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Model-based small area estimation is frequently used in conjunction
with survey data to establish estimates for under-sampled or unsampled
geographies. These models can be specified at either the area-level, or
the unit-level, but unit-level models often offer potential advantages
such as more precise estimates and easy spatial aggregation.
Nevertheless, relative to area-level models, literature on unit-level mod-
els is less prevalent. In modeling small areas at the unit level, challenges
often arise as a consequence of the informative sampling mechanism
used to collect the survey data. This article provides a comprehensive
methodological review for unit-level models under informative sam-
pling, with an emphasis on Bayesian approaches.
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1. INTRODUCTION

Government agencies have seen an increase in demand for data products and
small-area statistics in recent years as these estimates are often used for influ-
encing government policies and for allocating federal funds (see Rao and
Molina 2015, Chapter 1.2). The Small Area Income and Poverty Estimates
(SAIPE) program (Bell et al. 2016) and the Small Area Health Insurance
Estimates program (Luery 2011; Bauder et al. 2018) within the U.S. Census
Bureau are two examples of government programs, which produce county-
and sub-county-level estimates for different demographic cross classifications
across the entire United States using small area estimation (SAE) methods.
Other statistical agencies that produce small area estimates include National
Center for Health Statistics, Bureau of Labor Statistics, and Statistics Canada.
One trend that has accompanied this demand is the need for granular estimates
of parameters of interest at small spatial scales or subdomains of the finite pop-
ulation. Typically, sample surveys are designed to provide reliable estimates of
the parameters of interest for large domains. However, for some subpopula-
tions, the area-specific sample size may be too small to produce estimates with
adequate precision. The term small area is used to refer to any domain of inter-
est, such as a geographic area or demographic cross-classification, for which
the domain-specific sample size is not large enough for reliable direct estima-
tion. To improve precision, model-based methods can be used to “borrow
strength,” by relating the different areas of interest through use of linking mod-
els, and by introducing area-specific random effects and covariates.

Models for SAE may be specified either at the area level or the unit level
(see Rao and Molina 2015, for an overview of SAE methodology). Area-level
models treat the direct estimate (e.g., the survey-weighted estimate of a mean)
as the response and typically induce some type of smoothing across areas. In
this way, the areas with limited sample sizes may “borrow strength” from areas
with larger samples. While area-level models are popular, they are limited, in
that it is difficult to make estimates and predictions at a geographic or demo-
graphic level that is finer than the level of the aggregated direct estimate.

Statement of Significance

This article provides a comprehensive review of unit-level modeling
approaches for small area estimation in the presence of informative sam-
pling. Specifically, we cover a broad range of approaches, including those
that assume or force an ignorable design, those that use pseudo-likelihood
approaches, and those that specify differing sample and population
models.
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In contrast, unit-level models use individual survey units as the response
data, rather than the direct estimates. Use of unit-level models can overcome
some of the limitations of area-level models, as they constitute a bottom-up
approach (i.e., they utilize the finest scale of resolution of the data). Since
model inputs are at the unit-level (person-level, household-level, or
establishment-level), predictions and estimates can be made at the same unit
level, or aggregated up to any desired level. Unit-level modeling also has the
added benefit of ensuring logical consistency of estimates at different geo-
graphic levels. For example, model-based county estimates are forced to aggre-
gate to the corresponding state-level estimates, eliminating the need for ad hoc
benchmarking. In addition, because the full unit-level dataset is used in the
modeling, rather than the summary statistics used with area-level models, there
is potential for improved precision of estimated quantities (Hidiroglou and
You 2016).

Although unit-level models may lead to more precise estimates that aggre-
gate naturally across different spatial resolutions, they also introduce new chal-
lenges. Perhaps the biggest challenge is accounting for the survey design in the
model. With area-level models, the survey design is incorporated into the
model through specification of a sampling distribution (typically taken to be
Gaussian) and inclusion of direct variance estimates. With unit-level models,
accounting for the survey design is not as simple. One challenge is that the
sample unit response may be dependent on the probability of selection, even
after conditioning on the design variables. When the response variables are
correlated with the sample selection variables, the sampling scheme is said to
be informative, and in these scenarios, to avoid bias, it is critical to capture the
sample design in the model by including the survey weights or the design vari-
ables used to construct the survey weights.

The choice of whether to use an area or a unit-level model often depends on
the goal of the analysis and available data. In particular, a subject matter expert
may only have access to area-level tabulations and public-use micro samples.
Consequently, if the goal is inference and/or the desired geography is some-
thing other than a public-use micro area (PUMA), such as a county or tract,
then the analysis would necessitate an area-level model. Conversely, if the
goal of the model is to produce tabulations at an official statistics agency, then
a unit-level model may be more appropriate. Specifically, depending on the
application, the unit-level model may yield greater precision while simultane-
ously providing consistent aggregation (e.g., avoiding ad hoc benchmarking)
and the ability to produce tabulations for any geography (e.g., zip codes and/or
American Indian Alaskan Native areas). In other words, unit-level models pro-
vide a “bottom-up” approach and, thus, will be internally consistent across var-
ious aggregations. This is in contrast to the benchmarking where lower-level
direct-estimates are forced to aggregate to higher-level direct-estimates.

The aim of this article is to present a comprehensive literature review of
unit-level small area modeling strategies under informative sampling. Some
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recent review articles, which give an overview of the unique challenges of
modeling survey data collected under informative designs, and the role of sur-
vey weights and design variables in statistical models, can be found in
Pfeffermann (1993), Gelman (2007), and Lumley and Scott (2017).
Pfeffermann (2002) and Pfeffermann (2003) review both area-level and unit-
level SAE methods. Chapter 7 of Rao and Molina (2015) provides a review of
some commonly used unit-level small area models. The current article adds to
this literature by providing a comprehensive review of unit-level small area
modeling techniques, with a focus on methods that account for informative
sampling designs. We note that many model-based methods are general
enough to be implemented in either a frequentist or Bayesian setting, and we
highlight some scenarios where Bayesian methodology may be used, as
Bayesian methods are becoming more prevalent within statistical agencies
(e.g., SAIPE and Voting Rights Act 203b, among others). Importantly, we are
not attempting to unify frequentist and Bayesian approaches in the context of
finite population inference, though this is an interesting area of research.
Related to this topic of research is the work of Little (2012) on Calibrated
Bayes.

In this article, we focus mainly on model specification and methods that
incorporate informative sampling designs into the small area model. Some
important, related issues, that will be outside the scope of this article include
issues related to measurement error and adjustments for nonresponse.
Generally, we assume that observed survey weights have been modified to
take into account nonresponse. We also avoid discussion on the relative merits
of frequentist versus Bayesian methods for inference.

