
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Since the c;*j depend on W; and ¢, (¥), they depend on the
geometry of the detector and its environment. If the detector
is not fully depleted, the contacts which are touching these
undepleted regions become enlarged, which is an effective
change of geometry. The enlargement of the contacts depends
on ¢ and Up. Thus, for a detector in a fixed environment, the
capacitances become dependent on two variables:

cij = cj;j(&, Up). (6)

The absolute values of c;‘j decrease with increasing Up.
The Up at which the detector becomes fully depleted is called
the full-depletion voltage, Ugd(g“). For Up > Ugd(C), the
values of c?‘j basically do not change anymore. Thus, there
are lower limits on the absolute values for the elements of
C* for a given ¢:

¢ (&) = e WUF ). (7)

It should be noted here that a capacitance is an electrostatic
quantity and is not frequency dependent. The reactance is the
quantity which introduces a frequency dependence.

3 The experimental setup K1 and the detector
Super-Siegfried

The test stand K1 is a small vacuum chamber with a cooling
finger submerged directly in a liquid-nitrogen dewar. The n-
type true-coaxial HPGe detector Super-Siegfried [16] was
mounted on a special base plate which fitted on the cooling
finger inside K1. The detector, together with the necessary
holding structure, is depicted in Fig. 2. Closely around the
holding structure a so-called hat is placed on top of the base
plate, see in Fig. 3. The hat has an inner radius of 55 mm, an
inner height of 105 mm and serves as an infrared shield. The
base plate, the holding structure and the hat are all grounded.

The detector has a length of /p = 70 mm and a radius of
37.5mm. The borehole has a radius of 5mm and at the top
and the bottom; it widens to a radius of 10 mm within about
3 mm. The inner borehole of Super-Siegfried is the only n™
contact and the mantle is dividedinto 19 p* segments. For the
measurements presented in this paper, the segments were not
read-out separately, but were connected together into one sin-
gle p™T contact. The nt contact is lithium drifted and the p™
segments are established through boron implantation. The
manufacturer provided two values for the impurity level at
the top and at the bottom of the detector:

o’ = 0.44 100 em =3,

ot =1.30-100cem ™3,

The operation voltage of the detector suggested by the man-
ufacturer is 3000 V.

Fig. 2 Super-Siegfried within its grounded holding structure as
mounted on the grounded base plate

Fig. 3 Grounded infrared shield (hat) surrounding Super-Siegfried and
its holding structure

As the p™ segments are connected to form only one con-
tact, the capacitance matrix of the detector is a 2 x 2 matrix as
showninFig. 1, where the n* and the p™ contacts are the two
conductors 1 and 2. The base plate, holding structure and hat
form the grounded shell around the two contacts. This is also
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Fig. 4 Schematic of the electronics used for the measurements of cyo
of Super-Siegfried in K1

ADC

shown in Fig. 4, which shows the schematic for the measure-
ments of the mutual capacitance between the two contacts,
c12. This is similar to what has been described in [13].

Up is applied to the n™ contact and the p™ contact is held
at ground over a termination resistor, R>. A pulse generator
is connected to the p™ contact over its internal resistor, Rpg,
and an additional resistor R; which serves in combination
with R as a voltage divider. To measure ci3, rectangular
pulses with an amplitude of Upg were generated and injected
into the p™ contact. This corresponds to a change in the
potential U, which translates into a change of charge on the
n* contact, Q1, via Eq. (3):

01 =—cp1-Us. (8)

Thus, given the electronic circuit, the measured capacitance,
c‘1“2, can be calculated for different Upg from the measured
01(Up) as

—01(Up) _ —Q1(Up)

Us Up ( R, )7
N Rpg + R1 + R

where the values for the different components are Rpg =
502, Ry = 61902, Ry = 51.4Q and Upg = 126 mV.
01(Up) was extracted from the induced pulses in the n™
contact as follows: The n* contact was connected to a charge-
sensitive preamplifier circuit typically used to read-out ger-
manium detectors. The amplified signals were recorded with
a sampling rate of 250 MHz and a pulse length of 20 us by a
Struck SIS3316 [17] analog-to-digital converter unit (ADC).
The recorded pulses were inverted (= — Q1 becomes + Q1
in Eq. (9)), corrected for the decay of the charge in the ampli-
fication circuit and were calibrated [18, 19]. The parameters
of the decay correction and calibration of the read-out circuit
(preamplifier together with the ADC) were determined from
pulses of background gamma events of known energy of a
measurement at Uz = 3000 V. An assumption made here is
that the parameters of the decay correction and calibration
are independent of Up or, respectively, c1>. After the decay
correction and calibration, recorded pulses are often given

i (Up) = (€))
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Fig. 5 Recorded response of the n* contact of Super-Siegfried in K1
to generated rectangular pulses injected into the p™ contact for different
Up. The zoom-in plot shows the fit of Q(z), see Eq. (10), to the tail of
the pulse for Up =25V
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Fig. 6 Schematic of the electronics describing a a fully depleted and b
an only partially depleted detector with only two contacts. The depleted
part is modeled with c1, while the undepleted part is modeled as an RC
circuit with resistance R, and capacitance ¢,

in units of energy. For this study, the values were converted
into charge pulses, Q(¢), in units of charge, pC, based on the
ionisation energy of germanium of 2.95eV [20].

