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AbstractÐ This paper proposes a method to find super-
stabilizing controllers for discrete-time linear systems that are
consistent with a set of corrupted observations. The L-infinity
bounded measurement noise introduces a bilinearity between
the unknown plant parameters and noise terms. A super-
stabilizing controller may be found by solving a feasibility
problem involving a set of polynomial nonnegativity constraints
in terms of the unknown plant parameters and noise terms. A
sequence of sum-of-squares (SOS) programs in rising degree
will yield a super-stabilizing controller if such a controller exists.
Unfortunately, these SOS programs exhibit very poor scaling as
the degree increases. A theorem of alternatives is employed to
yield equivalent, convergent (under mild conditions), and more
computationally tractable SOS programs.

I. INTRODUCTION

The data-driven control problem has received renewed

interest in the last few years, as an alternative to conventional

approaches that first identify a model and then use it to

design a controller. Given data generated by an (unknown)

system of the form,

xt+1 = Axt +But + wt (1)

x̂t = xt +∆xt, ût = ut +∆ut, (2)

where wt, ∆xt, ∆ut respectively represent process, mea-

surement, and input noise, the goal is to use measured data

(ût, x̂t) to find a gain K such that (A + BK) is Hurwitz,

for all possible pairs (A,B) consistent with this data.

For the case of noise-free data, the milestone paper [1]

based on the Willem’s fundamental lemma [2] parameterized

the controller directly from the input/output data. The case

of systems subject to process noise only (e.g. ∆x,∆u ≡ 0)

has been well studied, under different scenarios: [3]±[5]

focus on control under bounded-energy (ℓ2 norm) process

noise, and solve this type of problem by polynomial-time

Semidefinite Programming SDP. The work in [5] provides

further discussion on the ℓ∞ bounded process noise setting.

This setting is more desirable than the ℓ2 norm in many

scenarios, since it allows for considering noise bounds that

are independent of the measurement horizon [5]. Thus, data

can be added as it becomes available during operation. In
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addition, these ℓ∞ error bounds arise naturally when the

discrete system (1) originates from the discretization of a

continuous time sysetm, in which case wt models the error

when approximating the time derivative with finite differ-

ences. Finally, ℓ∞ bounds are relevant when the goal is to de-

sign ℓ1 optimal controllers capable of handling time-varying

uncertainty. Unfortunately, the computational complexity of

handling ℓ∞ bounded uncertainty grows exponentially with

the number of measurements [5]. A tractable alternative to

handle ℓ∞ noise was proposed in [6]±[8], based on the

concept of superstability. Superstability is more conservative

than stability, but it may be solved in a tractable manner

through convex optimization and it also provides peak values

of the states [9], [10].

To the best of our knowledge, the Error in Variables (EIV)

case has not been addressed in the context of data-driven

control. Writing (1) in terms of the measured variables,

x̂t+1 −∆xt+1 = A(x̂t −∆xt) +B(ût −∆ut) + wt, (3)

highlights the main difficulty here: the bilinearities

(A∆xt, B∆ut) between unknown variables that lead to

generically NP hard problems. This paper proposes a convex,

computationally tractable convex relaxation for robust data

driven control with ℓ∞ bounded measurement and process

noise. Its main contributions are

1) To show that, in this scenario, robust superstabilizing

controllers can be designed by solving Sum of Squares

(SOS)-based feasibility problems, which can be posed

as Semidefinite Programs (SDPs). Robust stabilization

is guaranteed by ensuring that all closed loop plants

consistent with the observed data are superstable.

2) A theorem of alternatives reformulation that drastically

reduces the number of variables involved and yields

more tractable SDPs [11].

This paper has the following structure: Section II will

review preliminaries such as notation, notions of stability

for linear systems, and SOS proofs of polynomial nonneg-

ativity. Section III will present a description of the semial-

gebraic consistency sets and an SOS program in variables

(A,B,∆x) to find a superstabilizing controller. Section IV

applies a Theorem of Alternatives to form an equivalent SOS

program in (A,B) with a reduced computational complexity

as compared to the Full program in (A,B,∆x). Section V

performs a comparison of computational complexity between

the Full and Alternatives program. Section VI presents

numerical experiments validating this method. Section VII

details extensions such as the varying noise sets, input noise,
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and the combination of process noise and EIV. The paper is

concluded in Section VIII.

