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Abstract—Tactile feedback in the hand is essential for interaction
with objects. Here, we evaluated how artificial tactile sensation
affected the recognition of object properties using a myoelectrically
controlled prosthetic hand. Electromyogram signals from the flexor
and extensor finger muscles were used to continuously control
either prosthetic joint velocity or position. Participants grasped
objects of varying shape or size using the prosthetic hand. Tactile
feedback was evoked by transcutaneous nerve stimulation along the
participant’s upper arm and modulated based on the prosthetic-
object contact force. Multi-channel electrical stimulation targeted
the median and ulnar nerve bundles to produce resembled tactile
sensations at distinct hand regions. The results showed that partic-
ipants could gauge the onset timing of tactile feedback to discern
object shape and size. We also found that the position-controller
led to a greater recognition accuracy of object size compared
with velocity-control, potentially due to supplemental joint position
information from muscle activation level. Our findings demonstrate
that non-invasive tactile feedback can enable effective object shape
and size recognition during prosthetic control. The evaluation of
tactile feedback across myoelectric controllers can help understand
the interplay between sensory and motor pathways involved in the
control of assistive devices.

Index Terms—Tactile feedback, prosthetic control, object
recognition, transcutaneous nerve stimulation.

I. INTRODUCTION

S
OMATOSENSORY feedback works in unison with motor

function to enable us to perform various daily tasks [1].

Following an amputation, individuals lose both motor and sen-

sory functions, thus limiting their independence and quality of

life. In recent years, prosthetic hands have advanced to a degree

where the mechatronic design can nearly replicate human hand
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motions [2]. Although these current devices have the potential

to alleviate motor deficits in arm amputees, intuitive control of

prostheses is still limited, in part due to the lack of sensory

information [3]. Tactile feedback from our fingertips helps con-

vey contact force magnitude and direction. Without tactile cues,

individuals with an amputation must rely on auditory or visual

cues, leading to cumbersome prosthetic control [4]. In addition,

prior work suggests that visual feedback alone is not sufficient to

compensate for the loss of tactile feedback, and this can lead to

low user confidence [5]. As a result, the lack of somatosensory

feedback is deemed one of the primary reasons for prosthesis

abandonment [6].

Natural biological tactile percepts are evoked from

mechanoreceptors in our skin [7]. Various mechanoreceptors

work together to convey intricate percepts based on the stimulus

frequency, location, and intensity [8]. For individuals with an

amputation, artificial sensations can be evoked through invasive

and non-invasive platforms to resemble somatosensory cues,

allowing users to associate stimuli to real-time finger force or

joint angle information [9], [10]. Although different stimula-

tion approaches provide users with informative feedback, these

approaches can be limited based on the type of sensation. For

instance, non-somatotopic percepts may impose greater cogni-

tive burden during stimuli interpretation, due to the dissimilarity

in location and/or modality [11]. Somatotopic percepts can po-

tentially improve sensation intensity/location discrimination ac-

curacy [12]. Unfortunately, somatotopic percepts are primarily

elicited via invasive stimulation of peripheral nerves [13], which

can limit wide applications. Alternatively, somatotopic percepts

can be elicited non-invasively by activating sensory axons in the

nerve trunk via transcutaneous nerve stimulation (TNS) [14],

[15]. Although non-invasive nerve stimulation shows promise,

its efficacy across different myoelectric controllers has not been

fully investigated.

To enable effective closed-loop prosthetic control, it is vital

that we recognize the complex relations between the sensory

and motor components of prosthetic control. Action-perception

coupling during prosthetic use can affect sensory feedback

integration, potentially impacting overall system functionality

[16]. Continuous myoelectric controllers typically map the

level of muscle activation to the velocity or position of the

prosthetic joints. Contradictory results have been reported when

comparing performance outcomes during velocity and position

control [17], [18]. One study suggested that velocity control

may be more efficient for operating the prosthesis; however,

position control allows greater fine manipulation of objects

[19]. As a result, it is essential to discern how non-invasive
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fingertip tactile feedback and different myoelectric controllers

affect the perceptibility of an evoked sensation; this has only

been explored in a few studies [9], [10].

