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ABSTRACT 
In Human-Robot Collaboration (HRC), robots and humans 

must work together in shared, overlapping, workspaces to 
accomplish tasks. If human and robot motion can be 
coordinated, then collisions between robot and human can 
seamlessly be avoided without requiring either of them to stop 
work. A key part of this coordination is anticipating humans’ 
future motion so robot motion can be adapted proactively. In this 
work, a generative neural network predicts a multi-step 
sequence of human poses for tabletop reaching motions. The 
multi-step sequence is mapped to a time-series based on a human 
speed versus motion distance model. The input to the network is 
the human’s reaching target relative to current pelvis location 
combined with current human pose. A dataset was generated of 
human motions to reach various positions on or above the table 
in front of the human starting from a wide variety of initial 
human poses. After training the network, experiments showed 
that the predicted sequences generated by this method matched 
the actual recordings of human motion within an L2 joint error 
of 7.6 cm and L2 link roll-pitch-yaw error of 0.301 radians on 
average. This method predicts motion for an entire reach motion 
without suffering from the exponential propagation of prediction 
error that limits the horizon of prior works. 

Keywords: Human-Robot Collaboration, Human Motion 
Prediction, Human-Robot Interaction 

NOMENCLATURE 

ℎ, 𝑯𝒑, 𝑯𝒂𝒄𝒕 Single human pose, sequence of predicted 
human poses, and actual human pose sequence. 

𝑒𝑤𝑡
 Euclidean error between the reaching wrist (left 

or right) and the target at time 𝑡 in the sequence. 
𝑃𝑝, 𝑃𝑡𝑔𝑡  Human pelvis location and reaching target 

relative to 𝑃𝑝 in the world coordinate frame. 

𝑞𝑡, 𝑞𝑛, 𝑞𝑠, 
𝑞𝑢𝐿, 𝑞𝑓𝐿, 𝑞𝑢𝑅, 

𝑞𝑓𝑅 

Quaternions relating the world z-axis to the 
human torso, neck, shoulder-shoulder vector, 
left upper arm, left forearm, right upper arm, 
and right forearm, respectively. 

𝑞𝑖 = 
〈𝑤𝑖 , 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖〉 

Quaternion 𝑖 of the human, where 𝑤𝑖  denotes 
rotation angle and 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 components to 
denote elements of rotation vector. 

𝜃𝑖, 𝑣𝑖 Rotation angle and vector that determine 𝑖𝑡ℎ 
quaternion of the human. 

𝑃𝑤𝑡
 Location of the reaching wrist (left or right) in 

the world frame at time 𝑡. 
𝐷(𝑖, 𝑗) Euclidian distance between the 𝑖𝑡ℎ point in one 

sequence and the 𝑗𝑡ℎ point in another sequence. 
𝑊, 𝑤𝑘, 𝑤𝑘(𝑖,𝑗) Warp path that maps elements of one sequence 

to elements of another, an element of 𝑊 which 
has an 𝑖 and 𝑗 component for each sequence, and 
either the 𝑖 or 𝑗 component of 𝑤𝑘. 

𝑧 Feature vector input to the neural network. 
𝑎(𝑐, 𝑖, 𝑗) Filter kernel input from node 𝑖, 𝑗 in channel 𝑐 

from the previous neural net layer. 
𝑜(𝑐, 𝑖, 𝑗) Output of node 𝑖, 𝑗 in a channel 𝑐 in a layer of 

the neural network. 
𝜙 Set of all learned neural network parameters. 

𝑣𝑒𝑠𝑡 ,𝑣𝑎𝑐𝑡 ,𝑆𝑥𝑦  Wrist speed estimate, actual speed, and 
standardized residual error of the estimate.  

𝑒𝑝(𝑧𝑡 , 𝜙𝑡) L1 error at time step 𝑡 between the predicted 
pose sequence generated by the neural network 
and actual sequence from train/test samples. 

 
1. INTRODUCTION 

A challenge in human-robot collaboration (HRC) is 
coordinating human and robot motion. In HRC, humans and 
robots share a common workspace and work together in close 
proximity to accomplish tasks, e.g. in manufacturing. In an HRC 
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cell, the less coordinated human and robot motion is, occurrence 
of production delays and/or human discomfort becomes more 
likely. In the case of suboptimal coordination, the robot may have 
to stop and wait for the human to back away, causing production 
delay. The robot may also take trajectories that make the robot 
come close to the human, causing human discomfort and distrust 
in the robotic system. To improve human-robot coordination and 
avoid these problems, humans’ trajectories must be predicted so 
robot motion can be adapted ahead of potential disruptions. In a 
manufacturing setting, the location of parts is known or easily 
determined, which provides the target for human reaching 
motions. Therefore, the prediction is the sequence of human 
poses generated from interpolations between the current pose 
and reaching target. This work presents a method for predicting 
a sequence of human poses based only on the human’s current 
pose and the reaching target for the human’s left or right wrist. 

Human motion can be predicted at high and low levels 
within an HRC system. At the low level of prediction, a time 
sequence of human poses is predicted. At the high level, coarse 
human actions are classified, and the end point of human motion 
can be predicted, but without time dependence. Zhang et al. 
developed a recurrent neural network (RNN) architecture 
including units for independent human parts for predicting the 
end-point of human motion for a robot/human part handover [1]. 
Liu et al. used a Hidden Markov Model to generate a motion 
transition probability matrix for predicting next human coarse 
actions [2]. Maeda et al. proposed Probabilistic Motion 
Primitives to predict human intent and generate a corresponding 
robot motion primitive [3,4]. These methods can only provide 
the end-point for human motion at best. They do not provide 
details about the motion between start and end, limiting their 
potential to adapt robot motions to avoid predicted disruptions. 

