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Unit-level modeling strategies offer many advantages relative to the
area-level models that are most often used in the context of small area
estimation. For example, unit-level models aggregate naturally, allowing
for estimates at any desired resolution, and also offer greater precision in
many cases. We compare a variety of the methods available in the litera-
ture related to unit-level modeling for small area estimation. Specifically,
to provide insight into the differences between methods, we conduct a
simulation study that compares several of the general approaches. In
addition, the methods used for simulation are further illustrated through
an application to the American Community Survey.
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1. INTRODUCTION

There is a growing demand for population estimates at a granular level based
on survey data. In many cases, sample sizes for these granular estimates are
too small to yield reliable results when considering traditional design-based
survey estimators. Small area estimation models are critical in this landscape,
in order to borrow strength from neighboring areas/domains, resulting in more
precise estimates.

Models for small area estimation (SAE) can generally be thought of as fall-
ing into one of two categories: area level or unit level. Area-level models are
fit using the design-based direct estimates, whereas unit-level models are fit
using the individual survey responses. Our focus herein is on unit-level model-
ing strategies. Modeling individual survey responses comes with a number of
challenges. For example, data sizes are typically much larger at the unit level.
In addition, survey designs may often result is dependence between the unit
probabilities of selection and the response of interest, even after conditioning
on available auxiliary and design variables (Eideh and Nathan 2009). This sce-
nario is termed informative sampling, and can lead to biased estimates when
left unaccounted for.

Unit-level models also offer many potential advantages over area-level mod-
els. For example, they may yield more precise estimates (Hidiroglou and You
2016). They also allow for use of unit-level covariates such as demographic
variables. Another advantage is that they can offer internal consistency when
constructing estimates at different resolutions.

Parker et al. (2023) provide a recent review of the various unit-level model-
ing approaches within SAE that account for informative sampling designs. The
methods discussed in this review are general, and not specific to certain data
types. However, many important survey variables at the unit level tend to be

Statement of Significance

This manuscript provides an empirical comparison of common unit-level
modeling approaches for small area estimation in the presence of informa-
tive sampling. Specifically, through the use of American Community
Survey data, we conduct an empirical simulation study that allows for
comparison between methods. We also apply a variety of methodologies
to the important problem of poverty estimation using the American
Community Survey.
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binary or categorical in nature. For example, Parker et al. (2022) develop a
unit-level model for categorical data that is applied to the problem of health
insurance estimation similar to the estimates produced by the Small Area
Health Insurance Estimates (SAHIE) Program (Luery 2011; Bauder et al.
2018). Poverty is another important binary variable that is relevant to the Small
Area Income and Poverty Estimates (SAIPE) program (Bell et al. 2016). Even
more recently, Sun et al. (2022) use unit-level models for binary data to pro-
duce estimates of expected job loss by state during the COVID-19 pandemic
through the use of data from the Household Pulse Survey.

We note that this paper builds on the overview given by Parker et al. (2023).
Specifically, the aim of this paper is to evaluate a selection of the strategies
reviewed by Parker et al. (2023). Motivated by the American Community
Survey (ACS) and other complex surveys, this is done by fitting different unit-
level models on both simulated data, and on real ACS confidential micro-data,
thereby comparing model-based predictions and uncertainty estimates. In addi-
tion to this, we provide some additional review of unit-level models that are
specific to the case of binary survey data for completeness. We mainly use
Bayesian methods for inference, but note that many model-based methods are
general enough to be implemented in either setting. In the simulation studies
and data examples given in sections 3 and 4, we fit three unit-level small area
Bayesian models, with vague, proper priors on all unknown model parameters.
Inference on the finite population parameters of interest is done using the pos-
terior mean as a point estimate, and the posterior variance and credible inter-
vals as measures of uncertainty. Importantly, in this paper we are not
attempting to unify frequentist and Bayesain approaches in the context of finite
population inference, though this is an interesting area of research. Related
to this topic of research is the work of Little (2012) on Calibrated Bayes
(cf. Parker et al. 2023).

The remainder of this paper is organized as follows. In section 2 we briefly
review some of the methods available to account for informative sampling,
noting that an in-depth review of these methods (as well as others) is given by
Parker et al. (2023). In section 3 we compare three selected general models to
a direct estimator under a simulation study designed around ACS data.
Specifically, this simulation examines three Bayesian methods that span dif-
ferent general modeling approaches (pseudo-likelihood, nonparametric
regression on the weights, and differing sample/population likelihoods) with
the goal of examining the utility of each approach. For a thorough review of
each of these approaches, see Parker et al. (2023). The Stan code used to fit
these models is available at https://github.com/paparker/Unit_Level_Models.
Similarly, section 4 uses the same models for a poverty estimates application
similar to the SAIPE program. Finally, we provide concluding remarks in
section 5.