Accordingly, the purpose of the current study was to eval-

uate how artificial tactile sensation affected the recognition

of object properties when the prosthetic hand was controlled

via two distinct myoelectric controllers. Able-bodied subjects

controlled a prosthetic hand using position or velocity control.

The electromyogram (EMG) signals from flexor/extensor hand

muscles were mapped to desired prosthetic joint positions or

velocities. During prosthetic control, prosthetic fingertip forces

modulated tactile percepts to discern the shape or size of the

grasped objects. Tactile feedback was elicited by activating

axons in the median/ulnar nerves via an electrode grid placed

on the upper arm. As electrical stimulation was sent to differ-

ent electrode pairs, different axons were recruited, producing

different localized hand sensations [20]. Prior work showed

that shape recognition via two independently modulated hand

sensations through two channels of stimulation in open-loop

configurations [21]; however, it has yet to be determined whether

the information can be utilized for object recognitions during

myoelectric control of a prosthetic hand. In addition, prior

work has shown that size recognition can be performed with

multi-modal tactile and proprioceptive cues [10]. Earlier work

showed that, with position control, users can control prosthetic

finger positions in a reasonable accuracy without vibrotactile

feedback, because users can use the intrinsic proprioceptive

cues when muscle activation levels are directly associated to

the prosthetic joint angle [10], [18], [22]. We hypothesized that,

compared with velocity control, position control would lead to

higher recognition accuracy, because a direct mapping of muscle

activation level to joint position could allow to gauge the joint

angle, which could benefit object recognition when paired with

tactile feedback. Overall, this non-invasive somatotopic tactile

feedback approach allows for the assessment of different effects

of myoelectric controllers on object recognition.

II. MATERIALS AND METHODS

A. Participants

Eight able-bodied participants (3 Female, 24-38 years of age)

were recruited for this study. All participants gave informed con-

sent via protocols approved by the Institutional Review Board

of the University of North Carolina at Chapel Hill (Approval#:

16-1852). Participants had no prior experience with this sensory

feedback approach or controlling a prosthetic hand.

B. Experimental Setup

Each participant was seated in front of a table with their right

arm placed atop it. The medial portion of their upper arm was

cleaned using alcohol pads in preparation for the placement

of the stimulation grid. The 2 × 8 grid, consisting of 1-cm

diameter Ag/AgCl gel-based electrodes, was used to elicit sen-

sory percepts via TNS. This grid was positioned just below the

short head of the biceps brachii (Fig. 1), which allowed the best

transcutaneous access to the median and ulnar nerves. Through

the selection of distinct electrode pairs, electrical stimulation

created unique electric fields that activated different groups of

sensory axons. As a result, haptic sensations at distinct hand

Fig. 1. The placement of the 2x8 stimulation grid and the EMG channels along
the participant’s arm is depicted (a). Prosthetic movement was monitored and
controlled using the EMG recordings and finger joint angles via a velocity or
position controller (b). Fingertip forces were used to close the loop providing
users with haptic feedback. Graded tactile sensations along the hand were evoked
by altering the current amplitude of the delivered biphasic stimulation train (d)
Based on the prosthetic’s recorded index and middle finger forces (c).

regions could be evoked [20]. A plastic vice placed around the

upper arm applied mild inward pressure to stabilize electrode-

skin contact. Stimulation current delivered to a single electrode

pair can evoke tactile sensation along an individual’s hand.

Prior work has also shown that stimulating two electrode pairs

concurrently (dual-channel stimulation) can elicit more com-

plex resembled sensation regions from individual stimulation

locations [21], [23]. Single or dual-channel stimulation was

used to elicit complex graded fingertip tactile percepts based

on real-time prosthetic grasp forces.

