
OverGen: Improving FPGA Usability through Domain-specific Overlay Generation

Sihao Liu§∗, Jian Weng§∗, Dylan Kupsh∗, Atefeh Sohrabizadeh∗, Zhengrong Wang∗, Licheng Guo∗, Jiuyang Liu²

Maxim Zhulin∗, Rishabh Mani∗, Lucheng Zhang², Jason Cong∗, Tony Nowatzki∗

∗University of California, Los Angeles ²Institute of Software, Chinese Academy of Sciences

{sihao,jian.weng,dkupsh,atefehsz,seanzw,lcguo,cong,tjn}@cs.ucla.edu

AbstractÐFPGAs have been proven to be powerful com-
putational accelerators across many types of workloads. The
mainstream programming approach is high level synthesis
(HLS), which maps high-level languages (e.g. C + #pragmas) to
hardware. Unfortunately, HLS leaves a significant programma-
bility gap in terms of reconfigurability, customization and
versatility: Although HLS compilation is fast, the downstream
physical design takes hours to days; FPGA reconfiguration time
limits the time-multiplexing ability of hardware, and tools do not
reason about cross-workload flexibility. Overlay architectures
mitigate the above by mapping a programmable design (e.g.
CPU, GPU, etc.) on top of FPGAs. However, the abstraction gap
between overlay and FPGA leads to low efficiency/utilization.

Our essential idea is to develop a hardware generation
framework targeting a highly-customizable overlay, so that the
abstraction gap can be lowered by tuning the design instance to
applications of interest. We leverage and extend prior work on
customizable spatial architectures, SoC generation, accelerator
compilers, and design space explorers to create an end-to-
end FPGA acceleration system. Our novel techniques address
inefficient networks between on-chip memories and processing
elements, as well as improving DSE by reducing the amount
of recompilation required.

Our framework, OverGen, is highly competitive with fixed-
function HLS-based designs, even though the generated designs
are programmable with fast reconfiguration. We compared to a
state-of-the-art DSE-based HLS framework, AutoDSE. Without
kernel-tuning for AutoDSE, OverGen gets 1.2× geomean
performance, and even with manual kernel-tuning for the
baseline, OverGen still gets 0.55× geomean performance ± all
while providing runtime flexibility across workloads.

Keywords-Reconfigurable architectures; Domain-specific Ac-
celerators; FPGA; CGRA; Design Automation;

I. INTRODUCTION

FPGAs have proven to be highly performant and flexible

hardware accelerators for important data-processing work-

loads (e.g. [1±17]), and have garnered significant traction

in industry (e.g. [18±20]). Unfortunately, FPGAs pose

significant challenges for programmer productivity. With

RTL programming at the extreme end of complexity/low-

productivity, the pragmatic options are high-level synthesis

(HLS) and overlays, described next.

In HLS, a high-level language code (e.g. C with #pragmas)

is lowered to a hardware state machine, and then passed

as RTL to a traditional FPGA synthesis flow. Pragmas

specify hints about the optimal hardware structure (e.g. unroll

factor, initiation interval), and state-of-the-art frameworks

§ Sihao Liu and Jian Weng are co-first authors.

High-level

Synthesis

(HLS)

App
C+Pragma

New App
C+Pragma

App 1

Bistream

App 2

Bistream

Domain-

Specific

Overlay

Generation

(OverGen)

New App
C+Pragma

FPGA

FPGA

New App

Binary

DSE + Syn.+P&R
hours~days

Apps in

Domain

Overlay

Arch
Syn.+P&R

~hours

Reconfig.

~nanosec

~sec
Reconfig.

~sec

Reconfig.

Compile
~seconds

hours~days

DSE

-Long-time for each App

+ One-Time per Domain

+ Fast Compile

Reconfig. if App in Domain

DSE + Syn.+P&R
hours~days

Figure 1: Overlay Generation Compared to HLS

like AutoDSE [21] explore these parameters on behalf of the

programmer. While highly effective, HLS limits programmer

productivity through high compilation/synthesis times. Also,

multiplexing between applications by reflashing the FPGA

bitstream takes significant time, taking more than a second to

reconfigure modern FPGAs [10,22]. Moreover, HLS designs

are specific to the input application: if any flexibility across

applications is required, it must be programmed-in explicitly.

Alternatively, FPGA overlays map a coarser grain architec-

ture (e.g. CPUs [23±26], GPUs [27±30], CGRAs [31±34])

on top of the FPGA’s fine grain abstractions. While overlays

reduce compilation/synthesis time and are more general, they

experience quite high overheads due to the abstraction gap

between general purpose architectures and the low-level

fine-grain abstractions exposed by FPGAs. Overlays can

be customized with domain-specific extensions [19,35], but

this approach is highly time-consuming.

Vision and Requirements: Our vision is to use an HLS-

like approach where the generated hardware is tuned to

input applications, but which targets a highly-flexible overlay

architecture instead of a fixed-function pipeline. Figure 1

gives the basic idea, where a set of applications are fed to a

design-space exploration (DSE) step to determine the ISA

and resource provisioning in the overlay, and compiling a

new application (and reconfiguring) is extremely fast. Ideally,

small application changes would not require FPGA synthesis.

We envision four requirements for overlay generation to

be successful: 1. the overlay design space must include both

system parameters and a broad accelerator design space, 2. it

must balance generality versus specialization, depending on

the degree of diversity in input applications, 3. the memory

system itself should be highly specializable to the application,

and 4. it has to get competitive performance with traditional

HLS within a reasonable DSE time frame.

Approach: For the first two requirements, we leverage prior

work on flexible multicore system generators (e.g. [36,37])

and spatial architecture synthesis (e.g. [38±46]). Multi-core

system generators enable simple scaling in terms of cores,

cache and network [36]. Spatial architecture1 synthesis can

provide accelerators for each core that are tuned to one

or more applications. Spatial architectures provide a broad

design space from fixed custom datapath accelerators to

systolic arrays and vector architectures to coarse grain

reconfigurable architectures (CGRAs). This flexibility comes

from the graph-based representation of spatial architectures

(nodes are PEs, switches, memory units, etc.).

To enable a highly application-specialized memory-system

(requirement 3), our primary insight is that data-reuse struc-

tures (e.g. DMA engines, scratchpads) must be incorporated

into the spatial architecture design space ± i.e. enabling

a custom topology connecting reuse structures to compute

structures. For the DSE to make good decisions, this requires

the compiler to analyze and expose data-reuse analysis to

the spatial-scheduler intermediate representation. We refer

to this technique as spatial-memory exploration.

Finally, for requirement 4, we notice that significant time

is spent on recompiling workloads as the hardware definition

changes. We develop novel techniques for modifying the hard-

ware while preserving the validity of previous compilations.

We call these schedule-preserving transformations.

Implementation and Implications: Our implementation is

called OverGen, which integrates two open-source frame-

works, the DSAGEN [38] spatial architecture generation

framework and the ChipYard [36] SoC generator, and extends

these with support for FPGA resource modeling at the system

level, novel hardware design space extensions, and novel

algorithms for DSE-time reduction.

While much of this work is about the integration of

previous ideas and existing frameworks (with some novel

extensions), the results are profound: Our evaluation suggests

that domain-specific spatial overlays, and the OverGen

framework specifically, have the potential to challenge HLS

as the defacto FPGA design methodology. Our approach

preserves a programmer-friendly interface with short com-

pilation and reconfiguration times, and has competitive

performance across many domains compared to the state-

of-the-art HLS framework AutoDSE [21]. Across workload

suites of DSP, Machsuite, and Vitis Vision, OverGen achieves

geomean speedups of 1.21×, 1.13×, 1.25× speedups over

baseline AutoDSE without kernel tuning, and it still reaches

comparable performance, 0.71×, 0.37×, 0.65× respectively,

with manual kernel tuning for AutoDSE. Our approach also

enables overlays that support single or multiple workloads by

automatically reasoning about the cross-workload flexibility.

1Spatial architectures are those that expose low-level aspects of hardware
in their ISA, like resource assignment and scheduling of the operand network.

#pr agma conf i g

f or (i =0; i <n; ++i)

 c[i] = a[i] +b[i]

(a) Vec Add Code

b[0: n]a[0: n]

(b) Dataflow Graph

+

(c) Arch. Desc. Graph

c[0: n]

+

c[0: n]

(d) DFG/ADG Schedule

In Port

PE

sw

PE

In Port

sw

sw

PE

DMA Stream Eng.

Out Port Out Port

Port
Nodes

Proc.
Elem
Nodes

Switch
Nodes

In Port In Port

PE

Out Port Out Port

+ +

b[0: n]a[0: n]

Memory
Node

Memory
Access
Pattern
(stream)

DFG
Inst.

Figure 2: Decoupled-Spatial Example of Vector Addition

Specifically, our contributions are:

• A full-stack domain-specific overlay generation frame-

work verified on FPGA2.

• Modeling techniques to codesign system parameters and

accelerator design while balancing FPGA resources.

• Novel optimizations for integrating data-reuse into the

spatial architecture DSE and reducing DSE design time.

• Evaluation demonstrating competitiveness against HLS

and cutting edge DSE-for-HLS [21].

Paper Organization: Section II gives background on

our decoupled-spatial accelerator design space. Section III

overviews the approach and benefits. Section IV describes

the spatial memory optimization. Section V covers the details

of overlay design. Sections VI, VII, and VIII cover imple-

mentation, methodology and evaluation, and we conclude

after discussing related work in Section IX.

II. BACKGROUND: SPATIAL ARCHITECTURE SYNTHESIS

Our approach extends prior work on spatial architecture

synthesis to create each overlay tile. This section first gives

background on the accelerator execution model and then

elaborates on design representation, the compilation and DSE

techniques ± all are enhanced in this work. We finish this

section by describing the intellectual and practical limitations

of existing spatial architecture synthesis techniques.

A. Decoupled-Spatial Execution

Execution Model: The accelerator execution model we use

in this work is decoupled-spatial [47±55]. In this model,

compute and memory accesses are expressed in a dataflow

graph (DFG), and streams define coarse grain patterns

of memory access, value generation, or communication.

Streams and instructions execute when they receive all inputs

required for one instance of their computation, as in ordered-

dataflow [56]. An example transformation from source to

dataflow graph (DFG) is shown in Figure 2(a) and 2(b); note

the loop is unrolled by two iterations.

2Open-source repository: https://github.com/PolyArch/dsa-framework

Spatial Hardware and Mapping: Spatial architectures

expose underlying hardware details to the ISA, like the ca-

pabilities and connectivity of hardware elements. Figure 2(c)

shows an example represented as an architecture description

graph (ADG). The ADG is composed of primitives like

processing elements (PEs), switches for routing operands,

DMA for generating memory addresses and requests, and

ports for synchronizing between memory and compute. The

compiler is responsible for mapping instructions, streams, and

communication onto appropriate hardware units (e.g. PEs,

stream engines, and switches); see the example in Figure 2(d).

Spatial Design Space: The modular nature of spatial

hardware and its representation as an ADG, as in Figure 2(c),

lead to a wide design space. The parameters of each

component form a rich space which enables tradeoffs among

performance, flexibility, and hardware cost. The topology is

also flexible, enabling designs from app-specific datapaths,

to vector architectures, mesh-CGRAs and much in between.

B. Spatial Compilers and Pragma Hints

A compiler that bridges high-level programming language

to the decoupled-spatial execution is required to improve the

programming productivity. OverGen leverages and extends

the DSAGEN C+pragma compiler [38,57]. For context, two

pragma extensions hint transformation decisions:

#pragma dsa config

{

#pragma dsa decouple

for (i = 0; i < n; ++i)

for (j = 0; j < n; ++j)

c[i] = a[i+j] * b[j];

}

Listing 1: An FIR example annotated with pragmas

#pragma dsa config This pragma annotates the scope

of decoupled-spatial specialization. All the offloaded code

regions within the compound body will be concurrent on the

spatial configuration.

#pragma dsa decouple This pragma indicates all the

memory accesses under the annotated loop level are alias-free

if they are accessed by different pointers.

Generic Transformation: The instructions within the in-

nermost loop will be sliced into two subsets, computational

and memory access [58]. All the instructions that transitively

depend on the load/store instructions are considered address

generation, and the remaining ones are computational [57].

The computational instructions will be represented in a

dataflow graph and fed to a spatial scheduler; and the memory

instructions will later be fed to the memory analyzer.

Idiomatic and Modular Transformation: The compiler’s

role is to transform the program according to the capability

of a particular design instance. If a certain transformation

demands a specific hardware feature that is unavailable,

a fallback transformation will be applied to guarantee

the success of compilation [57]. After the analysis and

transformation, all mapped instructions to the decoupled-

spatial execution will be replaced by the accelerator ISA.

C. Automated Spatial Accelerator Synthesis

Our work leverages the spatial accelerator synthesis algo-

rithm proposed in prior work [38], where the goal is to find

the best single-core accelerator for a set of input workloads.

The algorithm essentially performs graph-based simulated

annealing on the ADG, using entirely random modifications

and an evaluation function based on a simple performance

and area model. To make DSE fast, the algorithm can avoid

recompiling a kernel if the random hardware changes do not

affect that kernel (ªschedule repairº).

Limitations of prior work: We address three key limitations

of prior spatial-accelerator synthesis works [38±43]:

• Datapath Limited: Prior work performs spatial synthesis

on the datapath of a single-core only, avoiding special-

izing memories within a core (e.g. scratchpads and their

topology), and ignoring the shared memory system.

• Reuse Ignored: Prior systems ignore data-reuse as a first-

order design constraint. This information is required to

make good decisions about how to provision memory

and network bandwidths, and it must be captured and

made available by the compiler.

• ASIC Focused: Prior works focus on developing spatial

architectures for ASICs. FPGAs have new challenges for

optimizing across multiple resources (BRAMs, LUTs,

DSPs, etc.), and present a compelling use case.

These limitations prevent prior systems from reasoning

about critical design tradeoffs like core-count vs vector-width,

scratchpad vs cache size, in-core reuse vs shared bandwidth.

To address these limitations, OverGen extends the design

space beyond a single core while considering FPGA resources

(Section V) and adds reuse and memory access structures into

the spatial/graph-level DSE (Section IV) Ð overall creating

a full-stack overlay generation framework.

III. OVERGEN OVERVIEW & TRADEOFFS

Here we discuss how OverGen spans compilation, design

space exploration, and resource modeling, and then overview

the design space and key tradeoffs.

