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Enhanced wave localization in multifractal scattering media
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In this paper, we study the structural, scattering, and wave localization properties of multifractal arrays of elec-
tric point dipoles generated frommultiplicative random fields with different spectra of fractal dimensions. Specif-
ically, using the rigorous Green’s matrix method, we investigate the scattering resonances and wave localization
behavior of systems with N = 104 dipoles and demonstrate an enhanced localization behavior in highly inhomo-
geneous multifractal structures compared to homogeneous fractals, or monofractals. We show distinctive spectral
properties, such as the absence of level repulsion in the strong multiple scattering regime and power-law statistics
of level spacings, which indicate a clear localization transition enhanced in nonhomogeneous multifractals. Our
findings unveil the importance of multifractal structural correlations in the multiple scattering regime of electric
dipole arrays and provide an efficient model for the design of multiscale nanophotonic systems with enhanced
light-matter coupling and localization phenomena beyond what is possible with traditional fractal systems.
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I. INTRODUCTION

In recent years, self-similar structures have attracted sig-
nificant interest in photonics and nano-optics technologies
[1–4], adding unique functionalities to the manipulation
of optical fields in complex media [5–7] beyond periodic
[8] or disordered systems [9,10], with applications to res-
onant nanodevices and metamaterials [11–13]. Statistically
homogeneous optical media with fractal geometries, which
naturally occur in a wide variety of physical systems, in-
cluding colloidal aggregates [14] and certain emulsions [15],
motivated earlier studies on the single scattering properties of
light in self-similar structures [16]. Recently, the light trans-
port through fractal structures beyond the single scattering
regime has also been studied, leading to the demonstration of
photon superdiffusive phenomena in Lévy glass optical media
[17,18]. These are unique homogeneous materials contain-
ing TiO2 nanoparticles and engineered fractal distributions
of polydispersed glass spheres that enable control of photon
scattering events in a self-similar environment with a small
refractive index contrast. However, the complex geometry of
many physical structures and multiscale phenomena, ranging
from fully developed turbulence and weather systems to the
clustering of galaxies, network traffic, and the stock market,
display very irregular fluctuations that cannot be adequately
described by simple homogeneous fractal models. Starting
from the pioneering work of Hentschel and Procaccia, mul-
tifractal systems have been characterized by a distribution
of fractal scaling exponents Dq, where q often is not an
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integer [19]. In particular, Halsey et al. proposed the contin-
uum spectrum of fractal scaling exponents f (α), also known
as the singularity spectrum, which is frequently used for the
characterization of multifractal structures [20]. These ideas
led to the rigorous theory of multifractality [21–25] which,
originally introduced to analyze multiscale energy dissipa-
tion in turbulent flows [25,26], significantly broadened our
understanding of complex structures in science and engi-
neering [27–32]. Critical phenomena in disordered quantum
and classical systems have been the subject of intense the-
oretical and experimental research, leading to the discovery
of multifractality in electronic and optical wave functions
at the metal-insulator Anderson transition for conductors
[33–36], superconductors [37], atomic matter waves [38],
and engineered nanophotonic structures [39–43]. Besides its
fundamental interest, understanding the behavior of optical
waves in strongly scattering multifractal media could offer a
mechanism to localize and resonantly distribute classical and
quantum light states at multiple length scales and to enhance
light-matter coupling across broad frequency spectra. How-
ever, to the best of our knowledge, the distinctive multiple
scattering and localization behavior of optical waves in mul-
tifractal arrays with controlled spectra of scaling exponents is
still missing.

In this paper, we use the rigorous Green’s matrix spectral
method that enables a systematic investigation of com-
plex scattering resonances and their spectral statistics to
investigate the localization properties of light in open two-
dimensional scattering arrays of electric dipoles (i.e., systems
with in-plane radiation losses) with fractal and multifrac-
tal geometrical arrangements. Specifically, by studying the
Thouless conductance g [44] and the first-neighbor level
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spacing statistical distribution for different values of the op-
tical density, our work demonstrates clear signatures of a
broadband localization transition with significantly reduced g
values in multifractals compared to their monofractal counter-
parts. Moreover, we discover that multifractal arrays support a
significantly larger density of eigenmodes in the localization
regime. Finally, we demonstrate a crossover in the spectral
statistics of level spacing from a level repulsion behavior,
described by the Gaussian unitary ensemble (GUE) of ran-
dom matrices [45] at low optical density, to a level clustering
behavior with power-law level spacing distributions at large
optical density. Our findings show enhanced localization prop-
erties in highly inhomogeneous multifractal arrays compared
to traditional fractal systems and provide yet-unexplored pos-
sibilities to systematically exploit multifractality as a strategy
for the engineering of nanophotonic systems and metamateri-
als with broadband localization properties for optical sensing,
random lasing, and multispectral devices.

Our paper is organized as follows. In Sec. II, we intro-
duce background concepts on fractals and multifractals. In
Sec. III, we discuss the generation of the investigated frac-
tal and multifractal arrays and introduce their structural and
wave diffraction properties. In Sec. IV, we present our results
on the spectral and localization properties of the scattering
resonances of fractals and multifractals, and we draw our
conclusions in Sec. V. Finally, in Appendix A we review the
relevant concepts of multifractal analysis and in Appendix B
we summarize the single scattering (i.e., diffraction) proper-
ties of fractals and multifractals.

