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Abstract—With graph-structured tremendous information,
Knowledge Graphs (KG) aroused increasing interest in aca-
demic research and industrial applications. Recent studies
have shown demographic bias, in terms of sensitive attributes
(e.g., gender and race), exist in the learned representations
of KG entities. Such bias negatively affects specific popu-
lations, especially minorities and underrepresented groups,
and exacerbates machine learning-based human inequality.
Adversarial learning is regarded as an effective way to alleviate
bias in the representation learning model by simultaneously
training a task-specific predictor and a sensitive attribute-
specific discriminator. However, due to the unique challenge
caused by topological structure and the comprehensive re-
lationship between knowledge entities, adversarial learning-
based debiasing is rarely studied in representation learning in
knowledge graphs. In this paper, we propose a framework
to learn unbiased representations for nodes and edges in
knowledge graph mining. Specifically, we integrate a simple-
but-effective normalization technique with Graph Neural Net-
works (GNNs) to constrain the weights updating process.
Moreover, as a work-in-progress paper, we also find that the
introduced weights normalization technique can mitigate the
pitfalls of instability in adversarial debasing towards fair-and-
stable machine learning. We evaluate the proposed framework
on a benchmarking graph with multiple edge types and node
types. The experimental results show that our model achieves
comparable or better gender fairness over three competitive
baselines on Equality of Odds. Importantly, our superiority
in the fair model does not scarify the performance in the
knowledge graph task (i.e., multi-class edge classification).

1. Introduction

Representation learning on Knowledge Graph (KG),
composed of entities(nodes) and relations(edges), has drew
tremendous attention [1], [2], [3] and has been applied to
a wide range of applications, such as information extrac-
tion [4], recommending systems [5], and semantic pars-
ing [6]. With the diverse usage of KG in many areas,
fairness in data mining in KG has become a considerable
issue. A biased model may hurt specific groups, especially
the underrepresented subpopulations (in terms of gender,

age, race, ethnicity, etc.) [3]. The machine learning model
represents training data, while some data is biased due to
historical issues. Besides, the training algorithm and train-
ing process can also amplify such bias already present in
the data [7]. Many researchers on algorithmic fairness try
to define and remove the bias in existing machine learn-
ing applications. Adversarial learning is a widely used in-
processing method for mitigating bias in models [8], which
is called adversarial debiasing. The adversarial debiasing
framework usually consisted of a predictor for task-based
prediction and a discriminator to recognize the sensitive
attributes. For example, we want to predict the opportu-
nity of university admission (i.e., target variable) given a
student’s application materials (i.e., input variable). In this
process, we want to prevent the opportunity of admission
affected by demographic information such as gender (i.e.,
sensitive attributes). The predictor network tries to predict
the target variable given the input variable. In contrast,
the discriminator tries to predict sensitive attributes given
the underlying representation in the predictor. The goal of
adversarial debiasing is to maximize the predictor’s ability
to predict the target of interest while minimizing the dis-
criminator’s ability to predict sensitive attributes. Ideally, the
predictor is completely fair when the discriminator cannot
predict sensitive attributes. However, the practical training of
adversarial learning is challenging due to non-convergence
and instability [9]. In other words, it is hard to train a model
to always converge into an equilibrium that both have a
good performance on target predicting while keeping a good
fairness metric.

Adversarial learning, including adversarial debiasing, is
inherently unstable since two competing networks are train-
ing simultaneously. To solve this problem, some practical
techniques have been proposed to solve this instability of
adversarial debiasing. It’s found skew data distribution of
sensitive attributes largely exacerbated the training instabil-
ity [10]. For example, a machine learning model trained on
a dataset with 80% males and 20% females will probably
be unfair in terms of gender. [10] preprocessed the training
data by manually choosing a subset dataset with a balanced
distribution of the sensitive attributes. The results are much
more stable compared to no preprocessing training, however,
with a great sacrifice to performance. [11] forced the training
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process to converge into a stable line by decreasing the
learning rate of the predictor with a step counter. However,
this method is very sensitive to parameter tuning, and it is
hard to guarantee that the model converges into a point with
both good performance and fairness metrics among different
runnings.