A. Overview

Compilation: Figure 3 shows the overview of OverGen. We

begin with the compilation flow, which takes the system-

level ADG (sysADG) as input. The sysADG defines the

spatial accelerator and system design spec, and is created

during overlay generation (described later). The programming

interface of OverGen is multithreaded C with aforementioned

pragmas (details in Section VI-E). The LLVM-based compiler

will attempt to create the highest-performance dataflow graph

for the spatial accelerator using its knowledge of the available

hardware features in the sysADG. The compiler then extracts

Compile Time

App

(C+pragma)

Decoupled-Spatial

Compiler

memory-Dataflow

Graph (mDFG)

b[N] a[N]

h(...)

Decoupled-Spatial

Scheduler

FPGA

Relax DFG Complexity

010010100101
011111001101
010111111001
...

Spatial Mapping

Bitstream

Overlay Design

Model Setup

App4

Decoupled-Spatial

Compiler

Domain Apps Different mDFGs

for each App

System-level ADG + RTL

Spatial

Scheduling

+ FPGA

PPA Model

Modify

system

mADGs

PPA

Design Space Explorer

Perf.: IPC
Resource: LUT%,

FF%, BRAM%, DSP%

...

Optimized ADG on FPGA Overlay

App3App1

App2

Processing Elements

Switches

System-level ADG

FPGA

Ports

Memories

System-level ADG + RTL

FPGA
Synth.

Tool

FPGA Utilization

Network

LUT: xx%
FF: xx%
BRAM: xx%
DSP: xx%

LUT: xx%
FF: xx%
BRAM: xx%
DSP: xx%

LUT: xx%
FF: xx%
BRAM: xx%
DSP: xx%

LUT: xx%
FF: xx%
BRAM: xx%
DSP: xx%

LUT: xx%
FF: xx%
BRAM: xx%
DSP: xx%

LUT: xx%
FF: xx%
BRAM: xx%
DSP: xx%

LUT: xx%
FF: xx%
BRAM: xx%
DSP: xx%

LUT: xx%
FF: xx%
BRAM: xx%
DSP: xx%

LUT: xx%
FF: xx%
BRAM: xx%
DSP: xx%

LUT: xx%
FF: xx%
BRAM: xx%
DSP: xx%

LUT: xx%
FF: xx%
BRAM: xx%
DSP: xx%

LUT: xx%
FF: xx%
BRAM: xx%
DSP: xx%

LUT: xx%
FF: xx%
BRAM: xx%
DSP: xx%

LUT: xx%
FF: xx%
BRAM: xx%
DSP: xx%

LUT: xx%
FF: xx%
BRAM: xx%
DSP: xx%

ML-based

FPGA

Utilization

Model

LUT: xx%
FF: xx%

BRAM: xx%
DSP: xx%

Predicted

FPGA Utilization

Hardware Module

with new specs.

Data

Set

Gen.

&

Training

FPGA

Synth.

Figure 3: Overview of OverGen Framework

the memory access and computation from the program to

construct a Memory-enhanced Dataflow Graph (mDFG);

the mDFG is enhanced with information about array size,

suitability for mapping arrays to scratchpads, and data reuse

of each stream. The program represented as an mDFG is

then mapped onto the ADG by the spatial scheduler, using

the reuse information to make informed decisions. The

mDFG could fail to map to the hardware; if so, the compiler

will ªrelaxº the DFG complexity by using less aggressive

transformations (e.g. reduce unrolling degree [57]).

Overlay Generation: The input to the overlay generation

is a set of workloads which forms the domain of interest.

It is too inefficient to redo the compilation with each

step of DSE. Therefore, the compiler generates a set of

different mDFGs representing program versions that could be

useful for different possible accelerators, and it incrementally

recompiles these during DSE.

Compiled mDFGs are used to guide spatial-accelerator

synthesis: all mDFGs are scheduled to an ADG, and the

ADG is iteratively updated to maximize the objective

(mean performance of the best-performing mDFG for each

workload). There are four innovations over prior work: 1.

the system and spatial accelerator are co-designed; 2. reuse

and array information enables reasoning about memory and

cache allocation at the spatial level, and 3. DSE balances

FPGA resource utilization, and 4. the mDFG resource utiliza-

tion guides ADG transformations with schedule-preserving

transformations, described in Section V-B.

Finally, the chosen sysADG will then be lowered to

synthesizable RTL for the FPGA, in part leveraging hard-

ware generators from DSAGEN [38] and ChipYard [36].

DSAGEN’s microarchitecture implementation is enhanced to

enable pipelining on FPGAs with tight cycle-time constraints.

Model Setup: Our FPGA resource utilization model is

based on per-hardware element models. Elements with a few

parameters (e.g. core) can be exhaustively synthesized. For

elements with many parameters, we use a machine-learning

(ML) based model, trained from synthesizing a representative

design space. Leveraging learned models means that this

framework can more easily be ported to other FPGAs.

B. Overlay Design Space

System Design Space: Our target for the overlay is a ho-

mogenous multi-tile (i.e. multicore) where each tile contains

an instance of the spatial accelerator, associated with a light-

weight control core. Because we target highly-acceleratable

workloads, the control cores are kept simple (single issue,

small private cache), and are only provisioned for managing

accelerator execution. The control cores and accelerators

share access to a shared L2 cache over a crossbar-based NoC.

Overall we explore the number of tiles, NoC bandwidth, L2

banks (for controlling L2 bandwidth), and L2 capacity.

Accelerator Design Space: The first order parameter of the

accelerator is the number of processing elements (PEs), which

determines the maximum compute bandwidth. The topology

determines the flexibility, which can be characterized by the

number and the radix of switches. We support a variety of

functional units (FUs), with datatypes from 8 to 64-bit integer,

and single/double precision float. PEs can have a wider bit-

width than each FU, in which case OverGen generates PEs

supporting subword SIMD.

Streams for memory access and data manipulation execute

on respective ªstream enginesº:

• DMA: Memory engine for accessing shared L2.

• Scratchpad: Memory engine for private scratchpad.

• Recurrence: Communicating loop-carried dependencies.

• Generate: Generating affine value sequences.

• Register: Pulling data from accelerator to control core.

All stream engines have a parameterizable bandwidth. Mem-

ory stream engines have a capacity (scratchpad only) and

parameter for whether parallel indirect access is supported

(requires reordering hardware). Finally, Ports connect mem-

ory and compute units, enabling synchronization. Their width

determines the maximum ingest/egest rates. Ports have a few

additional parameters for supporting certain stream patterns

(e.g. whether they support automatic padding for non-vector-

width [56] and whether they support meta-data about whether

the stream has computed a dimension of the loop [57]).

C. Key tradeoffs

OverGen opens a variety of tradeoffs that were previously

difficult to explore and would have required manual effort:

Big tiles vs. More tiles: Many acceleratable workloads

benefit from vectorization, while others are difficult to

vectorize due to irregularity or loop dependencies. This

leads to a tradeoff where some domains prefer more small

accelerators (less pipeline/vector parallelism) or fewer large

accelerators (more pipeline/vector parallelism).

L2 cache size vs. Scratchpad capacity: Some workloads

have regular access to private data that can map to scratch-

pads, while less regular codes often benefit from hardware

managed caches. Each domain requires a tailored allocation.

Balancing Bandwidths: The overall design space has

essentially three levels of memory hierarchy, from shared

cache to spatially distributed scratchpads, and reuse in the

computation units. Allocating bandwidths across these levels

requires understanding the compute bandwidth and data reuse

possible in the chosen workloads Ð these decisions are

tightly coupled with accelerator size and number of tiles.

Compute Density vs. Generality: If the goal of the overlay

is to support either many workloads or dissimilar workloads,

a more general overlay is required. This tradeoff can be

made by constructing a flexible datapath at the cost of more

resources, thus affecting all of the above tradeoffs.

IV. SPATIAL MEMORY EXPLORATION

A. Motivating Spatial Memory DSE

Prior spatial architecture synthesis algorithms assume that

all memory elements (scratchpads/DMAs) can communicate

with all computation elements. While this simplifies the

design space and spatial scheduling, it also prevents the

DSE from exploring the best way to connect memories and

processing elements together. Figure 4(a) shows an example

design where memory stream engines communicate over

essentially a crossbar to the spatial compute units. Figure 4(b)

shows the potential of a system that allows spatial memories,

where these engines have local communication with a smaller

subset of elements. Similarly, extending this design space

enables the possibility of deciding between multiple smaller

scratchpads or a single unified scratchpad.

Making these decisions with existing DFG abstractions is

difficult, as they lack two key pieces of information: 1. the

relationship between access patterns and data structures, and

2. the size and reuse of these data structures. Together, these

can enable reasoning about the validity and performance of

spatial memory optimizations.

Memory
Enhancement

(b) mDFG enables spatial distributed memories in ADG(a) Arch. Desc. Graph (ADG)

DMA

Scratchpad

Gen. Reg.

Recurrence

Fixed Fully-connect Memory

O
u
t P

o
rt

O
u
t P

o
rt

In
 P

o
rt

In
 P

o
rt

SW

SW

SW

SW
SW

PE

PE

PE

O
u
t P

o
rt

O
u
t P

o
rt

In
 P

o
rt

In
 P

o
rt

SW

SW

SW

SW
SW

PE

PE

PE

DMA

Spad. 2

Spad. 4

Spad. 3

Gen.

Reg

Recurrence

Spad. 1

Figure 4: Spatial Memory Enhancement for ADG

Memory-enhanced DFGs (mDFG): We enhance DFGs

with data structure and reuse information by introducing

array nodes, creating what we call a memory-enhanced

DFG (mDFG). Array nodes have edges to streams that

consume or produce those arrays, and we include reuse

properties on streams. An example is in Figure 5 for a

simplified version of FIR. Here, the input array a is stored

in scratchpad for higher bandwidth requirement and reuse.

The size parameter describes the total size allocated in either

DRAM or scratchpad. If it is in scratchpad, the additional

space of double-buffering is included. Also, streams are

annotated with additional information for computing the reuse

factor, including data traffic, data footprint, stationary reuse,

and recurrent reuse (see the ªReuse Analysisº paragraph).

There is now sufficient information in the mDFG to decide

which scratchpad to use Ð i.e., if data can be routed between

the scratchpad node in the ADG and PE nodes that consume

this data, and if there is enough remaining space in the

scratchpad. If there is ever a limited capacity, the reuse

information can help determine which array node in the

mDFG should be mapped to a scratchpad node; for example,

if an array has a stream with stationary reuse at the port, the

benefit of exploiting reuse at the scratchpad level could be

less than another array without stationary reuse. Note that

the reuse information in the mDFG will also be used in the

DSE for making system-level design decisions (Section V).

B. Software Support for Spatial Memory

To implement spatial memories, we extract array and reuse

information from the program, and embed this in the mDFG

to utilize during spatial scheduling.

Array Node Extraction: As it was discussed in Section II, all

memory operations under the stream pragma are ªrestrictedº

(alias free), so we can extract the arrays involved in the

dataflow graph by analyzing the pointer expressions. Specifi-

cally, we extract all the array pointers that are transitively

used by all the decoupled memory operations. Consider the

example in Figure 5(a): a, b, and c are extracted as array

nodes. An array node has three attributes: pointer, footprint,

data traffic, and memory reuse.

Reuse Analysis: Being aware of memory behaviors that can

be captured by hardware specializations helps both compiler

(b) Memory-enhanced

Dataflow Graph (mDFG)

Result Array

Type: dram

Array size: 128

Input Array

Type: spad

Array size: 255

×
+

Read a[io*32+ii+j]
Traf.: (32*128*4)
Foot.: (128+128-1)

Read b[j]
Traf.: 128*4
Foot.: 128
Port Reuse: 32

Read c[io*32+ii]
Traf.: (128+128)*2
Foot.: 128
Recur: 128

Write c[Io*32+ii]

Filter Array

Type: dram

Array size: 128

#pragma dsa config

{

 #pragma dsa decouple

 for (io=0; io<4; ++io)

 for (j=0; j<128; ++j)

 for (ii=0; ii<32; ++ii)

 c[io*32+ii] +=

 a[io*32+ii+j] * b[j];

}

(a) Tiled C Impl. of FIR
Compiler Reuse Analysis

Array Node

Stream Node

Legends:

Figure 5: Memory Reuse Enhancement for DFG

optimization and DSE. Our compiler recognizes these patterns

and annotates them on the associated stream nodes. Next,

we discuss three typical reuse patterns, general, stationary

and recurrent through the example in Figure 5(a) and (b).

General Reuse refers to when a memory stream repeatedly

accesses a set of data within a program region. Scratchpad is

often favored to exploit this reuse, provided there is sufficient

capacity. Reuse can be identified by finding a discrepancy

between data footprint (array or tile size) and traffic (number

of uses). Consider the operand a[i*32+ii+j] from the

innermost loop; the compiler recursively analyzes and joins

the memory boundaries touched by each loop, and finally

computes that 255 elements are in the memory footprint. To

compute the data traffic, the compiler notes that every loop

variable is involved in this pointer expression, which means a

different element is accessed in each iteration. Thus, the data

traffic of this operand is computed by multiplying all loop

trip counts, i.e. 32×128×32 = 16384. This indicates that

each element is reused an average of 16384
255

times. Indirect

memory access, e.g. a[b[·]], can also be analyzed similarly.

To simplify, we assume: 1. b[·] is linear and can be analyzed

by the above techniques; 2. no memory access will overflow,

and the indirect memory access is a uniform distribution over

array a. Therefore, data traffic is calculated by multiplying

loop trip counts, and the data footprint is the size of array a.

Stationary Reuse refers to an operand repeatedly reused

across the innermost loop so that this operand can be

stationary in the compute substrate (e.g. the port FIFO).

Consider the b[j] operand: Because the innermost loop

ii does not involve the pointer expression, this value is

reused across loop ii 32 times. Even though b[j] also

has general reuse, it does not provide as much value to

map to scratchpad, because much of the reuse is captured as

stationary reuse (i.e. in the port).

Recurrent Reuse refers to when a pair of memory streams

repeatedly update a set of data. When this set of data can

concurrently fit in the data path pipeline and port FIFO, this

pair of streams are favored to use the recurrence stream en-

gine to avoid memory traffic. Consider the c[io*32+ii]:

it repeatedly reads and writes a set of memory touched

by ii (i.e. 32 concurrent instances) along with j (i.e. 32

recurrences). Therefore, when there is enough on-chip buffer

for these 32 concurrent instances, this pair of streams will

be mapped to the recurrence stream engine.

To sum up, reuse behavior captured by scratchpad, port

FIFO, and the recurrence stream engine will all be considered

as the reuse factor; this factor is used to calculate the

bandwidth pressure of each stream in the DSE performance

model (Section V-C).

mDFG Scheduling: Enhancing any spatial-scheduling algo-

rithm to support mDFGs is straightforward. The principle is

to treat array nodes (the ones representing the data structure),

as any other node which must be scheduled onto the ADG,

but with unique scheduling constraints. Intuitively, an array

node can be mapped to a memory stream engine if:

1) There is sufficient remaining space (for a scratchpad).

