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Abstract. We address the problem of segmenting moving rigid objects based on

two-view image correspondences under a perspective camera model. While this

is a well understood problem, existing methods scale poorly with the number

of correspondences. In this paper we propose a fast segmentation algorithm that

scales linearly with the number of correspondences and show that on benchmark

datasets it offers the best trade-off between error and computational time: it is

at least one order of magnitude faster than the best method (with comparable

or better accuracy), with the ratio growing up to three orders of magnitude for

larger number of correspondences. We approach the problem from an algebraic

perspective by exploiting the fact that all points belonging to a given object lie in

the same quadratic surface. The proposed method is based on a characterization of

each surface in terms of the Christoffel polynomial associated with the probability

that a given point belongs to the surface. This allows for efficiently segmenting

points “one surface at a time” in O(number of points).

Keywords: Motion segmentation, Epipolar geometry, Algebraic clustering

1 Introduction

Motion segmentation –segmenting distinct moving objects in a sequence of frames–

has a wide range of applications in computer vision and robotics [1–5].

While it is possible to perform trajectory association and object segmentation jointly

[6, 7], this requires solving expensive optimization problems. Hence, most algorithms

require feature correspondences between two or more frames to be given as input.

Most multi-frame approaches segment moving objects by clustering feature trajec-

tories, under the assumption of an affine camera projection model. In this scenario,

the trajectories lie in linear or affine subspaces and can be found by using subspace

clustering [8–18], or factorization algorithms [19–23]. While these approaches per-

form well on benchmarks such as the Hopkins 155 dataset [24] they have several

drawbacks. Since they rely on an affine projection model they do not perform well

when images have perspective distortion. In addition, point trajectories require track-

ing features across multiple frames, which is more expensive and difficult than finding
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Fig. 1: Left: Sample motion segmentation results for the Adelaide-F data-set. Segmentation for

two views of ground truth (1st col.) and our algorithm (2nd col.) each view in one row. Colors

of feature points indicate their label where red shows outliers. Right: Comparison of time versus

average segmentation error for the entire Adelaide-F data-set. The proposed method is both the

most accurate (4.15% error) and fastest (0.02 secs per image pair).

singleton correspondences between a pair of frames. Finally, occlusions and missing

features in intermediate frames often result in a relatively low number of reliable tra-

jectories to work with. [25–28] handle perspective effects by combining results from

two-view correspondences. However, they still require tracked trajectories. More re-

cent approaches [29–32] avoid this requirement, for instance by using triplets of im-

ages [31]. However, despite achieving higher accuracy, trifocal tensors fail to classify a

high percent of available pairs.

Two-view methods avoid the need for trajectory acquisition, by using the epipolar

geometry between correspondences to cluster feature pairs. Thus, they can work with

full perspective views. These approaches [33–38] relate pairs of corresponding features

through geometric constraints, such as the Longuet-Higgins equation and enforce that

features which belong to the same rigid object must be related by the same funda-

mental matrix. However, while it is easier to find a large number of correspondences

between two frames than to obtain many long trajectories across multiple frames, these

correspondences are often corrupted with outliers, making the segmentation task more

difficult.

A popular approach to eliminate outliers while estimating a single fundamental ma-

trix between two views of a static scene [39–44] is to use random sample consen-

sus (RANSAC) [45]. RANSAC and related sampling methods have also been used

when seeking multiple structures [46–48], including motion segmentation. However,

the presence of multiple structures necessitates relatively expensive sampling in or-

der to guarantee a given probability of achieving the correct segmentation. Other tech-

niques [49–54] follow a preference-based approach, where the distribution of residuals

of individual data points with respect to the models is inspected. However, the model

step in these approaches suffers from low accuracy and depends on the bin size. Perhaps

the closest approach in spirit to the one proposed in this paper is [12], where two-view

motion segmentation is recast into a sparse subspace clustering form. While effective,

this approach requires solving first a computationally expensive optimization, followed

by a spectral clustering step. Hence, its computational complexity scales at least as

(number of points)3.
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In this paper we introduce a robust, computationally efficient algebraic approach for

motion segmentation from feature correspondences between two perspective images

(Fig. 1). The approach is based on a Christoffel polynomial characterization of the

support set of the (unknown) probability distribution associated with data in each of

the quadratic surfaces corresponding to points in the same object. This polynomial,

which has low (high) values at inliers (outliers) to a given surface allows for efficiently

segmenting the objects “one at a time, by identifying all points with high probability of

Fig. 2: One at a time segmentation of two

second order curves. Since the green points

are outliers to the red curve, the Christoffel

polynomial of the latter has values higher

than 0.5 at these points.

