Proceedings of the ASME 2023

International Design Engineering Technical Conferences and

Computers and Information in Engineering Conference

IDETC/CIE2023

August 20-23, 2023, Boston, Massachusetts

DETC2023-115309

PREDICTION OF HUMAN REACHING POSE SEQUENCES IN HUMAN-ROBOT

COLLABORATION
Jared Flowers Gloria Wiens
University of Florida University of Florida
Gainesville, FL Gainesville, FL
ABSTRACT qt> Qn»> 45, |Quaternions relating the world z-axis to the

In Human-Robot Collaboration (HRC), robots and humans
must work together in shared, overlapping, workspaces to
accomplish tasks. If human and robot motion can be
coordinated, then collisions between robot and human can
seamlessly be avoided without requiring either of them to stop
work. A key part of this coordination is anticipating humans’
future motion so robot motion can be adapted proactively. In this
work, a generative neural network predicts a multi-step
sequence of human poses for tabletop reaching motions. The
multi-step sequence is mapped to a time-series based on a human
speed versus motion distance model. The input to the network is
the human's reaching target relative to current pelvis location

combined with current human pose. A dataset was generated of

human motions to reach various positions on or above the table
in front of the human starting from a wide variety of initial
human poses. After training the network, experiments showed
that the predicted sequences generated by this method matched
the actual recordings of human motion within an L2 joint error
of 7.6 cm and L2 link roll-pitch-yaw error of 0.301 radians on
average. This method predicts motion for an entire reach motion
without suffering from the exponential propagation of prediction
error that limits the horizon of prior works.

Keywords: Human-Robot Collaboration, Human Motion
Prediction, Human-Robot Interaction

NOMENCLATURE

Single human pose, sequence of predicted
human poses, and actual human pose sequence.

h; le Hact

ew, Euclidean error between the reaching wrist (left
or right) and the target at time ¢ in the sequence.
By, Prgt Human pelvis location and reaching target

relative to B, in the world coordinate frame.

Qur» 9fL» qur, [human torso, neck, shoulder-shoulder vector,
drr left upper arm, left forearm, right upper arm,
and right forearm, respectively.
qi = Quaternion i of the human, where w; denotes
(w;, x;,v;,z;) |rotation angle and x;,y;,z; components to
denote elements of rotation vector.
0;, v; Rotation angle and vector that determine i*"
quaternion of the human.
By, Location of the reaching wrist (left or right) in
the world frame at time ¢.
D(i,)) Euclidian distance between the i** point in one

sequence and the j** point in another sequence.

W, Wk, Wk(i,j)

Warp path that maps elements of one sequence
to elements of another, an element of W which
has an i and j component for each sequence, and
either the i or j component of wy.

z Feature vector input to the neural network.
a(c,i,j) |Filter kernel input from node i,j in channel ¢
from the previous neural net layer.
o(c,i,j) |Output of node i,j in a channel ¢ in a layer of]

the neural network.

¢

Set of all learned neural network parameters.

VestsVact >Sxy

Wrist speed estimate, actual speed, and
standardized residual error of the estimate.

ep(Zt! ®e)

L1 error at time step t between the predicted
pose sequence generated by the neural network
and actual sequence from train/test samples.

1. INTRODUCTION
A challenge in human-robot collaboration (HRC) is

coordinating human and robot motion. In HRC, humans and
robots share a common workspace and work together in close
proximity to accomplish tasks, e.g. in manufacturing. In an HRC

1 © 2023 by ASME

cell, the less coordinated human and robot motion is, occurrence
of production delays and/or human discomfort becomes more
likely. In the case of suboptimal coordination, the robot may have
to stop and wait for the human to back away, causing production
delay. The robot may also take trajectories that make the robot
come close to the human, causing human discomfort and distrust
in the robotic system. To improve human-robot coordination and
avoid these problems, humans’ trajectories must be predicted so
robot motion can be adapted ahead of potential disruptions. In a
manufacturing setting, the location of parts is known or easily
determined, which provides the target for human reaching
motions. Therefore, the prediction is the sequence of human
poses generated from interpolations between the current pose
and reaching target. This work presents a method for predicting
a sequence of human poses based only on the human’s current
pose and the reaching target for the human’s left or right wrist.
Human motion can be predicted at high and low levels
within an HRC system. At the low level of prediction, a time
sequence of human poses is predicted. At the high level, coarse
human actions are classified, and the end point of human motion
can be predicted, but without time dependence. Zhang et al.
developed a recurrent neural network (RNN) architecture
including units for independent human parts for predicting the
end-point of human motion for a robot/human part handover [1].
Liu et al. used a Hidden Markov Model to generate a motion
transition probability matrix for predicting next human coarse
actions [2]. Maeda et al. proposed Probabilistic Motion
Primitives to predict human intent and generate a corresponding
robot motion primitive [3,4]. These methods can only provide
the end-point for human motion at best. They do not provide
details about the motion between start and end, limiting their
potential to adapt robot motions to avoid predicted disruptions.
Previous works on predicting time sequences of human
poses, meaning the motion between start and end, in a
manufacturing domain have used filters and/or RNNs. Mainprice
et al. fit Gaussian Mixture Models (GMMs) to many recordings
of human reaching motions and predicted future motion with the
GMMs [5]. Wang et al. used an autoregressive integrated moving
average model applied to the elbow and wrist angles to predict
human tabletop reaching motions [6]. Kanazawa et al. used
Gaussian Mixture Regression (GMR) with Expectation
Maximization to learn a model of human motion online [7]. Liu
and Liu used an RNN to model human motion and used a
modified Kalman filter to adapt RNN layer weights online [8].
Li et al. used a multi-step Gaussian Process Regression and
previously recorded human trajectories to predict human
reaching motion online [9]. Callen et al. developed a database of
human motion models using Probabilistic Principal Component
Analysis (PPCA) [10]. In many of these methods, the model
predicts the next step based on the current step and then
subsequent predictions are based on the previous prediction.
Therefore, if there is a small error in predicting a relatively
immediate step, that error will propagate through the prediction
and result in exponential increase in error as the prediction
horizon increases. Some of these works, such as GMMs and

