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We investigate the localization of waves in aperiodic structures that manifest the characteristic multiscale
complexity of arithmetic functions with a central role in number theory. In particular, we study the eigenspectra
and wave localization properties of tight-binding Schrodinger equation models with onsite potentials distributed
according to the Liouville function A(n), the Mobius function p(n), and the Legendre sequence of quadratic
residues modulo a prime. We employ multifractal detrended fluctuation analysis and establish the multifractal
scaling properties of the energy spectra in these systems. Moreover, by systematically analyzing the spatial
eigenmodes and their level spacing distributions, we show the absence of level repulsion with broadband local-
ization across the entire energy spectra. Our study introduces finite-size aperiodic systems whose eigenmodes
are all strongly localized and provide opportunities for unique quantum and classical devices of particular
importance to cold-atom experiments with engineered speckle potentials as well as unique optical metamaterials
and nanostructures with enhanced light-matter interactions.
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I. INTRODUCTION

The study of localized quantum and classical waves in
randomly fluctuating potentials attracted intense research ac-
tivities that unveiled deep analogies between the mesoscopic
physics of electrons and photons with applications to ad-
vanced electronic and optical technologies [ 1—4]. In particular,
starting from the pioneering paper of Anderson [5] and
the discovery of quasicrystals [6], many important results
have been obtained on the localization and wave diffusion
properties of discrete systems with disordered as well as
aperiodically ordered potentials [7—11]. Specifically, discrete
systems with deterministic aperiodic potentials display very
rich physical properties that are absent in both periodic
(crystalline) and random (amorphous) states of matter. For ex-
ample, their energy spectra are generally singular continuous
and support eigenmodes characterized by highly fragmented,
multifractal envelopes with various degrees of spatial localiza-
tion, known as critical modes [12—15]. These enable control
of anomalous wave transport phenomena that are somewhat
intermediate between diffusive and ballistic ones [14,16-20].
Moreover, topologically protected edge states have been
discovered recently in quasiperiodic chains, significantly
broadening our understanding of topological phases beyond
crystalline structures [21,22].

A considerable body of work is concerned with discrete
one-dimensional (1D) structures consisting of linear chains
with potentials generated by various deterministic aperiodic
sequences [3,4,8,11,23-26]. Aperiodic order in potential scat-
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tering problems provides deterministic control over the rich
physics of complex systems that are suitable for engineering
device implementations within the available layer deposi-
tion and nanofabrication technology [27,28]. The prototypical
model to describe transport of quantum and classical waves in
these systems is based on the discrete Schrodinger equation in
the tight-binding approximation

(Hw)n = “ﬂn—l +twn+l + Vnwn = Elﬁn, (l)

where ¥, denotes the wave function at the nth site, 7 is
a constant hopping rate, V, are the values of onsite po-
tential following an aperiodic sequence, and #H defines the
linear Schrodinger operator. It has been established that for
a white-noise potential with correlation (V,V,,) = 028, all
the eigenstates of the tight-binding model are exponentially
localized independently of the variance o of the disor-
der [9,29,30]. As a result, it is generally believed that in 1D
random potentials the density of states becomes singular and
all eigenstates are localized, leading to Anderson localization.
However, not all states in 1D disordered systems are expo-
nentially localized. Indeed, this traditional belief has been
challenged by the discovery of fully extended states in dis-
ordered 1D systems, known as Azbel resonances, randomly
distributed in the energy spectrum over a set of zero measure
(and therefore generally neglected) [31,32].

