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Bounding the Distance to Unsafe Sets with
Convex Optimization

Jared Miller, Member, IEEE and Mario Sznaier Fellow, IEEE

Abstract— This work proposes an algorithm to bound
the minimum distance between points on trajectories of a
dynamical system and points on an unsafe set. Prior work
on certifying safety of trajectories includes barrier and den-
sity methods, which do not provide a margin of proximity to
the unsafe set in terms of distance. The distance estimation
problem is relaxed to a Monge-Kantorovich-type optimal
transport problem based on existing occupation-measure
methods of peak estimation. Specialized programs may
be developed for polyhedral norm distances (e.g. L1 and
Linfinity) and for scenarios where a shape is traveling
along trajectories (e.g. rigid body motion). The distance
estimation problem will be correlatively sparse when the
distance objective is separable.

Index Terms— Safety, Peak Estimation, Numerical Opti-
mization, Linear Matrix Inequality, Sum of Squares

I. INTRODUCTION

A trajectory is safe with respect to an unsafe set Xu if
no point along the trajectory contacts or enters Xu. Safety
of trajectories may be quantified by the distance of closest
approach to Xu, which will be positive for all safe trajectories
and zero for all unsafe trajectories. The task of finding
this distance of closest approach will also be referred to as
‘distance estimation’. In this setting, an agent with state x is
restricted to a state space X ⊆ Rn and starts in an initial
set X0 ⊂ X . The trajectory of an agent evolving according
to locally Lipschitz dynamics ẋ = f(t, x(t)) starting at an
initial condition x0 ∈ X0 is denoted by x(t | x0). The
closest approach as measured by a distance function c that
any trajectory takes to the unsafe set Xu in a time horizon of
t ∈ [0, T ] can be found by solving,

P ∗ = inf
t, x0,y

c(x(t | x0), y)

ẋ(t) = f(t, x), t ∈ [0, T ]

x(0) = x0 ∈ X0, y ∈ Xu.

(1)

Solving (1) requires optimizing over all points (t, x0, y) ∈
[0, T ] × X0 × Xu, which is generically a non-convex and
difficult task. Upper bounds to P ∗ may be found by sampling
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points (x0, y) and evaluating c(x(t | x0), y) along these
sampled trajectories. Lower bounds to P ∗ are a universal
property of all trajectories, and will satisfy P ∗ > 0 if all
trajectories starting from X0 in the time horizon [0, T ] are
safe with respect to Xu.

This paper proposes an occupation-measure based method
to compute lower bounds of P ∗ through a converging hierar-
chy of convex Semidefinite Programs (SDPs) [1]. These SDPs
arise from a finite truncation of infinite dimensional Linear
Programs (LPs) in measures [2]. Occupation measures are
Borel measures that contain information about the distribution
of states evolving along trajectories of a dynamical system.
The distance estimation LP formulation is based on measure
LPs arising from peak estimation of dynamical systems [3]–[5]
because the state function to be minimized along trajectories
is the point-set distance function between x ∈ X and Xu.
Inspired by optimal transport theory [6]–[8], the distance
function c(x, y) between points x ∈ X on trajectories and
y ∈ Xu is relaxed to an expectation of the distance c(x, y)
with respect to probability distributions over X and Xu.

Occupation measure LPs for control problems were first
formulated in [9], and their Linear Matrix Inequality (LMI)
relaxations were detailed in [10]. These occupation measure
methods have also been applied to region of attraction estima-
tion and backwards reachable set maximizing control [11]–
[13].

Prior work on verifying safety of trajectories includes Bar-
rier functions [14], [15], Density functions [16], and Safety
Margins [17]. Barrier and Density functions offer binary indi-
cations of safety/unsafety; if a Barrier/Density function exists,
then all trajectories starting from X0 are safe. Barrier/Density
functions may be non-unique, and the existence of such a
function does not yield a measure of closeness to the unsafe
set. Safety Margins are a measure of constraint violation,
and a negative safety margin verifies safety of trajectories.
Safety Margins can vary with constraint reparameterization,
even in the same coordinate system (e.g. multiplying all
defining constraints of Xu by a positive constant scales the
safety margin by that constant), and therefore yield a qual-
itative certificate of safety. The distance of closest approach
P ∗ is independent of constraint reparameterization, returning
quantifiable and geometrically interpretable information about
safety of trajectories.

The contributions of this paper include:
• A measure LP to lower bound the distance estimation

task (1)
• A proof of convergence to P ∗ within arbitrary accuracy
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as the degree of LMI approximations approaches infinity
• A decomposition of the distance estimation LP using

correlative sparsity when the cost c(x, y) is separable
• Extensions such as finding the distance of closest ap-

proach between a shape with evolving orientations and
the unsafe set

Parts of this paper were presented at the 61st Conference
on Decision and Control [18]. Contributions of this work over
and above the conference version include:

• A discussion of the scaling properties of safety margins
• An application of correlative sparsity in order to reduce

the computational cost of finding distance estimates
• An extension to bounding the set-set distance between a

moving shape and the unsafe set
• A presentation of a lifting framework for polyhedral norm

distance functions
• A full proof of strong duality
This paper is structured as follows: Section II reviews

preliminaries such as notation and measures for peak and
safety estimation. Section III proposes an infinite-dimensional
LP to bound the distance closest approach between points
along trajectories and points on the unsafe set. Section IV
truncates the infinite-dimensional LPs into SDPs through the
moment-Sum of Squares (SOS) hierarchy, and studies nu-
merical considerations associated with these SDPs. Section
V utilizes correlative sparsity to create SDP relaxations of
distance estimation with smaller Positive Semidefinite (PSD)
matrix constraints. Distance estimation problems for shapes
traveling along trajectories are posed in Section VI. Examples
of the distance estimation problem are presented in Section
VII. Section VIII details extensions to the distance estimation
problem, including uncertainty, polyhedral norm distances, and
application of correlative sparsity. The paper is concluded in
Section IX. Appendix I offers a proof of strong duality betwen
infinite-dimensional LPs for distance estimation. Appendix II
summarizes the moment-SOS hierarchy.

II. PRELIMINARIES

A. Notation and Measure Theory
Let R be the set of real numbers and Rn be an n-

dimensional real Euclidean space. Let N be the set of natural
numbers and Nn be the set of n-dimensional multi-indices.
The total degree of a multi-index α ∈ Nn is |α| =

∑
i αi. A

monomial
∏n

i=1 x
αi
i may be expressed in multi-index notation

as xα. The set of polynomials with real coefficients is R[x],
and polynomials p(x) ∈ R[x] may be represented as the sum
over a finite index set J ⊂ Nn of p(x) =

∑
α∈J pαx

α.
The set of polynomials with monomials up to degree |α| = d
is R[x]≤d. A metric function c(x, y) over the space X with
x, y ∈ X satisfies the following properties [19]:

c(x, y) = c(y, x) > 0 x ̸= y (2a)
c(x, x) = 0 (2b)
c(x, y) ≤ c(x, z) + c(z, y) ∀z ∈ S. (2c)

The set of metrics are closed under addition and pointwise
maximums. Every norm ∥·∥ inspires a metric c∥·∥(x, y) =

∥x − y∥. The point-set distance function c(x;Y ) between a
point x ∈ X and a closed set Y ⊂ X is defined by:

c(x;Y ) = inf
y∈Y

c(x, y). (3)

The set of continuous functions over a Banach space S is
denoted as C(S), the set of finite signed Borel measures over
S is M(S), and the set of nonnegative Borel measures over
S is M+(S). A duality pairing exists between all functions
f ∈ C(S) and measures µ ∈ M+(S) by Lebegue integration:
⟨f, µ⟩ =

∫
S
f(s)dµ(s) when S is compact. The subcone of

nonnegative continuous functions over S is C+(S) ⊂ C(S),
which satisfies ⟨f, µ⟩ ≥ 0 ∀f ∈ C+(S), µ ∈ M+(S).
The subcone of continuous functions over S whose first k
derivatives are continuous is Ck(S) (with C(S) = C0(S)).
The indicator function of a set A ⊆ S is a function IA : S →
{0, 1} taking values IA(s) = 1 if s ∈ A and IA(s) = 0 if
s ̸∈ A. The measure of a set A with respect to µ ∈ M+(S)
is µ(A) = ⟨IA(s), µ⟩ =

∫
A
dµ. The mass of µ is µ(S) =

⟨1, µ⟩, and µ is a probability measure if ⟨1, µ⟩ = 1. The
support of µ is the set of all points s ∈ S such that every
open neighborhood Ns of s has µ(Nx) > 0. The Lebesgue
measure λS over a space S is the volume measure satisfying
⟨f, λS⟩ =

∫
S
f(s)ds ∀f ∈ C(S). The Dirac delta δs′ is a

probability measure supported at a single point s′ ∈ S, and
the duality pairing of any function f ∈ C(S) with respect to
δs′ is ⟨f(s), δs′⟩ = f(s′). A measure µ =

∑r
i=1 ciδsi that is

the conic combination (weights ci > 0) of r distinct Dirac
deltas is known as a rank-r atomic measure. The atoms of µ
are the support points {si}ri=1.

Let S, Y be spaces and µ ∈ M+(S), ν ∈ M+(Y ) be
measures. The product measure µ ⊗ ν is the unique measure
such that ∀A ∈ S, B ∈ Y : (µ ⊗ ν)(A × B) = µ(A)ν(B).
The pushforward of a map Q : S → Y along a measure µ(s)
is Q#µ(y), which satisfies ∀f ∈ C(Y ) : ⟨f(y), Q#µ(y)⟩ =
⟨f(Q(s)), µ(s)⟩. The measure of a set B ∈ Y is Q#µ(Y ) =
µ(Q−1(Y )). The projection map πs : S × Y → S preserves
only the s-coordinate as (s, y) → s, and a similar definition
holds for πy . Given a measure η ∈ M+(S×Y ), the projection-
pushforward πs

#η expresses the s-marginal of η with duality
pairing ∀f ∈ C(S) : ⟨f(s), πs

#η⟩ =
∫
S×Y

f(s)dη(s, y). Every
linear operator L : S → Y possesses a unique adjoint operator
L† such that ⟨Lf, µ⟩ = ⟨f,L†µ⟩, ∀f ∈ C(S), µ ∈ M+(S).

