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ABSTRACT  

Multiplex immunofluorescence (MxIF) is an emerging imaging technology whose downstream molecular analytics 
highly rely upon the effectiveness of cell segmentation. In practice, multiple membrane markers (e.g., NaKATPase, 
PanCK and β-catenin) are employed to stain membranes for different cell types, so as to achieve a more 
comprehensive cell segmentation since no single marker fits all cell types. However, prevalent watershed-based 
image processing might yield inferior capability for modeling complicated relationships between markers. For 
example, some markers can be misleading due to questionable stain quality. In this paper, we propose a deep 
learning based membrane segmentation method to aggregate complementary information that is uniquely provided 
by large scale MxIF markers. We aim to segment tubular membrane structure in MxIF data using global (membrane 
markers z-stack projection image) and local (separate individual markers) information to maximize topology 
preservation with deep learning. Specifically, we investigate the feasibility of four SOTA 2D deep networks and 
four volumetric-based loss functions. We conducted a comprehensive ablation study to assess the sensitivity of the 
proposed method with various combinations of input channels. Beyond using adjusted rand index (ARI) as the 
evaluation metric, which was inspired by the clDice, we propose a novel volumetric metric that is specific for 
skeletal structure, denoted as 𝑐𝑙𝐷𝑖𝑐𝑒!"#$. In total, 80 membrane MxIF images were manually traced for 5-fold 
cross-validation. Our model outperforms the baseline with a 20.2% and 41.3% increase in 𝑐𝑙𝐷𝑖𝑐𝑒!"#$ and ARI 
performance, which is significant (p<0.05) using the Wilcoxon signed rank test. Our work explores a promising 
direction for advancing MxIF imaging cell segmentation with deep learning membrane segmentation. Tools are 
available at https://github.com/MASILab/MxIF_Membrane_Segmentation. 

Keywords: MxIF, 2D, Membrane Segmentation, Skeleton, Topological-Preserving  

1. INTRODUCTION	

Crohn’s disease (CD) is a complicated inflammatory bowel disease (IBD) of the gastrointestinal tract, characterized 
by chronic, relapsing, and remitting bowel inflammation 1. The prevalence of IBD is increasing, this has resulted in 
higher medical costs. In 2015, the medical cost of CD was estimated to be $3.48 billion per year and is expected to 
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increase to $3.72 billion per year in 2025 in total US national costs 2. The Gut Cell Atlas (GCA), an initiative funded 
by The Leona M. and Harry B. Helmsley Charitable Trust, seeks to create reference maps of all cells in the terminal 
ileum and ascending colon to understand the human gut focused on comparing Crohn’s disease patients to healthy 
controls (https://www.gutcellatlas.helmsleytrust.org/).  The GCA project provides a unique opportunity to define 
different human cell types with gene and protein expression as a function of anatomical location and physiological 
perturbations of IBD.  
 
Multiplexed immunofluorescence (MxIF) is an emerging technique that allows multiple protein markers to be 
assessed on a single tissue section with repeated rounds of stain, imaging, stripping, and re-staining 3,4. Our site 5 
obtained formalin-fixed paraffin-embedded tissues from the terminal ileum (TI) and ascending colon (AC), which 
were subsequently stained and imaged via MxIF (including a total of 27 markers that were distributed in 19 rounds) 
to understand cell composition, functional state, and cell-to-cell spatial distribution 5  
 
Figure 1 presents 27 MxIF markers on randomly selected regions of a sample tissue and shows how 19 different cell 
types and internal cellular structures are identified. The membrane outlines the cell boundary and helps the whole 
cell identification (i.e., Cytoplasm other than nucleus). Figure 1 implies that not all MxIF markers are suited for 
outlining cell boundaries. Empirically, we selected 9 markers, as shown in Figure 2 (A-B), to serve as membrane 
markers. However, no particular marker can stain all membranes as cell boundaries. Merging different membrane 
markers provides complementary global structural information but might hide the underlying local spatial 
information from specific markers. Moreover, the merged signal cannot overlay seamlessly due to the fluorescence 
staining lens distortion and variation in field illumination 6. In this work, we aim to segment the membrane of MxIF 
images that integrate global (projection images) and local (separate individual markers) information to maximize 
topology preservation. Because the membrane in the MxIF stain could cross over the nuclei, we do not intend to 
segment the nuclei to break any membrane connectivity.  
 