belonging to the same object (Fig. 2). These

points are removed from the population and

the process is repeated until all points have

been labeled. If desired, an outlier removal

step can be implemented prior to starting

the process, by considering the Christoffel

polynomial corresponding to the joint distri-

bution over all objects and identifying cor-

respondences with high probability of be-

ing outliers. Notably, computing the Christof-

fel polynomial from the correspondence data

involves the singular value decomposition

(SVD) of a matrix whose size depends only

on the number of objects, leading to an algo-

rithm whose computational complexity scales

linearly with the number of data points. These

results are illustrated with standard datasets,

showing that the proposed approach offers the

best trade-off between error and computational time (Fig 1): it is at least one order of

magnitude faster than the best method (with comparable or better accuracy), with the

ratio growing up to three orders of magnitude for image pairs with larger number of

correspondences. In terms of computational time, it is always the fastest, with an error

rate at least 50% smaller than the runner up, with this number growing up to 3 times as

the number of correspondences increases.

2 Related work

Two view motion segmentation methods can be roughly grouped into sampling based

and model fitting based.

2.1 Sampling based approaches

Most of the sampling based methods build on RANSAC [45], which searches for con-

sensus between randomly sampled minimal sets to estimate a single model. Some ex-

tensions of RANSAC, including [40, 42, 55], use a similar methodology on problems

with multiple structures and depend on some form of prior knowledge such as match-

ing scores, spatial distance or super-pixel information. Other variations [39, 56, 57],

use the knowledge collected from previous steps to guide sampling in subsequent steps
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and speed up model estimation. For a more comprehensive overview of variations of

RANSAC please see [58,59]. Note that although there are many advances in model es-

timation for both homography and fundamental matrix estimation [60–62] since these

methods are tailored towards obtaining accurate models rather than accurate segmenta-

tion, they are not considered in the scope of this work.

2.2 Model fitting based approaches

The T-linkage approach [52] starts with random sampling to generate m hypothesis from

minimum sample sets. Then, each data point is described by a preference function tak-

ing values between 0 and 1. Finally, a greedy bottom-up agglomerative clustering yields

a partition of the data by merging points with similar preferences. Later in RPA [54] the

authors exploited a robust M-estimator, combined with robust component analysis and

non-negative matrix factorization. Some of the more recent preference based methods

are MCT [63], HF [64], HOMF [65] and MultiLink [66]. MCT extends T-linkage to

handle nested models such as planar sides of a cube whereas MultiLink extends pref-

erence representations to multiple, not necessarily nested, mixed classes of models.

Although these model fitting based approaches generally achieve good performance on

the fitting accuracy, they have a high computational complexity.

[53] learns a Random Cluster Models (RCM) to generate hypotheses using non-

minimal subsets of samples. Point preferences are organized in a graph and then graph

cuts are used to optimize the fitting. The MSHF method [67] clusters model hypotheses

using hypergraphs constructed from data where each hypothesis indicates an instance in

data. However, this method seeks modes from the generated model hypotheses which

may lead to suboptimal fitting results, for cases where the generated model hypothe-

ses do not contain all model instances. A similar method, Prog-x (P-x) [68], interleaves

sampling and geometric multi-model fitting using a modified RANSAC to progressively

explore the data through model proposal and optimization steps. Prog-xp (P-xp) [69] ex-

tends P-x by introducing a new problem formulation which allows points to be assigned

to more than one model. These consensus analysis based methods can achieve a high

fitting accuracy if provided by a high quality model hypothesis.

All the above approaches use random sampling to grow clusters and reject outliers.

In contrast, our approach is deterministic and proceeds by selecting the most reliable

data available at each step.

3 Notation

A� 0 matrix A is positive semidefinite.

Pd
n subspace of nth degree homogeneous multivariate polynomi-

als in d variables.

sn,d
.
=
(

n+d−1
d−1

)

number of monomials of degree n in d variables.

vn(x)
.
=

[

xn
1 xn−1

1 x2 . . . xn
d

]T
degree n Veronese map of x =

(

x1 . . . xd

)T

Eµ(x) Expected value of x with respect to the probability density

function µ .

|S | number of elements in the set S .
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4 Problem setup

The goal of this paper is to assign correspondences to objects. As discussed below, this

problem is equivalent to algebraic variety clustering, where points need to be assigned

to a known number of unknown second order varieties. Consider a set of N (inlier)

correspondences C = {(x1,x2)i, i= 1, . . . ,N} between two perspective views of a scene

with a known number M of rigid objects. If x1 and x2 are corresponding features that

belong to object j, they must satisfy the epipolar constraint:

xT
1 F( j)x2 = 0 (1)

where F( j) ∈ R
3×3 is the Fundamental matrix for object j and xk = (xk,yk,1)

T are the

homogeneous coordinates of the feature in view k = 1,2. Therefore, [x1,y1,x2,y2]
T is a

root of a second order polynomial with four variables and hence belongs to the second

order algebraic variety associated with this polynomial (or, equivalently, it lies on the

quadratic surface defined by all the roots of the polynomial).