PPCA require a database of human trajectories which in turn
requires computation time to compare current motion to a record.
Other state of the art human motion prediction methods have
demonstrated good results for predicting human motion in
general activities, such as walking and eating, represented in the
Human3.6M dataset. Martinez et. al utilized a sequence-to-
sequence architecture, which is an RNN with gated recurrent
units (GRUs) that takes a sequence of recent poses and generates
a predicted sequence of future poses [11]. Mao et al. encoded
human pose trajectories using the Discrete Cosine Transform
(DCT) and then used a Graph Convolutional Network which
predicts future DCT coefficients based on a sequence of DCT
coefficients [12]. Li et al. utilized a neural network consisting of
encoders that use convolutional layers to generate hidden states
based on long and short term input sequences and then use two
fully connected layers to decode hidden states into pose
sequences [13]. These methods generate predictions iteratively,
causing exponential divergence of the prediction from the true
trajectory over the time horizon. Therefore, they limit error
analysis to predictions within a 1 second horizon. Such a short
prediction horizon is infeasible for a manufacturing HRC setting
where human motions are typically many seconds in duration.

The method herein uses a neural network to predict a
sequence of human poses considering only the current human
pose and reaching target as input. This method is designed to
prevent the problem of error propagation over a long prediction
horizon. The first step of this method is to warp the time scale of
human motion observations in the training data to a
dimensionless phase scale so each training sample shows
consistent timing of changes in human pose elements. After
conditioning the training data, a generative neural network is fit
to the training data. The neural network assembled in this work
is inspired by generator networks in Generative Adversarial
Networks (GANs) [14,15]. Once the network is trained, it is used
to predict a multi-step sequence of human poses. To use the
prediction in the time domain, linear interpolation is used to
match the multi-step prediction to a sequence having duration
based on the anticipated human average speed.

The novelty of this work is development of a neural network
and data pre/post conditioning to generate a predicted human
pose sequence over a horizon of multiple seconds based only on
the current human pose and relative reach target. This method
utilizes the repetitiveness of human motion in manufacturing by
considering the reaching target as an input. This method is
unique in representing the human pose with quaternions so
human link dimensions are preserved and the neural network
inputs are continuous, enabling better network fit. Other
representations are either not continuous or allow link lengths to
change instantaneously. The method herein can also generate a
prediction in real-time (faster than 30Hz) over a long horizon
without suffering from exponential propagation of error that
occurs with other works. This method is also trained and predicts
based on data collected with a depth camera-based skeleton
tracking system. Other methods utilize a more precise motion
capture system for human tracking but require wearable sensing
equipment, making them infeasible for a manufacturing setting.

2 © 2023 by ASME

The output of the method herein can be used as an input to
proactive-n-reactive robot algorithms to avoid anticipated, time-
varying delays. Fig. 1 shows how this human motion prediction
method, shown by the large blue block, fits into the control
scheme for a robotic system in an HRC workcell. The robot
considers the task goal and a predicted time-sequence of human
motion to plan robot motion that accomplishes the goal while
avoiding the human. The robotic system then uses a safety
controller to adjust robot speed or stop the robot along the
planned path if the robot gets too close to the human. In the
robotic system, real-time human pose is captured by the workcell
sensor suite. A new human motion prediction can then be
generated based on the human’s reaching target (e.g. part to pick
up) and current human pose. Targets can be determined by
existing methods that locate objects based on image inputs [16].
The remaining sections of this paper are organized as follows: 2)
methods, 3) results, and 4) conclusions. Section 2 is further
divided into subsections: 2.1) human pose representation, 2.2)
collection of training data, 2.3) preconditioning of the training
data, 2.4) network architecture, and 2.5) postconditioning output
to a time sequence of poses. Section 3 is divided into subsections:
3.1) training results, 3.2) prediction accuracy, and 3.3)
implementation into an HRC system.

2. METHODS

The method in this work is composed of five parts. First,
human pose is represented as pelvis cartesian location and a set
of quaternions that relate each human link to the world z-axis.
Second, a dataset is collected in which many iterations of various
human motions are recorded as the human reaches to various
target locations. Third, the recorded data are conditioned to have
a consistent phase scale instead of a time scale to improve neural
network training. Fourth, a neural network is created to predict a
multi-step sequence of human poses the human will pass through
to reach for a target, given the target and current human pose as
input. Fifth, the network output is post processed to have a time
scale that matches the estimated duration of human motion based
on average motion velocities from the recorded data.

2.1 Human Representation

The human pose in this work is the stacked vector of the
human pelvis location and the seven quaternions that define the
axis for the torso, neck, shoulders, upper arms, and forearms:

planned
robot robot motion

current T ®
human
pose

SEnsors
HRC workeell

sequence

FIGURE 1: CONTROL BLOCK DIAGRAM FOR A ROBOTIC
SYSTEM IN AN HRC WORKCELL.

T
h = [Ppﬂ 9t 9nr 9s) QuL, qur qQur, qu] . (1)

The cartesian pelvis location, P,, is defined in the world
coordinate frame. The gy, ..., qfg are the human link quaternions,
shown in Table 1 and fig. 2(A). Human link lengths and radii are
required to fully define the volume each human link occupies.
The method herein considers those parameters as constants
determined a priori by the tracking system. The quaternions
define a rotation about a vector to align the world z-axis with
each human link’s axis:

qi = <WL'J xi:yi;zi); (2)

where the subscript i indicates one of the human link
quaternions, as in (1) and Table 1. The quaternion elements are
determined from a rotation angle (8;) and the unit vector (v;)
about which rotation is defined:

w; = cos (%),[xi,yi,zi] = sin (%) v;. 3)

The world frame z-axis would align with human link i if it
were rotated by 6; about v;. Fig. 2(B) shows an example of the
rotation angle and vector to align the world z-axis with the right
forearm. Fig. 2(B) also shows the arm generalized to a cylinder
for use by collision detection and path planning algorithms.
Considering other possible angle/axis rotation representations,
such as roll-pitch-yaw for example, the quaternion
representation seems best suited for use with a neural network

Table 1. Links of the human kinematic chain.