A custom MATLAB script (v2017b, MathWorks, Inc.) con-

trolled the stimulation patterns and electrode pairs. The electrode

pair selection was executed using a switch matrix (Agilent Tech-

nologies). For each stimulation channel, the switch matrix linked

the cathode and anode of an electrical stimulator (STG4008,

Multichannel System) to an electrode pair. The stimulator de-

livered biphasic, charge-balanced, square-wave currents (Fig.

1(d)) using a constant frequency of 150 Hz and pulse width

of 200 µs [24]. A single electrode pair was used for object

size detection, while two non-overlapping electrode pairs (i.e.,

dual channel) were used for shape recognition. A 3.33-ms delay

between the two channels was implemented to minimize electric

field interference during shape recognition [23].

Stimulation amplitude was altered in real-time based on the

fingertip forces from the i-limb prosthetic hand (Ossur). The

prosthetic index and middle fingertip forces were recorded using

force sensitive resistors (FSR) positioned on the corresponding

prosthetic fingertip. Index finger forces were used during

both single and dual channel stimulation, while middle

finger forces were only used during dual-channel stimulation. A

participant-specific and electrode pair-specific sigmoid function

was used to transform each fingertip force to a designated

stimulation amplitude. The function for each pair was built using

an allowable stimulation range, minimum and maximum force,

and steepness value [15]. The stimulation range of each pair
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TABLE I
ELECTRODE PAIRS AND SENSATIONS ELICITED FOR EACH PARTICIPANT

was bounded by the Sensory-Threshold and Just-Below-Motor-

Threshold. The Sensory-Threshold is defined as the stimulation

amplitude that initially evoked a perceivable tactile sensation

along the participant’s finger(s). The Motor-Threshold is the

stimulation amplitude that first induces finger motion and was

initially identified via experimenter’s visual detection of evoked

finger twitch. For the process, the stimulation amplitude was

increased using a step of 0.1 mA. This process was repeated three

times, and the outcomes were then averaged as the thresholds.

For the upper limit, an amplitude approximately 0.2 to 0.3 mA

below the Motor-Threshold was used to avoid muscle activation

(Just-Below-Motor-Threshold). Using these two thresholds, the

sigmoid function was created using the following function:

I(F ) =
(IMax − IMin)

1 + exp
(

−k ∗
(

F −
FMax + FMin

2

)) + IMin

where I, IMax, and IMin represent the actual current,

Just-Below-Motor-Threshold, and Sensory Threshold,

respectively. Steepness, actual force, maximum force, and

minimum force were represented by k, F, FMax, and FMin,

respectively. To account for potential force sensor drift, the

minimum force was set to 0.5 N, ensuring that stimulation was

not evoked prior to object contact. Prior to the experiment,

the sigmoid functions were tested by applying pressure to the

prosthetic’s fingertip sensors to ensure that the lower values

evoked perceivable sensations, while the upper values did

not evoke unintended muscular responses identified via EMG

signals. If either value was inadequate, the stimulation range was

altered, and the test was completed again. The stimulation ranges

for each participant are depicted in Table I. Since the sigmoid

function naturally flattens near the upper bound, it minimized the

potential for adverse muscle activation. During prosthetic use,

the stimuli were updated at 40 Hz based on the force recordings.

During an initial exploration phase, the participants were

given the opportunity to explore the tactile feedback and the

functionality of the controllers, and the participants can visually

see the prosthetic hand. This could help the participants to

associate the prosthetic movement to their muscle activation to

improve user intuition. After the exploration phase, the pros-

thetic hand was placed on a stand and positioned outside of the

participant’s line of sight to minimize incidental feedback (motor

vibration and visual cues) during prosthetic use. In addition,

noise-cancelation headphones were used to block the motor’s

audio cues. During single-channel stimulation for object size

recognition, only the prosthetic index finger was controlled. In

contrast, both index and middle fingers were controlled during

dual-channel stimulation for shape recognition. The prosthetic

finger(s) were controlled by the participants using two EMG

electrodes (Delsys Trigno). One electrode was placed on the

anterior side of the forearm to record the activation of the flexor

digitorum superficialis, while the other electrode was placed

on the posterior side of the forearm to record from extensor

digitorum communis (Fig. 1). Electrode positioning was per-

formed via muscle palpitation. The skin was cleaned using

alcohol pads prior to electrode placement. The EMG signals

were amplified by 300 and band-pass filtered between 20-450

Hz prior to sampling at 5000 Hz.