Another delocalization mechanism in 1D disordered sys-
tems was predicted by Pendry [33], where nonlocalized modes
exist that extend over the sample via multiple resonances,
forming the so-called necklace states. These modes have
transmission coefficient close to 1 and, although extremely
rare, they can dominate the average transmission, as it has
been observed in optical random systems [34,35]. Moreover,
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extended states have also been demonstrated in tight-binding
disordered potentials with short-range correlations, called
random dimer models, where are known to appear for any
realization of the random potential [36-38]. In contrast, it
was proven rigorously that 1D binary chains with Fibonacci,
Thue-Morse, and period-doubling deterministic aperiodic po-
tentials feature singular continuous spectra supported by a
Cantor set with zero Lebesgue measure [39-41]. This general
feature produces an infinity of pseudogaps with zero total
bandwidth. In these structures, the locations and widths of
the spectral gaps are determined by the local peaks of their
Fourier spectra (i.e., their Fourier transforms) as precisely
stated by the so-called “gap-labeling theorem” [42,43]. More-
over, the corresponding eigenstates are neither extended nor
exponentially localized but exhibit intricate envelopes with
power-law decay and fluctuations at multiple scales described
by multifractal analysis, similarly to the geometry of strange
attractors in complex dynamical systems [12,44—47]. In 1980,
Aubry and André realized that certain quasiperiodic potentials
that depend on a parameter can give rise to a localization
phase transition that occurs in one dimension [48], which
has been observed in noninteracting Bose-Einstein conden-
sates [49]. This phenomenon is related to the rich behavior
of the Harper’s equation that describes electrons on two-
dimensional lattices under perpendicular magnetic fields [50].
More recently, the interest on the Aubry-André model and
its extensions have attracted much attention due to their ap-
plications to many-body localization [51,52]. Quasiperiodic
potentials, such as the one of the kicked rotor model [53], are
also known to induce wave localization in momentum space,
which characterizes the phenomenon of dynamical localiza-
tion observed in atom-optics systems [54].

Interestingly, extended states have also been discovered in
Rudin-Shapiro aperiodic potentials that are fully deterministic
but possess an absolutely continuous correlation measure (i.e.,
Fourier spectral measure) similarly to uncorrelated random
sequences [55,56]. Furthermore, the absence of the localiza-
tion regime has been recently shown in Rudin-Shapiro 1D
potentials within the tight-binding model [57,58]. However, it
is currently unknown if deterministic 1D aperiodic potentials
exist that only support localized modes in their spectra. This
not only poses an open conceptual question on the connection
between the structural and localization properties of aperiodic
systems, but also creates the opportunity to introduce novel
structurally complex, yet deterministic structures, that achieve
localization over their entire spectra in realistic finite-size
implementations without the involvement of any statistical
randomness. In order to address this fundamental problem, we
recently introduced an approach that leverages the multiscale
structural complexity inherent to number theory to achieve
stronger wave localization and anomalous transport in reso-
nantly scattering systems [4,59—64].

In this paper we focus on 1D tight-binding structures that
enable the efficient exploration of large-scale aperiodic dis-
crete systems with onsite potentials arranged according to
important arithmetic functions of number theory. In particular,
we consider the Liouville function A(n), the Mobius function
u(n), and the Legendre sequence of quadratic residues mod-
ulo a prime (QRs). We establish the multifractal nature of the
tight-binding spectra using multifractal detrended fluctuation

analysis (MDFA) and we systematically analyze the spatial
distributions of eigenmodes through the mode spatial extent
(MSE) analysis. Our findings reveal that all the eigenstates of
the investigated systems are strongly localized, in contrast to
1D disordered systems, where delocalized modes can exist.
These results are corroborated by the statistical analysis of
the level spacing distribution, which shows the absence of
the level repulsion. Thanks to the fundamental equivalence
(i.e., isomorphism) between the Schroédinger and Helmholtz
equations in the frequency domain, the introduced potential
models provide opportunities for the engineering of quantum
as well as optical metamaterials and photonic devices with
broadband spectra of localized excitations, enabling tailored
wave transport phenomena.

Our paper is organized as follows. In Sec. II we introduce
the background on the considered arithmetic functions. The
multifractality of their spectral density is discussed in Sec. III.
Localization and level statistics are treated in Sec. [V and con-
clusions in Sec. V. Finally, in Appendixes A and B we discuss
the results for the Legendre sequence and the structural cor-
relation properties of the investigated arithmetic sequences,
respectively.

