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We propose a rigorous approach for the inverse design of functional photonic structures by coupling the adjoint
optimization method and the 2D generalized Mie theory (2D-GMT) for the multiple scattering problem of
finite-sized arrays of dielectric nanocylinders optimized to display desired functions. We refer to these functional
scattering structures as “photonic patches.” We briefly introduce the formalism of 2D-GMT and the critical
steps necessary to implement the adjoint optimization algorithm to photonic patches with designed radiation
properties. In particular, we showcase several examples of periodic and aperiodic photonic patches with optimal
nanocylinder radii and arrangements for radiation shaping, wavefront focusing in the Fresnel zone, and for the
enhancement of the local density of states (LDOS) at multiple wavelengths over micron-sized areas. Moreover,
we systematically compare the performances of periodic and aperiodic patches with different sizes and find that
optimized aperiodic Vogel spiral geometries feature significant advantages in achromatic focusing compared to
their periodic counterparts. Our results show that adjoint optimization coupled to 2D-GMT is a robust meth-
odology for the inverse design of compact photonic devices that operate in the multiple scattering regime with
optimal desired functionalities. Without the need for spatial meshing, our approach provides efficient solutions at
a strongly reduced computational burden compared to standard numerical optimization techniques and suggests
compact device geometries for on-chip photonics and metamaterials technologies. ©2023Optica PublishingGroup

https://doi.org/10.1364/JOSAB.491882

Inverse design is an important methodology for the nanopho-
tonics community that enables the development and
prototyping of novel devices with desired characteristics and
functionalities, greatly enriching the photonic design library
beyond standard templates [1]. In a typical inverse design situ-
ation, an objective function for the system is first designed and
then search algorithms are applied to vary the system’s design
parameters and optimize an objective function value until it
reaches a desired threshold. Gradient-based search algorithms
are commonly used that iteratively evaluate the gradient of the
objective function with respect to the design parameters and
then update these parameters using the gradient information
[1,2]. The adjoint optimization method is a rigorous and gen-
eral approach that has been widely used for the inverse design
of photonic devices, such as parametrized metasurfaces [3–5],
on-chip demultiplexer waveguides [6,7], and nonlinear optical
switches [8]. The calculation of gradients in forward simulations

is typically performed by numerical methods, such as the finite-
element method (FEM) and finite-difference-time-domain
(FDTD) [3,4,6–8]. However, standard numerical methods
are computationally expensive because they require spatial
meshing [9]. Therefore, if one could obtain the gradients of
the desired system’s parameters in analytical or semi-analytical
closed forms, then very efficient adjoint optimizations would be
achieved based only on one single forward simulation. Recent
examples of analytical gradient calculations include the inverse
design of metasurfaces using the coupled-mode theory (CMT)
[10], and the optimization of compact optical elements based
on spherical nanoparticles using the multisphere generalized
Mie theory (3D-GMT) approach [11,12]. Latest techniques
also leverage the concept of automatic differentiation (AD) used
in artificial neural networks for the inverse design of meta-optics
[13,14].

In this paper, we introduce and use the adjoint optimization
approach coupled to 2D generalized Mie theory (2D-GMT),
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which rigorously solves Maxwell’s equations for 2D geometries
of arbitrary arrays of scattering cylinders. Using this powerful
tool, we demonstrate the inverse design of “photonic patches,”
which are finite-sized arrays of nanocylinders with positions and
radii efficiently optimized to achieve desired functionalities over
small-footprint areas. We remark that rigorous simulations of
scattering systems based on 2D-GMT enable the engineering of
3D photonic crystal membranes where the out-of-plane losses,
which originate from finite height of the devices along the z
direction, are considered within the effective refractive index
method [15]. In this approximation, which is satisfied for low
refractive index contrast, the material dispersion of the dielectric
medium is replaced by the effective index of the fundamental
guided mode in the unperturbed (without air holes) 3D het-
erostructure, enabling direct design of resonant devices based
on the silicon nitride materials platform [16–20]. We would
like to emphasize that the adjoint optimization method, like
any other gradient-based optimization algorithm that tackles
high-dimensional nonconvex problems, does not guarantee the
convergence to a global optimal solution. Nevertheless, using
this approach it is still possible to identify largely improved
device geometries that perform remarkably well and are superior
to the traditional photonic designs [1,21].

Our paper begins with an overview in the first section of
the 2D-GMT formalism that solves the multiple scattering
problem for nonoverlapping nanocylinders under an excitation
wave perpendicular to the axis of the cylinders. In particular,
we discuss analytical closed-form expressions for the far-field
scattering intensity and the local density of states (LDOS) that
enable the efficient implementation of the adjoint optimization
algorithm. Detailed results on the analytical calculations of
gradient terms are also provided. Using these results, we provide
several application examples of designed photonic patches opti-
mized to perform multiwavelength radiation shaping, near-field
focusing, and to enhance the LDOS over small device areas.
Our results demonstrate that the inverse design of photonic
patches provides complex optical functionalities over signifi-
cantly reduced areas compared to traditional photonic crystals
and enables scalability advantages for the optical integration of
aperiodic structures [22,23].

1. OVERVIEW OF 2D-GMT

In this section, we provide a brief overview of the 2D-GMT
formalism by introducing the transfer matrix equation, the scat-
tered far-field amplitude and the local density of states (LDOS).
Particular emphasis is placed on closed-form analytical results
that enable the efficient calculation of the gradient terms. A
detailed derivation and implementation of the 2D-GMT for the
nanocylinder array can be found in references [9,24].

A. Derivation of the Transfer Matrix Equation

The essential idea of 2D-GMT is to expand the fields into a sum
of cylindrical Bessel and Hankel functions, which form a com-
plete basis in the 2D domain. Using Graf’s addition theorem,
we then enforce the electromagnetic boundary conditions at the
surface of each cylinder and obtain a matrix equation that relates
the known expansion coefficients of the excitation source with

the unknown expansion the coefficients of the internal and scat-
tered fields. Therefore, the solution of the scattering problem is
conveniently formulated as a matrix inversion problem for the
unknown field expansion coefficients, as detailed below.

A typical geometry for which the 2D-GMT solves the scat-
tering problem is displayed in Fig. 1. In particular, it consists
of an aggregate of cylinders with positions (xn, yn) and radii
rn with complex relative permittivities εn and permeabilities
μn . The system is embedded in a nonabsorbing dielectric host
medium with real permittivity εo and permeability μo . As we
restrict the wave propagation to in-plane directions only, the
field solutions can be represented as TM polarization, where the
electric field E = Ez ẑ is oriented along the axis of the cylinders (z
axis), or TE polarization, where H = Hz ẑ is oriented along the z
axis. In our discussion, we denote the relevant field component
along the cylindrical axis as ϕ(r), standing either for Ez or for
Hz, depending on the polarization considered. In the schematic
shown in Fig. 1, the exterior field ϕE , which exists only outside
nanocylinders, consists of the sum of the incident field ϕE ,inc

and the scattered field ϕE ,sca. These contributions are expanded
as an infinite sum of complete basis functions for the cylindri-
cal geometry, which are the cylindrical Bessel and the Hankel
functions. Therefore, we represent the exterior field as

ϕE (r) = ϕE ,sca(r) + ϕE ,inc(r), (1)

ϕE ,inc(r) = pz

∞∑
�=−∞

a0E
n� J�(koρn)e j�θn , (2)

ϕE ,sca(r) = pz

N∑
n=1

∞∑
�=−∞

bn� H�(koρn)e j�θn , (3)

where J�(z) and H�(z) are Bessel and Hankel functions of the
first kind, ko = 2π

√
εoμo/λ is the wavenumber in the host

medium, � is the angular order of the cylindrical functions, r
is a global position vector, and (ρn , θn) is the local polar coor-
dinate system with its origin located at the center of the nth
(n = 1, 2, . . . , N) cylinder, as shown in Fig. 2(a). The Mie–
Lorenz coefficients a0E

n� depend on the excitation conditions
while the coefficients bn� are associated to the scattered fields.
These quantities are introduced in the local reference frame
centered on the nth nanocylinder. The coefficient pz is used
above to ensure that source properties, such as incident intensity
or power, appear to be independent of the polarization. Here,
we have pz = 1/Z0 for TE-polarized excitation and pz = 1 for
TM-polarized excitation, where Z0 is the impedance of the host
medium.

Similarly, the interior field within the nth nanocylinder ϕ I
n

has a contribution originating from the sum of the fields scat-
tered from surfaces of all the other cylinders ϕ I ,sca

n , not to be
confused with the exterior scattered field ϕE ,sca, and one from
any source that is present inside the nth cylinder ϕ I ,sca

n , so

ϕ I
n (r) = ϕ I ,src

n (r) + ϕ I ,sca
n (r), (4)

ϕ I ,src
n (r) = pz

∞∑
�=−∞

a0I
n� H�(knρn)e j�θn , (5)
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Fig. 1. Schematic of the geometry of the scattering problem for two
nanocylinders introducing the relevant notation of 2D-GMT.