For Up > U9, the recorded pulses are rectangular pulses
and their amplitude corresponds to Q1. This is, however, not
the case for Up < Ulgd. This is shown for three different Up
in Fig. 5.

Partially depleted detectors have to be modeled differ-
ently [21] within an electric circuit as shown in Fig. 6.

The undepleted volume can be described as an additional
RC component introducing also a frequency dependence to
the signal and leading to longer pulses. This can be calculated
for one dimensional systems [21]. In reality, that is usually
very complicated. However, here, it is not necessary as we
are only interested in the total charge, Q;, flowing through
the circuit which can be determined by fitting the tail of Q(¢)
with

O@t) = Ot — Qu-e /™, (10)
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Fig. 7 Histograms of Q, for different Up. The most dominant peak in
each spectrum comes from pulser events. The Q; from pulser events
decreases for increasing Up. For higher bias voltages, also events from
background events, mainly from environmental gammas, become vis-
ible in the range [0, 0.14] pC. The peak corresponding to events from
2614keV gammas from the TI?%® decay is labelled. Inset: The fit to
the peak of pulser events at Ug = 25 V. The fitted parameter QE kril is
shown as a vertical line

where Q;, O, and 7, are fit parameters. This is also illustrated
in Fig. 5.

It should be noted that also single-segment to core capac-
itances could be measured by this technique if the segments
would not be combined. These capacitances would be more
sensitive to ¢ in the volume close to the respective segment.
Hence, the ¢ dependence on z, and even a possible depen-
dence on ¢, could be investigated more accurately. However,
this would require to keep the other segments on the same
potential as the core. Since the segment boundaries of this
detector are very thin, & 0.5 mm, such measurements would
bear a great risk to damage the detector by a possible break
through since there would be a very strong electric field of
about 6kV/mm.

4 Measurement of the C-V curve

The detector was operated at 60 different bias voltages,
Upr=25V+(k—-1)-50V Vke{l, 2,...,60}. (11)

Each measurement lasted 600s. For lower Up i, most of the
observed pulses were induced by the pulse generator. For
increasing Up x, more pulses induced by gammas from nat-
ural radioactivity were recorded as the depleted volume and,
thus, the active volume of the detector increased. However,
the peak created by the pulse generator was always clearly
identifiable. The spectra of Q; of all pulses from all 60 mea-
surements are shown in Fig. 7. For all measurements, the
events induced by the pulse generator form a peak. The mean
values of these peaks, Q} ;" , were determined by fits of scaled
normal distributions as shown in Fig. 7.
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Fig. 8 a C-V curve of Super-Siegfried as measured in K1. The error
bars represent uncertainties conservatively determined by assuming 3%
uncertainties on Q:{L ,’(m, RpG, R1, Ry and Upg and using Gaussian error
propagation. The uncertainties are highly correlated. b Negative differ-
ences, —Ac];/AUp, between the data points in a

Using Eq. (9), the determined Q';" were converted to

Cr1112,k for all Ug k. The resulting C-V curve, c’lnz’k, is shown in
Fig. 8a.

As mentioned earlier, in theory, c1> should not change
anymore for Up > Ulfgd. This does not take into account
that the contacts are regions of the detector, which are doped
more than three orders of magnitude higher than the bulk.
With increasing Up, also very small volumes of the con-
tacts become depleted. However, for reasonable values of
Up below the break-through voltage, the contacts never
become completely depleted and —dcY, /9 U p never becomes
entirely zero. This is demonstrated in Fig. 8b. Therefore,
it is not trivial in general to define Ulfgd. Here, we define it

as —AcM/AUg = 1073 pF/V: U ~ 2600V. For Up >
2600V, simulations are expected to result in a fully depleted
detector for the correct ¢.

5 Simulation of the C-V curve

The C-V curve for a given ¢ was simulated with SolidStat-
eDetectors.jl (SSD). Since version v0.7, SSD can be used to
calculate C* of a detector while taking the influence of the
environment into account. Since v0.8, it can also perform
the required 3d field calculations for ® and WV, efficiently on
GPUs.

In SSD, ® and W, are calculated by solving Gauss’s law
on adaptive 3d (cylindrical or Cartesian) grids via the itera-
tive successive over-relaxation (SOR) algorithm [19]. As the
potentials are calculated on grids, the integral in Eq. (5) is
turned into a sum over the grid of W;. The gradient of W; is

@ Springer
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75 mm

Fig. 9 The geometry of the HPGe detector Super-Siegfried (dark
grey), together with its holding structure and base plate (light grey)
as implemented in SSD. The blue lines are segment boundaries of the
p™T contact and the red cylinder is the n™ contact

determined through interpolation onto the grid of W; as the
two final grids are usually not identical due to the adaptive
grid refinement.