II. ARITHMETIC FUNCTIONS BACKGROUND

The aperiodic structures considered in this paper are con-
structed based on important arithmetic functions in number
theory. An arithmetic function f(n) is any function whose
domain is the set of positive integers and whose range is a sub-
set of the complex numbers. Interesting arithmetic functions
in number theory are the ones that encode nontrivial arith-
metical properties of n. These generally display an extremely
erratic and aperiodic behavior, which makes them an attractive
tool for the implementation of very irregular deterministic
scattering potentials. Specifically, in this paper we focus on
the Liouville function A(n), the Mo6bius function p(n), and
the Legendre sequence generated from the distribution of
quadratic residues modulo a prime (QRs) [65,66].

The Liouville function A(n) has a value equal to +1 if n is
the product of an even number of prime numbers, and equal
to —1 if it is the product of an odd number of primes. It can be
defined by the simple formula A(n) = (—1)9(”), where Q(n)
is the prime omega function that counts the total number of
prime factors of n, including their multiplicity. Interestingly,
the Dirichlet series for the Liouville function is related to the
Riemann zeta function as follows [67,68]:

£Q2s) _ g Mm)
¢(s) n
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where s € C with Re(s) > 1. A plot of the first 200 values
of A(n) is shown in the top panel of Fig. 1. The Liouville
function manifests a complex aperiodic behavior with oscilla-
tions similar to an uncorrelated binary random function with
no discernible patterns. Several fundamental results of number
theory can be deduced assuming the uncorrelated randomness
of A(n), most importantly, the prime number theorem (PNT)
that follows from [67]:
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FIG. 1. The first 200 values of the Liouville A(n) function,
Mobius function p(n), and the distribution of quadratic resides QRs
(Legendre sequence), respectively.

Moreover, the asymptotic behavior of the following sum of
the Liouville function provides an equivalent formulation of
the Riemann’s hypothesis (RH):

Y )| < C N+, )

n<N

where C. and € are positive constants [67]. The statement
above implies that the values of A(n) behave similarly to
a random sequence of 1’s and —1’s in that the difference
between the number of 1’s and —1’s is not much larger than
the square root of the number of terms [67,68].

The Mobius function w(n) has values on the set
{—1,0, 41} depending on the factorization of n into prime
factors. In particular, u(n) = +1 if n is a square-free (i.e.,
an integer which is divisible by no square number other than
unity) positive integer with an even number of prime factors,
w(n) = —1 if n is a square-free positive integer with an odd
number of prime factors, and w(n) = 0 if n has a squared
prime factor. The first 200 values of the function p(n) are
plotted in the middle panel of Fig. 1. This function plays a
central role in elementary and analytic number theory partic-
ularly in relation to the Dirichlet convolution and the Mobius
inversion formula that connects two arithmetic functions. The
Mobius function is also fundamentally related to the Liou-
ville function in many ways [e.g., A(n)u(n) = w?(n)] and its
Dirichlet series expression equals the inverse of the Riemann
zeta function [65,68].

The last structure that we analyzed is the Legendre se-
quence constructed from the distribution of the quadratic
residues modulo a prime p. An integer number 7 is a quadratic
residue modulo p (modp) if it is congruent to a perfect
square, i.e., if there exists an integer number m such that
m? = n mod p. Otherwise, n is called a quadratic nonresidue
mod p. The quadratic residues can simply be found by con-
sidering all numbers from O to (p — 1)/2, squaring them,
and taking the result mod p. By convention 0O is not con-