Fig. 2. (a) Schematics of the polar coordinates (r , θ) with origin at
(0, 0) and polar coordinates (ρn, θn) with origin located at the center
of the nth cylinder (xn, yn). (b) Illustration of the relation between two
local frames used in the derivation of Eq. (8).

ϕ I ,sca
n (r) = pz

∞∑
�=−∞

c n� J�(knρn)e j�θn , (6)

where kn = 2π
√

εnμn/λ is the wavenumber inside the nth
cylinder. In the expressions above the coefficients a0I

n� are related
to the known source inside the nth cylinder, if present.

Based on Eqs. (1)–(6), the goal of field calculation is to solve
for the unknown coefficients c n� and bn� given the known
coefficients a0E

n� , a0I
n� , through the application of the bound-

ary conditions on the surface of each cylinder. This can be
achieved based on the expansion of the exterior field ϕE (r) in
terms of Bessel and Hankel functions centered only on the nth
cylinder by

ϕE
n (r) = pz

∑
�

[an� J�(koρn) + bn� H�(koρn)] e j�θn . (7)

Note that Eq. (7) is derived by applying Graf’s addition
theorem that enables the transformation of cylindrical basis
functions from the reference frame of the cylinder n′ to that of
the cylinder n [9,24,25]. The coefficients an� are expressed as

an� = a0E
n� +

∑
n′ �=n

∞∑
�′=−∞

e j (�′−�)φnn′ H�−�′
(
koRnn′

)
bn′�′ , (8)

where (Rnn′ , φnn′) are the polar coordinates of the center of the
n′th cylinder with respect to the frame of reference centered on
the nth cylinder, as shown in Fig. 2(b). We can now apply the
electromagnetic boundary conditions on the surface of each
cylinder ρn = rn according to

ϕ I
n (rn) = ϕE

n (rn)

ςn
∂ϕ I

n

∂ρn

∣∣∣∣
rn

= ςo
∂ϕE

n

∂ρn

∣∣∣∣
rn

, (9)

where ςn = 1/μn[1/εn] and ςo = 1/μo [1/εo ] for TM[TE]
polarization, respectively. Applying the boundary conditions
using Eqs. (4) and (7) and assuming no internal sources inside
the scatterers (a0I

n� = 0) we can obtain

bn� = an�sn�, (10)

where

sn� = − J ′
�(korn) − �n� J�(korn)

H ′
�(korn) − �n� H�(korn)

,

�n� = ξnkn J ′
�(knrn)

ko J�(knrn)
,

ξn = μo

μn

[
εo

εn

]
for TM[TE]. (11)

Here, the prime symbol denotes the first derivative of the
corresponding function with respect to its entire argument.
Substituting Eq. (8) into Eq. (10) yields the relation between bn�

and a0E
n� as

bn� − sn�

∑
n′ �=n

∞∑
�′=−∞

e j (�′−�)φnn′ H�−�′(koRnn′) bn′�′ = sn�a0E
n� .

(12)

Such a relation can be written in matrix form as

Tb = a0, (13)

where we have introduced the transfer matrix or T matrix with
elements

T��′
nn′ = δnn′δ��′ − (1 − δnn′) e j (�′−�)φnn′ H�−�′(koRnn′) sn�.

(14)

Here, δ is the Kronecker function and we introduced the vec-
tor notation

a0 = {an�} = {
sn�a0E

n�

}
, b = {bn�} . (15)

In practical implementations, we must limit the range of � in
the angular expansions to a specified cutoff order and consider
terms ranging from −�max to �max. A larger �max value guaran-
tees a more accurate solution but adds computational cost to the
numerical solution of the scattering problem. There is a com-
mon prescription for choosing �max in generic array geometries,
which is �max ∼ 3krmax [9,26,27], where rmax is the radius of the
largest cylinder in the array. However, a more reliable method is
to perform convergence analysis directly by comparing results
obtained for different choices of � until no variations in the
solutions occur for the specific geometry under study. This is the
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approach that we used in the optimization examples discussed
in our paper because the appropriate choice of �max depends on
the specific situations addressed. To improve the accuracy of
the numerical results, we followed [9] and solved for the scaled
equations as

T̂b̂ = â0
, (16)

b̂ = bn�/J�(korn), (17)

â0 = an�/J�(korn), (18)

T̂ = δnn′δ��′ − (1 − δnn′) e j (�′−�)φnn′

× H�−�′(koRnn′) sn�

J�′(korn′)

J�(korn)
. (19)

Detailed expressions for the incident wave coefficients a0

of plane waves, collimated source beams (similar to Gaussian
beams but strictly a solution of the 2D Helmholtz equation),
and the excitation dipoles can be found in [9,28].

B. Derivation of the Scattered Far-Field Amplitude

Once the scattered field of the array is obtained by Eq. (3), we
can express in closed-form relevant far-field quantities used in
the analysis of wave-scattering systems. In particular, we focus
here on the scattering amplitude F sca

z (θ), which is defined
through the asymptotic far-field expression

ϕsca
z (r , θ) = F sca

z (θ)
e jkor

√
r

, (20)

where r = |r|. The scattering amplitude can be derived from
the scattered fields by evaluating Eq. (3) in the limit of r → ∞.
Specifically, considering the asymptotic form of the Hankel

function H�(z) ∼
√

2
πz e j (z−�π/2−π/4), we obtain

ϕsca
z (r) ≈ pz

N∑
n=1

�max∑
�=−�max

√
2

πkoρn
e j (ko ρn−�π/2−π/4+�θn).

(21)

Using the cosine law on the triangle shown in Fig. 2(a), we
found that ρn =√

r 2 + R2
n − r Rn cos(θ − φn). In the far-field

limit r → ∞, we further obtained

ρn ≈ r − Rn cos(θ − φn), (22)

where (Rn, φn) are the positions of the nth cylinder in polar
coordinates. Although the cos(θ − φn) term is small relative to
r in the far field, it has a significant impact on the phasor term
of Eq. (21); thus, it must be kept in the exponent. On the other
hand, we can directly substitute ρn with r in the prefactor of
Eq. (21). Therefore, we obtain

ϕsca
z (r) ≈ pz

e jkor

√
r

√
2

πko

N∑
n=1

�max∑
�=−�max

×
[
bn�e− j [koRn cos(θ−φn)+�( π

2 −θ)+ π
4 ]
]

. (23)

Finally, comparing Eqs. (20) and (23) yields the expression
for the scattering amplitude, which is

F sca
z (θ) = pz

√
2

πko

N∑
n=1

�max∑
�=−�max

[
bn�e − j [koRn cos(θ−φn )+�( π

2 −θ)+ π
4 ]] .

(24)

Based on Eq. (24), we can further derive a closed-form ana-
lytical expression for the scattered far-field angular intensity,
which is a key quantity of interest in directional radiation prob-
lems. The far-field angular intensity is found by substituting
Eqs. (20) and (24) into the time-averaged Poynting vector
expression

〈Ssca〉 = 1

2
Re [Esca × Hsca] . (25)

To remove the radial dependence of the far-field intensity, we
multiplied Eq. (25) by the radial distance r . The far-field angular
intensity is thus given by the limit of the product when r → ∞,
resulting in

I sca(θ) = lim
r →∞ r 〈Ssca〉 = 1

2Zo p2
z
|F sca

z (θ)|2. (26)

Based on the knowledge of the far-field angular intensity,
quantitative information can be obtained on the directional
scattering properties of the arrays through their differential scat-
tering cross-section. This quantity is obtained by normalizing
the far-field angular intensity by the incident intensity Io . In
2D-GMT calculation Io = 1/(2Zo ) and we obtain

∂σ sca

∂θ
= I sca(θ)

Io
= |F sca

z |2
p2

z
, (27)

which is an expression for the differential scattering cross section
that describes how efficiently the incident radiation is scat-
tered along a given angular direction. It is of great importance
in evaluating the performances of devices used for radiation
engineering [29].

The scattering cross-section is calculated by the integration of
Eq. (27) over the far-field scattering angle

σ sca =
∫ π

−π

∂σ sca

∂θ
dθ = 1

Io

∫ π

−π

I sca(θ)dθ . (28)

Substituting Eq. (24) into Eq. (28), we obtain the analytical
expression for the scattering cross-section as

σ sca = 2

πko

∑
nn′��′

bn�b∗
n′�′ J�−�′(koRnn′)e j (�−�′)φnn′ , (29)

where ∗ denotes the complex conjugate of bn′�′ .

C. Derivation of the LDOS

The LDOS quantifies the number of electromagnetic modes
into which photons of a given wavelength can be emitted at a
specified position in space. The LDOS is particularly useful
because it is related to experimentally observable quantities
such as transmission gaps and the spontaneous decay rate of
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embedded light sources inside nonhomogeneous photonic envi-
ronments [23,30,31]. By comparing the LDOS in a photonic
device to one in free space, we can characterize the degree of the
enhancement or suppression of the light emission.