In order to calculate the elements of the matrix via Eq. (5),
@ and all W; have to be calculated first. In contrast to WW;, ®
does not occur in Eq. (5). It is, however, required to determine
the depleted volume which depends on ¢ and Ug [19]. This
information is then passed to the calculation of the weight-
ing potentials. In the calculation of the weighting potentials,
the relative permittivity, €,, inside undepleted volumes was
scaled by 10° as an approximation of infinity. This makes
these areas quasi-conductive and results in equal potentials
over these volumes. Thus, undepleted volumes in touch with
a contact become extensions of this contact and will be on
the same potential as applied to the contact.

The detector Super-Siegfried and the grounded holding
structure and base plate as implemented in SSD are shown
in Fig. 9. For the simulations, a cylindrical grid was chosen
and the grid was limited to the dimensions of the hat. Fixed
boundary conditions of 0V were set at the outer edge in r
and at both edges in z to mimic the grounded closed shell of
the hat and base plate. In ¢, the grid was limited from 0° to
120° and periodic boundary conditions were set.”

2 In order to test if 3d simulations are necessary, 2d simulations, which
are faster but ignore the holding structure and the segmentation in ¢,
were compared to 3d simulations for several different ¢ . The difference
in the simulated capacitances for the 2d and 3d cases were of the order
of 5%.
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Fig. 10 One-dimensional illustration of the envisioned modelling of
the n* layer for future simulations with SSD via a continuous increase
of the impurity density from the impurity density of the bulk, {puik, to the
impurity density of the n* contact. The hard transition corresponds to
the current implementation of the n* layer in SSD, where the potential
values inside the contact volume are fixed to the set contact potential

It is very important to define the geometry of the detec-
tor, especially the geometry of the contacts, as realistically
possible as it also influences the capacitance. Particularly, ¢!,
depends on the exact geometry. For all simulations presented
in this paper, the p™ contacts of the detector were fixed to
a thickness of 0.5 um as measured previously [19]. Lithium
drifted contacts typically have thicknesses of O(mm). This
thickness was not measured previously since irradiation of
the inner borehole is not simple to achieve. Since the n* con-
tact thickness, dp, is on the mm scale, it impacts c[12 on a
measurable scale. The n* contact geometry is implemented
as a tube with the inner radius being fixed at the borehole of
the detector. The thickness of the tube, d ;, is a free param-
eter in the fit presented in this paper. The contact does not
cover the widening of the borehole. At the bottom and the
top of the contact, the outer edge of the tube is rounded off.

In the field calculation, the potential values of grid points
inside the defined volumes of the contacts are fixed to the
potential applied to the corresponding contact. In principle,
the nt contact could instead be modeled through ¢. The
current implementation of a fixed potential inside the vol-
ume corresponds to a jump from the bulk impurity density
to infinity at the surface of the contact volume as shown in
Fig. 10. In future, it is envisioned to smooth this hard edge
transition by adding some continuous function to the impu-
rity at the nt contact.’ This smooth edge transition is also
shown in Fig. 10. However, this is not yet part of the studies
presented in this paper.

In SSD, custom signed impurity-densities can be defined
where the sign of the given density determines the sign of
the fixed space charges of the minority charge carriers at
the specific location. Thus, the sign is used to specify the
type (n or p) of the semiconductor at a specific location,

3 The p™ contact thickness is on a much smaller scale, O(um), and,
thus, it would not be feasible to resolve a smooth edge transition on that
scale.
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Fig. 11 Cross-section of Super-Siegfried mounted in K1 at ¢ = 36.7°
showing the undepleted volumes for { and selected Up x in steps of
250V (200 V for the last step to 2975 V) as differently shaded areas

F= (¢ 2):
¢(F) > 0cm™ & n-type region, (12)
¢(F) < 0cm™ & p-type region. (13)

Typically, in simulations of HPGe detectors, a simple lin-
ear or quadratic change of ¢ is assumed along the crystal
pulling axis z, based on certain levels of impurity provided
by the manufacturer for some z values. A radial component is
usually not assumed. Thus, for the detector Super-Siegfried,
the signed impurity-density model based on manufacturer
values becomes

£ _ ot
() = ot + M= (14)
which comprises a linear profile in z and no modulation in r.

The depleted volumes for ¢y and di; = 1 mm were cal-
culated with SSD for all Up . The undepleted volumes are
shown in Fig. 11 for selected Up k.

