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ABSTRACT
An evolving problem in the field of spatial and ecological statistics is that of preferential sampling, where
biases may be present due to a relationship between sample data locations and a response of interest. This
field of research bears a striking resemblance to the longstanding problem of informative sampling within
survey methodology, although with some important distinctions. With the goal of promoting collaborative
effort within and between these two problem domains, we make comparisons and contrasts between the
two problem statements. Specifically, we review many of the solutions available to address each of these
problems, noting the important differences in modeling techniques. Additionally, we construct a series
of simulation studies to examine some of the methods available for preferential sampling, as well as a
comparison analyzing heavy metal biomonitoring data.
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1. Introduction

Rooted in survey methodology, issues surrounding informative
sampling (IS) have experienced extensive research in recent
years. The problem arises when the probability of selecting a
unit to the sample is correlated with the response (Pfeffermann
and Sverchkov 2007). If left unaddressed when specifying a
statistical model, this issue may introduce substantial biases.
Although many solutions have been proposed for this problem,
it remains an extremely active area of ongoing research.One rea-
son for the continued interest is that official statistical agencies
disseminate tabulations from key surveys, such as the American
Community Survey, that support the distribution of billions
of dollars in funds annually (https://www.census.gov/programs-
surveys/acs/about.html). Consequently, adequate modeling of
survey data, that properly accounts for the survey design, is
increasingly important.

In contrast, more recently, the problem of preferential sam-
pling (PS) has been studied in the context of ecological and
spatial statistics. Specifically, PS arises when there is dependence
between the process or response that is being modeled and the
process that gives rise to the data locations (Diggle, Menezes,
and Su 2010). Again, it has been observed that substantial bias
may be introduced when PS is unaccounted for in the model.
There aremany important applications that use PS data, ranging
from species distribution modeling (Pennino et al. 2019), to
pollution monitoring (Zidek, Shaddick, and Taylor 2014), to
sports analytics (Jiao, Hu, and Yan 2019). Diggle, Menezes, and
Su (2010) introduced the foundational model for PS through
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a shared process for the data locations and responses. Outside
of model development, Dinsdale and Salibian-Barrera (2019)
propose alternative Monte Carlo estimates to those used by
Diggle, Menezes, and Su (2010), whereas da Silva Ferreira and
Gamerman (2015) consider the problem of optimal sampling
design under effects of PS. Finally,Watson (2021) develops a test
to detect PS.

These two problems have very similar definitions, yet there
are some key differences. First, the sample domain is differ-
ent within each problem. PS occurs in geostatistical settings,
where locations are sampled from a continuous, often multi-
dimensional, domain. Conversely, surveys sample individual
units (e.g., people, households, establishements, etc.) from a
finite population. Another important distinction is the scope
of the data included in a sample. Survey data is most often
accompanied by a survey weight that is inversely proportional
to the unit probability of selection. These selection probabilities
are known for all sampled units based on the survey design
and sampling frame. However, geostatistical data are rarely
accompanied by probabilities of selection.Much of the literature
around PS was developed for ecological applications. However,
in some cases, data for ecological applications may come from a
known sample design (e.g., see, Irvine et al. 2018).

There is a vast literature surrounding various methodolo-
gies that may be used to account for IS with unit-level survey
data. Parker, Janicki, and Holan (2019) give an overview of
these potential approaches. One popular solution is to use an
exponentially weighted pseudo-likelihood (Binder 1983; Skin-
ner 1989). Other approaches include nonlinear regression on
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the survey weights (Si, Pillai, and Gelman 2015) and inferring
a population level model through specification of a model for
the weights (Pfeffermann and Sverchkov 2007). Each of these
methods relies on the reported survey weights to account for
the survey design.

Despite the similarities between these two problems, the
development of methodology for PS has happenedmostly inde-
pendently from the IS literature. This is likely due to the fact
that IS solutions rely on reported survey weights, which are
not typically available in PS applications. The most common
approach to handling PS is to model the sampled locations as a
point process and then use a shared latent process for the point
processmodel and the responsemodel (Diggle,Menezes, and Su
2010; Pati, Reich, andDunson 2011).However, Zidek, Shaddick,
and Taylor (2014) take an approach that is similar to the pseudo-
likelihood method that is often used in the IS literature. Their
solution is to exponentially weight the likelihood by the inverse
of the estimated probabilities of selection. This indicates that
although the comparison has not been explored explicitly, it
is likely that researchers in the PS field have, to some extent,
recognized the similarity to IS.

Our goal in this article is to make an explicit connection
between PS and IS.We argue that despite some differences in the
problem statements, these are both manifestations of a general
problem for which similar methodologies may be used. It is our
hope that this will help to foster future research both within and
across these areas.