II. PRELIMINARIES

A. Notation

The set R
n is the n-dimensional Euclidean space, R

n
+

is the nonnegative real orthant, and the set R
m×n is the

set of m × n matrices with real number entries. The set

of real polynomials with indeterminate variables x is R[x],
and the set of polynomials up to degree d is R[x]≤d. The

notation (R[x])m×n will correspond to a matrix-valued m×n
polynomial with a variable x, and (R[x])m is a vector-

valued m × 1 polynomial. The transpose of a matrix M

is MT , and a square symmetric matrix (M = MT ) is

Positive Semidefinite (PSD) (M ⪰ 0) if xTMx ≥ 0 for all

x ̸= 0. The ℓ∞ operator norm of a matrix M is ∥M∥∞ =
maxj |Mij |. The imaginary number is j =

√
−1, and the

symbol 1 is a vector of all ones. The set of natural numbers

between 1 and N is 1..N .

B. Superstability of Discrete-Time Linear Systems

A closed loop system Acl = A+BK is superstable if,

∥A+BK∥∞ < 1 (ℓ∞ Operator Norm). (4)

Superstability implies that the ℓ∞ norm ∥x∥∞ is a polyhedral

Lyapunov function of the closed loop system, proving that

the origin is globally asymptotically stable. Another conse-

quence of superstability is that every pole pi = ai + jbi of

Acl satisfies |ai|+ |bi| < 1 (ℓ1 norm of poles).

An equivalent definition of superstability through the

method of convex lifts from [12] is that ∃M ∈ R
n×n with,

∑n

j=1Mij < 1 ∀i = 1..n (5a)

−Mij ≤ Aij +
∑m

ℓ=1BiℓKℓj ≤Mij ∀i, j = 1..n. (5b)

If A + BK is superstable, an admissible selection of M

satisfying (5) is Mij = |Aij +
∑m

ℓ=1BiℓKℓj |, ∀i, j = 1..n.

Superstability is not necessarily preserved under a change-

of-basis transformation of the closed-loop plant Acl.

C. Semialgebraic Geometry and Sum of Squares

A Basic Semialgebraic (BSA) set is a set defined by

a finite number of bounded-degree inequality and equality

constraints. Every BSA set K can be represented as,

K = {x | gi(x) ≥ 0, hj(x) = 0}, (6)

for appropriate describing polynomials {gi(x)}Ng

i=1 and

{hj(x)}Nh

j=1. The intersection of two BSA sets remains BSA,

and may be acquired by concatenating the describing poly-

nomial constraints. The projection operation πx : (x, y) 7→ x

applied to a BSA set Ḡ(x, y) is,

G(x) = πx
Ḡ(x, y) = {x | ∃y : (x, y) ∈ Ḡ}. (7)

Semialgebraic sets are the closure of BSA sets under

unions and projections. The projections of BSA sets in (x, y)
may be described as the union of disjoint BSA sets in x

alone, and this task may be accomplished through quantifier

elimination algorithms such as the Cylindrical Algebraic

Decomposition [13] in typically (doubly) exponential time.

A polynomial nonnegativity constraint for p(x) ∈ R[x]
is p(x) ≥ 0, ∀x ∈ K. Verifying polynomial nonnegativity

is generically NP-hard, but SOS methods employ SDPs to

find nonnegativity certificates through convex means [14].

A polynomial p(x) is SOS (p(x) ∈ Σ[x]) if there exists

a vector of polynomials v(x) ∈ (R[x])s and a symmetric

PSD matrix Q ∈ R
s×s such that p(x) = v(x)TQv(x). The

Q matrix is also called the Gram matrix. If Q = STS is a

matrix decomposition of Q, then the elements q(x) = Sv(x)
satisfy p(x) =

∑s

i=1 qi(x)
2. The vector v is often chosen as

a monomial map up to a specified degree, where there exists
(

n+d
d

)

monomials in n variables up to degree d.