sidered a quadratic residue while 1 is a residue for every p.
The quadratic residues form a multiplicative group and the
nonresidues are the coset of that group. The first system-
atic theory of quadratic residues was developed by Gauss
in his Disquisitiones Arithmeticae published in 1801, but
important results and conjectures were already established
by Fermat, Euler, Lagrange, Legendre, and other number
theorists of the 17th and 18th centuries [65,69]. The Leg-
endre sequence, whose first 200 values are plotted in the
bottom panel of Fig. 1, has an absolutely continuous cor-
relation measure that is akin to random sequences, and this
fact has been exploited in applications to acoustics diffusers
and cryptographic systems [70-72]. However, the quadratic
residues modulo a prime also obey fundamental symmetries
constrained by the quadratic reciprocity law and other re-
markable regularities [65,69]. For an odd prime p and any
rational integer ¢ that is not a multiple of p it is customary
to introduce the Legendre symbol (%) that equals +1 if ¢ is
a quadratic residue, —1 if ¢ is a quadratic nonresidue modulo
p, and it vanishes if ¢ is a multiple of p. The binary Legendre
sequence of length p (then repeating periodically) is defined
as L, = (%). This sequence encodes interesting eigenvectors
of the Fourier transform operator and has many fascinating
properties [73]. These include a flat power spectrum and a
two-valued autocorrelation function with a peak at the origin
and a constant value otherwise, with applications to cod-
ing, communications, and imaging devices based on coded
apertures [72-74].

III. SPECTRAL MULTIFRACTALITY

In this section we study the energy spectra of the Liou-
ville and the Mobius structures. The corresponding analysis
for the Legendre sequence is provided in Appendix A. We
consider the tight-binding Hamiltonian in Eq. (1) with hop-
ping rate t = 1 (i.e., the energy is given in units of ¢). We
enforce the zero boundary condition ¥y = ¢y = 0 and ob-
tain all the energy eigenvalues by direct diagonalization for
systems with 3 x 10* sites (for the Legendre sequence we
chose the prime p = 29989). In particular, we study the be-
havior of the integrated density of states (IDOS) defined as
p(w) = fow g(w")dw', which we show as a function of energy
in Figs. 2(a) and 3(a) for the investigated structures. The
obtained IDOS spectra are monotonically increasing functions
featuring a staircase structure with very narrow plateaus and
sharp jumps that can occur at all energy scales. We highlighted
this characteristic spectral behavior by magnifying the IDOS
curves inside two representative small regions of interest,
indicated by the arrows drawn in Figs. 2(a) and 3(a). We con-
jecture that this characteristic steplike behavior of the spectral
density of the Liouville and Md6bius systems is a reflection
of yet-undiscovered long-range structural correlations that
are present in their aperiodic potential distributions. The en-
ergy spectra of aperiodic structures with singular continuous
components possess distinctive fractal scaling properties that
give rise to anomalous sub-diffusion phenomena as well as
stronger localization effects [46,75]. Therefore, it is important
to accurately investigate and characterize the spectral scaling
properties of in the proposed structures.
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FIG. 2. (a) Integrated density of states (IDOS) for the Liouville
structure. The insets show magnified views of the IDOS within the
small rectangular regions of interest identified. (b) Mass exponent
(scaling function) t(g) and (c) multifractal spectrum f(c«) of the
spectrum shown in (a).

In order to characterize these properties, we apply the
multifractal detrended fluctuation analysis (MDFA) [76] us-
ing the numerical routines developed by Ihlen for the study
of nonstationary multiscale signals [77]. The MDFA is a
powerful technique that extends the traditional detrended fluc-
tuation analysis (DFA) [78] to the case of nonstationary time
series with multifractal scaling properties. The MDFA en-
ables accurate determination of the multifractal parameters
of a signal, including its multifractal spectrum [76]. This is
achieved by considering the local scaling of fluctuations with
respect to smooth trends over piecewise sequences of locally
approximating polynomial fits, i.e., F,;(n) o n"? where h(q)
is the generalized Hurst exponent, or g-order singularity expo-
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FIG. 3. (a) Integrated density of states (IDOS) for the M&bius
structure. The insets show magnified views of the IDOS within the
small rectangular regions of interest identified. (b) Mass exponent
(scaling function) t(g) and (c) multifractal spectrum f(«) of the
spectrum shown in (a).

nent [77]. The generalized parameter i(g) reduces to the Hurst
exponent H € [0, 1] for stationary signals [76,77]. In our anal-
ysis the multifractal IDOS signal x; is regarded as a discrete
series of data points labeled by the integer parameter ¢ and
the generalized fluctuations F(n) are defined as the g-order
moments over N intervals of size n according to [61,76,77]