The remainder of this article proceeds as follows. In Section 2
we introduce notation and give formal problem statements for
both IS and PS and classify solutions to these problems into
three general groups. Then, in Section 3, we explore methods
for both PS and IS that rely on the use of covariates to adjust
for the sampling design. In Section 4 we investigate methods
that use nonlinear regression on the selection probabilities,
while in Section 5 we explore exponentially weighted likelihood
approaches. We conduct a simulation study to compare a subset
of methods for PS in Section 6. Note that we do not conduct
simulations for IS, as this was previously done by Parker, Jan-
icki, and Holan (2019). We also illustrate a subset of methods
for PS in Section 7 using the heavy metal biomonitoring data
discussed inDiggle,Menezes, and Su (2010). Finally, we provide
concluding discussion in Section 8.

2. Problem Statements

In order to describe the similarity between IS and PS, while
still recognizing the key differences, we use a similar although
slightly different notation for each problem. In general, we
represent the response data, or observations, with Z. Under
IS problems, these data are sampled from a finite population,
U = 1, . . . ,N. The sample, of size n, is denoted S ⊂ U .
Typically, survey units are observed in one of d = 1, . . . ,D
geographic areas or domains (e.g., census tract, county, etc.).
Thus, we index the data for a given observational unit in domain
d as Zjd, where j ∈ S . In contrast to this, preferentially sampled
data are typically sampled from a continuous domain, D (often
D ⊂ R2). We denote these spatially referenced data as Z(s),
where s ∈ D.

We also define a latent process as either Yjd in the context
of survey data or Y(s) in the context of data sampled from a
continuous spatial domain. Defining a latent process model has
become fairly standard in the context of hierarchical modeling
(Cressie and Wikle 2011; Banerjee, Carlin, and Gelfand 2015)
and facilitates conditional model specification. In many cases
this aids in model development and estimation. The latent pro-
cess may be a function of a vector of covariates (xjd or x(s)) as
well as spatially correlated random effects (ηd or η(s)). Note that
in the context of survey data, units are nested within geographic
areas and, thus, can bemapped to their corresponding area-level
random effects through the use of incidence vectors.

One unique aspect of survey datasets is that they are often
accompanied by unit survey weights, wjd. These weights are
typically assumed to be the inverse probabilities of selection,
wjd = 1/pjd; however, theymay include adjustments for various
reasons such as nonresponse. The selection probabilities, and
thus the weights, are usually known from the survey design.
When data are sampled from a continuous domain, as is the
case with most PS problems, there is no probability of selection.
However, for a Poisson point process, the intensity is defined as
the limit of the probability of observing a point in a decreasing
area, and thus serves as a natural analogy. In some cases, we will
construct weights for these continuously sampled data, w(s) =
1/p(s), where p(s) is the underlying intensity function evaluated
at s ∈ D. We note that in this case the intensity must usually be
estimated, as it is not defined by a known sampling design. In
some cases, it may be desirable to consider a discretized space
(e.g., areal or lattice spatial domains). In this case, the population
may be viewed as a finite collection of areas, for which a true
probability of selection may be known, yielding a setup that
is strikingly similar to those considered in the case of survey
data. However, for the most part, our discussion here will be
concerned with the case of data sampled from a continuous
spatial domain.

For geostatistical data, we work with the likelihood

f (Z, s) =
∫

f (Z, s,Y)dY .

In most cases, we assume that the distribution of the locations is
independent of the process and responses. This is the case under
uniform random sampling, and results in the likelihood∫

f (Z, s,Y)dY =
∫

f (Z|Y , s)f (s)f (Y)dY

∝
∫

f (Z|Y , s)f (Y)dY .

Thus, when the data locations are independent from the pro-
cess and response values, the location model can be ignored.
However, when independence is not met (i.e., in the case
of PS) either the factorization

∫
f (Z|s,Y)f (s|Y)f (Y)dY or∫

f (Z|s,Y)f (Y|s)f (s)dY must be used.
Similarly, for survey samples, when the distribution of sample

inclusion indicators is independent of the response values and
any latent process, the survey designmay be ignored. In the case
of surveys that exhibit IS, the survey design must be considered
in the model.
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3. Use of Informative Covariates in theModel

One of the most basic ways to correct for an informative design
in the survey setting is to include all of the design variables
in the model, typically as covariates. In this case, the response,
conditioned on the covariates, is independent of the selection
probabilities and inference can be based on this conditional
distribution. For instance, including a fixed effect for strata
could correct for a stratified design. Little (2012) outlines such
an approach in a Bayesian setting, in which case it is possible to
calculate a posterior predictive distribution for the unsampled
population. This predictive distribution can then be used for
inference on population quantities of interest.