The Putinar Positivestellensatz (Psatz) gives a condition

for a polynomial p(x) to be positive over a BSA K [15],

p(x) = σ0(x) +
∑

i σi(x)gi(x) +
∑

j ϕj(x)hj (8a)

∃σ0(x) ∈ Σ[x], σ(x) ∈ (Σ[x])Ng , ϕ ∈ (R[x])Nh . (8b)

The set K is Archimedean if there exists an R ∈ (0,∞)
such that R − ∥x∥22 has a Putinar certificate in the sense

of (8). The set of polynomials in (8b) is called the

Weighted Sum of Squares (WSOS) cone Σ[K]. The degree-

(≤ d) WSOS cone Σ[K]≤2d restricts all polynomials

(σ0(x), {σi(x)gi(x)}Ng

i=1, {ϕj(x)hj(x)}Nh

j=1) to have degree

at most 2d. If the set K is Archimedean, then for every

bounded-degree p(x) that is positive over K, there exists

a finite integer d such that p(x) ∈ Σ[K]≤2d. The process

of increasing the degree until a WSOS certificate is found

is called the (moment)-SOS hierarchy, and each step in the

hierarchy requires solving an SDP of increasing complexity.

Details about the convergence rate of the moment-SOS hier-

archy for polynomial optimization problems as d increases

may be found in [16].

The per-iteration complexity of an Interior Point Method

in solving (up to arbitrary accuracy) an SDP with M affine

constraints and a PSD constraint of size N is O(N3M +
M2N2) [17]. Finding a degree-d SOS certificate of p(x)’s
positivity over R

n requires a Gram matrix Q of size N =
(

n+d
d

)

and a set of M =
(

n+2d
2d

)

affine constraints between

coefficients of p and sums of coefficients in Q. The per-

iteration complexity of Putinar-derived SOS SDPs therefore

scales in a polynomial manner as d increases for fixed n as

O(d4n), and vice versa as n increases for fixed d as O(n6d).

III. SUPERSTABILIZING CONTROLLER DESIGN VIA SOS

This section will present an SOS feasibility program to

recover a superstabilizing controller K compatible with all

plants consistent with D .
= {x̂t, ût}Tt=1 and the noise bounds.

For simplicity, we start with the case where wt,∆ut ≡ 0 and

defer the analysis where these input and process noise terms

are present to Section VII.

A. Consistency Sets

The BSA set of plants (A,B) ∈ R
n×n×R

n×m and noise

values ∆x ∈ R
n×T consistent with D and noise bound ϵ is

the set P̄(A,B,∆x) such that:
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P̄ :

{

0 = −∆xt+1 +A∆xt + h0t ∀t = 1..T − 1
∥∆xt∥∞ ≤ ϵ ∀t = 1..T

}

, (9)

where the affine weight h0 is defined by,

h0t = x̂t+1 −Ax̂t −But ∀t = 1..T − 1. (10)

Remark 1: Data from multiple trajectories of the same

system {Dk}Nd

k=1 may be merged to form P̄ = ∩Nd

k=1P̄(Dk).
The semialgebraic consistency set of plants P(A,B) com-

patible with D is the projection,

P(A,B) = πA,BP̄(A,B,∆x). (11)

B. Statement of the Problem

Given an a-priori bound ϵ on the ℓ∞ norm of the noise

and experimental data D, our goal is to find a gain K such

that the closed loop system (A+BK) is superstable for all

pairs (A,B) in the consistency set. Formally:

Problem 1: Find K such that ∥A + BK∥∞ < 1, for all

(A,B) ∈ P .

Remark 2: All constraints describing P̄ in (9) are affine

in the noise terms ∆x. For a fixed plant (A0, B0), checking

set membership (A0, B0) ∈ P can be determined by solving

a Linear Program (LP) feasibility problem in ∆x.

Remark 3: The sets P̄ and P may be disconnected.

C. An Equivalent Nonnegativity Program

Superstabilization of all plants in P by a given con-

troller K ∈ R
m×n can be certified through equation (5).

The M matrix may be chosen as a matrix-valued function

M(A,B,∆x) : Rn×n × R
n×m × R

n×T → R
n×n that can

vary over plants (A,B) and noise in the consistency set ∆x
and satisfies:

∀i = 1..n : 1− δ −∑n

j=1Mij(A,B,∆x) ≥ 0 (12a)

∀i = 1..n, j = 1..n : (12b)

Mij(A,B,∆x)− (Aij +
∑m

ℓ=1BiℓKℓj) ≥ 0

Mij(A,B,∆x) + (Aij +
∑m

ℓ=1BiℓKℓj) ≥ 0

for some sufficiently small stability margin δ > 0.

The following assumption is required for finite conver-

gence of the sequence of relaxations to Problem 1,

Assumption 1 (Compactness): Sufficient data is collected

such that P̄ (and therefore P) are compact (Archimedean).

