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Resembled Tactile Feedback for Object
Recognition Using a Prosthetic Hand

Luis Vargas
Derek Kamper

, He Huang

Abstract—Tactile feedback in the hand is essential for interaction
with objects. Here, we evaluated how artificial tactile sensation
affected the recognition of object properties using a myoelectrically
controlled prosthetic hand. Electromyogram signals from the flexor
and extensor finger muscles were used to continuously control
either prosthetic joint velocity or position. Participants grasped
objects of varying shape or size using the prosthetic hand. Tactile
feedback was evoked by transcutaneous nerve stimulation along the
participant’s upper arm and modulated based on the prosthetic-
object contact force. Multi-channel electrical stimulation targeted
the median and ulnar nerve bundles to produce resembled tactile
sensations at distinct hand regions. The results showed that partic-
ipants could gauge the onset timing of tactile feedback to discern
object shape and size. We also found that the position-controller
led to a greater recognition accuracy of object size compared
with velocity-control, potentially due to supplemental joint position
information from muscle activation level. Our findings demonstrate
that non-invasive tactile feedback can enable effective object shape
and size recognition during prosthetic control. The evaluation of
tactile feedback across myoelectric controllers can help understand
the interplay between sensory and motor pathways involved in the
control of assistive devices.

Index Terms—Tactile feedback, prosthetic control, object
recognition, transcutaneous nerve stimulation.

1. INTRODUCTION

OMATOSENSORY feedback works in unison with motor
S function to enable us to perform various daily tasks [1].
Following an amputation, individuals lose both motor and sen-
sory functions, thus limiting their independence and quality of
life. In recent years, prosthetic hands have advanced to a degree
where the mechatronic design can nearly replicate human hand
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motions [2]. Although these current devices have the potential
to alleviate motor deficits in arm amputees, intuitive control of
prostheses is still limited, in part due to the lack of sensory
information [3]. Tactile feedback from our fingertips helps con-
vey contact force magnitude and direction. Without tactile cues,
individuals with an amputation must rely on auditory or visual
cues, leading to cumbersome prosthetic control [4]. In addition,
prior work suggests that visual feedback alone is not sufficient to
compensate for the loss of tactile feedback, and this can lead to
low user confidence [5]. As a result, the lack of somatosensory
feedback is deemed one of the primary reasons for prosthesis
abandonment [6].

Natural biological tactile percepts are evoked from
mechanoreceptors in our skin [7]. Various mechanoreceptors
work together to convey intricate percepts based on the stimulus
frequency, location, and intensity [8]. For individuals with an
amputation, artificial sensations can be evoked through invasive
and non-invasive platforms to resemble somatosensory cues,
allowing users to associate stimuli to real-time finger force or
joint angle information [9], [10]. Although different stimula-
tion approaches provide users with informative feedback, these
approaches can be limited based on the type of sensation. For
instance, non-somatotopic percepts may impose greater cogni-
tive burden during stimuli interpretation, due to the dissimilarity
in location and/or modality [11]. Somatotopic percepts can po-
tentially improve sensation intensity/location discrimination ac-
curacy [12]. Unfortunately, somatotopic percepts are primarily
elicited via invasive stimulation of peripheral nerves [13], which
can limit wide applications. Alternatively, somatotopic percepts
can be elicited non-invasively by activating sensory axons in the
nerve trunk via transcutaneous nerve stimulation (TNS) [14],
[15]. Although non-invasive nerve stimulation shows promise,
its efficacy across different myoelectric controllers has not been
fully investigated.

To enable effective closed-loop prosthetic control, it is vital
that we recognize the complex relations between the sensory
and motor components of prosthetic control. Action-perception
coupling during prosthetic use can affect sensory feedback
integration, potentially impacting overall system functionality
[16]. Continuous myoelectric controllers typically map the
level of muscle activation to the velocity or position of the
prosthetic joints. Contradictory results have been reported when
comparing performance outcomes during velocity and position
control [17], [18]. One study suggested that velocity control
may be more efficient for operating the prosthesis; however,
position control allows greater fine manipulation of objects
[19]. As a result, it is essential to discern how non-invasive
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fingertip tactile feedback and different myoelectric controllers
affect the perceptibility of an evoked sensation; this has only
been explored in a few studies [9], [10].