To address the unfairness and instability in knowledge
graph representation learning, we propose a framework
with an adversarial debiasing module while regularizing
the weights in the training process by spectral normal-
ization. On the one hand, integrating with an adversarial
debiasing module (i.e., predictor) can effectively reduce the
sensitive information leakage in representation learning. On
the other hand, adversarial training suffers from instability
and non-converge issue due to its intrinsic characteristics
(e.g., gradient exploding and gradient vanishing) [12]. We
apply spectral-based weights regularization on the weights
in graph message passing to achieve the trade-off between
equality and stability. We evaluate the proposed framework
on a simple yet popular knowledge graph in a link prediction
task and assess the performance, equality, along with stabil-
ity. Compared to three competitive baselines, our framework
achieves superior model fairness with comparable (if not
better) performance and more stable results.

In summary, we list the key contributions in this work
as follow:

• To the best of our knowledge, this work is in the first
batch of studies addressing the adversarial debiasing
instability in knowledge graph data mining.

• We introduce a simple-but-effective weight normal-
ization to smooth the training of graph representation
learning, achieving the win-win of model fairness
and training stability.

• We evaluate the proposed framework in a link pre-
diction task over a benchmarking knowledge graph
Compared with three baselines, our framework ob-
tained better fairness (Equality of Odds) and higher
stability without scarifying task performance.

The remaining of this paper is organized as follows.
Section 2 describes related works on fairness, adversarial
learning, and stability. Section 3 introduces the preliminary
of knowledge graph and machine learning fairness, and we
define our problem formulation in this section. In section
4, we describe the structure of our new method for fair and
stable adversarial debiasing in the knowledge graph. We put
the experiment setup and results in section 5. We discuss
our limitations in section 6. Finally, section 7 presents the
conclusion.

2. Related Work

2.1. Fairness in Machine Learning

Many definitions have been proposed to measure how
fair a model is. The topic of machine learning fairness is
rapidly developing which leads to a wide range of met-
rics. A model satisfies Demographic Parity if the model is

independent of sensitive attributes [13]. A model satisfied
Equality of Odds if the model is conditional independent
of sensitive attributes given the ground truth label [14].
Equality of Opportunity is similar to Equality of Odds.
A model is conditional independent of sensitive attributes
given target equals to some specific value [15]. However,
most of these metrics are considered in binary classification.
[16] presented an approximate unfairness measurement that
extends the demographic parity definition to multi-class
classification. Counterfactual fairness is fairness definition
based on causal inference to make fair decision towards
individual [17]. [18] proved that removing the sensitive
attributes in training data will not generate a fair model
since some other attributes may correlate with the sensitive
attributes. Methods of calibrating biased models are classi-
fied into three types: pre-processing [19] [20], in-processing
[21] [22], and post-processing [23] [24].

2.2. Adversarial Learning

Adversarial learning is well known for its wide use in
computer vision for generating realistic images [12] [25]
[26] [27]. It is also a very effective and popular in-processing
method to increase the fairness of a machine-learning model
[28]. [10] applied adversarial learning to fair classification
to achieve equality of opportunity. [11] is the first work
to prove the correctness of achieving demographic parity,
equality of odds, and equality of opportunity in adversar-
ial debiasing. They also imported a novel idea that using
a projection term in training. [29] advocated adversarial
learning for fair and transferable representations. [30] de-
signed a method that makes minibatch samples as diverse as
possible to boost the effectiveness of adversarial debiasing.
[31] applied adversarial debiasing on counterfactual fairness.
[32] [2] [33] used adversarial debiasing to eliminate the
bias in GNNs. [3] analyzed potential bias in knowledge
graph and applied adversarial debiasing to mitigate bias in
knowledge graph embeddings. The difference between [3]
and our work is that they assume model is perfectly fair
when discriminator reach random prediction on protected
attributes. This assumption is weak in many cases. In this
work, we employ equality of odds as fairness metrics to
measure the exact fairness level of our model.