2) There is a legal route from producers to consumers.

3) The access pattern of all streams for the array node is

supported by the stream engine (e.g. indirect access).

The stream engines in our implementation allow more than

one array each (as they support multiple concurrent streams),

provided there is sufficient capacity. The tradeoff is that the

bandwidth must be shared between any associated streams.

Thus, even if it is legal to map more than one array to a

scratchpad, it is sometimes beneficial to avoid sharing by

using a different scratchpad or even just placing the array

node onto a DMA stream engine; this can help maximize

the utilization of available bandwidth.

Having reuse info on streams can help resolve these

choices. For example, array nodes with stationary reuse

at ports (e.g., read the same value X times) provide less

benefit when mapped to scratchpads than those array nodes

without stationary reuse ± this is because their bandwidth

consumption is already reduced. These factors must be

considered during spatial scheduling; thus, we modify the

objective of the spatial scheduler to use the projected

performance of the mDFG, which factors in reuse and

bandwidth bottlenecks. Because this is a critical portion

of the system-level DSE, we explain the performance model

in the next section (Section V-C).

V. UNIFIED SYSTEM & ACCELERATOR

DESIGN SPACE EXPLORATION

The goal of DSE in OverGen is to codesign the system

parameters and accelerator features/topology to maximize

FPGA performance on the set of input applications. Here

we first give an overview, then discuss a novel technique to

use prior schedules to guide spatial DSE, and finally discuss

the performance and area modeling techniques.

A. Overlay Design Exploration

Logically, one iteration of the DSE involves proposing a

new ADG for the hardware, recompiling all the workloads

to it, and evaluating an objective (performance and FPGA

resource use) to guide the next step of DSE Ð repeat until

convergence. We use three main strategies to reduce the time

for each DSE iteration.

First, we attempt to avoid recompilation as much as

possible. During standard compilation, the compiler will

iteratively back-off from aggressive transformations that

require more resources than available (e.g. reduce the vector

width and recompile). To avoid this during DSE, the compiler

pre-generates different mDFGs for each program region

which each use different transformations (different unrolling

degrees, use a recurrence stream instead of accumulation,

etc.). These different mDFGs are maintained during DSE,

and ultimately only one of them needs to be used (only one

has to schedule correctly to the ADG). While this increases

the up-front cost for the first DSE iteration, it eliminates

from-scratch recompilation during DSE.

Next, we also try to avoid the expensive spatial-scheduling

stage of compilation by reusing the mDFG-to-ADG schedules

from the prior iteration of DSE. A simple approach is to

only re-schedule the portions of the DFG mapped to ADG

elements that were modified (i.e. schedule repair [38]). In

addition, we can use information about prior schedules to

make a more informed decision about how to modify the

ADG (see Section V-B).

Finally, we leverage the disparity between spatial schedul-

ing time (very high) and system-level design-space explo-

ration (quite low). Rather than explore both ADG design

(spatial DSE) and system parameters (system DSE) at the

same level of the DSE, it is relatively inexpensive to nest

system DSE inside of spatial DSE ± i.e. run a full exploration

of system parameters every time we modify the ADG. This

improves the convergence of the overall DSE.

DSE Flow Summary: The overall DSE flow is in Figure 6.

At the beginning of each DSE iteration, the spatial DSE will

propose a new ADG named ADG∗. ADG∗ is constructed

using a combination of random and schedule-preserving

transformations (Section V-B). Then, mDFGs are resched-

uled onto ADG∗, leveraging the prior schedules for any

unchanged portions of the ADG. If any program region has

no successfully scheduled mDFGs, then ADG∗ is abandoned,

Spatial

DSE

Spatial

Scheduler

System

DSE

Stochastic

Select

Scheduled

DFG*(s)

Scheduled

DFG*(s)

ADG*

Valid ADG* Sys. ADG*

Prior Scheduled DFG(s)

Selected Sys-ADG by Simulated Annealing

* : Modified in this iteration of DSEDFG

×
+

a[]c[]

c[]

b[]

+ +

b[0: n]

IP 1

OP 0

IP 0

a[0: n] c[0: n]

Invalid

ADG*

Figure 6: OverGen’s Unified DSE Flow

and a new iteration begins. If not, then the system-level

exploration (system DSE) exhaustively searches for the best

system-design parameters for ADG∗ (creating sysADG∗)

based on estimated performance and resource constraints.

The objective function favors estimated performance

first (Section V-C), followed by estimated resources-per-

accelerator (Section V-D). This secondary objective encour-

ages the spatial DSE to prune unneeded resources in the ADG,

even if it does not lead to more cores or higher performance in

the current DSE iteration. The final step is to choose whether

to continue with this ADG∗, which is done stochastically

through a simulated annealing approach.

B. Schedule Preserving Transformations

During each DSE iteration where the Spatial DSE ran-

domly modifies the hardware, it is common that some of

the compiled DFGs can become invalidated due to hardware

deletions or resource reduction. While this can sometimes be

rectified by repairing the schedule to use other resources, it

often cannot be. In these cases, the DSE algorithm either has

to use a lower-performance schedule, less-vectorized DFG.

The repair itself also takes a significant amount of time. This

is unfortunate, because this can even happen when deleting

units that are not necessary: e.g. a switch that is only used

to pass through a value without requiring flexible routing.

Thus, we introduce the concept of schedule-preserving

transformations, which use prior DFG schedules to guide

hardware modifications that preserve their validity. Schedule

preserving transformations are defined as hardware mod-

ifications that simplify the ADG while adding back the

minimum capability to support the existing schedules. Thus,

in essence, schedule-preserving transformations increase

hardware utilization, providing further incentives for the

removal of hardware units that provide less value. Specifically,

we identified three such transformations:

Node Collapsing, as shown in Figure 7(a), occurs when

a unit which performs routing (e.g. a switch) is deleted.

Here, after the routing node is deleted, any routes on

existing schedules that went through the node are used to

define new direct hardware connections from their source to

their destination. Thus, this transformation preserves prior

schedules by ensuring a valid path for routes through a

deleted unit.

Edge Delay Preservation, as shown in Figure 7(b), pre-

serves the pipeline depth of all operands for a PE when an

Preserved

DFG Edge

(a) Preserve schedule by creating direct edge

PE

PE

SW

SW

SW

PE

PE

SW

SW

SW

DFG Edge

ADG Edge

PE

PE

SW

SW

SW

Added

ADG Edge

Preserved

DFG Edge

PE

PE

SW
1

1

1
SW

1

SW PE

PE

SW
1

1

SW

SW

(b) Preserve schedule by matching delay FIFO depth

Cycle 1

Cycle 2

n

n: enforced

delay cycle

over edge

n

n: enforced

delay cycle

over edge

Added ADG Edge

with matched delay

2

Original

Schedule

Original

Schedule

Figure 7: Schedule-preserving Transformation Examples

intervening routing node is deleted. A balanced pipeline depth

ensures that all operands arrive at the same time to avoid

pipeline bubbles; these bubbles can lower the throughput of

the spatial accelerator [59]. Our approach is to increase per-

operand FIFO-depths in the PE (called delay-fifos) whenever

this imbalance can be observed on an existing schedule.

Module-Capability Pruning prunes excess module capa-

bilities, and associated hardware, that are not needed by

mapped schedules. Without this transformation, the DSE

oftentimes does not have enough incentive to remove some

costly capabilities, and more frequently removes capabilities

that are actually useful.

C. Performance Model with Spatial Memory

To estimate performance, we implemented a bottleneck-

based analysis that captures system-level design parameters,

memory bandwidth at different layers, and computational

bandwidth. Specifically, the overall performance is calculated

as the weighted geometric mean of the estimated IPC for

each mDFG. An mDFG’s IPC is calculated by multiplying

the maximum instruction bandwidth (mDFG Insts) by the

number of tiles and by the lowest bottleneck factor of all

levels of the memory system:

Perf = (mDFG Insts) · (# of Tiles) · min
L1 ...L3

(
RProduction

RConsumption

) (1)

The mDFG Insts factor captures vectorization degree,

allowing the DSE to explore tradeoffs between higher

vectorization degrees and number of tiles. Memory operations,

namely load and store operations, are included within the

estimated IPC to ensure that vectorization of pure data-

movement DFGs is incentivized.

While counting loads and instructions estimates the ideal

IPC, memory bandwidth limitations reduce the observed

IPC, as memory subsystems cannot always supply enough

data to fulfill computational requirements. We compute the

most-bottlenecked performance reduction over L1, L2, and

L3, corresponding to the Scratchpad, L2 Cache, and DRAM.

This bottleneck factor is calculated by dividing the production

and consumption rate (as
RProduction

RConsumption
in the previous equation).

These factors are calculated as follows, taking into account

stream reuse factors (see Section IV-B):

RProduction = BWLN ,LN+1
· (# of Banks)

RConsumption = ∑
i=1

(
BW(Streami)

Reuse(Streami)
) · (# of Shared Tiles)

(2)

In the above equations, the production rate is computed by

multiplying the bandwidth and bank count at each memory

level. The consumption rate, or data needed to satisfy

compute bandwidth, is the sum of compute data required by

a single tile, multiplied by the number of tiles at that memory

hierarchy level. The single-tile required data is computed

as the summation of all stream bandwidths divided by their

associated reuse rates. We describe how the bandwidth (BW)

and reuse factors are computed at each level:

Scratchpad Bandwidth: With scratchpads replicated across

tiles, the # of Shared Tiles factor is one, making the bandwidth

only depend on vectorization degree. Also, the bandwidth is

calculated separately for the read and write port.

L2 Bandwidth: As L2 Bandwidth is shared amongst tiles,

the consumption rate increases with respect to tile count,

requiring more banks. Accesses to L2 cache occur when a

stream pattern cannot be supported by port reuse or recurrent

data stream, without which the required data production rate

will be increased ± thus demanding more L2 Banks.

DRAM Bandwidth: Similar to L2 bandwidth, the consump-

tion rate is dependent on both reuse and tile count; however,

the total FPGA’s DRAM bandwidth is fixed.

D. ML-based FPGA resource model

To rapidly predict FPGA resources, the DSE leverages

a machine-learning (ML) resource prediction model, which

estimates resources on a component-level basis. To generate

the ML model, we perform out-of-context synthesis on

variations of each hardware unit, shown in Table I, to train an

ML-based FPGA resource model. The component-level ML

model implements a 3-layer multi-layer perceptron (MLP),

with an 80%/10%/10% test, train, and validation data split.

As the FPGA resource model was synthesized out-of-context

with no synthesis optimization passes being performed, our

model behaves pessimistically ± the projected design point

is larger than the actual post-PnR result.

Hardware Unit Total Synthesized

Processing Elements 100,000

Switches 56,700

Input Port 34,412

Output Port 25,796

Table I: Number of Hardware Modules Synthesized

VI. OVERGEN MICROARCHITECTURE &

IMPLEMENTATION

Our implementation of OverGen integrates prior frame-

works for spatial architecture generation [38] and SoC

generation [36] ± both implemented in Chisel [60]. We also

extend these frameworks with an implementation of spatial

memories and a high-utilization memory pipeline suitable for

FPGAs. In this section, we first discuss the microarchitecture

of generated accelerators, show how they interact with the

rest of the system and introduce our implementation of two

key components of OverGen: the stream dispatcher and

stream engine.

A. Implementation Overview

Figure 8 shows a high-level block diagram of an example

dual-tile OverGen overlay architecture mapped to a Xilinx

VCU118. Each OverGen tile (colored in light-blue) is

composed of a RISC-V Rocket [61] control core (colored

in orange) and one instance of the spatial accelerator. The

control-core sends commands and synchronizes with the

accelerator over the RoCC interface [62], and the spatial

accelerator uses a TileLink [63] DMA for memory access.

Within the spatial accelerator, the stream dispatcher

connects the control-core to the spatial memory system, and

coordinates stream execution. All units inside the spatial

memory system are stream engines, whose responsibility is

data movement to and from ports and memories. Stream

engines share a common pipelined implementation.

In the remainder of this section, we discuss how we achieve

high utilization in the stream-dispatcher and stream-engines.

B. Stream Dispatcher Microarchitecture

The stream dispatcher is designed to connect the con-

trol core to the spatial memory system, and manage

stream execution for an arbitrary number of stream en-

gines. Figure 9 shows the hardware organization, and

we explain intuitively by describing streams’ execution

over their lifetime. Each stream’s lifetime has three

steps: stream config, stream instantiation and

stream synchronization.

1 The control core communicates stream parameters and

commands that finalize stream creation to the stream

dispatcher. The stream dispatcher holds a register file for

these parameters so that they can be reused if unchanged

across streams. The stream config step updates this

register file.

2 When a stream finalization command is sent, the

stream instantiation step will decode the reg-

ister values and create an elaborated stream entry for

its corresponding stream engine in the stream dispatch

queue.

3 The stream dispatch queue uses a basic Tomasulo

algorithm [64] at stream synchronization to

see whether its required resource (stream engines,

O
v
e
rG

e
n

 T

il
e
 1

O
v
e
rG

e
n

 T

il
e
 0

TileLink Network-on-Chip (NoC)

512KB Inclusive

L2 cache

Peripherals

(JTAG, etc.)

AXI4 Mem.

Channel

Xilinx VCU118 Evaluation Broad

(XCVU9P)

Control Core

Stream Dispatcher

DMASpadGen

Rec.

Spad Reg.

Spatial Mem.

Control Core

Stream Dispatcher

DMASpadGen

Rec.

Spad Reg.

In Ports Out Ports

PE
Switch

Spatial Comp.

Spatial Mem.

In Ports Out Ports

PE
Switch

Spatial Comp.

FPGA DRAM

Figure 8: Example Dual-tile OverGen Overlay

RoCC Cmd. Mem. (D-cache)

 Comp.
Conf.

Reload

Stream
Reg. File

Stream
Dispatch
Queue

Stream
Barrier
Queue

I/O Ports
Scoreboard

Str. Engine
Scoreboard

Cmd.
FIFO

Stream Decoder

Stream

Configuration

R
e
co

n
f.