The EMG signals were processed to characterize the user

intent. The activation level from each muscle was estimated by

the rectified and filtered EMG signals using a 200-ms moving

window with a 100-ms overlap. The resulting values were then

normalized by the peak value recorded during maximum volun-

tary contraction (MVC) for each muscle.

The resulting relative activation level was mapped to a joint

velocity or position in real-time. The reference joint position (P)

used in position control was:

P = (AMax −AMin) ∗

(

EMGF

0.5 ∗MVCF

−
EMGE

0.5 ∗MVCE

)

,

where AMin and AMax are the minimum (0°) and maximum

(85°) joint angles, EMGF and EMGE are the activation levels of

the flexor and extensor, respectively. Velocity control mapped

the joint velocity to the activation level of flexor or extensor.

The reference joint velocity (V) for velocity control was:

V = (VMax − VMin) ∗
EMGDir

0.5 ∗MVCDir

,

where VMin and VMax are the minimum (25°/s) and maximum

(80°/s) joint velocity, and Dir is Flex or Ext, whichever has

a greater normalized activation level. The approach ensured a

short latency when switching movement directions. The max-

imum joint angle or velocity corresponded to 50% MVC to

minimize potential muscle fatigue, 2% MVC was required to

initiate the prosthetic hand movement. A minimum activation of

2% MVC was used to minimize premature prosthetic movement,

while ensuring no perceivable delay. The recorded metacar-

pophalangeal joint angles from the prosthetic index and middle

fingers were linked and integrated into a custom proportional-

derivative (PD) controller to monitor the finger position or ve-

locity. Control commands to the prosthetic motors were updated

at 40 Hz, while the reference position or velocity was updated

based on the user intent at 10 Hz.

C. Experimental Procedures

Electrode grid exploration was performed to pinpoint two

pairs that elicited sensations at distinct hand regions. For the

first pair, sensations along the index finger were found, while an

Authorized licensed use limited to: Penn State University. Downloaded on February 21,2023 at 14:41:27 UTC from IEEE Xplore.  Restrictions apply. 



10980 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 4, OCTOBER 2022

Fig. 2. Example force traces of the prosthetic hand’s index (blue) and middle
(orange) fingers when grasping a cube and sphere (a). The average contact time
offsets of the two shapes for both controllers (b). The error bars indicate standard
error, while ‘∗’ denotes significant differences in contact time offsets across
object shapes.

electrode pair evoking sensation at an alternative region corre-

sponding to the prosthetic middle finger was chosen for the sec-

ond pair. Once the two pairs were found, the stimulation ranges

were identified, and their sigmoid functions were constructed

(Table I). Finally, participants were given 3-5 minutes for the

position and for the velocity controllers to practice manipulating

the prosthetic index and middle fingers by flexing and extending

their finger muscles.

The two controllers were presented in discrete blocks. The

order of which was randomized for each participant. First, object

shape recognition was executed using two shapes with similar

sizes: one cube and one sphere. Object shape was encoded

based on the temporal difference in object contact for the index

and middle fingers; this was termed the contact time offset

(Fig. 2(b)). Dual stimulation was employed here. Second, object

size recognition was performed using single-channel stimula-

tion. Only the index finger was controlled as the prosthesis

grasped three cubes of varying sizes (2, 4, or 6 cm). Object size

recognition was encoded based on the time between movement

initiation and object contact, because the prosthesis always

started from the same extended posture. Participants completed

5 trials per object, resulting in 10 trials per object shape and

15 trials per object size. During these trials, participants were

not given feedback about their responses. Example force and/or

joint angle traces during object shape and object size tasks are

shown in Figs. 2 and 3, respectively.