Accordingly, the purpose of the current study was to eval-
uate how artificial tactile sensation affected the recognition
of object properties when the prosthetic hand was controlled
via two distinct myoelectric controllers. Able-bodied subjects
controlled a prosthetic hand using position or velocity control.
The electromyogram (EMG) signals from flexor/extensor hand
muscles were mapped to desired prosthetic joint positions or
velocities. During prosthetic control, prosthetic fingertip forces
modulated tactile percepts to discern the shape or size of the
grasped objects. Tactile feedback was elicited by activating
axons in the median/ulnar nerves via an electrode grid placed
on the upper arm. As electrical stimulation was sent to differ-
ent electrode pairs, different axons were recruited, producing
different localized hand sensations [20]. Prior work showed
that shape recognition via two independently modulated hand
sensations through two channels of stimulation in open-loop
configurations [21]; however, it has yet to be determined whether
the information can be utilized for object recognitions during
myoelectric control of a prosthetic hand. In addition, prior
work has shown that size recognition can be performed with
multi-modal tactile and proprioceptive cues [10]. Earlier work
showed that, with position control, users can control prosthetic
finger positions in a reasonable accuracy without vibrotactile
feedback, because users can use the intrinsic proprioceptive
cues when muscle activation levels are directly associated to
the prosthetic joint angle [10], [18], [22]. We hypothesized that,
compared with velocity control, position control would lead to
higher recognition accuracy, because a direct mapping of muscle
activation level to joint position could allow to gauge the joint
angle, which could benefit object recognition when paired with
tactile feedback. Overall, this non-invasive somatotopic tactile
feedback approach allows for the assessment of different effects
of myoelectric controllers on object recognition.

II. MATERIALS AND METHODS

A. PFarticipants

Eight able-bodied participants (3 Female, 24-38 years of age)
were recruited for this study. All participants gave informed con-
sent via protocols approved by the Institutional Review Board
of the University of North Carolina at Chapel Hill (Approval#:
16-1852). Participants had no prior experience with this sensory
feedback approach or controlling a prosthetic hand.

B. Experimental Setup

Each participant was seated in front of a table with their right
arm placed atop it. The medial portion of their upper arm was
cleaned using alcohol pads in preparation for the placement
of the stimulation grid. The 2 x 8 grid, consisting of 1-cm
diameter Ag/AgCl gel-based electrodes, was used to elicit sen-
sory percepts via TNS. This grid was positioned just below the
short head of the biceps brachii (Fig. 1), which allowed the best
transcutaneous access to the median and ulnar nerves. Through
the selection of distinct electrode pairs, electrical stimulation
created unique electric fields that activated different groups of
sensory axons. As a result, haptic sensations at distinct hand
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Fig. 1. The placement of the 2x8 stimulation grid and the EMG channels along
the participant’s arm is depicted (a). Prosthetic movement was monitored and
controlled using the EMG recordings and finger joint angles via a velocity or
position controller (b). Fingertip forces were used to close the loop providing
users with haptic feedback. Graded tactile sensations along the hand were evoked
by altering the current amplitude of the delivered biphasic stimulation train (d)
Based on the prosthetic’s recorded index and middle finger forces (c).

regions could be evoked [20]. A plastic vice placed around the
upper arm applied mild inward pressure to stabilize electrode-
skin contact. Stimulation current delivered to a single electrode
pair can evoke tactile sensation along an individual’s hand.
Prior work has also shown that stimulating two electrode pairs
concurrently (dual-channel stimulation) can elicit more com-
plex resembled sensation regions from individual stimulation
locations [21], [23]. Single or dual-channel stimulation was
used to elicit complex graded fingertip tactile percepts based
on real-time prosthetic grasp forces.