II. FRACTALS AND MULTIFRACTALS

Fractal objects are characterized by noninteger fractal di-
mensions and exhibit power-law scaling of structural (i.e.,
density-density correlation, structure factor) and dynamical
(i.e., density of modes, spectral functions) properties [46].
In fractal systems, the exponent of the power-law scaling of
the mass with the system size does not coincide with the
Euclidean dimension. This property implies very large local
density fluctuations and high lacunarity [46], leading to the
existence of both very dense and very empty regions. The
fractal dimensions of physical objects is operationally defined
using the box-counting method [47]. In this approach, the
space embedding the fractal is subdivided into a hypercubic
grid of boxes (i.e., cells) of linear size ε (i.e., line segments
in the case of one-dimensional objects, squares in two dimen-
sions, cubes in three dimensions, and so on). For a given box
of size ε, the minimum number of boxes N (ε) needed to cover
all the points of the object is determined and this procedure
is repeated for several box sizes. Finally, the (box-counting)
fractal dimension D0 is obtained from the power-law scaling:

N (ε) ∝ ε−D0 . (1)

The procedure can be extended to any suitable measure
defined on a set, and the fractal properties of the measure
(e.g., the number of components or the mass density of an
object) are deduced by studying the scaling behavior of its
moments with respect to the size of covering partitions of
the set. Alternatively, for arrays of point particles we can
determine the fractal dimension by drawing a sphere of radius

r and computing the total number (or the mass) of the par-
ticles included in this sphere, denoted by N (r). Moreover, if
randomness is involved in the fractal object, we then consider
the scaling of N (r) over spheres with different centers and the
(average) fractal dimension Dm follows from the scaling law:

〈N (r)〉 ∝ rDm . (2)

Here 〈. . .〉 denotes the average over different spheres with
radius r and the fractal dimension Dm is also called the
mass fractal dimension [46]. The box-counting or mass fractal
dimension introduced above provides a concise description
of how the size or mass of a fractal varies with respect
to the magnification scale ε. Objects that are uniquely de-
scribed by a constant (scale-independent) fractal dimension
are called homogeneous fractals, or monofractals, and pos-
sess features that repeat identically at every scale, i.e., they
exhibit scale-invariance symmetry or self-similarity over a
large range of scales. The relevance of fractals to physical
sciences and other disciplines (i.e., economics) was originally
pointed out by the pioneering work of Mandelbrot [48]. More
recently, the concept of multifractals, or inhomogeneous frac-
tals, has been introduced to characterize complex systems
with space or time-dependent self-similar properties and a
rigorous multifractal formalism has been developed to quanti-
tatively describe their local scaling [22,25,26], which is briefly
reviewed in Appendix A.

Examples of multifractal structures and phenomena are
commonly encountered in dynamical systems theory (e.g.,
strange attractors of nonlinear maps), physics (e.g., diffusion-
limited aggregates, fluid dynamics), engineering (e.g., random
resistive networks, image analysis), geophysics (e.g., rock
shapes, creeks), and atmospheric science (analysis of rain
and clouds), as well as in statistics and finance (e.g., extreme
value theory, stock markets fluctuations) [22,25,28,29,47,49].
Generally, when dealing with multifractals on which a local
measure μ is defined (i.e., a mass density, a velocity com-
ponent, an electrical signal, or some other scalar physical
parameter defined on the fractal object), the (local) singularity
strength α(x) of the multifractal measure μ obeys the more
complex scaling law [27]

μ[Bx(ε)] ∝ εα(x), (3)

where Bx(ε) denotes a ball (i.e., an open interval) of small
radius ε centered at x. The exponent α(x) measures the local
singularity of the measure, i.e., the smaller the exponent α(x),
the more singular the measure around x. The multifractal
spectrum f (α), also known as the singularity spectrum, char-
acterizes the statistical distribution of the singularity exponent
α(x) of the multifractal measure [47,49]. Moreover, if we
cover the support of the measure μ with balls of size ε, the
number of balls Nα (ε) which, for a given α, scales like εα , is
given by [27]

Nα (ε) ∝ ε− f (α). (4)

It has been established that in the limit of vanishingly small
ε, f (α) coincides with the fractal dimension of the set of
all points x with the same scaling index α. The spectrum
f (α) was originally introduced by Frisch and Parisi [25] to
investigate the energy dissipation of turbulent fluids. From a
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FIG. 1. (a)–(d) Point patterns and (e)–(h) probability matrices for single realization multifractal structures. (a), (e); (b), (f); (c), (g); and
(d), (h) refer to the single realization of multifractal patterns composed by 10 000 elements and generated with probabilities p = [1, 1, 1, 0],
p = [1, 1, 0.75, 0.5], p = [1, 0.75, 0.75, 0.5], p = [1, 0.75, 0.5, 0.25], respectively.

physical point of view, the multifractal spectrum is a quantita-
tive measure of structural inhomogeneity and is well suited
for characterizing complex spatial signals because it can
efficiently resolve their local fluctuations. In the case of mul-
tifractal measures with a recursive multiplicative structure,
such as the ones investigated in this paper, the multifrac-
tal spectrum can be calculated analytically [50]. However,
in general, it is obtained numerically by implementing the
formalism reviewed in Appendix A using, for example, the
efficient approach developed by Chhabra and Jensen [24].

