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Abstract: In this paper, we propose a parsimonious reduced-rank linear discriminant

analysis model for high-dimensional sparse multi-class discriminant analysis. We

construct a sparse dimension reduction subspace to contain all the information

necessary for a linear discriminant analysis. We show explicitly the connections

between our model and two well-studied models in the literature: the principal fitted

component model in sufficient dimension reduction, and the multivariate reduced-

rank regression model. The likelihood-inspired efficient estimator is then recast

from a convex optimization perspective. A doubly penalized convex optimization is

proposed to unite sparsity and low-rankness in high dimensions, and is then solved

efficiently using a three-operator splitting algorithm. We establish the rank selection

consistency and classification error consistency of the proposed method when the

number of variables grows very fast with the sample size. The effectiveness of the

proposed method is demonstrated by means of extensive simulation studies and an

application to facial recognition data sets.

Key words and phrases: Dimension reduction, discriminant analysis, linear discrim-

inant analysis, nuclear norm penalty, variable selection.

1. Introduction

High-dimensional linear discriminant analysis (LDA) methods have been

widely studied and applied (e.g., Bickel and Levina (2004); Cai and Liu (2011),

Shao et al. (2011); Mai, Zou and Yuan (2012)). We consider multi-category classi-

fication with K ≥ 2 classes, where an LDA can identify at most K−1 linearly in-

dependent discriminant directions. When the dimension of the subspace spanned

by all discriminant directions is less than K−1, this is known as the reduced-rank

LDA problem (Hastie, Tibshirani and Friedman (2009, Chap. 4.3.3)). There are

two popular approaches to this problem. The first approach includes methods

such as the penalized LDA (Witten and Tibshirani (2011)) and sparse optimal

scoring (Clemmensen et al. (2011)). These methods are high-dimensional ex-
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tensions of Fisher’s view of the LDA and an optimal scoring formulation of the

LDA, respectively. Specifically, these methods implicitly handle the low-rankness

using a sequential estimation of sparse discriminant directions. The second class

of methods, such as those of Hao, Dong and Fan (2015) and Niu, Hao and

Dong (2018), rely on a principal component analysis. Here, the low-rankness

is achieved by selecting the first several principal directions as the discriminant

directions (Niu, Hao and Dong (2018)) or by a rotation of the data (Hao, Dong

and Fan (2015)). However, these methods do not impose sparsity on the original

predictors. In addition to these statistical approaches, reduced-rank LDA meth-

ods and algorithms are gaining substantial attention in engineering applications

(e.g., Ye and Li (2005)), where a probabilistic explanation is highly desirable.

In this paper, we first introduce a model-based interpretation for the reduced-

rank LDA problem. The low-rankness is formally stated as a unique low-dimens-

ional subspace, the maximum likelihood estimator of which motivates our re-

parameterization of the target parameters, leading to an efficient convex formu-

lation. We then solve a penalized quadratic convex optimization using a three-

splitter operator algorithm, which is guaranteed to reach the global minimum.

To provide further insight into reduced-rank discriminant analysis, we discuss

how low-rankness arises naturally in the settings of ordinal classification (McCul-

lagh (1980); da Costa, Alonso and Cardoso (2008); da Costa, Sousa and Cardoso

(2010); Qiao (2015)) and response category combination (Price, Geyer and Roth-

man (2019); Wen and Koppelman (2001)).

The model-based interpretation and maximum likelihood estimator of the

low-dimensional subspace are connected to the principal fitted components model

(Cook and Forzani (2008)) in sufficient dimension reduction and to the reduced-

rank regression (Anderson (1951); Izenman (1975); Stoica and Viberg (1996))

in a multivariate linear model. By exploiting such connections, we can easily

derive the maximum likelihood estimator of the low-dimensional subspace under

the LDA model when the dimension of the predictor p is smaller than the sample

size n. Given the true rank d, the maximum likelihood estimator is obtained from

the first d eigenvectors of a symmetric p × p matrix, with rank at most K − 1.

Based on this observation, we augment the low-dimensional subspace parameter

into an overparameterized and rank-deficient matrix of dimension p×K. Without

prespecifying the rank, we estimate this rank-deficient matrix parameter in high

dimensions using a nuclear norm penalization.

Convex formulations and convex relaxations of classical multivariate analy-

sis and dimension reduction methods prevail in high-dimensional settings. Our

approach differs from the convex relaxation of a sparse principal component anal-
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ysis (Vu et al. (2013)), sparse canonical correlation analysis (Gao, Ma and Zhou

(2017)), or sparse sliced inverse regression (Tan et al. (2018); Tan, Shi and Yu

(2020)). In these convex relaxation approaches, the rank or dimensionality is pre-

specified and incorporated into the optimization constraints. Then, the optimiza-

tion is over p× p symmetric matrices, subject to constraints (e.g., the parameter

space of the optimization includes projection matrices onto d-dimensional sub-

spaces). Unlike these approaches that augment the d-dimensional subspace as

p × p-dimensional matrices, our approach is much more direct. Instead of op-

timizing over subspaces, orthogonal basis matrices, or projection matrices, we

optimize directly over an unconstrained p × K-dimensional matrix parameter.