It shows how the detector depletes from the mantle of the
detector towards the borehole. It also shows that even for a
bias voltage of 2975V the detector does not become fully
depleted. Thus, the overall impurity level of ¢y seems to be
too high since Ulgd was determined to be ~ 2600 V.
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Fig. 12 C-V curve, c?’zk, as simulated with SSD for ¢y together with
the measured C-V curve, c'lnz’k, already shown in Fig. 8a

The simulated C-V curve, ci’zk, in comparison to the mea-
sured C-V curve, is shown in Fig. 12. An uncertainty of

o.(c}y) = ¢}y - 1% + 1 pF (15)

is assigned to cizk The absolute uncertainty of 1 pF is moti-
vated by a possible imperfect implementation of the geom-
etry in comparison to reality. The 1% relative uncertainty is
motivated by studies on the simulated capacitance for dif-
ferent levels of the fineness of the final grids of the calcu-
lated fields. A relative uncertainty is chosen for this source
of uncertainty because the depleted volume is smaller for
lower bias voltages (larger capacitances) requiring a finer
refinement. In SSD, the refinement of the grids in the field
calculations can be tuned [22]. The following settings were
used for the simulations presented in this paper:

convergence_limit = 10_7,
refinement_limits = [0.2,0.2,0.1,0.1, 0.1,
0.05, 0.03, 0.02, 0.01],
max_distance_ratio = 3.0,

min_tick_distance = (10 um, 1°, 10 wm).

Figure 12 shows that the simulation predicts that the detec-
tor is not yet fully depleted for any Up i as the simulated C—
V curve still decreases and does not reach its lower limit at
Up.60. However, at Up ¢, the simulated capacitance is lower
than the measured capacitance limit cllzm = cﬁnz’(’o. This indi-
cates that d ; might be larger or that the implemented geome-
try does not perfectly describe reality. For low bias voltages,
ciék is larger than crfa’k. This means that the detector depletes
faster in reality than in the simulation, indicating that the {v
is too large at larger radii.
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Fig. 13 Capacitances c$, for (Up = 25V, dL; = 1 mm) and for differ-
ent constant levels of ¢ as simulated with SSD. The vertical solid lines

mark the parameter space of the impurity level where ¢, is sensitive to

¢. The impurity levels {f,l‘" and {;;I’p provided by the manufacturer are

also indicated

6 Model function for the impurity density

The comparison between ¢|5* and ¢} for v suggests that
the impurity density is not that high and not constant in » and
a more complex model for ¢ is required.

Assuming a constant impurity density ¢, the range of
sensitivity of the voltage scan to the absolute impurity levels
can be estimated. For this, C?z is calculated for (U = 25V,
dr; = 1 mm) and for different ¢ as shown in Fig. 13.

For dr; = 1 mm, the simulated limit capacitance, cllg ,can
be calculated with ¢ = 0cm™3. Even for ¢ = 108cm—3,
i, A cllzs meaning that the detector is already fully depleted
at Up = 25 V. Thus, this level can be seen as a lower limit,
{1, for the parameter space of impurity levels,

g :=108cm™3. (16)

At . = 10" em =3, ¢}, is much larger than the measured
capacitance at Ugp = 25 V. Thus, this level can be seen as an
upper limit, ¢,, for the parameter space of impurity levels,

Co = 10" em ™3, (17)

Figure 13 also shows that a logarithmic change in ¢. between
¢y and ¢y results ina change of ¢}, on alinear scale. Therefore,
the (7, z)-dependent signed impurity-density, {rz (7, z|s), is
defined as

Rz (r, z|g) = tanh(g - x(r, 2)) - 10¥"I] (18)

where g is set to 1000 for this study and x (r, z) is a function to
and above —¢;. model ¢rz on a logarithmic scale.* The sign
of x(r, z) is used to determine the type of the semiconductor
at (r, z), see Egs. (12) and (13).

4 This function ¢rz(r, z|g) was chosen to be differentiable as certain
optimisation techniques require a gradient. The value of g was chosen
in order to yield a sharp (but differentiable) transition from —¢; to ¢;.
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According to the simulation, the measurement is not sensi-
tive to impurity densities below ¢ and above —¢;.°> A param-
eter transformation, 7, is defined to model ¢rz between
[—¢u, ¢u] and significantly reduce the influence of the param-
eter interval [—¢, §]:

x(r,2) = T(y(r. 2)). (19)
T (y[v. x1. x0) = sign(y) - x1- [y[7 + (ea —x1) -y, (20)

with x; = logo (¢ - cm3) = 8, xy = log;(Lu - cm3) =11,
v = 1000 and y(r, z) is a function to model {rz on the linear
interval [—1, 1]. The transformation is shown in Fig. 14. A
linear change in y will result in a logarithmic change in {rz
which causes a change in ¢ on a linear scale.

The spatial dependence of the model ¢rz (7, z) is imple-
mented as a spatial dependence of y:

YP(r) — y*(r)
_—_— Z

y(r, z) = y™Ur) +
Ip

1)
where the r dependence is modeled by y*°!(r) at z = O mm
and y"°P(r) at z = Ip. Both, y*°'(r) and y'°P(r), are modeled
as two cubic splines defined for four specific radial positions
rp,1 = 20mm, rp2 = 28mm, rp3 = 33mm and rp4 =
37.5mm.° The gradient of the splines at their left boundary,
'v,1, 1S set to zero, the gradient at the right boundary, r =
37.5 mm, is not fixed.