III. MULTIFRACTAL ARRAYS

Multifractal structures were originally proposed to study
turbulent flows and chaotic dynamical systems, where they
originate from nonlinear mechanisms [25,26,51]. However, in
the context of wave scattering and diffraction physics, simpler
and nongeneric multifractals with analytical spectra are often
constructed using random multiplicative cascade processes to
investigate complex media [52]. Moreover, simple multiplica-
tive processes are also utilized to describe complex structures
that appear in a variety of fields from atmospheric turbulence,
astrophysics, and in the study of porous media [22,50,52–
55]. The multifractal scattering arrays investigated in this
paper are generated using random multiplicative cascades.
A random multiplicative cascade model [52] is constructed
by first dividing a square into four equal squares. To each
of the subsquares, one assigns the probabilities pi ∈ [0, 1],
with i = 1, 2, 3, 4. This constitutes the first iteration of the
process (n = 1). At the second iteration (n = 2), each of
the four subsquares is further divided in four squares, and the
probabilities associated with each subdivision are multiplied
in random order with the ones of the previous iterations.
At the third iteration, one performs a similar division into

subsquares and to each of them assigns the probabilities in
random permutations from the previous iterations, i.e., n = 1
and n = 2. The resulting multiplicative cascade multifrac-
tal distribution is the probability field obtained in the limit
of a large number of iterations [50]. The probability value
attached to a square region is the product of the pi’s of
the square and all its ancestors at previous generations and
the distribution of cell values strictly depends on the initial
choice of the probability vector pi. Because the random num-
bers in the probability fields are generated multiplicatively,
the corresponding process is a multiplicative random process
that is generally non-Gaussian. Random point patterns (i.e.,
point processes) with multifractal scaling properties induced
by the probability fields introduced above are generated by
distributing N particles on the underlying square lattice with
probabilities that are simply proportional to the square-cell
values. We used a Monte Carlo rejection scheme for gener-
ating multifractal arrays with N = 104 point dipoles [50].

In Fig. 1, we show the investigated arrays in panels (a)–(d)
and the corresponding probability fields in panels (e)–(h).
The arrays are constructed from the four probability vectors
reported in the caption. These are chosen so the array in
Fig. 1(a) is a statistically homogeneous fractal while the arrays
in Figs. 1(b)–1(d) are multifractals with an increasing degree
of spatial nonuniformity and structural properties intermediate
between uncorrelated random point patterns and monofractal
ones. All the length scales in Fig. 1 are normalized with
respect to the minimum interparticle separation dmin = 1 μm.
The multifractal spectra of the considered particle arrays are
computed analytically in the limit of systems with large size
L. In particular, the spectrum of generalized dimensions has
the following expression [50]:

Dq = 1

1 − q
log2

(
f q
1 + f q

2 + f q
3 + f q

4

)
, (5)
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FIG. 2. (a) Spectra of generalized dimensions Dq and (b) multi-
fractal singularity spectra f (α) for multifractal structures generated
with probability vectors p = [1, 1, 1, 0] (thin solid line and star
symbol), p = [1, 1, 0.75, 0.5] (dotted line), p = [1, 0.75, 0.75, 0.5]
(dashed line), and p = [1, 0.75, 0.5, 0.25] (thick solid line).

where fi = pi/
∑4

i=1 pi with i = 1, 2, 3, 4. The corresponding
multifractal spectrum f (α) is then calculated according to
Eq. (A7), where τ (q) = (1 − q)Dq. The spectra of general-
ized dimensions Dq and the multifractal spectra f (α) for the
investigated arrays shown in Fig. 1 are displayed in Fig. 2. The
results show clearly a transition from a homogeneous fractal
structure, featuring a constant box-counting D0 ≈ 1.58 with
f (α) supported only by a single point, to more inhomogneous
multifractals characterized by increasingly broader f (α) spec-
tra for decreasing amplitudes of the initial probability vectors.

In Fig. 3, we further characterize the geometrical struc-
ture of the investigated arrays by analyzing the normalized
probability distributions of the first-neighbor distances of
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FIG. 3. Normalized histograms of first-neighbor distances
for multifractal structures generated with probabilities
(a) p = [1, 1, 1, 0], p = [1, 1, 0.75, 0.5], p = [1, 0.75, 0.75, 0.5],
p = [1, 0.75, 0.5, 0.25].

)b()a(

FIG. 4. (a) Azimuthally averaged structure factor 〈S(q̃)〉, where
q̃ = q/qmax, and (b) radial distribution function g2(r̃), which gives
the probability of finding two particles separated by a normalized
distance r̃ = r/dmin, over 25 realizations for multifractal structures
generated with the probability vectors specified in the legend and the
uniform random patterns. Both panels share the same legend.

the particles averaged over 25 realizations of the disorder.
Our findings show that multifractal arrays have significantly
broader probability distributions compared to the monofractal
case shown in Fig. 3(a), consistently with the increased degree
of spatial nonuniformity associated to their broader multifrac-
tal spectra. Specifically, we found that the arrays with the
broader support of the spectrum f (α) also feature the larger
range of distances in the distribution histograms shown in
Fig. 3.