The remainder of this article is organized as follows. Section 2 introduces
the sampling framework and notation to be used throughout the article. We
aim to keep the notation internally consistent. This may lead to differences
compared to the original authors’ notation styles but should lead to easier com-
parison across methodologies. In section 3, we cover modeling techniques that
assume a noninformative survey design. The basic unit-level model is intro-
duced, as well as extensions of this model which incorporate the design varia-
bles and survey weights. Methods that allow for an informative design are then
discussed, beginning in section 4. Here, we discuss the analytic inference of
population parameters under an informative design using pseudo-likelihood
methods. Extensions of the pseudo-likelihood to hierarchical, multilevel mixed
models are discussed, as well as application to SAE problems. In section 5, we
focus on models that use a sample distribution that differs from the population
distribution. We conclude the review component of this article in section 6,
where we will review models that are specific to a Binomial likelihood, as
many variables collected from survey data are binary. Finally, we provide con-
cluding remarks in section 7. A simulation study and application of some of
the methodology presented herein, as well as discussion on the practical trade-
offs between the methodologies, can also be found in Parker et al. (2023).
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2. BACKGROUND AND NOTATION

Consider a finite population U of size N, which is a subset into m nonoverlap-
ping domains, U i ¼ f1; . . . ;Nig; i ¼ 1; . . . ;m, where

Pm
i¼1 Ni ¼ N. These

subgroups will typically be small areas of interest, or socio-demographic cross-
classifications, such as age by race by gender within the different geographies.
We use yij to represent a particular response characteristic associated with unit
j 2 U i, and xij a vector of predictors for the response variables yij.

Let Z be a vector of design variables, which characterize the sampling proc-
ess. For example, Z may contain geographic variables used for stratifying the
population, or size variables used in a probability proportional to size sampling
scheme. Note that in some cases, xij may partially or completely include the
design variables. A sample S � U ¼ [U i is selected according to a known
sampling design with inclusion probabilities dependent on the design varia-
bles, Z. Let Si denote the sampled units in small area i, and let
pij ¼ Pðj 2 SijZÞ. The inverse probability sampling weights are denoted with
wij ¼ 1=pij. We note that as analysts, we may not have access to the functional
form of Pðj 2 SijZÞ, and may not even have access to the design variables Z,
so that the only information available to us about the survey design is through
the observed values of pij or wij, for the sampled units in the population.
Finally, we let DS ¼ ffyij; xij;wijg : j 2 Si; i ¼ 1; . . . ;mg represent the
observed data. This simply consists of the responses, predictors, and sampling
weights for all units included in the sample. In this context, yij is random, xij is
typically considered fixed and known, and wij can either be fixed or random
depending on the specific modeling assumptions.

The usual inferential goal, and the main focus of this article, is on the esti-
mation of the small area means, �yi ¼

P
j2U i

yij=Ni, or totals, yi ¼
P

j2U i
yij.

The best predictor, b�y i of �yi, under squared error loss, given the observed data
DS, is (Pfeffermann and Sverchkov 2007; Molina and Rao 2010; Marhuenda
et al. 2017)

b�y i ¼ Eð�yijDSÞ ¼
1
Ni

X
j2U i

EðyijjDSÞ ¼
1
Ni

X
j2Si

yij þ
1
Ni

X
j2Sc

i

EðyijjDSÞ: (1)

The first term on the right-hand side of (1) is known from the observed sample.
However, computation of the conditional expectation in the second term
requires specification of a model, and potentially, depending on the model
specified, auxiliary information, such as knowledge of the covariates xij or
sampling weights wij for the nonsampled units. For the case where the predic-
tors xij are categorical, the assumption of known covariates for the nonsampled
units is not necessarily restrictive if the totals, Ni;g, for each cross-classification
g in each of the small areas i are known. In this case, the last term in (1)
reduces to N�1

i

P
gðNi;g � ni;gÞEðyijjj 2 g;DSÞ, and only predictions for each
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cross-classification need to be made. If the cell totals are unknown, they may
be estimated, either using design- or model-based methods.

The predictor given in (1) is general, and the different unit-level modeling
methods discussed in this article are essentially different methods for predict-
ing the nonsampled units, that is, estimating the conditional expectation in (1),
under different model specifications and assumptions on the finite population
and the sampling scheme. An entire finite population can then be generated,
consisting of the observed, sampled values, along with model-based predic-
tions for the nonsampled individuals. The small area mean can then be esti-
mated by simply averaging appropriately over this population. If the sampling
fraction ni=Ni in each small area is small, inference using predicted values for
the entire population will be nearly the same as inference using a finite popula-
tion consisting of the observed values and predicted values for the nonsampled
units. In this situation, it may be more convenient to use a completely model-
based approach for the prediction of the small area means (Battese et al. 1988).

3. UNWEIGHTED ANALYSIS

3.1 Ignorable Design

First, assume the survey design is ignorable or noninformative. For ease of pre-
sentation, let X represent the full set of auxiliary information including covari-
ates and observable design variables (i.e., Z may be partially or fully contained
in X). Ignorable designs, such as simple random sampling with replacement,
arise when the sample inclusion variable I is independent of the response varia-
ble y, after conditioning on observable design variables and covariates. In this
situation, the distribution of the sampled responses will be identical to the dis-
tribution of nonsampled responses. That is, after conditioning on relevant
covariates, X, if a model f ð�jX; hÞ is assumed to hold for all nonsampled units
in the population, then it will also hold for the sampled units, since the sample
distribution of y, f ðyjI ¼ 1;X; hÞ ¼ f ðyjX; hÞ is identical to the population dis-
tribution of y. In this case, a model can be fit to the sampled data, and the fitted
model can then be used directly to predict the nonsampled units, without need-
ing any adjustments due to the survey design. Conditions for the ignorability
of the sample selection process can be found in Rubin (1976) and Sugden and
Smith (1984).

The nested error regression model or, using the terminology of Rao and
Molina (2015), the basic unit-level model, was introduced by Battese et al.
(1988) for the estimation of small area means using data obtained from a sur-
vey with an ignorable design. Consider the linear mixed-effects model

yij ¼ xT
ijbþ vi þ eij; (2)
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where i ¼ 1; . . . ;m indexes the different small areas of interest and j 2 Si

indexes the sampled units in small area i. Here, the model errors, vi, are i.i.d.
Nð0; r2vÞ random variables, and the sampling errors, eij, are i.i.d. Nð0; r2eÞ ran-
dom variables, independent of the model errors.

Let Vi be the covariance matrix consisting of diagonal elements r2v þ r2e=ni

and off-diagonal elements r2v . Assuming (2) holds for the sampled units, and
the variance parameters r2v and r

2
e are known, the best linear unbiased predictor

of �yi ¼
P

j2U i
yij=Ni is

b�y i ¼
1
Ni

X
j2Si

yij þ
1
Ni

X
j2Sc

i

xT
ij
~b þ ~vi

� �
; (3)

where

~b ¼
Xm

i¼1

XT
i V

�1
i Xi

 !�1 Xm

i¼1

XT
i V

�1
i yi

 !
:

Xi is the ni � p matrix with rows xT
ij , and ~vi ¼ ðr2v=ðnir2v þ r2eÞÞP

j2Si
ðyij � xT

ij
~bÞ. In (3), as in the general expression in (1), the unobserved yij

are replaced by model predictions. Note that evaluation of (3) requires knowl-
edge of the population mean, �X ip ¼

P
j2U i

Xij=Ni, of the covariates.

In practice, the variance components r2v and r
2
e are unknown and need to be

estimated. The empirical best linear unbiased predictor (EBLUP) is obtained
by substituting estimates, br2

e and br2
v , (typically MLE, REML, or moment esti-

mates) of the variance components in the above expressions (Prasad and Rao
1990). Stukel and Rao (1999) derive unbiased method of moment estimates of
the variance components as well as mean squared error estimates of the
EBLUP, and Hall and Maiti (2006) give bootstrap methods for mean squared
error estimation. In addition, this model can easily be fit using Bayesian hier-
archical modeling rather than using the EBLUP, which would incorporate the
uncertainty from the variance parameters. Datta and Ghosh (1991) developed a
Bayesian version of the nested error regression model (2), using a uniform
prior on the regression coefficients and gamma priors on the variance
components.