The current de facto standard MxIF cell segmentation methods are Voronoi diagram-based 7,8, and 
wavelet/watershed-based 9–12, which focus on segmenting DAPI images first and then using DAPI binary masks as 
anchor seed points to further segment the whole cells. McKinley et al. extended the watershed method and 
segmented cytoplasm and membrane with a Frangi vesselness filter that detected tubular structures on combined 
markers (NaKATPase, pan-cytokeratin (PanCK), β-catenin, and Villin) 13. Han et al., proposed a deep learning cell 
segmentation model for MxIF, where the model was trained with pseudo labels on nuclei seeded watershed 

 
Figure 1. This figure presents the 27 markers that are used in our MxIF study. The red channel indicates the marker show 
positive. The patches with blue channel (DAPI), green channel (MUC2), and gray channel (β-catenin) are collected from 
epithelium, while the patches with only blue and red channels are acquired from stroma. The magenta regions represent the 
overlay between red and blue channels. 

Proc. of SPIE Vol. 12471  124710B-2
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 28 Aug 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

annotation from NaKATPase images only 14. Gerdes et al. 15 proposed to utilize connected component analysis to 
segment nuclei and membrane 16–18. However, similar to 13, only few membrane markers are involved and processed 
(i.e., a combination of NaKATPase, PanCK, and E-cadherin). The existing Vororoni and watershed morphology 
approaches might cause topological mismatch between membrane segmentation and raw images Figure 2 (D-E). For 
example, some nuclei cannot always be consistently stained due to batch effects, which would impact the robustness 
of the watershed segmentation. Moreover, none of the above works have used as extensive of a number of 
membrane markers as this study.  
 
In this paper, we investigate the feasibility of utilizing four state-of-the-art (SOTA) 2D deep networks and four 
volumetric-based loss functions to segment the membrane skeleton. The contribution of this work is three-fold:  

• We develop and comprehensively evaluate the deep membrane segmentation frameworks for large-scale 
MxIF multi-channel data.  

• We propose a novel metric that is topology preserving and skeleton-based, denoted as	𝑐𝑙𝐷𝑖𝑐𝑒!"#$ to fill the 
gap of lacking objective metrics for membrane skeleton segmentation. 

• We perform the first deep learning membrane segmentation study with large-scale MxIF markers. 

2. METHODS	

Objective. The target annotation of this work is simplified as a skeleton to maximize topology preservation of all 
membranes. Instead of segmenting the whole merged membrane highlighted area that is more than 1-pixel width, 
the proposed model learns skeletons of cell membranes for downstream analytics. Figure 3 outlines the membrane 
segmentation workflow, which includes gold standard annotation, baseline, and proposed approaches. 
 
Dataset and data pre-processing. Six sample biopsies were collected from 2 CD patients and 1 healthy control 
from the AC and TI with IRB approval (Vanderbilt IRB #191738 and #191777). All data were de-identified under 

 
Figure 2. (A) one random tissue section on DAPI and MUC2 stain is selected. (B) Nine markers highlight cell membrane 
structures in the same region of interest. There is no particular marker that can stain all cell membrane boundaries. Some nuclei 
might not be stained (right yellow arrow in β-catenin). (C) Merging all marker channels provides complementary structural 
information across different markers but might hide or over enhance the underlying information. (D) Recent MxIF cell 
segmentation methods focus on segmenting DAPI images first with watershed segmentation, leading to the mismatch between 
membrane topology. (E) The proposed method segments the membrane skeleton of MxIF images that integrates global 
(projection images) and local (separate individual markers) information to maximize the topology preservation. 
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Institutional Review Board approval. The MxIF markers were acquired with 20× magnification and stained in the 
following order – DAPI (first round), MUC2, β-catenin 04, CD4, CD3D, HLA-A, CD8, NaKATPase, Vimentin, 
ERBB2, and CD45. The standard DAPI-based registration and autofluorescence correction were applied 19. A semi-
automatic data quality check was to ensure marker alignment efficiency 20. We computed the tissue masks that 
covered the tissue pixels across all staining rounds. The masks were applied to the images and preprocessed with 
group-wise linear normalization. To prepare membrane annotation data, we split each marker image into 128×128 
patches (86	𝜇𝑚). Except for DAPI and MUC2, the rest of the markers were z-stacked and generated max/mean 
projection images. Finally, 80 regions of interest (ROIs) were selected for further annotation and learning. 
 