Previous works on predicting time sequences of human 
poses, meaning the motion between start and end, in a 
manufacturing domain have used filters and/or RNNs. Mainprice 
et al. fit Gaussian Mixture Models (GMMs) to many recordings 
of human reaching motions and predicted future motion with the 
GMMs [5]. Wang et al. used an autoregressive integrated moving 
average model applied to the elbow and wrist angles to predict 
human tabletop reaching motions [6]. Kanazawa et al. used 
Gaussian Mixture Regression (GMR) with Expectation 
Maximization to learn a model of human motion online [7]. Liu 
and Liu used an RNN to model human motion and used a 
modified Kalman filter to adapt RNN layer weights online [8]. 
Li et al. used a multi-step Gaussian Process Regression and 
previously recorded human trajectories to predict human 
reaching motion online [9]. Callen et al. developed a database of 
human motion models using Probabilistic Principal Component 
Analysis (PPCA) [10]. In many of these methods, the model 
predicts the next step based on the current step and then 
subsequent predictions are based on the previous prediction. 
Therefore, if there is a small error in predicting a relatively 
immediate step, that error will propagate through the prediction 
and result in exponential increase in error as the prediction 
horizon increases. Some of these works, such as GMMs and 

PPCA require a database of human trajectories which in turn 
requires computation time to compare current motion to a record. 

Other state of the art human motion prediction methods have 
demonstrated good results for predicting human motion in 
general activities, such as walking and eating, represented in the 
Human3.6M dataset. Martinez et. al utilized a sequence-to-
sequence architecture, which is an RNN with gated recurrent 
units (GRUs) that takes a sequence of recent poses and generates 
a predicted sequence of future poses [11]. Mao et al. encoded 
human pose trajectories using the Discrete Cosine Transform 
(DCT) and then used a Graph Convolutional Network which 
predicts future DCT coefficients based on a sequence of DCT 
coefficients [12].  Li et al. utilized a neural network consisting of 
encoders that use convolutional layers to generate hidden states 
based on long and short term input sequences and then use two 
fully connected layers to decode hidden states into pose 
sequences [13]. These methods generate predictions iteratively, 
causing exponential divergence of the prediction from the true 
trajectory over the time horizon. Therefore, they limit error 
analysis to predictions within a 1 second horizon. Such a short 
prediction horizon is infeasible for a manufacturing HRC setting 
where human motions are typically many seconds in duration. 

The method herein uses a neural network to predict a 
sequence of human poses considering only the current human 
pose and reaching target as input. This method is designed to 
prevent the problem of error propagation over a long prediction 
horizon. The first step of this method is to warp the time scale of 
human motion observations in the training data to a 
dimensionless phase scale so each training sample shows 
consistent timing of changes in human pose elements. After 
conditioning the training data, a generative neural network is fit 
to the training data. The neural network assembled in this work 
is inspired by generator networks in Generative Adversarial 
Networks (GANs) [14,15]. Once the network is trained, it is used 
to predict a multi-step sequence of human poses. To use the 
prediction in the time domain, linear interpolation is used to 
match the multi-step prediction to a sequence having duration 
based on the anticipated human average speed. 

The novelty of this work is development of a neural network 
and data pre/post conditioning to generate a predicted human 
pose sequence over a horizon of multiple seconds based only on 
the current human pose and relative reach target.  This method 
utilizes the repetitiveness of human motion in manufacturing by 
considering the reaching target as an input. This method is 
unique in representing the human pose with quaternions so 
human link dimensions are preserved and the neural network 
inputs are continuous, enabling better network fit. Other 
representations are either not continuous or allow link lengths to 
change instantaneously. The method herein can also generate a 
prediction in real-time (faster than 30Hz) over a long horizon 
without suffering from exponential propagation of error that 
occurs with other works. This method is also trained and predicts 
based on data collected with a depth camera-based skeleton 
tracking system. Other methods utilize a more precise motion 
capture system for human tracking but require wearable sensing 
equipment, making them infeasible for a manufacturing setting. 
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The output of the method herein can be used as an input to 
proactive-n-reactive robot algorithms to avoid anticipated, time-
varying delays. Fig. 1 shows how this human motion prediction 
method, shown by the large blue block, fits into the control 
scheme for a robotic system in an HRC workcell. The robot 
considers the task goal and a predicted time-sequence of human 
motion to plan robot motion that accomplishes the goal while 
avoiding the human. The robotic system then uses a safety 
controller to adjust robot speed or stop the robot along the 
planned path if the robot gets too close to the human. In the 
robotic system, real-time human pose is captured by the workcell 
sensor suite. A new human motion prediction can then be 
generated based on the human’s reaching target (e.g. part to pick 
up) and current human pose. Targets can be determined by 
existing methods that locate objects based on image inputs [16]. 
The remaining sections of this paper are organized as follows: 2) 
methods, 3) results, and 4) conclusions. Section 2 is further 
divided into subsections: 2.1) human pose representation, 2.2) 
collection of training data, 2.3) preconditioning of the training 
data, 2.4) network architecture, and 2.5) postconditioning output 
to a time sequence of poses. Section 3 is divided into subsections: 
3.1) training results, 3.2) prediction accuracy, and 3.3) 
implementation into an HRC system. 
 
2. METHODS 

The method in this work is composed of five parts. First, 
human pose is represented as pelvis cartesian location and a set 
of quaternions that relate each human link to the world z-axis.  
Second, a dataset is collected in which many iterations of various 
human motions are recorded as the human reaches to various 
target locations.  Third, the recorded data are conditioned to have 
a consistent phase scale instead of a time scale to improve neural 
network training. Fourth, a neural network is created to predict a 
multi-step sequence of human poses the human will pass through 
to reach for a target, given the target and current human pose as 
input.  Fifth, the network output is post processed to have a time 
scale that matches the estimated duration of human motion based 
on average motion velocities from the recorded data.   