4.1 Two view motion segmentation as algebraic variety clustering

Since all two-view correspondences associated with a given object satisfy (1), the prob-

lem addressed in this paper is a special case of algebraic variety clustering where the

goal is to segment points lying on a surface defined by the union of nv algebraic varieties

of the form Vi
.
= {x : p2,i(x) = 0}, where p2,i(.) are quadratic multivariate polynomials.

The algebraic segmentation problem (and hence two view segmentation) can be

solved by first estimating the polynomials that define each variety and then assigning

points xi to the polynomial that yields the smallest fitting error |p2,i(x j)|. In the case

of linear subspaces, this is precisely the approach used by GPCA [15, 70]. In principle,

a straightforward approach to extend GPCA to second order algebraic varieties, is to

simply use a polynomial lifting to lift the problem from its original space to the space

defined by the Veronese map v2(x). Under this lifting, the problem reduces to subspace

clustering, where each subspace is of the form v2(x)
T pk = 0, where the vector pk con-

tains the coefficients of the polynomial p2,k(.). However, even for the linear case it is

well known that GPCA is fragile to noise and outliers. This situation is exacerbated

when extending the approach to algebraic varieties, since the noise is polynomially

lifted. In addition, this lifting ignores the specific structure of each of the polynomi-

als that define the varieties (1), potentially introducing spurious solutions. As we show

in the paper, these difficulties can be circumvented by considering a “one-at-a-time”

approach that combines algebraic and Christoffel function arguments.

4.2 Approximating support sets via Christoffel polynomials

Given a probability measure µ supported on R
d , its associated moments sequence is

given by

mα = Eµ(x
α) =

∫

Rd
xα dµ (2)
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where x
.
=

[

x1 x2 . . . xd

]T
, α

.
=

[

α1 α2 . . . αd

]

and xα stands for x
α1
1 x

α2
2 · · ·x

αd

d . Each

sequence m can be associated with a moment matrix Mn, with entries Mi, j = mα i+α j
,

containing moments of order up to 2n. In the sequel, we will use the submatrix Ln of

Mn, containing only moments of order 2n. For instance, for moments of order 4 in two

variables, we have

L2 =





m(4,0) m(3,1) m(2,2)

m(3,1) m(2,2) m(1,3)

m(2,2) m(1,3) m(0,4)





By construction Ln� 0 thus it induces a reproducing Kernel Kn(x,y)
.
= vT

n (x)L
−1
n vn(y)

1.

The non-negative function Q−1
n (x)

.
= vT

n (x)L
−1
n vn(x) is known as the Christoffel func-

tion associated with the Kernel K [71]. It is related to the measure µ that induces Ln

through the following optimization problem over homogeneous polynomials of degree

n [71, 72]:

p∗y(.) = argmin
p∈Pd

n

∫

Rp
p2(ξ )dµ s.t. p(y) = 1

Q−1
n (y) = Eµ [(p∗y(.))

2]

(3)

where y is an arbitrary given data point. That is, given the data point y, p∗y(.) is the

minimum mean square value homogeneous polynomial of degree n, subject to the con-

straint p∗y(y) = 1, and the Christoffel function evaluated at y, Q−1
n (y), is precisely its

mean square value. In this paper, with a slight abuse of notation, we will refer to p∗y(.)
as the Christoffel polynomials. An explicit expression for p∗y(.) in terms of the singular

vectors ui and singular values σi of Ln is given by [73]:

p∗y(.) = vn(.)
T c∗y

where c∗y =
1

∑
sn,d

i=1(
1√
σ i

uT
i vn(y))2

sn,d

∑
i=1

1

σi

uT
i vn(y)ui

(4)

As noted in [72], both Qn(.) and p∗y(.) can be used to approximate the support of the

μ

p*
y

2

p*
y

2
(y) = 1

y

1

p*y
2

(a) (b)

Fig. 3: (a) The square Christoffel polynomial p∗y
2

for an outlier y is small at inlier points. (b) The in-

verse of the square Christoffel polynomial, p∗y
−2,

estimated from partial data of a circle (shown in

red). It has high values at the inliers and approx-

imates the support of the data.

distribution µ and to detect outliers.