C
G

R
A

Stream

Instantiation

Stream
Synchronization Block

Stream Dispatch Bus

Out-of Order Dispatch

Port(s)

Status

Stream

Engine

Status

LUT FF IO

1

2

3

4

Figure 9: Stream Dispatcher Microarchitecture

ports, etc.) are currently being used by other stream

entries. If yes, the newly created stream entry will

be put into a dispatch queue, waiting for the required

resources to be idle, and then it will be dispatched to its

destination. Dispatch is out-of-order, but respects per-

port request order. The stream synchronization

step is done by stream barrier queue, where the stream

synchronization commands are queued. The stream

synchronization command encodes certain ports / stream

engines resource. It blocks streams to be dispatched if

the ports / stream engines it specified are busy. By

doing so, stream barrier queue can synchronize between

In
 P

o
rt

 0
:

ad
d
r.
,le

n
gt

h
,
..
.

In
 P

o
rt

 1
:

ad
d
r.
,le

n
gt

h
,
..
.

O
u
t

P
o
rt

 0
:a

d
d
r.
,le

n
gt

h
,
..
.

O
u
t

P
o
rt

 1
: a

d
d
r.
,le

n
gt

h
,
..
.

Stream
Issue

O
u
t

P
o
rt

 0
O

u
t

P
o
rt

 1
O

u
t

P
o
rt

 2 Round-Robin

Arbiter

In
d
ir

e
ct

 R
e
q
u
e
st

 G
e
n
.

St
re

a
m

 E
n
tr

y:
 A

d
d
re

ss
,
Le

n
gt

h
,
D

im
e
n
si

o
n
,

In
d
ir

e
ct

/L
in

e
ar

,
[w

ri
te

 d
at

a]
,
..
.

In
 P

o
rt

 1

St
re

a
m

 R
e
q
u
e
st

:
A

d
d
re

ss
,
B
it

m
as

k,
 S

iz
e
, [

w
ri

te

d
at

a]
,
[a

to
m

ic
 o

p
e
ra

ti
o
n
],
 T

ar
ge

t
P
o
rt

, .
..

St
re

a
m

 R
e
sp

o
n
se

:
Ta

rg
e
t

P
o
rt

, R
e
ad

 D
at

a,

[S
tr

e
am

 S
ta

te
 (
st

ar
t/

e
n
d
)]

,
..
.

ROB

D
M

A

L2 cache

Scratchpad

Bank 0

Bank 1

Recurr.

Write Data

Read Bus

Generate Register

CPU RF

Stream
Request

Stream
Generation

Li
n
e
a
r

R
e
q
u
e
st

 G
e
n
.

Mux
One

Hot

In
 P

o
rt

 0

TLB

PTW

addr:3, mask:1010

value stream: [4, 6]

Write Data

Stream

Dispatcher

Figure 10: Stream Engine Microarchitecture & Pipeline

different stream entries, preventing data hazard.

4 Stream engine performs stream memory access once

the elaborated stream entry is dispatched. It frees the

resource in the scoreboards on stream completion.

Performance Characteristics: This unit can dispatch one

stream per cycle, and up to N number of streams can complete

per cycle (N = number of total stream engines). The minimum

latency of RISC-V instruction completion to stream dispatch

is 2 cycles (one for parameter configuration, one for dispatch

if no resource conflict found).

System Integration & Reconfiguration: The stream dis-

patcher is also responsible for bridging other interfaces to

the accelerator side for the purpose of system integration.

OverGen-generated accelerators attach to the Network-on-

Chip (NoC) directly to coherently share a banked inclusive

L2 cache with other cores. The accelerator shares the page

table walker (PTW) of control-core for local TLB support.

The accelerator also uses D-cache to load its configuration

bitstream to re-program the computing substrate (Figure 9

right edge). Such reconfiguration bitstream reload is triggered

by a write to bitstream address and bitstream size registers

in stream register file. When this bitstream is returned from

D-cache, it passes through a customized network to perform

reconfiguration on the spatial computing network.

C. Stream Engine Microarchitecture

Our goal is to design a modular stream engine generator

that works for the combinations of supported stream patterns

(1D/2D/3D × Affine/Indirect × DMA/Scratchpad). Each

feature can be turned off individually to save resources if

not needed in a given domain. Figure 10 shows the micro-

architecture and pipeline design for stream engines.

Overview of Common Stages: The first stage, Stream

Issue, is where the stream table receives decoded stream

entries from the stream dispatcher. The stream table selects

one stream entry to be sent to the Stream Request stage

(b) Stream Table w/ One-hot Bypass

(a) Stream Table w/o One-hot Bypass

strX.Y: The Y-th issue of stream entry at position X of table

Bubble

Bubble

Issue stopped due to
backpressure or ports not ready

Figure 11: Stream Table One-hot Bypass

for every cycle, together with its data payload (e.g. write

data, indirect index value).

The Stream Request will generate the memory re-

quest packet based on the elaborated stream entry. After

accessing memory blocks or obtaining the expected value at

the Stream Generation stage, the responses (only for

memory read or recurrence) will be forwarded to a Re-order

Buffer (only for DMA and indirect scratchpad), where the

responses are re-ordered in request order. The responses will

eventually be sent to its destination input ports and eventually

consumed by In Port(s).

Stream Issue: After being dispatched, the stream entry first

arrives at the stream table, where the meta information for

each stream are recorded. The stream table aggregates the

readiness across all valid streams and selects one to be issued

to the stream request generator. The readiness of each stream

is determined by whether any associated input ports have

enough space (read stream) and output ports have enough

data to consume (write stream).

The stream table is designed to be fully pipelined. The

difficult case is when there is only one active stream. Since

the stream table needs to hold the outstanding meta info

for each stream, it is designed to be flip-flop based. Thus,

the updated stream entry can only be reflected in the next

cycle and issued in the subsequent cycle, creating a pipeline

bubble. To fully-pipeline a single stream, a one-hot detector

is added beside the stream table, where if only one stream

is active, the stream table will be bypassed by the updated

stream entry from the stream request stage. Figure 11(a)

shows the bubble in the waveform without the bypass, where

the issue rate is one every two cycles. Figure 11(b) shows

that adding the bypass doubles the issue rate.

Stream Request: After being issued from the stream

table, stream entries will be converted to memory request

packets (address, mask, read/write, etc.) in the Stream

Request stage. For affine stream patterns, the task of the

request generator is to generate a memory access bitmask

based on the address and number of bytes to be accessed,

described in TileLink protocol [63]; As for indirect stream

patterns, an indirect request generator containing a set of

adders is introduced. Such adders are used to add the start

address of stream a with its multiple index values (values

of stream b) to calculate the actual addresses of indirect

streams like a[b[i]]. The Stream Request stage is

also responsible for calculating the next-cycle stream state

that will be written back to the stream table for the next

request (or bypassed when there is only one stream).

Stream Generation: The Stream Issue and Stream

Request stages create continuous requests that will even-

tually produce data that will be consumed by the computing

fabric in the Stream Generation stage, which is specific

to each stream engine.

DMA accesses virtual memory, where memory requests

from Stream Request will 1. reserve an entry in the

ROB; 2. access a private TLB and PTW shared with the

control-core; 3. Memory request interface connects directly

to NoC, which allows accelerator access to L2 cache (LLC)

directly; 4. Memory response will be sent to ROB to complete

the memory transaction.

Other units are intuitive: The Generate Engine generates

affine value sequences, similar to the patterns supported by

affine memory streams. The Recurrence Engine forwards

write data payload from output ports directly to input ports.

The Register Engine enables scalar value collection from an

output port to control-core directly.

D. OverGen Implementation

Specific design constraints should be followed to maximize

the FPGA resource utilization (for larger or more accelerators)

and minimize the critical path (for higher frequency). Besides

resource constraints, FPGA requires careful consideration on

timing since Configurable Logic Blocks (CLB) are pre-placed

and clock sources are pre-defined. Bad implementations (e.g.

large combinational logics) or complex designs (e.g. multi-

clock region) can significantly hurt the frequency. Therefore,

OverGen follows two design principles to attempt to solve

these two challenges:

1) Conservatively design and add extra pipeline stages

while maintaining fully-pipelined execution.

2) Build each module by using pre-built FPGA IP for

higher frequency and better utilization.

Conservative pipeline: One challenge is the added delay of

cross-die interconnects on the latest FPGAs [65]. These are

present on Xilinx FPGAs, which use multiple dies connected

by silicon interposers in order to increase the number of

logic elements on a single device. In addition, specialized IP

blocks such as the DRAM controllers or HBM controllers

have fixed locations, and interacting modules are also more

constrained in their layout. Together, these factors lower the

final clock frequency.

To mitigate the timing degradation caused by die-crossing

delays, we conservatively insert additional pipelines. We

explicitly add extra stages between the stream dispatcher and

all stream engines to relax the timing budget on the stream

dispatch bus. Moreover, the DMA engine is responsible for

main memory access, which requires it to closely interact

with the NoC and then the DRAM controller. The fixed-

location of the DRAM channel on the FPGA encourages

per-tile DMA engines to be placed near the DRAM controller,

as shown in Figure 12, so we also add extra pipeline stages

inside DMA read/write ports that connect to the NoC. The

stream engines are also conservatively pipelined, as shown

in Figure 10, because they bridge other accelerator pieces:

stream dispatcher, in/out ports, and compute fabric.

FPGA IP Optimization: We adapt the overlay design to

make use of the specialized memory and DSP blocks available

on the FPGA fabric. For example, using the Block RAM

hard blocks for scratchpad and ROB. Also, mapping floating

point computation to dedicated DSPs significantly increases

the achievable frequency compared to mapping with LUTs.

E. Limitations & Future works

Threading Interface: The current pthread-like programming

interface assumes a one-to-one mapping of threads to tiles,

where threads run to completion uninterrupted. Also, the

performance models assume that all tiles are parallelizing

the same code region, and this is our convention when

implementing kernels. We also do not manage the interaction

between host and FPGA in terms of offloading or data

movement. A more sophisticated programming interface,

task model (e.g. [66±69]), and analytical models could

significantly expand usability.

Processing Elements: Our current implementation of process-

ing elements only supports a dedicated instruction execution

model; in contrast, the use of shared PEs (either static [70,71]

or dynamically scheduled [56,72,73]) can potentially support

kernels with larger code regions and get higher utilization

for kernels with more complex control flow.

Compilation Support: Although our processing elements

already support a predication-based control lookup table for

conditional execution, our compiler has only limited support

for converting arbitrary control flow to predication based

dataflow execution. A more general dataflow control flow

model (e.g. [74,75]) is future work. Meanwhile, our compiler

only supports data parallel loop unrolling when exploring

DFG resource occupation (i.e. DFG size). When it comes to

exploiting overlapping data reuse between subsequent loop

iterations, we still require manual unrolling to take advantage.

This can be improved by integrating prior work on reuse

distance analysis [76]. Also, our reuse analysis relies on

strong assumptions on compilation-time determined loop trip

count and array shape. One of our future directions is to

support dynamical array shape and loops.

Workload Size Type #ivp #ovp #arr #m,a,d
D

S
P

cholesky 482 f64 7 3 2 5,4,2
fft 212 f32x2 3 1 2 4,8,0
fir 210 ×199 f64 4 2 2 4,4,0
solver 482 f64 4 2 2 4,4,1
mm 323 f64 4 3 3 4,4,0

M
ac

h
S

u
it

e stencil-3d 343 ×8 i64 7 1 2 4,12,0
crs 494×4 f64 6 5 6 1,0
gemm 642 i64 4 2 3 8,8,0
stencil-2d 662 ×32 i64 3 1 2 9,11,0
ellpack 494×4 f64 4 3 4 4,4,0

V
is

io
n

channel-ext 1282×4 i16 1 1 2 0,0,0
bgr2grey 1282×4 i16 3 1 2 16,32,4
blur 1282×4 i16 3 1 2 0,52,8
accumulate 1282×4 i16 2 1 2 0,16,0
acc-sqr 1282×4 i16 2 1 2 16,16,0
vecmax 1282×4 i16 2 1 3 0,16,0
acc-weight 1282×4 i16 5 1 2 32,16,4
convert-bit 1282×4 i16 3 1 2 0,32,0
derivative 1302×4 i16 3 1 2 16,32,4

Table II: Workload specification: size, data type, input/out-

put ports, and multiply, add, div ops in the best DFG.

VII. METHODOLOGY

Benchmarks: We selected 19 workloads from different

domains: 9 from Xilinx Vitis computer vision library, 5

from the digital signal processing (DSP) domain targeted

by REVEL [56], and 5 from MachSuite [77] for commonly-

accelerated workloads. The data size and data type are shown

in Table II.

Baseline: We evaluate OverGen in terms of speedup, compi-

lation, DSE time and device reprogram time. We compare

against the state-of-the-art HLS technology, AutoDSE [21], as

our baseline by using Merlin Compiler (2020.3) and Xilinx

Vivado (2020.2). Because AutoDSE benefits significantly

from manual kernel tuning, we evaluate both against non-

tuned and tuned code versions for AutoDSE.

Compiler support: We augment the open-source

DSAGEN [38] compiler with spatial memory support.

An extended Clang and LLVM compiler transform the

pragma-annotated program into RISC-V assembly, and the

RISC-V GNU toolchain is modified for binary generation.

Hardware Generation & Verification: OverGen augments

the Chisel-based DSAGEN hardware generator [38] by ex-

tending it to full system-level with a modular spatial memory

system as described in Section IV. After obtaining RTL

from hardware generation, we further verify the functional

completeness as a full system with RISC-V binaries on RTL

cycle-level by using Synopsys VCS before FPGA verification.

System-Level Integration & Experiment Platform: Each

accelerator is integrated into ChipYard [36] as an RoCC

accelerator to a small RISC-V Core (Rocket Core). All

designs use an 8-way associative directory-based inclusive L2.

The generated RTL is further synthesized to Xilinx VCU118

Evaluation board by using Vivado 2021.2. All data for each

OverGen

Tile 2

OverGen

Tile 1

OverGen

Tile 0

OverGen

Tile 3
OverGen

Tile 2

OverGen

Tile 1

OverGen

Tile 0

OverGen

Tile 3

DRAM controller

Figure 12: Quad-Core OverGen FPGA Floorplan

kernel begin offchip and are loaded from FPGA DRAM.

Because of FPGA implementation difficulties, we were not

able to run on our FPGA when multiple DRAM channels

were enabled. Thus, we use a single DRAM channel for

most experiments, and study the effect of multiple DRAM

channels separately using VCS RTL simulation (Eval. Q7).

Figure 12 shows the floorplan of a Quad-tile General Over-

Gen design at 92.87MHz, including the DRAM controller’s

location. The critical path is around the L2 MSHR logic, and

optimizing is beyond the scope of this work.

VIII. EVALUATION

The goal of our evaluation is to provide perspective on the

opportunities of synthesized spatial overlays as compared to

state-of-the-art automated HLS (AutoDSE). This section is

organized around 8 key questions, with the takeaways being:

• OverGen is able to generate reconfigurable designs

that can outperform baseline AutoDSE (without kernel

tuning) by mean 1.2×, even though the generated

designs are more flexible.