 
2.1 Human Representation 

The human pose in this work is the stacked vector of the 
human pelvis location and the seven quaternions that define the 
axis for the torso, neck, shoulders, upper arms, and forearms: 

 ℎ = [𝑃𝑝, 𝑞𝑡 , 𝑞𝑛 , 𝑞𝑠, 𝑞𝑢L, 𝑞𝑓L, 𝑞𝑢R, 𝑞𝑓R]
𝑇. (1) 

The cartesian pelvis location, 𝑃𝑝, is defined in the world 
coordinate frame. The 𝑞𝑡 , … , 𝑞𝑓𝑅 are the human link quaternions, 
shown in Table 1 and fig. 2(A). Human link lengths and radii are 
required to fully define the volume each human link occupies. 
The method herein considers those parameters as constants 
determined a priori by the tracking system. The quaternions 
define a rotation about a vector to align the world z-axis with 
each human link’s axis: 

 𝑞𝑖 = 〈𝑤𝑖 , 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖〉, (2) 
where the subscript 𝑖 indicates one of the human link 
quaternions, as in (1) and Table 1. The quaternion elements are 
determined from a rotation angle (𝜃𝑖) and the unit vector (𝑣𝑖) 
about which rotation is defined: 

 𝑤𝑖 = cos (
𝜃𝑖

2
) , [𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖] = sin (

𝜃𝑖

2
) 𝑣𝑖.  (3) 

The world frame z-axis would align with human link 𝑖 if it 
were rotated by 𝜃𝑖 about 𝑣𝑖. Fig. 2(B) shows an example of the 
rotation angle and vector to align the world z-axis with the right 
forearm. Fig. 2(B) also shows the arm generalized to a cylinder 
for use by collision detection and path planning algorithms. 
Considering other possible angle/axis rotation representations, 
such as roll-pitch-yaw for example, the quaternion 
representation seems best suited for use with a neural network 

  
A B  

FIGURE 2: (A) LINKS OF THE HUMAN KINEMATIC CHAIN. 
(B) ROTATION ANGLE AND AXIS FOR THE RIGHT FOREARM 
QUATERNION AND CYLINDER LINK REPRESENTATION. 

Table 1. Links of the human kinematic chain. 

Link Description 
Proximal 

Joint Distal Joint 
Link 

Quaternion 
1 Torso/Spine Pelvis Spine 𝑞𝑡 
2 Neck Spine Shoulder MP 𝑞𝑛 
3 Shoulder- Shoulder Shoulder MP Shoulders 𝑞𝑠 

4 Left Upper Arm Left 
Shoulder Left Elbow 𝑞𝑢𝐿 

5 Left Forearm Left Elbow Left Wrist 𝑞𝑓L 

6 Right Upper Arm Right 
Shoulder Right Elbow 𝑞𝑢R 

7 Right Forearm Right Elbow Right Wrist 𝑞𝑓𝑅 

 

 
FIGURE 1: CONTROL BLOCK DIAGRAM FOR A ROBOTIC 
SYSTEM IN AN HRC WORKCELL. 
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because quaternion elements are bounded between -1 and 1. The 
quaternion elements will also be continuous as the human 
moves. In contrast, the roll-pitch-yaw is either bounded but with 
discontinuity at ±𝜋 radians, or without discontinuity but 
allowing angles to tend toward ±∞. An example of this problem 
would occur if the human extended an arm outward and repeated 
full rotations of the arm about the shoulder. While it is physically 
impossible for a human joint to do a full revolution due to muscle 
and joint limits, sensing systems can perceive multiple full 
revolutions.  Therefore, the quaternion representation is used to 
allow for the perception of full revolutions of human joints. 

 
2.2 Collection of the Training Dataset 

To amass a dataset of human motions, human pose was 
recorded while performing a variety of tabletop reaching tasks. 
Over 1,750 motion sequences were recorded per each arm.  Each 
reaching motion had a target wrist cartesian location. An array of 
targets of known 3D positions was selected to cover the 
workspace in front of the human in the robotic cell, shown in fig. 
3. Tabletop level targets are shown as green circles. The tips of 
rods extending upward from the table at each green circle by 15, 
30, and 45 cm were used to create elevated targets, shown by 
blue rectangles. Human joint locations were tracked, using the 
two depth cameras circled in red in fig. 3, and converted into the 
quaternion representation via the method in [17]. The targets are 
in the range 𝑥 ∈ [−0.6,0.6], 𝑦 ∈ [0,0.6], 𝑧 ∈ [0,0.5] meters, 
with the human standing near the edge of the table near 
[𝑥, 𝑦, 𝑧] = [0,0.8,0]m. For reference, the tabletop height is 𝑧 =
0 meters. For each arm, motions included reaches to targets on 
both left and right sides of the pelvis to include some cross body 
motions. For reaches over long distances, motions could require 
the human to walk more than one step to reach the target. In this 
case, the prediction of motion may become significantly less 
accurate because the human has many more options for potential 
trajectories. Therefore, this work applies to human reaching 
motions in a tabletop setting in manufacturing where objects the 
human will interact with are within about one meter of the pelvis. 
For motions to objects more than one meter away, another 
algorithm such as in [18] could be used to generate relatively 
coarse predictions of occupancy at the expense of precision. 
 