1 N 1/q
Fy(n) = (ﬁ > X - Y»‘f) : )
t=1
where
X, =) (% — {x)). 6)
k=1

Here Y, denotes the piecewise sequence of approximating
polynomial trends obtained by local least-squares fits over
sample segments of size n and (x) is the mean value of the an-
alyzed time series corresponding to the IDOS signal. Finally,
the multifractal spectrum f(o) of the spectrum is computed
from the mass exponent 7(g) using the Legendre transform

D(a) = qo — t(q), (N

where t(q) = gh(q) — 1 and « = 7/(¢) [76]. We show in
Figs. 2(b) and 3(b) the computed mass scaling exponent 7(q)
of the IDOS of the Liouville and Mobius structure, respec-
tively. The nonlinear behavior of t(q) reported in Figs. 2(b)
and 3(b) is a characteristic signature of multifractality in the
analyzed signals [61,76,77,79]. In Figs. 2(c) and 3(c) we
display the corresponding multifractal spectra, which show
single humped continuous functions with broad and down-
ward concavities indicative of strong multifractality in the
investigated systems. We recall here that the width A f(«)
of the support of a multifractal spectrum is a direct mea-
sure of its degree of nonhomogeneity [79]. Therefore, our
results demonstrate that the Liouville and Legendre structures
(see Appendix A) have similar multifractal spectra and their
inherent structural complexity is significantly more inhomo-
geneous compared to the one of the Mdbius structure, which
in fact displays the narrowest multifractal spectrum.

IV. LOCALIZATION AND LEVEL STATISTICS

An important problem in the study of discrete structures
with deterministic aperiodic potentials is related to under-
standing the nature of their eigenmodes. Aperiodic structures
with multifractal energy spectra generally give rise to anoma-
lous dynamic transport [46,83] but do not necessarily support
eigenmodes with multifractal spatial properties. Generally, it
is believed that quasiperiodic and fractal systems with singular
continuous energy spectra, which often exhibit fractality in
either physical or energy space, support critical eigenmodes
that decay in real space weaker than exponentially, typically
by following a power law. These modes feature a hierarchical
structure of self-similar fluctuations that have been fully char-
acterized using multifractal analysis in real space [45-47].
However, critical states originate from the resonant tunneling
across similar subunits that repeat over different length scales,
thus spatially extending over the entire structure [8,10,44].

To the best of our knowledge, it remains to be established
if 1D finite-sized aperiodic structures can be deterministically
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FIG. 4. (a) Mode spatial extent (MSE) of the Liouville structure.
The arrows and corresponding letters label representative localized
modes shown in (b)—(e) selected from the single-peak (b), (d) and
multipeak (c), (e) populations.

designed to support only localized states in their spectra.
In order to address this important question, we propose to
exploit the intrinsic complexity of arithmetic functions and
investigate the spatial localization properties of the Liouville
and Mobius structures by computing the mode spatial extent
(MSE) of all their eigenmodes. The corresponding results
for the Legendre sequence of QRs are summarized in Ap-
pendix A. The MSE parameter quantifies the spatial extension
of an eigenmode ; of the system at the energy E; and is
defined as [35]

(Y nEOR)
SN B

where N is the total number of sites in the system. Therefore,
the MSE estimates the number of sites in the structure over
which the eigenmode intensity is mostly concentrated.

In Fig. 4(a) we show the computed MSE values across
the entire energy spectrum of the Lioville structure. Since the
system has 3 x 10* sites and the maximum MSE value is less
than ~40, all modes in the spectrum are strongly localized
over a significantly smaller region compared to the total size
of the system. This is confirmed by the spatial profiles of the
representative eigenmodes displayed in Figs. 4(b)—4(e), which
correspond to the spectral positions indicated by the arrows in
Fig. 4(a). Moreover, we found that the spectrum contains two
types of modes with remarkably different spatial behavior: (i)
Modes with a single-peak behavior that are strongly localized
over only a few sites, as the ones reported in Figs. 4(b)
and 4(d), and (ii) less localized modes with multipeak fluctu-
ations, as in Figs. 4(c) and 4(e). A very similar MSE structure
and localization behavior was also found for the Legendre
sequence reported in Appendix A. On the other hand, our
results for the Mobius structure, shown in Fig. 5, provide a
different MSE spectrum with a slightly larger maximum value
~55. This is consistent with the more homogeneous character