Proximal Link
Link Description Joint Distal Joint | Quaternion
1 Torso/Spine Pelvis Spine q:
2 |Neck Spine Shoulder MP qn
3 Shoulder- Shoulder [Shoulder MP |Shoulders qs

Left
4 |Left Upper Arm Shoulder Left Elbow QuL
5 Left Forearm Left Elbow |Left Wrist qrL
. Right .

6 |Right Upper Arm Shoulder Right Elbow qur
7 |Right Forearm Right Elbow |Right Wrist qfr

FIGURE 2: (A) LINKS OF THE HUMAN KINEMATIC CHAIN.
(B) ROTATION ANGLE AND AXIS FOR THE RIGHT FOREARM
QUATERNION AND CYLINDER LINK REPRESENTATION.

3 © 2023 by ASME

because quaternion elements are bounded between -1 and 1. The
quaternion elements will also be continuous as the human
moves. In contrast, the roll-pitch-yaw is either bounded but with
discontinuity at +m radians, or without discontinuity but
allowing angles to tend toward to0. An example of this problem
would occur if the human extended an arm outward and repeated
full rotations of the arm about the shoulder. While it is physically
impossible for a human joint to do a full revolution due to muscle
and joint limits, sensing systems can perceive multiple full
revolutions. Therefore, the quaternion representation is used to
allow for the perception of full revolutions of human joints.

2.2 Collection of the Training Dataset

To amass a dataset of human motions, human pose was
recorded while performing a variety of tabletop reaching tasks.
Over 1,750 motion sequences were recorded per each arm. Each
reaching motion had a target wrist cartesian location. An array of
targets of known 3D positions was selected to cover the
workspace in front of the human in the robotic cell, shown in fig.
3. Tabletop level targets are shown as green circles. The tips of
rods extending upward from the table at each green circle by 15,
30, and 45 cm were used to create clevated targets, shown by
blue rectangles. Human joint locations were tracked, using the
two depth cameras circled in red in fig. 3, and converted into the
quaternion representation via the method in [17]. The targets are
in the range x € [-0.6,0.6], y € [0,0.6], z € [0,0.5] meters,
with the human standing near the edge of the table near
[x,v, 2] =[0,0.8,0]m. For reference, the tabletop height is z =
0 meters. For each arm, motions included reaches to targets on
both left and right sides of the pelvis to include some cross body
motions. For reaches over long distances, motions could require
the human to walk more than one step to reach the target. In this
case, the prediction of motion may become significantly less
accurate because the human has many more options for potential
trajectories. Therefore, this work applies to human reaching
motions in a tabletop setting in manufacturing where objects the
human will interact with are within about one meter of the pelvis.
For motions to objects more than one meter away, another
algorithm such as in [18] could be used to generate relatively
coarse predictions of occupancy at the expense of precision.

2.3 Conditioning of Training Data

The time required for humans to complete tasks likely varies
over each iteration of the task, possibly due to distractions or
tiring as work shifts progress. As humans reach for the same
target over many iterations, the poses in the recorded time-series
may be very similar, but will likely occur at different times
through the motion. If the time scale of the training data were
warped to have a consistent number of steps per sequence, then
the effect of varying timing would be minimized, making each
training record for a particular task as similar as possible. Trial
and error showed that matching the time scale of all records to a
common phase scale reduced the prediction error at the end of
network training. Therefore, Dynamic Time Warping (DTW),
specifically the FastDTW algorithm, was used to match all
training records to a common phase scale [19].

- Camera 26
.:3{

Elevated
Targets

FIGURE 3: HRC WORKCELL USED IN COLLECTING DATA
AND VALIDATION.

Consider two time-sequences of human poses, h; and h,,
both having the same time step. DTW outputs a mapping of time
steps in h; to time steps in h,, called a warp path which is
denoted W. DTW uses dynamic programming to find the
shortest warp path through a 2D grid where one dimension is the
time step index of h;, denoted i, and the other dimension is the
time step index of h,, denoted j. The path search starts from the
first index of h; and first index of h, and must end at the last
index of h; and last index of h,. Dynamic programming
iteratively determines a matrix the same size as the 2D h, by h,
grid which indicates the distance of the shortest warp path to
reach cell i,j from the start cell (i = 0,j = 0). The distance
matrix is updated iteratively according to:

D(i,j) =D(,)) 4
+min[DG —1,/),DG,j — 1), DG —1,j — 1)], 4

where D (i, j) is the Euclidean distance between the i data point
in h; and the jt" data point in h,:

D@, j) = [y (D) = R (DI. 6]

Dynamic programming iterations stop when the distance matrix
reaches steady state values. Then a greedy search of that matrix
finds the lowest cost warp path from start to end of h; and h,:

W = argmin Z¥_; D(wyi, wy;), (6)
{wq,...wg}

where wy (i,) is the k" step of warp path W, indicating the
mapping between i" element of h, and j* element of h,.
Therefore, wy; indicates the it" value of w;, and wy; indicates
the j*" value of wy. FastDTW improves the speed of standard
DTW by using a three-level approach for graph bisection to
reduce the dimension of the search grid.

To precondition the input data, the Euclidean error between
the reaching wrist and reaching target was determined across all
time steps of each recorded motion sequence:

ey, = ||Pwt - Ptgt”, E, = [ew, ...,ewtend] (7

where B, is the position of the reaching wrist, either left or right,
and ey, is the wrist position error at timestep t and Py, is the

4 © 2023 by ASME

target wrist location. Then, per each recording, error was scaled
so error is one at the start of motion and zero at the end of motion:

E, =— fw (8)

Wunit _
Westart ~ Vtena

where E,, . is the unitized error for the series of poses.