 
Manual annotation. A senior digital pathology researcher manually contoured all membrane skeletons of ROIs 
using MITK Workbench v2022.04 21. As shown in Figure 3, the membrane annotation was first traced mainly at the 
z-stack max/mean projection images, then iteratively optimized via the nine individual channels, especially for the 
hard cases and weak signal regions. In summary, it took about 20 minutes to trace one image patch. 
 
Membrane skeleton segmentation. The baseline membrane segmentation model is implemented by an ilastik 
random forest pixel classification approach 22. Eight RGB patches (R: z-stack max projection image, G: MUC2, B: 
DAPI) are interactively traced over the training output from the ilastik feature selection intermediate results by a 
domain expert in cell and molecular biology. The baseline ilastik model would produce a membrane probability 
mask per input, following skeletonized morphological operation 23. 
 
In recent years, deep learning has rapidly become the SOTA basis by showing enhanced performance on 2D and 3D 
semantic segmentation tasks in various medical image analysis applications 24. To train a deep learning-based 
membrane segmentation framework, we propose to investigate nine input options by employing five different sets of 
inputs: (i) nine individual and separate membrane markers, (ii) z-stack max projection image, (iii) z-stack mean 
projection image, (iv) ilastik probability map (intermediate output from the baseline, referenced from 14), and (v) 

 
Figure 3. The manual label is created by iteratively tracing over nine separate membrane markers on the same ROI and their z-
stack max/mean projection images (instead of including the DAPI and MUC2 channels). The baseline method is an ilastik 
Autocontext model. We investigated the feasibility of four SOTA 2D deep networks and four volumetric-based loss functions. 
Moreover, we conducted a comprehensive ablation study to assess the sensitivity of the proposed method with various 
combinations of input channels. Beyond using the existing Adjusted Rand Index based evaluation metric, we propose a novel 
metric, 𝑐𝑙𝐷𝑖𝑐𝑒!"#$, to assess topology preserving and skeleton-based membrane segmentation in MxIF. 
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DAPI & MUC2. We utilized four SOTA deep neural networks to generate 2D membrane skeletons: U-Net 25, U-
Net++ 26, Attention U-Net 27, and SegNet 28. We also evaluated four different loss functions to perform gradient 
descent: binary cross-entropy (BCE) Loss 29, Dice Loss 30, SoftDice Loss (Dice Loss with Laplacian smoothing) 31, 
and clDice Loss (combining SoftDice with a topology-preserving Loss function specific for tubular structure 
segmentation) 31. Similar to the baseline, the final membrane from the proposed deep learning framework was 
converted to a skeleton by skeletonizing network output as shown in Figure 3.  
 
Evaluation metric. We use the adjusted rand index (ARI) to validate the segmentation topology performance to 
measure the similarity between two cell segmentation clusters. The clusters can be generated from a filled 
membrane skeleton followed by indexing each closed contour.  In addition to ARI, to validate the skeleton's 
volumetric performance, the target and predicted skeletons may have multiple paths to segment a broad membrane 
region without necessarily being fully overlayed but sharing a similar topology. Thus, the regular Dice or clDice 
metrics 31 might not suit for evaluating the volumetric overlapping for such scenarios. We extend the clDice and 
propose a new metric, 𝑐𝑙𝐷𝑖𝑐𝑒!"#$, to estimate the volumetric similarity of a ground truth skeleton y and the 
predicted skeleton p while maintaining the topology (an illustrative example is shown at the bottom of Figure 3), as 
defined in the equation (1):  

																																				𝑐𝑙𝐷𝑖𝑐𝑒!"#$(𝑦, 𝑝) = 2 ×
1𝑇%3𝑝, 𝐷(𝑦)4 × 𝑇&3𝑦, 𝐷(𝑝)45

𝑇%3𝑝, 𝐷(𝑦)4 + 𝑇&3𝑦, 𝐷(𝑝)4
																																			(1) 

where 𝐷 is a dilation 32 function that dilate the input skeleton. 𝑇% interprets the topology precision, and 𝑇& determines 
the topology sensitivity as defined in equation (2): 