MSE(E;) =

®)

60
504 (@)
40+
% 4
30
s ]
20
10
0 A(@)
T T T T T T T T T T
-3 2 -1 0 1 2 3
Eigenvalue energy
1.0 1.0
° (b) I (c)
:5 0.5 0.5
2
E o0 00
s 7960 7980 8000 8020 8040 5000 5200 5400 5600 5800 6000
ﬁ 1.0 1.0
2 (d) (e)
S 05 05/
=z
0.0

4050 4100 4150 4200 4250 00 6600 6800 7000 7200 7400

site position site position

FIG. 5. (a) Mode spatial extent (MSE) of the Mobius structure.
The arrows and corresponding letters label representative localized
modes shown in (b)—(e) selected from the single-peak (b), (d) and
multipeak (c), (e) populations.

of the Mobius multifractal spectrum characterized by a sig-
nificantly narrower f(«), as shown in Fig. 3, compared to the
Liouville case. However, we found that all the eigenmodes of
the Mobius structure are also strongly localized with either
single-peak or multipeak spatial profiles. In Fig. 6 we show
the proportion of each type of mode in the spectrum for all
the investigated structures. Our analysis was performed for
systems with increasing number of sites in order to rule out
spurious finite-size effects. The results show that the fraction
of single-peak (=10%) and multipeak modes (*90%) remains
constant across a large range of sizes for all the investigated
structures.

We then address the statistical distribution of the logarithm
of the MSE values. In Fig. 7 we show the results of our
analysis that consider all the modes as well as the two iden-
tified types of modes separately. Interestingly, in both cases
we could fit the data with an excellent quality using Gaussian
functions (dotted lines). This indicates a log-normal distribu-
tion of the MSE values, similarly to the case of uncorrelated

100
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FIG. 6. Fraction of modes as a function of the number of sites
N for the Mobius, Liouville, and Legendre sequence structures, re-
spectively. Circles (squares) correspond to single-peak (multipeak)
modes.
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while (b), (d), (f) show the results for the two types of identified
modes separately. The dotted lines are Gaussian fits. For this analysis
we considered a large system with N = 10 sites.

disordered systems in low dimensions [80]. This behavior
reflects the uncorrelated nature of the “algorithmic disorder”
that is intrinsic to the investigated arithmetic functions.

In order to better understand the nature of localization in
the investigated systems we perform a statistical analysis of
the level spacing that is often utilized to identify different
transport regimes in closed (Hermitian) systems. In closed
random systems, established results from random matrix the-
ory (RMT) predict the suppression of level repulsion in the
presence of localized states [81]. In these systems, spatially
separate, exponentially localized modes hardly influence each
other and can coexist at energies that are infinitely close. In
particular, in the strong localization regime the level spacing
statistics is described by the Poisson distribution [82]

P(5) = exp (=5), ©))

where § is the nearest-neighbor level spacing normalized to
the average spacing. The results of our analysis are shown
in Fig. 8 where we considered separately the level statistics
of all the modes from the one of single-peak and multipeak
mode types. In particular, we find an inverse exponential
Poisson distribution in all the structures when all the modes
are analyzed, as shown in Figs. 8(a), 8(d), and 8(g) for the
Mobius, Liouville, and quadratic residue sequence, respec-
tively. The same behavior also occurs when considering the
level spacing statistics of the multipeak modes, shown in
Figs. 8(c), 8(f), and 8(i). In contrast, we discover a power-law
distribution for the level spacing of the strongly localized
single-peak modes, displayed in Figs. 8(b), 8(e), and 8(h). In
the context of RMT, it has been shown that a power-law level
spacing distribution is characteristic of the critical modes of
complex systems with multifractal spectra, leading to sub-
diffusive dynamics [46,75,83]. However, to the best of our
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FIG. 8. Distribution of level spacing for the (a)—(c) Mdbius, (d)—
(f) Liouville, and (g)—(i) Legendre sequence structures. (a), (d), (g)
Show the results obtained when considering all modes. (b), (e), (h)
Show the results when analyzing single-peak modes only, whereas
(c), (f), (i) when analyzing multipeak modes only. The dotted lines
correspond to the Poisson distribution P(3) = e¢~%. The dashed lines
are best fits with the indicated models. For this analysis we consid-
ered a large system with N = 10° sites.