The LDOS is related to the imaginary part of the electric field
Green tensor [32]

ρ(r; λ) = −4n2
o

cλ
Im{Tr[Ge (r, r; λ)]}, (30)

where no = √
εoμo is the refractive index of host medium,

Im{·} denotes the imaginary part of a complex quantity, and
Tr denotes the trace operation. The electric field Green tensor
Ge (r, rs ; λ) is the electric field response at spatial location
r = (x , y ) resulting from a source at position rs = (xs , ys ).
In general, it is a second-rank tensor where the elements in
column u represent the components of the total electric field
vector (Gxu, Gyu, Gzu)

T generated by the dipole source with the
orientation parallel to the u = x , y , z axes [28].

In the 2D-GMT formalism, the trace of the Green tensor
equals the total electric field component located at the source
position (xs , ys ), along the given dipole orientation. Therefore,
depending on the polarization of the dipole source, the LDOS
can be written as [28]

ρTE = −4n2
o

cλ
Im{Gxx + Gyy}, (31)

ρTM = −4n2
o

cλ
Im{Gzz}. (32)

We emphasize here that the total electric field is equal to the
sum of the scattered field and the incident field generated by the
dipole source, which is

Guu = E inc
u + E sca

u , u = x , y , z. (33)

We have derived the z component of the exterior scattered
electric field in Eq. (3). The corresponding x and y components
of the exterior scattered field can be readily obtained from the
dynamic Maxwell’s equation

− jωεEsca = ∇ × Hsca = ∂ H sca
z

∂ y
x̂ − ∂ H sca

z

∂x
ŷ. (34)

On the other hand, the components of the field excited by a
2D dipole (i.e., a line source) at any position have been obtained
in [28] as

E inc
x = − j

8
[H0(koρ) + H2(koρ) cos(2θ)] , (35)

E inc
y = − j

8
[H0(koρ) − H2(koρ) cos(2θ)] , (36)

E inc
z = − j

4
H0(koρ), (37)

where (ρ, θ) are polar coordinates centered at source location
(xs , ys ). Applying Graf’s theorem to Eqs. (35)–(37), we can
obtain the source coefficients of the dipole, which are

a 0E
n�,x = − 1

8 j

[
H�+1(koRns)e − j (�+1)θns + H�−1(koRns)e − j (�−1)θns

]
,

(38)

a 0E
n�,y = − 1

8 j

[
H�+1(koRns)e − j (�+1)θns − H�−1(koRns)e − j (�−1)θns

]
,

(39)

a0E
n�,z = 1

4 j
H0(koRns)e− j�θns , (40)

where Rns =
√

(xs − xn)
2 + (ys − yn)

2 and θns =
tan−1

(
ys −yn
xs −xn

)
.

Substituting Eqs. (34)–(40) into Eq. (33), we obtain the
expressions for the total field at the excitation dipole position
with different orientations, which are

Gxx = − j
8

+
∑
n�

j bn�e j�θns

[
H ′

�(koRns) sin(θns)

+ j�
koRns

H�(koRns) cos(θns)

]
, (41)

Gyy = − j
8

−
∑
n�

j bn�e j�θns

[
H ′

�(koRns) cos(θns)

− j�
koRns

H�(koRns) sin(θns)

]
, (42)

Gzz = − j
4

+
∑
n�

bn� H�(koRns)e j�θns , (43)

where
∑

n� ≡∑N
n=1

∑�max
�=−�max

. Note that the constant terms
in the equations above originate from selecting the observation
point exactly at the source location; i.e., by setting ρ = 0 in
Eqs. (35)–(37).

Based on the expressions above for the LDOS, we can obtain
the Purcell enhancement factor F(r; λ), which characterizes
the modification of the LDOS in the presence of a structured
photonic environment with respect to a homogeneous medium,
here assumed to be free space. The Purcell factor is generally
defined as

F(r; λ) = ρ(r; λ)

ρ0(r; λ)
= −4 Im

{
Tr[Ge (r, r; λ)]}= �(r; λ)

�0(r; λ)
,

(44)

where ρ0 is the LDOS of the homogeneous host medium, �0 is
the decay rate of a dipole in the homogeneous medium, and � is
its decay rate in the structured environment. Notice that F(r; λ)

becomes unity when the source is embedded in the homo-
geneous medium. On the other hand, F(r; λ) > 1 indicates
that the photonic structure enhances the radiative properties
of the dipole, while spontaneous emission is suppressed when
F(r; λ) < 1.

2. ADJOINT OPTIMIZATION COUPLED WITH
2D-GMT

In this section, we provide an overview of the general adjoint
optimization method and discuss the details of its coupling
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to the 2D-GMT when applied to finite-sized arrays of dielec-
tric nanocylinders. We will then show how to inverse design
photonic patches engineered to shape the far-field radiation,
focus incident radiation in the Fresnel zone, and enhance the
LDOS and the quality factor Q of resonant modes at different
wavelengths.

A. Adjoint Optimization Method

Suppose we define an objective function g(b̂, p) that depends
on both the scattered field coefficients b̂ and a vector of design
parameters p. These may include the positions and radii of
each cylinder, their composition, among other things. The key
quantity to compute is the gradient of g with respect to p, which
is written as

∇pg(b̂, p) = gp + gb̂b̂p, (45)

where the subscript symbols indicate partial derivative oper-
ations with respect to those quantities; i.e., gp = ∂g/∂p,

gb̂ = ∂g/∂ b̂, and b̂p = ∂ b̂/∂p. Notice that the term b̂p is gener-
ally computationally expensive to evaluate when using any full
numerical method, such as FDTD or FEM, because it requires
at least two simulations for each design parameter stored in
the vector p [1]. However, as we have shown in Section 1, the
2D-GMT solves the scattering problem analytically with the T
matrix equation Eq. (16) and provides efficient evaluation of
closed-form solutions for the forward simulations. To leverage
this advantage, we first take the derivative with respect to p on
both sides of Eq. (16), which yields

T̂pb̂ + T̂b̂p = â0
p, (46)

where T̂p = ∂T̂/∂p and â0
p = ∂ â0

/∂p. After rearranging the
terms, we obtain

b̂p = T̂
−1
[
â0

p − T̂pb̂
]

. (47)

Crucially, substituting Eq. (47) in Eq. (45), the expression for
the gradient term can be written as

∇pg(b̂, p) = gp + gb̂

(
T̂

−1
[
â0

p − T̂pb̂
])

. (48)

Equation (48), which enables the efficient calculation of the
parameterized gradient within the T matrix formalism, is the
main result of this section. This result is often expressed in the
literature as [33]

∇pg = gp + Re
{
λT
[
â0

p − T̂pb̂
]}

, (49)

T̂
T
λ = gT

b̂
, (50)

where λ = (T̂
T
)−1gT

b̂
, the superscript T indicates the transpose

operation, and Eq. (50) is referred to as the adjoint equation
[1]. The Re{·} operator in Eq. (49) comes from the result of the
Wirtinger derivative in complex space, which is elaborated in
[33]. Equations (49) and (50) enable the efficient computation
of the gradient based on only a single forward simulation to

obtain the coefficient b̂. The derivative quantities T̂p, â0
p are

evaluated analytically using the previously established results of
the 2D-GMT theory and their explicit expressions are provided
in Appendixes A–C. In the next subsection, we will discuss the
explicit calculations of the derivatives gb̂ and gp for different
choices of the objective function associated to different prop-
erties of interest of the cylinder arrays and we will also discuss
specific optimization cases.

B. Inverse Design of Photonic Patches for Radiation
Shaping

In this subsection, we apply the adjoint method to the specific
design of “photonic patches,” which are compact arrays of
nanocylinders (∼100 elements) that occupy a small footprint
area and exhibit an optimal functionality. In particular, we begin
by presenting our results on the design of photonic patches that
can efficiently steer incoming radiation of different wavelengths
into desired far-field angles.

To optimize the directional radiation properties of photonic
patches, we considered the objective function defined by the
scattering intensity at the desired angle θo and wavelength λo ,
which is

g(r, b̂) = I sca(θo , λo ) = 1

2Zo p2
z
|F sca

z (θo , λo )|2, (51)

where F sca
z (θ) is the scattering amplitude provided in Eq. (24).

To apply the adjoint optimization method, we first had to obtain
the expressions for gp and gb̂. For the i th (I = 1, 2, . . . , P ))
component of the vector gp, we get

∂ I (θo , λo )

∂ pi
= 1

Zo p2
z

Re

{(
F sca

z

)∗ ∂ F sca
z

∂ pi

}
, (52)

where Re{·} denotes the real part of the complex quantity and ∗
denotes its complex conjugate. Combining this expression with
Eq. (24), we obtained

∂ I (θ)sca

∂ pi
= − j ko

Zo

(∑
n�

b̂n�γn�

)∗
×
(∑

n�

b̂n�γn�

[
ko

J ′
�(korn)

J�(korn)

× ∂rn

∂ pi
+Rn sin(θ − φn)

∂φn

∂ pi
+ cos(θ − φn)

∂Rn

∂ pi

])
,

(53)

where γn� =
√

2
πko

J�(korn)e− j [koRn cos(θ−φn)+�(π/2−θ)+π/4].
The expressions for the derivatives of the geometrical parame-
ters of the array with respect to the considered design parameters
(i.e., the positions and radii of each cylinder), can be found in
Table 1.