2.3. Stability

The definition of stability is different in literature. For
example, stability definition in [34] [35] refers to model
robustness with respect to variations in the training dataset;
stability in [36] refers to robust to structural perturbations
of a graph; [37] [38] focuses on the stability of hyper-
parameter changes in GANs. [9] [2] [11] defines the stability
as the stable converge procedure and small fluctuation after
converge in adversarial debiasing. [2] tries to solve the non-
convergence issue with a covariance constraint, and [11]
forces the model to converge with decreasing learning rate.
We refer the stable convergence to intra-running stability.
In contrast, we consider inter-running stability by the stable
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optimal across different runnings (in identical experimental
setups). In our paper, we focus on the inter-running stability,
the variance among different experiments.

3. Preliminary and Problem Formulation

3.1. Knowledge Graph

Knowledge Graph G = {V, E} is a graph contains a set
of nodes v ∈ V and edges e ∈ E of various types. We use
euv to denote an edge e = r(u, v) which connects node u
and node v. The nodes u, v have node types β1,β2, respec-
tively. The B denotes the set of node types: β1,β2 ∈ B.
We set |B| = 2 for simplification while acknowledge that
the set B can be easily expanded to multiple node types.
We denote the set of edge relations/types as R where the
specific edge type r ∈ R : β1 × β2 → {true, false}. We
denote the feature of node v as xv ∈ X while the label
of edge e’s as y ∈ Y . We define the sensitive attributes
zuv ∈ Z of an edge equals to the sensitive attributes from
its end nodes u or v (stored in node features xu or xv).
In this work, we consider to protect the sensitive attributes
in edge prediction task in the context of knowledge graph
representation learning.

3.2. Fairness

Suppose we have a classifier f : x → y and a dataset in
format (x, y, z). In which, x denotes the input variable, z ∈
{0, 1} denotes the binary sensitive attribute, y ∈ {1, ..., k}
denotes the sample label. Generally, the z is an demographic
attribute in x, such as gender, race, or zip code. We use
equality of odds [15] as metrics for fairness evaluation. Here
are the definitions.

Definition 1. (Equality of Odds). A classifier f satisfies
equality of odds if the predictions ŷ and sensitive attributes
z are independent given label y. For the binary sensitive
attribute z, the definition can be written as:

P (ŷ|z = 0, y) = P (ŷ|z = 1, y) (1)

As an intellectual innovation, we define the fairness mea-
surement of equality of odds for multi-class classification
that expanding the idea of [16] on demographic parity [39].

Definition 2. (Multi-class Fairness Measurement). We
measure the approximate fairness of equality of odds. For
binary sensitive attribute z and multiple classes of y, the
definition can be written as:

∆eo = max
i∈{1,...,k}

{(∣∣P (ŷ = i|y = i, z = 0)

− P (ŷ = i|y = i, z = 1)
∣∣
)
+

(∣∣P (ŷ %= i|y %= i, z = 0)

− P (ŷ %= i|y %= i, z = 1)
∣∣
)}

(2)
where classifier f is perfectly fair on binary sensitive

attribute z if ∆eo = 0.

3.3. Stability

In this work, we consider inter-running stability which
is measured by the standard deviation. Particularly, we run
the experiment multiple times with identical setups and
calculate the standard deviation for all evaluation metrics
such as accuracy and equality of odds. The instability of a
machine learning model is mainly caused by three aspects:
1) different dataset split; 2) diverse parameter initialization;
3) varying converge points in the gradient descending (i.e.,
model optimization) in different runnings. The third factor
is the key and unique challenge brought by adversarial
debiasing. To evaluate the ability of our model in learn-
ing stable representations, we control variables in multi-
ple experimental runnings. By identical setups, we mean
that we fix the dataset split (i.e., exactly the same set of
training/testing samples are used in different runnings) and
random initialization states (i.e., the initialization of models
parameters are identical). In such case, the inter-running
variations are solely caused by the fundamental property
of adversarial model.