Specifically, it can be easily shown

that Eµ(Qn) = sn,d
.
=

(

n+d−1
d−1

)

. Di-

rect application of Markov’s inequal-

ity yields:

prob
{

Qn(y)≥ t.sn,d

}

≤ 1

t
(5)

Thus, high values of Qn correspond to

points with a high probability of being

outliers. Similarly, for the polynomial

p∗y
2(.) we have:

prob

{

(p∗y(x))
2 ≥ 1

tQn(y)

}

≤ t (6)

1 For a singular L
.
= U

[

Σ 0

0 0

]

UT , L−1 .
= U

[

Σ−1 0

0 0

]

UT .
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Remark 1 From the equations above it follows that if y is chosen to be an outlier

to the distribution µ , then the polynomial p∗y
2(.) will approximate the complement of

the support of µ , in the sense that its value will be large in places where µ is small

and viceversa (Fig. 3). This follows from the observation that if y is an outlier to the

distribution µ , then Qn(y) is large and, from (6), (p∗y(x))
2 is small if x is an inlier.

Intuitively, if y is an outlier, a solution to (3) will be a polynomial that is close to one

in a neighborhood of y, to satisfy the constraint p(y) = 1, and small in regions where

µ is large, to minimize the overall integral (Fig. 3(a)). Since the region around y has

low density, it contributes little to the integral of p2, while setting p2 small in regions

where µ is large minimizes their cost. This observation will be key in developing the

clustering algorithm.

Note in passing that since the distribution µ is typically unknown, Ln cannot be

computed. Rather, it is approximated by the empirical moments matrix:

Ln ≈
1

N

N

∑
i=1

vn(x)v
T
n (x).

5 Methodology and Algorithm

In this section we present a computationally efficient algorithm to segment the given

data. For simplicity, we will cover the basic ideas of the algorithm for the generic alge-

braic variety clustering case and then indicate refinements to improve performance in

the specific case of two view motion segmentation.

5.1 One at a time algebraic clustering

The proposed iterative algorithm is based on the observation made in Remark 1 that

the polynomial p∗y constructed based on a point y that is an outlier to the distribution

µ , provides a good approximation to the support of its complement. Consider again the

arrangement of nv varieties A
.
= ∪nv

j=1Vj, and suppose that we select a point yi ∈ Vi.

Since this point is an outlier to the distribution over the partial arrangement Apartial =
∪ j 6=iVj, then it is expected that p∗yi

will approximate, at least around yi the support

of its complement A partial = Vi. Thus, a “reliable” subset Vi,rel of Vi can be found by

simply collecting points where p∗yi
is above a threshold, related to the probability of

misclassification. These “reliable” inliers can be used to refine the estimates of the

coefficients of the polynomial p∗yi
and grow the set Vi,rel by adding new points where

p∗yi
is above the threshold. Points on this set are removed from the population and the

process is repeated for the remaining varieties. A heuristic for choosing yi is to select, at

each stage, the point corresponding to the minimum Q. The rationale behind this choice

is to select a point located in a “high mass” region of the distribution, and hence likely to

have a large number of points from the same variety in its neighborhood, maximizing

the number of reliable inliers used to estimate the set Vi,rel . An illustration of how to

apply these ideas to a simple case is shown in Fig. 4. The corresponding conceptual

Algorithm is outlined in Algorithm 1.
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Fig. 4: Applying Algorithm 1 to segment two circles. (a): Original data (red and blue points) and

selected anchor (green) point (Alg. 1, step 2). (b): t=0.7 level set of the Christoffel polynomial.

The anchor point and its neighborhood are outside the set (Alg. 1, step 3). (c): Points outside the

level set are “reliable points”, used to estimate the parameters of the circle (Alg. 1, step 4). (d):

Final segmentation using the circle estimated from the reliable points (Alg. 1, step 5).

Algorithm 1 Conceptual one-at-a-time segmentation.

1: for k := 1 to nv−1 do

2: Selecting yk: Compute Qnv+1−k(x) and choose yk = argminx Qnv+1−k(x)
3: Compute p∗yk

(x), the Christoffel support polynomial, for the union of nv−k clusters treat-

ing the point yk as an outlier.

4: Assign points where (p∗yk
(x))2 ≥ t to the set Xk. This set approximates a subset of Vk,

the variety that contains yk.

5: Using the points in Xk and available structural information, estimate the polynomial pk

that characterizes Vk. Estimate V̂k = Xk ∪{y : |pk(y)| ≤ noise level}.
6: Remove the points in V̂k from the population x.