Thus, the model is defined by a set of 8 parameters, p¢,
either defined in impurity levels

bot sbot sbot ,bot ,top ,top _top _top
pg:(gl"t,g"‘,g"‘,;ﬁ‘,cl P P ) 22)

3 The same sensitivity is assumed for p-type densities as for the inverted
system, inverted charge distribution and contact potentials, the same
values for the capacitances will be calculated.

6 These positions were chosen after performing initial tests which indi-

cated that the ¢ dependence on r is larger close to the mantle than close
to the borehole.
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or in values of y,

t t t t
pfy = (yli)Ot, yg()tv ngts y}l’Otv ylopa yzops y30p9 )’40p) I (23)

as they can be transformed into each other via Egs. (18)—(20)
and their inverse functions.

An example impurity distribution of ¢rz based on the val-
ues provided by the manufacturer is shown in Fig. 15 with

pee = (G ', o /10, —6P, o Gt P /10, —a )

The model allows to modulate the bulk impurity density of
adetector including a possible boundary between n-type and
p-type volumes as demonstrated with the example density,
see Fig. 15. There, the main bulk of the detector is n-type
but is p-type close to the mantle. For this detector, such a p-
type volume close to the mantle is motivated by two aspects.
First, when pulling the crystal via the Czochralski method,
there could be some radial modulation of the impurities due
to the process. Especially, since natural germanium is p-type
and n-type dopants have to be added to the molten germa-
nium. Secondly, the p™ contacts are heavily over-doped lay-
ers, 0(10'2 cm™3) oreven higher. The thickness of the unde-
pleted boron layers is very small, 0.5 um, but there could be
diffusion. This could lead to impurities reaching the mag-
nitude of the bulk densities, (’)(108’10 cm’3), penetrating
deeper, O(mm), into the n-type germanium leading to com-
pensation and type conversion.

7 Deep neural network for fast capacitance predictions

For a given set of values for (dLi, p¢,), a C=V curve can be
calculated with SSD and, in principl'e, a fit to the measured
C-V curve could be done. However, for each Up j three 3d
field calculations would need to be performed resulting in
180 field calculations for the whole measured C-V curve.
Even though each set of three 3d field calculations (with the
specified refinement settings) takes less than a minute on a
GPU’ in SSD, it would not be feasible to set up an optimiser
or a Bayesian fit.3

Therefore, a deep neural network, DN N, was developed
which is able to predict the capacitance, clfz, for a set of
parameters (dLi, p¢,) much faster, O(us). Here, Up is added
to the input parameters of the model. Even though this adds
an extra dimension to the model, it simplifies the output as
only one capacitance is predicted instead of a whole C-V
curve:

pp = (v, pe,, Up), (24)
b, = DN N (pp). (25)

The impurity model parameters pp forma 10-dimensional
parameter space Pp. The following uniform distributions
U(a, b) were chosen to quasi-randomly draw sets of input
parameters for the generation of the training and test capac-
ity datasets:

dri ~ U (0.2 mm, 5 mm),
YO~ 2£(0.018566145, 1)
¥2O ~ 1£(0.018566145, 1)
Yoo~ U(—1, 1)

Yoo~ U(—1, 1)

& e g, gl
& 2 e (g, gl
< g-:?O[ € [_§U7 é‘ll]9

& e [—tu, Gl
top

yP ~ U(0.018566145, 1) & ¢ el al,
v P ~ U(0.018566145, 1) o &% ey, bl
WP~ U(=1,1) & 57 € [~ tul.
WP~ U(=1, 1) & 0% € [~ tul.

Up ~U(10V, 3000 V).

Note that the distributions of ;‘,? O/ 4 re not uniform due

to the nonlinear transformation defined between ysm/ “P and
bot/top
n .

7 For the calculations presented in this paper the following Nvidia GPUs
were used: 4 GTX 1080 Ti, 2 Quadro RTX 8000, 6 Tesla V100, 4 RTX
3090 and 2 A100.

8 Faster 2d simulations would bear an additional uncertainty, as men-
tioned in Sect. 5, and would still not be fast enough to be used directly
in an optimisation or a Bayesian fit.
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The distribution of dy ; is chosen based on typical lithium
layer thickness values. Up has to cover all values of Up x. As
Super-Siegfried is an n-type germanium detector, the range of
the four parameters describing the density towards the bore-
hole, at the top and bottom, are limited to the y region corre-
sponding to an n-type density. The four parameters describ-
ing the density towards the mantle at the top and bottom,
however, are allowed to include p-type impurity levels.

All individual parameter distributions can easily be trans-
formed to uniform distributions 2/ (0, 1) on [0, 1]. Therefore,
Pp can be transformed into the 10-dimensional hypercube
[0, 11'° with a parameter distribution (0, D9, In order to
create a dataset to train the DAN, Ny = 60000 samples,
were drawn according to

ui ~UO, DY vie{l,2,...,Ng (26)

via the quasi-random Golden Sequence [23,24] sampling
algorithm. It generates samples that are very evenly spaced
in the unit hypercube.