Plots of E,, . versus time revealed most errors followed a
decreasing sigmoid shaped curve. Therefore, a desired error
curve was taken to be approximately the average of unitized error
curves from all recorded motions, given by:

! t €[0,1]. 9)

desired 1+exp(—10t+4.5)’

FastDTW was then used to determine the optimal mapping
between the timesteps in the unitized error curve for each motion
sample (E,,, ..) and the desired error curve (Egesireq)- Fig. 4
illustrates the warping of a sample’s time scale by FastDTW. The
orange dotted line is the desired error curve, blue dashed line is
the observed error curve from the raw motion sample, and solid
green line is the error curve after warping the time scale of the
raw motion to match the desired curve. The black arrows show
how FastDTW matches points in the raw error curve to points in
the desired error curve. After the records’ time scales were
warped, then each record is down sampled to 10 points evenly
spaced along the warped time scale, which will be called the
phase scale herein. The phase scale indicates a percentage of
reach motion completion at which a pose occurs. Trial and error
showed that a sequence of 10 poses nearly matched the original
sequence, but more poses did not improve accuracy. Now each
training record presents a change in pose elements with more
consistent scale than the raw samples.

2.4 Neural Network Architecture and Training

A neural network was assembled to predict a 10-step
sequence of future human poses based on the current pose and
human reaching target:

H, = f(z,¢), (10)

where H,, denotes the set of 10 sequential human poses for the
prediction and ¢ are the network parameters. The prediction is

=
o
]

e —— time-warped
0.8 H desired
’ ‘e ---- actual
0.6 . P <= mappings

Gy

e
'S

Wrist/Target Normalized Error
o
[\S]

o
o
ﬁf
i

0.0 0.2 0.4 0.6 0.8 1.0
Time (normalized to 1 second duration)

FIGURE 4: WARPING ACTUAL WRIST/TARGET ERROR TO
THE DESIRED ERROR CURVE.

10 steps long because 10 poses nearly matched the actual
sequence and increasing the number of poses didn’t significantly
improve error. The z is the vector input to the network given by:

z=[Pegeh]", (11)

where P, is the reaching target relative to the human’s current
pelvis location and h is the current human pose represented by
pelvis location and quaternions. A separate neural network is
used for predicting left arm reaches and right arm reaches. Trial
and error led to the conclusion that separate networks reduced
the difference between actual and predicted motions. The left
arm network predicts pelvis location and quaternions for the
torso, neck, shoulders, left upper arm, and left forearm. The right
arm network predicts pelvis location and quaternions for the
torso, neck, shoulders, right upper arm, and right forearm. When
using either network, it is assumed that pose elements not
predicted by the network (opposing upper arm and forearm
quaternions) are held constant throughout the motion.
Implementation of the left and right networks is discussed in
subsection 3.3. Each neural network outputs a 10 X 23 matrix
where each row is a phase step in the motion prediction. The
columns correspond to the pelvis coordinates or quaternion
elements in the human pose representation required for reaches
with either left or right arm.

The network architecture is inspired by the generator
network in a GAN [14,15]. The generator neural network in this
method is a sequence of five transposed convolution layers as
shown in Table 2 and fig. 5. In fig. 5, the input vector consisting
of cartesian reaching target and current human pose is shown at
the left. The blue blocks indicate the relative shape of the output
of each network layer, with the text over the blocks indicating
matrix size in the order: channels, height, width. The layer
operation is indicated in the text below the blue blocks. The
transposed convolution layers indicate the size of convolution
kernel, kernel stride, and input padding in the format: height by
width. The layer operations also indicate the activation function
used by the layer, further explained below. A hyperbolic tangent
activation function followed by network normalization of the
human pose quaternions output is applied to the output of the
final convolution layer. Each quaternion in the pose must have
an L2 norm of 1 unit, so the human pose quaternions in each
phase step of the network output are normalized.

Transposed convolutional layers generate output of larger
height and/or width than that of the layer input. This property
allows the network to generate a predicted pose sequence of
higher dimension than the input vector. The transposed
convolution layers convolve a filter kernel over the layer input
to produce the layer output. The filter kernel is a matrix having
height and width indicated in fig. 5. Filter kernel elements are
learned dynamically by backpropagating network output error.
The kernel is convolved with the input by shifting the kernel by
the stride width across columns and stride height across rows and
performing the sum of elementwise multiplication between the
kernel and input at each kernel position. Each element of the
transpose convolution layer output is determined by:

5 © 2023 by ASME

Table 2. Neural network layers.

Input | Kernel Padding| Output
Size Size |[Stride| (h,w) Size
Layer| Description (c,h,w) | (h,w) [(h,w) (c,h,w)
1| Conv. Transpose | 26,1,1 | (3,6) |(1,1)| None | 256,3,6
2| Conv. Transpose | 256,3,6 | (3,3) | (L,L1)| (1,1) | 128,3,6
3| Conv. Transpose | 128,3,6 | (3,3) [(2,2)| (1,1) | 64,511
4| Conv. Transpose | 64,5,11 | (3,3) |(2,2)| None | 32,10,23
5| Conv. Transpose [32,10,23| (3,3) |(1,1)| (1,1) | 1,10,23
6| Tamh,L2 14553 | - | L1023
quaternion norm
1.10.23 9 1 | pose
Y output | [2 [pose
32,1023 1102313 T
26,1.1 gl
] “ [10f pose
£
2
ki 1283 6
]
]
(an]
[a] LY tanh+
2 L 3
2 Layer 2 3)% ?{remel R
= 3x3 kernel |[2x2 stride
S I1x1 stride [1x1 padding
= 1x1 Ejaddmg SEL}()J .
S |{Layer 1 SEL Layer 4 Layer 5
—|3x kernel 3x3 kemel | 13037 dmel
1x1 sg(lic_le %ﬁz g‘dr(li‘lig - 1x1 stride
no padding 1
flo padding SRPl ES:EL E?ddmg

FIGURE 5: NEURAL NETWORK ARCHITECTURE FOR
PREDICTING HUMAN POSE SEQUENCES.

cg kj kj

Z z Z ke, (i, j,m)a(m, n;s; + i,n;s; +), (12)

m=0i=0 j=0

where k. (i,j,m) is the element at row i, column j, channel m
of the kernel for output channel ¢, [20]. The s; and s; indicate
the stride width (rows) and height (columns), respectively. The
n; and n; indicate the number of kernel strides that have occurred
along the height and width of the input, respectively. The
a(m,n;s; + i,n;s; + j) indicates the layer input at row n;s; + i,
column n;s; + j for input channel m and c; is the number of
input channels. The kernel sizes, stride, and padding were
selected to expand the network input into a matrix having shape
10 x 23 for output sequences with 10 phase steps. The number
of channels in the output of each layer was found by trial and
error. The number of channels in subsequent convolution layers
were selected to be half that of the preceding convolution layer.
Adding channels to the output of the first convolution layer
reduced test set loss, but with diminishing returns over 256.