Lemma 3.1: The function M(A,B,∆x) has a continuous

selection under Assumption 1.

Proof: (sketch) For fixed K, let S be the set of feasible

M ∈ R
n×n satisfying (12). The set-valued map ΞK : P̄ ⇝ S

is lower semicontinuous by Thm. 2.2 of [18]. The map ΞK

has closed and convex images in S, so by Michael’s Theorem

(9.1.2 in [19]), a continuous selection exists.

Lemma 3.2: The function M(A,B,∆x) can be taken to

be a polynomial Mp(A,B,∆x).
Proof: (sketch) Assumption 1 and continuity of the

M(A,B,∆x) allows to find a polynomial approxima-

tion Mp(A,B,∆x) satisfying (12) by invoking the Stone-

Weierstrass theorem [20].

Using Lemma 3.2, Problem 1 can be recast into the

following polynomial feasibility form:

Problem 2: Find K and a polynomial matrix

M(A,B,∆x) such that (12) holds for all (A,B,∆x) ∈
P̄(A,B,∆x).

D. SOS Program and Numerical Considerations

Program (12) may be approximated through SOS methods

as discussed in Section II-C by imposing that M is a

polynomial matrix M(A,B,∆x) ∈ (R[A,B,∆x])n×n.

Let qrow
i (A,B,∆x;K) be the LHS constraint of equation

(12a), and q±ij(A,B,∆x;K) be the LHS constraints of (12b).

As an example, one of the constraints from (12b) at (i, j)
may be represented as

q+ij(A,B,∆x;K) =Mij(A,B,∆x)− (Aij +
∑

ℓBiℓKℓj) .

The degree-d WSOS tightening of Problem 2 is presented

in Algorithm 1 (up to > 0 in (8) and ≥ 0 in (12)).

Algorithm 1: Full Superstability Program

Input: d, δ, D, ϵ
Output: K, M (or Infeasibility)

Solve (or find infeasibility certificate):

K ∈ R
n×m (13a)

M ∈ (R[A,B,∆x])n×n
≤2d (13b)

qrowi ∈ Σ[P̄]≤2d ∀i ∈ 1..n (13c)

q±ij ∈ Σ[P̄]≤2d ∀i, j ∈ 1..n (13d)

IV. ALTERNATIVES PROGRAM

While in principle Problem 2 can be solved using the

techniques outlined above, the resulting SOS scales as
(

n(n+m+T )+d
d

)

, limiting the approach to relatively low order

systems and short data records. This section addresses this

issue by eliminating the noise variables ∆x through the use

of the Theorem of Alternatives.

A. Theorem of Alternatives

If the constraint,

q(A,B) ≥ 0 ∀(A,B,∆x) ∈ P̄, (14)

is satisfied, then the problem of finding an (A,B,∆x) ∈ P̄
with −q(A,B) > 0 is infeasible. Dual variable functions

ζ±(A,B) : R
n×n × R

n×m → R
n×T
+ and µi,t(A,B) :

R
n×n × R

n×m → R
n×(T−1) multiplying against the con-

straints in (9) may be defined for each fixed (A,B) to form

the weighted sum,

S = −q(A,B) +
∑T

t=1(ϵ1−∆xt)
T ζ+t + (ϵ1+∆xt)

T ζ−t

+
∑T−1

t=1 µT
t (−∆xt+1 +A∆xt + h0t )

= −q(A,B) +
∑T

t=1 ϵ1
T (ζ+t + ζ−t ) +

∑T−1
t=1 µT

t h
0
t

+
∑T−1

t=1 µT
t A∆xt −

∑T

t=2 µ
T
t ∆xt−1. (15)
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The terms of (15) that are independent of ∆x may be

isolated into Q(A,B; ζ±, µ) as,

Q = −q(A,B)+
∑T

t=1 ϵ1
T (ζ+t,i+ζ

−
t,i)+

∑T−1
t=1 µT

t h
0
t . (16)

Finding a (ζ±, µ) pair such that sup∆x∈Rn×T S ≤ 0 is

necessary and sufficient to prove that (14) holds (by [11] and

Section 5.8 of [21]), given that the describing constraints in

(9) are affine (convex and concave) in ∆x. The supremal

value of S for each (A,B; ζ±, µ) is,

sup
∆x

S =































Q ζ+1 − ζ−1 = ATµ1

ζ+T − ζ−T = −µT−1

ζ+t − ζ−t = ATµt − µt−1 ∀t = 2..T − 1

ζ±1:T ≥ 0

∞ else.