In Table 1, the design parameters (x j , y j ) and r j correspond
to the center coordinates and radius of each j th cylinder in the

Table 1. Derivatives of the Array Geometry with

Respect to the Design Parameters

∂rn/∂x j = 0 ∂rn/∂ y j = 0 ∂rn/∂r j = δni

∂Rn/∂x j = cos(φn)δnj ∂Rn/∂ y j = sin(φn)δnj ∂Rn/∂r j = 0
∂φn
∂x j

= − sin(φn )

Rn
δnj

∂φn
∂ y j

= cos(φn )

Rn
δnj

∂φn
∂r j

= 0
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array. The expression for gb̂ can be obtained from Eq. (24) as

∂ I sca(θ)

∂ b̂n�

= 1

Zo
γn�

⎛
⎝ N∑

m=1

�max∑
p=−�max

b̂mpγmp

⎞
⎠

∗

. (54)

Now we have computed all the analytical derivatives needed
to perform the adjoint optimization of directional photonic
patches within the framework of the 2D-GMT. These are
compact photonic systems with optimized far-field scattered
intensity at angle θo and wavelength λo . As a concrete demon-
stration of the developed method, we optimized for both the
positions and the radii of the individual nanocylinders in a
photonic patch to achieve simultaneous steering of radiation
at wavelengths λ1 and λ2 and angles θ1 and θ2, respectively.
Therefore, we introduced the objective function

g = 1

I sca(θ1, λ1)
+ 1

I sca(θ2, λ2)
. (55)

We used the gradient descent method to update the design
parameters in each iteration. Specifically, at the kth iteration, we
have

pk ← pk−1 − α
∂gk−1

∂pk−1
, (56)

where α is the learning rate. The objective function value
will decrease in each iteration and the far-field intensities
I sca(θ1, λ1) and I sca(θ2, λ2) will increase by optimizing the
design parameters. In our optimization, we chose λ1 = 1.0 μm,
λ2 = 1.1 μm, θ1 = 50◦, and θ2 = 70◦ for the parameters of the
objective function in Eq. (55). The excitation was set to be a
TM-polarized complex source beam (CSB). These beams are
rigorous solutions of the scalar Helmholtz equation beyond
the usual paraxial approximation, as discussed in [9]. In our
calculations, we chose the beam width to be σ = 4 μm so that
the incident beam did not overfill the photonic patch. We used
a learning rate equal to 0.2 to update the cylinder radii and 0.02
to update their center positions. During our 2D-GMT calcula-
tions, the maximum angular order was set to �max = 3, which is
large enough to produce accurate results.

We started from an initial array of 99 cylinders arranged in the
Vogel spiral structure, which is defined in polar coordinates as{

rn = a0
√

n
θn = nα

, (57)

where n = 0, 1, 2, ... is an integer, a0 is a positive constant
called the scaling factor, and α is an irrational number, known
as the divergence angle [34]. Specifically for GA, Vogel spirals
α = 360◦/φ2, where φ = (1 + √

5)/2 ≈ 1.618 is known as the
golden number. The divergence angle determines the constant
aperture between successive point particles in the array. Since
it is an irrational number, Vogel spiral arrays lack both trans-
lational and rotational symmetry. Vogel spiral structures have
been largely investigated in plasmonics and nanophotonics due
to their unique light scattering and localization properties that
enable compact photonic devices with broadband enhanced
light–matter interactions [18,19,24,35–40].

In our simulations we considered an initial GA Vogel spiral
array with an averaged center-to-center particle separation of

∼1 μm. We also set the initial cylinder radii as r = 300 nm, and
the permittivity for the nanocylinder material as ε = 2.25. We
also considered the practical limitations of our current fabrica-
tion technology and set the minimum radius for all cylinders to
be no less than 50 nm during the optimization. Furthermore,
to avoid the cylinders overlapping during the optimization, we
evaluated the first-neighbor distances of the array based on the
updated positions and radii during each iteration and rejected
any configuration in which the cylinders overlapped. A small
value of the permittivity allows us to take advantage of long-
range coupling effects across the entire array of nanocylinders,
making its geometrical optimization more effective in this limit,
and Fig. 14 shows the results obtained with different permittiv-
ity values. We displayed the initial array geometry in Fig. 3(a).
We optimized more than 200 iterations, and the value of the
objective function during the optimization process is shown in
Fig. 3(c). Convergence is obtained around g ∼ 1. Furthermore,
the optimized array geometry is shown in Fig. 3(b). We observed
that in the optimal array the cylinder radii are not all equal and
the positions of each cylinder are also shifted with respect to
the initial GA geometry. The spatial distributions of the total
electric field for the initial array geometry excited by a TM-
polarized CSB at wavelengths λ1 and λ2, respectively, are shown
in Figs. 3(d) and 3(g). Figures 3(e) and 3(h) display the total field
of the optimized array geometry. Figure 3(f ) has a polar plot of
the obtained far-field intensities when the initial structure is
illuminated at wavelengths λ1 and λ2, which indicates almost
isotropic intensity distributions. For comparison, the obtained
far-field intensities are shown in Fig. 3(i) at the illuminating
wavelengths λ1 and λ2 on the optimized structure. In this case,
the far-field pattern clearly demonstrates high directionality and
that the incident wavelengths λ1 and λ2 are correctly steered in
the desired angular directions of 50◦ and 70◦, respectively. The
differential scattering efficiencies of λ1, λ2, which are defined
by the ratio of total radiated light power along θ1, θ2 and their
corresponding input power, which is 1 W in our calculation
[9,29], are estimated to be, respectively, 53% and 60%. Note
that with a CSB as the incident source, the differential scattering
efficiency along a given angle is equal to the integrated far-field
intensity in a small interval around the directional angle [9]. The
expression for the differential scattering cross-section is given
in Eq. (27). The efficiency values we obtained in the optimized
photonic patches are comparable to what has been achieved
in beam-steering applications using metasurface technologies
[29,41–45].

We compared the optimization results of the GA Vogel spiral
geometry with an 11 × 9 periodic nanocylinder array char-
acterized by the same averaged interparticle distance 1 μm.
The objective function parameters, learning rates, and maxi-
mum multipole order � are chosen to be the same as in the GA
Vogel spiral case. Figures 4(a) and 4(b) show the initial and
optimized array geometries. Figure 4(c) shows the convergence
achieved around g ∼ 1, similar to the case with GA Vogel spi-
ral. Figures 4(d) and 4(g) show the spatial distribution of the
total electric field for the initial structures at λ1 and λ2, while
Figs. 4(e) and 4(h) show the results for the optimized structures,
respectively. Figures 4(f ) and 4(i) shows the polar plot repre-
sentations of the computed far-field intensity patterns at both
the wavelengths for the initial and the optimized geometries,
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3. Example of a photonic patch optimized starting from a
GA Vogel spiral for steering incident radiation of two selected wave-
lengths into two desired directions. (a) Initial geometry of the GA
Vogel spiral structure. (b) Optimized geometry of the photonic patch.
(c) Objective function value as a function of the number of iterations.
The inset shows the total electric field inside the photonic patch.
(d) and (g) Total electric field intensity distribution of the initial geom-
etry under TM excitation using a complex source beam (CSB) at the
wavelengths λ1 and λ2, respectively. (e) and (h) Field distribution of the
optimized geometry at the same wavelengths. Total far-field intensity
radiation diagrams at λ1 and λ2 for (f ) the initial geometry and (i) the
optimized geometry.

respectively. The obtained differential scattering efficiencies at
λ1, λ2 are 51% and 60%, respectively.

To further demonstrate the potential of our adjoint opti-
mization method in the context of multiwavelength radiation
shaping, we optimized photonic patches that simultaneously
steer incident waves at four different wavelengths into four
desired far-field angles. The objective function that we used in
this case is

g =
4∑

i=1

1

I sca(θi , λi )
. (58)

In this example, we selected λ1 = 1.0 μm, λ2 = 1.1 μm,
λ3 = 1.2 μm, λ4 = 1.3 μm, θ1 = 50◦, θ2 = 140◦, θ3 = 230◦,
and θ4 = 320◦. The learning rate for updating radii and posi-
tions as well as �max were kept the same as in the case of the
previous optimizations. Similarly, we compared the results
of an optimized GA Vogel spiral photonic patch to the ones
of an optimized periodic array. The optimal GA Vogel spi-
ral geometry is shown in Fig. 5(a). Moreover, Figs. 5(b)–5(e)
show the total intensity distributions on the arrays at the four
targeted wavelengths. The polar plot radiation diagram dis-
played in Fig. 5(f ) demonstrates the ability of the optimized
patch to steer incident radiation along the desired direction
angles at each wavelength. The steering efficiencies at the four
wavelengths were found to be 43%, 53%, 50%, and 53%. The
corresponding results obtained by optimizing the periodic array
are illustrated in Fig. 6. In this case, the steering efficiencies at

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4. Example of a photonic patch optimized starting from a
periodic geometry to steer the incident radiation of two selected wave-
lengths into two desired directions. (a) Initial geometry of the periodic
structure. (b) Optimized photonic patch geometry. (c) Objective
function value as a function of the number of iterations. The inset
shows the total electric field inside the photonic patch. (d) and (g) Total
electric field intensity distribution of the initial geometry under TM
excitation using a complex source beam (CSB) at the wavelengths λ1

and λ2, respectively. (e) and (h) Field distribution of the optimized
geometry at the same wavelengths. Total far-field intensity radiation
diagrams at λ1 and λ2 for (f ) the initial geometry and (i) the optimized
geometry.

the four wavelengths were found to be 52%, 56%, 54%, and
60%. These results indicate that optimized photonic patches for
multiwavelength beam steering produce similar results regard-
less of the initial array geometry. Therefore, we have shown that
our proposed approach can be used for the robust inverse design
of photonics patches with small footprints that steer multiple
wavelengths to desired directions.