3.4. Problem Formulation

Suppose we have a knowledge graph G = {V, E}. All
the notations are defined in section 3.1. We aim to learn
a fair and stable function f(G,X ,Z) → Ŷ for multi-class
edge classification task, where Ŷ is a set of predicted labels
for unlabeled edges. Our goal is to maximize model fairness
(evaluated equality of odds ∆eo) and inter-running stability
without scarifying model performance of f . The smaller
∆eo denotes the better fairness. Thus, we minimize ∆eo

while maxing accuracy and AUROC.

4. Method

4.1. Overview

Figure 1 shows the framework of our method. We
present the details of our method in this section. Our model
is composed by three main components: a graph encoder
fe, a task predictor ft, and fairness discriminator fd. The
graph encoder fe is a graph neural network that takes
G as input and learns node embeddings through message
passing, aggregating, and updating. Then for each edge, we
concatenate the node embeddings of its head and tail nodes
into an edge embedding. This edge embedding is used as
input of task predictor ft to estimate edge label yuv . To
force fe and ft learning fair edge representation, we add a
fairness discriminator fd to regularize the training of fe and
ft. Specially, fd receives hu and predicts sensitive attributes
ẑuv , where hu is a node embedding that contains latent
sensitive information. Loss of fd will be used to update
the parameters in fe and ft. The fd paves fe and ft’s
parameters to move in a direction that will fool fd when
doing optimization with gradient descent. Furthermore, we
apply spectral normalization on weights of fe to improve the
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Figure 1: Framework of the proposed model. Graph encoder fe receives a knowledge graph G = {V, E} and generates the
node embeddings hu,hv ∈ H for each node. Spectral normalization is applied on fe’s weight. Every node u, v ∈ V has a
corresponding node attributes xu,xv , respectively, where u, v stand for different types of node. For each edge euv ∈ E , we
concatenate the node embeddings hu,hv into an edge embedding [hu : hv]. Task predictor ft takes the edge embedding
[hu : hv] as input to predict edge labels ŷuv . Meanwhile, for some nodes that contains latent sensitive information, their
node embedding hu is used as input for fairness discriminator fd to predict sensitive attributes ẑuv , such as gender. Both
task predictor and fairness discriminator are fully connected networks but can be straightforwardly switched to other neural
architectures upon necessity.

fairness and stability. Spectral normalization is a method that
was initially proposed to stabilize the training of discrim-
inato in Generative Adversarial Networks [38]. Finally, fe
and ft are the components we will keep for fair and stable
knowledge graph edge label predicting. Notice that we use
the lowercase letter to represent a single sample input, such
as a node, an edge, or an embedding; we use the uppercase
letter to denote a set of nodes, edges, or embeddings.

4.2. Graph Encoder

The graph encoder fe takes G = {V, E} as input and
generates node embedding for each node considering topo-
logical context in knowledge graph. In this work, we adopt
the widely-used SAGE [40] as backbone to construct graph
encoder. Please note our framework can be straightforwardly
expend to any graph neural network structures when build-
ing fe. For each node v ∈ V , there is a corresponding node
features xv . Let hl

v ∈ Hl denotes the node embedding of
node v at the l-th layer of SAGE, where h0

v = xv . Let Nv

denotes the neighborhood of v; W l
v and W l

u denote weights
while σl denotes activation function of layer l. We do not
apply activation function for the output layer. The updating
of node embedding at layer l (expect output layer) in SAGE

can be written as:

hl+1
v = σl(W l

v · hl
v +W l

u · 1

|Nv|
∑

u∈Nv

hl
u) (3)

Since the input is a knowledge graph (heterogeneous
graph), we take the existing SAGE model and duplicates
the message functions to work on each node and edge types
individually [41]. In other words, we use different Wv and
Wu for each node type.

In short, we denote the operation in graph encoder, i.e.,
the learning process of a node v, as:

hv = fe(v,Nv) (4)

The set of node embedding H for all nodes in G can be
written as:

H = fe(G) (5)

4.3. Task Predictor

The task predictor ft receives the edge embedding as
input and predicts the edge label. For each edge euv ∈ E , we
build edge embedding [hu : hv] for edge euv by concatenat-
ing the corresponding source and target node embeddings.