2.3 Conditioning of Training Data 

The time required for humans to complete tasks likely varies 
over each iteration of the task, possibly due to distractions or 
tiring as work shifts progress. As humans reach for the same 
target over many iterations, the poses in the recorded time-series 
may be very similar, but will likely occur at different times 
through the motion. If the time scale of the training data were 
warped to have a consistent number of steps per sequence, then 
the effect of varying timing would be minimized, making each 
training record for a particular task as similar as possible. Trial 
and error showed that matching the time scale of all records to a 
common phase scale reduced the prediction error at the end of 
network training. Therefore, Dynamic Time Warping (DTW), 
specifically the FastDTW algorithm, was used to match all 
training records to a common phase scale [19]. 

Consider two time-sequences of human poses, ℎ1 and ℎ2, 
both having the same time step. DTW outputs a mapping of time 
steps in ℎ1 to time steps in ℎ2, called a warp path which is 
denoted 𝑊. DTW uses dynamic programming to find the 
shortest warp path through a 2D grid where one dimension is the 
time step index of ℎ1, denoted 𝑖, and the other dimension is the 
time step index of ℎ2, denoted 𝑗. The path search starts from the 
first index of ℎ1 and first index of ℎ2 and must end at the last 
index of ℎ1 and last index of ℎ2. Dynamic programming 
iteratively determines a matrix the same size as the 2D ℎ1 by ℎ2 
grid which indicates the distance of the shortest warp path to 
reach cell 𝑖, 𝑗 from the start cell (𝑖 = 0, 𝑗 = 0). The distance 
matrix is updated iteratively according to: 

𝐷(𝑖, 𝑗) = 𝐷(𝑖, 𝑗)  
+ min[𝐷(𝑖 − 1, 𝑗), 𝐷(𝑖, 𝑗 − 1), 𝐷(𝑖 − 1, 𝑗 − 1)],   (4) 

where 𝐷(𝑖, 𝑗) is the Euclidean distance between the 𝑖𝑡ℎ data point 
in ℎ1 and the 𝑗𝑡ℎ data point in ℎ2: 

 𝐷(𝑖, 𝑗) = ‖ℎ1(𝑖) − ℎ2(𝑗)‖. (5) 
Dynamic programming iterations stop when the distance matrix 
reaches steady state values. Then a greedy search of that matrix 
finds the lowest cost warp path from start to end of ℎ1 and ℎ2: 

 𝑊 = argmin
{𝑤1,…,𝑤𝐾}

∑ 𝐷(𝑤𝑘𝑖 , 𝑤𝑘𝑗)𝐾
𝑘=1 , (6) 

where 𝑤𝑘(𝑖, 𝑗) is the 𝑘𝑡ℎ step of warp path 𝑊, indicating the 
mapping between 𝑖𝑡ℎ element of ℎ1 and 𝑗𝑡ℎ element of ℎ2. 
Therefore, 𝑤𝑘𝑖  indicates the 𝑖𝑡ℎ value of 𝑤𝑘 and 𝑤𝑘𝑗  indicates 
the 𝑗𝑡ℎ value of 𝑤𝑘. FastDTW improves the speed of standard 
DTW by using a three-level approach for graph bisection to 
reduce the dimension of the search grid.   

To precondition the input data, the Euclidean error between 
the reaching wrist and reaching target was determined across all 
time steps of each recorded motion sequence: 

 𝑒𝑤𝑡
= ‖𝑃𝑤𝑡

− 𝑃𝑡𝑔𝑡‖, 𝐸𝑤 = [𝑒𝑤0
, … , 𝑒𝑤𝑡𝑒𝑛𝑑

] (7) 

where 𝑃𝑤𝑡
 is the position of the reaching wrist, either left or right, 

and 𝑒𝑤𝑡
 is the wrist position error at timestep 𝑡 and 𝑃𝑡𝑔𝑡  is the 

 
FIGURE 3: HRC WORKCELL USED IN COLLECTING DATA 
AND VALIDATION.  
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target wrist location. Then, per each recording, error was scaled 
so error is one at the start of motion and zero at the end of motion: 

 𝐸𝑤𝑢𝑛𝑖𝑡
=

𝐸𝑤

𝑒𝑤𝑡𝑠𝑡𝑎𝑟𝑡
 −𝑒𝑤𝑡𝑒𝑛𝑑

 
, (8) 

where 𝐸𝑤𝑢𝑛𝑖𝑡
 is the unitized error for the series of poses. 

Plots of 𝐸𝑤𝑢𝑛𝑖𝑡
 versus time revealed most errors followed a 

decreasing sigmoid shaped curve. Therefore, a desired error 
curve was taken to be approximately the average of unitized error 
curves from all recorded motions, given by: 

 𝐸𝑑𝑒𝑠𝑖𝑟𝑒𝑑 = 1 −
1

1+exp(−10𝑡+4.5)
, 𝑡 ∈ [0,1]. (9) 

FastDTW was then used to determine the optimal mapping 
between the timesteps in the unitized error curve for each motion 
sample (𝐸𝑤𝑢𝑛𝑖𝑡

) and the desired error curve (𝐸𝑑𝑒𝑠𝑖𝑟𝑒𝑑). Fig. 4 
illustrates the warping of a sample’s time scale by FastDTW.  The 
orange dotted line is the desired error curve, blue dashed line is 
the observed error curve from the raw motion sample, and solid 
green line is the error curve after warping the time scale of the 
raw motion to match the desired curve.  The black arrows show 
how FastDTW matches points in the raw error curve to points in 
the desired error curve. After the records’ time scales were 
warped, then each record is down sampled to 10 points evenly 
spaced along the warped time scale, which will be called the 
phase scale herein. The phase scale indicates a percentage of 
reach motion completion at which a pose occurs. Trial and error 
showed that a sequence of 10 poses nearly matched the original 
sequence, but more poses did not improve accuracy. Now each 
training record presents a change in pose elements with more 
consistent scale than the raw samples. 
 