C. Inverse Design of Photonic Patches for Radiation
Focusing

In this section, we apply our inverse design methodology to
optimize the focusing of incident radiation in the Fresnel zone
using photonics patches. Specifically, we want to maximize the
field intensity at a specific point (x f , y f ) under TM plane wave
excitation for a generic wavelength λo . Our objective function is
therefore

g = 1

I sca
z (x f , y f ; λo )

= 1

|ϕsca
z (x f , y f ; λo )|2 , (59)

where ϕsca
z ≡ ϕE ,sca

z was defined in Eq. (3). To enable the opti-
mization of the focusing properties we computed the partial
derivative of g with respect to the design parameters pi by

∂g

∂ pi
= − 2

(I sca
z (x f , y f ; λo ))

2 Re

{
∂ϕsca

z

∂ pi
(ϕsca

z )∗
}

, (60)
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Example of a photonic patch optimized starting from the
GA Vogel spiral geometry that steers four wavelengths into four desired
directions. (a) Optimized photonic patch geometry. Total electric
field intensity distributions under TM excitation using a CSB at
wavelengths (b) λ1 = 1.0 μm, (c) λ2 = 1.1 μm, (d) λ3 = 1.2 μm, and
(e) λ4 = 1.3 μm, respectively. (f ) Total far-field intensity radiation
diagram at λ1 through λ4.

(a) (b) (c)

(d) (e) (f)

Fig. 6. Example of a photonic patch optimized starting from a
square array geometry that steers four wavelengths into four direc-
tions. (a) Optimized photonic patch geometry. Total electric field
intensity distributions under TM excitation using a CSB at wave-
lengths (b) λ1 = 1.0 μm, (c) λ2 = 1.1 μm, (d) λ3 = 1.2 μm, and
(e) λ4 = 1.3 μm, respectively. (f ) Total far-field intensity radiation
diagram at λ1 through λ4.

where we have

∂ϕsca
z

∂ pi

=
∑
n�

b̂n�τn�

[
ko

J ′
�(korn)

J�(korn)

∂rn

∂ pi
+ ko

H ′
�(koρn)

H�(koρn)

∂ρn

∂ pi
+ j�

∂θn

∂ pi

]
,

(61)

and we defined τn� = pz J�(korn)H�(koρn)e j�θn . Furthermore,
the derivative of gb̂ can be computed as

∂g

∂ b̂n�

= 2 Re

{
∂ϕsca

z

∂ b̂n�

(ϕsca
z )∗

}
, (62)

where

∂ϕsca
z

∂ b̂n�

= τn�(ϕ
sca
z )∗. (63)

(a) (b) (c)

(d) (e) (f )

Fig. 7. Example of a focusing photonic patch optimized starting
from the GA Vogel spiral geometry. (a) Initial photonic patch geom-
etry. (b) Optimized focusing patch geometry. (c) Objective function
value with respect to the number of iterations. Total electric field
intensity distributions for (d) initial and (e) optimized arrays under
a TM plane wave excitation at λ = 1 μm. The green dots in (d) and
(e) indicate the targeted focal position (15 μm, 0). (f ) Transverse
profile of the focal spot along the red dashed line shown in (e).

In our focusing simulation we chose λ = 1 μm and
(x f , y f ) = (15 μm, 0). We started from an initial array with
99 cylinders arranged in a GA Vogel spiral, the same condi-
tion as discussed in Subsection 2.B. We set the initial cylinder
radii r = 200 nm and fix the permittivity of the nanocylinders
material to be ε = 2.25. The maximum angular order is cho-
sen as �max = 4 to improve the accuracy in the near-field zone.
We display the initial cylinder array geometry in Fig. 7(a). We
use the same learning rates to update radii and positions as in
the Subsection 2.B. We optimize the radii and centers of the
cylinders in the array using 200 iterations. The optimized array
geometry of the patch is shown in Fig. 7(b), where we clearly
observe that the positions and radii of cylinders have been modi-
fied from the ones in the initial structure. The objective function
with respect to the number of iterations is shown in Fig. 7(c).
Furthermore, we show the total field intensities for both the
initial and the optimized arrays under plane wave excitation at
wavelength λ in Fig. 7(d) and 7(e), respectively. The profile of
the focal spot along the x f = 15 μm line is shown in Fig. 7(f ).
The transverse FWHM of the focusing spot is 0.98 μm. The
focusing efficiency, which is defined as the ratio between the
power contained in the main lobe of the focal spot and that
of the incident power deposited on the area of the device, is
calculated to be 77%.

As a comparison, we also optimized a 99-cylinder array start-
ing from a periodic square structure. Keeping all the parameters
the same as in the case of the GA Vogel spiral simulation, we dis-
play the initial and optimized array geometries in Fig. 8(a) and
8(b). Fig. 8(c) shows the values of the objective function with
respect to the number of iterations. Similar to the case of the GA
Vogel spiral, Fig. 8(d) and 8(e) display the spatial distributions
of the total field intensity for the initial and the optimized array
geometries, respectively. In Fig. 8(f ), we illustrate the transverse
profile of the focal spot along the x f = 15 μm dashed line. The
transverse FWHM of the focusing spot is also 0.98 μm. We can
clearly observe that the field intensity at the desired location
(indicated by the red dot) is strongly enhanced. The intensity
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(a) (b) (c)

(d) (e) (f )

Fig. 8. Example of a focusing photonic patch optimized starting
from a periodic square array. (a) Initial photonic patch geometry.
(b) Optimized focusing patch geometry. (c) Objective function value
with respect to the number of iterations. Total electric field intensity
distributions for (d) initial and (e) optimized arrays under a TM plane
wave excitation at λ = 1 μm. The green dot in (d) and (e) indicates the
targeted focal position (15 μm, 0). (f ) The transverse profile of the
focal spot along the red dashed line shown in (e).

profile is similar to that of a focusing lens. However, we empha-
size that here we are achieving such a focusing behavior using
an array of cylinders with a total dimension of ∼10 μm and a
focal length x f = 15 μm, which are challenging to obtain using
traditional diffractive elements. In addition, we found that the
focusing efficiency of the optimized periodic patch is 60%. It is
noteworthy to observe that if one considers a diffraction-limited
lens with the same diameter and dimension of the optimized
photonic patch as well as the same focal length as 15 μm, then
the FWHM of at the focal spot according to Rayleigh criterion
will be 1.58 μm [46]. This behavior reflects the structural com-
plexity of the optimized aperiodic geometries of the patches
which, analogously to what recently reported in random media
[47,48], produce a focal spot with significantly smaller FWHM
compared to the traditional Rayleigh diffraction limit.

We further optimized photonic patches that can focus inci-
dent light at different focal lengths. Figures 9 and 10 show the
total field intensity patterns of six different devices with focal
positions at x f = 10, 15, 20, 25, 30, 35 μm, for the initial
GA Vogel spiral geometry and periodic geometry, respectively.
The incident wavelength for all devices is λ = 1 μm. The focus-
ing efficiencies obtained for the GA Vogel spiral and periodic
geometry, for different focal positions x f are listed in Fig. 11(a).
Our results indicate that when considering only one focusing
wavelength, the focusing efficiencies of the optimized GA
Vogel spiral patches and periodic patches are quite compa-
rable. However, it is also very relevant to consider the case of
broadband incident radiation, which we address below.

The goal is to investigate the inverse design of optimized pho-
tonic patches for broadband focusing applications. This can be
achieved by considering the multi-objective function defined as

g =
5∑

i=1

1

I sca
z (x f , y f ; λi )

+
∑
i �= j

[
I sca

z (x f , y f ; λi ) − I sca
z (x f , y f ; λ j )

]2
. (64)

(a) (b) (c)

(d) (e) (f )

Fig. 9. Six different optimized photonic patches obtained starting
from the GA spiral geometry. These patches focus incident light at the
desired focal positions x f given by (a) 10 μm, (b) 15 μm, (c) 20 μm,
(d) 25 μm, (e) 30 μm, and (f ) 35 μm. The y f coordinates for all cases
are 0. The considered wavelength for the incident plane wave is 1μm.