(17)

The term Q(A,B; ζ±, µ) must be nonpositive, and the case

statements on the right side of (17) must be valid in order for

the supremal S to be nonpositive. An equivalent statement

to the nonnegativity constraint in (14) is that,

∃ ζ±1:T (A,B) ≥ 0, µ1:T−1(A,B) : (18a)

Q(A,B; ζ±, µ) ≤ 0 ∀(A,B) ∈ P (18b)

ζ+1 − ζ−1 = ATµ1 (18c)

ζ+t − ζ−t = ATµt − µt−1 ∀t ∈ 2..T − 1 (18d)

ζ+T − ζ−T = −µT−1. (18e)

Remark 4: The multipliers (ζ±, µ) have continuous selec-

tions in the compact P by similar arguments to Lemma 3.1.

B. Alternatives for Superstabilization

A new assumption is required to provide convergence

guarantees in the SOS hierarchy associated with (18),

Assumption 2 (Archimedean): An Archimedean set

Π(A,B) ⊇ P is a-priori known.

Remark 5: A set Π may arise from prior knowledge about

plant behavior and its reasonable limits.

The WSOS formulation of the Alternatives certificate (18)

for a single constraint (14) at degree d is an SDP with

decision variables (ζ±, µ) as described in Algorithm 2. The

notation Σaltern
≤2d [P] will refer to the cone of functions q(A,B)

with certificates given by (19) at degree d.

Remark 6: Constraints (19d)-(19e) are a set of linear

inequality constraints in the coefficients of (ζ±, µ) with

respect to indeterminates (A,B).
Remark 7: The multipliers ζ± may be degree 2d, since

they are no longer Psatz multipliers in (8) against constraints

ϵ ± ∆xit. The multipliers µ have degree 2d − 1 to ensure

that the product ATµt in (19d)-(19e) has degree 2d.

Algorithm 3 for Alternatives-based superstabilization re-

places each of the 2n2 + n Putinar Psatz (8) calls in (13c)-

(13d) with the Alternatives Psatz (19) in (20c)-(20d).

Remark 8: Assumption 2 is necessary to assure conver-

gence of certificate (20) as the degree d increases to the

finite recovery value (with M independent of ∆x). Dropping

Algorithm 2: Alternatives Psatz (Σaltern
≤2d [A,B])

Input: d, q(A,B),Π,D, ϵ
Output: ζ, µ (or Infeasibility)

Solve (or find infeasibility certificate):

ζ±(A,B) ∈ (Σ[Π]≤2d)
n×T (19a)

µ(A,B) ∈ (R[A,B]≤2d−1)
n×(T−1) (19b)

−Q(A,B; ζ±, µ) ∈ Σ[Π]≤2d (from (16)) (19c)

ζ+1 − ζ−1 = ATµ1 (19d)

ζ+t − ζ−t = ATµt − µt−1 ∀t ∈ 2..T − 1 (19e)

ζ+T − ζ−T = −µT−1. (19f)

Algorithm 3: Alternatives Superstability Program

Input: d, δ, D, ϵ, Π
Output: K, M (or Infeasibility)

Solve (or find infeasibility certificate):

K ∈ R
n×m (20a)

M ∈ (R[A,B])n×n
≤2d (20b)

qrowi ∈ Σaltern
≤2d [A,B] ∀i ∈ 1..n (20c)

q±ij ∈ Σaltern
≤2d [A,B] ∀i, j ∈ 1..n (20d)

Assumption 2 may lead to valid superstabilizing K with

certificates, but such programs do not possess a convergence

guarantee as d increases.

V. COMPUTATIONAL COMPLEXITY

This section will quantify the decrease in computational

complexity obtained when using the Alternatives program as

compared to the Full method. From (12), we have 2n2 + n

scalar polynomials q(A,B,∆x) ∈ Σ[x]2d in pF = n(n+m+
T ) variables (A,B,∆x), where the size of each polynomials

is computed from (8). The notation s(·) stands for the size

of vector R
s(·)×1 and m(·) stands for the size of matrix

R
m(·)×m(·):

Full q σ0 σi µj

# polys. 1 1 2nT 2n(T − 1)

size s
(

pF+2d

2d

)

m
(

pF+d

d

)

m
(

pF+d−1

d−1

)

s
(

pF+2d−2

2d−2

)

TABLE I: Size of Full method

Similarly from (14) and (8) we get the size of Alternatives

method with pA = n(n+m) variables (A,B). :

Alternatives q σ0 σi µj

# polys. 1 1 2nT 2n(T − 1)

size s
(

pA+2d

2d

)

m
(

pA+d

d

)

m
(

pA+d

d

)

s
(

pA+2d−1

2d−1

)

TABLE II: Size of Alternatives method

Two major sources of complexity reduction are:

(a) in the Alternatives method, the number of variables p
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does not depend on the number of samples T .