5.2 Refinements for two view motion segmentation

For the specific case of interest to this paper, the basic conceptual algorithm can be

refined to improve robustness as follows. Firstly, note that the polynomial xT
1 Fx2 does

not contain pure quadratic terms. Thus, when computing the moment matrix L, rather

that using the standard veronese map, one can use the restricted one:

vr(x1,y1,x2,y2,1)
.
=[1 x1 y1 x2 y2 x1x2x1y2 y1x2 y1y2]

T

This avoids spurious solutions that do not correspond to fundamental matrices when

computing pxo,k
. Secondly, once the initial set of reliable points has been computed, it

can be used to estimate the Fundamental matrix, using for instance the 8 points algo-

rithm, possibly combined with RANSAC. In turn, this estimated Fundamental matrix

can be used to find additional correspondences belonging to this object. The complete

two view segmentation algorithm is given in Algorithm 2.

6 Experimental Evaluation

In this section we evaluate the performance of the proposed two-view motion segmen-

tation method using the following benchmark datasets: Adelaide-F [74], two-view ver-

sions of Hopkins [24], with and without outliers, two-view version of KT3D dataset
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Algorithm 2 Two-view motion segmentation algorithm. Lines 2-8 perform out-

lier rejection; 9-26 implement one at a time clustering on the estimated inliers;

27-34 assign all inlier correspondences to clusters; 35-39 use the model of each

cluster to classify the unreliable points found in Step 1. Code is available at

https://github.com/BengisuOzbay/TwoViewMotSeg

1: Input: Data matrix X ∈ R
5×N where each column is [x1,y1,x2,y2,1]

T , number of objects M

2: Find a reliable set for arrangement AM =
⋃m

i=1 Vi:

3: t = 0.6×mean(QM) . Initialize threshold

4: Xrel ← X(:,QM < t) . Pick the most reliable data

5: Outlier rejection:

6: yo = argminx QM(x) . Grossest outlier

7: t = 0.001×M . Initialize threshold

8: Xin← X(:, pyo,M(x | Xrel)< t) . Remove outliers

9: Clustering:

10: Xav← Xin . Initialize available

11: for k := 1 to M do

12: m←M− k . Available clusters

13: if k 6= M or |Xav| ≥ 18† then

14: ya← argminx(Qm+1(x)) . “anchor” point

15: t← otsu threshold for p2
ya,m(x)

16: Vo,k← Xav(:, p2
ya,m(x)≥ t) . ya ∈Vo,k ⊂Vk

17: else . last cluster or |Xav| is too small

18: Vo,k← Xav

19: Grow the variety Vo,k using Fundamental Matrix

20: Vo,k,cl ←Vo,k(Q1(x |Vo,k)< mean(Q1)×1.2) . Clean the variety Vo,k

21: Fk← norm8Point(Vo,k,cl) . Normalized 8 pt. alg.

22: fit← abs(pT
1 Fk p2) . [pT

1 pT
2 1]T ∈ Xav

23: tF ← 0.05 , Vid,k← Xav(:,fit < tF )
24: Find a reliable set Vrel,k ⊂Vid,k ⊂Vk

25: Vrel,k←Vid,k(Q1(x |Vid,k)< mean(Q1)×1.4)
26: Update available data: Xav← Xav \Vid,k

27: Assign all correspondences to found clusters:

28: for j := 1 to M do . Find the score for each variety

29: scoreQ( j)← Q1(x |Vrel, j) /norm(Q1(x |Vrel, j))
30: F j← norm8Point(Vrel, j)
31: fits j← abs(pT

1 Fk p2) . [pT
1 pT

2 1]T ∈ X

32: Vrel,all =Vrel,1
⋃

Vrel,2
⋃

. . .Vrel,M

33: scoreQ(0)← (QM(x |Vrel,all) /norm(QM(x |Vrel,all))
34: labels← argmini scoreQ( j) . Assign each pair to the cluster with lowest score, cluster

j = 0 represents outliers

35: Refine outliers by cross checking using Fk

36: [fitsmin fitsidx] = min(fits) . Find the cluster associated with min fit for each point

37: idxin← fitsidx(fitsmin < 0.02) . Inlier index according to their fit with subspaces

38: if labels(idxin) == 0 then

39: labels(idxin) = idxin

† The dimension of the modified Veronese mapping for a single cluster is 9
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[28], two image pairs, named as BC and BCD, introduced in [75] and pairwise indoor

scenes dataset introduced in [30]. For all datasets, we use the same thresholds as shown

in lines 3 and 7 in Algorithm 2. We report the performance in terms of segmentation

error [53] and computation time, and compare against the state-of-art algorithms: T-

linkage [52], RCM [53], RPA [54], CBS [57], DGSAC [76], P-x [68], P-xp [69] and

MLink [66]. In all cases we used code provided by their authors (except for DGSAC

for which we report values from [76].