In Fig. 4, we address the single scattering wave properties
of the analyzed fractal and multifractal structures by showing
in panel (a) the azimuthally averaged structure factors. In the
plot, the radial wave number q has been normalized with
respect to the maximum wave number qmax = 1 μm−1. As a
comparison, we also report the results obtained on uniform
random structures (URs) with the same density and averaged
over 25 different realizations. We notice that the averaged
structure factor of the URs deviates from unity close to the
origin of the q space due to the finite size of the patterns that
we have investigated. Therefore, to accurately characterize
the structural properties of all the investigated systems, we
also computed their radial distribution functions, which are
shown in Fig. 4(b). We note that the correlation distance d̂1

has been normalized with respect to the minimum interpar-
ticle separation dmin. It is well-known that for fractals and
multifractals, these quantities display a power-law decay with
a slope determined by the average fractal dimension [56,57]
(see Appendix B). In particular, for a homogeneous fractal,
the pair-correlation scales as g2(r) ∝ r−β and similarly for
the structure factor S(q) ∝ |q|−(d−β ), where 0 < β < d , con-
sistently with the data presented in Fig. 4. In particular, for
the monofractal structure (green lines) the slopes extracted
from the linear fit of the structure factor and the g2(r) in dou-
ble logarithmic scale yield exactly the box-counting fractal
dimension D0 = 1.58 with β = d − D0. However, the exact
relation between the exponent β and the fractal dimension D0

is nontrivial for more general fractals and multifractals, as it
depends on the process of structure formation as well as their
spatial distributions [58]. In all cases, it is important to realize
that realistic finite-size systems exhibit lower and upper bound
cutoffs in their fractal or multifractal nature. This implies that
the power-law decays are observed only over a small range of
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FIG. 5. (a)–(h) The complex eigenvalue distribution, color coded with respect to the MSE parameter, of 25 different realizations of the
point patterns presented in Fig. 1. Specifically, (a)–(d) and (e)–(h) refer to two different optical regimes characterized by a value of ρλ2 equal
to 10−6 and 50, respectively. The different markers in the (e)–(h) identify the spectral positions of the representative scattering resonances
reported in Fig. 5.

scales and the correlation g2(r) eventually converges to 1 at
large r, as shown in Fig. 4(b). Moreover, Fig. 4 shows how the
selected arrays display structural properties that interpolate
in between homogeneous fractals and uncorrelated random
media, offering a representative overview of the behavior of
scalar waves in these large-scale complex systems. We pro-
vide additional information on the single scattering properties
of fractals and multifractals in Appendix B and focus next on
the multiple scattering regime.

IV. SPECTRAL AND LOCALIZATION PROPERTIES OF
MULTIFRACTAL ARRAYS

We now investigate the wave transport and localization
properties of TM-polarized electric dipoles that are spatially
arranged as in Fig. 1. Multiple scattering effects in two spatial
dimensions (i.e., for cylindrical waves) are studied by analyz-
ing the spectral properties of the Green s matrix defined as

Gi j = i(δi j + G̃i j ), (6)

where the elements G̃i j are given by [59]

G̃i j = 2

iπ
K0(−ik0|ri − r j |), (7)

and K0(−ik0|ri − r j |) denotes the modified Bessel function of
the second kind, k0 is the wave vector of light, and ri specifies
the position of the ith scattering dipole in the array. The
non-Hermitian matrix Eq. (6) describes the electromagnetic
coupling among the scatterers and the real and imaginary part
of its complex eigenvalues 
n (n ∈ 1, 2, · · ·N) correspond
to the detuned frequency (ω0 − ω) and decay rate �n (both
normalized to the resonant width �0 of an isolated dipole) of
the scattering resonances of the system [59,60]. This formal-
ism accounts for all the multiple scattering orders and enables

the systematic study of the scattering properties of 2D waves
with an electric field parallel to the invariance axis of the
scatterers [61]. Even though the 2D model in Eq. (6) does
not take into account the vector nature of light [62,63], it still
provides useful information on the localization properties of
light in 2D disorder media [59] and aperiodic structures [64],
and transparency in high-density hyperuniform materials [61].
Moreover, it correctly describes the coupling between one or
several quantum emitters embedded in structured dielectric
environments [42,65,66].

To investigate the spectral properties of the designed ar-
rays, we analyze the distributions of the complex eigenvalues
and representative scattering resonances, the behavior of the
Thouless number g as a function of the frequency ω, and study
its minimum value for each considered optical density ρλ2,
as well as the level spacing statistics for different values of
ρλ2. Here, ρ denotes the number of scatterers per the unit
area and λ is the optical wavelength. The spectral information
is derived by numerically diagonalizing the N × N Green’s
matrix Eq. (7).