Machine learning algorithms sometimes fail for parameter
spaces with hard edges. Therefore, another transformation,
Tnr, was introduced to transform the u; into unbound param-
eter intervals, [—oo, oo], such that each of the elements of

ulN is normally distributed around O with a standard deviation
of 1:
u{v = Th(u;). (27)

Each ulN still corresponds to a specific (dLi, p;, Up). For
all u;’v , the respective c}, is calculated with SSD to produce
a labelled data set,

Du=[(u{‘f|c§’2")} Vie{l,2,....Ng, (28)

which is divided into a training and a test set with a typical
ratio of 80:20,

pirain _ {(u{‘ﬁci’z")} Vie{l,2,...,08-NJ,  (29)

plest — {(u{\ﬂcﬁg)} Vie{08-No+1,....Ng}. (30)

The distribution of generated samples of ¢ and ¢ for
D, and Di*" are shown in Fig. 16. For both sets, the param-
eters are properly distributed over the respective parameter
intervals.

For machine learning, the Flux.jl [25,26] package was
used and the following configuration of DN was found to
produce good predictions for cy2:

e Number of nodes per layer: [10, 128, 128, 128, 128, 128,
11;

Type of all layers: Dense layer;

Activation function for all but the last layer: GELU;

e No activation for the last layer.
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The function to minimise,
loss(ch,, ¢§y) = log(((c}, — ¢},)/pPP)?/h+ 1) - h,  (31)

was chosen as the loss function [27] with & = 4.

The training of the DA/ N was performed with the samples
of DN in 3 subsequent optimisation cycles. The ADAM
optimiser algorithm was used with the learning rates 7, num-
ber of epochs and batch sizes:

1. n= 102,20 epochs and a batch size of 2048;
2. 7 = 1073, 80 epochs and a batch size of 1024;
3.n= 1074, 40 epochs and a batch size of 512.

The learning curves, i.e. the mean of the loss of all samples
of a set after each epoch, of the training and test set are shown
in Fig. 17.

The predicted capacitances of the trained model over the
corresponding “true” value c}, are shown in Fig. 18 as a
scatter plot. A perfect model would produce only points on
the diagonal line clfz = c},. Most of the points lie close to
that diagonal line and only a few points are further away,
so-called outliers.

The distribution of absolute and relative difference
between c[fz and c}, for the training and test set are shown in
Fig. 19.
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A Gaussian approximation is fitted to the distribution of
relative differences between clf , and ¢}, for the samples of the
test set. The determined standard deviation of the Gaussian
of 1.5% is used to estimate the uncertainty on the predicted
value cﬁ’zz

ol (chy) =l - 1.5%. (32)

A relative uncertainty was chosen to account for the increas-
ing difference between c}, and ¢}, for larger c}, as visible in
Fig. 18. However, at capacitances above &~ 500 pF an uncer-
tainty of 1.5% seems to be an underestimation. This is mostly
due to the small number of training samples with large capac-
itances. To improve the predictions for larger c},, the distri-
butions from which the training samples are generated could
be tuned in the future, such that more samples with larger
capacitances are generated, e.g., more samples at lower bias
voltages.

8 Bayesian fits of the impurity density

A predicted C-V curve c‘f’zk can now be produced for a given
set of (dii, pr) by evaluating the trained network DN at
(dui, pc, Up k) for all k.

For each predicted clfz, an uncertainty is estimated by
Gaussian error propagation of the three different sources of
uncertainty:

oc(cly)? = oM (]y)? + 0 (c1)* + ol () (33)

where o7} is the uncertainty due to SSD, see Eq. (15), and ol
is the uncertainty due to DA/, see Eq. (32). The uncertainty
due to the measurements, o, is motivated by the conserva-
tively estimated uncertainty on cj;, see Sect. 4:

o(chy) = b, - 3%. (34)

The likelihood £ of a predicted C-V curve cﬁ”zk can then be
defined as

60
£ = [TV (e oeelsH)) 3, (35)
k=1

which is the product over all k of normal distributions with

mean value cfl’ ’2k and standard deviation o, (cllj’zk) evaluated at
k.

The software package BAT.jl [28] was used to perform
Bayesian fits for two different cases of {rz: One without any
radial dependence of the impurity density, Bz, and one with
a radial dependence through all 8 parameters of p;, Brz.

The Metropolis-Hastings sampling algorithm, as imple-
mented by BAT.jl, was used with 8 chains and about 300,000
samples were accepted for both cases. Thus, about 1 mil-
lion CV curves were predicted in total. It would take about
10 years to calculate these directly without the DNN.