904

Authorized licensed use limited to: The Ohio State University. Downloaded on August 29,2023 at 03:02:23 UTC from IEEE Xplore.  Restrictions apply. 



We feed the edge embedding [hu : hv] to ft and predict
edge label ŷuv ∈ Ŷ through:

ŷuv = ft([hu : hv]) (6)

In this work, we use two layers of fully-connected layer as
ft for simplify. The users are feel to modify it to suit their
datasets and scenarios as needed.

At the dataset level, we calculate the set of predicted
labels Ŷ for all edges in G as:

Ŷ = ft(concat(H)) (7)

where concat means concatenating node embeddings into
edge embeddings.

4.4. Fairness Discriminator

For each edge euv ∈ E , we assume there exists latent
sensitive information in at least one of its end node (take
u as an example in the following description). The fairness
discriminator fd uses hu, the node embedding that contains
latent sensitive information, as input to predict sensitive
attributes. Usually, fd can predict sensitive attributes be-
cause fe and ft learn biased representation from knowledge
graph. Ideally, fd would have very poor ability in sensitiv-
ity prediction if fe and ft are completely independent of
sensitive attributes. In the adversarial training process, fe
and ft try to learn a representation contains no information
about sensitive attributes, while fd try to predict the sensitive
attributes from the node embedding hu.

In order to measure the equality of odds in downstream
procedures, we need to feed the edge label into discrimina-
tor. The predicted sensitive attributes ẑuv ∈ Ẑ for edge eu,v
can be measured by:

ẑuv = fd([hu : yuv]) (8)

where hu and yuv are concatenated into one feature vector.
The set of predicted sensitive attributes Ẑ for all edges

in G can be written as:

Ẑ = fd(concat(Hu,Y)) (9)

where concat means concatenating each hu ∈ Hu with its
corresponding edge label yuv ∈ Y .

4.5. Spectral Normalization

Spectral normalization is a widely used technique ap-
plied on GANs to stabilize the training process and improve
the image quality [38]. [37] proved it controls two important
failure modes of GANs training: exploding and vanishing
gradients.

Suppose there is a linear layer g(h) = Wh in a fully
connected network. W is the weight matrix. The spectral
norm τ(W ) of the matrix W can be written as:

τ(W ) = max
h "=0

||Wh||2
||h||2

(10)

which is equivalent to the largest singular value of W . The
|| · ||2 denotes L2 norm.

By definition, Lipschitz constant ||g||Lip is given by [38]:

||g||Lip = sup
h

τ(∇g(h)) = sup
h

τ(∇(Wh))

= sup
h

τ(W ) = τ(W )
(11)

where sup denotes supremum, and ∇ denotes gradient.
Spectral normalization normalizes the weight matrix W

of g by its spectral norm τ(W ):

Ŵ = W/τ(W ) (12)

where Ŵ is the weight matrix after normalization. Now
τ(Ŵ ) = 1 and ||g||Lip = 1. In general case, spectral
normalization bounds the Lipschitz constant of a linear
function by 1.

We implemented spectral normalization on the weight
of fe to explore how it affects the fairness and stability for
our edge label prediction model. Specifically, We normalize
W l

v and W l
u in equation 3 for each layer l of fe:

Ŵ l
v = W l

v/τ(W
l
v) (13)

Ŵ l
u = W l

u/τ(W
l
u) (14)

where Ŵ l
v and Ŵ l

u are the weight matrix of layer l after
normalization.

4.6. Optimization

According to the definition of fairness metrics, fe and
ft achieve perfect equality of odds if they are independent
of sensitive attributes Z when given ground truth label Y .
We follow the implementation of adversarial debiasing as
demonstrated in [11]. Equality of odds can be achieved by
giving fd the edge label Y and Hu.