A custom MATLAB script (v2017b, MathWorks, Inc.) con-
trolled the stimulation patterns and electrode pairs. The electrode
pair selection was executed using a switch matrix (Agilent Tech-
nologies). For each stimulation channel, the switch matrix linked
the cathode and anode of an electrical stimulator (STG4008,
Multichannel System) to an electrode pair. The stimulator de-
livered biphasic, charge-balanced, square-wave currents (Fig.
1(d)) using a constant frequency of 150 Hz and pulse width
of 200 us [24]. A single electrode pair was used for object
size detection, while two non-overlapping electrode pairs (i.e.,
dual channel) were used for shape recognition. A 3.33-ms delay
between the two channels was implemented to minimize electric
field interference during shape recognition [23].

Stimulation amplitude was altered in real-time based on the
fingertip forces from the i-limb prosthetic hand (Ossur). The
prosthetic index and middle fingertip forces were recorded using
force sensitive resistors (FSR) positioned on the corresponding
prosthetic fingertip. Index finger forces were used during
both single and dual channel stimulation, while middle
finger forces were only used during dual-channel stimulation. A
participant-specific and electrode pair-specific sigmoid function
was used to transform each fingertip force to a designated
stimulation amplitude. The function for each pair was built using
an allowable stimulation range, minimum and maximum force,
and steepness value [15]. The stimulation range of each pair
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TABLE I
ELECTRODE PAIRS AND SENSATIONS ELICITED FOR EACH PARTICIPANT

. Evoked Sensation | Electrode
Prosthetic . ; . Sensory
Subject Finger Reg.lon‘ (L Inde.x, Pair Threshold - Just
M: Middle, R: (Cathode
# (In_dex or Ring, P: Pinky, _ Below Motor
Middle) T: Thumb) Anode) Threshold (mA)
| Index LM&R 3-5 32-4.1
Middle P 4-6 33-38
2 Index &M 13-15 1.3-1.8
Middle R 10-12 1.6-2.1
3 Index [1&T 2-4 26-35
Middle M &R 6-15 26-37
4 Index 1&M 4-6 29-4.6
Middle M &R 13-15 3.0-39
5 Index &M 3-7 35-49
Middle R &P 10-12 33-43
6 Index 1 6-13 1.6-2.2
Middle M &R 5-7 23-3.0
7 Index &M 3-5 34-4.0
Middle R 4-6 3.0-35
3 Index LM&T 5-12 5.0-6.7
Middle R &P 4-14 53-8.6

was bounded by the Sensory-Threshold and Just-Below-Motor-
Threshold. The Sensory-Threshold is defined as the stimulation
amplitude that initially evoked a perceivable tactile sensation
along the participant’s finger(s). The Motor-Threshold is the
stimulation amplitude that first induces finger motion and was
initially identified via experimenter’s visual detection of evoked
finger twitch. For the process, the stimulation amplitude was
increased using a step of 0.1 mA. This process was repeated three
times, and the outcomes were then averaged as the thresholds.
For the upper limit, an amplitude approximately 0.2 to 0.3 mA
below the Motor-Threshold was used to avoid muscle activation
(Just-Below-Motor-Threshold). Using these two thresholds, the
sigmoid function was created using the following function:

( — (I]V[am _IM’L’I’L)
1+exp(—k » (F — Haaz t Fuin))

where I, Inax, and Iy represent the actual current,
Just-Below-Motor-Threshold, and Sensory  Threshold,
respectively. Steepness, actual force, maximum force, and
minimum force were represented by k, F, Fyrax, and Fygin,
respectively. To account for potential force sensor drift, the
minimum force was set to 0.5 N, ensuring that stimulation was
not evoked prior to object contact. Prior to the experiment,
the sigmoid functions were tested by applying pressure to the
prosthetic’s fingertip sensors to ensure that the lower values
evoked perceivable sensations, while the upper values did
not evoke unintended muscular responses identified via EMG
signals. If either value was inadequate, the stimulation range was
altered, and the test was completed again. The stimulation ranges
for each participant are depicted in Table I. Since the sigmoid
function naturally flattens near the upper bound, it minimized the
potential for adverse muscle activation. During prosthetic use,
the stimuli were updated at 40 Hz based on the force recordings.