Another corrective measure from the survey literature that
relies on the use of design variables is post-stratification (Little
1993). This approach assumes the population contains C cat-
egories, or poststratification cells, each with a known popula-
tion size Nc, c = 1, . . . ,C. Observations within each cell are
assumed to be independent and identically distributed. These
categories are generally determined by cross-classifications of
levels of categorical covariates or of continuous covariates that
have been discretized. For example, a post-stratified estimator
for the population mean, z̄p, could be calculated as

z̄P =
C∑
c=1

Nc
N

z̄cS,

where z̄cS denotes the observedmean response for sampled units
in cell c.

Gelman and Little (1997) and Park, Gelman, and Bafumi
(2006) combine poststratification with a Bayesian multi-level
model, which allows for parameter estimates of cells with no
sampled units. For example, with binary data a model of the
following form could be used

zjd|pjd ∼ Bernoulli(pjd)
logit(pjd) = x′

jdβ

β = (γ 1, . . . , γ �)

γ �

ind∼ Nm�
(0, σ 2

� Im�
), � = 1, . . . , L,

where xjd is a vector of dummy variables for L categorical pre-
dictor variables withm� classes in variable �. Bayesian inference
is performed on this model to get a probability pc for each cell,
c = 1, . . . ,C. The number of positive responses within cell c is
estimated as Ncpc, and any higher level aggregate estimates can
be made by aggregating the corresponding cells. Importantly,
only first order covariate effects are modeled, without consid-
ering interactions. For example, if race and age category were
two available covariates, some combinations of age and racemay
have no data points. In this case, themodelmay still be estimable
as long as there are some observations within each race category
as well as some observations within each age category.

A major impediment to using these design-variable based
approaches is the fact that all design variables are rarely known.
For example, for data users outside of a statistical agency, full
design knowledge may not be attainable, and even within a
statistical agency, one may not have access to all design vari-
ables. In some cases, where all design variables are available,

their inclusion may complicate the likelihood, or even make it
intractable.

In the PS case, theremay not be a formal sampling design and
therefore no design variables in the IS sense. However, Gelfand,
Sahu, and Holland (2012) introduce the analogous notion of
an “informative covariate”— a covariate that is correlated with
both the response values and the choice of sampling locations.
They take the example of including population density as a
covariate in a model that predicts pollution levels. They carry
out a simulation study that, in part, assesses how effectively the
use of such an informative covariate may reduce bias due to
PS. In fact, they find it does little to remedy the bias, let alone
make up for the difference between a completely randomized
sampling scheme and a PS scheme.

Conn, Thorson, and Johnson (2017) also examine the effect
of including informative covariates in models for preferentially
sampled data, specifically in the context of animal population
models. They, too, conclude that this approach is often inade-
quate since predictive covariates explain only a small portion of
variation present in the data in many contexts. Often, the factor
driving location selection may not even be known. However,
they do point out that for some sampling designs, there is theo-
retical justification for collecting more samples in areas where
the response is expected to be higher. In this case, sampling
according to a covariate and then including it in the model
will lead to an ignorable, nonpreferential design. They mention
post-stratification as a potential way to correct for bias, as well,
with the caveat that it may not be clear how to do so when
effort is allocated in a subjective manner. Unlike the IS setting,
it is also unrealistic to expect knowledge of the population
poststratification cell sizes, Nc, in the PS case.

4. Regressing on the Selection Process

Another common and conceptually straightforward approach
to alleviating bias in IS or PS situations is to directly specify
the dependence relationship between the response and sample
selection process in the likelihood.

In the field of survey methodology, for example, there is a
long history of use of the data model

Zjd = x′
jdβ + g(wjd) + εjd, (1)

which attempts to directly adjust for IS through estimation of
the function g(·). In the most simple case, Firth and Bennett
(1998) consider the linear function g(wjd) = a ·wjd. In practice,
the assumption of linearity can be quite restricting, and thus,
Zheng and Little (2003) explore the use of nonlinear models for
g(·) via penalized splines. We note that survey data is frequently
used for the purpose of small area estimation, in which the area
population totals

∑
j∈d g(wjd) are required to construct esti-

mates. In the case of linear g(·), this is not necessarily restrictive
(e.g., the weights should sum to the population count, which
is typically known); however, nonlinear specifications of g(·)
should be carefully considered.

Si, Pillai, and Gelman (2015) use a flexible Gaussian process
prior for g(·). They take a unique approach to estimation of
population totals by defining poststratification cells according
to the unique survey weight values. Through a multinomial
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data model for the observed cell sizes, they are able to generate
predictions of the survey weights for all individuals outside of
the sample. Vandendijck et al. (2016) extend this approach to
the small area estimation setting by defining poststratification
cells as unique combinations of weight and geographic area.