(b) We would like to use the smallest d such that the

algorithm is feasible. Experimental results shows that Full

method only works with d ≥ 2 while the Alternatives method

works with d ≥ 1.

Remark 9: The multipliers µ against consistency con-

straints (3) have degree 2d − 2 in Full (bilinearity A∆x)

but have degree 2d−1 in Alternatives (affine in (A,B) after

eliminating ∆x).

TABLE III shows the size (not multiplicites) of the variables

with fixed n = 2,m = 1, dfull = 2, daltern = 1 and

increased T .

q σ0 σi µj

Alternatives 28 7 7 7

Full (T = 4) 3060 120 15 120

Full (T = 6) 7315 190 19 190

Full (T = 8) 14950 276 23 276

TABLE III: Size of variables

VI. NUMERICAL EXAMPLES

MATLAB (2021a) code to generate the examples below is

publicly available at https://github.com/jarmill/

error_in_variables. Dependencies include Mosek

[22] and YALMIP [23].

A. Model-Based and Data-Driven Comparison

The model-based approach, (i.e. with A,B known) is

formulated as the following program:

min
λ∈[0,1), K

λ : ||A+BK||∞ < λ. (21)

Here λ is a scalar variable representing the convergence rate.

By minimizing λ, we obtain the fastest closed-loop system.

Consider the following unstable discrete-time model:

A =





0.6852 0.0274 0.5587
0.2045 0.6705 0.1404
0.8781 0.4173 0.1981



 , B =





0.4170 0.3023
0.7203 0.1468
0.0001 0.0923





(22)

We excite the system with uniformly distributed input and

measurement noise with bound ||u||∞ = 1, ||∆xt||∞ = ϵ.

The initial state is x1 = [1, 0, 0]. A trajectory of T samples,

i.e. {x̂t, ut}Tt=1 is collected for design. Solving (21) with

known A,B from (22) leads to λtrue = 0.7259. We treat

this as a benchmark and compare this with λ obtained with

the data-driven approach. To avoid the computational burden,

we choose the lowest order for all examples, i.e. dfull = 2
and daltern = 1. We drop Assumption 2 as noted in Remark

8 for the Alternatives program.

For a horizon T = 6 and ϵ = 0 (clean data), the Full method

introduces approximately 3.4×107 variables which is beyond

the current capabilities of Mosek. On the other hand, the

Alternatives method only has 67776 scalar variables (3 orders

of magnitude smaller than the Full). Solving it leads to λ =
0.7259 = λtrue which indicates that there is no conservatism

in our data-driven method for clean data. Now we consider

the noisy case with ϵ = 0.05. Applying the algorithm with

T = 40 leads to λ = 0.8880. Note that this λ corresponds to

the worse-case convergence rate, i.e. the largest convergence

rate for all plants in the consistency set. The true closed-loop

convergence rate is obtained by computing the norm of the

closed-loop system, which is, λclp = ||A+BK||∞ = 0.7749.

It is worth noting that λtrue ≤ λclp ≤ λ.

B. Monte Carlo Simulations

To test the reliability of the proposed method, we collected

100 trajectories with different level of noise and applied the

Alternatives method to the following system:

A =

[

0.6863 0.3968
0.3456 1.0388

]

, B =

[

0.4170 0.0001
0.7203 0.3023

]

(23)

TABLE IV displays the number of successful designs (S) for

a fixed horizon of T = 8.

ϵ 0.05 0.08 0.11 0.14

S 100 84 57 39

TABLE IV: S as a function of ϵ with T = 8

Increasing the noise level expands the consistency set,

which in turn renders the problem of finding a single

superstabilizing controller more difficult. Collecting more

data with the same noise bound ϵ = 0.14 reduces the size of

the consistency set, as illustrated in TABLE V.