The survey weights do not enter into either the nested error regression model
(2) or the EBLUPs of the small area means (3). Because of this, the EBLUP is
not design-consistent, unless the sampling design is self-weighting within each
small area (Rao and Molina 2015).

3.2 Including Design Variables in the Model

Suppose now that the survey design is informative, so that the way in which
individuals are selected in the sample depends in an important way on the
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value of the response variable yij. It is well established that when the survey
design is informative, that ignoring the survey design and performing
unweighted analyses without adjustment can result in substantial biases
(Nathan and Holt 1980; Pfeffermann and Sverchkov 2007).

One method to eliminate the effects of an informative design is to condition
on all design variables (Gelman et al. 1995, Chapter 7). To see this, decompose
the response variables as y ¼ ðys; ynsÞ, where ys are the observed responses for
the sampled units in the population, and yns represents the unobserved varia-
bles corresponding to nonsampled individuals. Let I be the vector of sample
inclusion variables, so that Iij ¼ 1 if yij is observed and Iij ¼ 0 otherwise. The
observed data likelihood, conditional on covariate information X, and model
parameters h and /, are then

f ðys; IjX; h;/Þ ¼
Ð

f ðys; yns; IjX; h;/Þdyns

¼
Ð

f ðIjy;X;/Þf ðyjX; hÞdyns:

(4)

If f ðIjy;X;/Þ ¼ f ðIjX;/Þ, the inclusion variables I are independent of y, con-
ditional on X, and the survey design can be ignored. For example, if the design
variables Z are included in X, the ignorability condition may hold, and infer-
ence can be based on f ðysjX; hÞ.

Little (2012) advocates for a general framework using unit-level Bayesian
modeling that incorporates the design variables. For example, if cluster sam-
pling is used, one could incorporate a cluster-level random effect into the
model, or if a stratified design is used, one might incorporate fixed effects for
the strata. The idea is that when all design variables are accounted for in the
model, the conditional distribution of the response given the covariates for
the sampled units is independent of the inclusion probabilities. Because the
model is unit-level and Bayesian, the unsampled population can be generated
via the posterior predictive distribution. Doing so provides a distribution
for any finite population quantity and incorporates the uncertainty in the
parameters. For example, if the population response is generated at draw k of
a Markov chain Monte Carlo algorithm, yðkÞ, then one has implicitly gener-
ated a draw from the posterior distribution of the population mean for a given
area i:

�yðkÞi ¼

PN
j¼1

yðkÞj Iðj 2 U iÞ

PN
j¼1

Iðj 2 U iÞ
:

If there are K total posterior draws, one could then estimate the mean and
standard error of �yi with
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b�y i ¼
1
K

XK

k¼1

�yðkÞi

and

dSEðb�y iÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðb�y iÞ

q
;

where Varðb�y iÞ is the sample variance of �yðkÞi .
The problem with attempting to eliminate the effect of the design by condi-

tioning on design variables is often more of a practical one, because neither the
full set of design variables nor the functional relationship between the design
and the response variables will be fully known. Furthermore, expanding the
model by including sufficient design information so as to ignore the design
may make the likelihood extremely complicated or even intractable.

3.3 Poststratification

Little (1993) gives an overview of poststratification. Consider the case where
f ðIjy;X;/Þ ¼ f ðIjX;/Þ in (4). Then, the model f ðyjX; hÞ holds for both the
sample and the population and may be used to generate predictions for
unsampled units. To perform poststratification, the population is assumed to
contain C categories, or poststratification cells, defined by X, such that within
each category units are independent and identically distributed. Usually, these
categories are cross-classifications of categorical predictor variables such as
county, race, and education level. When a regression model is fit relating the
response to the predictors, predictions can be generated for each unit within a
cell, and thus for the entire population. Importantly, any desired aggregate esti-
mates can easily be generated from the unit-level population predictions.

Gelman and Little (1997) and Park et al. (2006) develop a framework for
poststratification via hierarchical modeling. By using a hierarchical model with
partial pooling, parameter estimates can be made for poststratification cells
without any sampled units, and variance is reduced for cells having few
sampled units. Gelman and Little (1997) and Park et al. (2006) provide an
example for binary data that uses the following model

yijjpij � BernoulliðpijÞ

logitðpijÞ ¼ x0ijb

b ¼ ðb1; . . . ; bGÞ0

bg �
ind

Ncgð0; r2gIcgÞ; g ¼ 1; . . . ;G;

(5)

where xij is a vector of dummy variables for G categorical predictor variables
with cg classes in variable g.
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Bayesian inference can be performed on this model, leading to a probability,
pðyij ¼ 1jpijÞ ¼ pij ¼ pi; 8j, that is constant within each cell i ¼ 1; . . . ;C. The
number of positive responses within cell i can be estimated with Nipi, and any
higher-level aggregate estimates can be made by aggregating the correspond-
ing cells. Depending on the data at hand, it is straightforward to replace the
Bernoulli data model in (5) with another data model. In some scenarios, the
number of units within each cell may not be known, in which case further
modeling would be necessary. After estimating the model parameters, predic-
tions can be made for every unit in the population, in essence creating a syn-
thetic population. Aggregation of this synthetic population is what allows for
SAE. Finally, Gao et al. (2021) explore the use of structured priors within a
hierarchical modeling and poststratification framework to reduce bias from
highly unrepresentative samples.

4. MODELS WITH SURVEY WEIGHT ADJUSTMENTS

Although many of the models in section 3 can be used to handle informative
sampling, they do not rely on the survey weights. In this section, we explore
techniques that rely on the weights to adjust the sample likelihood.

There have been several methods proposed in the literature which make use
of the nested error regression model (2), but which incorporate the survey
weights, either as regression variables or as adjustments to the predicted val-
ues, so as to protect against a possible informative survey design.

4.1 Survey Weight Adjustments to the Basic Unit-Level Model

Verret et al. (2015) augmented the nested error regression model (2), by
including functions of the inclusion probabilities, gðpijÞ, as predictors. Care
must be taken in the choice of the function g, as the population means,
�Gi ¼

P
j2U i

gðpijÞ=Ni, must be known to obtain the EBLUPs from (3). Some
suggestions for the choice of g were gðpijÞ ¼ pij, which gives �Gi ¼ ni=Ni, and
gðpijÞ ¼ ni=pij, which gives �Gi ¼ ni

P
j2U i

wij=Ni, which may be known in
practice. Verret et al. (2015) reported strong performance of the EBLUP using
the augmented nested error regression model, in a probability proportional to
size simulation study, in terms of bias and mean squared error, for properly
chosen augmenting variable g. However, some choices of g, such as
gðpijÞ ¼ wij, could lead to poor performance, except under non-informative
sampling, when the chosen function differs from the true relationship. Verret
et al. (2015) suggested using scatter plots of residuals from the nested error
regression model against different choices of augmenting variables to choose
an appropriate model. An alternative to exploring a collection of augmenting
variables is to estimate the functional form of g. Zheng and Little (2003) inves-
tigated nonparametric estimation of g using penalized splines and found that
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predictions of small area means using this modeling framework resulted in
large gains in mean squared error over the design-based estimates in their sim-
ulation studies.