Given an interval [a, b] and a continuous curve s(t) where
s : [a, b] → S and S ⊂ Rn, the pushforward of the Lebesgue
measure on [a, b] through the map t → (t, s(t)) is called the
occupation measure associated to s(t). The sup-norm of a
function f ∈ C0(S) is ∥f∥C0(S) = sups∈S |f(s)|. The C1

norm of a function f ∈ C1(S) is ∥f∥C1(S) = ∥f∥C0(S) +∑n
i=1∥∂sif∥C0(S).

B. Peak Estimation and Occupation Measures
The peak estimation problem involves finding the maximum

value of a function p(x) along trajectories of a dynamical
system starting from X0 ⊂ X ⊂ Rn and remaining in X

P ∗ = sup
t∈[0,T ], x0∈X0

p(x(t | x0)),

x(0) = x0, ẋ(t) = f(t, x(t)).
(4)
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Every optimal trajectory of (4) (if one exists) may be
described by a tuple (x∗

0, t
∗
p) with x∗

p = x(t∗p | x∗
0) satisfying

P ∗ = p(x∗
p) = p(x(t∗p | x∗

0)). A persistent example throughout
this paper will be the Flow system of [14]:

ẋ =

[
x2

−x1 − x2 +
1
3x

3
1

]
. (5)

Figure 1 plots trajectories of the flow system in cyan for
times t ∈ [0, 5], starting from the initial set X0 = {x |
(x1 − 1.5)2 + x2 ≤ 0.42} in the black circle. The minimum
value of x2 along these trajectories is minx2 ≈ −0.5734. The
optimizing trajectory is shown in dark blue, starting at the
blue circle x∗

0 ≈ (1.4889,−0.3998) and reaching optimality
at x∗

p ≈ (0.6767,−0.5734) in time t∗p ≈ 1.6627.

Fig. 1: Minimizing x2 along Flow system (5)

The work in [4] developed a measure LP to find an upper
bound p∗ ≥ P ∗. This measure LP involves an initial measure
µ0 ∈ M+(X0), a peak measure µp ∈ M+([0, T ]×X), and an
occupation measure µ ∈ M+([0, T ]×X) connecting together
µ0 and µp. Given a distribution of initial conditions µ0 ∈
M+(X0) and a stopping time 0 ≤ t∗ ≤ T , the occupation
measure µ of a set A×B with A ⊆ [0, T ], B ⊆ X is defined
by

µ(A×B) =

∫
[0,t∗]×X0

IA×B ((t, x(t | x0))) dt dµ0(x0). (6)

The measure µ(A× B) is the µ0-averaged amount of time a
trajectory will dwell in the box A×B. With ODE dynamics
ẋ(t) = f(t, x(t)), the Lie derivative Lf along a test function
v ∈ C1([0, T ]×X) is

Lfv(t, x) = ∂tv(t, x) + f(t, x) · ∇xv(t, x). (7)

Liouville’s equation expresses the constraint that µ0 is
connected to µp by trajectories with dynamics f for all test
functions v ∈ C1([0, T ]×X):

⟨v(t, x), µp⟩ = ⟨v(0, x), µ0⟩+ ⟨Lfv(t, x), µ⟩ (8)

µp = δ0 ⊗ µ0 + L†
fµ. (9)

Equation (9) is an equivalent short-hand expression to equa-
tion (8) for all v. Substituting in the test functions v = 1, v = t
to Liouville’s equation returns the relations ⟨1, µ0⟩ = ⟨1, µp⟩
and ⟨1, µ⟩ = ⟨t, µp⟩.

The measure LP corresponding to (4) with optimization
variables (µ0, µp, µ) is [4],

p∗ = sup ⟨p(x), µp⟩ (10a)

µp = δ0 ⊗ µ0 + L†
fµ (10b)

⟨1, µ0⟩ = 1 (10c)
µ, µp ∈ M+([0, T ]×X) (10d)
µ0 ∈ M+(X0). (10e)

The initial measure µ0 is a probability measure by (10c).
The relation ⟨1, µp⟩ = ⟨1, µ0⟩ from (10b) imposes that µp is
also a probability measure. A set of measures (µ0, µp, µ) may
be derived from a trajectory with initial condition x∗

0 ∈ X0

and a stopping time t∗p in which x∗
p = x(t∗p | x∗

0), p(x
∗
p) = P ∗,

and x(t | x∗
0) ∈ X ∀t ∈ [0, t∗p]. The atomic measures are µ0 =

δx=x∗
0
, µp = δt=t∗p

⊗ δx=x∗
p
, and µ is the occupation measure

in times [0, t∗p] along t 7→ (t, x∗(t | x∗
0)). These measures

are solutions to constraints (10b)-(10e), which implies that
p∗ ≥ P ∗. There is no relaxation gap (p∗ = P ∗) if the set
[0, T ]×X is compact with X0 ⊂ X (Sec. 2.3 of [5] and [9]).
The moment-SOS hierarchy of SDPs may be used to find a
sequence of upper bounds to p∗. The method in [5] approaches
the moment-SOS hierarchy from the dual side, involving SOS
constraints in terms of an auxiliary function v(t, x) (dual
variable to constraint (10b)). Near-optimal trajectory extraction
can be attempted through SDP solution matrix factorization
[17] (if a low rank condition holds) and through sublevel set
methods [5], [20].

C. Safety
This subsection reviews methods to verify that trajectories

starting from X0 ⊂ X do not enter an unsafe set Xu ⊂ X . In
Figure 2, the unsafe set Xu = {x ∈ R2 | x2

1 + (x2 + 0.7)2 ≤
0.52,

√
2/2(x1 + x2 − 0.7) ≤ 0} is the red half-circle to the

bottom-left of trajectories.

Fig. 2: Trajectories of Flow system (5)

Sufficient conditions certifying safety can be obtained using
barrier functions [14], [15]. However, these conditions do
not provide a quantitative measurement for the safety of
trajectories. Safety margins as introduced in [17] quantify
the safety of trajectories through the use of maximin peak
estimation. Assume that Xu is a basic semialgebraic set with
description Xu = {x | pi(x) ≥ 0, i = 1, . . . , Nu}. A point x
is in Xu if all pi(x) ≥ 0. If at least one pi(x) remains negative
for all points along trajectories x(t | x0), x0 ∈ X0, then no
point starting from X0 enters Xu, and trajectories are therefore
safe. The value p∗ = maxi mint,x0

pi(x(t | x0)) is called the
safety margin, and a negative safety margin p∗ < 0 certifies
safety. The moment-SOS hierarchy (Appendix II) can be used
to find upper bounds p∗d > p∗ at degrees d, and safety is
assured if any upper bound is negative 0 > p∗d > p∗. Figure 3
visualizes the safety margin for the Flow system (5), where the
bound of p∗ ≤ −0.2831 was found at the degree-4 relaxation.

The safety margin of trajectories will generally change if the
unsafe set Xu is reparameterized even in the same coordinate
system. Let q ≤ 0 and s > 0 be violation and scaling
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Fig. 3: Flow system is safe, p∗ ≤ −0.2831

parameters for the enlarged unsafe set (Xs
u)q = {x | q ≤

0.52−x2
1+(x2+0.7)2, q ≤ −s(x1+x2−0.7)}. The original

unsafe set may be interpreted as Xu = (X
s=

√
2/2

u )q=0. Figure
4 visualizes contours of regions (Xs

u)q as q decreases from 0
down to −2 for sets with scaling parameters s = 5 and s = 1.
The safety margins of trajectories with respect to Xs

u will vary
as s changes, even as the same set Xu is represented in all
cases. This is precisely the difficulty addressed in the present
paper: developing scale invariant quantitative safety metrics.

Fig. 4: Safety margin scaling contours

III. DISTANCE ESTIMATION PROGRAM

The goal of this paper is to develop a computationally
tractable framework to compute the worst case (over all initial
conditions) distance of closest approach to an unsafe set.
Specifically, we aim to solve the following problem.

Problem 1 (Distance Calculation): Given semi-algebraic
initial condition (X0) and unsafe (Xu) sets, solve the
optimization problem (1).
In many practical situations, it is sufficient to obtain inter-
pretable lower bounds on the minimum distance. Thus, the
following problem is also of interest.

Problem 2 (Distance Estimation): Given a semi-algebraic
initial condition set (X0), a semi-algebraic unsafe (Xu) set,
and a positive integer d (degree), find a lower bound p∗d ≤ P ∗

to the solution of optimization (1).
As we will show in this paper (and under mild compactness
and regularity conditions), a convergent sequence of lower
bounds {p∗d} that rise to limd→∞ p∗d = P ∗ may be constructed
where each bound p∗d is obtained by solving a finite dimen-
sional SDP.

An optimizing trajectory of the Distance program (1) may
be described by a tuple T ∗ = (y∗, x∗

0, t∗p) using Table I.
The relationship between these quantities for an optimal

trajectory of (1) is

P ∗ = c(x(t∗p | x∗
0);Xu) = c(x(t∗p | x∗

0), y
∗). (11)

TABLE I: Characterization of an optimal trajectory in distance
estimation

y∗ location on unsafe set of closest approach
x∗
0 initial condition to produce closest approach
t∗p time to reach closest approach from x∗

0

Figure 5 plots the trajectory of closest approach to Xu

in dark blue. This minimal L2 distance is 0.2831, and the
red curve is the level set of all points with a point-set
distance 0.2831 to Xu. On the optimal trajectory, the blue
circle is x∗

0 ≈ (1.489,−0.3998), the blue star is x∗
p =

x(t∗ | x0) ≈ (0,−0.2997), and the blue square is y∗ ≈
(−0.2002,−0.4998). The closest approach of 0.2831 occurred
at time t∗ ≈ 0.6180. Figure 6 plots the distance and safety
margin contours for the set Xu. These distance contours for a
given metric c are independent of the way that Xu is defined
(within the same coordinate system).