Unlike survey data settings, geostatistical data is not usually
accompanied by known sample weights or probabilities. This
can introduce further challenges when attempting to model the
sampling dependence directly.

Diggle, Menezes, and Su (2010) introduce a foundational
approach to handling preferentially sampled data. They assume
that the data locations follow a log-Gaussian Cox process
(Møller, Syversveen, and Waagepetersen 1998). That is, condi-
tional on an underlying, unobserved, Gaussian process, Y(s),
the data locations follow a Poisson point process with intensity

p(s) = exp {α + Y(s)β} .
The response values are simultaneously modeled as

Z(s) = μ + Y(s) + ε(s),

where ε(s) is independent and identically distributed. Impor-
tantly, the latent process Y(s) is shared between the location
model and the response model to account for preferentially
sampled data. Through simulation and analysis of lead pollution
data in Galicia, Spain, they show that failure to account for PS
leads to substantial prediction bias andunderestimated standard
errors. Additionally, they show that their approach is able to
reduce this bias.

Pati, Reich, and Dunson (2011) take a very similar approach
within a Bayesian framework. Again, they model the data loca-
tions as a log-Gaussian Cox process with intensity

p(s) = exp {Y(s)} ,
conditional on the latent Gaussian process,Y(s). In doing so, the
response model is

Z(s) = η(s) + Y(s)β + ε(s), (2)

where η(s) is an additional spatially correlated Gaussian process
that adds flexibility, and again, ε(s) is independent and identi-
cally distributed noise. Note that η(s) can be defined to include
covariate information in the mean structure. In this framework,
β controls the level of PS in the data, where β = 0 indicates no
presence of PS. After conditioning on Y(s) and noting that the
intensity, p(s) is analogous to the sample selection probability in
the discrete case, (2) becomes reminiscent of the IS Model (1),
with g (w(s)) = log

(
1

w(s)

)
β . Both models take the approach

of regressing on a function of the selection process in order to
account for selection bias. Grantham et al. (2018) embed this
approach into a deeper hierarchical model in order to account
for informative missingness of geostatistical data.

Both Diggle, Menezes, and Su (2010) and Pati, Reich, and
Dunson (2011) only consider the case of a continuous (Gaus-
sian) response variable over a continuous spatial domain. In
an effort to expand the applicability of these methods, Conn,
Thorson, and Johnson (2017) extend to the case of count data
on a discrete (areal) domain, as well as the case where only some
parts of the domain are sampled preferentially. For the discrete

domain, data locations are observed over a finite grid space,
eliminating the need for the point process model. This results in
a true probability of selection, although one that is still typically
unobserved in practice. Similarly, Gelfand and Shirota (2019)
consider the case of presence/absence as well as presence only
data through a shared process method and Pennino et al. (2019)
consider abundance data under PS schemes.

The general approach of regressing on the selection pro-
cess through a shared latent process has dominated much of
the literature in PS. However, this general approach makes up
comparatively less of the literature in the IS world. This may
be in part due to the fact that survey data under informative
sample designs are typically accompanied by a survey weight.
Considering the weights as fixed and known could allow for
a broader class of methods than the case where weights or
selection probabilities must be modeled, as is the case with the
shared process models discussed herein.

One limitation of (2) is the assumption of linearity between
Z(s) and Y(s). In scenarios where data is frequently observed
in locations with both high and low expected response values,
this linear assumption is flawed. Yet, estimation of a nonlinear
function g (Y(s)) can be challenging when Y(s) is a stochastic
process itself. In contrast, the survey literature frequently con-
siders nonlinear g(wjd), allowable in part due to the assumption
of fixed and known survey weights.

5. Weighted Likelihood Adjustments

Another common approach to dealing with informatively sam-
pled data in the survey realm is to incorporate the survey
weights into the likelihood to get a “pseudo-likelihood” of the
form ∏

j∈S ,d∈D
p(zjd|θ)wjd ,

where, as before, the weights wjd are inversely proportional to
the probability of selection. Inference is performed by solving
the corresponding estimating equations∑

j∈S ,d∈D
wjd

∂

∂θ
log p(zjd|θ) = 0 (3)

and leads to design-consistent estimation of θ .
This strategy was introduced by Binder (1983) and Skinner

(1989). As Parker, Janicki, and Holan (2019) detail, much recent
work has been done in the survey literature to extend the
pseudo-likelihood approach. These developments allow for the
addition of random effects, the use of hierarchical models, and
the use of Bayesian inference.