You and Rao (2002) proposed a pseudo-EBLUP of the small area means hi

¼ �XT
i bþ ni based on the nested error regression model (2), which incorporates

the survey weights. In their approach, the regression parameters b in (2) are
estimated by solving a system of survey-weighted estimating equations

Xm

i¼1

X
j2Si

wijxijfyij � xT
ijb� ciwð�yiw � �xT

iwbÞg ¼ 0; (6)

where ciw ¼ r2n=ðr2n þ r2�d
2
i Þ; d2i ¼

P
j2Si

w2
ij; �yiw ¼

P
j2Si

wijyij=
P

j2Si
wij,

and �xij ¼
P

j2Si
wijxij=

P
j2Si

wij. This is an example of the pseudo-likelihood
approach to incorporating survey weights, which is later discussed in more
detail.

The pseudo-BLUP ~bw ¼ ~bwðr2e ; r2vÞ is the solution to (6) when the variance
components r2e and r

2
v are known, and the pseudo-EBLUP, bbw ¼ ~bðbr2

e ; br2
vÞ, is

the solution to (6) using plug-in estimates br2
e and br2

v of the variance compo-
nents. The pseudo-EBLUP, bhi of the small area mean hi is then

bhiw ¼ bciw�yiw þ ð�Xi �bciw�xiwÞTbbw:

Similar to Battese et al. (1988), You and Rao (2002) assumed an ignorable sur-
vey design, so that the model (2) holds for both the sampled and nonsampled
units. However, You and Rao (2002) showed that inclusion of the survey
weights in the pseudo-EBLUP results in a design-consistent estimator. In addi-
tion, when the survey weights are calibrated to the population total, so thatP

j2Si
wij ¼ Ni, the pseudo-EBLUP has a natural benchmarking property,

without any additional adjustment, in the sense that

Xm

i¼1

Ni
bhiw ¼ bY w þ ðX � bXwÞTbbw;

where bY w ¼
Pm

i¼1

P
j2Si

wijyij and bXw ¼
Pm

i¼1

P
j2Si

wijxij. That is, the
weighted sum of area-level pseudo-EBLUPs is equal to a generalized regres-
sion estimator of the population total. See also Zimmerman and Münnich
(2018), which extends the pseudo-EBLUP method of You and Rao (2002) to
lognormal sampling models for skewed business survey data.

An alternative pseudo-EBLUP, which is applicable to the estimation of gen-
eral small area parameters beyond the small area means, was proposed in
Guadarrama et al. (2018) (see also Jiang and Lahiri, 2006). Rather than use the
genuine best predictor in (1), which conditions on all observed data,
Guadarrama et al. (2018) suggested a pseudo-best predictor, which conditions
only on the survey-weighted Horvitz–Thompson estimator, �yiw ¼

P
j2Si

wijyij=

Unit-Level Modeling of Survey Data 11
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P
j2Si

wij, of the small area means. Assuming that the nested error regression
model (2) holds for all units in the population, there is a simple, closed-form
expression for the predictions of out-of-sample variables, yij, given by

Eðyijj�yiwÞ ¼ xT
ijbþ ciwð�yiw � �xT

iwbÞ;

using the same notation as in (6). This idea can easily be extended for predic-
tion of general additive parameters, Hi ¼

P
j2U i

hðyijÞ=Ni, by using the condi-

tional expectation E
�

hðyijÞj�yiw

�
in place of the out-of-sample variables.

4.2 Joint Regression and Prediction of the Survey Weights

Prediction of small area quantities using (1) requires estimation of EðyijjDsÞ
for all nonsampled units in the population. One of the main difficulties in using
unit-level model-based methods is the lack of knowledge of the covariates,
sampling weights, or population sizes associated with the nonsampled units
and small areas that are needed to make these model-based predictions. To
overcome this difficulty, Si et al. (2015) modeled the observed poststratifica-
tion cells ni, conditional on n ¼

Pm
i¼1 ni, using the multinomial distribution

ðn1; . . . ; nmÞ � Multinomial n;
N1=w1Pm

i¼1
Ni=wi

; . . . ;
Nm=wmPm

i¼1
Ni=wi

0BB@
1CCA

for poststratification cells i ¼ 1; . . . ;m.
This model assumes that the unique values of the sample weights determine

the poststratification cells and that the sampling weight and response are the
only values known for sampled units. The authors state that, in general, this
assumption is untrue, because there will be cells with a low probability of
selection that do not show up in the sample, but the assumption is necessary to
proceed with the model. This model yields a posterior distribution over the cell
population sizes which can be used for poststratification with their response
model, which uses a nonparametric Gaussian process regression on the survey
weights,

yijjlðwiÞ; r2 � NðlðwiÞ; r2Þ

lðwiÞjb;Cðwi;wi0 jhÞ � GPðwib;Cðwi;wi0 jhÞÞ

pðr2; b; hÞ;

for observation j in poststratification cell i. Here, GP denotes a Gaussian proc-
ess and Cð�; �jhÞ represents a valid covariance function that depends on
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parameters h. The authors use a squared exponential function, but other cova-
riance functions could be used in its place. The normal distribution placed over
yij could be replaced with another distribution in the case of non-Gaussian
data. Specifically, the authors explore the Bernoulli response case. This model
implicitly assumes that units with similar weights will tend to have similar
response values, which is likely not true in general. However, in the absence of
any other information about the sampled units, this may be the most practical
assumption. Because Si et al. (2015) assume that only the survey weights and
response values are known, this methodology cannot be used for SAE as pre-
sented. However, the model can be extended to include other variables such as
a geographic indicator, which would allow for area-level estimation.

Vandendijck et al. (2016) extend the work of Si et al. (2015) to be applied
to SAE. They assume that the poststratification cells are designated by the
unique weights within each area. Rather than using the raw weights, they use
the weights scaled to sum to the sample size within each area. They then use a
similar multinomial model to Si et al. (2015) to perform poststratification using
the posterior distribution of the poststratification cell population sizes.
Assuming a Bernoulli response, they use the data model

yijjgij � BernoulliðgijÞ

logitðgijÞ ¼ b0 þ lð ~wijÞ þ ui þ vi

for unit j in small area i, with ~wij designating the survey weights scaled to sum
to the area-specific sample size. Independent area-level random effects are
denoted by vi, whereas ui denotes spatially dependent area-level random
effects, for which the authors use the prior,

uijuj; j 2 neðiÞ � Nð�ui; r
2
u=niÞ: (7)

Here, ne(i) is the set of neighbors of area i and �ui is the mean of the neighbor-
ing spatial effects. The spatial model in (7) is known as the intrinsic conditional
autoregressive (ICAR) model (Besag 1974). They explore the use of a
Gaussian process prior over the function lð�Þ as well as a penalized spline
approach. For their Gaussian process prior, they assume a random walk of
order one. The multinomial model

ðn1i; . . . ; nLiiÞ � Multinomial ni;
N1i=wð1ÞiPLi
l¼1 Nli=wðlÞi

; . . . ;
NLii=wðLiÞiPLi
l¼1 Nli=wðlÞi

 !

is used for poststratification, where nli and Nli represent the known sample size
and unknown population size respectively for poststrata cell l in area i. The
cells are determined by the unique weights in area i, with the value of the
weight represented by wðlÞi. Although Vandendijck et al. (2016) implement
their model with a Bernoulli data example, this is a type of a generalized linear
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model, and thus, other response types in the exponential family may be used as
well.