knowledge, a critical regime with power-law level spacing dis-
tribution has not been reported in relation to strongly localized
single-peak (i.e., smooth) eigenmodes, which appears to be a
characteristic, unique feature of the investigated multifractal
spectra [46,75]. Further studies beyond the scope of this pa-
per are needed to establish the exact nature of these deeply
localized, single-peak eigenmodes.

In addition, it is important to compare the unique local-
ization behavior discovered in the investigated systems with
the one that characterizes uncorrelated random systems within
the well-known 1D Anderson model. In order to do this, we
consider an ensemble of disordered structures in which V,, in
Eq. (1) is taken as a random variable uniformly distributed:
[-W/2,W/2] with W = 2. As a relevant figure of merit, we
have considered the scaling of the average MSE with respect
to the size of the system, and we show our results in Fig. 9.
Interestingly, we find that the average MSE obtained in the
Anderson model is larger than the one of the introduced de-
terministic aperiodic systems across the entire range of sizes
that we have analyzed. We also note the weak dependence of
the MSE values on the system size, showing that the local-
ized regime is already achieved in structures with relatively
small sizes. Moreover, the lowest average MSE values are
displayed by the Liouville and the quadratic residue sequence
potentials, which feature the most inhomogeneous multifrac-
tal spectra [i.e., broader f(«) spectra] compared to the Mobius
and the random systems. Therefore, our results demonstrate
not only that all the modes are strongly localized in the
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FIG. 9. Scaling analysis of the average MSE values as a function
of the system’s size for the Mobius (diamonds), Liouville (circles),
and Legendre sequence (squares) structures as compared to the
Anderson model (triangles). In the latter we perform an ensemble
average over realizations of the random potential V,, uniformly dis-
tributed in [-W/2, W/2], with W = 2. At least 10° eigenvalues are
considered for each size of the random structure.

types of structures that we have introduced, but also that they
achieve stronger spatial localization compared to a traditional
random system within the Anderson model. These findings
underline the importance of strong multifractal correlations
in arithmetic function-based structures for the engineering of
electronic and photonic structures with enhanced localization
behavior across the entire energy spectrum.

V. CONCLUSIONS

In summary, we investigated the spectral and localiza-
tion properties of deterministic aperiodic structures generated
from the Liouville, Mobius, and Legendre functions that are
primary examples of multiplicative arithmetic functions in
number theory. We systematically studied their energy spectra
using MDFA and demonstrated multifractal scaling prop-
erties associated to their unique structural complexity. We
then investigated their eigenmodes and localization proper-
ties, demonstrating that all structures support localized modes
with characteristic single-peak and multipeak distributions
independently of the system’s size. Moreover, we discovered
a log-normal MSE distribution and two different regimes of
level spacing statistics that demonstrate the absence of level
repulsion, features that characterize strong localization in the
investigated structures. Finally, we establish a stronger degree
of mode localization in the investigated structures compared
to the eigenmodes of the Anderson model. These results un-
derline the relevance of the inherent multifractal complexity
of arithmetic functions for the design and engineering of local-
ized waves of particular importance to cold-atom experiments
in aperiodic potentials and to optoelectronic structures with
enhanced light-matter interactions without the involvement of
disorder.
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FIG. 10. (a) Integrated density of states (IDOS) for the structure
based on the Legendre sequence for the distribution of quadratic
residues. The insets show magnified views of the IDOS within the
small rectangular regions of interest identified. (b) Mass exponent
(scaling function) t(g) and (c) multifractal spectrum f(«) of the
spectrum shown in (a).
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APPENDIX A: RESULTS FOR THE LEGENDRE
SEQUENCE