In particular, Savitsky and Toth (2016) show that, pseudo-
likelihoods can reasonably be used in a Bayesian context. Given
a prior distribution, π(θ), over θ , they prove that L1 consistency
is guaranteed for a pseudo-posterior of the form

π̂(θ |zjd,w) ∝
⎡⎣ ∏
j∈S ,d∈D

p(zjd|θ)w̃jd

⎤⎦π(θ)

for certain survey designs. In this case, the survey weights are
normalized to sum to the sample size w̃jd = wjd∑

wjd/n
, so that the
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influence of each weight is on the order of the information in
the sample. They note that other formulations are possible, such
as including a prior for the weights, or modeling them jointly
with the response, but the “plug-in” approach is the simplest
and performs quite well. More recently, Williams and Savitsky
(2020) have extended this method to an even wider class of
sampling designs.

Pseudo-likelihoods have not been as widely adopted in the
PS literature as the latent process approach of Diggle, Menezes,
and Su (2010), described in Section 4. However, Zidek, Shad-
dick, and Taylor (2014) implement a frequentist version of the
pseudo-likelihood approach in the context of air quality moni-
toring. They analyze time series data for black smoke pollution
in the United Kingdom, where the choice of sampling sites
changed preferentially over several decades. Their approach to
accounting for PS draws on the “response-biased sampling”
literature, such as Scott andWild (2011), as well as design-based
survey inference.

Given this official statistics perspective, they place greater
emphasis on producing unbiased estimates compared to the
geostatistical techniques outlined above, which focus more on
prediction. They further diverge from the geostatistical setup
by assuming a finite population of possible sampling locations
rather than a continuous domain. This formulation is more
in line with the typical survey setting, which assumes a finite
population. They also modify the estimating equations in (3) to
allow for covariates.

As before, an obvious hurdle to translating any IS model
to the PS setting is a lack of known weights in the latter case.
To handle this, Zidek, Shaddick, and Taylor (2014) use logistic
regression to estimate the probability of selection for each site
in the domain at each time point, t based on the sample at time
t − 1, with some differences depending on whether the set of
monitoring locations increases or decreases over time.

While the use of weighted likelihoods remains far less preva-
lent in the PS literature, the application in Zidek, Shaddick, and
Taylor (2014) suggests that many of the relevant developments
in the survey literature could well be carried over to the PS
problem. In fact, more recently, Schliep, Wikle, and Daw (2021)
have studied the use of weighted composite likelihoods in the
context of spatial kriging under biased sampling schemes.

6. Simulations

To assess some of the approaches for handling PS data outlined
so far, we carry out a set of simulation studies. We consider two
ways of simulating PS data and compare the performance of
each method in accounting for the preferential sample.

6.1. Scenario 1: Spatially Implicit Scenario

In the first scenario, we begin by generating 1000 candidate
points, si = (s1i, s2i)′, for i = 1, . . . , 1000, uniformly over the
unit squareD = [0, 1]× [0, 1]. To take a preferential sample, we
thin these candidate points with probability proportional to a
function of the response at each point. We keep each point with
probability

p(si) = (1 − (s1i − 0.5)2 − (s2i − 0.5)2)8. (4)

This selects points closer to the center of the domainwith higher
probability than those near the edges of the domain. We then
generate values of a response, zi, from the model

z(si) = (5, 2)′si + 2̃p(si) + εi,

where εi ∼ N(0, .5) and p̃(si) is probability of selection as
defined in (4), now centered and scaled. Including the prob-
ability of selection in the response introduces a dependency
between the sampling scheme and the response.

1. As a baseline, we fit a Bayesian linear regression model that
does not attempt to correct for the PS scheme

Z|β , σz ∝
∏
i∈S

N(zi|s′iβ , σz)

β ∼ N2(0, σ 2
β I2)

σz ∼ Cauchy+(0, 10),

where si is the two-dimensional coordinate vector for the ith
sample point and β is a vector of their associated regression
coefficients. For our simulations, we set σ 2

β = 10. This can be
seen as a pseudo-likelihood model with unit weights, hence,
we refer to it as “unweighted” (UW).

2. We then fit a set of weighted pseudo-likelihood models
similar to those outlined in Section 5. These are specified
identically to the UWmodel, but with the addition of scaled
weights, w̃i = w̃(si), that correct for the underlying selection
probability, so that

Z|β , σz ∝
∏
i∈S

[N(zi|s′iβ , σz)]w̃i

β ∼ N2(0, σ 2
β I2)

σz ∼ Cauchy+(0, 10).

As before, we set σ 2
β = 10 in our simulations.

We compare the performance of two different schemes for
defining the weights. First, as a baseline for this scenario, we
take the true, known probability of selection, p(si) at each
sample point si and set wi = w(si) = 1/p(si), then rescale
so that these weights sum to the sample size. We refer to
this model as the pseudo-likelihood known weights (PKW)
model.