4.3 Multilevel Models for Clustered Data

Suppose the finite population is hierarchically structured, for example, by area,
by strata, or by cluster. In this section, we consider sampling designs which
take into account this hierarchical structure through use of a two-stage sam-
pling design. Let U ¼ f1; . . . ;mg be an enumeration of the first level, primary
sampling units (PSUs). A sample, S � U, is selected with probabilities pi.
Define wi ¼ 1=pi to be the first-stage sampling weights. Let U i be an enumera-
tion of the secondary sampling units (SSUs) within PSU i, and let pjji be the
probability that SSU j is sampled, given that PSU i has been sampled. Define
wjji to be the second-stage survey weights, and let yij be a characteristic of
interest associated with SSU j within PSU i. It is possible that the sample
design is informative at one stage, both stages, or neither stage.

The pairs (i, j) can be identified with a single index, k, and the unconditional
inclusion probabilities and the unconditional survey weights can be written pk

¼ pij ¼ pipjji and wk ¼ wij ¼ wjwjji, respectively. If the values yk can be mod-
eled as independent random variables from a parametric superpopulation
model, fp ¼ fpðyjhÞ, pseudo-likelihood methods, introduced by Binder (1983)
and Skinner (1989), can be used for inference on the superpopulation parame-
ter h. The pseudo-log-likelihood is defined asX

k2S
wk log fpðykjhÞ; (8)

this is simply the Horvitz–Thompson estimator of the population-level log-
likelihood

P
k2U log fpðykjhÞ. The pseudo-maximum likelihood estimator

(pMLE), bh, is obtained by maximizing (8), or equivalently, by solving the
system

bUðhÞ ¼
X
k2S

wk
@

@h
log fpðykjhÞ ¼ 0:

Under regularity conditions, bh is design and model consistent for h under both
informative and noninformative sampling designs (Binder 1983; Godambe and
Thompson 1986).

Wang et al. (2018) proposed a Bayesian method for finite population infer-
ence using pseudo-likelihood methods, which is valid under informative sam-
pling designs. Their method uses the sampling distribution of the pMLE
(or more generally, the solution to a survey-weighted estimating equation) and
constructs an approximate posterior distribution
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p
�
hjbUðhÞ

�
/ g
�bUðhÞjh

�
pðhÞ; (9)

where g
�bUðhÞjh

�
is the limiting Gaussian distribution of the estimating func-

tion bUðhÞ, and pðhÞ is the prior distribution of h. Wang et al. (2018) gave a
Bernstein–von Misses Theorem for the approximate posterior distribution (9)
and showed consistency of the Bayesian estimator based on (9).

When the finite population has a hierarchical structure, there could be
dependence between response variables yij and yik belonging to a common
cluster i. This dependence can be modeled by introducing random effects, vi,
which are shared by units within a cluster, in the superpopulation model
fp ¼ fpðyjh; viÞ. The usual choice for the distribution of the random effects,
uðvjr2Þ, is the mean zero normal distribution with unknown variance r2. The
presence of random effects, the multilevel structure of superpopulation model,
and the dependence of variables within a common cluster mean that neither the
pseudo-likelihood method nor the related estimating equation approach can be
directly applied to SAE problems. However, Grilli and Pratesi (2004),
Asparouhov (2006), and Rabe-Hesketh and Skrondal (2006) extended the
pseudo-likelihood approach to accommodate models with hierarchical struc-
ture by making use of the population log-likelihood and the decomposed sur-
vey weights, wi and wjji.

The census marginal log-likelihood is obtained by integrating out the ran-
dom effects from the likelihood:

log LðhÞ ¼
Xm

i¼1

log
ðY

j2U i

fpðyijjh; vÞuðvjr2Þdv

¼
Xm

i¼1

log
ð
exp

X
j2U i

log fpðyijjh; vÞ
( )

uðvjr2Þdv:

(10)

The pseudo-log-likelihood for the multilevel model can be defined by
replacing

P
j2U i

log fpðyijjh; viÞ in (10) by the design-unbiased estimate,P
j2Si

wjji log fpðyijjh; viÞ, to get

log bLðhÞ ¼Xm

i¼1

wi log
ð
exp

X
j2Si

wjji log fpðyijjh; vÞ
( )

uðvjr2Þdv: (11)

Analytical expressions for the maximizer of (11) generally do not exist, so the
pMLE, bh, must be found by numerical maximization of (11). Grilli and Pratesi
(2004) used the NLMIXED procedure within SAS, using appropriately adjusted
weights in the replicate statement and a bootstrap for mean squared error
estimation. Rabe-Hesketh and Skrondal (2006) used an adaptive quadrature
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routine using the gllamm program within Stata and derived a sandwich esti-
mator of the standard errors, finding good coverage in their simulation studies
with this estimate. Kim et al. (2017) proposed an EM algorithm for parameter
estimation. Their method involves two steps, where first the random effects are
treated as fixed, and a profile likelihood maximum likelihood estimator of the
random effects are computed. The second step uses the EM algorithm to esti-
mate the remaining model parameters. Their method relies on a normal approx-
imation to the predictive distribution of the random effects but was found to
give good results with moderate cluster sizes in numerical studies. Kim et al.
(2017) also gave a method for predicting random effects using the EM algo-
rithm and an approximating predictive distribution that was shown to be valid
for sufficiently large cluster sizes, which is needed for the prediction of unob-
served variables.

Eideh and Nathan (2009) and Rao et al. (2013) noted that both design con-
sistency and design-model consistency of the variance component, r2, require
that both the number of areas (or clusters), m, and the number of elements
within each cluster, ni, tend to infinity when the survey design is informative.
Furthermore, the relative bias of the estimators can be large when the ni are
small. Rao et al. (2013) showed that consistency of the variance component
can be achieved with only m tending to infinity (allowing the ni to be small) if
the joint inclusion probabilities, pjkji ¼ Pðj; k 2 Siji 2 SÞ, are available. Their
method uses the marginal joint densities,

Lijk ¼ Lijkðh; r2Þ ¼
ð

fpðyijjh; vÞfpðyijjh; vÞuðvjr2Þdv;

and estimates h and r2 by maximizing the design-weighted composite log
likelihood

lwCðh; r2Þ ¼
X
i2S

wi

X
j< k2Si

wjkji log Lijk: (12)

It was shown in Yi et al. (2016) that the maximizer of (12), is consistent for
both h and r2, with respect to the joint superpopulation model and the sam-
pling design.

Valid inference using multilevel models when the survey design is informa-
tive requires access to two sets of survey weights, wi and wjji, and in the case
of the method of Rao et al. (2013), higher-order inclusion probabilities, pjkji,
which are not typically provided; in most situations, the analyst will have only
the single-inclusion probabilities, pk, and it seems to be an open question as to
whether these single-inclusion probabilities alone are sufficient for valid infer-
ence with multilevel models and informative sampling designs. There has been
some work in this direction for the specific case of the one-way ANOVA
superpopulation model, which has been used by many authors as a
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superpopulation model for clustered data (Scott and Smith 1969; Eideh 2012;
Slud 2020). The one-way ANOVA model is given by

Yij ¼ lþ vi þ eij;

where l is a fixed intercept, vi �i:i:d: Nð0; r2vÞ, and eij �i:i:d: Nð0; r2eÞ. Recently,
Slud (2020) gave an expectation-maximization algorithm for consistent estima-
tion of variance components in the one-way ANOVA model, using only
single-inclusion weights, wi and wjji, when the clusters are sampled using an
informative sampling design, so long as the units within clusters are sampled
using a noninformative sampling design. Furthermore, Slud (2020) showed
that none of the existing methods consistently estimate variance components in
the one-way ANOVA model using only single-inclusion weights when both
the clusters, and the units within clusters, are sampled using an informative
design.