8.1 Bayesian fit of the impurity density without radial
dependence

For Bz, the model for the fit only has 3 parameters:

pB, = (dui, ¢°, P, (36)
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Table 1 Prior distribution for all parameters from Bz. See main text
for reasoning

Prior distribution

dyi dyi ~ U (0.2 mm, 5 mm)
£ bot yPOU ~ A (0.7062704, 0.4)
ctop YOP ~ AG(0.55060154, 0.4)
— [ L B R | L L R
S [ ---- Prior BN ST 68.3%
~F Marg. SI: 95.5%
ol posterior BN ST 99.7% ]
P R Global mode ]
’E -
(ST

F-==--- T B

1 2 3 4

dyi [mm]

Fig. 20 Prior distribution and marginalised posterior distribution of
dy; from Bz. The smallest intervals (SI) containing certain amounts of
probability are shown as shaded areas

where the two parameters for the impurity density level are
used at all 7, ; at the top and bottom in the {rz model, respec-
tively. A flat prior was chosen for dy ;. For £%°' and '°P, the
prior distributions were chosen as broad truncated’ normal
distributions, N;, in y around the respective y for the impu-
rity levels provided by the manufacturer ;18[0‘ and {ﬁ,?p . The
broadness was chosen to express the large uncertainty on the
values provided by the manufacturer and such that the entire
parameter space was tested. The prior distributions for all
three parameters are listed in Table 1.

The marginalised posterior distribution and the prior dis-
tribution of dp ; is shown in Fig. 20. The fit indicates a thick-
ness of about 3mm, which is quite thick. However, this
parameter of the model is mainly sensitive to the end of
the C-V curve and probably heavily impacted by possible
imperfections of the implementation of the geometry of the
detector. In addition, the detector is old and some growth of
dy; is expected.

The prior distributions and marginalised posterior distri-
butions of ¢! and ¢'°P are shown in Fig. 21.

The posterior distributions peaks are not too far away from
{ﬁp and ¢9*. However, there are two modes in both poste-
rior distributions. This is also visible in the 2d-marginalised
posterior distribution of £t and ¢'°P in Fig. 22. The second
mode can be explained by the symmetry of the setup. The
detector could basically be physically inverted such that the
top and bottom would be switched.

9 All truncated distributions presented in this paper are cut off at the
endpoints of the interval of the respective parameter space.
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The posterior predictive of the difference between the pre-
dicted and measured capacitances, cﬁ’z — c‘lnz, is shown in
Fig. 23. At voltages above 1000V the posterior predictive is
centred around 0. However, below 1000V, it becomes very
clear that the model with no radial dependence is not able to
describe the measured C-V curve as the predictions do not
describe the measurements. Lower bias voltages correspond
to larger radii as the depleted region grows from the mantle
towards the borehole, see Fig. 11. Thus, a radial dependence
of the impurities towards larger radii is again suggested. The
impurity density {rz for the global mode of the fit Bz is
shown in Fig. 24.
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Fig. 24 ({rz for the global mode from Bz as a function of az and b r

8.2 Bayesian fit of the impurity density with radial
dependence

For Brz, the model for the fit has 9 parameters:

DBz = (dLis Pr). (37)

The prior distributions for all parameters are shown in

Table 2. For dy;, a flat prior was chosen. For the 6 param-
eters ;fO_I’S/bOt, truncated normal distributions based on the
marginalised posterior distributions of ¢*°! and ¢ P from Bz
were chosen. For the two parameters g“fp/ bm, broad truncated

normal distributions centred around 0 were chosen based on

Table 2 Prior distribution for all parameters from Brz. See main text
for reasoning

Prior distribution

di; dpi ~ U(0.2 mm, 5 mm)

ghot ¥l ~ N (0.6563343,0.1)

ghor YO~ N (0.6563343, 0.1)

£hot ¥l ~ A (0.6563343,0.1)

ghot Y5O~ N (0, 1.0)

g 7P ~ NG (056663054, 0.1)

gor Y5 ~ N;(0.56663054, 0.1)

v 3P ~ N (0.56663054, 0.1)

o 33" ~ N (0,1.0)

— F r - - T ° 1 e ]
2 [ ===- Prior I SI: 68.3% |
=t Marg. SI: 95.5%
Sl posterior BN SI: 99.7% 1
[ e Global mode ]
=

ST

i L
1

di;i [mm]

Fig. 25 Prior distribution and marginalised posterior distribution of
dy; from Brz. The smallest intervals (SI) containing certain amounts
of probability are shown as shaded areas

the conclusions drawn from Bz, that assumed impurities in
Bz were too high at larger radii.

The prior distribution and marginalised posterior distribu-
tion of dp; are shown in Fig. 25. The posterior distribution is
very similar to the case without radial dependence.

The prior distributions and marginalised posterior distri-
butions for the 8 parameters of glt(:p‘{bm are shown in Fig. 26.