• HLS benefits more heavily from kernel tuning, while

OverGen’s execution model and compiler can handle

many code patterns natively without software effort.

• New applications within the same domain can be easily

deployed on an existing overlay with only modest

performance degradation, due to overlay flexibility.

Q1: How performant are generated overlays?

Figure 13 shows the overall performance of OverGen

across all workloads, normalized to AutoDSE without kernel

tuning. We demonstrate three different kinds of overlays:

• General Overlay (second bar): A single hand-designed

mesh-based accelerator overlay targeting all workloads

with maximum vectorization width (512 bit).

• Suite Overlay (third bar): An overlay specialized to

each workload suite. Table III shows the specs of each.

• Workload Overlay (fourth bar): An overlay specialized

only to a single workload.

We first compare against AutoDSE without manual kernel

tuning. The general overlay achieves comparable performance

to AutoDSE on the DSP suite and MachSuite, and mean

68% of the performance on vision suite. This is because

it can only fit at most 4 general tiles, due to the high

overhead of the general overlay’s datapath and FUs (about

ch
ol fft fir

so
lv

.

m
m gm

1/8
1/4
1/2

1
2
4
8

16

Sp
ee

du
p

ov
er

 A
ut

oD
SE

dsp

st
cl-

3d cr
s

ge
m

m

st
cl-

2d

el
lp

.

gm

machsuite

ch
an

.

bg
r2

.

bl
ur

ac
cu

.

ac
c_

sq
r

ve
cm

.

ac
c_

we
i

co
nv

.

de
ri. gm

vision
Tuned-AD AutoDSE general-OG suite-OG w/l-OG

Figure 13: Overall Performance Comparison

ch
ol fft

st
cl-

3d cr
s

ge
m

m
st

cl-
2d

ch
an

.
bg

r2
.

bl
ur

1/8
1/4
1/2

1
2
4
8

16

Sp
ee

du
p

o/
 V

an
illa

 A
ut

oD
SE Hatched bar indicates s/w tuned version.

AutoDSE w/l-OG

Figure 14: Effect of tuned kernels

Spec. Mach. Vitis DSP General

S
y

st
em

Tile Count 10 13 7 4
L2 #Bank 16 16 8 4
NoC B/W (Byte) 64 64 64 32

A
cc

el
er

at
o

r

PEs 20 16 10 24
Switches 17 11 27 35
Avg. Radix 2.9 2.61 2.85 4.69
Int +/×/÷ 16/14/0 16/15/13 0/0/0 24/24/24
Flt. +/×/÷/

√
x 4/4/0/0 0/0/0/0 6/6/5/2 24/24/24/24

Spad. Cap. (KB) 64 - 8, 32 32
Spad. B/W (B/cyc) 32 - 32, 32 32
Spad. Indirect? Yes - No, No Yes
GEN/REC/REG 0/0/0 0/0/0 0/1/0 1/1/1
In Ports B/W (B) 160 112 152 224
Out Ports B/W (B) 96 48 104 160

Table III: Specification of Suite Specific Overlays

52% in LUT). The per-suite specialized overlays outperform

baseline AutoDSE by a mean 1.2×, primarily due to having

2-3× more tiles (i.e. due to specialized network, FUs,

and memories). Additionally, the DSP overlay uses two

scratchpads to increase bandwidth without requiring more

expensive wider accelerator datapaths. The per-workload

specialized designs can outperform AutoDSE without kernel

tuning by mean 1.45× for similar reasons; the relative

improvement over suite-specialized is modest, especially

for Vitis, due to the strong similarity between workloads.

Compared to AutoDSE with manual kernel tuning, Over-

Gen is able to achieve 0.71×, 0.37×, 0.65× of performance

for DSP, Machsuite and Vision respectively, while still

maintaining workload-flexibility. This is sensible, as hardware

structures for preserving generality and programmability

reduce the maximum resource efficiency; Q2 goes into depth

on why kernel tuning is more critical for AutoDSE.

While most suite overlays were at least half the perfor-

mance of the AutoDSE designs, there were a few outliers.

Both stencil-2d and derivative both apply aggres-

sive reuse optimization through a sliding window, which can

be well specialized by line buffer architecture on HLS [78].

For ellpack, we have to load a vector to the scratchpads

of all cores, but we currently lack broadcast support from

DRAM to scratchpad, which wastes significant bandwidth;

incorporating stream-based multicast [79] would be helpful.

Q2: Impact of kernel tuning across frameworks?

We studied 9 workloads that benefit from kernel tuning, as

shown in Figure 14. There are 7 workloads where AutoDSE

(and its underlying HLS technology) does not handle some

code patterns well, leading to lower performance because of

increased initiation interval (II: number of cycles between

pipeline compute instances). In general, these patterns are

more easily supported on OverGen’s ISA/compiler. To

substantiate this, we manually transform these 7 workloads to

improve their II for AutoDSE, and we found 4 opportunities

for kernel tuning in OverGen.

AutoDSE Kernel Tuning: We find that two main manual

transformations are useful in these workloads: eliminating

variable loop trip counts, and strength reduction for strided

access patterns. Table IV shows the II’s before and after

these transformations, and the hatched bar in Figure 13 and

Figure 14 shows the tuned workloads’ performance. Note

that all other workloads achieve II=1, and OverGen always

achieves II=1. We next discuss each transformation and the

affected workloads.

Causes Var. Loop TC Inefficient Strided Access

Workload chol. crs fft bgr2. blur chan. stcl-3d

Untuned II 10 4 2 9 6 8 6
Tuned II 5 2 1 1 1 1 1

Table IV: HLS Initiation Interval (II) Optimization

Variable Loop Trip Count: HLS prefers a perfect loop nest

with fixed trip-count [78], but cholesky, fft, and crs

all have variable trip counts or imperfect loop bodies. To

transform these programs, we replace variable trip counts with

a fixed maximum, and push outer-loop computation into the

inner loop. We then guard the conditional execution with if-

statements within the inner loop. OverGen supports variable

trip-count streams natively (using REVEL’s ISA [56]).

Inefficient Strided Access: AutoDSE’s toolchain has trouble

efficiently performing strided memory access with small

strides (including accesses that appear strided when observing

only the innermost dimension of the access pattern). Such

patterns can limit AutoDSE’s ability to exploit memory

parallelism, either at the BRAM level with multiple ports,

or at the DRAM level with memory request coalescing. To

help the underlying HLS tools understand the access pattern

better, the solution is to perform a strength reduction on any

strided accesses using the innermost induction variable (e.g.

instead of using i * 4, increment i by 4 in each iteration).

OverGen’s compiler natively supports strided streams and

coalescing adjacent streams.

Prebuilt Database: AutoDSE has a pre-built database

that records the best explorer configuration of AutoDSE for

common workloads. gemm is optimized using this database.

OverGen Kernel Tuning: These software behaviors of

interest are more easily captured by the OverGen compiler,

so only 4 workloads benefit from source code transformation

on OverGen. For fft, we peel the last several iterations, so

that strided scalar access can be coalesced to fully utilize

the memory bandwidth [38,57]. For gemm, to minimize I/O

traffic into the accelerator and improve reuse, we unroll across

two inner-loop dimensions (similar to tensorization [80]). For

stencil-2d and blur, our compiler has limited support

for exploiting reuse from overlapped data access between

subsequent iterations. Therefore, we manually unrolled the

iterations to reuse the overlapped data.

Overall, while kernel tuning is a helpful avenue for perfor-

mance improvement in AutoDSE’s HLS-based approach, it

also more often requires programmer effort to get competitive

performance than OverGen for this set of workloads.

Q3: How fast is OverGen’s DSE?

Figure 15 shows the DSE and synthesis time comparison

between AutoDSE (first bars in each suite) and the suite-

wise OverGen overlay (right-most hatched bar). Comparing

AutoDSE’s combined time of synthesizing each application,

our DSE constructs a more general accelerator while using

only 47% of the time.

ch
ol fft fir

so
lv

.
m

m
su

ite

0

10

20

30

DS
E

&
Sy

nt
h.

 T
im

e
(h

) 39.8
AutoDSE
Total: 52.6h

dsp

st
cl-

3d cr
s

ge
m

m
st

cl-
2d

el
lp

.
su

ite

AutoDSE
Total: 69.2h

machsuite

ch
an

.
bg

r2
.

bl
ur

ac
cu

.
ac

c_
sq

r
ve

cm
.

ac
c_

we
i

co
nv

.
de

ri.
su

ite

34.5
AutoDSE
Total: 92.8h

vision

dse
syn

Figure 15: DSE and synthesis time comparison.

Q4: What are the limiting FPGA resources?

Figure 16 shows the resource breakdown of each com-

ponent, normalized by the total FPGA resources available

for both overlay and AutoDSE designs (with kernel tuning).

All the generated overlay designs (both per-workload and

suite) consume from 81% to 97% of LUTs, which is the

limiting factor. Because we would like to preserve some

ch
ol fft fir

so
lv

.
m

m
su

ite

0%

20%

40%

60%

80%

100%

FP
GA

 R
es

ou
rc

e
Oc

cu
p.

 (%
) dsp

st
cl-

3d cr
s

ge
m

m
st

cl-
2d

el
lp

.
su

ite

machsuite

ch
an

.
bg

r2
.

bl
ur

ac
cu

.
ac

c_
sq

r
ve

cm
.

ac
c_

we
i

co
nv

.
de

ri.
su

ite

lut
dsp
ff

vision
pe n/w vp spad dma core noc

(a) Overlay Designs

ch
ol fft fir

so
lv

.
m

m

0%

5%

10%

15%

20%

FP
GA

 R
es

ou
rc

e
Oc

cu
p.

 (%
)

lut
ff
dsp
bram

st
cl-

3d cr
s

ge
m

m
st

cl-
2d

el
lp

.

30
.4

%

59
.9

%

33
.7

%

ch
an

.
bg

r2
.

bl
ur

ac
cu

.
ac

c_
sq

r

ve
cm

.
ac

c_
we

i
co

nv
.

de
ri.

20
.3

%

24
.8

%

(b) AutoDSE Design

Figure 16: FPGA Resource Breakdown

generality for potential future workloads, our DSE greedily

consumes as many resources as possible, even if there is no

parallelism or when we are memory bandwidth bound. One

of the biggest components in terms of LUTs is the NoC, due

to its crossbar-based implementation (prior work observed

similar overheads [42]). AutoDSE tends to consume fewer

resources as it favors utilizing less hardware when memory

bound or parallelism bound, as generality is not a goal.

Q5: Can additional workloads be mapped to an overlay?

We perform a ªleave-one-outº experiment to study the

overlay flexibility. Specifically, we generate an overlay for all

but one workload in a suite, then try to map the remaining

workload. If that workload can map with relatively high

performance, that indicates a more robust design.

The results are shown for MachSuite in Figure 17. Most of

the workloads can be mapped to the corresponding leave-one-

out accelerator, with mean 49.5% performance degradation.

Performance loss is caused by datapath specialization, which

prevents the optimal spatial mapping; generally, a less-

vectorized version is used, which has commensurately less

performance. The modest performance loss may be acceptable

to an FPGA programmer making incremental changes. We

imagine that the compiler could inform the user when a

significant performance improvement is expected, to signal

when to perform DSE again.

We use the same setup to evaluate the compile/reconfigu-

ration time, as compilation time is most meaningful on an

overlay that was not specifically designed for that workload.

st
cl-

3d cr
s

ge
m

m
st

cl-
2d

el
lp

.
gm

ea
n0%

20%

40%

60%

80%

100%

Re
la

tiv
e

to
 S

ui
te

-O
G

Performance

st
cl-

3d cr
s

ge
m

m
st

cl-
2d

el
lp

.
gm

ea
n10−1

100

101

102

103

104

105

106

Sp
ee

du
p

o/
 H

LS

Compilation Time

st
cl-

3d cr
s

ge
m

m
st

cl-
2d

el
lp

.
gm

ea
n10−1

100

101

102

103

104

105

106

Re
la

tiv
e

to
 F

PG
A

Re
co

nf
ig

.

Reconfig Time

Figure 17: ªLeave-one-outº Flexibility Evaluation

Comparing against AutoDSE-based HLS, our spatial overlay

compilation is 10000× faster. Also, reconfiguration is much

faster by mean 54000×. This is useful if the desired FPGA

functionality changes rapidly, enabling efficient temporal

multiplexing at very fine time scales.

Q6: How does overlay-generality affect performance?

OverGen can be used to generate increasingly general

designs by incrementally adding more target workloads.

Figure 18 shows the results of such an experiment, where we

incrementally add workloads and rerun the DSE to analyze

how the number of tiles and resource usage changes. We

witness the overall datapath (PE + Port + network) use per

tile increases as new workloads are added to the target set,

because the datapath becomes more general. To compensate,

the number of tiles decreases from 15 to 10. Because some

of the workloads are memory bound, it only costs mean 8%

performance to support all workloads in this suite.

+stc
l-2

d

+ge
mm

+stc
l-3

d

+ellp
ack +crs

0%

2.5%

5%

7.5%

10%

LU
T

Oc
cu

p.
 p

er
 T

ile
 (%

)

pe
n/w

vp
spad

dma
core

noc

0

4

8

12

16

of

 T
ile

s

Figure 18: Incremental Design Optimization.

Q7: How do more DRAM channels affect performance?

Figure 19 shows the performance with varying DRAM

channel count, normalized to single-channel DRAM for

each design. For AutoDSE, most MachSuite kernels can

benefit from multiple DRAMs by mean 25%. Element-

wise memory-intensive workloads like mm, gemm3, vecm.,

accu., acc_sqr, acc_wei and deri. can also benefit

3gemm is a tiled (blocked) implementation of matrix multiply, mm is not

ch
ol fft fir

so
lv
.

m
m

st
cl-

3d cr
s

ge
m
m

st
cl-

2d
el
lp
.

ch
an

.
bg

r2
.

bl
ur

ac
cu

.
ac

c_
sq

r
ve

cm
.

ac
c_
we

i
co

nv
.

de
ri.

1/2

1

2

4

Sp
ee

du
p

5.1
ad-4
ad-2
ad-1

og-4
og-2
og-1

Figure 19: Effects of DRAM channels

from multiple DRAM channels. The OverGen Workload

Overlays see benefits on a similar set of workloads by mean

19%.

Q8: Do schedule-preserving transforms improve DSE?