Batch normalization is applied after each convolution layer
to improve the stability of network parameters while training
[21]. The Scaled Exponential Linear Unit (SELU) is applied
after each batch normalization operation [22]. The SELU
activation function was selected to prevent exploding gradients

and vanishing gradients by including a term for a positive
gradient when its input is less than zero. Exploding gradients
cause network parameters and outputs to tend toward infinite
values. Vanishing gradients cause the gradients resulting from
network output error to diminish as the error is backpropagated,
so the gradient becomes too small to train layers near the input.
Other activation functions, such as the Rectified Linear Unit
(ReLU) and LeakyReLU, were also tested, but the SELU
produced lower network loss at the end of network training.

When training the network weights, the prediction output by
the network is compared to the actual sequences of future human
poses from the conditioned training data. Since the network
predicts a 10-step sequence of poses, 10 poses evenly spaced
along the phase scale are taken from each training sample for
comparison with the network output. The L1 (absolute) error
between the predicted sequence (H), after training iteration t)
and actual sequence is used as the network loss function:

ep(Ztt¢t) =Z|Hp_Hact|a (13)

where the summation is over all matrix elements; meaning across
all channels, and height and width of each channel. The network
parameters are adjusted based on the error using the Adam
gradient-based optimizer and backpropagation [23]. For each
network layer, the partial derivative of the “layer output” w.r.t.
network parameters is determined from chain rule: product of the
partial derivative of the “layer output” with respect to each SELU
activation function and the partial derivative of the SELU
activation function with respect to each network parameter.
Backpropagation uses the partial derivates of layer outputs w.r.t.
network weights to determine the effect the network loss should
have on adjusting the network parameters using a form of
gradient descent, such as the Adam optimizer.

2.5 Post Processing for Time-Series Prediction

The output of the neural network is the predicted sequence
of human poses evenly spaced throughout a human task, but
having a phase scale, not a time scale. Therefore, the 10-step
prediction is interpolated to generate a prediction of a duration
matching the anticipated duration of the human reaching motion.
From the dataset of reaching motion human pose sequences, a
relationship is observed in the scatter plot of the average speed
during the reach motions versus distance between start and end
wrist positions for the motion, shown as blue dots in fig. 6. Fig.
6 also shows the mean (i, black dashed line) and the mean + two
standard deviations (+20) (red line, shaded area) of the wrist
speed as a function of reach distance. The line for mean wrist
speed shows slight curvature, indicating a quadratic function will
likely fit the speed (v,s) versus reach distance relationship
better than a straight line. The quadratic best-fit line was:

Vo = —0.214d? + 0.659d — 0.0176, (14)

where d is the distance in meters between start and end wrist
positions. The best-fit line is shown as solid green in fig. 6. To
ensure the best-fit line was not skewed by outliers, the modified
Thompson-Tau method was used to omit outlier points. Speed

6 © 2023 by ASME

versus distance points whose standardized residual error were
greater than two and whose neighbor points had residual error
0.5 less than it were rejected one at a time until no outliers met
that criterion. This criterion is defined as:

2
— , yn —
|vestl "actl| > 2’ Sxy — 1_1(Vestl Uactl) , (15)

Xy n-2

where Sy, is the standardized residual error of the estimate,
subscript i indicates the i*" data point, Vgct; is the observed
speed, and n is the number of data points less previously rejected
outliers. Since wrist speed can be predicted as v,z by (14), the
estimated duration of the motion can be predicted according to:

[IPw—=Pegtll
Lest = % (16)
est
The number of time steps generated by interpolating the 10-step
prediction is then N =t,/dt, where dt is the desired
prediction time resolution.

3. RESULTS
3.1 Network Training

To evaluate the success of training the neural network, the
collected samples of pose sequences during reaching motions
were randomly divided among a train set and a test set, having
80% and 20% of the total samples, respectively. The neural
network was allowed 3000 epochs of training. In each epoch, the
network parameters were adjusted based on the error in (13).
During training, a batch size of 32 samples was used to reduce
training time. The lower two curves (blue and red lines) in fig. 7
correspond to the sum of L1 error between the predicted and
actual sequences in the train set averaged over each epoch for the
left and right arm neural networks, respectively. At the end of
each epoch, the network inferred a predicted pose sequence
based on the start pose from each sample of the test set. The sum
of L1 errors between the predicted and actual sequences of the
test set are shown as the orange and green lines in fig. 7 for the
left and right arm neural networks, respectively.

Fig. 7 shows that loss on the train set continues to decrease
with diminishing returns after 3000 epochs, but loss on the test

1.0 —0.214x2
) . speed —— p*x20 —— +0.659x
-— ° -0.0176

o o o
IS o =)

©
N

reach average velocity (m/s)

o
0'%.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
distance between wrist start and end (meters)

FIGURE 6: AVERAGE WRIST SPEED DURING REACH
MOTION VERSUS EUCLIDEAN DISTANCE BETWEEN WRIST
START AND END POSITIONS.