We use cross-entropy loss L for the training of graph
encoder fe and task predictor ft. The loss function for edge
label Y prediction is defined as L(ft(fe(G)),Y). To avoid
the training instability caused by unbalanced data distribu-
tion with respect to sensitive attributes Z , we use weighted
cross entropy loss Lw for training fairness discriminator fd.
Weight assigns to a label class is inversely proportional to
a class percentage of the total number of samples. The loss
function for sensitive attributes Z prediction is defined as
Lw(fd(Hu,Y),Z).

The goal of optimization is to maximize fe and ft’s
ability in predicting edge labels while minimizing the fd’s
ability in predicting sensitive attributes. For equality of odds,
the training process is denoted as:

arg min
fe,ft

L(ft(fe(G)),Y)− αLw(fd(Hu,Y),Z)

arg min
fd

Lw(fd(Hu,Y),Z)
(15)

The training is iteratively performed between fe, ft and
fd. The coefficient α is used to control how much fd hurts
fe and ft if sensitive attributes are predictable by fd. In
other words, it controls the trade-off between edge label
predicting ability and fairness.
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TABLE 1. The Comparisons with Baselines. For equality of odds difference, the smaller the better; for inter-running
statbility, the smaller the better.
Final Result (Test result of final epoch)

Methods Accuracy (%) AUROC (%) Equality of Odds Difference ∆eo(%) Inter-running Stability (%)
EP 40.11± 1.59 56.33± 2.23 10.29± 1.76 1.76
AD 41.74± 0.28 57.74± 2.99 8.42± 1.31 1.31

WN-AD 40.93± 0.85 57.07± 1.70 7.74± 2.45 2.45
SP-AD 41.53 ± 0.16 58.67 ± 2.49 7.92 ± 0.73 0.73

Best Result (Best fairness result when accuracy > 40%)
Methods Accuracy (%) AUROC (%) Equality of Odds Difference ∆eo(%) Inter-running Stability (%)

EP − − − −
AD 41.64± 0.19 57.88± 3.39 6.07± 0.79 0.79

WN-AD − − − −
SP-AD 41.50 ± 0.23 58.85 ± 2.32 5.32 ± 0.39 0.39

5. Experiments

In this section, we provide the details of dataset, ex-
perimental setup, baselines, and comparison results. We use
Pytorch Geometric (PYG) [41] in model implementation.

5.1. Dataset

5.1.1. Knowledge graph. We run experiments on the
MoiveLens 100K dataset [42] which is benchmark in rec-
ommendation system. Here we use it to build a simple but
typical knowledge graph. In the knowledge graph, we have
two types of nodes and five types of edges. Each edge
connects a user node and a movie node, denoting the user’s
rating to a movie. The five types of edges correspond to five
ratings (1-point to 5-point). In summary, our graph contains
2625 nodes (including 943 users and 1682 movies) and
100,000 edges (rating score 1, 2, 3, 4, and 5 for the five edge
types, respectively. Each user has rated at least 20 movies.
Besides, there is also some demographic information for
the users, such as age, gender, occupation, and zipcode. The
feature dimension for the user node is 815, and for the movie
node is 403 after processing. We used the HeteroData class
in the PYG package to store KG.

5.1.2. Data Preprocessing. The following are the details
for dataset cleaning and preprocessing. We clearn movie
attributes and user attributes before storing them as nodes
in HeteroData class. For movie attributes, SentenceTrans-
former with model name ”all-MiniLM-L6-v2” was used to
convert the title attribute into tensors. We use categorical
attributes, occupation, zip code, binary attributes, gender,
and dropped age attributes. Then we store all movie and
user attributes tensors into HeteroData to represent movie
and user nodes information.

The relations between user and movie nodes are ratings
from 1 to 5 points. We dropped the timestamp attributes
and stored the relations as edges into HeteroData. One edge
is in the form of two indexes (from user to movie) and
a label(rating). The user and movie ID in original dataset
starts from 1, while our index to store user and movie nodes
starts from 0. We need to shift the user and movie ID by 1
when we store ratings as edges into HeteroData.