Fig. 5: L2 bound of 0.2831

Fig. 6: Comparison between L2 distance and safety margin
contours

A. Assumptions

The following assumptions are made in Program (1):
A1 The sets [0, T ], X, Xu, X0 are all compact, X0 ⊂ X .
A2 The function f(t, x) is Lipschitz in each argument in

the compact set [0, T ]×X .
A3 The cost c(x, y) is C0 in X ×Xu.
A4 If x(t | x0) ∈ ∂X for some t ∈ [0, T ], x0 ∈ X0, then

x(t′ | x0) ̸∈ X ∀t′ ∈ (t, T ].

A3 relaxes the requirement that c should be a metric,
allowing for costs such as ∥x− y∥22 in addition to the metric
∥x− y∥2. The combination of A1 and A3 enforce that c(x, y)
is bounded inside X ×Xu by the Weierstrass extreme value
theorem. Assumption A4 requires that trajectories leave X
immediately after contacting the boundary ∂X .
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Remark 1: A strict ϵ-superset Xϵ is a set Xϵ ⊃ X in
which the boundaries of Xϵ and X have a positive distance. If
trajectories starting in X0 remain in X at all times t ∈ [0, T ],
then any strict ϵ-superset Xϵ satisfies A4. However, X may not
satisfy A4, because there might exist a trajectory remaining in
X that is tangent to ∂X .

B. Measure Program
The problem of c∗ = min(x,y)∈X×Xu

c(x, y) is identical
to c∗ = min(x,y)∈X×Xu

⟨c(x, y), δx ⊗ δy⟩ for Dirac measures
δx⊗ δy . The Dirac restriction may be relaxed to minimization
over the set of probability measures c∗ = ⟨c(x, y), η⟩, η ∈
M+(X × Xu), ⟨1, η⟩ = 1 with no change in the objective
value c∗. An infinite-dimensional convex LP in measures
(µ0, µp, µ, η) to bound from below the distance closest ap-
proach to Xu starting from X0 may be developed.

Theorem 3.1: Suppose that f ∈ C0 and A3 holds. Further
impose that A4 holds if X0 ⊂ X are both compact. Under
these conditions, a lower bound for P ∗ is,

p∗ = inf ⟨c(x, y), η⟩ (12a)
πx
#η = πx

#µp (12b)

µp = δ0 ⊗ µ0 + L†
fµ (12c)

⟨1, µ0⟩ = 1 (12d)
µ0 ∈ M+(X0), η ∈ M+(X ×Xu) (12e)
µp, µ ∈ M+([0, T ]×X) (12f)

Proof: Let T = (y, x0, tp) ∈ Xu×X0× [0, T ] be a tuple
representing a trajectory with xp = x(tp | x0) achieving a
distance P = c(xp, y). A set of measures (12e)-(12f) satisfying
constraints (12b)-(12f) may be constructed from the tuple T .
The initial measure µ0 = δx=x0

, the peak (free-terminal-
time) measure µp = δt=tp ⊗ δx=xp with xp = x(tp | x0),
and the joint measure η = δxp ⊗ δy=y , are all rank-one
atomic probability measures. The measure µ is the occupation
measure of t 7→ (t, x(t | x0)) in times [0, tp]. The distance
objective (12a) for the tuple T may be evaluated as,

⟨c(x, y), η⟩ = ⟨c(x, y), δx=xp
⊗ δy=y⟩ = c(xp, y) = P. (13)

The feasible set of (12b)-(12f) contains all measures con-
structed from trajectories by the above process, which imme-
diately implies that p∗ ≤ P ∗.

Remark 2: As a reminder, the term πx
# from constraint

(12b) is the operator performing x-marginalization. Constraint
(12b) ensures that the x-marginals of η and µp are equal:
∀w ∈ C(X) : ⟨w(x), η(x, y)⟩ = ⟨w(x), µp(t, x)⟩.

We now prove that the measure program in (12) has the
same objective value as the trajectory program in (1) under
assumptions A1-A4. In order to accomplish this task, we
require a pair of lemmas.

Lemma 3.1: Under assumptions A1-A4, the following mea-
sure LP has the same optimal value as (1):

p∗c = inf ⟨c(x;Xu), µp(t, x)⟩ (14a)

µp = δ0 ⊗ µ0 + L†
fµ (14b)

⟨1, µ0⟩ = 1 (14c)
µ0 ∈ M+(X0), µp, µ ∈ M+([0, T ]×X) (14d)

Proof: Problem (14) is a peak estimation instance of
(10) with a continuous (A3) objective of p(x) = −c(x;Xu).
Theorem 2.1 of [9] states that the peak estimation LP (14) will
equal the true peak estimation problem (4) (distance estimation
problem (1)). The measures in (14d) contain trajectories that
stay within X and terminate on ∂X (agreeing with the non-
return assumption A4).

Lemma 3.2: Under the assumptions that A1 and A3 hold
and that ν ∈ M+(X) is a probability measure, it follows that

⟨c(x;Xu), ν(x)⟩ = inf
η∈M+(X×Xu)

⟨c, η⟩ : πx
#η = ν. (15)

Proof: This follows by Theorem 2.2(a) of [21], given
that X ×Xu is compact and c is continuous.

Remark 3: The parameterized method of [21] assumes that
ν has a positive density with respect to the Lebesgue measure
on X . However, this assumption of positive density is not
required in the statement nor the proof of Theorem 2.2(a) used
in [21] (and therefore in Lemma 3.2 in this paper).

Theorem 3.2: Under assumptions A1-A4, p∗ = P ∗.
Proof: Lemma 3.1 states that p∗c = P ∗ under assumptions

A1-A4. For any solution (µp, µ0, µ) to constraints (14b) -
(14a), Lemma 3.2 allows for a measure η to be chosen
under ν = πx

#µp with cost ⟨c(x;Xu), π
x
#µp(x)⟩ = ⟨c, η⟩.

Furthermore, it is not possible to choose an η such that
⟨c(x;Xu), π

x
#µp(x)⟩ ≥ ⟨c, η⟩. The infimal objectives p∗ = p∗c

are the same, which implies that p∗ = P ∗.

C. Function Program

Dual variables v(t, x) ∈ C1([0, T ] × X), w(x) ∈ C(X),
γ ∈ R over constraints (12b)-(12d) must be introduced to
derive the dual LP to (12). The Lagrangian L of problem
(12) is

L = ⟨c(x, y), η⟩+ ⟨v(t, x), δ0 ⊗ µ0 + L†
fµ− µp⟩ (16)

+ ⟨w(x), πx
#µp − πx

#η⟩+ γ(1− ⟨1, µ0⟩).

Recalling that ∀η ∈ M+(X×Y ), w ∈ C(X) the relation that
⟨w(x), η(x, y)⟩ = ⟨w(x), πx

#η(x)⟩ holds, the Lagrangian L
in (16) may be reformulated as

L = γ + ⟨v(0, x)− γ, µ0⟩+ ⟨c(x, y)− w(x), η⟩ (17)
+ ⟨w(x)− v(t, x), µp⟩+ ⟨Lfv(t, x), µ⟩.

The dual of program (12) is provided by

d∗ = sup
γ,v,w

inf
µ0,µp,µ,η

L (18a)

=sup
γ∈R

γ (18b)

v(0, x) ≥ γ ∀x ∈ X0 (18c)
c(x, y) ≥ w(x) ∀(x, y) ∈ X ×Xu (18d)
w(x) ≥ v(t, x) ∀(t, x) ∈ [0, T ]×X (18e)
Lfv(t, x) ≥ 0 ∀(t, x) ∈ [0, T ]×X (18f)
w ∈ C(X) (18g)

v ∈ C1([0, T ]×X). (18h)

Theorem 3.3: Strong duality with p∗ = d∗ and attainment
of optima occurs under assumptions A1-A4.
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Proof: See Appendix I.

Remark 4: The continuous function w(x) is a lower bound
on the point set distance c(x;Xu) by constraint (18d). The
auxiliary function v(t, x) is in turn a lower bound on w(x)
by constraint (18e). This establishes a chain of lower bounds
v(t, x) ≤ w(x) ≤ c(x;Xu) holding ∀(t, x) ∈ [0, T ]×X .

IV. FINITE-DIMENSIONAL PROGRAMS

This section presents finite-dimensional SDP truncations
to the inifinite-dimensional LPs (12) and (18). We note that
(14) may possess a non-polynomial (but semialgebraic) cost
c(x;Xu), and therefore the lift to (12) is required to utilize
the moment-SOS hierarchy.

A. Approximation Preliminaries
We introduce notation and concepts about moments and

SOS polynomials that will be used in subsequent finite-
dimensional programs. Refer to Appendix II for further detail
(e.g. Archimedean structure, moment-SOS hierarchy, con-
ditions of convergence). A basic semialgebraic set K =
{x | gi(x) ≥ 0, i = 1, . . . , Nc} is a set formed
by a finite set of bounded-degree polynomial constraints.
The α-moment of a measure µ is mα = ⟨xα, µ⟩. As-
suming that each constraint polynomial gk(x) has a rep-
resentation as gk(x) =

∑
σ∈Nn gkσx

σ , then the ma-
trix Md(Km) formed by a moment sequence m is the
block-diagonal matrix formed by diag([mα+θ]α,θ∈Nn

≤d
,∀k :

[
∑

σ∈Nd gkσmα+θ+σ]α,θ∈Nn
≤d−deg gk/2

).
A polynomial p(x) is SOS (p(x) ∈ Σ[x]) if there exists

a finite integer s, a polynomial vector v(x) ∈ R[x]s, and
a PSD matrix Q ∈ Ss+, such that p(x) = v(x)TQv(x).
SOS polynomials are nonnegative over Rn. A polynomial is
Weighted Sum of Squares (WSOS) over a set K (expressed as
p(x) ∈ Σ[K] if there exists ∀k = 0..Nc : σk ∈ Σ[x] such that
p(x) = σ0(x) +

∑
k gk(x)σk(x).