2.4 Neural Network Architecture and Training 

A neural network was assembled to predict a 10-step 
sequence of future human poses based on the current pose and 
human reaching target: 

 𝑯𝒑 = 𝑓(𝑧, 𝜙), (10) 
where 𝑯𝒑 denotes the set of 10 sequential human poses for the 
prediction and 𝜙 are the network parameters. The prediction is 

10 steps long because 10 poses nearly matched the actual 
sequence and increasing the number of poses didn’t significantly 
improve error. The 𝑧 is the vector input to the network given by: 

 𝑧 = [𝑃𝑡𝑔𝑡 , ℎ]
𝑇, (11) 

where P𝑡𝑔𝑡 is the reaching target relative to the human’s current 
pelvis location and ℎ is the current human pose represented by 
pelvis location and quaternions. A separate neural network is 
used for predicting left arm reaches and right arm reaches. Trial 
and error led to the conclusion that separate networks reduced 
the difference between actual and predicted motions. The left 
arm network predicts pelvis location and quaternions for the 
torso, neck, shoulders, left upper arm, and left forearm.  The right 
arm network predicts pelvis location and quaternions for the 
torso, neck, shoulders, right upper arm, and right forearm. When 
using either network, it is assumed that pose elements not 
predicted by the network (opposing upper arm and forearm 
quaternions) are held constant throughout the motion. 
Implementation of the left and right networks is discussed in 
subsection 3.3. Each neural network outputs a 10 × 23 matrix 
where each row is a phase step in the motion prediction. The 
columns correspond to the pelvis coordinates or quaternion 
elements in the human pose representation required for reaches 
with either left or right arm. 

The network architecture is inspired by the generator 
network in a GAN [14,15]. The generator neural network in this 
method is a sequence of five transposed convolution layers as 
shown in Table 2 and fig. 5. In fig. 5, the input vector consisting 
of cartesian reaching target and current human pose is shown at 
the left. The blue blocks indicate the relative shape of the output 
of each network layer, with the text over the blocks indicating 
matrix size in the order: channels, height, width. The layer 
operation is indicated in the text below the blue blocks. The 
transposed convolution layers indicate the size of convolution 
kernel, kernel stride, and input padding in the format: height by 
width. The layer operations also indicate the activation function 
used by the layer, further explained below.  A hyperbolic tangent 
activation function followed by network normalization of the 
human pose quaternions output is applied to the output of the 
final convolution layer.  Each quaternion in the pose must have 
an L2 norm of 1 unit, so the human pose quaternions in each 
phase step of the network output are normalized. 

Transposed convolutional layers generate output of larger 
height and/or width than that of the layer input. This property 
allows the network to generate a predicted pose sequence of 
higher dimension than the input vector. The transposed 
convolution layers convolve a filter kernel over the layer input 
to produce the layer output. The filter kernel is a matrix having 
height and width indicated in fig. 5. Filter kernel elements are 
learned dynamically by backpropagating network output error. 
The kernel is convolved with the input by shifting the kernel by 
the stride width across columns and stride height across rows and 
performing the sum of elementwise multiplication between the 
kernel and input at each kernel position. Each element of the 
transpose convolution layer output is determined by: 

 
FIGURE 4: WARPING ACTUAL WRIST/TARGET ERROR TO 
THE DESIRED ERROR CURVE. 
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 𝑜(𝑐𝑜 , 𝑛𝑖 , 𝑛𝑗) = 

∑ ∑ ∑ 𝑘𝑐𝑜
(𝑖, 𝑗, 𝑚)𝑎(𝑚, 𝑛𝑖𝑠𝑖 + 𝑖, 𝑛𝑗𝑠𝑗 + 𝑗)

𝑘𝑗

𝑗=0

𝑘𝑗

𝑖=0

𝑐𝑖

𝑚=0

,   (12) 

where 𝑘𝑐𝑜
(𝑖, 𝑗, 𝑚) is the element at row 𝑖, column 𝑗, channel m 

of the kernel for output channel 𝑐𝑜 [20]. The 𝑠𝑖 and 𝑠𝑗 indicate 
the stride width (rows) and height (columns), respectively. The 
𝑛𝑖 and 𝑛𝑗 indicate the number of kernel strides that have occurred 
along the height and width of the input, respectively. The 
𝑎(𝑚, 𝑛𝑖𝑠𝑖 + 𝑖, 𝑛𝑗𝑠𝑗 + 𝑗) indicates the layer input at row 𝑛𝑖𝑠𝑖 + 𝑖, 
column 𝑛𝑗𝑠𝑗 + 𝑗 for input channel 𝑚 and 𝑐𝑖 is the number of 
input channels. The kernel sizes, stride, and padding were 
selected to expand the network input into a matrix having shape 
10 × 23 for output sequences with 10 phase steps. The number 
of channels in the output of each layer was found by trial and 
error. The number of channels in subsequent convolution layers 
were selected to be half that of the preceding convolution layer.  
Adding channels to the output of the first convolution layer 
reduced test set loss, but with diminishing returns over 256.  

Batch normalization is applied after each convolution layer 
to improve the stability of network parameters while training 
[21]. The Scaled Exponential Linear Unit (SELU) is applied 
after each batch normalization operation [22]. The SELU 
activation function was selected to prevent exploding gradients 

and vanishing gradients by including a term for a positive 
gradient when its input is less than zero. Exploding gradients 
cause network parameters and outputs to tend toward infinite 
values. Vanishing gradients cause the gradients resulting from 
network output error to diminish as the error is backpropagated, 
so the gradient becomes too small to train layers near the input. 
Other activation functions, such as the Rectified Linear Unit 
(ReLU) and LeakyReLU, were also tested, but the SELU 
produced lower network loss at the end of network training. 