The pseudo-log-likelihoods (8) and (11) suggest pseudo-likelihoods

Ym
i

Y
j2Si

f ðyijjhÞwij (13)

for single level models, and

Ym
i¼1

ðY
j2Si

f ðyijjxij; h; vjÞwjji/ðvjÞdvj

( )wi

for multilevel models (Asparouhov 2006). The pseudo-likelihood (13) is some-
times called the composite likelihood in general statistical problems, when the
weights wij (not necessarily survey weights) are known positive constants, and
its use is popular in problems where the exact likelihood is intractable or com-
putationally prohibitive (Varin et al. 2011).

The pseudo-likelihood (13) is not a genuine likelihood, as it does not incor-
porate the dependence structure in the sampled data nor the relationship
between the responses and the design variables beyond the inclusion of the sur-
vey weights. However, the pseudo-likelihood has been shown to be a useful
tool for likelihood analysis for finite population inference in both the frequent-
ist and Bayesian frameworks.

By treating the pseudo-likelihood as a genuine likelihood, and specifying a
prior distribution pðhÞ on the model parameters h, Bayesian inference can be
performed on h. For general models, Savitsky and Toth (2016) showed for cer-
tain sampling schemes, and for a class of population distributions, that the
pseudo-posterior distribution using the survey-weighted pseudo-likelihood,
with survey weights scaled to sum to the sample size, (13) converges in L1 to
the population generating distribution. This result justifies the use of (13) in
place of the likelihood in Bayesian analysis of population parameters,
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conditional on the observed sampled units, even when the sample design is
informative. Predictions of area-level random effects as well as predictions of
nonsampled units can then be made as well. Williams and Savitsky (2020)
broaden the class of sample designs for which the Bayesian pseudo-likelihood
converges to the population-generating distribution, including designs with
unattenuated dependence within clusters.

Savitsky and Toth (2016) focus on parameter inference and do not give any
advice for making area-level estimates. However, it is straightforward to imple-
ment a model with a Bayesian pseudo-likelihood and then apply poststratifica-
tion after the fact by generating the population, and thus any desired area-level
estimates using (1). This type of pseudo-likelihood with poststratification for
SAE was demonstrated in the frequentist setting by Zhang et al. (2014).

Ribatet et al. (2012) provide a discussion on the validity of Bayesian infer-
ence using the composite likelihood (13) in place of the exact likelihood in
Bayes’ formula. An example of this method used in the sample survey context
can be found in Dong et al. (2014), which used a weighted pseudo-likelihood
with a multinomial distribution as a model for binned response variables. They
assumed an improper Dirichlet distribution on the cell probabilities and used
the associated posterior and posterior predictive distributions for the prediction
of the nonsampled population units.

5. LIKELIHOOD-BASED INFERENCE USING THE
SAMPLE DISTRIBUTION

The pseudo-likelihood methods discussed in section 4 require the specification of
a superpopulation model, which is a distribution, which holds for all units in the
finite population. However, validating the superpopulation model based on the
observed sampled values is challenging unless the sampling design is not infor-
mative, in which case, the distribution for the sampled units is the same as for the
nonsampled units. Under an informative sampling design, the model for the pop-
ulation data does not hold for the sampled data. This can be seen by the applica-
tion of Bayes’ theorem. Suppose the finite population values yij are independent
realizations from a population with density fpð�jxij; hÞ, conditional on a vector of
covariates xij and model parameters h. Given knowledge of this superpopulation
model, as well as the distribution of the inclusion variables, the distribution of the
sampled values can be derived. Define the sample density, fs, (Pfeffermann et al.
1998) as the density function of yij, given that yij has been sampled, that is,

fs yijjxij; h; c
� �

¼ fp yijjxij; h; Iij ¼ 1
� �

¼
P Iij ¼ 1jyij; xij; c
� �

fp yijjxij; h
� �

P Iij ¼ 1jxij; c
� � ; (14)

where Iij is a binary variable indicating whether unit j in area i has been
sampled and c is a vector of parameters related to the sampling model. From
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(14), the sample distribution differs from the population distribution, unless
PðIij ¼ 1jyij; xij; cÞ ¼ PðIij ¼ 1jxij; cÞ, which occurs in ignorable sampling
designs. Note that the inclusion probabilities, pij, may differ from the probabil-
ities PðIij ¼ 1jxij; yij; cÞ in (14), because the latter are not conditional on the
design variables Z.

Equation (14) can be used for likelihood-based inference if the simplifying
assumption that the sampled values are independent is made. While this is not
true in general, asymptotic results given in Pfeffermann et al. (1998) justify an
assumption of independence of the data for certain sampling schemes when
the overall population size is large, and the sample size remains fixed. More
recently, Bonn�ery et al. (2018) gave precise asymptotic results for the sample
maximum likelihood estimator of (14) when both the sample size and the pop-
ulation size increase.

Direct use of (14) for finite population inference requires additional model
specifications for the sample inclusion variables PðIij ¼ 1jxij; yij; cÞ as well as
PðIij ¼ 1jxij; cÞ. It was shown in Pfeffermann et al. (1998) that PðIij ¼ 1j
xij; yij; cÞ ¼ Epðpijjxij; yij; cÞ, and that PðIij ¼ 1jxij; cÞ ¼ Epðpijjxij; cÞ, so that a
superpopulation model still needs to be specified for likelihood-based
inference.

Ideally, one would like to specify a model for the sampled data, and to use
this model fit to the sampled data to infer the nonsampled values, without
explicit specification of a superpopulation model. Pfeffermann and Sverchkov
(2007) showed how to predict small area means by only identifying models for
the sampled data. Their work makes use of an important identity derived in
Pfeffermann and Sverchkov (1999), which links the moments of the sample
and population moments. They showed that

PðIij ¼ 1jyij; xijÞ ¼ Epðpijjyij; xijÞ ¼ 1=Esðwijjyij; xijÞ:

Similarly, it was shown that

PðIij ¼ 1jxijÞ ¼ EpðpijjxijÞ ¼ 1=EsðwijjxijÞ:

Combining these results with an application of Bayes’ theorem, as was done to
arrive at (14), gives the distribution for the nonsampled units in the finite
population

fcðyijjxijÞ � fpðyijjxij; Iij ¼ 0Þ ¼ Esðwij � 1jyij; xijÞfsðyijjxijÞ
Esðwij � 1jxijÞ

; (15)

where fc represents the density function of yij, given that yij has not been
sampled. This result allows one to specify only a distribution for the sampled
responses and a distribution for the sampled survey weights for inference on
the nonsampled units, without any hypothetical distribution for the finite popu-
lation. Importantly, this allows for the identification of the finite population
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generating distribution fp through the sample-based likelihood. It also estab-
lishes the relationship between the moments of the sample distribution and the
population distribution, allowing for the prediction of nonsampled units.