																																					𝑇%3𝑝, 𝐷(𝑦)4 =
|𝑝 ∩ 𝐷(𝑦)|

𝑝 ; 𝑇&3𝑦, 𝐷(𝑝)4 =
|𝑦 ∩ 𝐷(𝑝)|

𝑦 																																	(2) 

 
Experiment design. Two primary validation purposes were designed: (1) to investigate the best deep neural 
network and loss function pair, we trained models with different combinations over three deep learning frameworks 
(U-Net++, Attention U-Net, and SegNet) and four loss functions. We only implemented U-Net with the SoftDice 
Loss case. All models used the same input channel option (11 channels that contained z-stack max, z-stack mean, 
and nine separate membrane images) to reduce the complexity of the experimental configuration. And (2) to validate 
the sensitivity of model input channels (in total, nine options as described in Figure 3), we tested U-Net++, 
Attention U-Net, and SegNet with SoftDice Loss equipped only. 
 
All deep neural networks were implemented in PyTorch 1.8 and Python 3.8. The networks followed standard 
architectures, which can be downloaded from a public GitHub repository (https://github.com/Andy-
zhujunwen/UNET-ZOO). The models were trained on a high-performance computing datacenter with GPU nodes 
equipped with NVIDIA Titan Xp 12GB graphic cards. The training batch size of U-Net, U-Net++, and Attention U-
Net is 32, while the batch Size is set as 4 for SegNet to saturate the GPU. We empirically set 25 iterations and 𝛼 =
0.01 (the ratio of SoftDice loss and topology-preserving Loss) for clDice Loss. We conducted a 5-fold cross-
validation for each model with static training/validation split per fold. No duplicate validation data were allowed 
across folds. Each network was trained by 100 epochs and the highest 𝑐𝑙𝐷𝑖𝑐𝑒!"#$	score on validation data decided 
the best model to save. A 3×3 isotropic structuring kernel dilates each pixel in function 𝐷 of 𝑐𝑙𝐷𝑖𝑐𝑒!"#$	metric.  

3. RESULTS	

Exploring the best deep learning framework. The quantitate results on 5-fold cross validation across the ilastik 
baseline and 13 proposed deep learning works are shown in Figure 4. In summary, for volumetric performance, the 
SegNet with SoftDice Loss has the best 𝑐𝑙𝐷𝑖𝑐𝑒!"#$score (mean ± std: 0.757±0.068) that outperforms the baseline 
by 20.2%. For topology performance, Attention U-Net with SoftDice Loss (mean ± std: 0.309 ± 0.143) outperforms 
the baseline by 41.3%. The Wilcoxon sign rank test was employed as the statistical model, where the significant 
difference (p-value < 0.05) is marked. Figure 5 demonstrates the qualitative results that include good/average/bad 
𝑐𝑙𝐷𝑖𝑐𝑒!"#$across all models. The relevant 𝑐𝑙𝐷𝑖𝑐𝑒!"#$score is marked for reference.  
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Sensitivity analysis on different input channel. Table 1 demonstrates the different deep learning frameworks with 
training by different input channel options when they are all using the SoftDice Loss. The Wilcoxon sign rank test 
was computed for each method. Table 1 shows that two of the input options (6 & 7, where input channels integrate 
z-stack max and mean projection image with/without individual markers) have better performance on average with a 
significant difference (p-value < 0.05). 

Table 1. Sensitivity analysis results (mean ± standard deviation) from different input channel options on individual deep 
learning frameworks. The Wilcoxon sign rank test is calculated per column, where the reference of each test and significant 
difference (p-value < 0.05) with other input options per method is highlighted with ‘*’.  