A summary of our experiments is given in Table 1, followed by a detailed analysis

of each data set. As noted before, the proposed method is at least one order of magnitude

faster than the best method (with comparable or better accuracy), with the ratio growing

up to three orders of magnitude for larger number of correspondences. Further, it is

always the fastest, with an error rate at least 50% smaller than the runner up, with this

number growing up to 3 times as the number of correspondences increases.

Adelaide-F H-C H-O KT3D BC BCD Pairwise

SE% time SE% time SE% time SE% time SE% time SE% time SE% time

T-L 25.1 4.00 33.6 6.27 26.2 37.2 28.5 3.90 15.8 137 30.8 172 40.1 95.4

RCM 7.65 1.96 18.2 4.72 9.83 4.36 24.7 2.00 44.3 7.88 30.6 10.3 12.1 6.93

RPA 5.49 9.65 6.41 11.3 8.5 50.9 46.4 12.4 7.56 153 5.3 210 2.63 142

CBS 5.03 0.69 10.2 1.6 15.7 1.5 44.9 0.58 39.6 3.83 28.8 2.84 22.8 3.08

DGSAC* 6.95 1.27 - - - - - - - - - - - -

P-x 11.5 0.30 17.6 0.39 9.77 0.71 15.0 0.257 10.3 1.73 27.3 1.07 18.0 0.996

P-xp 22.7 0.06 32.2 0.03 29.2 0.29 25.6 0.017 30.1 0.08 16.7 0.27 30.7 0.091

MLink 13.1 0.29 16.9 0.28 16.1 1.92 19.6 0.178 22.1 3.40 22.5 3.77 10.7 2.45

Ours 4.15 0.02 7.42 0.02 7.79 0.03 17.2 0.016 9.23 0.05 7.25 0.09 4.93 0.036

Table 1: Summary of our experiments: Average segmentation errors in %; 5 random runs on each

scene, and the average processing times per scene (in secs) for each problem: two-view motion

fitting on the two view subsets of Adelaide (2nd-3rd cols), Hopkins dataset without outliers (4th-

5th) and with uniformly added outliers (6th-7th), KT3D dataset (8th-9th), a single image pair with

2 motions and 1116 feature correspondences (10th-11th), a single image pair with 3 motions and

1227 feature correspondences (12th-13th), Pairwise dataset (14th-15th) a subset of the original

data set containing all pairs with more than 700 correspondences. Best results are shown in italic

red and second best results are blue.*Entries for DGSAC from [76]. In all cases the proposed

method is the fastest one and has the best or second best average segmentation error.

6.1 Adelaide-F

Adelaide-F is part of a larger dataset, Adelaide-RMF, widely used for homography

and Fundamental matrix fitting problems. Since this paper deals with two-view motion

segmentation, the only relevant portion of this dataset is the subset Adelaide-F, con-

sisting of group of images intended for Fundamental matrix estimation problems. The

Adelaide-F dataset has 19 image pairs of different sizes, with correspondences between

two frames manually annotated. In each image pair there are from one to four rigid

motions as well as outliers.

Fig. 1(b) compares the segmentation error, averaged over five random runs versus

the average computational time per image pair. As shown there, our method has the best
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performance both in terms of mean error (4.15%) and runtime (0.02secs). Our method

is 30 times faster than the runner-up in error (CBS) and has 1/5 of the error and is 3

times faster than the second fastest method, P-xp.

6.2 Hopkins-clean (H-C) and Hopkins-outliers (H-O)

The original Hopkins dataset has 156 sequences with two and three moving objects,

and a single sequence with 5 moving objects. This dataset is one of the most widely

used benchmarks for subspace clustering and motion segmentation problems. In the

original dataset each sequence consists of 30 frames long videos of moving objects

where each feature point is tracked through the entire video. [38] uses this dataset for

two-view motion segmentation problem by using the first and last frames of each video

as image pairs. For this experiment, following [38] we initially used the first and last

Fig. 5: Average error versus time for Hopkins (left) and Hopkins with outliers (right)

frames of the each video and referred to this as Hopkins-clean (H-C). To evaluate the

effects of the displacement, we also run experiments where we selected the 1st and

10th frames of each sequence as the image pairs. Finally, since the Hopkins dataset

does not have outliers, we generated a Hopkins-outlier (H-O) dataset, contaminated

by synthetic outliers generated by declaring as matches uniformly distributed random

pixels from each view. The overall results are given in Table 1 and Fig. 5, for the case

where r = (number o f outliers)÷ (number o f inliers) = 0.9. As shown there, our

method is the second best for H-C and best for H-O, and provides the best error versus

time trade-off, running more than 2 orders of magnitude faster than the method with the

best/second-best error.