Pfeffermann and Sverchkov (2007) adapted the sample distribution to multi-
level models for SAE of finite population means when both small areas and
units within small areas are sampled with unequal probabilities in a two-sage,
informative survey design. Following the notation of section 4.3, suppose there
are area-specific random effects, vi, which are shared by all units in the popula-
tion in small area i, so that the population distribution can be written
fpðyijjxij; vi; hÞ. Let fpðvÞ be the population pdf of the random effects vi. The
first level of the multilevel sample models is

fsðviÞ ¼ f ðvijIi ¼ 1Þ ¼ PðIi ¼ 1jviÞfpðviÞ=PðIi ¼ 1Þ;

where Ii is a binary variable indicating area i has been sampled. The second
level is the same as in (14), but with the random effects, vi, included.
Pfeffermann and Sverchkov (2007) showed how small area means can be pre-
dicted using the observed unit-level data under a multilevel, informative survey
design. Under mild assumptions, Pfeffermann and Sverchkov (2007) showed
that

Epð�yijDs; Ii ¼ 1Þ ¼ 1
Ni

X
j2Si

yij þ
X
j =2Si

Es Ecðyijjxij; vi; Ii ¼ 1ÞjDs

� �0@ 1A:

Combining this with (14) and (15) allows for the prediction of the small area
means after specification of a model for the sampled responses, fsðyijjxij; viÞ,
and a model for the sampled weights, fsðwijjyij; xij; viÞ. A similar expression
was derived for nonsampled areas.

The model for the survey weights can be specified conditionally on the
response variables to account for the informativeness of the survey design.
Possible models for the sample weights considered in the literature include the
linear model (Beaumont 2008)

wij ¼ a0 þ a1yij þ a2y
2
ij þ xT

ijaþ �ij;

and the exponential model for the mean (Pfeffermann et al. 1998; Kim 2002;
Eideh and Nathan 2006; Beaumont 2008; Berg and Lee 2019),

Esðwijjxij; yijÞ ¼ ki exp ðbyij þ xT
ijbÞ: (16)

Pfeffermann and Sverchkov (2007) considered the case of continuous response
variables, yij, and modeled the sampled response data using the nested error
regression model (2). The exponential model for the survey weights in (16)
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was used to model the informative survey design. Under this modeling frame-
work, they showed that the best predictor of �Y i is approximately

Epð�Y ijDsÞ¼N�1
i ðNi �niÞbhi þnif�yi þð�X i � �xiÞT

bgþðNi �niÞbr2e
h i

; (17)

where bhi ¼bui þ �XT
i b. The term ðNi �niÞbr2e in (17) is an additional term from

the usual best predictor in the nested error regression model (2), which gives a
bias correction proportional to the sampling error variance r2e . Finally, there
have been examples of flexible nonparametric methods, such as p-splines, used
to model the weights (Zheng and Little 2003).

Le�on-Novelo and Savitsky (2019) take a fully Bayesian approach by speci-
fying a population-level model for the response, fpðyijjxij; hÞ, as well as a
population-level model for the inclusion probabilities, fpðpijjyij; xij; cÞ.
Through a Bayes rule argument similar to (14), they show that the implied joint
distribution for the sampled units is

fs yij; pijjxij; h; c
� �

¼
pijfp pijjyij; xij; c

� �
Eyijjxij;hfE pijjyij; xij; c

� �
g
� fp yijjxij; h

� �
: (18)

This joint likelihood for the sample can then be used in a Bayesian model by
placing a prior distribution on ðh; cÞ: Note that xij can be split into two vectors
corresponding to fpðyijjxij; hÞ and fpðpijjyij; xij; cÞ if desired. Consequently, the
covariates for the response model and the inclusion probability model need not
be the same.

Two computational concerns arise when using the likelihood as in (18). The
first issue is that in general, the structure will not lead to conjugate full condi-
tional distributions. To this effect, the authors recommend using the probabilis-
tic programming language Stan (Carpenter et al. 2017), which implements
Hamiltonian Monte Carlo (HMC) (Duane et al. 1987) for efficient mixing. The
second concern is that the integral involved in the expectation term of (18)
needs to be solved for every sampled observation at every iteration of the sam-
pler. If the integral is intractable, it will need to be evaluated numerically,
greatly increasing the necessary computation time. They show that if the log-
normal distribution is used for the population inclusion probability model, then
a closed form can be found for the expectation. Specifically, let
fpðpijjyij; xij; cÞ ¼ f ðlogpijjl ¼ gðyij; xij; cÞ þ tðxij; cÞ; r2 ¼ r2pÞ, where f ð�jl;
r2Þ represents a normal distribution with mean l and variance r2, while gð�Þ
and tð�Þ are some functions. Then

fs yij; pijjxij; h; c
� �

¼
f logpijjl ¼ g yij; xij; c

� �
þ t xij; c
� �

; r2 ¼ r2p
� �

exp t xij; c
� �

þ r2p=2
� �

Eyijjxij;h exp g yij; xij; c
� �� �	 


� fp yijjxij; h
� �

:
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In other words, the moment-generating function of the population response
model can be used to find the analytical form of the expression, as long as the
moment-generating function is defined on the real line. This includes important
cases such as the Gaussian, Bernoulli, and Poisson distributions, which are
commonly used in the context of survey data.

6. BINOMIAL LIKELIHOOD SPECIAL CASES

The special case of binary responses is of particular interest to survey statisti-
cians, as many surveys focus on the collection of data corresponding to charac-
teristics of sampled individuals, with a goal of estimating the population
proportion or count in a small area for a particular characteristic. In this sec-
tion, some techniques for modifying a working Bernoulli or binomial likeli-
hood using unit-level weights to account for an informative sampling design
are discussed. We note that in certain cases, Bernoulli data at the unit level
may be collapsed into binomial data at the area level. Thus, some of the meth-
ods included below may be viewed either through a unit-level or area-level
lens.

Suppose the responses yij are binary, and the goal is estimation of finite pop-
ulation proportions in each of the small areas i ¼ 1; . . . ;m,

pi ¼
1
Ni

X
j2U i

yij:

The pseudo-likelihood methods (Binder 1983; Skinner 1989), which were dis-
cussed in detail in Section 4 can be directly applied to construct a working like-
lihood of independent Bernoulli distributions for the sampled survey
responses. Zhang et al. (2014) used these ideas to fit a survey-weighted logistic
regression model, with random effects included at both the county level and
the state level, using the GLIMMIX procedure within SAS, to estimate chronic
obstructive pulmonary disease by age race and sex categories within US coun-
ties. Another example can be found in Congdon and Lloyd (2010), who used a
Bernoulli pseudo-likelihood to estimate diabetes prevalence within US states
by demographic groups. Their model formulation was similar to that used by
Zhang et al. (2014), but they included an additional random effect to account
for spatial correlation.