Figure 20 compares the DSE algorithm with and without

schedule-preserving transformations. Here the x-axis is time

in hours, and the y-axis is the DSE’s estimated IPC for the

whole FPGA. Schedule-preserving transformations help the

DSE converge faster to designs that are more-specialized

to the workload datapath topologies. Overall, DSE time is

reduced by mean 15%, and the estimated IPC is improved

by 1.09× (running on the FPGA confirms 1.08x speedup).

0 10 20

60

80

100

120

140

Es
tim

at
ed

 IP
C

DSE
Time (h)

dsp

0 5 10
40

60

80

100

120

machsuite

0 10 20
40

50

60

70

80
vision

non-preserved
preserved

Figure 20: The effects of schedule-preserving transforms.

IX. RELATED WORK

Overlay Architectures: We highlight significant and recent

overlay approaches; Li et al. provide an in-depth survey [81].

Soft CPU: FPGA vendors provide soft processor imple-

mentations, e.g. Xilinx MicroBlaze [82] and Intel Nios II [83],

and there are also many open source works, e.g. SPREE [84],

iDEA [85,86], and OpenRISC [87]. Some alternatives provide

higher-performance microarchitectures, such as multi-issue

(e.g. Leon3 [88], FPGA-Nehalem [26]), multi-thread (e.g. Oc-

tavo [24], CUSTARD [89], MT-MB [90]), multicore with

scalable networks (e.g. Heracles [23], Kumar et al. [91]),

vector operations (e.g. SIMD-Octavo [92], MXP [25]), as

well as VLIW (e.g. TILT [93]).

Soft GPGPU: FlexGrip [30] and MIAOW [94] are single

compute-unit (CU) overlays based on Nvidia and AMD GPU

architectures, respectively. FGPU [28] was able to synthesize

multiple CUs on a single FPGA board, with a follow-up

work specialized for persistent deep learning [35].

Reconfigurable Architectures: QUKU [95] is an early

example of a 2D-mesh style CGRA overlay. reMORPH

is another 2D mesh-based overlay that is built around the

FPGA’s DSP blocks as primitives [31]. VDR [96] is a

CGRA overlay which can map short program traces for JIT-

based compilation. The DySER heterogeneous core/CGRA

architecture was also mapped to FPGA [97,98]. ZUMA is

an example of an FPGA-on-FPGA overlay [99].

Customizable Overlays: Interestingly, some overlays allow

architecture customization. For example, CREMA [100,101]

and Quickdough [102,103] leverage templates to customize

PEs for each application and speedup the design process.

CGRA-ME [104±107] and AHA [44,45,108] further in-

troduced architecture description languages for arbitrary

topologies and DSE with CGRA mapper involvement. Mo-

carabe [109] introduces the communication cost as a first-

class citizen in the compiler to obtain a design with high

frequency while still meeting the targeted II. SCRATCH [29]

is a GPU-based overlay based on MIAOW [94], which

automatically identifies the application-specific demands

regarding the instruction set and computing unit capability,

and generates a trimmed down GPU design.

Key Difference to prior Overlays: As compared to these

prior frameworks, our overlay-synthesis approach attempts to

perform application specialization automatically and across

many aspects of the overlay architecture (instructions/topolo-

gy/execution model/provisioning).

FPGA Programming: While the overlay approach improves

the programmability by providing another layer of abstraction,

there are also efforts to directly tackle this problem with

new programming languages with lower-level abstractions.

As an example, Dahila [110] generates predictable HLS

designs by incorporating time-sensitive affine types into

the language. On the other hand, Reticle [111] proposes

an intermediate representation and low-level assembly that

explicitly expresses special resources on FPGAs, e.g. LUTs

and DSPs. Spatial [112] is a language designed for imple-

menting accelerators based on parallel patterns. Although

these techniques improve the programmability, they do not

tackle reconfiguration overheads. Just-in-time compilation

frameworks can also reduce the burden of FPGA synthe-

sis [113,114].

A recent approach integrates separate compilation into

an FPGA design flow to enable better usability [115,116].

These works leverage faster compilation/reconfiguration to

subregions of the FPGA, and enable linking through a packet-

switched network. The RapidStream framework [117±119]

also partitions a large design for parallel implementation and

final re-assembly, but instead uses customized point-to-point

and pipelined channels to address the high area and limited

bandwidth of packet-switched NoC’s in prior work.

X. CONCLUSION

While FPGAs have proven to be extremely effective

computational accelerators, their usability is not ideal. The

heart of the problem is the limited design space of existing

HLS tools, which is inflexible and requires frequent re-

synthesis. In this work, we develop and evaluate the idea of an

alternate HLS paradigm where a highly-flexible overlay is the

target architecture. Surprisingly, even though the generated

designs are programmable, the overall performance is on-par

with state-of-the-art HLS tools.

Yet there is much more to be explored, and OverGen should

be seen as a proof-of-concept for the potential of multicore

spatial overlays. Many aspects of the design space can be

further specialized to the chosen applications, leveraging the

extreme flexibility of FPGAs. Examples include the NoC

topology [120], NoC protocol [121,122], cache policies [123],

coherence protocol [124], and synchronization [125] to

name a few. One broad, underexplored aspect is hetero-

geneity: including heterogeneous cores, caches, networks,

and memories. While our current framework assumes pure

single-program parallelization, real systems (e.g. mobile

SoCs [126], datacenters, VR [127] and even brain computer

interfaces [128]) often require heterogeneous mixes of

workloads with different throughput and latency requirements

on the same fabric Ð this opens up vast potential for these

different forms of architecture and microarchitecture hetero-

geneity. Supporting heterogeneity is challenging both because

it adds another dimension to design-space exploration, and

because it requires novel system support in virtualization and

runtime management of heterogeneous resources.

Overall, we see spatial overlay synthesis as a potentially

disruptive approach for FPGA HLS, and OverGen as spring-

board for future spatial architecture research.

ACKNOWLEDGMENT

This work was supported by NSF awards CCF-1751400

and CCF-1937599, as well as gift funding from VMware.

REFERENCES

[1] L. Zhuo and V. K. Prasanna, ªSparse matrix-vector multipli-
cation on fpgas,º in Proceedings of the 2005 ACM/SIGDA
13th International Symposium on Field-Programmable Gate
Arrays, ser. FPGA ’05. New York, NY, USA: Association
for Computing Machinery, 2005, p. 63±74.

[2] J. Fowers, K. Ovtcharov, K. Strauss, E. S. Chung, and G. Stitt,
ªA high memory bandwidth FPGA accelerator for sparse
matrix-vector multiplication,º in 2014 IEEE 22nd Annual
International Symposium on Field-Programmable Custom
Computing Machines, 2014, pp. 36±43.

[3] Y. Wang, J. C. Hoe, and E. Nurvitadhi, ªProcessor assisted
worklist scheduling for FPGA accelerated graph processing
on a shared-memory platform,º in 2019 IEEE 27th Annual
International Symposium on Field-Programmable Custom
Computing Machines (FCCM). IEEE, 2019, pp. 136±144.

[4] S. Zhou, R. Kannan, V. K. Prasanna, G. Seetharaman,
and Q. Wu, ªHitgraph: High-throughput graph processing
framework on FPGA,º IEEE Transactions on Parallel and
Distributed Systems, vol. 30, no. 10, pp. 2249±2264, 2019.

[5] S. Salamat and T. Rosing, ªFPGA acceleration of sequence
alignment: a survey,º arXiv preprint arXiv:2002.02394, 2020.

[6] W. Qiao, J. Oh, L. Guo, M.-C. F. Chang, and J. Cong, ªFANS:
FPGA-accelerated near-storage sorting,º in 2021 IEEE 29th
Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM). IEEE, 2021, pp.
106±114.

[7] S. U. Hussain, B. D. Rouhani, M. Ghasemzadeh, and
F. Koushanfar, ªMAXelerator: FPGA accelerator for privacy
preserving multiply-accumulate (mac) on cloud servers,º
in Proceedings of the 55th Annual Design Automation
Conference, ser. DAC ’18. New York, NY, USA: Association
for Computing Machinery, 2018.

[8] Y. Chen, J. He, X. Zhang, C. Hao, and D. Chen, ªCloud-
DNN: An open framework for mapping DNN models to
cloud FPGAs,º in Proceedings of the 2019 ACM/SIGDA
international symposium on field-programmable gate arrays,
2019, pp. 73±82.

[9] N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma, S. Vrud-
hula, J.-s. Seo, and Y. Cao, ªThroughput-optimized OpenCL-
based FPGA accelerator for large-scale convolutional neural
networks,º in Proceedings of the 2016 ACM/SIGDA Inter-
national Symposium on Field-Programmable Gate Arrays,
2016, pp. 16±25.

[10] N. Samardzic, W. Qiao, V. Aggarwal, M.-C. F. Chang, and
J. Cong, ªBonsai: High-performance adaptive merge tree
sorting,º in Proceedings of the ACM/IEEE 47th Annual
International Symposium on Computer Architecture, ser.
ISCA ’20. IEEE Press, 2020, p. 282±294.

[11] A. Sohrabizadeh, J. Wang, and J. Cong, ªEnd-to-end opti-
mization of deep learning applications,º in Proceedings of
the 2020 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, ser. FPGA ’20. New York,
NY, USA: Association for Computing Machinery, 2020, p.
133±139.

[12] J. Wang, L. Guo, and J. Cong, ªAutoSA: A polyhedral
compiler for high-performance systolic arrays on FPGA,º in
The 2021 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, 2021, pp. 93±104.

[13] L. Song, Y. Chi, A. Sohrabizadeh, Y.-k. Choi, J. Lau, and
J. Cong, ªSextans: A streaming accelerator for general-
purpose sparse-matrix dense-matrix multiplication,º in Pro-
ceedings of the 2022 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, ser. FPGA ’22. New
York, NY, USA: Association for Computing Machinery, 2022,
p. 65±77.

[14] L. Song, Y. Chi, L. Guo, and J. Cong, ªSerpens: A high
bandwidth memory based accelerator for general-purpose
sparse matrix-vector multiplication,º in Proceedings of the
59th Annual Design Automation Conference (DAC), 2022.

[15] Y. Hu, Y. Du, E. Ustun, and Z. Zhang, ªGraphLily: Ac-
celerating graph linear algebra on HBM-equipped FPGAs,º
in 2021 IEEE/ACM International Conference On Computer
Aided Design (ICCAD), 2021, pp. 1±9.

[16] L. Guo, J. Lau, Z. Ruan, P. Wei, and J. Cong, ªHard-
ware acceleration of long read pairwise overlapping in
genome sequencing: A race between FPGA and GPU,º in
2019 IEEE 27th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM). IEEE,
2019, pp. 127±135.

[17] Y. Chi, L. Guo, and J. Cong, ªAccelerating SSSP for power-
law graphs,º in Proceedings of the 2022 ACM/SIGDA Inter-
national Symposium on Field-Programmable Gate Arrays,
2022, pp. 190±200.

[18] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Con-
stantinides, J. Demme, H. Esmaeilzadeh, J. Fowers, G. P.
Gopal, J. Gray, M. Haselman, S. Hauck, S. Heil, A. Hormati,
J.-Y. Kim, S. Lanka, J. Larus, E. Peterson, S. Pope, A. Smith,
J. Thong, P. Y. Xiao, and D. Burger, ªA reconfigurable
fabric for accelerating large-scale datacenter services,º in
Proceeding of the 41st Annual International Symposium on
Computer Architecuture, ser. ISCA ’14. Piscataway, NJ,
USA: IEEE Press, 2014, pp. 13±24.

[19] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael,
A. Caulfield, T. Massengill, M. Liu, D. Lo, S. Alkalay,
M. Haselman et al., ªServing DNNs in real time at datacenter
scale with project brainwave,º IEEE Micro, vol. 38, no. 2,
pp. 8±20, 2018.

[20] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat,
J. Fowers, M. Haselman, S. Heil, M. Humphrey, P. Kaur, J.-Y.
Kim, D. Lo, T. Massengill, K. Ovtcharov, M. Papamichael,
L. Woods, S. Lanka, D. Chiou, and D. Burger, ªA cloud-scale
acceleration architecture,º in 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO),
2016, pp. 1±13.

[21] A. Sohrabizadeh, C. H. Yu, M. Gao, and J. Cong, ªAutoDSE:
Enabling software programmers to design efficient fpga
accelerators,º ACM Trans. Des. Autom. Electron. Syst.,
vol. 27, no. 4, feb 2022.

[22] W. Qiao, J. Oh, L. Guo, M.-C. F. Chang, and J. Cong, ªFans:
Fpga-accelerated near-storage sorting,º in 2021 IEEE 29th
Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), 2021, pp. 106±114.

[23] M. A. Kinsy, M. Pellauer, and S. Devadas, ªHeracles:
Fully synthesizable parameterized MIPS-based multicore
system,º in 2011 21st International Conference on Field
Programmable Logic and Applications, 2011, pp. 356±362.

[24] C. E. LaForest and J. G. Steffan, ªOCTAVO: An FPGA-
centric processor family,º in Proceedings of the ACM/SIGDA
International Symposium on Field Programmable Gate
Arrays, ser. FPGA ’12. New York, NY, USA: Association
for Computing Machinery, 2012, p. 219±228.

[25] A. Severance and G. G. Lemieux, ªEmbedded supercomput-
ing in FPGAs with the VectorBlox MXP matrix processor,º
in 2013 International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), 2013, pp.
1±10.

[26] G. Schelle, J. Collins, E. Schuchman, P. Wang, X. Zou,
G. Chinya, R. Plate, T. Mattner, F. Olbrich, P. Hammarlund,
R. Singhal, J. Brayton, S. Steibl, and H. Wang, ªIntel
Nehalem processor core made FPGA synthesizable,º in
Proceedings of the 18th Annual ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, ser. FPGA
’10. New York, NY, USA: Association for Computing
Machinery, 2010, p. 3±12.

[27] J. Kingyens and J. G. Steffan, ªThe potential for a GPU-like
overlay architecture for FPGAs,º International Journal of
Reconfigurable Computing, vol. 2011, 2011.

[28] M. Al Kadi, B. Janssen, and M. Huebner, ªFGPU: An
SIMT-architecture for FPGAs,º in Proceedings of the
2016 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, ser. FPGA ’16. New York,
NY, USA: Association for Computing Machinery, 2016, p.
254±263.

[29] P. Duarte, P. Tomas, and G. Falcao, ªSCRATCH: An
end-to-end application-aware soft-GPGPU architecture and
trimming tool,º in Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-
50 ’17. New York, NY, USA: Association for Computing
Machinery, 2017, p. 165±177.

[30] K. Andryc, M. Merchant, and R. Tessier, ªFlexGrip: A soft
GP-GPU for FPGAs,º in 2013 International Conference on
Field-Programmable Technology (FPT), 2013, pp. 230±237.