B. LMI Approximation
In the case where c(x, y) and f(t, x) are polynomial,

(12) may be approximated with a converging hierarchy of
SDPs. Assume that that X0, X , and Xu are Archimedean
basic semialgebraic sets, each defined by a finite number
of bounded-degree polynomial inequality constraints X0 =
{x | g0k(x) ≥ 0}N0

k=1, X = {x | gXk (x) ≥ 0}NX

k=1, and
Xu = {x | gUk (x) ≥ 0}NU

k=1.
The polynomial inequality constraints for X0, X,Xu are

of degrees d0k, dk, d
U
k respectively. The Liouville equation in

(12c) enforces a countably infinite set of linear constraints
indexed by all possible α ∈ Nn, β ∈ N:

⟨xα, µ0⟩δβ0 + ⟨Lf (x
αtβ), µ⟩ − ⟨xαtβ , µp⟩ = 0. (19)

The expression δβ0 is the Kronecker Delta taking a value
δβ0 = 1 when β = 0 and δβ0 = 0 when β ̸= 0. Let
(m0,mp,m,mη) be moment sequences for the measures
(µ0, µp, µ, η). Define Liouαβ(m0,m,mp) as the linear rela-
tion induced by (19) at the test function xαtβ in terms of

moment sequences. The polynomial metric c(x, y) may be
expressed as

∑
α,γ cαγx

αyγ for multi-indices α, γ ∈ Nn.
The complexity of dynamics f induces a degree d̃ as d̃ =
d+⌈deg(f)/2⌉−1. The degree-d LMI relaxation of (12) with
moment sequence variables (m0,mp,m,mη) is

p∗d =min
∑

α,γ cαγm
η
αγ . (20a)

mη
α0 = mp

α0 ∀α ∈ Nn
≤2d (20b)

Liouαβ(m0,mp,m) = 0 ∀(α, β) ∈ Nn+1
≤2d (20c)

m0
0 = 1 (20d)

Md(X0m
0) ⪰ 0 (20e)

Md(([0, T ]×X)mp) ⪰ 0 (20f)
Md̃(([0, T ]×X)m) ⪰ 0 (20g)
Md((X ×Xu)m

η) ⪰ 0. (20h)

Constraints (20b)-(20d) are finite-dimensional versions of con-
straints (12b)-(12d) from the measure LP. In order to ensure
convergence limd→∞ p∗d = p∗, we must establish that all
moments of measures are bounded.

Lemma 4.1: The masses of all measures in (12) are finite
(uniformly bounded) if A1-A4 hold.

Proof: Constraint (12d) imposes that ⟨1, µ0⟩ = 1, which
further requires that ⟨1, µp⟩ = ⟨1, µ0⟩ = 1 by constraint
(12c) (v(t, x) = 1) and ⟨1, µp⟩ = ⟨1, η⟩ = 1 (w(x) = 1).
The occupation measure µ likewise has bounded mass with
⟨1, µ⟩ = ⟨t, µp⟩ < T by constraint (12c) (v(t, x) = t).

Lemma 4.2: The measures(µ0, µp, µ, η) all have finite mo-
ments under Assumptions A1-A4.

Proof: A sufficient condition for a measure τ ∈ M+(X)
with compact support to be bounded is to have finite mass
⟨1, τ⟩. In our case, the support of all measures (µ0, µp, µ, η)
are compact sets by A1. Further, under Assumptions A1-A4,
all of these measures have bounded mass (Lemma 4.1). This
sufficiency is satisfied by all measures (µ0, µp, µ, η).

Theorem 4.1: When T is finite and X0, X,Xu are all
Archimedean, the sequence of lower bounds p∗d ≤ p∗d+1 ≤
p∗d+2 . . . will approach p∗ as d tends towards ∞.

Proof: This convergence is assured by Corollary 8 of
[22] under the Archimedean assumption and Lemma 4.2.

Remark 5: Non-polynomial C0 cost functions c(x, y) may
be approximated by polynomials c̃(x, y) through the Stone-
Weierstrass theorem in the compact set X × Y . For ev-
ery ϵ > 0, there exists a c̃(x, y) ∈ R[x, y] such that
maxx∈X,y∈Xu

|c(x, y) − c̃(x, y)| ≤ ϵ. Solving the peak es-
timation problem (12) with cost c̃(x, y) as ϵ → 0 will yield
convergent bounds to P ∗ with cost c(x, y). Section VIII-B
offers an alternative peak estimation problem using polyhedral
lifts for costs comprised by the maximum of a set of functions.

C. Numerical Considerations
A moment matrix with n variables in degree d has dimen-

sion
(
n+d
d

)
. The sizes of moment matrices associated with a

d relaxation of Problem (20) with state x ∈ Rn, dynamics
f(t, x), and induced dynamic degree d̃, are listed in Table II.

The computational complexity of solving the SDP formula-
tion of LMI (20) scales polynomially as the largest matrix size
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TABLE II: Sizes of moment matrices in LMI (20)

Moment Md(m
0) Md(m

p) Md̃(m) Md(m
η)

Size
(n+d

d

) (1+n+d
d

) (1+n+d̃

d̃

) (2n+d
d

)

in Table II, usually Md(m
η), except in cases where f(t, x) has

a high polynomial degree.
Remark 6: The measures µp and η may in principle be

combined into a larger measure η̃ ∈ M+([0, T ] ×X ×Xu).
The Liouville equation (12c) would then read πtx

# η̃ = δ0⊗µ0+

L†
fµ, and a valid selection of η̃ given an optimal trajectory is

η̃ = δt=t∗p
⊗δx=x∗

p
⊗δy=y∗ with x∗

p = x(t∗p | x∗
0). The measure

η̃ is defined over 2n+1 variables, and the size of its moment
matrix at a degree d relaxation is

(
1+2n+d

d

)
, as compared to(

2n+d
d

)
for η. We elected to split up the measures as µp and η

to reduce the number of variables in the largest measure, and
to ensure that the objective (12a) is interpretable as an earth-
mover distance (from optimal transport literature [6]) between
πx
#µp and a probability distribution over Xu (absorbed into

πx
#η).
Remark 7: The distance problem (1) may also be treated as

a peak estimation problem (4) with cost p(x, y) = −c(x, y),
initial set X0 × Xu, x-dynamics ẋ(t) = f(t, x(t)), and y-
dynamics ẏ(t) = 0. The moment matrix Md[m] associated
with this peak estimation problem’s occupation measure (LMI
relaxation of program (10)) would have size

(
1+2n+d̃

d

)
. This

size is greater than any of the sizes written in Table II.
Remark 8: The atom-extraction-based recovery Algorithm

1 from [17] may be used to approximate near-optimal tra-
jectories if the moment matrices Md(m

0), Md(m
p), and

Md(m
η) are each low rank. If these matrices are all rank-

one, then the near-optimal points (xp, y, x0, tp) may be read
directly from the moment sequences (m0,mp,mη). The near
optimal points from Figure 1 were recovered at the degree-4
relaxation of (20). The top corner of the moment matrices
Md(m

0), Md(m
p), and Md(m

η) (containing moments of
orders 0-2) have second-largest eigenvalues of 1.87 × 10−5,
8.82 × 10−6, 5.87 × 10−7 respectively, as compared to the
largest eigenvalues of 3.377, 1.472, 1.380.

D. SOS Approximation
The degree-d WSOS truncation of program (18) is,

d∗d = max
γ∈R

γ (21a)

v(0, x)− γ ∈ Σ[X0]≤2d (21b)
c(x, y)− w(x) ∈ Σ[X ×Xu]≤2d (21c)
w(x)− v(t, x) ∈ Σ[[0, T ]×X]≤2d (21d)
Lfv(t, x) ∈ Σ[[0, T ]×X]≤2d̃ (21e)

w ∈ R[x]≤2d (21f)
v ∈ R[t, x]≤2d. (21g)

Theorem 4.2: Strong duality holds with p∗k = d∗k for all
k ∈ N between (20) and (21) under assumptions A1-A5.

Proof: Refer to Corollary 8 of [22] (Archimedean
condition and bounded masses), as well as to the proof of
Theorem 4 and Lemma 4 in Appendix D of [11].

V. EXPLOITING CORRELATIVE SPARSITY

Many costs c(x, y) exhibit an additively separable structure,
such that c can be decomposed into the sum of new terms
c(x, y) =

∑
i ci(xi, yi). Each term ci in the sum is a function

purely of (xi, yi). Examples include the Lp family of distance
functions, such as the squared L2 cost c(x, y) =

∑
i(xi−yi)

2.
The theory of Correlative Sparsity in polynomial optimization,
briefly reviewed below, can be used to substantially reduce
the computational complexity entailed in solving the distance
estimation SDPs when c is additively separable [23]. This
decomposition does not require prior structure on the set
X × Xu. Other types of reducible structure (if applicable)
include Term Sparsity [24], symmetry [25], and network
dynamics [26]. These forms of structure may be combined
if present, such as in Correlative and Term Sparsity [27].