D. Data Processing

We first calculated the recognition accuracy. Confusion ma-

trices were constructed to compare the ground truth to the

perceived object property under each controller. For object shape

Fig. 3. Example index finger force (blue) and joint angle (red) traces when
grasping objects of varying sizes (a). The average time to contact for each object
size for both controllers (b). The error bars indicate standard error, while ‘∗’
denotes significant differences in time to contact across object sizes.

recognition, the contact time offset between fingers was also

computed for each object shape. The offset was calculated as the

difference in time when the index and middle fingers produced

forces greater than 0.5 N. In addition, the difference in average

contact timing between two shapes was calculated for each

participant, and the correlation between these values and the

recognition accuracy was calculated. For object size recognition,

the time to contact was calculated as the time between the

movement initiation and a fingertip force greater than 0.5 N.

A difference in time to contact across object sizes was evident

for both controllers (Fig. 3(b)). 0.5 N was used to calculate the

contact time offset and time to contact, because sensory percepts

were initially evoked once the fingertip forces surpassed this

force level. In addition, to determine if intrinsic proprioceptive

feedback during muscle activation improved size recognition

accuracy during position control, the level of flexor and extensor

activation was computed during the holding period of object

size grasp. Specifically, the rectified EMG signals were averaged

across the object holding phase. The average flexor and extensor

activation levels were then normalized by the MVC of each mus-

cle. For each participant, the normalized activation levels were

then averaged among trials with similar size and controller as:

EMGXAll
=

1

n
∗

∑n

i = 1

EMGXi

MVCi

,

where X is position- or velocity-control, i is the trial number,

EMGXi
is the average EMG across the object holding phase

of the trial, and n is the number of trials. To compare across

object sizes, ratios of the computed average activation levels

were calculated. These ratios were then transformed using a

logarithmic transformation for statistical analysis, as:

log (Ratio of Activation) = log
EMGA

EMGB

,
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Fig. 4. Confusion matrices denoting the actual and perceived object shape
when using position (a) and velocity control (b). The average accuracy across
participants is shown (c) With the error bars indicating standard error. ‘∗’ denotes
p < 0.05 and ‘∗∗∗’ denoting p < 0.001 when comparing across conditions or
comparing accuracies to the chance value.

where A and B correspond to the normalized activation levels

when grasping two distinct object sizes.

E. Statistical Analysis

For all accuracy values, a logarithmic transformation was

performed to normalize the outcomes prior to conducting a one

sample t-test to determine whether accuracy was greater than

chance. A chance value of 0.5 and 0.33 was used for object

shape and size recognition, respectively. Next, two-way repeated

measures analysis of variance (ANOVA) were performed to

assess possible differences in accuracy across the controllers

and object properties. For the ratios of muscle activation levels,

one sample t-tests were performed to evaluate whether these

values were different from 0 (i.e., log (1)), denoting if the muscle

activation differed across object sizes.

III. RESULTS

We first assessed the performance accuracy during object

shape recognition under different controllers. The confusion

matrices (Fig. 4) assess the perceived object shape in relation

to the ground truth. The results showed that most of the grasped

objects were correctly identified during both position and veloc-

ity control. Specifically, position and velocity control resulted

in recognition accuracies of 73.8% ± 2.5% and 78.6% ± 4.0%,

respectively. The ANOVA showed a significant main effect

across object shapes (F = 6.44, p = 0.017) with a significant

difference in accuracy during velocity control (p = 0.028). No

main effect across controllers or interaction effect was noted.

Most shape recognition accuracies were found to be significantly

greater than chance (p < 0.001 for all conditions, except for the

Velocity-Sphere condition: p = 0.018).

Fig. 5 highlights the distribution of the contact time offset

when grasping the cube and sphere with the two controllers. The

Fig. 5. Histogram of the contact time offset when correctly and incorrectly
identifying the cube and sphere during position and velocity control.