set stopped decreasing after about 450 epochs. This indicates the
left and right networks overfit to the samples in the train set. The
models can accurately predict a sequence that has been used for
training but are much less accurate when predicting a sequence
from the test set. Therefore, the error between actual and
predicted pose elements was evaluated separately to determine if
the test set loss could be attributed to a particular pose element.
Fig. 8 shows the L2 error between the actual and predicted
pelvis location, averaged across all time steps of all samples in
the train and test sets for each epoch for the network for left arm
reaches. The orange line that plateaus at about 4 cm corresponds
to the test set, the blue line that continues to decrease is from the
train set, and the black dotted line is the average of the test set
loss over the last 10 epochs. This figure shows the test set loss
due to pelvis location reaches a minimum after about 350 epochs
and then rises to a slightly higher steady state loss. The increase
in loss after the minimum indicates that the pelvis location
features contributed significantly to the plateau in test set loss.
Fig. 9 shows the L2 norm of the difference in predicted and
actual quaternion elements for the torso, neck, left upper arm,
and left forearm, averaged over all time steps of all test set
samples for each epoch with the left reach network. Fig. 9 shows
a moving average of train set losses and test set losses as dashed
and solid lines, respectively, for each quaternion. To reiterate,
fig. 8 and 9 are showing the network loss from fig. 7 broken out
into individual pose elements. The test set losses for all pose
quaternions in fig. 9 plateaued after more epochs than the pelvis
location in fig. 8, with the exception of the neck quaternion (g,,).
Fig. 9 even shows quaternion test set losses are still slightly
decreasing after 3000 epochs. This means that the plateau in
summary test set loss after 450 epochs shown in fig. 7 can be
attributed to the challenge of learning pelvis displacements (fig.
8) and neck orientation (fig. 9) for reaching motions. Pelvis
displacement prediction is an anticipated challenge considering
the options a human has for reaching for a target relatively far
away, such as one meter away. This type of reach could be
accomplished by bending at the hips and extending an arm
toward the target without moving one’s feet, so the pelvis barely
moves. Another option is to take a step towards the target and
extend the arm so the torso can remain more upright, resulting in
a pelvis displacement of many centimeters. Since reaches
towards targets over about 0.7 meters away have these two

30

251 — train left — train right
test left — test right

200 avg last 10 avg last 10
left test loss right test loss

Per Sequence Step
L1 Loss (mixed units)

0 500 1000 1500 2000 2500 3000
Epochs

FIGURE 7: NETWORK OUTPUT LOSS ON THE TRAIN AND
TEST SETS OVER EPOCHS OF TRAINING.

7 © 2023 by ASME

avg last 10
test loss o

o

B
b

o
o

Per Sequence Step
Pelvis Pos. L2 Loss (cm)
N

500 1000 1500 2000 2500 3000
Epochs

FIGURE 8: L2 ERROR BETWEEN PREDICTED PELVIS AND
ACTUAL PELVIS LOCATION ON THE TRAIN AND TEST SETS.

0.20

— g T Qs
dn = QquL
dashed is train, solid is test

— n

o
=
=]

o
[
=1}

o
=
'S

o
=
N

=
o

e e

Per Sequence Step
Quaternion L2 Losses
&

o
=]
=)

o
o
B

0 500 1000 1500 2000 2500 3000
Epochs

FIGURE 9: L2 ERROR BETWEEN PREDICTED QUATERNION
ELEMENTS AND ACTUAL QUATERNION ELEMENTS, PER
HUMAN LINK, ON THE TRAIN AND TEST SETS.

options, the network less accurately predicts pelvis
displacement. Neck orientation prediction is also a challenge
since the human doesn’t always look at the reach target. Plots of
pelvis displacement prediction error and quaternion element
prediction error such as fig. 8 and fig. 9 for the right arm are
nearly same as for the left arm, resulting in the same conclusion
about the plateau in network loss on the test set.

3.2 Predication Accuracy

The goal of this work was development of a method of
predicting human motion sequences. Therefore, the accuracy of
the predicted sequence relative to actual motion sequences is a
primary concern. One metric for assessing prediction accuracy is
the Euclidean error between the predicted reaching wrist location
and the target at the end of each motion, denoted reach position
error herein. Table 3 shows the reach position error averaged
over samples from the test set for the left and right networks and
combined results for the final step of the sensed and predicted
sequences. The 2™ and 3" columns show error in sensed and
predicted wrist position, each relative to the true reach target
described in subsection 2.2. The 4" column shows error between
sensed and predicted position. The 80% trimmed mean was used
to exclude data in the lower and upper 10% which may be
outliers due to error in sensing. These statistics show 10.6 cm
error between the final wrist position in predicted sequences and
the reach target. The recorded data also show average sensor
wrist measurement error of 10.2 cm from the tracking system.

Since the average sensor wrist errors from the recorded dataset
are nearly as large as the error of the predicted motion,
inaccuracy of the sensing system used to generate the datasets
contributes significantly to inaccuracy in predictions generated
by the networks. As mentioned earlier, the difficulty in
predicting pelvis displacement is another source of prediction
error. Fig. 10 shows an example of an actual and predicted
human pose sequence. The lower five subplots show the
prediction of quaternion elements closely matches the actual.
The top subplot shows pelvis displacement, indicating a
prediction error of about 3cm in the x direction at the end of the
sequence.

Prediction error along entire motion sequences, not just the
final sequence step, also provides insight into the usefulness of
this method for motion prediction. Table 4(A) shows errors
between the predicted and actual pose, averaged over all human
joints/links, all time steps, and all sequences in the test set,
considering the post-processed network output as the predicted
and the raw test set samples as the actual, meaning predicted and
actual both use a time scale and not a phase scale. The second
column shows the Euclidean norm joint errors averaged over all
human joints. The third column shows the Euclidean norm
between quaternion elements per human link quaternion, and
fourth column shows Euclidean norm between link roll-pitch-

Table 3. Trimmed mean (80%) position error between wrist and
reach target at the end of reach motions, averaged over all samples.

Sensor (camera) | Predicted Wrist | Predicted/Sensed
Side | Wrist Error (cm) Error (cm) Difference (cm)
Left 9.2 9.8 7.7
Right 11.3 11.4 8.3
Combined 10.2 10.6 8.0
= Xact == Yest
% P Xest = Zact o=
wELO01{— Yac = Zest =
So0ow
ol R
a3 £ 0.01
o
5 1
8]
=
ER
g 0 == =
€
2 ¥
(]
]
o < o0 — ————
5 ¢ [———weme——e— —
E 9 0.51
L R
g 2 == -
o v 0.0
m— Wact tgo_s, —-<-T
T West B k0.0 —
= Xact = T==
T Xest §057 \\-__—
— Yact E@O_O— —
TT7 Yest T 8051 T e
Zact 0 2 4 6 8

time (seconds)

FIGURE 10: PREDICTED AND ACTUAL SEQUENCES FOR
THE HUMAN POSE ELEMENTS FOR A LEFT ARM REACH.