A. Correlative Sparsity Background
Let K = {x | gk(x) ≥ 0, k = 1, . . . , N} be an

Archimedean basic semialgebraic set and ϕ(x) be a poly-
nomial. The Correlative Sparsity Pattern (CSP) associated to
(ϕ(x), g) is a graph G(V, E) with vertices V and edges E . Each
of the n vertices in V corresponds to a variable x1, . . . , xn. An
edge (xi, xj) ∈ E appears if variables xi and xj are multiplied
together in a monomial in ϕ(x), or if they appear together in
at least one constraint gk(x) [23].

The correlative sparsity pattern of (ϕ(x), g) may be charac-
terized by sets I of variables and sets J of constraints. The p
sets I should satisfy the following two properties:

1) (Coverage)
⋃p

j=1 Ij = V
2) (Running Intersection Property) For all k = 1, . . . , p−1:

Ik+1 ∩
⋃k

j=1 Ij ⊆ Is for some s ≤ k

Equivalently, the sets I are the maximal cliques of a chordal
extension of G(V, E) [28]. The sets J = {Ji}pi=1 are a partition
over constraints gk(x) ≥ 0. The number k is in Ji for k =
1, . . . NX if all variables involved in the constraint polynomial
gk(x) are contained within the set Ii. Let the notation x(Ii)
denote the variables in x that are members of the set Ii. A
sufficient sparse representation of positivity certificates may
be developed for (ϕ(x), g) satisfying an admissible correlative
sparsity pattern (I, J) [29]:

ϕ(x) =
∑p

i=1 σi0(x(Ii)) +
∑

k∈Ji
σk(x(Ii))gk(x) (22)

σi0(x) ∈ Σ[x(Ii)] σk(x) ∈ Σ[x(Ii)] ∀i = 1, . . . , p.

Equation (22) is a sparse version of the Putinar certificate
in (55). The sparse certificate (22) is additionally necessary
for the G-sparse polynomial ϕ(x) to be positive over K if
(I, J) satisfies the Running Intersection Property and a sparse
Archimedean property holds: that there exist finite constants
Ri > 0 for i = 1..n such that R2

i −∥x(Ii)∥22 is in the quadratic
module (53) of constraints Q[{gk}k∈Ji

] [29].

B. Correlative Sparsity for Distance Estimation
Constraint (18d) will exhibit correlative sparsity when

c(x, y) is additively separable:∑n
i=1 ci(xi, yi)− w(x) ≥ 0 ∀(x, y) ∈ X ×Xu. (23)
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The product-structure support set of Equation (23) may be
expressed as

X ×Xu = {(x, y) |g1(x) ≥ 0, . . . , gNX
(x) ≥ 0, (24)

gNX+1(y) ≥ 0, . . . , gNX+NU
(y) ≥ 0}.

The correlative sparsity graph of (23) is the graph Cartesian
product of the complete graph Kn by K2, and is visualized at
n = 4 by the nodes and black lines in Figure 7. Black lines
imply that there is a link between variables. The black lines are
drawn between each pair (xi, yi) from the cost terms ci. The
polynomial w(x) involves mixed monomials of all variables
(x) = (x1, x2, x3, x4). Prior knowledge on the constraints of
Xu are not assumed in advance, so the variables in (y) =
(y1, y2, y3, y4) are joined together. A CSP (I, J) associated
with this system is

I1 = {x1, x2, x3, x4, y1} J1 = {1, . . . , NX}
I2 = {x2, x3, x4, y1, y2} J2 = ∅
I3 = {x3, x4, y1, y2, y3} J3 = ∅
I4 = {x4, y1, y2, y3, y4} J4 = {NX + 1, . . . , NX +NU}.

Figure 7 illustrates a chordal extension of the CSP graph with
new edges displayed as red dashed lines. These new edges
appear by connecting all variables in I1 together in a clique,
and by following a similar process for I2, . . . I4.

x1 x2 x3 x4

y1 y2 y3 y4

Fig. 7: CSP with 4-States and Chordal Extension

For a unsafe distance bounding problem with a additively
separable c(x, y) =

∑
i c(xi, yi) with n states, the correlative

sparsity pattern (I, J) is,

I1 = {x1, . . . , xn, y1} J1 = {1, . . . , NX} (25)
Ii = {xi, . . . xn, y1, . . . yi} Ji = ∅, ∀i = 2, . . . , n− 1

In = {xn, y1, . . . , yn} Jn = {NX + 1, . . . , NX +NU}.
A total of (n − 1)n/2 new edges are added in the

chordal extension. Letting y1:i be the collection of variables
(y1, y2, . . . , yi) for an index i ∈ 1..n (and with a similar def-
inition for xi:n), a correlatively sparse certificate of positivity
for constraint (18d) is,
n∑

i=1

ci(xi, yi)− w(x) =

n∑
i=1

σi0(xi:n, y1:i) +

NX∑
k=1

σk(x, y1)gk(x)

+

NX+NU∑
k=NX+1

σk(xn, y)gk(y), (26)

with sum-of-squares multipliers,

σi0(x, y) ∈ Σ[xi:n, y1:i] ∀i = 1, . . . , p

σk(x, y) ∈ Σ[x, y1] ∀k = 1, . . . , NX (27)
σk(x, y) ∈ Σ[xn, y] ∀k = NX + 1, . . . , NX +NU .

The application of correlative sparsity to the distance prob-
lem replaces constraint (21c) by (26).

Remark 9: The CSP decomposition in (25) is nonunique.
As an example, the following decompositions are all valid for
n = 3 (satisfy Running Intersection Property):

I1 = {x1, x2, x3, y1} I ′1 = {x1, x2, x3, y3}
I2 = {x2, x3, y1, y3} I ′2 = {x1, x2, y2, y3}
I3 = {x2, y1, y2, y3} I ′3 = {x1, y1, y2, y3}.

The original constraint (18d) is dual to the joint measure
η ∈ M+(X × Y ). Correlative sparsity may be applied to
the measure program by splitting η into new measures η1 ∈
M+(X×R), ηn ∈ M+(R×Xu) and ηi ∈ M+(Rn+1) for i =
2, . . . , n− 1 following the procedure in [29]. These measures
will align on overlaps with π

Ii∩Ii+1

# ηi = π
Ii∩Ii+1

# ηi+1, ∀i =
1, . . . , n− 1. At a degree d relaxation, the moment matrix of
η in (20) has size

(
2n+d

d

)
. Each of the n moment matrices

of {ηi}ni=1 has a size of
(
n+1+d

d

)
. For example, a problem

with n = 4, d = 4 will have a moment matrix for η of size(
12
4

)
= 495, while the moment matrices for each of the η(1:4)

are of size
(
9
4

)
= 126.

VI. SHAPE SAFETY

The distance estimation problem may be extended to sets
or shapes travelling along trajectories, bounding the minimum
distance between points on the shape and the unsafe set. An
example application is in quantifying safety of rigid body
dynamics, such as finding the closest distance between all
points on an airplane and points on a mountain.

A. Shape Safety Background
Let X ⊂ Rn be a region of space with unsafe set Xu,

and c(x, y) be a distance function. The state ω ∈ Ω (such
as position and angular orientation) follows dynamics ω̇(t) =
f(t, ω) between times t ∈ [0, T ]. A trajectory is ω(t | ω0) for
some initial state ω0 ∈ Ω0 ⊂ Ω. The shape of the object is
a set S. There exists a mapping A(s;ω) : S × Ω → X that
provides the transformation between local coordinates on the
shape (s) to global coordinates in X .

Examples of a shape traveling along trajectories are detailed
in Figure 8. The shape S = [−0.1, 0.1]2 is the pink square.
The left hand plot is a pure translation after a 5π/12 radian
rotation, and the right plot involves a rigid body transforma-
tion.

The distance estimation task with shapes is to bound

P ∗ = inf
t, ω0∈Ω0, s∈S, y∈Xu

c(A(s; ω(t | ω0)), y)

ω̇(t) = f(t, ω), ∀t ∈ [0, T ].
(28)

For each trajectory in state ω(t | ω0), problem (28) ranges
over all points in the shape s ∈ S and points in the unsafe
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Fig. 8: Shape moving and rotating along Flow (5) trajectories

set y ∈ Xu to find the closest approach. An optimal trajectory
of the shape distance program may be expressed as T ∗

s =
(y∗, s∗, ω∗

0 , t
∗
p) with ω∗

p = ω(t∗p | ω∗
0), x

∗
p = A(s∗;ω∗

p) and

P ∗ = c(A(s∗;ω∗
p), Xu) = c(A(s∗;ω(t∗p | ω∗

0)), y
∗).

Remark 10: The objective in (28) can be expressed using

cA(ω;S,Xu) = inf
s∈S,y∈Xu

c(A(s;ω), y) (29)

as cA(ω(t | ω0);S,Xu).

B. Assumptions
The following assumptions are made in the Shape Distance

program (28):
A1’ The sets [0, T ], Ω, S, X, Xu are compact and Ω0 ⊂ Ω.
A2’ The function f(t, ω) is Lipschitz in each argument.
A3’ The cost c(x, y) is C0.
A4’ The coordinate transformation function A(s;ω) is C0.
A5’ If ω(t | ω0) ∈ ∂Ω for some t ∈ [0, T ], ω0 ∈ Ω0, then

ω(t | ω0) ̸∈ Ω ∀t′ ∈ (t, T ].
A6’ If ∃s ∈ S such that A(s;ω(t | ω0)) ̸∈ X or A(s;ω(t |

ω0)) ∈ ∂X for some t ∈ [0, T ], ω0 ∈ Ω0, then
A(s;ω(t′ | ω0)) ̸∈ X ∀t′ ∈ (t, T ].

An alternative assumption used instead of A5’-A6’ is that ω(t |
Ω0) stays in Ω for all ω0 ∈ Ω0 and A(s;ω(t | ω0)) ∈ X for
all s ∈ S, t ∈ [0, T ].