In this Appendix we report the results on the binary Leg-
endre sequence (the initial value Ly = 0 is neglected). In
Fig. 10(a) we show the computed spectrum of the IDOS as
a function of energy. The two insets magnify the IDOS within
the representative small spectral regions identified by the cor-
responding arrows. Similarly to the cases of the Liouville
and Mobius structures, the IDOS spectrum is monotonically
increasing and features multiscale fluctuations and narrow
plateau regions. The multifractal nature of this spectral mea-
sure is unveiled by MDFA analysis that we used to compute
the mass exponent behavior [Fig. 10(b)] and the multifractal
spectrum [Fig. 10(c)]. The results in Figs. 10(b) and 10(c)
indicate strong multifractality in the investigated Legendre
system, with a width A f(«) of the multifractal spectrum that
is similar to the one of the Liouville structure, implying a
comparable degree of nonuniformity.

In Fig. 11(a) we show the computed MSE values of the
Legendre sequence across the entire energy spectrum. Since
the system has maximum size p = 29989 sites, the results
clearly demonstrate the strong spatial localization of all the
eigenmodes in the spectrum with a maximum MSE = 40.
Representative spatial profiles for the two identified types
of localized modes are shown in Figs. 11(b) and 11(d) for
single-peak and 11(c) and 11(e) for multipeak eigenstates.
Overall, we found that spectral and localization behavior of
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FIG. 11. (a) Mode spatial extent (MSE) of the Legendre se-
quence structure. The arrows and corresponding letters label
representative localized modes shown in (b)—(e) selected from the
single-peak (b), (d) and multipeak (c), (e) populations.

the Legendre function is qualitatively similar to the one of
Liouville structures discussed in the main text.

APPENDIX B: STRUCTURAL CORRELATION
PROPERTIES

In this Appendix we discuss the structural correlation
properties of the investigated arithmetic sequences. The A(n)
function manifests a complex aperiodic behavior with os-
cillations at all scales and appears to be an uncorrelated
random function with no discernible patterns. Many funda-
mental results of number theory can be deduced assuming the
uncorrelated randomness of A(n), most notably the PMT. In
addition, the Liouville function provides an elementary refor-
mulation of the RH that makes it equivalent to the statement
that an integer number has equal probability of having an odd
or an even number of prime factors [67,84]. This remarkable
statement of the RH clearly demonstrates the fundamental
role played by algorithmic “randomness” in number theory.
Consistently, we found that the Liouville sequence has a flat
autocorrelation (i.e., a peak at the origin and constant value
otherwise), as shown in Fig. 12(a), which is similar to the
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FIG. 12. Normalized autocorrelation vector of the (a) Liouville,
(b) Mobius, and (c) Legendre sequences. Results for structures with
N = 10 sites are shown here.

ideal two-valued autocorrelation function established for the
Legendre sequence. The (periodic) autocorrelation of the se-
quence L, is defined as

p—1

Cm = E LoLyym,
n=0

where all the indices are considered mod p. The observed
bilevel autocorrelation implies a flat power spectrum, simi-
larly to the case of a Bernoulli random process. We found that
this interesting correlation/spectral property is also exhib-
ited by the Mobius sequence, as demonstrated in Fig. 12(b).
While no analytical results exist in this case, the behavior is
consistent with the fact that the mean value of the Mobius se-
quence is known to vanish [66]. Finally, in Fig. 12(c) we show
the normalized autocorrelation of the Legendre sequence,
which features an absolutely continuous correlation measure.
This exhibits a theoretical two-valued autocorrelation prop-
erty with amplitude values ¢,, = p — 1 for m = 0 mod p and
cm = —1 for m # 0 mod p. This characteristic behavior can
be derived directly either by using the properties of the Leg-
endre symbol or by expressing the Legendre sequence through
the index associated to a primitive root (i.e. the discrete loga-
rithm). The details of these classical derivations can be found
in [72,73].
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