The two posterior distributions at rp, | are very similar to
the posterior distributions of the case without radial depen-
dence. That was expected since the posterior predictive of the
first case indicated that no modulation is required at smaller
radii but is required at larger radii. This is also indicated by
the posterior distribution of the two parameters g‘fp /20 W hich
describe the impurity density at the mantle of the detector.
The two posterior distributions are very broad, but favour a
very low impurity density and even a possible p-type volume
close to the mantle. The broadness comes from the increasing
estimated relative uncertainty on the predicted capacitances
towards lower bias voltages because the capacitance becomes
in general larger towards lower bias voltages. Another reason
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Fig. 27 Posterior predictive of the difference between the predicted
and measured capacitances of Brz. The shaded bands mark areas of
how probable a value of clf , — ¢T3 is based on the posterior of Brz

for the broadness is that the two parameters are only sensitive
to the first few data points of the measured C—V curve.

The posterior predictive of the difference between the pre-
dicted and measured capacitances, cfl)2 — cfln2, is shown in
Fig. 27.

In contrast to the Bz model, the bands are centred around
zero for all bias voltages. The predictions become less precise
towards lower bias voltages due to the previously explained
reasons for the broadness of the marginalised posterior dis-
tributions of ;“Fp and ¢°U

The impurity density {rz for the global mode of the fit is
shown in Fig. 28.
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9 Impact of impurity densities on pulse formation

The electric field, g , and the pulses of one event spawned at
(r=37mm, ¢ = 30°, z=35mm) were simulated with SSD
for three different ¢ at the operation voltage of 3000 V:

o 101(1)_""|'"'|""|""|""|""|"":
[ 10

§ 1OZr =
w10 r =10 mm ]

r [mm]

Fig. 28 Global mode of the fitted impurity density of Brz
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Fig. 29 a The electric field strength at (p = 30°, z = 35mm) over
r and b normalised pulses of the n* contact of an event spawned at
(r=37mm, ¢ = 30°, z=35mm) as simulated with SSD for the three
different impurity density distributions ¢z, {5y, and &y

o ov with dij = 3mm: &, 10

e (ryz for the global mode of Bz: {5, ,
e (rz for the global mode of Brz: ¢, -

The electric field strength at (¢ = 30°, z = 35mm) over
r and the normalised pulses from the n™* contact of the sim-
ulated event are shown in Fig. 29 for the three different ¢
models.

The electric field strength close to the contacts differs sig-
nificantly for the three cases. The field strength from ¢p, is
significantly less radius dependent than that from ¢;. This
causes the pulse to become faster at the end. The radial
decrease of impurities in {3, further reduces |<§ | closeto p™
contact. The field strength close to the n ™ is further increased.
Nevertheless, the pulses for {5, and ¢p,, are very similar.

However, the effect of ¢ on the simulated pulses also
depends on the charge drift model describing the mobil-
ity tensor and its dependence on the electric field. For the
simulated pulses shown in Fig. 29b, the charge drift model
from the AGATA Detector Library [11,29] as implemented in
SSD [9] was used with its default parameters. The differences
in the pulses for the three ¢ models show how important it is
to use the correct impurity density distribution when using
pulse shapes from measurements to tune the parameters of
the drift model.

10 This was done in order to have approximately the same dy; for all
models.

10 Summary and outlook

The capacitance matrix of a germanium detector was
explained in detail and it was shown how the capacitances
depend on the depletion of the detector and, thus, on the
impurity density distribution of the crystal. The setup K1 and
the true-coaxial n-type germanium detector Super-Siegfried
were introduced and it was explained how to measure one
of the elements of the capacitance matrix of the detector
for different bias voltages. The measured C—V curve was
compared to a C—V curve simulated for the impurity density
distribution as provided by manufacturer. The comparison
suggested a radial dependence of impurity densities. This
was confirmed by a Bayesian fit which optimised the impu-
rity density model with only a dependence on the z-axis of
the detector. A model including a radial dependence of the
impurity density was introduced. The Bayesian fit of this
model to the measured C—V curve provided a good descrip-
tion of the data. This indicates that the crystal under study
really has an r dependent impurity density distribution with
a very low level of electrically active impurities close to the
detector edge.

A novel method was introduced that uses a deep neural
network, trained on GPU-accelerated capacitance calcula-
tions, to enable full Bayesian parameter inference on com-
plex impurity density models.

The possibility to determine impurity density distributions
from capacitance measurements opens a road to study mobil-
ity tensors and drift models by comparing measured and sim-
ulated pulses without the uncertainties otherwise introduced
by the lack of knowledge on these impurity densities. The
knowledge of the impurity densities is also important for
pulse-shape analysis used in rare-event searches where the
exact understanding of the pulse formation is critical to dis-
criminate between signal and background events.

It should be noted that the method presented here can also
be used to optimise general detector properties during the
detector design phase. In addition, the method has the poten-
tial to determine impurity distributions based on impurity-
sensitive detector properties other than capacitance. Inferring
impurity from voltage-dependent properties like the shape of
the depletion volume, determined by Compton scanning, or
the total active volume will be the subject of future work.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: The data is not
in a self explanatory format which would allow it to become public. In
the case of interest, the authors should be contacted.]
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