Unit-Level Small Area Estimation Modeling Approaches 3
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2. BACKGROUND

The pseudo-likelihood (PL) approach provides a flexible framework for han-
dling complex survey data under informative sampling. To account for the
informative sampling mechanism, the likelihood is exponentially weighted by
the survey weight for each unit in the sample

PLðyjhÞ ¼
Y
i2S

f ðyijhÞwi :

Multiplying the PL by a suitable prior density, pðhÞ, Savitsky and Toth (2016)
show that this leads to a valid pseudo-posterior distribution in a Bayesian
model

bpðhjy;wÞ / Y
i2S

f ðyijhÞwi

( )
pðhÞ;

provided the survey weights, wi, are scaled to sum to the sample size, n.
Another approach to account for informative sampling is to regress the

response variable on a nonlinear function of the weights. Such an approach
requires prediction of the survey weights for population units outside of the
sample. In this light, Vandendijck et al. (2016) extend the work of Si et al.
(2015) in the context of SAE. For the proposed method, the authors assume
that the poststratification cells are designated by the unique weights and scaled
to sum to the sample size within each area. Then, similar to Si et al. (2015), a
multinomial model is used to conduct poststratification using the posterior dis-
tribution. Assuming a Bernoulli response, they use the data model

yijjgij � BernoulliðgijÞ
logitðgijÞ ¼ b0 þ lð~wijÞ þ ui þ vi

for unit j in small area i, with ~wij denoting the area-specific scaled survey
weights. Independent area level random effects are given by vi, whereas ui

denotes spatially dependent area-level intrinsic conditional autoregressive
(ICAR) random effects (Besag 1974). Lastly, the authors explore the use of a
Gaussian process prior over the function lð�Þ and use a multinomial model for
poststratification.

One further approach to unit-level modeling in the presence of informative
sampling is to infer a model for unsampled units based on a specified popula-
tion model as well as a model for the survey weights. For example, suppose
the finite population values yij are independent realizations from a population
with density fpð�jxij; hÞ, conditional on a vector of covariates xij, and model
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parameters h. Define the sample density, fs (Pfeffermann et al. 1998) as the
density function of yij, given that yij has been sampled

fs yijjxij; h; c
� �

¼ fp yijjxij; h; Iij ¼ 1
� �

¼
P Iij ¼ 1jyij; xij; c
� �

fp yijjxij; h
� �

P Iij ¼ 1jxij; c
� � ;

where Iij is a binary variable indicating whether unit j in area i has been
sampled and c is a vector of sampling model related parameters.

Pfeffermann and Sverchkov (2007) adapted the sample distribution to multi-
level models for SAE of finite population means when both small areas and
units within small areas are sampled with unequal probabilities in a two-stage,
informative survey design, and showed how small area means can be predicted
using the observed unit level data under a multilevel, informative survey
design. In addition, they showed that the model for the survey weights can be
specified conditionally on the response variables to account for the informa-
tiveness of the survey design. Possible models for the sample weights consid-
ered in the literature include linear and exponential models. Pfeffermann and
Sverchkov (2007) considered the case of continuous response variables, yij,
and modeled the sampled response data using the nested error regression
model.

3. SIMULATION STUDY

Unit-level models offer several potential benefits (e.g., no need for benchmark-
ing (Battese et al. 1988) and increased precision (Hidiroglou and You 2016)),
however, accounting for the informative design is critical at the unit level.
There are a variety of ways to approach this; however, the utility of each
approach is not apparent. We choose three methods that span different general
modeling approaches (pseudo-likelihood, nonparametric regression on the
weights, and differing sample/population likelihoods), in order to address this
question. We choose to sample a population based on existing survey data
from a complicated design, and make estimates for poverty (similar to SAIPE).