For easier message passing, we add reverse edges by us-
ing function ToUndirected() in torch geometric.transforms.
We deleted the label for these reverse edges since they are
useless. RandomLinkSplit() in torch geometric.transforms
is used to split the data into training and test set
in 8:2 ratio. We fix the random split seed by using
torch geometric.seed everything() function and set the seed
to 2. To measure the gender bias in our model, we need to
further split the test set into male test set and female test
set by gender attribute. Gender attribute is stored in the user
nodes, and we need to look at the user node on each edge.
For example, suppose we have an edge (27, 133) with label
3, which means 27th user node rates 3 on 133th movie
node. We manually put this edge into the male test set
if the user node gender is male, and vice versa. Finally,
we have a knowledge graph with 943 user nodes with 815
feature dimensions and 1682 movie nodes with 403 feature
dimensions. There are 80000, 14954, and 5046 edges in
training, male test, and female test set.

5.2. Experimental setup

5.2.1. Baselines. We compared our method with three
baselines: edge predictor (EP), adversarial debiasing (AD),
Weighted Normalization on fe (WN-AD).

• EP : This is a knowledge graph edge predictor. It
only has graph encoder fe and task predictor ft.
In other words, it is a normal data mining method
over knowledge graph which is not equipped with
debiasing strategy.

• AD: This is an adversarial debiasing architecture in-
cludes a predictor for prediction and a discriminator
for bias removal. It contain graph encoder fe, task
predictor ft and fairness discriminator fd.

• WN-AD: Besides all we have in AD, this method
apply weighted normalization on fe.

The difference between our model SP-AD and WN-AD is
that we apply spectral normalization while WN-AD uses
weighted normalization. We want to see the comparisons
with other commonly used normalization methods. Note
that the comparison with baseline also can serve as ablation
study of our framework.
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5.2.2. Evaluation Metrics. We focus on three aspects of
the model: performance, fairness and stability.

• Performance metrics: We report accuracy and AU-
ROC (Area Under ROC Curves) to evaluate the
performance of edge label prediction. The higher
accuracy and AUROC denote better performance.

• Fairness metrics: We measure the fairness through
equility of odds as defined in section 3.2. The
smaller ∆eo, the more fair model. The model is
perfectly fair when ∆eo = 0.

• Stability metrics: We assess the inter-running sta-
bility of fairness by standard deviation across mul-
tiple independent runnings. In particular, we run the
experiment ten times with identical experimental re-
sults (the data split, hyper-parameters, and parameter
initialization are fixed across different runnings) and
calculate the standard deviation for ∆eo.

5.2.3. Implementation Details. We use two layers of
SAGE to construct the graph encoder fe. Since we are
training on a knowledge graph with two types of nodes,
we use lazy initialization that sets the input tuple as (-
1,-1) to deal with different dimensions of node attributes.
Both task predictor ft and fairness discriminator fd are
constructed by two layers of fully-connected neural layers.
For ft, the input dimension is two times of the dimension
in fe because each edge embedding is concatenated by two
node embeddings. The output of edge predictor is a 5-class
label ŷuv ∈ {1, ..., 5}, so the output dimension is 5. For fd,
it needs to take the node embedding hu and y as input to
calculate equality of odds. Since edge labels are encoded in
one-hot format, the input dimensions should be the dimen-
sion of hu plus five. We use ReLU as activation function
in all hidden layers. We apply spectral normalization on all
layer’s weights in fe. In preliminary experiments, we tried
to apply spectral normalization to ft and fd, but resulting
to performance degradation.

In table 2, SG stands for SAGE layer, and FC stands for
fully connected layer, EO stands for equality of odds, and
SP stands for spectral normalization.

TABLE 2. Model Architecture
Components Architecture

fe SP(SG((-1,-1), 32)), ReLU, SP(SG((-1,-1),32))
ft FC(2*32, 32), ReLU, FC(32,5), Softmax
fd FC(32+5, 32), ReLU, FC(32,1), Sigmoid