When training the network weights, the prediction output by 
the network is compared to the actual sequences of future human 
poses from the conditioned training data. Since the network 
predicts a 10-step sequence of poses, 10 poses evenly spaced 
along the phase scale are taken from each training sample for 
comparison with the network output. The L1 (absolute) error 
between the predicted sequence (𝑯𝒑 after training iteration 𝑡) 
and actual sequence is used as the network loss function: 

   𝑒𝑝(𝑧𝑡 , 𝜙𝑡) = ∑ |𝑯𝒑 − 𝑯𝒂𝒄𝒕| , (13) 
where the summation is over all matrix elements; meaning across 
all channels, and height and width of each channel. The network 
parameters are adjusted based on the error using the Adam 
gradient-based optimizer and backpropagation [23].  For each 
network layer, the partial derivative of the “layer output” w.r.t. 
network parameters is determined from chain rule: product of the 
partial derivative of the “layer output” with respect to each SELU 
activation function and the partial derivative of the SELU 
activation function with respect to each network parameter.  
Backpropagation uses the partial derivates of layer outputs w.r.t. 
network weights to determine the effect the network loss should 
have on adjusting the network parameters using a form of 
gradient descent, such as the Adam optimizer. 

 
2.5 Post Processing for Time-Series Prediction 

The output of the neural network is the predicted sequence 
of human poses evenly spaced throughout a human task, but 
having a phase scale, not a time scale. Therefore, the 10-step 
prediction is interpolated to generate a prediction of a duration 
matching the anticipated duration of the human reaching motion. 
From the dataset of reaching motion human pose sequences, a 
relationship is observed in the scatter plot of the average speed 
during the reach motions versus distance between start and end 
wrist positions for the motion, shown as blue dots in fig. 6. Fig. 
6 also shows the mean (𝜇, black dashed line) and the mean ± two 
standard deviations (±2𝜎) (red line, shaded area) of the wrist 
speed as a function of reach distance. The line for mean wrist 
speed shows slight curvature, indicating a quadratic function will 
likely fit the speed (𝑣𝑒𝑠𝑡) versus reach distance relationship 
better than a straight line. The quadratic best-fit line was: 

   𝑣𝑒𝑠𝑡 = −0.214𝑑2 + 0.659𝑑 − 0.0176, (14) 
where 𝑑 is the distance in meters between start and end wrist 
positions.  The best-fit line is shown as solid green in fig. 6.  To 
ensure the best-fit line was not skewed by outliers, the modified 
Thompson-Tau method was used to omit outlier points. Speed 

 
FIGURE 5: NEURAL NETWORK ARCHITECTURE FOR 
PREDICTING HUMAN POSE SEQUENCES. 

Table 2. Neural network layers. 

Layer Description 

Input 
Size 

(c,h,w) 

Kernel 
Size 
(h,w) 

Stride 
(h,w) 

Padding 
(h,w) 

Output 
Size 

(c,h,w) 
1 Conv. Transpose 26,1,1 (3,6) (1,1) None 256,3,6 
2 Conv. Transpose 256,3,6 (3,3) (1,1) (1,1) 128,3,6 
3 Conv. Transpose 128,3,6 (3,3) (2,2) (1,1) 64,5,11 
4 Conv. Transpose 64,5,11 (3,3) (2,2) None 32,10,23 
5 Conv. Transpose 32,10,23 (3,3) (1,1) (1,1) 1,10,23 

6 Tanh, L2 
quaternion norm 1,10,23 - - - 1,10,23 
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versus distance points whose standardized residual error were 
greater than two and whose neighbor points had residual error 
0.5 less than it were rejected one at a time until no outliers met 
that criterion. This criterion is defined as: 

   |𝑣𝑒𝑠𝑡𝑖−𝑣𝑎𝑐𝑡𝑖
|

𝑆𝑥𝑦
> 2, 𝑆𝑥𝑦 = √∑ (𝑣𝑒𝑠𝑡𝑖−𝑣𝑎𝑐𝑡𝑖

)
2

𝑛
𝑖=1

𝑛−2
, (15) 

where 𝑆𝑥𝑦  is the standardized residual error of the estimate, 
subscript 𝑖 indicates the 𝑖𝑡ℎ data point, 𝑣𝑎𝑐𝑡𝑖

 is the observed 
speed, and 𝑛 is the number of data points less previously rejected 
outliers. Since wrist speed can be predicted as 𝑣𝑒𝑠𝑡  by (14), the 
estimated duration of the motion can be predicted according to: 

   𝑡𝑒𝑠𝑡 =
‖𝑃𝑤−𝑃𝑡𝑔𝑡‖

𝑣𝑒𝑠𝑡
 (16) 

The number of time steps generated by interpolating the 10-step 
prediction is then 𝑁 = 𝑡𝑒𝑠𝑡/𝑑𝑡, where 𝑑𝑡 is the desired 
prediction time resolution. 

 
3. RESULTS 
3.1 Network Training 

To evaluate the success of training the neural network, the 
collected samples of pose sequences during reaching motions 
were randomly divided among a train set and a test set, having 
80% and 20% of the total samples, respectively. The neural 
network was allowed 3000 epochs of training. In each epoch, the 
network parameters were adjusted based on the error in (13).  
During training, a batch size of 32 samples was used to reduce 
training time. The lower two curves (blue and red lines) in fig. 7 
correspond to the sum of L1 error between the predicted and 
actual sequences in the train set averaged over each epoch for the 
left and right arm neural networks, respectively. At the end of 
each epoch, the network inferred a predicted pose sequence 
based on the start pose from each sample of the test set. The sum 
of L1 errors between the predicted and actual sequences of the 
test set are shown as the orange and green lines in fig. 7 for the 
left and right arm neural networks, respectively. 