In practice, the true weights are not typically known, so
for a comparison that might actually be used in practice, we
obtain a kernel density estimate of the probability of selection
using a Gaussian kernel via the MASS package with default
bandwidth (Venables and Ripley 2002). That is, using the
observed locations, si, we construct a kernel density estimate
of the sampling locations over the spatial domain. Then, for
any given location, si, we take the reciprocal of the kernel
density estimate at the location to be the weight (i.e., w(si) =
1/̂p(si), where p̂(si) is the kernel density estimate at location
si). As before, we rescale these weights so that they sum to the
sample size. We refer to this model as the pseudo-likelihood,
estimated weights (PEW) model.

3. Lastly, we fit a hierarchical model as defined in Pati, Reich,
andDunson (2011) and described in Section 4, where a latent
GP is shared between the response and the point process.
We refer to this model as the PRD model. Fitting this model
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Table 1. Average of parameter estimates, as well as 90% CI coverage probabilities and average CI widths, for each of the four models in the spatially implicit scenario
simulation.

β̂1 β̂2

Model Mean CI coverage Mean CI width Mean CI coverage Mean CI width

UW 6.408 2% 1.311 3.520 0% 1.314
PEW 5.278 73% 1.032 2.258 83% 1.028
PKW 5.101 61% 0.983 1.989 86% 0.976
PRD 4.604 89% 2.174 1.676 98% 2.167

NOTE: The true parameter values are β1 = 5 and β2 = 2.

Table 2. MSE and mean absolute bias for the posterior mean predictive surface
produced by each of the four models in the spatially implicit scenario simulation.

Model MSE Mean Abs. Bias

UW 2.551 1.464
PEW 0.121 0.268
PKW 0.081 0.046
PRD 0.380 0.360

requires discretizing the domain, and we follow the authors’
recommendations for an equally spaced grid of 225 knots
on [−0.2, 1.2]2 over a square grid of 41 × 41 points, which
ensures the grid spacings are chosen to be no larger than the
standard deviation of the kernel in the convolution represen-
tation.

The UW, PKW, and PEW models are fit using Hamiltonian
Monte Carlo via Stan. Each of these models is run for 5500
iterations with the first 1000 iterations discarded for burn-
in. The PRD model is estimated using 60,000 iterations with
10,000 iterations discarded for burn-in. We repeat each of the
simulations 100 times with an initial candidate set size of 1000
locations each time. Visual inspection of the trace plots as well
as effective sample size of the sample chains indicated no lack of
convergence for any of the models.

The mean estimate, credible interval (CI) coverage rate, and
mean CI width for each parameter are reported in Table 1.
Overall MSE and bias for the predicted surfaces are reported
in Table 2 and posterior mean surface plots are provided in
Figure 1. In terms of parameter estimates, all three PSmodels are
able to greatly reduce the bias compared to the UWmodel, with
the PL approaches performing best in this case. The unweighted
model in particular overestimates both regression coefficients,
resulting in a predicted surface that differs significantly from the
truth. The other models are able to reduce this bias to various
degrees, resulting in plots that align more with the true surface.
In terms of accuracy of uncertainty estimates, as assessed by the
CI coverage rate, again the PSmodels are able to greatly improve
upon the UW model. However, for β1 specifically, the PRD
model has coverage much closer to the nominal level than the
PL models. In particular, for β1, we see that for PKW the bias is
the smallest among the methods considered, with slight under-
estimation of uncertainty. This issue may be similar to what has
been observed in the context of IS when comparing results aris-
ing from plugging in weights versus estimated weights (e.g., see
León-Novelo and Savitsky 2019; Williams and Savitsky 2021).
Looking at predictive ability (Table 2), the unweighted model
grossly underperforms each of the corrective models and shows
substantial bias. The corrective models all show greatly reduced

Figure 1. Plots of the predicted surfaces for each of the four models in the spatially implicit simulation scenario. The true surface is included for comparison. Each of the
predicted surfaces is averaged over 100 simulations.
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Figure 2. Plots of the posteriormean predicted surfaces for each of the fourmodels in the spatially explicit simulation scenario. The true surface is included for comparison.
Each of the predicted surfaces is averaged over 100 simulations.

bias, where the best results in terms ofMSE are achievedwith the
PKW model. However, since full knowledge of the underlying
sample location intensity surface is impractical in reality, the
PEWmodel would be the most reasonable in practice.

The runtime of unweighted and pseudo-likelihood models
are quite similar. Taking the unweighted as a baseline, the rela-
tive runtime for PEW to fit is only 1.019 times longer, while for
PKW, it is 0.957 longer. The relative runtime for PRD is several
orders of magnitude longer, but a more optimized implementa-
tion would likely narrow this discrepancy.