Robustness to outliers: In order to evaluate the performance of the proposed method

under changing number of outliers, we tested it with different outlier ratios.

r = 0.9 r = 1.5 r = 2.1
SE% 7.79 9.37 10.72

time 0.03 0.03 0.04

Table 2: Hopkins dataset with varying out-

lier ratio where r = (number o f outliers)÷
(number o f inliers).

As before, these outliers where generated by

matching randomly chosen pixels from both

views. The results, shown in Table 2, illus-

trate that the proposed method is indeed ro-

bust to outliers, since performance degrades

gracefully even when the outlier ratio is sub-

stantially increased. This behavior matches

the observation in [73] that algebraic meth-

ods are robust to outliers as long as enough reliable inliers are available to estimate the

polynomials associated with the algebraic varieties.

Displacement: To investigate the effect of displacement of the objects on the per-

formance, we tested the proposed method and state-of-the-art methods on different
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Frames 1st -10th 1st -last

SE% time SE% time

T-L 33.4 8.25 33.6 6.27

RCM 24.8 3.87 18.2 4.72

RPA 5.5 14.7 6.4 11.4

CBS 17.9 1.5 10.2 1.6

P-x 10.7 0.28 17.6 0.39

P-xp 33.1 0.19 32.2 0.03

MLink 12.1 0.249 16.9 0.28

Ours 9.9 0.014 7.4 0.02

Table 3: Comparison of segmentation

results on H-C using frames 1 and 10

versus 1 and last.

image pairs of the Hopkins-clean. Table 3 com-

pares results using pairs of 1st-10th frames and

1st-last. As shown there, although the perfor-

mance of our method slightly decreases, it is still

the second best performance in terms of accuracy

with the shortest run time.

Categorical Analysis: Fig. 6 provides a detailed

analysis of the Hopkins results separated by num-

ber of motions. For two motion cases our method

has the second best accuracy in both clean and the

outlier version of Hopkins, whereas the perfor-

mance degrades in the 3-motion cases. The rea-

sons for performance drop in our method when

moving to 3 motions are: (a) In this case there are

less points per object so estimation of the moment matrix is less accurate. Our method

is designed to work well for scenarios with large number of correspondences, where

computational complexity may render other methods impractical. (b) The results for

3-motion seem to be poisoned by the checkerboard scenes where the camera is very

close to the objects and has a significant movement, while the objects have small dis-

placements. As a consequence, the dominant motion of all objects is the same as the

background category leading to clusters of two objects becoming corrupted with points

belonging to the background. This is illustrated in Fig. 6 (right panel) showing that

dropping this sequence leads to substantially smaller average segmentation error. In all

cases our method has a lower error than P-xp, the fastest amongst existing methods.

The method that yields the best error (RPA) is 500 times slower than ours.

Fig. 6: Hopkins categorical analysis: H-C (top) and H-O (bottom) with 2 motion (left), 3 motion

(middle) and 3 motion without checkerboard scenes (right). Segmentation error (%) and times

(secs) are averaged over 5 random runs.

6.3 KT3D

KT3D was introduced by [28] as a dataset with more realistic and challenging real world

effects such as strong perspective effects in the background, foreground moving objects
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with limited depth reliefs, background objects with non-compact shapes, small or inter-

mittent foreground object movement compared to that of the camera, objects moving

Fig. 7: Results for the KT3D data set. Our method

gives the best error-time tradeoff

along the epipolar line etc. We use

this dataset in order to test robust-

ness of our method against these real

world challenges.The KT3D dataset

has 22 videos, each 10-20 frames long

with two to four moving objects. To

perform 2-view motion segmentation

we picked frame pairs where all the

moving objects are present and frames

have large perspective effects. Note

that since most of the time either one

or more objects appear later in the

video or disappear before the last frame we could not pick the first and last frame for

KT3D as we did for Hopkins. Table 1 and Fig. 7 show that our method is the fastest,

with the second best error, and the best error-time trade-off. It runs one order of magni-

tude faster than P-x, at the price of 10% increase in error.

6.4 BC and BCD

We selected two image pairs Box-Car (BC) and Box-Car-Dinosaurs (BCD) [75]

Fig. 8: Results for the KT3DMoSeg data set. Our method gives the

best error-time tradeoff

to illustrate the scaling

benefits of our method.

BC and BCD have two

and three moving rigid

objects with 1116 and

1227 feature correspon-

dences, respectively. Both

pairs are also mildly

contaminated by out-

liers. For comparison, the Adelaide-F and Hopkins datasets have only 260 and 295

Fig. 9: Results for the Pairwise dataset. Our method

gives the best error-time tradeoff

feature correspondences on average.