(a) (b) (c)

(d) (e) (f )

Fig. 10. Six different optimized photonic patches obtained start-
ing from the square array geometry. These patches focus incident
light at the desired focal positions x f given by (a) 10 μm, (b) 15 μm,
(c) 20 μm, (d) 25 μm, (e) 30 μm, and (f ) 35 μm. The y f coordinates
for all cases are 0. The considered wavelength for the incident plane
wave is 1μm.

Note that the summation over all wavelengths ensures that
the focal spot intensities at multiple incident wavelengths are
mutually maximized. To prevent the situation where the focal
intensity of only one wavelength is maximized, we introduced
above a cross term that penalizes large focal intensity differences
for any pair of distinct wavelengths. To illustrate the approach,
we selected the five incident wavelengths λ1 = 1.0 μm,
λ2 = 1.1 μm, λ3 = 1.2 μm, λ4 = 1.3 μm, λ5 = 1.4 μm and
the focal position was chosen to be (x f , y f ) = (10 μm, 0). To
consider a realistic implementation of integrated focusing com-
ponents with an achromatic behavior, we used a TM-polarized
CSB excitation with the same beam parameters introduced
in Subsection 2.B. We optimized the patches using a learn-
ing rate of 0.2 to update the cylinder radii and that of 0.02 to
update cylinder positions, and the total number of iterations
used here was 1000. Figure 12 illustrates the total field inten-
sity distributions of the device optimized starting from a GA
Vogel spiral geometry, while Fig. 13 illustrates those of the opti-
mized periodic devices. The focusing efficiencies obtained for
the GA Vogel spiral and periodic geometries are compared at
the different incident wavelengths λ in Fig. 11(b). Note that the
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(a) (b)

Fig. 11. (a) Single wavelength (λ = 1 μm) focusing efficiencies for
optimized GA Vogel spirals (blue) and periodic array (red) photonic
patches with different focal positions x f . (b) Broadband focusing effi-
ciencies of optimized GA Vogel spiral (blue) and periodic array (red)
achromatic patches at different incident wavelengths λ. The focusing
positions are all (x f , y f ) = (10 μm, 0).

(a) (b) (c)

(d) (e) (f )

Fig. 12. (a) Optimized GA Vogel spiral geometry for achromatic
focusing at x f = 10 μm. Also shown are the field intensity distribu-
tions with incident wavelengths (b) λ1 = 1.0 μm, (c) λ2 = 1.1 μm,
(d) λ3 = 1.2 μm, (e) λ4 = 1.3 μm, and (f ) λ5 = 1.4 μm.

optimized periodic patch does not appreciably focus incident
light at wavelengths λ4 = 1.3 μm and λ5 = 1.4 μm; therefore,
the focusing efficiencies could not be defined for those values.
From our analysis we concluded that while the focusing per-
formances at a single wavelength are comparable for the two
considered geometries, the optimized GA aperiodic patches
show significant efficiency advantages in broadband focusing
compared to the optimized periodic arrays.

We finally characterized the focusing efficiency of photonic
patches as a function of the permittivity ε of the dielectric cylin-
ders. We directly compared arrays optimized starting from the
GA Vogel spiral and the square array configurations, using the
same structural parameters as in Figs. 7(a) and 8(b). The focal
distance was set to x f = 15 μm, y f = 0 and the wavelength
was λ = 1 μm. Figures 14(a) and 14(b) show how the focusing
efficiencies decrease when ε is increased for both configura-
tions. This behavior reflects the more localized nature of the
resonances supported for larger ε, reducing long-range electro-
magnetic coupling and the effectiveness of the geometrical
optimization in this limit [49–51].

D. Scaling Analysis of Photonic Patches

A key question in the design of photonic patches is related to
what is the smallest size of the array that still achieves a desired
functionality. To answer that question, we systematically

(a) (b) (c)

(d) (e) (f )

Fig. 13. (a) Optimized periodic array photonic patch for
achromatic focusing at x f = 10 μm. Also shown are the field inten-
sity distributions with incident wavelengths (b) λ1 = 1.0 μm,
(c) λ2 = 1.1 μm, (d) λ3 = 1.2 μm, (e) λ4 = 1.3 μm, and
(f ) λ5 = 1.4 μm.

(a) (b)

Fig. 14. Focusing efficiencies as a function of the permittivity ε of
the nanocylinders for photonic patches with (a) initial GA Vogel spiral
geometry and (b) initial periodic array geometry. The focusing position
is x f = 15 μm, y f = 0, and the wavelength is λ = 1 μm.

investigated how the performance of the proposed photonic
patches scales with the overall footprint of the scattering array.
Specifically, we varied the number of nanocylinders N desig-
nated in beam shaping and focusing patches and then simulated
their corresponding far-field steering or focusing efficiencies.
Figure 15(a) shows the results of the differential scattering
efficiency of the optimized photonic patches at different wave-
lengths λ1 = 1.0 μm, λ2 = 1.1 μm, λ3 = 1.2 μm, λ4 = 1.3 μm
versus N. From Fig. 15(a), it is clear that when N increases,
the differential scattering efficiency at each wavelength first
increases and then reaches a plateau after a critical number of
cylinders, for both the GA Vogel spirals (shown by the solid
lines) and the periodic structures (shown by the dashed lines)
and for all the investigated wavelengths (labeled by different col-
ors). Figure 15(b) shows the focusing efficiencies at x f = 15 μm
with incident wavelength λ = 1 μm versus N, for both opti-
mized GA Vogel spiral and periodic structures. Consistent with
the behavior shown in Fig. 15(a), our results also show that the
focusing efficiencies of the optimized patches saturate beyond
a critical number of cylinders for both periodic and aperiodic
structures. It is also interesting to observe that the optimal
focusing efficiencies obtained by optimizing the GA Vogel spiral
structures are consistently larger than the ones of the optimized
periodic arrays.
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(a) (b)

Fig. 15. (a) Differential scattering efficiencies for each wavelength
(color labeled in the legend) versus the number of cylinders in the
photonics patches with initial GA Vogel spiral geometry (labeled as
GA) and initial periodic array geometry (labeled as PA) geometries.
(b) Focusing efficiencies of the optimized GA Vogel spirals (blue) and
optimized periodic arrays (red).

E. Inverse Design of Photonic Patches for LDOS
Enhancement

We now address the enhancement of the LDOS in optimized
GA aperiodic photonic patches through adjoint optimization.
Depending on the orientation of the excitation dipole, the
Purcell enhancement depends only on the Im{Gzz}, for TM
polarization, or on the Im{Gxx + Gyy}, for TE polarization.
Therefore, we introduced

gTE = Im
{
Gxx + Gyy

}
, (65)

an objective function to maximize the TE Purcell enhancement.
For the TM Purcell enhancement we used

gTM = Im{Gzz}, (66)

where the expressions for Gxx, Gyy, and Gzz were given in
Eqs. (41)–(43). The derivative gb̂ can be readily obtained from

∂(ImGxx)

∂ b̂n�

= bn�e j�θns

[
H ′

�(koRns) sin(θns)

+ j�
koRns

H�(koRns) cos(θns)

]
, (67)

∂
(
ImGyy

)
∂ b̂n�

= −bn�e j�θns

[
H ′

�(koRns) cos(θns)

− j�
koRns

H�(koRns) sin(θns)

]
, (68)

∂(ImGzz)

∂ b̂n�

= − j J�(korn)H�(koRns)e j�θns . (69)

As a relevant example of LDOS enhancement in small-sized
photonic patches, we first consider the optimization of the
Purcell factor for arrays of dielectric cylinders arranged initially
in the GA Vogel spiral geometry. Figure 16 shows an example
related to the optimization of a TE mode of the GA Vogel struc-
ture. The initial array consists of a GA Vogel spiral with only 50
air holes of initial radii r = 200 nm and an averaged center-to-
center particle distance d1 = 0.50 μm. Note that the cylinders
here consist of air holes embedded in a dielectric medium
with εo = 12.8, since in this configuration a TE-polarized
bandgap is expected to open for relatively small-sized arrays,

hosting high-quality factor band-edge modes [16,17,23]. In
particular, the analyzed structure supports a strong band-edge
resonance excited by a dipole with in-plane orientation for
d1/λ = 0.202363. The excitation dipole is located at posi-
tion (xs , ys ) = (0.4 μm, 0.02 μm) and we maximize the TE
Purcell enhancement at this band-edge resonance by adjusting
all the radii and positions of the cylinders in the array. In our
computation, we selected a learning rate to update the radii
equal to 0.1 while the one used for updating the positions was
set equal to 0.001. We then optimized the array using 20,000
iterations. Figure 16(a) compares the Purcell enhancement
spectrum for both the initial and the optimized geometry of
the array. The black arrow in the panel indicates the spectral
position of the targeted band-edge mode. Figure 16(b) clearly
illustrates the significant enhancement achieved for the Purcell
factor of the considered resonant mode. Moreover, the Purcell
enhancements for the initial and the optimized arrays are found
to be Fi ≈ 3.58 and Fo ≈ 10.5, resulting in an increase by a
factor of around three due to the reduced mode volume of the
optimized resonance. We further characterized the optical res-
onant modes by solving the homogeneous T-matrix equation
Tb = 0. The resonant modes are obtained by finding the com-
plex eigenvalues k = Re(k) + j Im(k) that satisfy the relation
det[T(k)] = 0 [9,23]. Here, Re(k) is equal to the wavenumber
of the mode, while Im(k) corresponds to its decay rate, which
is inversely proportional to the spectral width of the mode.
We evaluated the resonant modes by generating a 2D map of
det[T(k)] with a resolution of �[Re(k)] = 1.25 × 10−4 μm−1

and �[log10 Im(k)] = 0.05 [23]. The corresponding quality
factors are computed according to Q = |Re(k)/[2 Im(k)]|
[9,23]. We found that the quality factors for the initial GA Vogel
spiral and for the optimized photonic patch are Qi ≈ 177 and
Qo ≈ 384, respectively. Figures 16(c) and 16(d) show the spatial
distributions of the Purcell factors (i.e., LDOS maps) of the
initial and optimized structures, computed by using a square
grid of excitation dipoles with a spacing of 3 nm, oriented in
the x̂ and ŷ directions [23]. Figures 16(e) and 16(f ) show the
spatial distributions of the electric fields of the optical reso-
nances (normalized to their maximum values) corresponding to,
respectively, the initial and optimized structures.