At low optical density (i.e., ρλ2 = 10−6), all the investi-
gated systems are in the diffusive regime. Accordingly, their
eigenvalue distributions, color-coded according tolog10 of the
modal spatial extent (MSE), do not show the formation of
any long-lived scattering resonances, as shown in Figs. (5)(a)–
5(d). The MSE parameter quantifies the spatial extension of a
given scattering resonances 
i of the system and it is defined
as [67]

MSE =
(

N∑
i=1

|
i|2
)2/ N∑

i=1

|
i|4. (8)

On the other hand, at large optical density ρλ2 = 50, we
observe the appearance of long-lived scattering resonances
forming near ω ≈ −2, as visible in Figs. 5(e)–5(h). Con-
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FIG. 6. Representative scattering resonances of the investigated structures in the multiple scattering regime. While (a), (e), (i) refer to
the monofractal point pattern generated with a probability p = [1, 1, 1, 0], (b), (f), (j); (c), (g), (k); and (d), (h), (l) display critical and
Efimov-type few-body scattering resonances characterizing multifractal point patterns when p is equal to [1,1,0.75,0.5], [1,0.75,0.75,0.5],
and [1,0.75,0.5,0.25], respectively. The point pattern length scales are the same as shown in Fig. 1.

sistently, the corresponding Green s matrix eigenvectors,
reported in Fig. 6, are spatially localized over small clusters of
dipoles demonstrating the formation of Efimov-type few-body
scattering resonances occurring due to locally symmetric par-
ticle clusters distributed across the investigated structures
[62,68]. Moreover, Fig. 5 also shows the formation of criti-
cal scattering resonances for point patterns with multifractal
properties. Critical modes are spatially extended and long-
lived resonances with spatial fluctuations at multiple length
scales characterized by a power-law scaling behavior [69,70],
which are the results of the effect of local correlations on wave
interference across the structures [41].

The Thouless number g as a function of ω is evaluated as

g(ω) = δω

�ω
= (1/Im[
n])−1

Re[
n] − Re[
n−1]
, (9)

following the same procedure as in our previous work
[62,64,68,71]. In particular, we have sampled the real parts
of the eigenvalues of the Green s matrix in 5000 equispaced
intervals and we computed Eq. (9) in each frequency subin-
terval. The symbol {· · · } in Eq. (9) denotes the subinterval

averaging operation, while ω indicates the central frequency
of each subinterval. We have verified that the utilized fre-
quency sampling resolution does not affect the presented
results.

Figure 7 shows the results of the Thouless number analysis
in both the dilute and multiple scattering regimes. Consis-
tently with the low value of the optical density, we found that
the Thouless number is always larger than the one, indicating
a diffusive regime [63,64]. At larger optical density, the Thou-
less number shows a completely different behavior with clear
spectral ranges where g drops below one, indicating the onset
of light localization. We remark that the long-lived scattering
resonances that are spatially confined over a few scatterers
appear at the frequency positions where the Thouless number
becomes lower than one. Interestingly, we found that point
patterns with multifractal geometrical feature-enhanced local-
ization effects characterized by significantly smaller Thouless
numbers compared to the investigated monofractal structures
generated with a probability p equal to [1, 1, 1, 0] (i.e., pastel
green markers). This outcome is more evident by looking at
the insets in Figs. 7(e)–7(h), showing an enlarged view of the
Thouless number in the frequency range ω ∈ [−10, 2].
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FIG. 7. (a)–(d) and (e)–(h) Thouless number as a function of the frequency ω extrapolated from the distribution reported in Figs. 4(a)–
4(d) and 4(e)–4(h), respectively. The pastel green, violet, red, and blue dots correspond to the Thouless number of 25 different disorder
realizations produced when ρλ2 is equal to 10−6 [i.e., (a)–(d)] and to 50 [i.e., (e)–(h)], respectively. The dashed-black lines identify the
threshold of the diffusion-localization transition. (e)–(h) Zoom-in view in the range ω ∈ [−10, 2].

To obtain additional insights on the localization behavior
of multifractal structures, we analyze the minimum value of
the Thouless number as a function of ρλ2. Specifically, we
have evaluated g = g(ω) by using Eq. (9) for each ρλ2 value
and we have repeated this procedure for 25 different point
pattern realizations for each investigated structures. The circle
markers and the error bars in Fig. 8(a) are the averaged values
and the standard deviations corresponding to this ensemble-
averaged operation, in the following identified by the symbol
〈· · · 〉e. Specifically, all these curves cross the delocalization-
localization threshold value g = 1 at the same optical density
range, i.e., ρλ2 ∈ [10−1, 1], demonstrating the diffusion to
localization transition.

To understand the observed transition in these struc-
tures, we must consider the ratio ξ/L, where L is the

system size and ξ identifies the localization length provided
by [72]

ξ ∼ lt exp[π�(ke)lt/2], (10)