During an initial exploration phase, the participants were
given the opportunity to explore the tactile feedback and the
functionality of the controllers, and the participants can visually
see the prosthetic hand. This could help the participants to
associate the prosthetic movement to their muscle activation to
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improve user intuition. After the exploration phase, the pros-
thetic hand was placed on a stand and positioned outside of the
participant’s line of sight to minimize incidental feedback (motor
vibration and visual cues) during prosthetic use. In addition,
noise-cancelation headphones were used to block the motor’s
audio cues. During single-channel stimulation for object size
recognition, only the prosthetic index finger was controlled. In
contrast, both index and middle fingers were controlled during
dual-channel stimulation for shape recognition. The prosthetic
finger(s) were controlled by the participants using two EMG
electrodes (Delsys Trigno). One electrode was placed on the
anterior side of the forearm to record the activation of the flexor
digitorum superficialis, while the other electrode was placed
on the posterior side of the forearm to record from extensor
digitorum communis (Fig. 1). Electrode positioning was per-
formed via muscle palpitation. The skin was cleaned using
alcohol pads prior to electrode placement. The EMG signals
were amplified by 300 and band-pass filtered between 20-450
Hz prior to sampling at 5000 Hz.

The EMG signals were processed to characterize the user
intent. The activation level from each muscle was estimated by
the rectified and filtered EMG signals using a 200-ms moving
window with a 100-ms overlap. The resulting values were then
normalized by the peak value recorded during maximum volun-
tary contraction (MVC) for each muscle.

The resulting relative activation level was mapped to a joint
velocity or position in real-time. The reference joint position (P)
used in position control was:

P = (AMar - AMML) * ( EMGF EMGE > )

05% MVCr 05%MVCg

where Az, and A jpjq, are the minimum (0°) and maximum
(85°) joint angles, EMG r and EMG g are the activation levels of
the flexor and extensor, respectively. Velocity control mapped
the joint velocity to the activation level of flexor or extensor.
The reference joint velocity (V) for velocity control was:

EMGDiT

V = (Vitas - o
(Viar * 05 % MVCpi

Vtin)
where V., and V., are the minimum (25°/s) and maximum
(80°/s) joint velocity, and Dir is Flex or Ext, whichever has
a greater normalized activation level. The approach ensured a
short latency when switching movement directions. The max-
imum joint angle or velocity corresponded to 50% MVC to
minimize potential muscle fatigue, 2% MVC was required to
initiate the prosthetic hand movement. A minimum activation of
2% MVC was used to minimize premature prosthetic movement,
while ensuring no perceivable delay. The recorded metacar-
pophalangeal joint angles from the prosthetic index and middle
fingers were linked and integrated into a custom proportional-
derivative (PD) controller to monitor the finger position or ve-
locity. Control commands to the prosthetic motors were updated
at 40 Hz, while the reference position or velocity was updated
based on the user intent at 10 Hz.

C. Experimental Procedures

Electrode grid exploration was performed to pinpoint two
pairs that elicited sensations at distinct hand regions. For the
first pair, sensations along the index finger were found, while an
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Fig.2. Example force traces of the prosthetic hand’s index (blue) and middle
(orange) fingers when grasping a cube and sphere (a). The average contact time
offsets of the two shapes for both controllers (b). The error bars indicate standard
error, while “x’ denotes significant differences in contact time offsets across
object shapes.

electrode pair evoking sensation at an alternative region corre-
sponding to the prosthetic middle finger was chosen for the sec-
ond pair. Once the two pairs were found, the stimulation ranges
were identified, and their sigmoid functions were constructed
(Table I). Finally, participants were given 3-5 minutes for the
position and for the velocity controllers to practice manipulating
the prosthetic index and middle fingers by flexing and extending
their finger muscles.