[31] K. Paul, C. Dash, and M. S. Moghaddam, ªreMORPH: a
runtime reconfigurable architecture,º in 2012 15th Euromicro
Conference on Digital System Design. IEEE, 2012, pp.
26±33.

[32] R. Ben Abdelhamid, Y. Yamaguchi, and T. Boku, ªMI-
TRACA: A next-gen heterogeneous architecture,º in
2019 IEEE 13th International Symposium on Embedded
Multicore/Many-core Systems-on-Chip (MCSoC), 2019, pp.
304±311.

[33] R. B. Abdelhamid, Y. Yamaguchi, and T. Boku, ªA highly-
efficient and tightly-connected many-core overlay architec-
ture,º IEEE Access, vol. 9, pp. 65 277±65 292, 2021.

[34] S. A. Chin, K. P. Niu, M. Walker, S. Yin, A. Mertens, J. Lee,
and J. H. Anderson, ªArchitecture exploration of standard-cell
and FPGA-overlay CGRAs using the open-source CGRA-
ME framework,º in Proceedings of the 2018 International
Symposium on Physical Design, ser. ISPD ’18. New York,
NY, USA: Association for Computing Machinery, 2018, p.
48±55.

[35] R. Ma, J.-C. Hsu, T. Tan, E. Nurvitadhi, D. Sheffield,
R. Pelt, M. Langhammer, J. Sim, A. Dasu, and D. Chiou,
ªSpecializing FGPU for persistent deep learning,º in 2019
29th International Conference on Field Programmable Logic
and Applications (FPL), 2019, pp. 326±333.

[36] A. Amid, D. Biancolin, A. Gonzalez, D. Grubb,
S. Karandikar, H. Liew, A. Magyar, H. Mao, A. Ou,
N. Pemberton et al., ªChipyard: Integrated design, simulation,
and implementation framework for custom SoCs,º IEEE
Micro, vol. 40, no. 4, pp. 10±21, 2020.

[37] J. Balkind, M. McKeown, Y. Fu, T. Nguyen, Y. Zhou,
A. Lavrov, M. Shahrad, A. Fuchs, S. Payne, X. Liang,
M. Matl, and D. Wentzlaff, ªOpenpiton: An open source
manycore research framework,º in Proceedings of the Twenty-
First International Conference on Architectural Support
for Programming Languages and Operating Systems, ser.
ASPLOS ’16. New York, NY, USA: ACM, 2016, pp. 217±
232.

[38] J. Weng, S. Liu, V. Dadu, Z. Wang, P. Shah, and T. Nowatzki,
ªDSAGEN: Synthesizing programmable spatial accelerators,º
in 2020 ACM/IEEE 47th Annual International Symposium
on Computer Architecture (ISCA), 2020, pp. 268±281.

[39] C. Tan, C. Xie, A. Li, K. J. Barker, and A. Tumeo, ªAurora:
Automated refinement of coarse-grained reconfigurable ac-
celerators,º in 2021 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2021, pp. 1388±
1393.

[40] M. Willsey, V. T. Lee, A. Cheung, R. BodÂık, and L. Ceze,
ªIterative search for reconfigurable accelerator blocks with
a compiler in the loop,º IEEE TCAD, vol. 38, no. 3, pp.
407±418, 2018.

[41] T. K. Bandara, D. Wijerathne, T. Mitra, and L.-S. Peh,
ªREVAMP: A systematic framework for heterogeneous CGRA
realization,º in Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ser. ASPLOS 2022. New
York, NY, USA: Association for Computing Machinery, 2022,
p. 918±932.

[42] J. Cong, H. Huang, C. Ma, B. Xiao, and P. Zhou, ªA
fully pipelined and dynamically composable architecture
of CGRA,º in 22th FCCM, 2014.

[43] C. Tan, T. Tambe, J. J. Zhang, B. Fang, T. Geng, G.-Y. Wei,
D. Brooks, A. Tumeo, G. Gopalakrishnan, and A. Li, ªASAP:
automatic synthesis of area-efficient and precision-aware
CGRAs,º in Proceedings of the 36th ACM International
Conference on Supercomputing, ser. ICS ’22, 2022.

[44] K. Koul, J. Melchert, K. Sreedhar, L. Truong, G. Nyengele,
K. Zhang, Q. Liu, J. Setter, P.-H. Chen, Y. Mei, M. Strange,
R. Daly, C. Donovick, A. Carsello, T. Kong, K. Feng,
D. Huff, A. Nayak, R. Setaluri, J. Thomas, N. Bhagdikar,
D. Durst, Z. Myers, N. Tsiskaridze, S. Richardson, R. Bahr,
K. Fatahalian, P. Hanrahan, C. Barrett, M. Horowitz, C. Torng,
F. Kjolstad, and P. Raina, ªAha: An agile approach to the
design of coarse-grained reconfigurable accelerators and
compilers,º ACM Trans. Embed. Comput. Syst., apr 2022.

[45] R. Bahr, C. Barrett, N. Bhagdikar, A. Carsello, R. Daly,
C. Donovick, D. Durst, K. Fatahalian, K. Feng, P. Hanrahan,
T. Hofstee, M. Horowitz, D. Huff, F. Kjolstad, T. Kong,
Q. Liu, M. Mann, J. Melchert, A. Nayak, A. Niemetz,
G. Nyengele, P. Raina, S. Richardson, R. Setaluri, J. Setter,
K. Sreedhar, M. Strange, J. Thomas, C. Torng, L. Truong,
N. Tsiskaridze, and K. Zhang, ªCreating an agile hardware
design flow,º in 2020 57th ACM/IEEE Design Automation
Conference (DAC), 2020, pp. 1±6.

[46] A. Sharifian, R. Hojabr, N. Rahimi, S. Liu, A. Guha,
T. Nowatzki, and A. Shriraman, ªµir -an intermediate
representation for transforming and optimizing the microar-
chitecture of application accelerators,º in 52nd MICRO, 2019.

[47] T. Nowatzki, V. Gangadhar, N. Ardalani, and K. Sankar-
alingam, ªStream-dataflow acceleration,º in 44th ISCA, 2017.

[48] H. Kwon, A. Samajdar, and T. Krishna, ªMAERI: enabling
flexible dataflow mapping over dnn accelerators via recon-
figurable interconnects,º SIGPLAN Not., vol. 53, no. 2, pp.
461±475, Mar. 2018.

[49] R. Prabhakar, Y. Zhang, D. Koeplinger, M. Feldman, T. Zhao,
S. Hadjis, A. Pedram, C. Kozyrakis, and K. Olukotun,
ªPlasticine: A reconfigurable architecture for parallel paterns,º
in 44th ISCA, 2017.

[50] V. Dadu, J. Weng, S. Liu, and T. Nowatzki, ªTowards general
purpose acceleration by exploiting common data-dependence
forms,º in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO
’52. New York, NY, USA: Association for Computing
Machinery, 2019, p. 924±939.

[51] Z. Wang and T. Nowatzki, ªStream-based memory access
specialization for general purpose processors,º in 2019
ACM/IEEE 46th Annual International Symposium on Com-
puter Architecture (ISCA), 2019, pp. 736±749.

[52] Z. Wang, C. Liu, and T. Nowatzki, ªInfinity Stream: enabling
transparent and automated in-memory computing,º IEEE
Computer Architecture Letters, 2022.

[53] Z. Wang, J. Weng, J. Lowe-Power, J. Gaur, and T. Nowatzki,
ªStream Floating: Enabling proactive and decentralized cache
optimizations,º in 2021 IEEE International Symposium on
High-Performance Computer Architecture (HPCA), 2021, pp.
640±653.

[54] Z. Wang, J. Weng, S. Liu, and T. Nowatzki, ªNear-Stream
Computing: General and transparent near-cache acceleration,º
in 2022 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), 2022, pp. 331±345.

[55] V. Dadu, S. Liu, and T. Nowatzki, ªPolyGraph: Exposing
the value of flexibility for graph processing accelerators,º in
2021 ACM/IEEE 48th Annual International Symposium on
Computer Architecture (ISCA), 2021, pp. 595±608.

[56] J. Weng, S. Liu, Z. Wang, V. Dadu, and T. Nowatzki, ªA
hybrid systolic-dataflow architecture for inductive matrix
algorithms,º in HPCA, 2019.

[57] J. Weng, S. Liu, D. Kupsh, and T. Nowatzki, ªUnifying
spatial accelerator compilation with idiomatic and modular
transformations,º IEEE Micro, pp. 1±12, 2022.

[58] V. Govindaraju, T. Nowatzki, and K. Sankaralingam, ªBreak-
ing SIMD shackles with an exposed flexible microarchitecture
and the access execute PDG,º in Proceedings of the 22nd
International Conference on Parallel Architectures and
Compilation Techniques, ser. PACT ’13. Piscataway, NJ,
USA: IEEE Press, 2013, pp. 341±352.

[59] T. Nowatzki, N. Ardalani, K. Sankaralingam, and J. Weng,
ªHybrid optimization/heuristic instruction scheduling for
programmable accelerator codesign,º in 27th PACT, 2018.

[60] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman,
R. Avižienis, J. Wawrzynek, and K. AsanoviÂc, ªChisel:
Constructing hardware in a Scala embedded language,º in
49th DAC, 2012.

[61] K. AsanoviÂc, R. Avizienis, J. Bachrach, S. Beamer, D. Bian-
colin, C. Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz,
S. Karandikar, B. Keller, D. Kim, J. Koenig, Y. Lee, E. Love,
M. Maas, A. Magyar, H. Mao, M. Moreto, A. Ou, D. A.
Patterson, B. Richards, C. Schmidt, S. Twigg, H. Vo, and
A. Waterman, ªThe rocket chip generator,º EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-
2016-17, Apr 2016.

[62] G. Zhang, K. Zhao, B. Wu, Y. Sun, L. Sun, and F. Liang, ªA
RISC-V based hardware accelerator designed for Yolo object
detection system,º in 2019 IEEE International Conference of
Intelligent Applied Systems on Engineering (ICIASE). IEEE,
2019, pp. 9±11.

[63] H. Cook, W. Terpstra, and Y. Lee, ªDiplomatic design
patterns: A TileLink case study,º in 1st Workshop on
Computer Architecture Research with RISC-V, 2017.

[64] D. W. Anderson, F. J. Sparacio, and R. M. Tomasulo,
ªThe IBM system/360 model 91: machine philosophy and
instruction-handling,º IBM J. Res. Dev., vol. 11, no. 1, pp.
8±24, 1967.

[65] L. Guo, Y. Chi, J. Wang, J. Lau, W. Qiao, E. Ustun,
Z. Zhang, and J. Cong, ªAutoBridge: Coupling coarse-grained
floorplanning and pipelining for high-frequency HLS design
on multi-die FPGAs,º in The 2021 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. FPGA
’21. New York, NY, USA: Association for Computing
Machinery, 2021, p. 81±92.

[66] Q. M. Nguyen and D. Sanchez, ªFifer: Practical acceleration
of irregular applications on reconfigurable architectures,º in
MICRO-54: 54th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, ser. MICRO ’21, 2021.

[67] V. Dadu and T. Nowatzki, ªTaskstream: Accelerating task-
parallel workloads by recovering program structure,º in
Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS ’22, 2022.

[68] V. Dadu, S. Liu, and T. Nowatzki, ªSystematically understand-
ing graph accelerator dimensions and the value of hardware
flexibility,º IEEE Micro, vol. 42, no. 4, pp. 87±96, 2022.

[69] C. Tan, T. Geng, C. Xie, N. B. Agostini, J. Li, A. Li,
K. Barker, and A. Tumeo, ªDynPaC: coarse-grained, dynamic,
and partially reconfigurable array for streaming applications,º
in 2021 IEEE 39th International Conference on Computer
Design (ICCD), 2021.

[70] E. Mirsky, A. DeHon et al., ªMATRIX: a reconfigurable
computing architecture with configurable instruction distri-
bution and deployable resources.º in FCCM, vol. 96, 1996,
pp. 17±19.

[71] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauw-
ereins, ªADRES: an architecture with tightly coupled vliw
processor and coarse-grained reconfigurable matrix,º in FPL,
2003.

[72] A. Parashar, M. Pellauer, M. Adler, B. Ahsan, N. Crago,
D. Lustig, V. Pavlov, A. Zhai, M. Gambhir, A. Jaleel,
R. Allmon, R. Rayess, S. Maresh, and J. Emer, ªTriggered
Instructions: a control paradigm for spatially-programmed
architectures,º in 40th ISCA, 2013.

[73] V. Dadu, J. Weng, S. Liu, and T. Nowatzki, ªTowards general-
purpose acceleration: Finding structure in irregularity,º IEEE
Micro, vol. 40, no. 3, pp. 37±46, 2020.

[74] G. Gobieski, S. Ghosh, M. Heule, T. Mowry, T. Nowatzki,
N. Beckmann, and B. Lucia, ªRipTide: a programmable,
energy-minimal dataflow compiler and architecture,º in
MICRO-55: 55th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, 2022.

[75] M. Karunaratne, D. Wijerathne, T. Mitra, and L.-S. Peh,
ª4D-CGRA: introducing branch dimension to spatio-temporal
application mapping on CGRAs,º in 2019 IEEE/ACM Inter-
national Conference on Computer-Aided Design (ICCAD),
2019.

[76] J. Cong, H. Huang, C. Liu, and Y. Zou, ªA reuse-aware
prefetching scheme for scratchpad memory,º in 2011 48th
ACM/EDAC/IEEE Design Automation Conference (DAC),
2011, pp. 960±965.

[77] B. Reagen, R. Adolf, Y. S. Shao, G. Wei, and D. Brooks,
ªMachSuite: benchmarks for accelerator design and cus-
tomized architectures,º in IISWC, Oct 2014.

[78] J. Pu, S. Bell, X. Yang, J. Setter, S. Richardson, J. Ragan-
Kelley, and M. Horowitz, ªProgramming heterogeneous
systems from an image processing DSL,º ACM Transactions
on Architecture and Code Optimization, vol. 14, no. 3, p.
1±25, Aug 2017.

[79] K. Sankaralingam, T. Nowatzki, V. Gangadhar, P. Shah,
M. Davies, W. Galliher, Z. Guo, J. Khare, D. Vijay, P. Pala-
muttam, M. Punde, A. Tan, V. Thiruvengadam, R. Wang, and
S. Xu, ªThe Mozart reuse exposed dataflow processor for AI
and beyond: Industrial product,º in Proceedings of the 49th
Annual International Symposium on Computer Architecture,
ser. ISCA ’22, 2022, p. 978±992.