with lt the transport mean-free path and �(ke) the real part
of the effective wave number in the medium. Although the
numerical factor in Eq. (10) may not be accurate [72,73], it
nevertheless tells us that the localization length in 2D systems
is an exponential function of lt and can be extremely large
in the weak scattering regime (i.e., at low optical density).
Specifically, for isotropic scattering systems discussed here,
the transport mean-free path lt coincides with the scattering
mean-free path ls, i.e., lt = 1/(ρσd ). Here, σd is the cross
section of a single point scatterer, which is related to the 2D
electric polarizability α(ω) [60,61,64]. At resonance, σd is
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FIG. 8. (a) Trend of the minimum of the Thouless number as a function of ρλ2. (b) Width of the frequency range �ωloc for different optical
densities where all the scattering resonances have a Thouless number lower than 1. (c) Number of localized scattering resonances as a function
of ρλ2. All these parameters are averaged with respect to 25 different realizations and the error bars are the statistical errors associated with
this average ensemble operation. The pastel green, violet, red, and blue markers refer to point patterns generated with a probability p equal to
[1,1,1,0], [1,1,0.75,0.5], [1,0.75,0.75,0.5], and [1,0.75,0.5,0.25], respectively. The black markers denote the UR structure.
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FIG. 9. Ensemble-averaged level-spacing distribution P(ŝ) as a function of the nearest-neighbor Euclidean distance of the complex
eigenvalues |�
|=|
n+1 − 
n| normalized to their average value, i.e., ŝ=|�
|/〈|�
|〉. (a)–(d), (e)–(h), and (i)–(l) correspond to a low
(i.e., ρλ2 = 10−6), intermediate (i.e., ρλ2 = 10−1), and high (i.e., ρλ2 = 50) optical density regime, respectively. The black-dotted lines in
(a)–(d), (e)–(h), and (i)–(l) identify the different statistics that better describe the evolution of 〈P(ŝ)〉e by increasing ρλ2 (see the main text
for more details). The pastel green, violet, red, and blue markers refer to point patterns generated with a probability p equal to [1,1,1,0],
[1,1,0.75,0.5], [1,0.75,0.75,0.5], and [1,0.75,0.5,0.25], respectively.

equal to k3
0 |α(ω0)|2/4. Therefore, under the effective medium

approximation, ke can be expressed as k0 + i/(2ls) [60,61] and
Eq. (10) can be rewritten as πλe2π

3ρλ2
/(2ρλ2), which relates

the localization length of isotropic structures with their optical
density. Using this estimate into Eq. (10), we found that the
ratio of ξ/L is very large in the low optical density regime
(i.e., ρλ2 = 10−6), while it becomes smaller than one at larger
optical density. This result is shown in Fig. 8(b), where the
width of the frequency range �ωloc corresponding to a Thou-
less number lower than 1 is reported for different optical
densities. Moreover, Fig. 8(c) also displays the ensemble-
averaged number of localized scattering resonances 〈Nloc〉e.
Figure 8 clearly demonstrates that multifractal point patterns
generated by multiplicative cascade processes localize scalar
waves more efficiently than monofractal structures. Moreover,
the data in Fig. 8(b) show a broader range of �〈ωloc〉 for mul-
tifractals and URs compared to the monofractal structure (i.e.,
green-pastel markers). These results can be understood by
considering the different structural properties of the investi-
gated systems displayed in Fig. 4. Indeed, we observe that the

multifractal structures with a radial distribution function that
approaches unity, which from a structural view point are the
most disordered of the multifractal systems, show localization
properties more similar to the ones of uncorrelated disordered
media [i.e., black markers in Fig. 8(a)]. Moreover, the multi-
fractal structures with g2(r) that approaches the monofractal
scaling of Fig. 4 display a progressively weaker localization
behavior. Summarizing, the investigated systems are char-
acterized by multiscale correlation properties that facilitate
light localization of scalar waves and also support localized
scattering resonances over broader frequency spectra akin to
the ones predicted for uniform random systems.

To better understand the nature of localization in the inves-
tigated systems, we perform a statistical analysis of the level
spacing distribution that is often utilized to identify different
transport regimes in closed (Hermitian) and open systems
[41,62,68,74]. In closed random systems, established results
from random matrix theory predict the suppression of level
repulsion in the presence of localized states [45]. In these sys-
tems, spatially isolated, exponentially localized modes hardly
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influence each other and can coexist at energies that are in-
finitely close. The transition from diffusion to localization
is confirmed by the switching from level repulsion to level
clustering of the quantity 〈P(ŝ)〉e as a function of ρλ2, which
is demonstrated in Fig. 9. Here, P(ŝ) denotes the probability
density function of the first-neighbor level spacing distribu-
tion of the complex eigenvalues of the Green s matrix [75]. It
is well-established that the suppression of the level repulsion
[i.e., P(ŝ) → 0 when ŝ goes to zero] indicates the transition
into the localization regime for both scalar and vector waves
in two-dimensional and three-dimensional disordered systems
[74–76] as well as nonuniform aperiodic deterministic struc-
tures [39,62,71]. We found that ρλ2 = 10−6, the distribution
of the level spacing of the investigated arrays show excellent
agreement with the GUE formula [45,77]:

P(ŝ) = 32 ŝ2

π2
e−4ŝ2/π . (11)

We emphasize that the black-dashed lines in Figs. 9(a)–9(d)
are not the results of a numerical fitting procedure but are
obtained by directly using Eq. (11). This distribution falls off
quadratically for ŝ → 0 [45,77], demonstrating that the eigen-
values of the investigated structures exhibit quadratic level
repulsion in the low scattering density regime. Interestingly,
the GUE distribution Eq. (11) has also been discovered in the
characteristic spacing of the nontrivial zeros of the Riemann’s
zeta function [78], whose properties are intimately related to
the distribution of prime numbers. Approaching the threshold
of the discovered transition, the quantity 〈P(ŝ)〉e manifests
level repulsion described by the critical cumulative probability
defined as [79]

I (s) = exp[μ −
√

μ2 + (Acs)2], (12)

where μ and Ac are fitting parameters, as shown in Figs. 9(e)–
9(h). The critical cumulative probability was successfully
applied to describe the energy level spacing distribution of
an Anderson Hamiltonian containing 106 lattice sites at the
critical disorder value, i.e., at the metal-insulator threshold
where it is known that all the wave functions exhibit multi-
fractal scaling properties [79]. Our findings demonstrate the
applicability of critical statistics to this class of multifrac-
tal structures reflecting the formation of critically localized
eigenmodes with self-similar scaling properties.