The two controllers were presented in discrete blocks. The
order of which was randomized for each participant. First, object
shape recognition was executed using two shapes with similar
sizes: one cube and one sphere. Object shape was encoded
based on the temporal difference in object contact for the index
and middle fingers; this was termed the contact time offset
(Fig. 2(b)). Dual stimulation was employed here. Second, object
size recognition was performed using single-channel stimula-
tion. Only the index finger was controlled as the prosthesis
grasped three cubes of varying sizes (2, 4, or 6 cm). Object size
recognition was encoded based on the time between movement
initiation and object contact, because the prosthesis always
started from the same extended posture. Participants completed
5 trials per object, resulting in 10 trials per object shape and
15 trials per object size. During these trials, participants were
not given feedback about their responses. Example force and/or
joint angle traces during object shape and object size tasks are
shown in Figs. 2 and 3, respectively.

D. Data Processing

We first calculated the recognition accuracy. Confusion ma-
trices were constructed to compare the ground truth to the
perceived object property under each controller. For object shape
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Fig. 3. Example index finger force (blue) and joint angle (red) traces when
grasping objects of varying sizes (a). The average time to contact for each object
size for both controllers (b). The error bars indicate standard error, while ‘x’
denotes significant differences in time to contact across object sizes.

recognition, the contact time offset between fingers was also
computed for each object shape. The offset was calculated as the
difference in time when the index and middle fingers produced
forces greater than 0.5 N. In addition, the difference in average
contact timing between two shapes was calculated for each
participant, and the correlation between these values and the
recognition accuracy was calculated. For object size recognition,
the time to contact was calculated as the time between the
movement initiation and a fingertip force greater than 0.5 N.
A difference in time to contact across object sizes was evident
for both controllers (Fig. 3(b)). 0.5 N was used to calculate the
contact time offset and time to contact, because sensory percepts
were initially evoked once the fingertip forces surpassed this
force level. In addition, to determine if intrinsic proprioceptive
feedback during muscle activation improved size recognition
accuracy during position control, the level of flexor and extensor
activation was computed during the holding period of object
size grasp. Specifically, the rectified EMG signals were averaged
across the object holding phase. The average flexor and extensor
activation levels were then normalized by the MVC of each mus-
cle. For each participant, the normalized activation levels were
then averaged among trials with similar size and controller as:

. | n  EMGx,
EMGx,, = — *Zi:l Ve

3

where X is position- or velocity-control, i is the trial number,
EMCGx, is the average EMG across the object holding phase
of the trial, and n is the number of trials. To compare across
object sizes, ratios of the computed average activation levels
were calculated. These ratios were then transformed using a
logarithmic transformation for statistical analysis, as:

EMG 4

log (Rati Activation) = log ——= ,
og (Ratio of Activation) = log VoRVIETs
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Fig. 4. Confusion matrices denoting the actual and perceived object shape
when using position (a) and velocity control (b). The average accuracy across
participants is shown (c) With the error bars indicating standard error. ‘x” denotes
p < 0.05 and “x#x” denoting p < 0.001 when comparing across conditions or
comparing accuracies to the chance value.

where A and B correspond to the normalized activation levels
when grasping two distinct object sizes.

E. Statistical Analysis

For all accuracy values, a logarithmic transformation was
performed to normalize the outcomes prior to conducting a one
sample #-test to determine whether accuracy was greater than
chance. A chance value of 0.5 and 0.33 was used for object
shape and size recognition, respectively. Next, two-way repeated
measures analysis of variance (ANOVA) were performed to
assess possible differences in accuracy across the controllers
and object properties. For the ratios of muscle activation levels,
one sample 7-tests were performed to evaluate whether these
values were different from O (i.e., log (1)), denoting if the muscle
activation differed across object sizes.