To fix the parameter initialization, we set the random
seed to 0 by function torch.manual seed(). We use Adam
optimizer to minimize the loss for fe, ft, and fd. The
learning rates for fe and ft are set as 0.005 while the
learning rate for fd is 0.001. We fix the hyper-parameter
α to 0.5. We iteratively minimize the loss of fe, ft and fd.
In particular, we fix fd while minimizing one epoch for fe
and ft, then fix fe and ft while minimizing twenty epochs
for fd. We assume the model is converged into equilibrium
when test accuracy does increase. The number of required
epochs to converge vary when different methods and fairness

metrics are applied. In this case, we choose the number
of epochs that guarantee converge of model (either our
model or baselines). In other words, the stopping criterion
is precisely defined for each model for fair comparison. Be
aware that the number of epochs here refers to the epoch
number that minimizes fe and ft; the epoch number of fd
should be 20×, as mentioned before. As a result, we set
2000, 2000, 5000, 4000 epochs for EP, AD, WN-AD and
SP-AD. The epoch number is the only variant among the
setups of different methods.

5.3. Results

Table 1 shows the results for overall comparisons. SP-
AD is our proposed method: adversarial debiasing with
spectral normalization. We report results from two aspects:
the final result and the best fairness result. The final results
mean the test results using the model saved at the last
training epoch. For the best fairness results, the model is
saved under early-stop criterion. In specific, we store the
model parameters that achieve an accuracy larger than 40%
while obtaining the best ∆eo among all training epochs.
We choose 40% as the threshold because the best accuracy
among all methods we achieved is around 42%. We think
2% of accuracy sacrifice is an acceptable value for the trade-
off between performance and fairness. Recall that we run
the experiment 10 times with all setups the same except
training epochs, and each running has a final result and the
best fairness result. We calculate the standard deviation for
all results to calculate the inter-running stability.

For the final result, our method achieves 0.73 inter-
running stability, which is the best result compared with
baselines (i.e., smaller than other baselines). Our method
beats EP on all the metrics, including accuracy, AUROC,
∆eo, and inter-running stability. Our method’s ∆eo is better
than AD on both value and stability while keeping almost
the same accuracy and even better AUROC. The ∆eo of
WN-AD is slightly better (0.18%) than our method, but
it strongly sacrifices the accuracy and ∆eo stability. Our
method obtains 0.6% higher accuracy and 1.72% less insta-
bility than WN-AD.

In terms of best result, we only report for AD and SP-
AD because the other two methods do not always have a
result with accuracy > 40%. Some running results only have
accuracy around 38.5% even when the model converges.
We believe the reason is the local minimum issue. In other
words, AD and SP-AD are better methods to achieve ac-
curacy than EP and WN-AD. For comparison between AD
and SP-AD, our method has better results on AUROC, ∆eo,
and inter-running stability while keeping almost the same
accuracy level.

6. Discussion

As a work-in-progress paper, our method has some
limitations. First, we only test our method on Movielens
100K, which is a simple knowledge graph that only has
two types of nodes and five types of edges. The unfairness
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in this knowledge graph is not that huge, even with a pure
classifier (no fairness calibration). It is hard to demonstrate
the effectiveness of our method with smaller unfairness. Sec-
ond, we only compare with one baseline related to weight
normalization. It’s a promising future work that comparing
with more baselines with some GNN normalization methods
(such as GraphNorm [43]). Third, we consider a single
sensitive attribute (gender) in this work, while multiple
biases could be involved simultaneously (e.g., gender and
age and ethnicity) in the real world.

7. Conclusion

In this paper, we present a high-performance and sta-
ble method for unbiased knowledge graph representation
learning. We use adversarial learning to remove sensitive
information in an edge classification task. Our model con-
sists of a node encoder, an edge decoder, and a fairness
discriminator. We learn a representation jointly using node
encoder and edge decoder while the fairness discriminator
can hardly predict sensitive attributes based on learned
representation. Aiming to alleviate the inter-running insta-
bility of fairness, we integrate spectral normalization with
graph neural network to regularize the weights in messaging
passing and integration. Comprising with several baselines,
our experimental results show that our framework achieves
good fairness and better stability while keeping comparable
(if not better) edge classification performance. For future
work, we will work on a model that also guarantees good
intra-running stability on fairness, which basically means the
converge curve of the equality of odds will be more smooth
within the same running.
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