To construct a simulation study, we require a population for which the
response is known for every individual, in order to compare any estimates to
the truth. It is also desirable to have an informative sample. We treat the 2014
ACS sample from Minnesota as our population (around 120,000 observations
and 87 counties), and further sample 10,000 observations in order to generate
our estimates from the selected models. Ideally, we would mimic the survey
design used by ACS, however the design is highly complex which makes repli-
cation difficult. Instead, we subsample the ACS sample with probability pro-

portional to the reported sampling weights, wðoÞ
ij , using the Midzuno method

(Midzuno 1951) from the sampling package in R (Till�e and Matei 2016).

Unit-Level Small Area Estimation Modeling Approaches 5
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This results in a new set of survey weights wðnÞ
ij , which are inversely propor-

tional to the original weights given in the ACS sample. Sampling in this man-
ner results in a sample for which the selection probabilities are proportional to
the original sampling weights. Sampling was done in this way to induce an
informative subsample. By comparing weighted and unweighted direct esti-
mates (not reported), we verify that sampling in this way yields an informative
sample. Based on the models discussed in Parker et al. (2023), we fit three
models to the newly sampled dataset, and create county level estimates of the
proportion of the original ACS sample below the poverty level.

The first model we consider, which we call model 1, incorporates the survey
design through a Bernoulli pseudo-likelihood with a logit link function.

3.1 Model 1

yijjb ; l / BernoulliðyijjpijÞ~wij

logitðpijÞ ¼ x0ijbþ ui

ui �i:i:d:Nð0; r2uÞ

b � Npð0p; Ip�pr
2
bÞ; ru � Cauchyþð0; juÞ; (1)

where l ¼ ðl1; . . . ; lmÞ0 and the weights ~wij are scaled to sum to the total sam-
ple size, so that

P
i;j ~wij ¼ n, as recommended by Savitsky and Toth (2016).

Note that BernoulliðyijjpijÞ~wij represents a Bernoulli probability mass function
with probability pij evaluated at the data point yij and exponentiated by the
power ~wij. Cauchyþð0; juÞ denotes a half-Cauchy distribution, with scale
parameter ju (Gelman 2006). We incorporate a vague prior distribution by set-
ting r2b ¼ 10 and ju ¼ 5. This approach is based on the Bayesian pseudo-
likelihood given in Savitsky and Toth (2016), where each Bernoulli likelihood
contribution is exponentiated according to the scaled survey weight ~wij in the
first line of (1). The model structure is similar to that of Zhang et al. (2014),
although we use the psuedo-likelihood in a Bayesian context rather than a fre-
quentist one. Our design matrix X includes terms for age category, race cate-
gory, and sex. We use poststratification, where the poststratification cells are
defined by all cross classifications of age, race, and sex categories, by generat-
ing the nonsampled population at every iteration of our MCMC, which we use
to produce our estimates. The poststratification cells consist of the unique com-
binations of county, age category, race category, and sex, for which the popu-
lation sizes are known to us. See Parker et al. (2022) and the references therein
for detailed discussion on poststratification.

The second model, labeled model 2 below, uses an unweighted Bernoulli
likelihood with logit link function, but regresses on the survey weights to
account for the informative survey design.
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3.2 Model 2
yijjb0; f ðwijÞ; u; v � BernoulliðpijÞ

logitðpijÞ ¼ b0 þ f ðwijÞ þ ui þ vi

f ðwijÞjc; q � GPð0;Covðf ðwijÞ; f ðwi0j0 ÞÞÞ

Covðf ðwijÞ; f ðwi0j0 ÞÞ ¼ c2 exp �ðwij � wi0j0 Þ2

2q2

 !
ujs; a � Nð0; sDðI � aWÞ�1Þ

vijr2v � Nð0; r2vÞ; i ¼ 1; . . . ;m

b0 � Nð0; r2bÞ; c � Cauchyþð0; jcÞ; q � Cauchyþð0; jqÞ

s � Cauchyþð0; jsÞ; a � Unifð�1; 1Þ; rv � Cauchyþð0; jvÞ;

(2)

where u ¼ ðu1; . . . ; uDÞ0 is a vector of spatially correlated random effects, v
¼ ðv1; . . . ; vDÞ0 is a vector of independent random effects, D is a diagonal
matrix containing the number of neighbors for each area i ¼ 1; . . . ;m and W
is an area adjacency matrix. Again, we use a vague prior distribution by setting
r2b ¼ 10 and jc ¼ jq ¼ js ¼ jv ¼ 5. This is similar to the work of
Vandendijck et al. (2016), but using the squared exponential covariance kernel
as in Si et al. (2015), rather than a random walk prior on f ð�Þ. See also section
4 of Parker et al. (2023) which discusses inclusion of survey weights in a
model. Additionally, we choose to use the conditional autoregressive (CAR)
structure rather than ICAR structure on our random effects u. The random
effects u and v are included to allow for “borrowing strength” both globally
and locally (Besag et al. 1991). Only the sum of the random effects and not
their individual values is identifiable; however, the posterior will be proper so
long as at least one of the prior distributions on the variance components is
proper (Eberly and Carlin 2000). Note that although Vandendijck et al. (2016)
use the weights scaled to sum to county sample sizes as inputs into the non-
parametric function f ð�Þ, we attained better results by using the unscaled
weights. We use the multinomial model