III. RESULTS

We first assessed the performance accuracy during object
shape recognition under different controllers. The confusion
matrices (Fig. 4) assess the perceived object shape in relation
to the ground truth. The results showed that most of the grasped
objects were correctly identified during both position and veloc-
ity control. Specifically, position and velocity control resulted
in recognition accuracies of 73.8% =+ 2.5% and 78.6% =+ 4.0%,
respectively. The ANOVA showed a significant main effect
across object shapes (F = 6.44, p = 0.017) with a significant
difference in accuracy during velocity control (p = 0.028). No
main effect across controllers or interaction effect was noted.
Most shape recognition accuracies were found to be significantly
greater than chance (p < 0.001 for all conditions, except for the
Velocity-Sphere condition: p = 0.018).

Fig. 5 highlights the distribution of the contact time offset
when grasping the cube and sphere with the two controllers. The
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Fig. 6. Object shape recognition accuracy in relation to the difference in
contact time offset between the two shapes during position and velocity control.

histogram depicts the offset variability during active prosthetic
control across trials and participants. Overall, the histograms
showed that the two shapes were incorrectly identified most
often when the contact time offset differed from the norm. When
evaluating the effects of contact time offset, Fig. 6 displays the
recognition accuracy as a function of the difference in contact
time offset across object shapes for each participant. As the
difference in contact time increases by moving the fingers
slowly, the object shape recognition accuracy increases with a
moderate correlation.

Next, we evaluated the object size recognition accuracy when
employing position and velocity control. The confusion matrices
in Fig. 7 illustrate the perceived and actual object size across all
participants. The ANOVA showed significant main effects for
both controllers and object sizes (Controllers: F = 10.54, p =
0.002; Sizes: F = 6.89, p = 0.003) with significant differences
for the medium object across controllers (p = 0.026) and across
the medium-small pairwise comparison in velocity control (p
= 0.007). No interaction effect was observed. The t-test results
also showed that both position and velocity control could be
used to discern object size with accuracies greater than chance
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(p<0.001 for all conditions, except for the Velocity-Medium
condition: p = 0.003). Moreover, object sizes could be discerned
during position and velocity control with accuracies of 81.6%
+ 2.6% and 66.7% + 3.5%, respectively. We also found that
the accuracy was lower using velocity control when compared
to position control (p<0.001).

Although significant differences in time to contact were
noted for both controllers, when assessing the amount of flexor
activation for each controller, not all conditions were found
to be distinct across object sizes (Fig. 8). Specifically, during
position control, the flexor activation in all three comparisons
across object sizes were found to be significantly different
(p<0.01). Namely, the flexor muscle activation level differed
when grasping different object sizes using position control.
However, no significant difference (p>0.05) was observed
when comparing the ratios of extensor activation across object
sizes for either controller.

IV. DISCUSSION

This study revealed that non-invasive tactile feedback from
multi-channel stimulation allowed participants to discern two
distinct object shapes and three object sizes using a myoelectric
prosthetic hand. In addition, the outcomes depicted how different
control schemes impact recognition accuracy. We found that
participants could effectively use the evoked tactile feedback
to correctly identify object shape and size, when using either
position- or velocity-control. We also found that participants
could recognize object size more accurately when employing
position control than velocity control. These results demon-
strate that non-invasive somatotopic tactile feedback can be
effectively integrated with prosthetic hands, fostering bidirec-
tional closed-loop control. The outcomes also characterize the
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interplay between sensory and motor modules during prosthesis-
object interactions, which can help improve our understanding
of action-perception coupling in prosthetic control and promote
the utility of assistive devices.