8 © 2023 by ASME

yaw, averaged over all human links. Table 4(B) shows the error
comparison between the network output without post-processing
and the test set samples after pre-processing, meaning the
predicted and actual sequences both use the phase scale instead
of a time scale. The average error between predicted and actual
joint locations averaged over all joint locations and all sequences
in the test set was 7.6 cm with the time scale and 5.8 cm with the
phase scale. The error in Euclidean norm of roll-pitch-yaw
averaged over all links, time steps, and test set sequences was
0.301 radians when using the time scale and 0.198 radians with
the phase scale. Smaller phase scale errors than time scale errors
indicate that timing of motions makes the poses less predictable.
However, the time scale results are more realistic since the
method output is a time-series of predicted human poses. Table
4 also shows error in the L2 norm of quaternion differences, but
it is less interpretable than roll-pitch-yaw since quaternion
elements have mixed units.

While the position and orientation errors are larger than
desired, they are comparable to the result in a recent work on
human motion prediction for activities in the Human3.6M
dataset over a one second horizon [12]. The method herein
provides a significant advantage in that generated predictions are
over a considerably longer time horizon than other recent works.
Prior works predict the next iteration based on prediction at the
current iteration. This causes prediction error to increase
exponentially as the prediction horizon increases, so prior works
don’t report prediction error beyond a one second horizon. The
method herein predicts over the entire duration required for a
human to reach for a target location, which was up to 3.5 seconds
for recorded motions.

3.3 Implementation into HRC System

When the method herein is part of a larger HRC system,
such as in fig. 1, it can be triggered to generate a prediction once
a reaching target is received. This method can also predict
continuously while motions are in progress. Since there is a
separate network to predict left and right arm motions, this
method must be accompanied by an algorithm that predicts
which arm will perform the reach motion. One possibility is to
assume that if the reach target is to the right of the pelvis, then
predict motion for the right arm, otherwise predict for the left
arm. If the person is currently holding a piece with one arm, then

Table 4. Trimmed mean (80%) of L2 norm of difference between

predicted and actual joint locations, quaternions, and roll-pitch-yaw
over all human links and all time steps of all test set sequences, with
two comparisons, A and B.

A. Post-processed network output vs. raw test set samples
Avg. Joint Error| Avg. Quaternion | Avg. RPY Error

Side (cm) Error (radians)
Left 8.3 0.113 0.325
Right 7.6 0.105 0.274
Combined 7.6 0.105 0.301
B. Raw network output vs. time-warped test set samples
Left 6.3 0.074 0.205
Right 5.8 0.071 0.190
Combined 5.8 0.071 0.198

it can be assumed that the reach will be performed with that arm.
An advantage of the method herein is prediction inference in less
than 2 milliseconds. This was the performance on an Intel i9
computer with an Nvidia RTX3070 GPU, using the GPU for
model inference and CPU for pre/post processing of data. This
means that if the actual human motion starts to deviate from the
prediction while reaching for a target, this method can rapidly
predict a new, more accurate prediction. Deviations requiring
rapid updates could include changes in poses, timing, right/left
arm usage, or change of target.

Fig. 11(B-E) shows a more realistic scenario of moving a
piston-rod assembly from a fixture on the table to an engine
block in chronological order. It shows an initial, final, and two
intermediate actual and predicted human poses. The human is
represented as the blue and orange collections of cylinders
corresponding to actual and prediction, respectively. The engine
parts are shown as small and large green boxes corresponding to
a piston-rod assembly and engine block, respectively. Fig. 11(A)
shows the engine block in the lower part of the image and piston-
rod assembly in the upper right corner, from the human’s
perspective. The reaching target for the right arm is shown as the
red sphere over the engine block. Fig. 11(A) also shows the right
wrist trajectory as a dashed blue arrow. Fig. 11 shows the method
herein predicted a sequence that closely matched both the pose
and timing of the actual sequence.

4. CONCLUSION

In summary, this work developed a neural network and
pre/post processing to predict sequences of human poses for
reaching motions in an HRC workcell. The input to the method
is the human’s current pose and the reaching target for either the
left or right wrist. A key advantage of this method is ability to
predict motion over the entire duration of a reach motion, up to
3.5 seconds in train/test set motions. The method herein does not
suffer from exponential propagation of errors experienced by

’ erst
: ,Traj ectory

...........

orange-predicte

blue-actual

@
B C D E

FIGURE 11: (A) ENGINE BLOCK AND PISTON-ROD
ASSEMBLY. (B-E) FOUR TIME STEPS FROM A PREDICTED
AND ACTUAL MOTION SEQUENCE IN INCREASING TIME
FROM IMAGE B TO E.

9 © 2023 by ASME

prior works, limiting them to a horizon of 1 second. The method
herein provides predicted human pose sequences for input to
other robot control algorithms to permit proactive avoidance of
humans. Proactive responses can mitigate production delays and
reduce human discomfort in HRC. Future work will incorporate
this method with proactive robot path planning and seek ways to
reduce prediction error, such as improved sensing technology.

ACKNOWLEDGEMENTS

Funding was provided by the NSF/NRI: INT: COLLAB:
Manufacturing USA: Intelligent Human-Robot Collaboration
for Smart Factory (Award 1.D. #:1830383). Any opinions,
findings and conclusions or recommendations expressed are
those of the researchers and do not necessarily reflect the views
of the National Science Foundation.

REFERENCES

[1] Zhang, J., Liu, H., Chang, Q., Wang, L., Gao, R. X,
2020. “Recurrent Neural Network for Motion Trajectory
Prediction in Human-Robot Collaborative Assembly.” Cirp
Annals-Manufacturing Technology. 69(1): 9-12. DOI
10.1016/j.cirp.2018.04.066.

[2] Liu, H.,and Wang, L. 2017. “Human Motion Prediction
for Human-Robot Collaboration.” J. Manuf. Sys 44: 287-94.
DOI:10.1016/J.JMSY.2017.04.009.

[3] Maeda, G.J., Ewerton, M., Lioutikov, R.,Amor, H.B.,
Peters, J., and Neumann, G. “Learning Interaction for
Collaborative Tasks with Probabilistic Movement Primitives.”
Proc. of the IEEE-RAS ICHR, 2014, pp. 527-534.
DOI:10.1109/HUMANOIDS.2014.7041413.