C. Shape Distance Measure Program
Program (28) involves a distance objective c(x, y), where

the point x = A(s;ω) is given by a coordinate transformation
between body coordinates s and the evolving orientation ω. In
order to formulate a measure program to (28), a shape measure
µs ∈ M+(S × Ω) may be added to bridge the gap between
the changing orientation ω̇ and the comparison distance x. The
shape measure contains information on the orientation ω and
body coordinate s that yields the closest point x:

⟨z(ω), µp(t, ω)⟩ = ⟨z(ω), µs(s, ω)⟩ ∀z ∈ C(Ω)
(30a)

⟨w(x), η(x, y)⟩ = ⟨w(A(s;ω)), µs(s, ω)⟩ ∀w ∈ C(X).
(30b)

The shape measure µs chooses the worst-case body co-
ordinate s and orientation ω from µp (30a), such that the
point x = A(s;ω) comes as close as possible to the unsafe
set’s coordinate y (30b). We retain the coordinate x in order
to decrease the computational complexity of the SDPs, as
elaborated upon further in Remark 6.

The infinite dimensional measure program that lower
bounds (28) is

p∗ = inf ⟨c(x, y), η⟩ (31a)

µp = δ0 ⊗ µ0 + L†
fµ (31b)

πω
#µp = πω

#µs (31c)

πx
#η = A(s;ω)#µs (31d)

⟨1, µ0⟩ = 1 (31e)
µ0 ∈ M+(Ω0), η ∈ M+(X ×Xu) (31f)
µs ∈ M+(Ω× S) (31g)
µp, µ ∈ M+([0, T ]× Ω). (31h)

Constraint (12b) in the original distance formulation is now
split between (31c) and (31d) (which are equivalent to (30b)
and (30a)). Problem (31) inherits all convergence and duality
properties of the original (12) under the appropriately modified
set of assumptions A1’-A6’.

Theorem 6.1: Under A3’-A4’ (and additionally A5’-A6’
when all sets in A1’ are compact possibly excluding [0, T ]),
the Shape programs (28) and (31) are related by p∗ ≤ P ∗.

Proof: This proof will follow the same pattern as Theo-
rem 3.1’s proof. A set of measures that are feasible solutions
for the constraints of (31) may be constructed for any trajec-
tory Ts = (y, s, ω0, tp) with ωp = ω(tp | ω0), xp = A(s;ωp).
One choice of these measures are µ0 = δω=ω0 , µp = δt=tp ⊗
δω=ωp

, η = δx=xp
⊗ δy=y, µs = δs=s ⊗ δω=ωp

and µ as
the occupation measure t 7→ (t, ω(t | ω∗

0) in times [0, t∗p].
The feasible set of the constraints contains all trajectory-
constructed measures, so p∗ ≤ P ∗.

Lemma 6.1: All measures in (31) have bounded mass under
Assumption A1’.

Proof: This follows from the steps of Lemma 4.1. The
conditions hold that 1 = ⟨1, µ0⟩ = ⟨1, µp⟩ (31b), ⟨1, µp⟩ =
⟨1, µs⟩ (31c), ⟨1, µs⟩ = ⟨1, η⟩ (31d), and ⟨1, µ⟩ ≤ T by (31b).

Lemma 6.2: The following peak estimation problem has the
same optimal value as (28) under A1’-A6’:

p∗c = inf ⟨cA(ω;S,Xu), µp(t, ω)⟩ (32a)

µp = δ0 ⊗ µ0 + L†
fµ (32b)

⟨1, µ0⟩ = 1 (32c)
µ0 ∈ M+(Ω0), η ∈ M+(X ×Xu) (32d)
µs ∈ M+(Ω× S) (32e)
µp, µ ∈ M+([0, T ]× Ω). (32f)

Proof: Refer to the proof of Lemma 3.1, with a shape-
objective from (29).

Theorem 6.2: Under A1’-A6’, the optimal values of (31)
and (28) are equal (P ∗ = p∗).

Proof: This proof repeats same process used in Theorem
3.2. Lemma 6.2 is used in place of Lemma 3.1. The reasoning
of Lemma 3.2 is employed to construct infima-agreeing mea-
sures µs, η given a µp from (32f) consistent with the marginal
constraints (31c) and (31d).
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D. Shape Distance Function Program

Defining a new dual function z(ω) against constraint (31c)
(also observed in (30a)), the Lagrangian of problem (31) is

L = ⟨c(x, y), η⟩+ ⟨v(t, x), δ0 ⊗ µ0 + L†
fµ− µp⟩

+ ⟨z(ω), πω
#(µp − µs)⟩+ γ(1− ⟨1, u0⟩) (33)

+ ⟨w(x), A(s;ω)#µs − πx
#η⟩.

The Lagrangian in (33) may be manipulated into

L = γ + ⟨c(x, y)− w(x), η⟩+ ⟨v(0, ω)− γ, µ0⟩
+ ⟨Lfv(t, ω), µ⟩+ ⟨z(ω)− v(t, ω), µp⟩ (34)
+ ⟨w(A(s;ω))− z(ω), µs⟩.

The dual of program (31) provided by minimizing the La-
grangian (34) with respect to (η, µs, µp, µ, µ0) is

d∗ = sup
γ∈R

γ (35a)

v(0, ω) ≥ γ ∀x ∈ Ω0 (35b)
c(x, y) ≥ w(x) ∀(x, y) ∈ X ×Xu (35c)
w(A(s;ω)) ≥ z(ω) ∀(s, ω) ∈ S × Ω (35d)
z(ω) ≥ v(t, ω) ∀(t, ω) ∈ [0, T ]× Ω (35e)
Lfv(t, ω) ≥ 0 ∀(t, ω) ∈ [0, T ]× Ω (35f)
w ∈ C(X), z ∈ C(Ω) (35g)

v ∈ C1([0, T ]×X). (35h)

Theorem 6.3: Problems (31) and (35) are strongly dual
under assumptions A1’-A6’.

Proof: This holds by extending the proof of Theorem
3.3 found in Appendix I and applying Theorem 2.6 of [30].

Remark 11: Program (35) imposes that a chain of lower
bounds v(t, ω) ≤ z(ω) ≤ w(A(s;ω)) ≤ c(A(s;ω)), y) holds
for all (s, ω, t, y) ∈ S ×Ω× [0, T ]×Xu (similar in principle
to Remark 4).

Remark 12: We briefly note that the LMI formulation of
(31) will converge to P ∗ under assumptions A1’-A6’ if all
sets [0, T ], X,Xu,Ω0,Ω, S are Archimedean and if f(t, ω) ∈
R[t, ω], A(s;ω) ∈ R[s, ω] (from Theorem 4.1). Constraint
(30b) induces a linear expression in moments for (η, µs) for
each α ∈ Nn : ⟨xα, η⟩ = ⟨A(s;ω)α, µs⟩.

Remark 13: If A(s;ω) is polynomial with degree κ, then
the d-degree relaxation of problem (31) involves moments
of µs up to order 2κd. For a system with Nω orientation
states and Ns shape variables, the size of the moment matrix
for µs is then

(
Ns+Nω+κd

κd

)
. LMI constraints associated with

µs can become bottlenecks to computation, surpassing the
contributions of µ and η as k increases.

Remark 14: Continuing the discussion Remark 6, the mea-
sures µs(s, ω) and η(x, y) may be combined together into
a larger measure ηs(s, ω, y) ∈ M+(S × Ω × Xu) with
objective inf⟨c(A(s;ω), y), ηs⟩ and constraint πω

#µp = πω
#ηs.

The moment matrix for ηs would have the generally intractable
size

(
Ns+Nω+n+κd

κd

)
.

VII. NUMERICAL EXAMPLES

All code was written in Matlab 2021a, and is publicly
available at the link https://github.com/Jarmill/
distance. The SDPs were formulated by Gloptipoly3 [31]
through a Yalmip interface [32], and were solved using Mosek
[33]. The experimental platform was an Intel i9 CPU with
a clock frequency of 2.30 GHz and 64.0 GB of RAM. The
squared-L2 cost c(x, y) =

∑
i(xi − yi)

2 is used in solving
Problem (20) unless otherwise specified. The documented
bounds are the square roots of the returned quantities, yielding
lower bounds to the L2 distance.

A. Flow System with Moon

The half-circle unsafe set in Figure 6 is a convex set.
The moon-shaped unsafe set Xu in Figure 9 is the non-
convex region outside the circle with radius 1.16 centered
at (0.6596, 0.3989) and inside the circle with radius 0.8
centered at (0.4,−0.4). The dotted red line demonstrates that
trajectories of the Flow system would be deemed unsafe if Xu

was relaxed to its convex hull.

Fig. 9: Collision if Xu is relaxed to its convex hull.

The L2 distance bound of 0.1592 in Figure 10 was found
at the degree-5 relaxation of Problem (20) with X = [−3, 3]2.
The moment matrices Md(m

0), Md(m
p),Md(m

η) at d =
5 were approximately rank-1, and near-optimal trajectories
were successfully extracted. This near-optimal trajectory starts
at x∗

0 ≈ (1.489,−0.3998) and reaches a closest distance
between x∗

p ≈ (1.113,−0.4956) and y∗ ≈ (1.161,−0.6472)
at time t∗p ≈ 0.1727. The distance bounds computed at
the first five relaxations are L1:5

2 = [1.487 × 10−4, 2.433 ×
10−4, 0.1501, 0.1592, 0.1592].