Our results showed that object shape recognition could be
readily achieved via tactile feedback during myoelectric pros-
thetic control. Similar recognition accuracy values were ob-
served across position and velocity control conditions. During
the task, sensory feedback only occurred when the prosthetic
hand reached the object. The perception of tactile feedback can
occur without interfering with EMG control. The similarity in
recognition accuracy may also be due to the simplicity of the
task, involving only two objects. For both controllers, the results
showed that the contact time offset was similar, further justifying
the similarity in performance. The object contact time offset
(Fig. 5) was significantly different across the two shapes for both
controllers as well, indicating that the temporal difference could
be distinguished by the participants. The results also showed
that as the difference in contact time offset increased, the perfor-
mance accuracy increased. The correlation between contact time
offset and recognition accuracy has been reported in prior work
as well when employing an experimenter-controlled prosthetic
hand [21] or using a simulated grasp trajectory [25]. Finally, the
selected refresh rate (40 Hz) for the PD controller and tactile
feedback may also contribute to the reduced accuracy when
the contact time offset is reduced. Future work will evaluate
the impact of controller and feedback update rates on object
recognition performance.

Although significant differences from the chance value are
noted, the accuracy is not necessarily high given the participants
were expected to distinguish only two object shapes. The use
of additional object shapes would likely alter the outcomes.
When compared with prior studies, the accuracies are slightly
lower in the current study, potentially due to several factors.
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The first factor is the magnitude of the contact time offset. In
prior work, the temporal delay between finger contact could
be longer than 1.5 seconds [25], [26]. As shown in the current
study (Fig. 6), a longer offset can improve the shape recognition
accuracy. A shorter contact time offset in the current study
may be caused by increased joint movement speeds. As the
prosthesis can move at relatively fast speeds, a slower pros-
thetic speed regulation may help users to better distinguish the
grasped object. Secondly, the employed controllers may affect
the outcomes as well. In the current study, continuous velocity
and position controllers were evaluated. The use of a discrete
state-based controller using pattern classification may minimize
the variability in movement speeds as well as the contact time
offset. Thus, the discrete state-based controller could potentially
improve the object recognition accuracy [21], [25], [27]. Lastly,
additional training could improve the stimuli perceptibility. In
the current study, only a brief training was provided. Future work
should be performed to evaluate how training can impact object
recognition accuracy.

Our results also showed that object size recognition could
be performed using tactile feedback. Contrary to object shape
recognition, differences were observed between the two con-
trollers for size recognition. Our findings showed that greater
recognition accuracy was achieved during position control than
during velocity control. When evaluating the time to contact,
velocity control results in times that were significantly dif-
ferent across object sizes; however, not all comparisons were
significant in contact times for position control (Fig. 3(b)),
yet greater recognition accuracy were observed. It is possible
that the difference in accuracy is due to the use of intrinsic
proprioceptive cues (muscle activation level) during position
control, and its direct association with the prosthetic joint angle.
Similar conclusions were observed with invasive peripheral
nerve stimulation [18]. This is further justified based on the
significant differences in flexor muscle activation across object
sizes. The proprioceptive cue potentially alleviated the lack of
significance in time to contact during position control. In prior
work, object size recognition involving solely tactile feedback
also resulted in similar outcomes; although slight differences in
accuracy were likely due to the number of different-sized objects
and variations in velocity of the joint during experiment [18],
[28]. One limitation of our experimental setup involves the use
of a set starting posture. As a result, the relative time to contact
is correlated to object size. If the starting posture is altered,
the relative differences may be similar, but the absolute timings
would be futile, because the reference position is lost. This would
require the participants to rely more on proprioceptive feedback.

Although position control benefits from these intrinsic pro-
prioceptive cues, position control requires continuous muscular
activation to maintain the joint position, making participants
more prone to fatigue. Implementing a holding state during
position control can potentially reduce the need for sustained
muscle activation and delay fatigue onset [29]. Nonetheless,
studies have shown that task performance is similar across
controllers when proprioceptive feedback is provided [10], [22].
Recent work concluded that object size recognition accuracy is
improved when users are given both tactile and proprioceptive
cues [28]. The use of both sensory cues has also enabled the
recognition of multiple object properties simultaneously [10],
[28], [30]. Recent studies have also developed new techniques
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to improve prosthetic control by providing proprioceptive cues
[22], [31], [32]. Although it can be beneficial to provide rich
sensory information, it is important to note that as the number of
feedback sources increases so does the difficulty interpreting nu-
merous sensory perceptions simultaneously. Further evaluations
on the integration of multi-modal feedback strategies should be
performed to enhance user intuition and optimize the quality,
quantity, and cognitive cost of future feedback strategies.