𝑐𝑙𝐷𝑖𝑐𝑒!"#$ ARI 
Input options U-Net++ Attention U-Net SegNet U-Net++ Attention U-Net SegNet 
1: 9 separate 
makers 

0.750 ± 
0.064 

0.759±0.066(*) 0.761± 
0.065(*) 

0.313± 
0.135 

0.313±0.139 0.292± 
0.165 

2: z-stack max 
projection image 

0.738± 
0.071(*) 

0.757±0.068(*) 0.754± 
0.072(*) 

0.288± 
0.160(*) 

0.318±0.147 0.280± 
0.167(*) 

3: z-stack mean 
projection image 

0.745± 
0.058(*) 

0.761±0.059(*) 0.760± 
0.061(*) 

0.314± 
0.139(ref) 

0.322±0.132(ref) 0.298± 
0.154 

4: 1 & 2 0.754± 
0.060(ref) 

0.763±0.063(*) 0.764± 
0.066 

0.296± 
0.145(*) 

0.306±0.132(*) 0.294± 
0.165 

5: 1 & 3 0.748± 
0.061(*) 

0.759±0.062(*) 0.763± 
0.062 

0.275± 
0.126(*) 

0.303±0.140(*) 0.295± 
0.138 

6: 2 & 3 0.750± 
0.064 

0.768±0.061(ref) 0.766± 
0.067 

0.303± 
0.139 

0.321±0.145 0.295± 
0.167 

7: 1 & 2 & 3 0.750±0 
.061(*) 

0.764±0.061 0.766± 
0.064(ref) 

0.304± 
0.141 

0.309±0.143 0.286± 
0.157(*) 

8: 7 & ilastik 
probability map 

0.744± 
0.066(*) 

0.758±0.064(*) 0.765± 
0.063 

0.304± 
0.144(*) 

0.295±0.151(*) 0.305± 
0.153 (ref) 

9: 8 & DAPI & 
Muc2 

0.740± 
0.059(*) 

0.756±0.064(*) 0.762± 
0.065(*) 

0.274± 
0.138 

0.303±0.129(*) 0.284± 
0.135(*) 

 
 

 
Figure 4. The quantitate results on 5-fold cross-validation across the ilastik baseline method and 13 proposed deep learning-
based approaches. For the 𝑐𝑙𝐷𝑖𝑐𝑒!"#$ results, SegNet and SoftDice Loss leads to the best average results. U-Net++ and 
SoftDice Loss conduct the best overall results for the Rand Index results. The Wilcoxon signed rank test is calculated with 
significant differences marked in red asterisks (p<0.05). 
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4. DISCUSSION	AND	CONCLUSION	

From Figure 4, the SegNet with SoftDice Loss leads to better performance over other configurations. Figure 5 shows 
that the baseline ilastik model is prone to over-segment the membrane. We also find that the epithelial region brings 
good segmentation results. The bad segmentation performance patch is mainly on the stromal section. Furthermore, 
the predicted skeleton contains a loose segment end that causes low ARI scores, even when the topology of the 
skeleton shape matches the ground truth label. The sensitivity analysis results show a moderate difference between 
employing or not utilizing individual markers. Moreover, we observe that adding DAPI channels degrades the 
overall skeleton volumetric and topology performance, indicating that the membrane across nuclei scenario is not 
random. 
 
 

 
Figure 5. The qualitative results on three randomly selected MxIF image patches with good/average/bad SKEL-clDice 
performance. Segmentation results (in green) are overlayed on manual labels (in red). The yellow skeletons represent the 
overlay between red and green channels. The relevant 𝑐𝑙𝐷𝑖𝑐𝑒!"#$ values of different techniques are presented (in parentheses) 
for reference. 
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In summary, this is the first comprehensive work that studies deep learning-based membrane segmentation on large-
scale MxIF marker images. We exploit the efficiency of how global and local spatial information from the markers 
can help membrane segmentation. Our work explores a promising direction for advancing further MxIF imaging cell 
segmentation to maximize topology preservation. Interestingly, there is no significant difference between SoftDice 
Loss and clDice Loss (aim to preserve tubular topology), which is worth further investigating on other topological 
loss functions (i.e., evaluating 33,34) as the next steps. Our proposed 𝑐𝑙𝐷𝑖𝑐𝑒!"#$ has the potential to be extended as a 
loss function and cooperate with SoftDice Loss. Advancing the post-processing on generated membrane skeleton 
mask (i.e., bridge the loose, remove island, and avoid over-segmenting) should improve the overall cell clusters 
topology performance. Finally, we could extend the work by working on DAPI and MUC2 channels and analyzing 
how to outline the cell when membrane signals across the DAPI and identify the cell when nuclei staining is absent.   
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