To demonstrate the robustness of our design method, we
additionally present the optimization of the TM-polarized
modes in arrays of dielectric rods with large refractive index con-
trast [16,17]. Specifically, for the initial configuration we chose
the same GA Vogel spiral geometry discussed above but consid-
ered 50 dielectric cylinders with large permittivity εn = 12.8
embedded in air. The spatial and spectral localization properties
of the band-edge modes of GA Vogel spiral structures have been
intensively investigated in nanophotonics as a viable approach
to enable enhanced light–matter interactions over multiple-
length scales [52–56]. We chose the location of the excitation
dipole at (xs , ys ) = (0.0587 μm, 0.0352 μm) to evaluate the
TM Purcell enhancement. The learning rates used and the num-
ber of iterations were kept the same as in the previously discussed
TE case. Figure 17(a) displays in logarithmic scale the spectra
of the Purcell factors for the initial and the optimized configu-
rations at the spectral parameter d1/λ = 0.645193, indicated
by the black arrow. In Fig. 17(b), we compared the spectra
of the Purcell factors of the initial and the optimal photonic
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(a) (b)

(c) (d)

(e) (f )

Fig. 16. (a) Purcell factor spectrum for both the initial (blue) and
optimized (red) GA Vogel spiral air-hole array with a TE-polarized
dipole placed at (0.4 μm, 0.02 μm). The black arrow indicates the
spectral parameter d1/λ = 0.202363 where we performed adjoint
optimization. (b) Purcell factor spectrum for the initial (blue) and
optimized (red) photonic patch near the optimized mode. Spatial map
of Purcell factors of (c) initial and (d) optimized photonic patches at
d1/λ = 0.202363. Also shown are the spatial distributions of TE-
polarized optical modes for the (e) initial and (f ) optimized photonic
patches, respectively.

patch configurations in a spectral region around the targeted
mode. Our results show that the peak value for the initial array
is Fi ≈ 0.447 while the one of the optimized array is Fo ≈ 145,
demonstrating a 324× enhancement. Moreover, we obtained
Qi ≈ 2944 and Qo ≈ 6435 for the initial and for the optimized
photonic patches. Figures 17(c) and 17(d) also show the LDOS
maps of, respectively, the initial and optimized structures,
excited by a grid of ẑ-oriented dipoles with the same spacing as
the TE-polarized case. Finally, Figs. 17(e) and 17(f ) display the
spatial distributions of the resonant modes for, respectively, the
initial and optimized structures. For a more complete study of
the LDOS enhancement, we also investigated the performance
of the adjoint optimization on the most localized band-edge
mode of the initial GA Vogel spiral. Fig. 18(a) shows the spectra
of Purcell factors for the initial and the optimized structures at
d1/λ = 0.645193, and we display the effect of the Purcell factor
optimization over a smaller spectral region around the selected
mode in Fig. 18(b). Our results show that the optimization
improvement for this mode is very modest, with the Purcell
factor increasing from Fi ≈ 576 to Fo ≈ 647. Therefore, we
have established that the Vogel spiral photonic patches already
support a strongly localized band-edge mode with an almost

(a) (b)

(c) (d)

(e) (f )

Fig. 17. (a) Purcell factor spectrum for both the initial (blue) and
optimized (red) GA Vogel spiral nanocylinder array with TM polarized
dipole placed at (0.0587 μm, 0.0352 μm). The black arrow indicates
the spectral parameter d1/λ = 0.645193 where we performed adjoint
optimization. (b) Purcell factor spectrum for the initial (blue) and
optimized (red) photonic patch near the optimized mode. Spatial map
of Purcell factors of (c) initial and (d) optimized photonic patches at
d1/λ = 0.645193. Also shown are the spatial distributions of TM-
polarized optical modes at d1/λ = 0.645193 for the (e) initial and
(f ) optimized photonic patches, respectively.

(a) (b)

Fig. 18. (a) Purcell factor spectrum for both the initial (blue) and
optimized (red) GA Vogel spiral nanocylinder array with TM polarized
dipole placed at (0.0587 μm, 0.0352 μm). The black arrow indicates
the spectral parameter d1/λ = 0.660311 where we performed adjoint
optimization. (b) Purcell factor spectrum for the initial (blue) and
optimized (red) photonic patch near the targeted mode.

optimal Purcell factor F ≈ Q/V , where V is defined as the vol-
ume of the mode, which is consistent with our previous studies
[18,19,35].

To further explore the capabilities of our inverse design
approach we investigated the possibility to enhance the LDOS
of photonic patches at multiple wavelengths. Similar to the
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situation of broadband focusing discussed in Subsection 2.C.,
we introduced a multi-objective function for the optimization
of the Purcell factor at multiple wavelengths as

gTM =
m∑

i=1

gTM(λi ) +
∑
i �= j

[
F(r; λi ) − F(r; λ j )

]2
, (70)

where m is the number of considered wavelengths and the cross-
difference penalty term is used to minimize the discrepancy
between the Purcell factors at different wavelengths. We chose
the same initial array and dipole excitation conditions as in the
optimization of the TM-polarized single mode discussed before.
Additionally, all the learning rate parameters are identical to
the previous case but, given the more challenging nature of
this problem, we ran the optimization algorithm for 70,000
iterations. Figure 19(a) shows the spectrum of the Purcell
enhancement factor obtained when optimizing at the two spec-
tral parameter values d1/λ = 0.645183, 0.726096 indicated
by the black arrows. The enhancement achieved at both the
corresponding wavelengths is directly evident in Figs. 19(b)
and 19(c). In particular, at d1/λ = 0.645183, the Purcell factor
was increased from Fi ≈ 0.441 to Fo ≈ 199, which corresponds
to a 451× enhancement. The corresponding quality factor
was improved from Qi ≈ 2944 to Qo ≈ 3431. On the other
hand, in Fig. 19(c), the Purcell factor at d1/λ = 0.726096 was
increased from Fi ≈ 13.8 to Fo ≈ 64.7, achieving an overall
LDOS enhancement by a factor of 4.68. The corresponding
quality factor was enhanced from Qi ≈ 1250 to Qo ≈ 2689.
Figures 19(e)–19(g) display the spatial distributions of the
LDOS maps at these two spectral parameters, respectively,
while Figs. 19(i)–19(k) illustrate the corresponding optical
modes. Note that a similar optimization can also be applied to
the TE-polarized mode.

Notice that after the optimization, resonant modes start
to emerge inside the optical bandgap of the initial GA Vogel
spiral structure. As an instance, we investigated a resonant
mode located at d1/λ = 0.683439, which is indicated by the
red arrow in Fig. 19(a). Figure 19(d) indicates the optimized
Purcell factor with Fo ≈ 132. The corresponding quality factor
is Qo ≈ 1.66 × 104. Figures 19(h) and 19(l) show, respec-
tively, the LDOS maps and the resonant modes excited at
d1/λ = 0.683439.

Finally, in Fig. 20(a), we optimized the Purcell factor at two
frequencies (i.e., at the corresponding spectral parameters indi-
cated by the black arrows) that fall within the bandgap of the
initial Vogel spiral structure. Specifically, the selected spectral
parameters are d1/λ = 0.678138 and d1/λ = 0.702267, and
we considered 70,000 iterations of our optimization algorithm.
Figures 20(b) and 20(c) show that optimized Purcell factors at
d1/λ = 0.645183 and d1/λ = 0.726096, where we obtained
Fo ≈ 126 and Fo ≈ 40.6, respectively. Their corresponding
optimized quality factors are Qo ≈ 6535 to Qo ≈ 4807. The
LDOS maps of the optimized structures at d1/λ = 0.645183
and d1/λ = 0.726096 are illustrated, respectively, in Figs. 20(d)
and 20(e). Figures 20(f ) and 20(g) display the selected optical
modes for the optimized structures at the same two spectral
parameters.