The non-invasive nature of this somatotopic tactile feedback
technique can promote the closed-loop evaluation of current and
future assistive devices. Although these tests involved a single
prosthetic hand, other assistive or teleoperative devices may
also benefit from this evaluation. In addition, this non-invasive
approach can be implemented in alternative settings, involving
individuals with sensory deficits. Prior work suggest that, even
when the motor system is unimpaired, a lack of tactile feedback
can negatively impact task performance [33]. Overall, the
integration of sensory feedback across these alternative settings
can possibly improve a person’s quality of life. Nonetheless,
future tests should examine the role that artificial feedback
plays in these scenarios.

A few technical limitations include the potential applications
for the current sensory-motor configuration (EMG sensor and
stimulation setup) and the indirect pairing of the evoked sensory
regions to only two prosthetic fingers. The current placement of
the stimulation grid promotes its use across various amputation
levels. In general, the current system targets individuals with
wrist disarticulations or transradial amputations. The stimula-
tion on a proximal position also limits the potential for stimu-
lation artifact on EMG recordings. Earlier work has shown that
able-bodied individuals and individuals with an amputation per-
ceive similar tactile feedback through nerve stimulation [20]. Itis
expected that the outcomes observed in able-bodied participants
may be representative of those in individuals with an amputation.
Modified sensory feedback strategy is needed to translate this
approach to individuals with higher levels of amputations. In the
current study, we focused more on locating two distinct sensation
regions along the hand using two separate electrode pairs rather
than locating two pairs that evoked single-finger sensations. In
doing so, this study explored whether tactile information can
be delivered using two stimulation channels to portray the grasp
forces at two distinct regions of the hand during active prosthetic
use. Our earlier study has shown that evoked sensations can
range from a single finger quadrant to multiple fingers [23].
Overall, the location of the electrode grid relative to the median
and ulnar nerves as well as the stimulation intensity can alter
the specificity of stimulation regions. Nonetheless, the issue of
specificity in the current study is a limitation that we need to
address in the future with alterative electrode grid configurations
and stimulation patterns.

In cases where nerve stimulation may be affected by ampu-
tation level, non-somatotopic strategies may provide prosthetic
users with sensory information by targeting cutaneous recep-
tors on the skin surface. Although dissimilarity in sensation
modality and location initially affects cognitive cost, recent non-
somatotopic strategies can evoke beneficial percepts describing
grasp force and finger aperture [34], [35]. Increased practice
can improve their intuitiveness, allowing users to become better
acquainted with the evoked sensations. Studies have shown that
training can improve the perceptibility of a stimuli’s strength
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and location [36] and lead to intuitive discrepancy of these
sensations when compared to somatotopic approaches, [37].
Non-somatotopic strategies can also provide more flexibility as
different tactor types can be applied to various regions depending
on the amputation level or the sensory acuity of an individual’s
residual limb. In addition, a greater number of stimulation sites
may convey more information that allows more complex object
recognition tasks, if cognitive cost can be alleviated.

V. CONCLUSION

In conclusion, this study shows that transcutaneous nerve
stimulation can elicit tactile percepts, enabling object size and
shape recognition during the closed-loop control of a prosthetic
hand. Evoked tactile feedback could be effectively integrated
with both position and velocity controllers, leading to successful
perception of object shape and size. A greater success in object
size recognition during position control indicates that intrinsic
proprioceptive cues may also assist during size recognition.
The non-invasive nature of this approach provides a platform
to characterize the differences in the intricate action-perception
coupling during assistive device utility. Our findings also help
us to understand the interactions between the motor and sensory
modules of current prosthetic systems, which can help improve
assistive device designs.
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