Fig. 10: L2 bound of 0.1592
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B. Twist System

The Twist system is a three-dimensional dynamical system
parameterized by matrices A and B:

ẋi(t) =
∑

j Aijxj −Bij(4x
3
j − 3xj)/2, (36)

A =

−1 1 1
−1 0 −1
0 1 −2

 B =

−1 0 −1
0 1 1
1 1 0

 . (37)

The cyan curves in each panel of Figure 11 are plots of
trajectories of the Twist system between times t ∈ [0, 5]. These
trajectories start at the X0 = {x | (x1 + 0.5)2 + x2

2 + x2
3 ≤

0.22} which is pictured by the grey spheres. The unsafe set
Xu = {x | (x1 − 0.25)2 + x2

2 + x2
3 ≤ 0.22, x3 ≤ 0} is drawn

in the red half-spheres. The underlying space is X = [−1, 1]3.
The red shell in Figure 11a is the cloud of points within

an L2 distance of 0.0427 of Xu, as found through a degree
5 relaxation of (20). Figure 11b involves an L4 contour of
0.0411, also found at order 5. The first few distance bounds
for the L2 distance are L1:5

2 = [0, 0, 0.0336, 0.0425, 0.0427],
and for the L4 distance are L2:5

4 = [0, 0.0298, 0.0408, 0.0413].
Fourth degree moments are required for the L4 metric, so the
L2:5
4 sequence starts at order 2.

(a) L2 bound of 0.0427 (b) L4 bound of 0.0411

Fig. 11: Distance contours at order-5 relaxation for the Twist
system (36)

Table III and IV lists the L2 bounds and runtimes re-
spectively generated by a distance estimation task between
trajectories and the half sphere of the above L2 Twist system
example. The high-degree relaxations (orders 4 and 5) are
significantly faster as found by solving the SDP associated
with the sparse LMI (dual to the sparse SOS with Putinar
expression (26)) as compared to the standard program (20).
The certifiable L2 bounds returned are roughly equivalent
between relaxations.

TABLE III: L2 bounds for the Twist Example

order 2 3 4 5 6
Standard LMI (20) 0.000 0.0313 0.0425 0.0429 0.0429

Sparse LMI with (26) 0.000 0.0311 0.0424 0.0430 0.0429

TABLE IV: Time in seconds for the Twist Example

order 2 3 4 5 6
Standard LMI (20) 0.32 1.92 47.55 502.29 4028.94

Sparse LMI with (26) 0.31 1.19 7.07 45.89 184.42

C. Shape Examples
Figure 12 visualizes a near-optimal trajectory of the shape

distance estimation for orientations ω ∈ R2 evolving as the
flow system with an initial condition Ω0 = {ω : (ω1−1.5)2+
ω2
2 ≤ 0.42} in the space Ω : (ω1, ω2) ∈ [−3, 3]2, ω2

3+ω2
4 = 1

(with a state set of X = [−3, 3]2). Suboptimal trajectories
were suppressed in visualization to highlight the shape struc-
ture and attributes of the near-optimal trajectory. The degree-1
coordinate transformation function A for pure translation with
a constant rotation of 5π/12 is,

A(s;ω) =

[
cos(5π/12)s1 − sin(5π/12)s2 + ω1

cos(5π/12)s1 + sin(5π/12)s2 + ω2

]
. (38)

This near-optimal trajectory with an L2 distance bound
of 0.1465 was found at a degree-4 relaxation of Problem
(31). The near-optimal trajectory is described by ω∗

0 ≈
(1.489,−0.3887), t∗p ≈ 3.090, ω∗

p ≈ (−0.1225,−0.3704),
s∗ ≈ (−0.1, 0.1), x∗

p ≈ (0,−0.2997), and y∗ ≈
(−0.2261,−0.4739). The first five distance bounds are L1:5

2 =
[1.205× 10−4, 4.245× 10−4, 0.1424, 0.1465, 0.1465].

Fig. 12: Translation, L2 bound of 0.1465

In the following example, the shape S is now rotating at
an angular velocity of 1 radian/second, as shown in the right
panel of Fig. 8. The orientation ω ∈ SE(2) may be expressed
as a semialgebraic lift through ω ∈ R4 with trigonometric
terms ω2

3 + ω2
4 = 1. The dynamics for this system are

ω̇ =
[
ω2; −ω1 − ω2 +

1
3ω

3
1 ; −ω4; ω3

]
. (39)

The degree-2 coordinate transformation associated with this
orientation is

A(s;ω) =

[
ω3s1 − ω4s2 + ω1

ω3s1 + ω4s2 + ω2

]
. (40)

The shape measure µs ∈ M+(S × Ω) is dis-
tributed over 6 variables. The size of µs’s moment ma-
trix with k = 2 at degrees 1-4 is [28, 210, 924, 3003].
The first three distance bounds are L1:3

2 = [2.9158 ×
10−5, 0.059162, 0.14255], and MATLAB runs out of mem-
ory on the experimental platform at degree 4. A successful
recovery is achieved at the degree 3 relaxation, as pictured
in Figure 13. This rotating-set near-optimal trajectory is
encoded by ω∗

0 ≈ (1.575,−0.3928, 0.2588, 0.9659), t∗p ≈
3.371, , s∗ ≈ (−0.1, 0.1), x∗

p ≈ (−0.1096,−0.3998),
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ω∗
p ≈ (−0.0064,−0.2921,−0.0322,−0.9995), and y∗ ≈

(−0.2104,−0.4896). Computing this degree-3 relaxation re-
quired 75.43 minutes.

Fig. 13: Rotation, L2 bound of 0.1425

VIII. EXTENSIONS

This section presents modifications to the distance estima-
tion programs in order to handle systems with uncertainties
and distance functions c generated by polyhedral norms.

A. Uncertainty
Distance estimation can be extended to systems with un-

certainty. For the sake of simplicity, this section is restricted
to time-dependent uncertainty. Assume that H ⊂ RNh is a
compact set of plausible values of uncertainty, and that the
uncertain process h(t),∀t ∈ [0, T ] may change arbitrarily in
time within H [34]. The distance estimation problem with
time-dependent uncertain dynamics is

P ∗ = inf
t, x0, y, h(t)

c(x(t | x0, h(t)), y)

ẋ(t) = f(t, x, h(t)), h(t) ∈ H ∀t ∈ [0, T ]

x0 ∈ X0, y ∈ Xu.

(41)

The process h(t) acts as an adversarial optimal control that
aims to steer x(t) as close to Xu as possible. The occupation
measure µ may be extended to a Young measure (relaxed
control) µ ∈ M+([0, T ]×X ×H) [10], [35].

The Liouville equation (12c) may be replaced by µp =

δ0 ⊗ µ0 + πtx
#L†

fµ, which should be understood to read
⟨v(t, x), µp⟩ = ⟨v(0, x), µ0⟩ + ⟨∂tv(t, x) + f(t, x, h) ·
∇xv(t, x), µ⟩ for all test functions v ∈ C1([0, T ] ×X). Any
trajectory with uncertainty process h(t) may be represented by
a tuple (x0, xp, tp, y, h(·)). This trajectory admits a measure
representation similar to the proof of 3.1, where the measure
µ is the occupation measure of t 7→ (t, x(t | x0), h(t))) in
times [0, tp]. The work in [34] applies a collection of existing
uncertainty structures to peak estimation problems (time-
independent, time-dependent, switching-type, box-type), and
all of these structures may be applied to distance estimation.

To illustrate these ideas, consider the following Flow system
with time-dependent uncertainty:

ẋ =

[
x2

(−1 + h)x1 − x2 +
1
3x

3
1

]
h ∈ [−0.25, 0.25]. (42)

An L2 distance bound of 0.1691 is computed at the degree
5 relaxation of the uncertain distance estimation program, as
visualized in Figure 14. The first five distance bounds are
L1:5
2 = [5.125× 10−5, 1.487× 10−4, 0.1609, 0.1688, 0.1691].

Fig. 14: Uncertain Flow (42), L2 bound of 0.1691

B. Polyhedral Norm Penalties

The infinite dimensional LP (12) is valid for all continuous
costs c(x, y) ∈ C(X2), but its LMI relaxation can only
handle polynomial costs c(x, y) ∈ R[x, y]. The Lp distance
is defined as ∥x − y∥p =

p
√∑

i|xi − yi|p when p is finite
and ∥x − y∥∞ = maxi|xi − yi| for p infinite. The cost
∥x − y∥pp is polynomial when p is finite and even; otherwise
the Lp distance has a piecewise definition in terms of absolute
values. The theory of convex (LP) lifts may be used to
interpret piecewise constraints into valid LMIs [36], [37].
Slack variables q ∈ R (or qi ∈ R as appropriate) may be added
to form enriched infinite dimensional LPs. The objective ⟨c, η⟩
from (12a) could be replaced by the following terms for the
examples of L∞, L1, and L3 distances:

∥x− y∥∞ min q (43a)
− q ≤ ⟨xi − yi, η⟩ ≤ q ∀i = 1, . . . , n

∥x− y∥1 min
∑

i qi (43b)
− qi ≤ ⟨xi − yi, η⟩ ≤ qi ∀i = 1, . . . , n,

∥x− y∥33 min
∑

i qi (43c)

− qi ≤ ⟨(xi − yi)
3, η⟩ ≤ qi ∀i = 1, . . . , n.

Distances induced by polyhedral norms can be included
through this lifting framework [38]. Figure 15 visualizes the
near-optimal trajectory for a minimum L1 distance bound
of 0.4003 (cost (43c)) at degree 4. This trajectory starts at
x∗
0 ≈ (1.489,−0.3998) and reaches the closest approach

between x∗
p ≈ (0,−0.2997) and y∗ ≈ (−0.1777,−0.5223) at

time t∗ ≈ 0.6181 units. The first five L1 distance bounds are
L1:5
1 = [3.179× 10−9, 4.389× 10−8, 0.3146, 0.4003, 0.4003].

Fig. 15: L1 bound of 0.4003
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IX. CONCLUSION

This paper presented an infinite dimensional linear program
in occupation measures to approximate the distance estimation
problem. The LP objective is equal to the distance of closest
approach between points along trajectories and points on the
unsafe set under mild compactness and regularity conditions.
Finite-dimensional truncations of this LP yield a converging
sequence of SDP lower bounds to the minimal distance under
further conditions (Archimedean). The distance estimation
problem can be modified to accommodate dynamics with
uncertainty, piecewise distance functions, and movement of
shapes along trajectories. Future work includes formulating
and implementing control policies to maximize the distance
of closest approach to the unsafe set while still reaching a
terminal set within a specified time.