Fig. 6. Object shape recognition accuracy in relation to the difference in
contact time offset between the two shapes during position and velocity control.

histogram depicts the offset variability during active prosthetic

control across trials and participants. Overall, the histograms

showed that the two shapes were incorrectly identified most

often when the contact time offset differed from the norm. When

evaluating the effects of contact time offset, Fig. 6 displays the

recognition accuracy as a function of the difference in contact

time offset across object shapes for each participant. As the

difference in contact time increases by moving the fingers

slowly, the object shape recognition accuracy increases with a

moderate correlation.

Next, we evaluated the object size recognition accuracy when

employing position and velocity control. The confusion matrices

in Fig. 7 illustrate the perceived and actual object size across all

participants. The ANOVA showed significant main effects for

both controllers and object sizes (Controllers: F = 10.54, p =
0.002; Sizes: F = 6.89, p = 0.003) with significant differences

for the medium object across controllers (p = 0.026) and across

the medium-small pairwise comparison in velocity control (p

= 0.007). No interaction effect was observed. The t-test results

also showed that both position and velocity control could be

used to discern object size with accuracies greater than chance
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Fig. 7. Confusion matrices of the actual and perceived object size when using
position (a) and velocity control (b). The average accuracy across participants is
shown (c) With the error bars indicating standard error. ‘∗’ denotes p < 0.05‘∗∗’
denotes p < 0.01, and ‘∗∗∗’ denotes p < 0.001 when comparing accuracies to
the chance value and across conditions.

(p<0.001 for all conditions, except for the Velocity-Medium

condition: p= 0.003). Moreover, object sizes could be discerned

during position and velocity control with accuracies of 81.6%

± 2.6% and 66.7% ± 3.5%, respectively. We also found that

the accuracy was lower using velocity control when compared

to position control (p<0.001).

Although significant differences in time to contact were

noted for both controllers, when assessing the amount of flexor

activation for each controller, not all conditions were found

to be distinct across object sizes (Fig. 8). Specifically, during

position control, the flexor activation in all three comparisons

across object sizes were found to be significantly different

(p<0.01). Namely, the flexor muscle activation level differed

when grasping different object sizes using position control.

However, no significant difference (p>0.05) was observed

when comparing the ratios of extensor activation across object

sizes for either controller.

IV. DISCUSSION

This study revealed that non-invasive tactile feedback from

multi-channel stimulation allowed participants to discern two

distinct object shapes and three object sizes using a myoelectric

prosthetic hand. In addition, the outcomes depicted how different

control schemes impact recognition accuracy. We found that

participants could effectively use the evoked tactile feedback

to correctly identify object shape and size, when using either

position- or velocity-control. We also found that participants

could recognize object size more accurately when employing

position control than velocity control. These results demon-

strate that non-invasive somatotopic tactile feedback can be

effectively integrated with prosthetic hands, fostering bidirec-

tional closed-loop control. The outcomes also characterize the

Fig. 8. Relative difference in flexion (a) and extension (b) Activation level
across object sizes using position and velocity controllers. Significance is shown
with ‘∗’ denoting p < 0.05, ‘∗∗’ denoting p < 0.01, and ‘∗∗∗’ denoting p <

0.001, when comparing to zero, i.e., log (1).

interplay between sensory and motor modules during prosthesis-

object interactions, which can help improve our understanding

of action-perception coupling in prosthetic control and promote

the utility of assistive devices.