Malec et al. (1999) proposed a method that is similar in spirit to the pseudo-
likelihood method, which uses the survey weights to modify the shape of the
binomial likelihood function. Suppose there are D demographic groups of
interest and let Sd be the sampled individuals belonging to the demographic
group d ¼ 1; . . . ;D. Also, let nid represent the sample size in area i and domain
d, while mid represents the corresponding number of positive responses in the
sample. Instead of the usual independent binomial likelihood
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Q
id pmid

id ð1� pidÞnid�mid , Malec et al. (1999) proposed a sample-adjusted
likelihood Y

id

pmid
id ð1� pidÞnid�mid

ðpid=�w1d þ ð1� pidÞ=�w0dÞnid
; (19)

where

�w1d ¼
X

ði;jÞ2Sd

wijdyijd=
X

ði;jÞ2Sd

yijd

and

�w0d ¼
X

ði;jÞ2Sd

wijdð1� yijdÞ=
X

ði;jÞ2Sd

ð1� yijdÞ:

The quantities �w1d and �w0d are used to represent sampling weights for a demo-
graphic group d averaged over all individuals with and without a characteristic
of interest, respectively. The justification of the denominator of (19) as an
adjustment to the likelihood to account for informative sampling is presented
in Malec et al. (1999) through use of Bayes’ rule and by considering the empir-
ical distribution of the inclusion probabilities.

An alternative approach to the pseudo-likelihood method is to attempt to
construct a new, approximate likelihood with independent components, which
matches the information contained in the survey sample. Let

bpi ¼
P

j2Si
wijyijP

j2Si
wij

;

be the direct estimate of pi and let bV i be the estimated variances of bpi.
Under a simple random sampling design, the variance of the direct estimatebpi is VSRSðbpiÞ ¼ pið1� piÞ=ni, which can be estimated by bV SRSðbpiÞ ¼bpið1� bpiÞ=ni. In complex sampling designs with unequal inclusion probabil-
ities or clustering, elements that belong to a common area may be correlated.
Because of this, the information in the sample from a complex survey is not
equivalent to the information in a simple random sample of the same size. The
design effect for bpi is the ratio

di ¼ diðbpiÞ ¼
bV DðbpiÞbV SRSðbpiÞ

¼ nibV DðbpiÞbpið1� bpiÞ
;

and is a measure of the extent to which the variability under the survey design
differs from the variability that would be expected under simple random
sampling.
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The effective sample size, n0
i, is defined as the ratio of the sample size to the

design effect

n0i ¼
ni

di
¼ pið1� piÞbV DðbpiÞ

:

The effective sample size is an estimate of the sample size required under a
noninformative simple random sampling scheme to achieve the same precision
to that observed under the complex sampling design. Typically, the effective
sample size n0i will be less than ni for complex sample designs.

Often the design effect is not available, either due to the lack of available
information with which to compute it or due to computational complexity. In
such cases, design weights can be used for the estimation of the effective sam-
ple size. A simple estimate of the effective sample size, which uses only the
design weights was derived by Kish (1965), and is given by

n0i ¼
P

j2Si
wij

� �2P
j2Si

w2
ij

:

Other estimates of the design effect which use the survey weights, sample
sizes, and population totals and are appropriate for stratified sampling designs,
can be found in Kish (1992).

Chen et al. (2014) and Franco and Bell (2015) used the design effect and
effective sample size to define the “effective number of cases,” y�i ¼ n0ibpi. The
effective number of cases, y�i , was then modeled using a binomial, logit-
normal hierarchical structure. The sample model for the effective number of
cases is then

y�i jpi � Binomialðn0
i; piÞ; i ¼ 1; . . . ;m;

with a linking model of

logitðpiÞ ¼ log
pi

1� pi

� �
¼ xT

i bþ vi;

where the vi are area-specific random effects. Using the effective number of
cases and the effective sample size in a binomial model is an attempt to con-
struct a likelihood, which is valid under a simple random sampling design, and
will produce approximately equivalent inferences as when using the exact, but
possibly unknown or computationally intractable likelihood.

Different distributional assumptions on the random effects can be made to
accommodate aspects of the data or different correlation structures particular to
sampled geographies. Noting that it might be expected that areas which are
close to each other might share similarities, Chen et al. (2014) decomposed the
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random effects vi into spatial and a non-spatial components, so that
vi ¼ ui þ ei, where ei �i:i:d: Nð0; r2e Þ, and an ICAR prior is placed over ui:

uijuj; j 2 neðiÞ � Nð�ui; r
2
u=miÞ;

where ne(i) is the set of geographies which are neighbors of area i, mi is the
size of ne(i), and �ui ¼

P
j2neðiÞ uj=mi.

Franco and Bell (2015) introduced a time dependence structure into the ran-
dom effect vi for situations in which there are data from multiple time periods
available and applied their model to the estimation of poverty rates using mul-
tiple years of American Community Survey data. In their formulation, the ran-
dom effects have an AR(1) correlation structure, so that the model becomes

y�i;tjpi;t � Binomialðn0
i;t; pi;tÞ; i ¼ 1; . . . ;m; t ¼ 1; . . . ; T

logitðpi;tÞ ¼ xT
i;tbt þ r2t vi;t

vi;t ¼ /vi;t�1 þ ei;t

where j/j < 1, and the ei;t are assumed to be i.i.d. Nð0; 1� /2Þ random varia-
bles. The unknown parameters bt and r

2
t are allowed to vary over time. Franco

and Bell (2015) showed that the reductions in prediction uncertainty can be
meaningful when the autoregressive parameter / is large, but that the reduction
in prediction uncertainty is more modest when j/j < 0:4. As noted by Chen
et al. (2014), the inclusion of spatial or spatiotemporal random effects has the
added benefit that the dependent random effects can serve as a surrogate for
the variables responsible for dependency in the data.

The above methods use the survey weights either to modify the shape of an
independent likelihood (Malec et al. 1997; Zheng and Little 2003) to account
for the informative design, or to estimate a design effect in an attempt to match
the information contained in the survey sample to the information implied by
an independent likelihood by adjusting the sample size (Chen et al. 2014;
Franco and Bell 2015). Alternatively, one could specify a working independ-
ence model for the sampled units and incorporate the survey design by using
the survey weights as predictors (Zheng and Little 2003), and to induce
dependence through a latent process model.

7. CONCLUSION

Unit-level models pose many advantages relative to area-level models. These
advantages include increased precision and straightforward spatial aggregation
(the so-called benchmarking problem), among others. Estimation of unit-level
models requires attention to the specific sampling design. That is, the unit
response may be dependent on the probability of selection, even after
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conditioning on the design variables. In this sense, the sampling design is said
to be informative and care must be taken to avoid bias. Applications of these
methods are of particular interest (e.g., see Parker et al. (2023) for a
comprehensive illustration).

With these tools at hand, there are many opportunities for future research.
For example, including administrative records into the previous model formu-
lations constitutes one area of active research as care needs to be taken to prob-
abilistically account for the record linkage. Methods for disclosure avoidance
in unit-level models also provide another avenue for future research. Finally,
in many cases, the level of informativeness is unknown. Methods to assess the
degree of informativeness, especially after conditioning on a set of covariates,
are an important avenue of future research. In short, there are substantial
opportunities for improving the models presented herein. In doing so, the aim
is to provide computationally efficient estimates with improved precision. In
particular, as data size and the number of domains become large, the computa-
tion can become a burden with unit-level data, especially when considering
various dependence structures. More research into scalable approaches such as
the use of INLA (e.g., Orozco-Acosta et al. 2021) or variational Bayes approxi-
mations (e.g., Parker et al. 2022) will be of substantial value. Ultimately, this
will provide additional tools for official statistical agencies, survey methodolo-
gists, and subject-matter scientists.
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