APPENDIX I
PROOF OF STRONG DUALITY IN THEOREM 3.3

This proof will follow the method used in Theorem 2.6 of
[30] to prove duality.

The two programs (12) and (18) will be posed as a pair
of standard-form infinite dimensional LPs using notation from
[30]. The following spaces may be defined:

X ′ = C(X0)× C([0, T ]×X)2 × C(X ×Xu) (44)

X = M(X0)×M([0, T ]×X)2 ×M(X ×Xu).

The nonnegative subcones of X ′ and X respectively are,

X ′
+ = C+(X0)× C+([0, T ]×X)2 × C+(X ×Xu) (45)

X+ = M+(X0)×M+([0, T ]×X)2 ×M+(X ×Xu).

The cones X ′
+ and X+ in (45) are topological duals under

assumption A1, and the measures from (12e)-(12f) satisfy µ =
(µ0, µp, µ, η) ∈ X+. The spaces Y and Y ′ may be defined as,

Y ′ = C(X)× C1([0, T ]×X)× R (46)

Y = M(X)× C1([0, T ]×X)′ × 0. (47)

We express Y+ = Y and Y ′
+ = Y ′ to maintain a convention

with [30] given there are no affine-inequality constraints in
(12). We equip X with the weak-* topology and Y with
the (sup-norm bounded) weak topology. The arguments ℓ =
(w, v, γ) from problem (18) are members of the set Y ′

+.
The linear operators A′ : Y ′

+ → X ′
+ and A : X+ → Y+

induced from constraints (12b)-(12d) may be defined as,

A(µ) = [πx
#µp − πx

#η, δ0 ⊗ µ0 + L†
fµ− µp, ⟨1, µ0⟩] (48)

A′(ℓ) = [v(0, x)− γ,w(x)− v(t, x),Lfv(t, x),−w(x)].

The last pieces needed to convert (12) into a standard-form
LP are the cost vector c = [0, 0, 0, c(x, y)] and the answer
vector b = [0, 0, 1] ∈ Y ′. Problem (12) is therefore equivalent
to (with ⟨c,µ⟩ = ⟨c, η⟩)

p∗ = inf
µ∈X+

⟨c,µ⟩ b−A(µ) ∈ Y+. (49)

The dual LP to (49) in standard form is (with ⟨ℓ,b⟩ = γ)

d∗ = sup
ℓ∈Y′

+

⟨ℓ,b⟩ A′(ℓ)− c ∈ X+. (50)

The operators A and A′ are adjoints with ⟨A(ℓ),µ⟩ =
⟨ℓ,A′(µ)⟩ for all ℓ ∈ Y ′

+ and µ ∈ X+.
The sufficient conditions for strong duality and attainment

of optimality between (49) and (50) as outlined in Theorem
2.6 of [30] are that:

R1 All support sets are compact (A1).
R2 All measure solutions have bounded mass (Lemma 4.1).
R3 All functions involved in the definitions of c and A are

continuous (A2, A3).
R4 There exists a µfeas ∈ X+ with b−A(µfeas) ∈ Y+.
The requirements R1 and R2 hold by Assumption A1

and Lemma 4.1 respectively. R3 is valid given that c(x, y)
is C0 (A3), the projection map πx is continuous, and the
mapping (t, x) 7→ Lfv(t, x) is C0 for v ∈ C1 and f
Lipschitz (continuous) (A2). A feasible measure µfeas may be
constructed from the process in Theorem 3.1 from a tuple T ,
therefore satisfying R4.

Strong duality between (12) and (18) is therefore proven
after satisfaction of all four requirements.

APPENDIX II
MOMENT-SOS HIERARCHY

The standard form for a measure LP with variable µ ∈
M+(X) involving a cost function p ∈ C(X) and a (possibly
infinite) set of affine constraints ⟨aj , µ⟩ = bj with bj ∈ R and
aj ∈ C(X) for j = 1, . . . , Jmax is,

p∗ = sup
µ∈M+(X)

⟨p, µ⟩ (51a)

⟨aj(x), µ⟩ = bj ∀j = 1, . . . , Jmax. (51b)

The dual problem to Program (51) with dual variables vj ∈
R : ∀j = 1, . . . ,m is,

d∗ = inf
v∈Rm

∑
j bjvj (52a)

p(x)−
∑

j aj(x)vj ≥ 0 ∀x ∈ X. (52b)

The objectives in (51) and (52) will match (p∗ = d∗ strong
duality) if p∗ is finite and if the mapping µ → {⟨aj(x), µ⟩}mj=1

is closed in the weak-* topology (Theorem 3.10 in [39]).
When p(x) and all aj(x) are polynomial, constraint (52b)

is a polynomial nonnegativity constraint. The restriction that
a polynomial q(x) ∈ R[x] is nonnegative over Rn may be
strengthened to finding a set of polynomials {qi(x)} such
that q(x) =

∑
i qi(x)

2. The polynomials {qi(x)} are an SOS
certificate of nonnegativity of q(x), given that the square of a
real quantity qi(x) at each i and x is nonnegative. The set of
SOS polynomials in indeterminate quantities x is expressed as
Σ[x], with a maximal-degree-d subset of Σ[x]≤d.

The quadratic module Q[g] formed by the constraints de-
scribing the basic semialgebraic set K = {x | gi(x) ≥ 0, i =
1, . . . , Nc} is the set of polynomials:

Q[g] =
{
σ0(x) +

∑Nc

i=1 σi(x)gi(x)
}
, (53)

such that the multipliers σ are SOS

σi(x) ∈ Σ[x] ∀i = 0, . . . , Nc. (54)
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The basic semialgebraic set K is compact if there exists a
constant 0 ≤ R < ∞ such that K is contained in the
ball R ≤ ∥x∥22. K satisfies the Archimedean property if the
polynomial R−∥x∥22 is a member of Q[g]. The Archimedean
property is stronger than compactness [40], and compact sets
may be rendered Archimedean by adding a redundant ball
constraint R − ∥x∥22 ≥ 0 to the list of constraints describing
in K (though finding such an R may be difficult). When K is
Archimedean, every polynomial satisfying p(x) > 0,∀x ∈ K
has a representation (Putinar’s Positivestellensatz [41]):

p(x) = σ0(x) +
∑

i σi(x)gi(x)

σ0(x) ∈ Σ[x] σi(x) ∈ Σ[x].
(55)

The WSOS set Σ[K] is the set of polynomials that admit a
positivity certificate over K from (55). Its maximal degree-d
subset is Σ[K]≤d). Given a multi-index α ∈ Nn, the α-moment
of a measure µ ∈ M+(X) is mα = ⟨xα, µ⟩. An infinite
moment matrix M[m]α,β = mα+β indexed by monomials
α, β ∈ Nn may be constructed from the moment sequence
m.

The degree-d moment matrix Md[m] of size
(
n+d
d

)
is the

submatrix of M[m] where the indices Md[m]α,β have total
degree bounded by 0 ≤ |α|, |β| ≤ d. Given a polynomial
g(x) ∈ R[x], the localizing matrix associated with g is
a square infinite-dimensional symmetric matrix with entries
M[gm]α,β =

∑
γ∈Nn gγmα+β+γ . A moment sequence m

has a representing measure µ ∈ M+(K) if there exists µ
supported in K such that mα = ⟨xα, µ⟩ ∀α ∈ Nn. The LMI
conditions that M[m] ⪰ 0 and M[gim] ⪰ 0 ∀i = 1, . . . , Nc

are necessary to guarantee the existence of a representing
measure associated with m. The moment matrix M[m] is
a localizing matrix with the function g = 1. These LMI
conditions are sufficient if the set K is Archimedean, and
all compact sets may be rendered Archimedean through the
application of a redundant ball constraint [41].

Assume that each polynomial gi(x) in the constraints of K
has a degree di. We define a block-diagonal matrix Md[Km]
containing the moment and all localizing matrices as

diag(Md[m], {Md−di
(gim) ∀i = 1, . . . , Nc}). (56)

The degree-d moment relaxation of Problem (51) with vari-
ables y ∈ R(

n+2d
2d ) is

p∗d = max
m

∑
α pαmα, Md[Km] ⪰ 0 (57a)∑

α ajαmα = bj ∀j = 1, . . . ,m. (57b)

The bound p∗d ≥ p∗ is an upper bound for the infinite-
dimensional measure LP. The decreasing sequence of upper
bounds p∗d ≥ p∗d+1 ≥ . . . ≥ p∗ is convergent to p∗ as d → ∞
if K is Archimedean. The dual semidefinite program to (57a)
is the degree-d SOS relaxation of (52):

d∗d = min
v∈Rm

∑
j bjvj (58a)

p(x)−
∑

j aj(x)vj = σ0(x) +
∑

k σi(x)gi(x) (58b)

σ(x) ∈ Σ[x]≤2d (58c)
σi(x) ∈ Σ[x]≤2d−⌈deg gi/2⌉ ∀i ∈ 1, . . . , Nc. (58d)

We use the convention that the degree-d SOS tightening of
(58) involves polynomials of maximal degree 2d. When the
moment sequence mα is bounded (|mα| < ∞ ∀|α| ≤ 2d) and
there exists an interior point of the affine measure constraints
in (51b), then the finite-dimensional truncations (57a) and (58)
will also satisfy strong duality p∗k = d∗k at each degree k
(by arguments from Appendix D/Theorem 4 of [11] using
Theorem 5 of [42], also applied in Corrolary 8 of [22]).
The sequence of upper bounds (outer approximations) p∗d ≥
p∗d+1 ≥ . . . computed from SDPs is called the Moment-SOS
hierarchy.
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