Our results showed that object shape recognition could be

readily achieved via tactile feedback during myoelectric pros-

thetic control. Similar recognition accuracy values were ob-

served across position and velocity control conditions. During

the task, sensory feedback only occurred when the prosthetic

hand reached the object. The perception of tactile feedback can

occur without interfering with EMG control. The similarity in

recognition accuracy may also be due to the simplicity of the

task, involving only two objects. For both controllers, the results

showed that the contact time offset was similar, further justifying

the similarity in performance. The object contact time offset

(Fig. 5) was significantly different across the two shapes for both

controllers as well, indicating that the temporal difference could

be distinguished by the participants. The results also showed

that as the difference in contact time offset increased, the perfor-

mance accuracy increased. The correlation between contact time

offset and recognition accuracy has been reported in prior work

as well when employing an experimenter-controlled prosthetic

hand [21] or using a simulated grasp trajectory [25]. Finally, the

selected refresh rate (40 Hz) for the PD controller and tactile

feedback may also contribute to the reduced accuracy when

the contact time offset is reduced. Future work will evaluate

the impact of controller and feedback update rates on object

recognition performance.

Although significant differences from the chance value are

noted, the accuracy is not necessarily high given the participants

were expected to distinguish only two object shapes. The use

of additional object shapes would likely alter the outcomes.

When compared with prior studies, the accuracies are slightly

lower in the current study, potentially due to several factors.
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The first factor is the magnitude of the contact time offset. In

prior work, the temporal delay between finger contact could

be longer than 1.5 seconds [25], [26]. As shown in the current

study (Fig. 6), a longer offset can improve the shape recognition

accuracy. A shorter contact time offset in the current study

may be caused by increased joint movement speeds. As the

prosthesis can move at relatively fast speeds, a slower pros-

thetic speed regulation may help users to better distinguish the

grasped object. Secondly, the employed controllers may affect

the outcomes as well. In the current study, continuous velocity

and position controllers were evaluated. The use of a discrete

state-based controller using pattern classification may minimize

the variability in movement speeds as well as the contact time

offset. Thus, the discrete state-based controller could potentially

improve the object recognition accuracy [21], [25], [27]. Lastly,

additional training could improve the stimuli perceptibility. In

the current study, only a brief training was provided. Future work

should be performed to evaluate how training can impact object

recognition accuracy.

Our results also showed that object size recognition could

be performed using tactile feedback. Contrary to object shape

recognition, differences were observed between the two con-

trollers for size recognition. Our findings showed that greater

recognition accuracy was achieved during position control than

during velocity control. When evaluating the time to contact,

velocity control results in times that were significantly dif-

ferent across object sizes; however, not all comparisons were

significant in contact times for position control (Fig. 3(b)),

yet greater recognition accuracy were observed. It is possible

that the difference in accuracy is due to the use of intrinsic

proprioceptive cues (muscle activation level) during position

control, and its direct association with the prosthetic joint angle.

Similar conclusions were observed with invasive peripheral

nerve stimulation [18]. This is further justified based on the

significant differences in flexor muscle activation across object

sizes. The proprioceptive cue potentially alleviated the lack of

significance in time to contact during position control. In prior

work, object size recognition involving solely tactile feedback

also resulted in similar outcomes; although slight differences in

accuracy were likely due to the number of different-sized objects

and variations in velocity of the joint during experiment [18],

[28]. One limitation of our experimental setup involves the use

of a set starting posture. As a result, the relative time to contact

is correlated to object size. If the starting posture is altered,

the relative differences may be similar, but the absolute timings

would be futile, because the reference position is lost. This would

require the participants to rely more on proprioceptive feedback.

Although position control benefits from these intrinsic pro-

prioceptive cues, position control requires continuous muscular

activation to maintain the joint position, making participants

more prone to fatigue. Implementing a holding state during

position control can potentially reduce the need for sustained

muscle activation and delay fatigue onset [29]. Nonetheless,

studies have shown that task performance is similar across

controllers when proprioceptive feedback is provided [10], [22].

Recent work concluded that object size recognition accuracy is

improved when users are given both tactile and proprioceptive

cues [28]. The use of both sensory cues has also enabled the

recognition of multiple object properties simultaneously [10],

[28], [30]. Recent studies have also developed new techniques

to improve prosthetic control by providing proprioceptive cues

[22], [31], [32]. Although it can be beneficial to provide rich

sensory information, it is important to note that as the number of

feedback sources increases so does the difficulty interpreting nu-

merous sensory perceptions simultaneously. Further evaluations

on the integration of multi-modal feedback strategies should be

performed to enhance user intuition and optimize the quality,

quantity, and cognitive cost of future feedback strategies.