ðn1k; . . . ; nLkkÞ � Multinomial nk;
N1k=wð1ÞkPLk

l¼1
Nlk=wðlÞk

; . . . ;
NLkk=wðLkÞkPLk

l¼1
Nlk=wðlÞk

0BBB@
1CCCA (3)

to model the population weight values, in order to perform poststratification. In
this model, nlk represents the sample size in poststrata cell l in area k, while Nlk

represents the population size in the same cell. Poststratification cells are deter-
mined by unique weight values within each county, denoted wðlÞk. Because all
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units in the same cell will share the same weight, by determining the popula-
tion size of each cell, the weights are implicitly determined, and thus the popu-
lation may be generated using the model specified in (2).

The final model we consider is labeled model 3 below and incorporates the
effect of an informative design by regressing the log of the survey weights on
the response variable.

3.3 Model 3

yijjpij � BernoulliðpijÞ

logitðpijÞ ¼ xT
ijbþ ui

logðwijÞjyij � xT
ijaþ yij � a þ �ij

ui �i:i:d:N ð0; r2uÞ

�ij �i:i:d:N ð0; r2� Þ;

with vague Nð0; 10Þ priors on the regression coefficients b; a, and a, and vague
Cauchyþð0; 5Þ priors on the variance components ru and r�. This model acts
as a Bayesian extension of Pfeffermann and Sverchkov (2007). Notably, in all
three models, the prior specification is vague relative to the scale of the data
and, therefore, imparts little impact on our analyses.

All three models were fit via HMC using Stan (Carpenter et al. 2017). We
treat poverty status (0 for not in poverty or 1 for in poverty) as our response
variable, and use age category, race category, and sex as covariates. These
covariate values are known for the entire population, allowing for prediction of
unsampled units. We ran each model using two chains, each of length 2,000,
and discarding the first 1,000 iterations as burn-in, thus using a total of 2,000
MCMC samples. Convergence was assessed visually via traceplots of the sam-
ple chains, with no lack of convergence detected. We repeated the simulation
100 times, with a sample size of 10,000 each time. That is, we create 100 dis-
tinct subsamples from the ACS sample, and fit the three models to each sub-
sample. Denoting bY ir as the estimate for county i in subsample r, and Yi as the
true value of the population parameter in county i, we compare the root mean
squared error (RMSE) ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
m � 100

Xm

i¼1

X100
r¼1

ðbY ir � YiÞ2
vuut

and absolute bias

8 Parker, Janicki, and Holan
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1
m

Xm

i¼1

��� 1
100

X100
r¼1

bY ir � Yi

���:
Although we present bias, we mainly focus on prediction RMSE in our com-
parisons, as this metric simultaneously strikes a balance between bias and var-
iance reduction. We also report the Kendall tau rank distance from the true
county poverty rate rankings, and 95 percent credible interval coverage rate for
county level estimates

1
m � 100

Xm

i¼1

X100
r¼1

IðbLir � Yi � bUirÞ;

averaged over both counties and simulated datasets, as well as computation
time in seconds for each model in table 1. Note that bLir and bUir represent the
lower and upper 95 percent credible interval bounds respectively for county i
and subsample r. These metrics are accompanied by their corresponding boot-
strapped standard errors. We also compare to a Horvitz–Thompson (HT) direct
estimator as well as to a survey weighted poststratification design-based esti-
mator (WPS, see Lohr (2019), page 374 for details).