In contrast, the level spacing distributions of all the investi-
gated structures are well-reproduced by the inverse power law
scaling curve P(s) ∼ s−β [see black-dotted lines in Figs. 9(i)–
9(l)] in the strong multiple scattering regime (ρλ2 = 50). In
the context of random matrix theory, it has been demonstrated
that the power-law distribution describes complex systems
with multifractal spectra that produce uncountable sets of hi-
erarchical level clustering [80,81]. Moreover, this power-law
scaling is related to the phenomenon of anomalous diffusion.
Anomalous diffusion is a transport regime in which the width
of a wave packet σ 2 increases upon propagation according
to t2ν with ν ∈ [0, 1] [80]. Such a behavior was observed in
different one- and two-dimensional aperiodic systems [81–83]
and, more recently, in three-dimensional scattering arrays
designed from subrandom sequences [71] and stealthy hype-
runiform disordered systems [68]. The anomalous exponent
ν is related to the parameter β through the relation ν =

(β − 1)/d where d is the Euclidean dimension of the sys-
tem [80,81]. By substituting the values of β obtained from
the numerical fitting of the data in Figs. 9(i)–9(l), we find
that the exponent ν is equal to 0.11 ± 0.03, 0.08 ± 0.01,
0.08 ± 0.01, and 0.06 ± 0.01 for structures generated with
the probabilities vector p equal to [1,1,1,0], [1,1,0.75,0.5],
[1,0.75,0.75,0.5], and [1,0.75,0.5,0.25], respectively. These
values are very small and in fact approaching zero, which is
consistent with the localization regime achieved at the largest
optical density.

V. CONCLUSIONS

In conclusion, we have addressed the structural, spectral,
and localization properties of multifractal arrays of electric
point dipoles with different degrees of multiscale structural
correlations. We systematically studied the multiple scattering
properties of classical waves using the spectral Green’s matrix
method and demonstrated an enhanced localization behavior
in multifractal structures compared to homogeneous fractals.
In particular, we found strongly reduced Thouless numbers
in the localization regime of multifractals accompanied by a
larger number of localized scattering resonances with critical
level spacing statistics at large optical density. Our results
demonstrate the importance of tailoring multifractal correla-
tions in the multiple scattering regime for the engineering
of novel nanophotonic systems with broadband localiza-
tion properties for optical sensing, lasing, and multispectral
devices.
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APPENDIX A: MULTIFRACTAL ANALYSIS

Multifractal analysis is based on the scaling properties of
the partition function Zq(ε). We consider an object on which
a measure μ is distributed with constant density so its multi-
fractal properties are manifested purely in the scaling of its
geometry. In this case, measure μ can be regarded simply
as the mass density of the fractal object and the multifrac-
tal spectrum describes the geometrical support itself. The
widespread box-counting method considers a uniform square
grid of boxes with linear size ε and then introduces the local
measure μi as the proportion of total mass of the object inside
the ith box of size ε. Then the partition function is defined as

Zq(ε) =
N∑

i=1

μ
q
i (ε). (A1)

The expression above denotes the sum of the qth moments
of the local measures over all the boxes needed to cover the
support and is also known as the moment sum. We note that
the higher the values of q in Appendix A1, the more dense the
selected regions.

Multifractal analysis assumes a power-law behavior for
the partition function in the limit ε → 0 (or N → ∞), and
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therefore Eq. (A1) can be rewritten as

Zq(ε) ∝ ε (q−1)Dq , (A2)

where Dq is the spectrum of generalized dimensions. Note that
the factor q − 1 in the exponent ensures the validity of the
normalization condition Z1(ε) = 1. Inside each ε × ε box, the
local contribution of the multifractal measure μ is assumed to
scale according to

μi ∝ εαi , (A3)

where the local scaling exponent αi = αi(ε), also called the
crowding index, is generally a position dependent quantity.
Furthermore, the number of boxes with a given crowding
index α can be expressed as

Nα (ε) ∝ ε− f (α). (A4)

Therefore, these boxes cover a subset with the fractal di-
mension f (α). At this point, we can immediately establish
the following relation between the scaling function τ (q), the
generalized dimension, and the partition function:

τ (q) = (1 − q)Dq = − lim
ε→0

logZq(ε)

log ε
. (A5)

where log indicates the base 10 logarithm. Moreover, by using
Eqs. (A3) and (A4), we see that the partition function satisfies

Zq(ε) ∝
∫

εαq− f (α)dα, (A6)

where the integral above is slowly varying over the smallest
scales. In the limit ε → 0, the integral above is dominated
by the α values that minimize the exponent and it can be
approximated using the saddle-point method. Therefore, when
Dq and f (α) are differentiable functions we can obtain

f (α) = αq − (q − 1)Dq, (A7)

where α is given by

α = α(q) = d

dq
[(q − 1)Dq]. (A8)

The results above show how the spectrum of generalized di-
mensions Dq (or τq) and the singularity (i.e., the multifractal)
spectrum f (α) are connected by the Legendre transform and
offer equivalent descriptions of the multifractal.