The non-invasive nature of this somatotopic tactile feedback

technique can promote the closed-loop evaluation of current and

future assistive devices. Although these tests involved a single

prosthetic hand, other assistive or teleoperative devices may

also benefit from this evaluation. In addition, this non-invasive

approach can be implemented in alternative settings, involving

individuals with sensory deficits. Prior work suggest that, even

when the motor system is unimpaired, a lack of tactile feedback

can negatively impact task performance [33]. Overall, the

integration of sensory feedback across these alternative settings

can possibly improve a person’s quality of life. Nonetheless,

future tests should examine the role that artificial feedback

plays in these scenarios.

A few technical limitations include the potential applications

for the current sensory-motor configuration (EMG sensor and

stimulation setup) and the indirect pairing of the evoked sensory

regions to only two prosthetic fingers. The current placement of

the stimulation grid promotes its use across various amputation

levels. In general, the current system targets individuals with

wrist disarticulations or transradial amputations. The stimula-

tion on a proximal position also limits the potential for stimu-

lation artifact on EMG recordings. Earlier work has shown that

able-bodied individuals and individuals with an amputation per-

ceive similar tactile feedback through nerve stimulation [20]. It is

expected that the outcomes observed in able-bodied participants

may be representative of those in individuals with an amputation.

Modified sensory feedback strategy is needed to translate this

approach to individuals with higher levels of amputations. In the

current study, we focused more on locating two distinct sensation

regions along the hand using two separate electrode pairs rather

than locating two pairs that evoked single-finger sensations. In

doing so, this study explored whether tactile information can

be delivered using two stimulation channels to portray the grasp

forces at two distinct regions of the hand during active prosthetic

use. Our earlier study has shown that evoked sensations can

range from a single finger quadrant to multiple fingers [23].

Overall, the location of the electrode grid relative to the median

and ulnar nerves as well as the stimulation intensity can alter

the specificity of stimulation regions. Nonetheless, the issue of

specificity in the current study is a limitation that we need to

address in the future with alterative electrode grid configurations

and stimulation patterns.

In cases where nerve stimulation may be affected by ampu-

tation level, non-somatotopic strategies may provide prosthetic

users with sensory information by targeting cutaneous recep-

tors on the skin surface. Although dissimilarity in sensation

modality and location initially affects cognitive cost, recent non-

somatotopic strategies can evoke beneficial percepts describing

grasp force and finger aperture [34], [35]. Increased practice

can improve their intuitiveness, allowing users to become better

acquainted with the evoked sensations. Studies have shown that

training can improve the perceptibility of a stimuli’s strength
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and location [36] and lead to intuitive discrepancy of these

sensations when compared to somatotopic approaches, [37].

Non-somatotopic strategies can also provide more flexibility as

different tactor types can be applied to various regions depending

on the amputation level or the sensory acuity of an individual’s

residual limb. In addition, a greater number of stimulation sites

may convey more information that allows more complex object

recognition tasks, if cognitive cost can be alleviated.

V. CONCLUSION

In conclusion, this study shows that transcutaneous nerve

stimulation can elicit tactile percepts, enabling object size and

shape recognition during the closed-loop control of a prosthetic

hand. Evoked tactile feedback could be effectively integrated

with both position and velocity controllers, leading to successful

perception of object shape and size. A greater success in object

size recognition during position control indicates that intrinsic

proprioceptive cues may also assist during size recognition.

The non-invasive nature of this approach provides a platform

to characterize the differences in the intricate action-perception

coupling during assistive device utility. Our findings also help

us to understand the interactions between the motor and sensory

modules of current prosthetic systems, which can help improve

assistive device designs.
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