6.2. Simulation 2: Spatially Explicit Scenario

In the second scenario, we begin by simulating an intensity sur-
face, p(s), from a Gaussian process with a squared exponential
kernel using the covariance function

c(si, sj) = exp

(
−2

D∑
d=1

(sdi − sdj)2
)
.

We then implement a PS scheme by selecting sample loca-
tions from an inhomogenous Poisson point process using the
generated intensity function. Finally, observed values, Z(s), are
generated by adding iidGaussian noise to the intensity evaluated
at the observed locations. In other words, Z(s) = p(s) + ε(s).
Thus, this approach is in essence generating data from themodel
specified by Diggle, Menezes, and Su (2010). The resulting true
surface is reproduced in the first panel of Figure 2.

We fit the same threemodels as in Simulation 1, but nowwith
a spatial process for the mean rather than a linear combination
of spatial covariates. We choose to use a basis expansion repre-
sentation of the spatial process. Thus, for this scenario, the UW

model is given as

Z(s)|η, σ 2
z ∼ N(p(s), σ 2

z )

p(s) =
K∑

k=1
φk(s)ηk

ηk ∼ N(0, λkτ), k = 1, . . . ,K
λk ∼ Cauchy+(0, 1), k = 1, . . . ,K
τ ∼ Cauchy+(0, 1),

where φk(s) is the value of the kth basis function evaluated
at location s. An initially large number of basis functions is
selected automatically at two resolutions using the FRK pack-
age (Zammit-Mangion and Cressie 2021). A horseshoe prior
(Carvalho, Polson, and Scott 2010) is then placed on ηk in
order to provide shrinkage for the initially large number of basis
functions.

Similar to the first simulation scenario, we also compare to
weighted pseudo-likelihood versions of this model. As before,
we fit a pseudo-likelihood model with known weights (PKW)
and a pseudo-likelihood model with weights constructed using
a kernel density estimator (PEW)with the same settings as in the
first simulation scenario. In addition, we compare to themethod
used by Pati, Reich, and Dunson (2011) (PRD).

The results of this simulation are summarized in Table 3.
In this scenario, the PRD model outperforms the pseudo-
likelihoodmodels both in terms ofMSE andmean absolute bias.
This is to be expected here, as the data generatingmodel is a case
of the PRDmodel.However, each of the correctivemodels is able
to reduce the MSE and bias relative to the UW model. Finally,
the difference inMSE andmean absolute bias between the PEW
and PKWmodels is less pronounced than in Simulation 1.

Figure 2 shows the predicted surface for each model, aver-
aged over 100 simulations, alongside the true surface. Note the
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Table 3. MSE and mean absolute bias for the posterior mean predictive surface
produced by each of the four models in the spatially explicit scenario simulation.

Model MSE Mean Abs. Bias

UW 0.382 0.418
PEW 0.332 0.376
PKW 0.304 0.341
PRD 0.245 0.312

Figure 3. Plot of the sampling locations for the heavymetal bio-monitoring data in
Galicia under a preferential scheme. Points are scaled proportional to the sampled
value at a given location.

lower values at the center of the true surface. The unweighted
model fails to capture these, instead predicting values closer to
zero. In contrast, the weighted models are able to capture this
behavior to varying degrees.

Taking UW as a baseline, the relative runtime for PEW is
0.913. For PKW it is 0.901, while for PRD it is 49.340.

7. Application to HeavyMetal Biomonitoring Data

To illustrate the different approaches in practice, we fit three of
the models from the second simulation scenario to the heavy
metal biomonitoring data from Galicia, Spain analyzed in Dig-
gle,Menezes, and Su (2010). The response is lead concentrations
in micorgrams per gram dry weight of moss. The data come
from two surveys taken only a few years apart, first in 1997
and then in 2000. The 1997 data (63 sample points) uses a
PS scheme, where sites with “large gradients” were more likely
to be sampled. Figure 3 shows the sampled locations, with a
clear concentration in the northern part of the region. The 2000
data (132 sample points) uses a regular lattice sample (i.e., not
preferential) over the same domain (Figure 4). One question of
interest could be whether a difference in mean response across
the two samples is attributable to a true change over time, or
only to the difference in sampling scheme.