Each of the three model-based estimators provides a substantial reduction in
RMSE compared to the direct estimator, with model 3 being the best in this
regard. Additionally, Model 1 gives a low bias, quite comparable to the direct
estimators. Note that the ratio of the squared bias to the MSE is roughly in the
range of 2.5–6 percent for all procedures, except for model 3, which is approxi-
mately 55 percent. The coverage rates of the credible intervals are also reported

Table 1. Simulation Results: RMSE310�2, Bias310�2, Rank Distance3103, 95
Percent Credible Interval Coverage Rate, and Computation Time in Seconds
were Averaged over 100 Simulations in order to Compare the Direct Estimator to
Three Model Based Estimators and Unweighted Direct Estimate

Estimator RMSE�10�2 Bias�10�2 Rank Dist.�103 CI Cov.
Rate

Time
(s)

HT 6.54 (1:2� 10�3) 1.0 (*) 1.212 (1:0� 101) NA NA
WPS 6.55 (9� 10�4) 1.7 (*) 1.194 (1:1� 101) NA NA
Model 1 4.17 (8� 10�4) 1.0 (*) 1.183 (1:0� 101) 0.86 106
Model 2 4.10 (4� 10�4) 1.0 (*) 1.120 (0:9� 101) 0.894 5,948
Model 3 2.96 (3� 10�4) 2.2 (*) 1.031 (0:8� 101) 0.943 437

NOTE.—Standard errors are denoted in parentheses. Note that some standard errors
were suppressed due to rounding requirements necessary for disclosure avoidance.
These have been denoted with (*).
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in table 1. Model 3 produces intervals that nearly exactly achieve the nominal
95 percent coverage rate, with models 1 and 2 falling below 90 percent. The
reasons for the under coverage with models 1 and 2 are not entirely clear; it
could be due to model misspecification or due to this particular survey design.
Coverage rates for the design-based estimators were not reported as we do not
have access to replicate weights or joint inclusion probabilities in this simula-
tion study.

Model 1 requires substantially less computation time compared to the other
model-based estimators, especially when comparing to model 2. This suggests
that if one wanted to scale the model to include more data, such as estimates at
a national level, model 1 may be easier to work with. Computation times will
vary depending on the specific resources used, however the main focus here is
the relative time between models. Additionally, this simulation illustrates that
it is feasible to fit Bayesian unit-level models in practice under reasonable com-
putation times.

In some cases, interest may not be in the specific county point estimates, but
rather the relative ranking of these point estimates. Thus, it is desirable to select
a model that has both lower RMSE and lower rank distance compared to the
direct estimates. It is clear that each of the model based estimates is able to
reduce this rank distance compared to the direct estimators, with model 3 per-
forming exceptionally well in this case.

In figure 1, we show the average reduction in RMSE, for each county, that
was attained by the three model based estimators when compared to the HT
direct estimator, averaged over the 100 simulations. Counties that did not see a
reduction are plotted in gray. Although model 2 had roughly 16 percent of
counties that saw an increase in RMSE, this only occurred in counties that had
lower RMSE for the direct estimate already, and the increases tended to be
minimal. There are some important differences between the model results here.

Figure 1. Model Reduction in RMSE Compared to the Direct Estimates,
Averaged Over 100 Simulations. Counties that did not see a reduction are not plotted
(shown in gray).
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Specifically, model 1 achieves a reduction in nearly every county unlike the
other two models, but model 3 tends to achieve a greater reduction in RMSE
in general when compared to model 1.

4. POVERTY ESTIMATE DATA ANALYSIS

The SAIPE program is a U.S. Census Bureau program that produces estimates
of median income and the number of people below the poverty threshold for
states, counties, and school districts, as well as for various subgroups of the
population. The SAIPE estimates are critical in order for the Department of
Education to allocate Title I funds.

The current model used to generate SAIPE poverty estimates is an area-
level Fay-Herriot model (Fay and Herriot 1979) on the log scale. The response
variable is the log transformed HT direct estimates from the single year ACS
of the number of individuals in poverty at the county level. The model includes
a number of powerful county level covariates such as the number of claimed
exemptions from federal tax return data, the number of people participating in
the Supplemental Nutrition Assistance Program (SNAP), and the number of
Supplemental Security Income (SSI) recipients. Luery (2011) provides a com-
prehensive overview of the SAIPE program, including the methodology used
to produce various area-level estimates and the covariates used in the model.

We use a single year of ACS data (2014 again) from Minnesota to fit the
three models described in section 3, using the same response and covariates.
The model based estimators we present are not meant to replace the current
SAIPE methodology, but rather to illustrate how unit-level models can be used
in an informative sampling application such as this one. The model-based pre-
dictions of the proportion of people below the poverty threshold by county
under each method are presented and compared with a direct estimator.