To conclude our study, in Fig. 21(a) we analyzed scaling the
ratio between the optimized Purcell factor and initial Purcell

(a)

(b) (d)

(e) (f ) (g)

(c)

(h)

(i) (j) (k) (l)

Fig. 19. (a) Purcell factor spectrum for both the initial (blue) and
optimized (red) GA Vogel spiral nanocylinder array with TM polarized
dipole placed at (0.0587 μm, 0.0352 μm). The two black arrows
indicate the specified spectral parameters d1/λ = 0.645183, 0.726096
where we performed adjoint optimization. Purcell factor spectrum for
the initial (blue) and optimized (red) photonic patch in the spectral
regions around (b) d1/λ = 0.645183, (c) d1/λ = 0.726096, and
(d) d1/λ = 0.683439 [indicated by red arrow in (a)]. LDOS maps
of (e) the optimized structure at d1/λ = 0.645183, (f ) the initial
and (g) the optimized structures at d1/λ = 0.726096, and (h) the
optimized structure at d1/λ = 0.683439. (i)–(l) Spatial distribu-
tions of TM-polarized optical resonant modes, corresponding to the
conditions in (e)–(h), respectively.

factor Fo/Fi as a function of the number of cylinders N in
the photonic patch. To perform this analysis, we considered
the same modes and structure optimized in this subsection.
Specifically, we investigated the optimization performance
of the TM modes at d1/λ = 0.645193 [as in Fig. 17(b)],
d1/λ = 0.726096 [as in Fig. 19(c)], and the TE mode at
d1/λ = 0.202363 [as in Fig. 16(b)] for structures with different
N. In these configurations, the optimized modes are strongly
localized in a small area at the center of the photonic patch.
Consistently, due to the initial decrease of the optimized mode
volume, we found that the ratio Fo/Fi ≈ (Qo Vi )/(Qi Vo )

features a peak for photonic patches with an optimal size,
which depends on the spectral parameter d1/λ of the mode.
Beyond this point, the optimization enhancement decreases
because the size of the photonic patch exceeds the character-
istic localization length of the considered mode. Figure 21(b)
displays the enhancement of the ratios of the corresponding
quality factors Qo/Qi . In the case of the optimized TM mode
at d1/λ = 0.645193 (blue curve), we observed a decreasing
trend with respect to the number of cylinders N. As N increases,
we found that Qo/Qi decreases and converges to unity when
the photonic patches have ≈ 100 cylinders. For the optimized
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(a)

(b) (c)

(d) (e)

(f ) (g)

Fig. 20. (a) Purcell factor spectrum for both the initial (blue)
and optimized (red) GA Vogel spiral nanocylinder array with
a TM-polarized dipole placed at (0.0587 μm, 0.0352 μm).
The two black arrows indicate the specified spectral parame-
ters d1/λ = 0.678138, 0.702267 where we performed adjoint
optimization. Purcell factor spectrum for the initial (blue) and
optimized (red) photonic patch in the spectral regions around
(b) d1/λ = 0.678138 and (c) d1/λ = 0.702267. Optimized LDOS
maps at (d) d1/λ = 0.678138 and (e) d1/λ = 0.702267. Also
shown are the spatial distributions of TM-polarized optical modes
at (f ) d1/λ = 0.678138 and (g) d1/λ = 0.702267, respectively.

TM mode at d1/λ = 0.726096 (red curve), the quality fac-
tor ratio decreases at first and then increases until it reaches a
nearly constant value, as N increases. As for the TE mode at
d1/λ = 0.202363 (yellow curve), we noticed that the ratio gen-
erally increases as N increases. This behavior can be explained
by the fact that we are considering the properties of a resonant
mode that is strongly localized in the central region of the
photonic patch, as shown in Fig. 17(d). In fact, this mode is
characterized by a small localization length �loc on the order
of only a few cylinders [16,24,35]. Therefore, depending on
the value of �loc, a critical size for the photonic patch exists,
beyond which the benefits of mode optimization are essentially
lost. Since F ≈ Q/V , where V is the mode volume, this occurs
when the size of the device exceeds the characteristic localization

(a) (b) (c)

Fig. 21. (a) Purcell factor enhancement Fo /Fi in semilog scale and
(b) quality factor enhancement Qo /Qi with respect to number of scat-
terers N, for TM modes at d1/λ = 0.645183, 0.726096 and TE mode
at d1/λ = 0.202363. (c) Purcell factor after optimization Fo in semilog
scale with respect to number of scatterers N, for TM modes at d1/λ =
0.678138, 0.683439, and 0.702267.

length of the considered mode. Under these circumstances,
the localized modes decouple from the rest of the structure,
consistent with Fig. 21(a). On the other hand, we established
that the most effective region of optimization with respect to
N varies from mode to mode, as shown in Fig. 21(b). Finally,
we presented the scaling analysis of mode optimization inside
the bandgap. Particularly, we investigated the TM modes at
d1/λ = 0.678138, 0.683439, and 0.702267, which correspond
to Fig. 20(b), Fig. 19(d), and Fig. 20(c). Since there are no local-
ized modes inside the bandgap of the initial GA Vogel spiral
patches, their initial Purcell factors cannot be defined in this
case. Hence, we only showed the Purcell factors of the optimized
structures in Fig. 21(c). As Fo changes with N, notice that the
curves feature optimal regions that are consistent with Fig. 21(a)
with respect to the given sizes of photonic patches, depending
on the chosen spectral parameters of the modes.

3. CONCLUSIONS

In this paper, we proposed and demonstrated a robust photonic
inverse design method by combining adjoint optimization with
rigorous semi-analytical 2D-GMT. We reviewed the GMT
formalism in detail and derived closed-form analytical expres-
sions that enabled the efficient application of the gradient-based
adjoint optimization of far-field and near-field relevant prop-
erties of photonic patches. We focused on multiwavelength
radiation shaping, near-field focusing, and the enhancement of
the local density of states. Specifically, we demonstrated efficient
far-field radiation shaping at multiple wavelengths in photonic
patches optimized starting from both periodic and Vogel spiral
configurations, achieving a differential scattering efficiency of
approximately 60%. In addition, we designed compact focusing
structures using both optimized aperiodic and periodic patches
that enhanced the field intensity at specified locations in the
Fresnel zone with focusing efficiencies in excess of 75%. We also
demonstrated improved broadband focusing performances in
optimized GA Vogel spiral patches. Finally, we presented the
design of optimized patches that enhance the LDOS and mode
localization with both TE- and TM-polarized excitations at
multiple wavelengths. We finally investigated the scaling of the
optimized performances of photonic patches of different sizes.
The combination of the semi-analytical 2D-GMT method with
the adjoint optimization algorithm provides a robust inverse
design methodology to develop compact photonic devices with
optimal functionalities. Without the need for spatial meshing,
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we believe the developed approach provides efficient multiple
scattering solutions with a strongly reduced computational bur-
den compared to standard numerical simulation techniques and
enables novel, more compact geometries for on-chip photonics
and metamaterials device technologies.

APPENDIX A: DERIVATIVE OF THE TRANSFER
MATRIX
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where the derivatives of sn� and �n� are
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The derivatives of Rnn′ , φnn′ with respect to the different geo-
metrical parameters can be found in Table 2.

APPENDIX B: DERIVATIVE OF THE PLANE WAVE
EXCITATION COEFFICIENTS

For a plane wave propagating at an angle � with respect to the
+x̂ in the 2D geometry, the coefficient â0 is given by [9]

â0E
n� = a0E

n�

J�(korn)
= j l e jko ·Rn e− j��

J�(korn)
, (B1)

Table 2. Derivatives of Relative Cylinder Positions

with Respect to Design Parameters

∂ Rnn′
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= xn−xn′
Rnn′ (δjn + δ j n′)
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= sin(φnn′ )
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= 0 ∂φnn′
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where ko = ko cos(�)x̂ + ko sin(�)ŷ is the wavenumber in
the host medium and Rn = (xn, yn) is the position of the nth
cylinder. The derivatives of the source expansion coefficients are
given by

∂ â0

∂ pi
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J�(korn)
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+ ∂ sn�

∂ pi
−sn�ko

J ′
�(korn)

J�(korn)

∂rn

∂ pi

]
,
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where the partial derivative of sn� is given in Eq. (A2) and the
partial derivatives of rn are given in Table 1.

APPENDIX C: DERIVATIVE OF THE DIPOLE
EXCITATION COEFFICIENTS

The source coefficients â0 for a dipole in the host medium with
different orientations are [28]

a 0E
n�,x = − 1

8 j
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4 j
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where (Ris, θis) are the polar coordinates of the source positions
(xs , ys ) in the frame of reference of the i th cylinder center. The
subscripts x , y , z indicate the dipole orientation.

Therefore, the derivatives of â0 for the exterior dipole sources
along different orientations are computed as
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Table 3. Derivatives of Relative Cylinder Positions

with Respect to Design Parameters
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where the derivative of Rns, θns with respect to the design param-
eters can be found in Table 3.
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