T 8 10 12 14

S 39 60 75 86

TABLE V: S as a function of T with ϵ = 0.14

C. Partial Information

It is easy to incorporate partial information in the proposed

framework. Instead of treating all entries of A,B as unknown

variables, we can assume that q entries of (A,B) are

known. There are now n(n+m)− q free variables defining

the consistency set, producing a smaller Gram matrix of
(

n(n+m)−q+d
d

)

as compared to
(

n(n+m)+d
d

)

and ensuring that

it is easier to find a superstabilizing K both theoretically and

computationally. For instance, if we assume that the second

column of A is known and apply the alternative method with

T = 8, ϵ = 0.14, we get S = 94 as compared to S = 39 in

the last column of TABLE IV.

VII. EXTENSIONS

This section sketches out various extensions to the pre-

sented nonnegativity-based superstabilization framework.

A. Varying Noise Sets

The constraint description for P̄ in equation (9) involves

a noise bound of ∥∆xt∥ ≤ ϵ for each t = 1..T . Time-

dependent noise constraints may be developed by defining

sets Ft such that ∆xt ∈ Ft. Algorithm 1 for Full stabi-

lization will function when each Ft is BSA in ∆x. The

Alternatives psatz in Alg. 2 and its program in Alg. 3 may

be adapted when Ft are polytopes.
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B. Input Noise

The data D in this paper assumed bounded measurement

noise in the state x (∆x) and perfect knowledge of the input

u. Let ∥∆xt∥∞ ≤ ϵx and ∥∆ut∥∞ ≤ ϵu be measurement

noise processes for the state and the input. Data D = (x̂t, ût)
is now collected under the relation,

x̂t = xt +∆xt ût = ut +∆ut. (24)

Relation (3) with added input noise is,

x̂t+1 −∆xt+1 = A(x̂t −∆xt) +B(ût −∆ut). (25)

The consistency sets P̄ and P may be defined with respect

to the zero locus of relation (25). The full program with

input noise will have n(n + m) + T (n + m) variables.

The Alternatives program (14) will involve multipliers ζ±x
over ∆x and ψ±

u over ∆u. The term Q with input noise is

Q(A,B; ζ±, ψ±, µ) = Q(A,B; ζ±, µ) +
∑T

t=1 ϵ1
T (ψ+

t +
ψ−
t ), and the new constraints when eliminating ∆u are

ψ+
t − ψ−

t = BTµt, ∀t = 1..T .

C. Process and Measurement Noise

Assume that the measurement and process noise have ℓ∞
norm bounds of ∥∆xt∥∞ ≤ ϵx and ∥wt∥∞ ≤ ϵp. The

consistency set of plants and measurement noise P̄ϵx,ϵw is,

(A,B,∆x) ∈ R
n×n × R

n×m × R
n×T : (26)

∥−∆xt+1 +A∆xt + h0t∥∞ ≤ ϵp ∀t = 1..T − 1

∥∆xt∥∞ ≤ ϵ ∀t = 1..T

Each of the 2n2 + n nonnegativity expressions in (12) may

be posed over the BSA set P̄ϵx,ϵw in (26) by the Putinar

Psatz in (8). The full program with process and measurement

noise still has n(n + m + T ), but there are 2n(T − 1)
additional inequality constraints arising from the process

noise. The Alternatives method would no longer have µ

multipliers against consistency equality constraints, instead

the ϵp inequality constraints would have multipliers ξ±.

Each instance of µ in constraints (19d)-(19f) is replaced by

ξ+ − ξ−, and the multiplier term Q+ q(A,B) is now,

ϵ1T
(

∑T

t=1(ζ
+
t + ζ−t ) + (

∑T−1
t=1 ξ+t + ξ−t )

)

. (27)

VIII. CONCLUSION

This work presented a convergent WSOS program (Full)

to perform superstabilization of EIV models. To the best of

our knowledge, this is the first paper to address the EIV

stabilization scenario. A theorem of alternatives was then

applied to produce an equivalent problem (Alternatives) with

substantially reduced complexity. This was accomplished by

using duality to eliminate the noise variables. Efficacy of this

method was demonstrated on example systems.

Future work includes expanding the set of stable con-

trollers beyond superstability, producing worst-case-LQR

optimal controllers K with respect to all consistent plants

in P , and designing output feedback controllers in the

measurement noise setting.
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