Fig. 7 shows that loss on the train set continues to decrease 
with diminishing returns after 3000 epochs, but loss on the test 

set stopped decreasing after about 450 epochs. This indicates the 
left and right networks overfit to the samples in the train set. The 
models can accurately predict a sequence that has been used for 
training but are much less accurate when predicting a sequence 
from the test set. Therefore, the error between actual and 
predicted pose elements was evaluated separately to determine if 
the test set loss could be attributed to a particular pose element.  

Fig. 8 shows the L2 error between the actual and predicted 
pelvis location, averaged across all time steps of all samples in 
the train and test sets for each epoch for the network for left arm 
reaches. The orange line that plateaus at about 4 cm corresponds 
to the test set, the blue line that continues to decrease is from the 
train set, and the black dotted line is the average of the test set 
loss over the last 10 epochs. This figure shows the test set loss 
due to pelvis location reaches a minimum after about 350 epochs 
and then rises to a slightly higher steady state loss.  The increase 
in loss after the minimum indicates that the pelvis location 
features contributed significantly to the plateau in test set loss.   

Fig. 9 shows the L2 norm of the difference in predicted and 
actual quaternion elements for the torso, neck, left upper arm, 
and left forearm, averaged over all time steps of all test set 
samples for each epoch with the left reach network. Fig. 9 shows 
a moving average of train set losses and test set losses as dashed 
and solid lines, respectively, for each quaternion. To reiterate, 
fig. 8 and 9 are showing the network loss from fig. 7 broken out 
into individual pose elements. The test set losses for all pose 
quaternions in fig. 9 plateaued after more epochs than the pelvis 
location in fig. 8, with the exception of the neck quaternion (𝑞𝑛). 
Fig. 9 even shows quaternion test set losses are still slightly 
decreasing after 3000 epochs. This means that the plateau in 
summary test set loss after 450 epochs shown in fig. 7 can be 
attributed to the challenge of learning pelvis displacements (fig. 
8) and neck orientation (fig. 9) for reaching motions. Pelvis 
displacement prediction is an anticipated challenge considering 
the options a human has for reaching for a target relatively far 
away, such as one meter away. This type of reach could be 
accomplished by bending at the hips and extending an arm 
toward the target without moving one’s feet, so the pelvis barely 
moves. Another option is to take a step towards the target and 
extend the arm so the torso can remain more upright, resulting in 
a pelvis displacement of many centimeters. Since reaches 
towards targets over about 0.7 meters away have these two 

 
FIGURE 6: AVERAGE WRIST SPEED DURING REACH 
MOTION VERSUS EUCLIDEAN DISTANCE BETWEEN WRIST 
START AND END POSITIONS. 

 
FIGURE 7: NETWORK OUTPUT LOSS ON THE TRAIN AND 
TEST SETS OVER EPOCHS OF TRAINING. 
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options, the network less accurately predicts pelvis 
displacement. Neck orientation prediction is also a challenge 
since the human doesn’t always look at the reach target. Plots of 
pelvis displacement prediction error and quaternion element 
prediction error such as fig. 8 and fig. 9 for the right arm are 
nearly same as for the left arm, resulting in the same conclusion 
about the plateau in network loss on the test set. 

 
3.2 Predication Accuracy 

The goal of this work was development of a method of 
predicting human motion sequences. Therefore, the accuracy of 
the predicted sequence relative to actual motion sequences is a 
primary concern. One metric for assessing prediction accuracy is 
the Euclidean error between the predicted reaching wrist location 
and the target at the end of each motion, denoted reach position 
error herein. Table 3 shows the reach position error averaged 
over samples from the test set for the left and right networks and 
combined results for the final step of the sensed and predicted 
sequences. The 2nd and 3rd columns show error in sensed and 
predicted wrist position, each relative to the true reach target 
described in subsection 2.2. The 4th column shows error between 
sensed and predicted position. The 80% trimmed mean was used 
to exclude data in the lower and upper 10% which may be 
outliers due to error in sensing. These statistics show 10.6 cm 
error between the final wrist position in predicted sequences and 
the reach target. The recorded data also show average sensor 
wrist measurement error of 10.2 cm from the tracking system. 

Since the average sensor wrist errors from the recorded dataset 
are nearly as large as the error of the predicted motion, 
inaccuracy of the sensing system used to generate the datasets 
contributes significantly to inaccuracy in predictions generated 
by the networks. As mentioned earlier, the difficulty in 
predicting pelvis displacement is another source of prediction 
error. Fig. 10 shows an example of an actual and predicted 
human pose sequence. The lower five subplots show the 
prediction of quaternion elements closely matches the actual. 
The top subplot shows pelvis displacement, indicating a 
prediction error of about 3cm in the x direction at the end of the 
sequence. 

Prediction error along entire motion sequences, not just the 
final sequence step, also provides insight into the usefulness of 
this method for motion prediction. Table 4(A) shows errors 
between the predicted and actual pose, averaged over all human 
joints/links, all time steps, and all sequences in the test set, 
considering the post-processed network output as the predicted 
and the raw test set samples as the actual, meaning predicted and 
actual both use a time scale and not a phase scale. The second 
column shows the Euclidean norm joint errors averaged over all 
human joints. The third column shows the Euclidean norm 
between quaternion elements per human link quaternion, and 
fourth column shows Euclidean norm between link roll-pitch-

 
FIGURE 8: L2 ERROR BETWEEN PREDICTED PELVIS AND 
ACTUAL PELVIS LOCATION ON THE TRAIN AND TEST SETS.  

 
FIGURE 9: L2 ERROR BETWEEN PREDICTED QUATERNION 
ELEMENTS AND ACTUAL QUATERNION ELEMENTS, PER 
HUMAN LINK, ON THE TRAIN AND TEST SETS. 