[4] Maeda, G.J. Neumann, G., Ewerton, M., Lioutikov, R.,
Kroemer, O., and Peters, J. 2017. “Probabilistic Movement
Primitives For Coordination Of Multiple Human—Robot
Collaborative Tasks.” Autonomous Robots. 41: 593-612.
DOI:10.1007/s10514-016-9556-2.

[5] Mainprice, J., and Berenson, D. 2013. “Human-Robot
Collaborative Manipulation Planning Using Early Prediction of
Human Motion.” In Proc. of the IEEE/RSJ IROS, 2013, pp. 299—
306. DOI:10.1109/IROS.2013.6696368.

[6] Wang, Y., Sheng, Y., Wang, J., and Zhang, W. 2018,
“Optimal Collision-Free Robot Trajectory Generation Based on
Time Series Prediction of Human Motion,” IEEE Robot. Autom.
Lett. 3(1): 226-233, DOI: 10.1109/LRA.2017.2737486.

[7] Kanazawa, A., Kinugawa J., and Kosuge, K. 2019.
“Adaptive Motion Planning for a Collaborative Robot Based on
Prediction Uncertainty to Enhance Human Safety and Work
Efficiency,” IEEE Trans. Robot. 35(4): 817-832, DOI:
10.1109/TR0O.2019.2911800.

[8] Liu, R., and Liu, C. “Human Motion Prediction Using
Adaptable Recurrent Neural Networks and Inverse Kinematics.”
In Proc. of the IEEE Am. Control Conf., 2021, pp. 3725-3730.
DOI: 10.23919/ACC50511.2021.9482655.

[9]1 Li, Q., Zhang, Z., You, Y., Mu, Y., and Feng, C. 2020.
“Data Driven Models for Human Motion Prsediction in Human-
Robot Collaboration”. IEEE Access 8: 227690-227702. DOI:
10.1109/ACCESS.2020.3045994.

[10]Callens, T., Van der Have, T., Van Rossom, S., De
Schutter, J., and Aertbelién, E. 2020. “A Framework for
Recognition and Prediction of Human Motions in Human-Robot
Collaboration Using Probabilistic Motion Models.” IEEE Rob.
Autom. Lett. 5(4): 5151-5158. DOI
10.1109/LRA.2020.3005892.

[11] Martinez, J., Black, M.J., and Romero, J. “On Human
Motion Prediction Using Recurrent Neural Networks.” In Proc.
of the IEEE CVPR, 2017, pp. 4674-4683. DOIL:
10.1109/CVPR.2017.497.

[12] Wei, M., Liu, M., Salzmann, M., and Li, H. “Learning
Trajectory Dependencies for Human Motion Prediction.” In
Proc. of the IEEE/CVF ICCV, 2019, pp. 9488-9496. DOI:
10.1109/1CCV.2019.00958.

[13] Li, C., Zhang, Z., Lee, W.S., and Lee, G.H.
“Convolutional Sequence to Sequence Model for Human
Dynamics.” In Proc. of the IEEE/CVF CVPR, 2018, pp. 5226-
5234. DOI: 10.1109/CVPR.2018.00548.

[14] Goodfellow, L.J., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A.C., and Bengio, Y.
2014. “Generative Adversarial Nets.” Adv. Neural Inf. Process.
Syst. 27. DOI: 10.48550/arXiv.1406.2661.

[15] Radford, A., Metz, L., and Chintala, S. 2015.
"Unsupervised Representation Learning With Deep
Convolutional Generative Adversarial Networks." CoRR. DOI:
10.48550/arXiv.1511.06434.

[16]Papadaki, A.I., and Pateraki, M. 2023. “6D Object
Localization in Car-Assembly Industrial Environment.” Journal
of Imaging 9(3): 72. DOI: 10.3390/jimaging9030072.

[17]Flowers, J., and Wiens, G. "Comparison of Human
Skeleton Trackers Paired with a Novel Skeleton Fusion
Algorithm," Proc. of the ASME MSEC, 2022, pp. 10. DOI:
10.1115/MSEC2022-85269

[18] Pellegrinelli, S., Moro, F.L., Pedrocchi, N., Tosatti,
L.M., and Tolio, T.A.M. 2016. “A Probabilistic Approach to
Workspace Sharing for Human—robot Cooperation in Assembly
Tasks.” Cirp Annals-Manufacturing Technology 65(1): 57-60.
DOI:10.1016/J.CIRP.2016.04.035.

[19] Salvador, S., and Chan, P. 2007. "FastDTW: Toward
Accurate Dynamic Time Warping in Linear Time and Space."
Intell. Data Anal 11(5): pp. 561-580. DOI:
10.5555/1367985.1367993.

[20] Dumoulin, V., and Visin, F. 2016. "A Guide to
Convolution Arithmetic for Deep Learning.” ArXiv. DOI:
10.48550/arXiv.1603.07285.

[21] Ioffe, S., and Szegedy, C. “Batch Normalization:
Accelerating Deep Network Training by Reducing Internal
Covariate Shift.” In Proc. of the ICML, 2015, 37: pp. 448-456.
DOI: 10.48550/arXiv.1502.03167.

[22] Klambauer, C., Unterthiner, T., Mayr, A., and
Hochreiter, S. 2017. “Self-Normalizing Neural Networks.” Adv.
Neural Inf. Process. Syst. 30. DOI: 10.48550/arXiv.1706.02515.

[23] Kingma, D.P., and Ba, J. “Adam: A Method for
Stochastic Optimization.” In Proc. of the ICLR. 2015. DOI:
10.48550/arXiv.1412.6980.

10 © 2023 by ASME

https://doi.org/10.1016/j.cirp.2018.04.066
https://academic.microsoft.com/paper/2613864254/reference?showAllAuthors=1
https://academic.microsoft.com/paper/2613864254/reference?showAllAuthors=1
https://academic.microsoft.com/paper/2613864254/reference?showAllAuthors=1
https://academic.microsoft.com/paper/2613864254/reference?showAllAuthors=1