With real data, we have no way of knowing the true surface,
and this rules out fitting the PKWmodel of Section 6. However,
by fitting models that do and do not assume the presence of
PS to both datasets, we can evaluate the degree to which the
model estimates differ relative to each other. The fit for each
of the models to the nonpreferential data is shown in Figure 5,

Figure 4. Plots of the sampling locations for the heavy metal bio-monitoring data
in Galicia under a nonpreferential, regular lattice sample. Points are scaled propor-
tional to the sampled value at a given location. The boundary is only approximate,
so somepoints appear to fall outsideof it, but thesepoints donot affect the analysis.

while the fit for the preferential data is shown in Figure 6. Note
the difference in scale between the two figures. As expected, all
threemodels yield similar estimates when the data is sampled in
a nonpreferential manner. For the preferentially sampled data,
there is much more variation in the estimates across models.
The PEW model seems to give larger predictions than the UW
model along the western edge, where predictions are generally
higher than average. Interestingly, the PRDmodel results in high
predicted heavy metals along the southeast edge, contradictory
to both other models, as well as the nonpreferential sample.
In this case, there is no true baseline to compare to, however,
we might expect the true surface to be somewhat similar in
the nonpreferential and the preferential sample, since they both
sample the same geographic domain, although at different times.

The heavy metal data example considered here is interesting
in that we have both a sample taken under preferential sampling,
as well as a sample taken on a regular lattice. In this case, the
samples are taken at two different time points. Thus, the true
heavy metal surfaces that we predict are not necessarily the
same, although we would expect similarity between the two.
The important takeaway here is that the unweighted model will
give similar results to the more complex models when there
is no preferential sampling, however, the unweighted model
will differ (i.e., have greater expected bias) when preferential
sampling is present. Here, as in most real data settings, we do
not know the true surface, and thus do not argue for a preference
among the models that do account for the sampling strategy.

The combination of preferential and nonpreferential data is
somewhat reminiscent of research around combining proba-
bility and nonprobability samples in survey statistics (e.g., see
Wiśniowski et al. 2020). For example, suppose the heavy metal
data were collected at the same time and thus used to predict
the same surface. Then one strategy may be to fit a model
for the preferentially sampled data, and then use the model
fit to construct an informative prior for the non-preferentially
sampled dataset. Another approach would be to model the data
jointly with shared parameters.
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Figure 5. Predicted surfaces over Galicia for each model fit to the heavy metal bio-monitoring data under the nonpreferential, regular lattice, sampling scheme.

Figure 6. Predicted surfaces over Galicia for each model fit to the heavy metal bio-monitoring data under the preferential sampling scheme. Note the difference in scale
from Figure 5.

8. Discussion

The problems of PS and IS have recently undergone extensive
research, with many proposed methods within each domain.
Although the overlap between the two problems is significant,
in large part, the research has evolved down two independent
tracks. In other words, little attention has been devoted to the
explicit connections between these two related problems.

In this article we review many of the existing solutions to
each of these problems and note the important differences in the
modeling techniques. In addition, we provide a comprehensive
review and comparison of the methods for addressing PS and
note that a more extensive review of methods for addressing IS
can be found in Parker, Janicki, and Holan (2019).

Broadly speaking, there are several approaches for handling
the problems of PS and IS, including use of informative covari-
ates in the model, regressing on the selection process, and
weighted likelihood adjustments. Even though we demonstrate
that there is significant overlap between the approaches used
to handle each problem, one important distinction is that in
the context of IS the weights are typically known from the
sampling design, which is not the case for PS. In contrast, in
the context of PS, the weights need to be estimated if they
are to be used in a model. Nevertheless, there is literature on
treating the weights as random in the context of IS, provid-
ing additional opportunities for extensions across the different
domains (León-Novelo and Savitsky 2019; Williams and Savit-
sky 2021).

To demonstrate, compare, and contrast the differentmethods
in the context of PS, we provide a multi-faceted simulation
study. Notably, as expected, we find that themethods accounting
for PS outperform the unweighted approach. This corroborates
the findings in the IS context (e.g., see Parker, Janicki, and
Holan 2019). Finally, through an application to heavy metal

monitoring data, we illustrate the difference in analyses that
account for PS relative to analyses that ignore PS.

There are several opportunities for future research. For
example, methods in PS can be adapted to IS and vice versa.
Specifically, as innovations in IS continue to appear in the lit-
erature, researchers working on PS problems can leverage this
technology through suitable adaptations and extensions that
explicitly account for the difference between the two problems
noted throughout this article. In contrast, we believe that adapt-
ing methods from PS to IS will be particularly useful in contexts
where the weights are not considered fixed and instead are
treated as a portion of the model to be estimated. Ultimately,
we envision that many of the extensions that arise will be appli-
cation specific. To this end, the present work is meant to bridge
the gap between the IS and PS communities and promote future
research in both areas.

SupplementaryMaterials

The supplementary material contains R code for the application in Sec-
tion 7. The file Pseudo_LL.stan implements the Bayesian pseudo-likelihood
models specified in Section 6.2, while MCMC.R implements the sampler
for the PRDmodel.Heavy_metal_example.R contains code for fitting these
models and reproducing Figures 4–6. The data described in this section
are stored in lead97-new.txt and lead00-new.txt. Shape files for plotting the
boundary of Galicia are included, as well.
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