 
FIGURE 10: PREDICTED AND ACTUAL SEQUENCES FOR 
THE HUMAN POSE ELEMENTS FOR A LEFT ARM REACH. 

Table 3. Trimmed mean (80%) position error between wrist and 
reach target at the end of reach motions, averaged over all samples. 

Side 
Sensor (camera) 
Wrist Error (cm) 

Predicted Wrist 
Error (cm) 

Predicted/Sensed 
Difference (cm) 

Left 9.2 9.8 7.7 
Right 11.3 11.4 8.3 

Combined 10.2 10.6 8.0 
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yaw, averaged over all human links. Table 4(B) shows the error 
comparison between the network output without post-processing 
and the test set samples after pre-processing, meaning the 
predicted and actual sequences both use the phase scale instead 
of a time scale. The average error between predicted and actual 
joint locations averaged over all joint locations and all sequences 
in the test set was 7.6 cm with the time scale and 5.8 cm with the 
phase scale. The error in Euclidean norm of roll-pitch-yaw 
averaged over all links, time steps, and test set sequences was 
0.301 radians when using the time scale and 0.198 radians with 
the phase scale. Smaller phase scale errors than time scale errors 
indicate that timing of motions makes the poses less predictable. 
However, the time scale results are more realistic since the 
method output is a time-series of predicted human poses. Table 
4 also shows error in the L2 norm of quaternion differences, but 
it is less interpretable than roll-pitch-yaw since quaternion 
elements have mixed units.   

While the position and orientation errors are larger than 
desired, they are comparable to the result in a recent work on 
human motion prediction for activities in the Human3.6M 
dataset over a one second horizon [12]. The method herein 
provides a significant advantage in that generated predictions are 
over a considerably longer time horizon than other recent works. 
Prior works predict the next iteration based on prediction at the 
current iteration. This causes prediction error to increase 
exponentially as the prediction horizon increases, so prior works 
don’t report prediction error beyond a one second horizon. The 
method herein predicts over the entire duration required for a 
human to reach for a target location, which was up to 3.5 seconds 
for recorded motions.  

 
3.3 Implementation into HRC System 

When the method herein is part of a larger HRC system, 
such as in fig. 1, it can be triggered to generate a prediction once 
a reaching target is received. This method can also predict 
continuously while motions are in progress. Since there is a 
separate network to predict left and right arm motions, this 
method must be accompanied by an algorithm that predicts 
which arm will perform the reach motion. One possibility is to 
assume that if the reach target is to the right of the pelvis, then 
predict motion for the right arm, otherwise predict for the left 
arm. If the person is currently holding a piece with one arm, then 

it can be assumed that the reach will be performed with that arm. 
An advantage of the method herein is prediction inference in less 
than 2 milliseconds. This was the performance on an Intel i9 
computer with an Nvidia RTX3070 GPU, using the GPU for 
model inference and CPU for pre/post processing of data. This 
means that if the actual human motion starts to deviate from the 
prediction while reaching for a target, this method can rapidly 
predict a new, more accurate prediction. Deviations requiring 
rapid updates could include changes in poses, timing, right/left 
arm usage, or change of target. 

Fig. 11(B-E) shows a more realistic scenario of moving a 
piston-rod assembly from a fixture on the table to an engine 
block in chronological order. It shows an initial, final, and two 
intermediate actual and predicted human poses. The human is 
represented as the blue and orange collections of cylinders 
corresponding to actual and prediction, respectively. The engine 
parts are shown as small and large green boxes corresponding to 
a piston-rod assembly and engine block, respectively. Fig. 11(A) 
shows the engine block in the lower part of the image and piston-
rod assembly in the upper right corner, from the human’s 
perspective. The reaching target for the right arm is shown as the 
red sphere over the engine block. Fig. 11(A) also shows the right 
wrist trajectory as a dashed blue arrow. Fig. 11 shows the method 
herein predicted a sequence that closely matched both the pose 
and timing of the actual sequence.  

 
4. CONCLUSION 

In summary, this work developed a neural network and 
pre/post processing to predict sequences of human poses for 
reaching motions in an HRC workcell.  The input to the method 
is the human’s current pose and the reaching target for either the 
left or right wrist. A key advantage of this method is ability to 
predict motion over the entire duration of a reach motion, up to 
3.5 seconds in train/test set motions. The method herein does not 
suffer from exponential propagation of errors experienced by 
 

 
A 

    
B C D E 

FIGURE 11: (A) ENGINE BLOCK AND PISTON-ROD 
ASSEMBLY. (B-E) FOUR TIME STEPS FROM A PREDICTED 
AND ACTUAL MOTION SEQUENCE IN INCREASING TIME 
FROM IMAGE B TO E. 

Table 4. Trimmed mean (80%) of L2 norm of difference between 
predicted and actual joint locations, quaternions, and roll-pitch-yaw 
over all human links and all time steps of all test set sequences, with 
two comparisons, A and B.  
A. Post-processed network output vs. raw test set samples 

Side 
Avg. Joint Error 

(cm) 
Avg. Quaternion 

Error 
Avg. RPY Error 

(radians) 
Left 8.3 0.113 0.325 

Right 7.6 0.105 0.274 
Combined 7.6 0.105 0.301 
B. Raw network output vs. time-warped test set samples 

Left 6.3 0.074 0.205 
Right 5.8 0.071 0.190 

Combined 5.8 0.071 0.198 
 

orange-predicted blue-actual 
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prior works, limiting them to a horizon of 1 second. The method 
herein provides predicted human pose sequences for input to 
other robot control algorithms to permit proactive avoidance of 
humans. Proactive responses can mitigate production delays and 
reduce human discomfort in HRC. Future work will incorporate 
this method with proactive robot path planning and seek ways to 
reduce prediction error, such as improved sensing technology. 
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