Finally, the generalized dimension Dq can be related to the
partition function as follows:

Dq = 1

1 − q
lim
ε→0

logZq(ε)

− log ε
= 1

1 − q
lim
ε→0

log
∑N

i=1 μ
q
i (ε)

− log ε
,

(A9)

where we recall that the local measure is the relative mass of
the object in the ith box, i.e.,μi = Mi(ε)/M and Mi is the mass
of the ith box and M is the total mass. For q = 0, the expres-
sion above yields the box-counting dimension, for q = 1 the
information dimension, for q = 2 the two-point correlation
dimension. The generalized dimensions for q > 2 provides
information about higher-order correlations. For example, D3

characterizes the correlations between triples of points in each
box, D4 between qaudruples, etc.

APPENDIX B: SINGLE SCATTERING PROPERTIES

The fractal dimension d f of a structure can be obtained
directly by measuring its correlation function, which is an
observable quantity of fundamental importance in wave-
scattering experiments (e.g., in light, x-ray, and neutron
scattering) [52]. The density-density correlation function is
defined as

g(r, r′) = 〈ρ(r)ρ(r′)〉, (B1)

where ρ(r) is the number density of atoms at position r and
〈. . .〉 denotes an ensemble average. The expression above
quantifies the correlations in the fluctuation of the number
density. For isotropic atomic distributions, the correlation
function depends on the radial distance r = |r − r′|, which
is often defined in spherical coordinates. Additionally, for
systems that display translational invariance on average (i.e.,
statistically homogeneous), we can fix r′ = 0 and write

g(r) = 〈ρ(r)ρ(0)〉. (B2)

We note that the g(r) defined above, known as the pair corre-
lation function, is proportional to the probability of finding a
particle at a distance r from another particle of the system,
which is proportional to the particle density ρ(r) within a
sphere of radius r. Since ρ(r) = dM(r)/dV ∝ rd f −d for a
monofractal distribution, it follows that the correlation func-
tion scales as

G(r) ∝ rd f −d , (B3)

where d is the dimension of the embedding Euclidean space.
The scattering intensity observed in actual experiments is
proportional to the structure factor S(q), which is essentially
the Fourier transform of the pair correlation function:

S(q) = 1 + N

V

∫
V
[G(r) − 1]e−iq·rdr, (B4)

where N is the total number of particles in the system of
volume V and q = k − k′ = (4π/λ) sin(θ/2) is the momen-
tum transfer. Note that the momentum transfer should not
be confused with the parameter q used in the multifractal
analysis. Here θ is the angle between the wave vectors k
and k′.

The scaling of the structure factor based on a pair distri-
bution function with a generic power-law singularity G(r) ∝
r−α can be easily estimated by noting that

S(q) ∝
∫

e−iq·rdd r/rα = (qα/qd )
∫

e−iq·r[dd (qr)/(qr)α]

∝ qα−d
∫

e−ixx−αdd x, (B5)

where x = qr. Remembering that in our case −α = d f − d ,
we immediately obtain

S(q) ∝ q−d f . (B6)

More sophisticated models for the structure factor of fractals
that include finite-size effects have also been developed and
are discussed in Refs. [56,57,84].

We now concisely address the role of structural corre-
lations in the diffraction (single scattering) properties of
multifractals. For simplicity, we consider a one-dimensional
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measure μ(x) attached to some geometrical support of size L.
We would like to evaluate the two-point correlations of the
moments of μ(x) defined by

Gmn(y) = 〈μm(x)μn(x + y)〉x (B7)

where the brackets indicate averaging over all sites x and the
correlation is between the local measures of boxes with fixed
size ε and separation y. It has been shown in Ref. [85] that
the correlation function of box measures can be described by
exponents characterizing the multifractality of the set. In fact,
due to the absence of characteristic length scales in the multi-
fractal system, its pair correlation can be generally written as
[27]

Gmn(y) ∝ εx1(m,n)L−x2(m,n)yyx3(m,n), (B8)

where the new quantities x1, x2, x3 must be related to the
previously introduced multifractal exponents. This is obtained
by computing the correlation between boxes separated by the
box-size distances ε and L at which the boxes decorrelate.
The steps of this derivation can be found in Ref. [27] where

the following expression for x3(m, n) has been obtained:

x3(m, n) = d f − τ (m) − τ (n) + τ (m + n), (B9)

where d f = D0 is the fractal dimension of the support (Note
the opposite sign convention for τ (q) used here compared to
the one in Ref. [27]). Therefore, the pair correlation scales
generally as [85]

Gmn(y) ∝ yd f −τ (m)−τ (n)+τ (m+n), (B10)

Thus, the measurement of spatial correlations can provide
a quantitative test for multifractal behavior. Using the same
argument that led to establish Eq. (B6), we can deduce the
general scaling of the structure factor of a multifractal for
given m and n values:

Smn(q) ∝ q−d f +τ (m)+τ (n)−τ (n+m). (B11)

The relation above is quite important because it allows one
to characterize the multifractality of a structure without box-
counting procedures in numerical calculations, directly by
studying the scaling of the structure factor for any given values
of m and n. However, when spatial or angular averages are
performed on scattering data, as in Fig. 4, the above formula
cannot be directly applied and a more complex approach,
beyond the scope of our paper, must be introduced.
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