Thus, the number of correspondences

in these image pairs is significantly

larger, allowing for observing its ef-

fect on the time complexity. As shown

in Table 1, the proposed algorithm

has the second lowest error and is the

fastest method in both cases. (Fig. 8).

Further, the best performing algorithm

(RPA) is 3 orders of magnitude slower.

Note also that RPA scales quadrati-

cally with the number of correspon-

dences, while the proposed method scales linearly.
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6.5 Pairwise

The Pairwise dataset was introduced in [30] as a small benchmark for pairwise matching

purposes. It consists of five sequences each having six to ten different indoor scenes

containing two or three motions where one object is fixed. The main challenge in these

image pairs is having noisy SIFT correspondences. Since our goal is different from the

original purpose for which this dataset was created [30], we used a subset consisting

of 29 image pairs each having at least 700 feature correspondences to illustrate the

performance and time scaling of our method. In this case the proposed method is the

fastest, with second best error (Table 1 and Fig. 9). Further, the only method that has

lower segmentation error is 103 times slower.

7 Conclusions

In this paper, we address the problem of segmenting moving rigid objects based on

two-view image correspondences under a perspective camera model. We approach the

problem from an algebraic perspective by exploiting the fact that, due to the geometric

constraints, all correspondences from the same object lie on a quadratic surface de-

fined by the Fundamental matrix. The proposed method is based on a characterization

of each surface in terms of the Christoffel polynomial associated with the probability

that a given point belongs to the surface. This allows for efficiently segmenting points

“one surface at a time” by first estimating a set of points Vi,rel , the “reliable” inlier set,

that, with high probability, belong to the same variety (and hence to the same object).

We use these reliable inliers to estimate the parameters of the polynomial defining the

variety. Finally, using this polynomial we identify additional points on the variety by

simply collecting points where its absolute value is below a given threshold. It is worth

emphasizing that estimating the Christoffel polynomial requires only a singular value

decomposition of a matrix whose size is independent of np, the number of data points.

Further, since this matrix is formed by adding np outer products, the computational

complexity of the method scales linearly with the number of correspondences, which

makes it well suited for applications where np is large.

The effectiveness of the proposed approach was demonstrated on several bench-

mark datasets. The experiments show that the proposed method yields the best trade-off

error versus computation time. Our approach has error comparable (or better) than the

most accurate method, while being at least one order of magnitude faster. In terms of

execution time, the proposed algorithm is the fastest, while the runner up in execution

time (P-xp) has an error rate that is at least 50% higher. Further, these gaps increase

with the number of correspondences: for the largest datasets the proposed algorithm is

3 orders of magnitude faster than RPA and achieves an error less than half of the one

achieved by P-xp. An additional advantage is that, since the Christoffel polynomial ap-

proximates the distribution of the inliers, it automatically provides robustness against

outliers, as shown with the experiments with the Hopkins data set, where performance

degraded gracefully, even in a scenario where the number of outliers was twice as high

as the number of inliers.



Fast Two-View Motion Segmentation 15

References

1. Jong Bae Kim and Hang Joon Kim. Efficient region-based motion segmentation for a video

monitoring system. Pattern recognition letters, 24(1-3):113–128, 2003. 1

2. Andreas Ess, Tobias Mueller, Helmut Grabner, and Luc Van Gool. Segmentation-based

urban traffic scene understanding. In BMVC, volume 1, page 2. Citeseer, 2009. 1

3. Daniel Weinland, Remi Ronfard, and Edmond Boyer. A survey of vision-based methods

for action representation, segmentation and recognition. Computer vision and image under-

standing, 115(2):224–241, 2011. 1

4. Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving?

the kitti vision benchmark suite. In 2012 IEEE Conference on Computer Vision and Pattern

Recognition, pages 3354–3361. IEEE, 2012. 1

5. Muhamad Risqi U Saputra, Andrew Markham, and Niki Trigoni. Visual slam and struc-

ture from motion in dynamic environments: A survey. ACM Computing Surveys (CSUR),

51(2):1–36, 2018. 1

6. Pan Ji, Hongdong Li, Mathieu Salzmann, and Yuchao Dai. Robust motion segmentation

with unknown correspondences. In European conference on computer vision, pages 204–

219. Springer, 2014. 1

7. Yuxi Wang, Yue Liu, Erik Blasch, and Haibin Ling. Simultaneous trajectory association and

clustering for motion segmentation. IEEE Signal Processing Letters, 25(1):145–149, 2017.

1

8. C William Gear. Multibody grouping from motion images. International Journal of Com-

puter Vision, 29(2):133–150, 1998. 1
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