[80] J. Weng, A. Jain, J. Wang, L. Wang, Y. Wang, and
T. Nowatzki, ªUNIT: Unifying tensorized instruction com-
pilation,º in 2021 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO), 2021, pp. 77±89.

[81] X. Li and D. L. Maskell, ªTime-multiplexed FPGA overlay
architectures: A survey,º ACM Trans. Des. Autom. Electron.
Syst., vol. 24, no. 5, jul 2019.

[82] ªMicroBlaze processor reference guide.º

[83] ªNios II processor reference guide.º

[84] P. Yiannacouras, J. Rose, and J. G. Steffan, ªThe microarchi-
tecture of FPGA-based soft processors,º in Proceedings of the
2005 International Conference on Compilers, Architectures
and Synthesis for Embedded Systems, ser. CASES ’05. New
York, NY, USA: Association for Computing Machinery, 2005,
p. 202±212.

[85] H. Y. Cheah, S. A. Fahmy, and D. L. Maskell, ªiDEA: a DSP
block based FPGA soft processor,º in 2012 International
Conference on Field-Programmable Technology, 2012, pp.
151±158.

[86] H. Y. Cheah, F. Brosser, S. A. Fahmy, and D. L. Maskell,
ªThe IDEA DSP block-based soft processor for FPGAs,º
ACM Trans. Reconfigurable Technol. Syst., vol. 7, no. 3, Sep.
2014.

[87] Y. Bin and K. Ryoo, ªOpenrisc core-based soc platform de-
sign and verification,º in ITC-CSCC: International Technical
Conference on Circuits Systems, Computers and Communi-
cations, 2007, pp. 276±277.

[88] J. Gaisler and M. IsomÈaki, ªLeon3 gr-xc3s-1500 template
design,º Copyright Gaisler Research, pp. 1±153, 2006.

[89] R. Dimond, O. Mencer, and W. Luk, ªCUSTARD - a
customisable threaded FPGA soft processor and tools,º in
International Conference on Field Programmable Logic and
Applications, 2005., 2005, pp. 1±6.

[90] R. Moussali, N. Ghanem, and M. A. R. Saghir, ªSupport-
ing multithreading in configurable soft processor cores,º
in Proceedings of the 2007 International Conference on
Compilers, Architecture, and Synthesis for Embedded Systems,
ser. CASES ’07. New York, NY, USA: Association for
Computing Machinery, 2007, p. 155±159.

[91] C. Kumar H B, P. Ravi, G. Modi, and N. Kapre, ª120-Core
MicroAptiv MIPS overlay for the Terasic DE5-NET FPGA
board,º in Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. FPGA
’17. New York, NY, USA: Association for Computing
Machinery, 2017, p. 141±146.

[92] C. E. Laforest and J. H. Anderson, ªMicroarchitectural
comparison of the MXP and Octavo soft-processor FPGA
overlays,º ACM Trans. Reconfigurable Technol. Syst., vol. 10,
no. 3, May 2017.

[93] R. Rashid, J. G. Steffan, and V. Betz, ªComparing per-
formance, productivity and scalability of the TILT overlay
processor to OpenCL HLS,º in 2014 International Conference
on Field-Programmable Technology (FPT), 2014, pp. 20±27.

[94] R. Balasubramanian, V. Gangadhar, Z. Guo, C.-H. Ho,
C. Joseph, J. Menon, M. P. Drumond, R. Paul, S. Prasad,
P. Valathol, and K. Sankaralingam, ªEnabling GP-GPU low-
level hardware explorations with MIAOW: An open-source
RTL implementation of a GP-GPU,º ACM Trans. Archit.
Code Optim., vol. 12, no. 2, Jun. 2015.

[95] S. Shukla, N. W. Bergmann, and J. Becker, ªQUKU: A coarse
grained paradigm for FPGAs,º in Dagstuhl Seminar Proceed-
ings. Schloss Dagstuhl-Leibniz-Zentrum fÈur Informatik,
2006.

[96] D. Capalija and T. S. Abdelrahman, ªTowards synthesis-free
JIT compilation to commodity FPGAs,º in 2011 IEEE 19th
Annual International Symposium on Field-Programmable
Custom Computing Machines. IEEE, 2011, pp. 202±205.

[97] J. Benson, R. Cofell, C. Frericks, C.-H. Ho, V. Govindaraju,
T. Nowatzki, and K. Sankaralingam, ªDesign, integration
and implementation of the DySER hardware accelerator into
OpenSPARC,º in IEEE International Symposium on High-
Performance Comp Architecture, 2012, pp. 1±12.

[98] C.-H. Hoy, V. Govindarajuz, T. Nowatzki, R. Nagaraju,
Z. Marzec, P. Agarwal, C. Frericks, R. Cofell, and K. Sankar-
alingam, ªPerformance evaluation of a DySER FPGA pro-
totype system spanning the compiler, microarchitecture,
and hardware implementation,º in 2015 IEEE International
Symposium on Performance Analysis of Systems and Software
(ISPASS). IEEE, 2015, pp. 203±214.

[99] A. Brant and G. G. Lemieux, ªZUMA: An open FPGA over-
lay architecture,º in 2012 IEEE 20th International Symposium
on Field-Programmable Custom Computing Machines, 2012,
pp. 93±96.

[100] F. Garzia, W. Hussain, and J. Nurmi, ªCREMA: A coarse-
grain reconfigurable array with mapping adaptiveness,º in
2009 International Conference on Field Programmable Logic
and Applications. IEEE, 2009, pp. 708±712.

[101] W. Hussain, T. Ahonen, and J. Nurmi, ªEffects of scaling
a coarse-grain reconfigurable array on power and energy
consumption,º in 2012 International Symposium on System
on Chip (SoC). IEEE, 2012, pp. 1±5.

[102] C. Liu, H.-C. Ng, and H. K.-H. So, ªAutomatic nested loop
acceleration on FPGAs using soft CGRA overlay,º arXiv
preprint arXiv:1509.00042, 2015.

[103] A. K. Jain, D. L. Maskell, and S. A. Fahmy, ªAre coarse-
grained overlays ready for general purpose application
acceleration on FPGAs?º in 2016 IEEE 14th Intl Conf on
Dependable, Autonomic and Secure Computing, 14th Intl
Conf on Pervasive Intelligence and Computing, 2nd Intl Conf
on Big Data Intelligence and Computing and Cyber Science
and Technology Congress (DASC/PiCom/DataCom/Cyber-
SciTech). IEEE, 2016, pp. 586±593.

[104] S. A. Chin, N. Sakamoto, A. Rui, J. Zhao, J. H. Kim, Y. Hara-
Azumi, and J. Anderson, ªCGRA-ME: a unified framework
for CGRA modelling and exploration,º in 28th ASAP, July
2017.

[105] K. Niu and J. H. Anderson, ªCompact area and performance
modelling for CGRA architecture evaluation,º in FPT, Dec
2018.

[106] S. A. Chin and J. H. Anderson, ªAn architecture-agnostic
integer linear programming approach to CGRA mapping,º in
55th DAC, 2018.

[107] M. J. Walker and J. H. Anderson, ªGeneric connectivity-
based CGRA mapping via integer linear programming,º in
27th FCCM, 2019.

[108] J. Melchert, K. Feng, C. Donovick, R. Daly, C. W. Barrett,
M. Horowitz, P. Hanrahan, and P. Raina, ªAutomated design
space exploration of CGRA processing element architectures
using frequent subgraph analysis,º CoRR, 2021.

[109] F. Tombs, A. Mellat, and N. Kapre, ªMocarabe: High-
performance time-multiplexed overlays for FPGAs,º in
2021 IEEE 29th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2021,
pp. 115±123.

[110] R. Nigam, S. Atapattu, S. Thomas, Z. Li, T. Bauer, Y. Ye,
A. Koti, A. Sampson, and Z. Zhang, ªPredictable accelerator
design with time-sensitive affine types,º in Proceedings of the
41st ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI 2020. New York,
NY, USA: Association for Computing Machinery, 2020, p.
393±407.

[111] L. Vega, J. McMahan, A. Sampson, D. Grossman, and
L. Ceze, ªReticle: A virtual machine for programming
modern FPGAs,º in Proceedings of the 42nd ACM SIGPLAN
International Conference on Programming Language Design
and Implementation, ser. PLDI 2021. New York, NY, USA:
Association for Computing Machinery, 2021, p. 756±771.

[112] D. Koeplinger, M. Feldman, R. Prabhakar, Y. Zhang, S. Had-
jis, R. Fiszel, T. Zhao, L. Nardi, A. Pedram, C. Kozyrakis,
and K. Olukotun, ªSpatial: A language and compiler for
application accelerators,º in PLDI, 2018.

[113] E. Schkufza, M. Wei, and C. J. Rossbach, ªJust-in-time
compilation for verilog: A new technique for improving
the FPGA programming experience,º in Proceedings of the
Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems,
ser. ASPLOS ’19. New York, NY, USA: Association for
Computing Machinery, 2019, p. 271±286.

[114] A. Becker, S. Sirowy, and F. Vahid, ªJust-in-time compilation
for FPGA processor cores,º in 2011 Electronic System Level
Synthesis Conference (ESLsyn), 2011, pp. 1±6.

[115] D. Park, Y. Xiao, N. Magnezi, and A. DeHon, ªCase for
fast FPGA compilation using partial reconfiguration,º in 28th
International Conference on Field Programmable Logic and
Applications, FPL 2018, Dublin, Ireland, August 27-31, 2018.
IEEE Computer Society, 2018, pp. 235±238.

[116] Y. Xiao, E. Micallef, A. Butt, M. Hofmann, M. Alston,
M. Goldsmith, A. Merczynski-Hait, and A. DeHon, ªPLD:
fast FPGA compilation to make reconfigurable acceleration
compatible with modern incremental refinement software
development,º in ASPLOS ’22: 27th ACM International Con-
ference on Architectural Support for Programming Languages
and Operating Systems, Lausanne, Switzerland, 28 February
2022 - 4 March 2022, B. Falsafi, M. Ferdman, S. Lu, and
T. F. Wenisch, Eds. ACM, 2022, pp. 933±945.

[117] L. Guo, P. Maidee, Y. Zhou, C. Lavin, J. Wang, Y. Chi,
W. Qiao, A. Kaviani, Z. Zhang, and J. Cong, ªRapidStream:
parallel physical implementation of FPGA HLS designs,º
in Proceedings of the 2022 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, 2022, pp.
1±12.

[118] L. Guo, Y. Chi, J. Wang, J. Lau, W. Qiao, E. Ustun,
Z. Zhang, and J. Cong, ªAutobridge: Coupling coarse-grained
floorplanning and pipelining for high-frequency HLS design
on multi-die FPGAs,º in The 2021 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, 2021, pp.
81±92.

[119] Y. Chi, L. Guo, J. Lau, Y.-k. Choi, J. Wang, and J. Cong,
ªExtending high-level synthesis for task-parallel programs,º
in 2021 IEEE 29th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM). IEEE,
2021, pp. 204±213.

[120] H. Zheng, K. Wang, and A. Louri, ªAdapt-NoC: A flex-
ible network-on-chip design for heterogeneous manycore
architectures,º in 2021 IEEE International Symposium on
High-Performance Computer Architecture (HPCA), 2021, pp.
723±735.

[121] J. Cong, M. Gill, Y. Hao, G. Reinman, and B. Yuan, ªOn-chip
interconnection network for accelerator-rich architectures,º
in Proceedings of the 52nd Annual Design Automation
Conference, ser. DAC ’15. New York, NY, USA: Association
for Computing Machinery, 2015.

[122] J. Yin, P. Zhou, S. S. Sapatnekar, and A. Zhai, ªEnergy-
efficient time-division multiplexed hybrid-switched NoC
for heterogeneous multicore systems,º in 2014 IEEE 28th
International Parallel and Distributed Processing Symposium,
May 2014, pp. 293±303.

[123] T. A. Khan, D. Zhang, A. Sriraman, J. Devietti, G. Pokam,
H. Litz, and B. Kasikci, ªRipple: Profile-guided instruction
cache replacement for data center applications,º in 2021

ACM/IEEE 48th Annual International Symposium on Com-
puter Architecture (ISCA). IEEE, 2021, pp. 734±747.

[124] J. Zuckerman, D. Giri, J. Kwon, P. Mantovani, and L. P.
Carloni, ªCohmeleon: Learning-based orchestration of ac-
celerator coherence in heterogeneous socs,º in MICRO-
54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture, 2021, pp. 350±365.

[125] C. Giannoula, N. Vijaykumar, N. Papadopoulou,
V. Karakostas, I. Fernandez, J. GÂomez-Luna, L. Orosa,
N. Koziris, G. Goumas, and O. Mutlu, ªSyncron:
Efficient synchronization support for near-data-processing
architectures,º in 2021 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). IEEE,
2021, pp. 263±276.

[126] M. D. Hill and V. J. Reddi, ªAccelerator-level parallelism,º
Communications of the ACM, vol. 64, no. 12, pp. 36±38,
2021.

[127] M. Huzaifa, R. Desai, S. Grayson, X. Jiang, Y. Jing, J. Lee,
F. Lu, Y. Pang, J. Ravichandran, F. Sinclair, B. Tian, H. Yuan,
J. Zhang, and S. V. Adve, ªILLIXR: enabling end-to-end
extended reality research,º in IEEE International Symposium
on Workload Characterization, IISWC 2021, Storrs, CT, USA,
November 7-9, 2021. IEEE, 2021, pp. 24±38.

[128] I. Karageorgos, K. Sriram, J. VeselÂy, M. Wu, M. Powell,
D. Borton, R. Manohar, and A. Bhattacharjee, ªHardware-
software co-design for brain-computer interfaces,º in 2020
ACM/IEEE 47th Annual International Symposium on Com-
puter Architecture (ISCA), 2020, pp. 391±404.

	Introduction
	Background: Spatial Architecture Synthesis
	Decoupled-Spatial Execution
	Spatial Compilers and Pragma Hints
	Automated Spatial Accelerator Synthesis

	OverGen Overview & Tradeoffs
	Overview
	Overlay Design Space
	Key tradeoffs

	Spatial Memory Exploration
	Motivating Spatial Memory DSE
	Software Support for Spatial Memory

	Unified System & Accelerator Design Space Exploration
	Overlay Design Exploration
	Schedule Preserving Transformations
	Performance Model with Spatial Memory
	ML-based FPGA resource model

	OverGen Microarchitecture & Implementation
	Implementation Overview
	Stream Dispatcher Microarchitecture
	Stream Engine Microarchitecture
	OverGen Implementation
	Limitations & Future works

	Methodology
	Evaluation
	Related work
	Conclusion
	References