In figure 2, we show the estimate of the proportion of people below the pov-
erty level by county for each of the model-based estimators as well as the HT
direct estimator. Note that a small amount of noise has been added to the HT
direct estimates as a disclosure avoidance practice. All of the estimates here
seem to capture the same general spatial trend. The model based estimates
resemble smoothed versions of the direct estimates, especially in the more rural
areas of the state. Small sample sizes can lead to direct estimates with high var-
iance, but the model based approaches can “share information” across areas,
which leads to more precise estimates. We also compare the reduction in
model based standard errors when compared to the HT direct estimate in
figure 3. This illustrates the precision that is gained by using a model-based
estimator rather than a direct estimator in an SAE setting. Model 3 in particular
appears to have the lowest standard errors in more rural areas and model 1
seems to have lower standard errors in more populated areas. For this particular

Unit-Level Small Area Estimation Modeling Approaches 11
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Figure 2. Noise Infused HT Direct and Model Based Point Estimates of Poverty
Rate by County for Minnesota in 2014.

Figure 3. Model Based Reduction in Standard Errors for Poverty Rate by
County. Counties that did not see a reduction are not plotted (shown in gray).
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application, all three of the models we explored would be valid choices, with
substantial reductions in RMSE as shown in section 3.

In this case, the population cell sizes were known, however in many applica-
tions they may not be, in which case model 2 would likely be the best option.
In other cases where incorporating covariate information is desired, model 2 is
not well equipped to make estimates, due to the multinomial model (3). This
application was conducted for a single state, however if one wanted to scale
the analysis, for example making estimates for every county in the United
States, model 1 appears to be the most computationally efficient. An approach
similar to model 2, albeit using a different nonlinear regression approach from
the Gaussian Process regression considered here, may also be computationally
efficient. Vandendijck et al. (2016) reported strong results using splines for
this setup. Overall we found that each of these unit-level methods can offer
precise area-level estimates, however, the properties of the particular dataset
under consideration as well as the goals of the user should drive which model
is selected.

Modeling poverty counts at the unit level has a number of benefits when
compared to area-level models. Specifically, the current SAIPE model is on
the log scale, and thus cannot naturally accommodate estimates for areas with
a corresponding direct estimate of zero, whereas unit-level modeling need not
be on the log scale, and thus does not suffer from this problem. Additionally,
making predictions at multiple spatial resolutions is straightforward in the unit-
level setting, as predictions can be generated for all units in the population and
then aggregated as necessary, that is, the so-called bottom-up approach. Under
a unit-level approach, one could generate poverty estimates at both a county
level and school district level under the same model. Notably, spatial random
effects in this setting could be placed at different levels of geography, though
exact model specification is often problem specific (e.g., accounting for a
nested or other spatial structure). In this case, this can be viewed as a multiscale
model (Ferreira et al. 2011). In addition to these structural benefits, table 1
illustrates that unit-level models have the capacity to provide substantial reduc-
tions in MSE and variance when compared to direct estimators.

5. CONCLUSION

In the context of SAE, we have described several strategies for unit-level mod-
eling under informative sampling designs and illustrated their effectiveness rel-
ative to design-based estimators (direct estimates). Specifically, motivated by
the ACS and other complex surveys, our simulation study (section 3) illus-
trated three model-based estimators that exhibited superior performance rela-
tive to the direct estimator in terms of MSE, with model 3 performing best in
this regard. Among the three models compared in this simulation, model 1 dis-
played the lowest computation time relative to the other model-based
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estimators and, therefore, may be advantageous in higher-dimensional settings.
While this design-based simulation illustrated the superiority of model-based
methods, it is important in future work to consider other simulation setups
which include different degrees of informativeness as well as model and
design-model (superpopulation) setups as a sensitivity check as well as to
understand the reasons for the undercoverage of the interval estimates for some
methods.

Although the focus here was not on optimizing computation, it is likely that
tools such as INLA or variational approximations could further reduce the
computing time necessary to fit these types of models. Along these same lines,
spatial models such as model 2 may scale well considering a divide-and-
conquer approach such as estimating counties within a state using only data
from that state and its immediate spatial neighbors.

The models in section 3 (and section 4) constitute modest extensions to
models currently in the literature. Specifically, model 2 provides an extension
to Vandendijck et al. (2016), whereas model 3 can be seen as a Bayesian ver-
sion of the model proposed by Pfeffermann and Sverchkov (2007).
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