This leads to a much cheaper computation that scales better with large p.

Our approach is also an extension of the multi-class sparse discriminant anal-

ysis method of Mai, Yang and Zou (2019), which does not account for potential

low-rankness, and is thus less effective when the number of classes is big. Impor-

tantly, although our quadratic objective function is similar to that in Mai, Yang

and Zou (2019), the new maximum likelihood and least squares estimation natu-

rally leads to different weights for discriminant directions, which is not accounted

for in Mai, Yang and Zou (2019). Moreover, the doubly penalized estimation

in our model is more challenging and requires a new algorithm. Our unified

approach of deriving the quadratic objective function also extends the scope of

multi-class sparse discriminant analysis from a one-versus-all parameterization to

a one-versus-one parameterization.

We adopt the following notation throughout the paper. For a vector v =

(v1, . . . , vp)
> ∈ Rp, we define the Lq-norm as ‖v‖q = (

∑p
j=1 v

q
j )

1/q, for 1 ≤ q <∞.

For a matrix A = (aij) ∈ Rp×q, let σ1 ≥ · · · ≥ σmin{p,q} denote its singular values,

and define the L2,1-norm and the nuclear norm as ‖A‖2,1 =
∑p

i=1(
∑q

j=1 a
2
ij)

1/2

and ‖A‖? =
∑min{p,q}

i=1 σi, respectively. The span of A, denoted as span(A) or

SA, is the subspace spanned by the column vectors of A. Let β ∈ Rp×r be

the orthonormal basis of the subspace S ⊆ Rp, that is, β>β = Ir. We use

PS ≡ Pβ = ββ> to denote the projection matrix onto the subspace S.

2. Reduced-Rank LDA

2.1. Model-based interpretation

We consider the multi-class classification problem for the response Y ∈
{1, . . . ,K} and the predictor X ∈ Rp. In an LDA, within each class k, the

predictor is assumed to have mean µk ∈ Rp and the common nonsingular co-

variance matrix Σ ∈ Rp×p. Let πk = Pr(Y = k) and µ ≡ E(X) =
∑K

k=1 πkµk.
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The Bayes rule φ(X) : Rp 7→ {1, . . . ,K} is the optimal classification rule in the

population, and has the following form if we assume that X | Y is normally

distributed:

φ(X) = argmax
k=1,...,K

{(
X − µk + µ

2

)>
Σ−1(µk − µ) + log πk

}
. (2.1)

From (2.1), it is clear that the K directions Σ−1(µk−µ), for k = 1, . . . ,K, preserve

all the information of X relevant to the classification. These K directions are

not linearly independent, because
∑

k πk(µk − µ) = 0. We explicitly state the

low-rankness condition as follows.

Low-rankness condition Let S ⊆ Rp be the subspace spanned by the K

discriminant directions Σ−1(µk − µ), for k = 1, . . . ,K. Then, its dimension

dim(S) = d < K − 1.

The reduced-rank LDA model is then formally presented as

Pr(Y = k) = πk > 0, X | (Y = k) ∼ N(µk,Σ),

µk = µ+ Σβηk, k = 1, . . . ,K,
(2.2)

where β ∈ Rp×d is a basis matrix of the subspace S in the low-rankness condi-

tion, that is, S = Sβ , and η = (η1, . . . , ηK) ∈ Rd×K denotes the corresponding

coordinates of the K discriminant directions Σ−1(µk − µ).

Under (2.2), the Bayes rule becomes

φ(X) = argmax
k=1,...,K

{(
X − µk + µ

2

)>
βηk + log πk

}
, (2.3)

which implies that given any observation x ∈ Rp, Pr(Y = k | X = x) = Pr(Y =

k | β>X = β>x), for k = 1, . . . ,K. In other words, the reduction of the data

from X ∈ Rp to β>X ∈ Rd is without any loss of relevant information for the

classification under model (2.2). If β is known, we can replace X with β>X, and

apply the classical LDA.

Remark 1. The parameters β and η are not identifiable, because the decomposi-

tion βη can be replaced with β̃η̃, where β̃ = βO and η̃ = O>η, for any orthogonal

matrix O ∈ Rd×d. Nevertheless, the subspace S = span(β) is identifiable and is

the key parameter of interest in model (2.2). Here, the subspace S is called

the discriminant subspace, and its basis β is called the discriminant basis. The

dimensionality dim(S) = d is called the discriminant rank. Any vector in S is

called a discriminant direction.
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The reduced-rank LDA model is closely connected to the principal fitted

component model (Cook and Forzani (2008)) in sufficient dimension reduction

and to the multivariate reduced-rank regression (Izenman (1975)). To see this,

we rewrite model (2.2) in the following equivalent form:

X = µ+ ΣβηξY + ε, ε ∼ N(0,Σ), (2.4)

where ξY ∈ RK are the indicator functions of Y . If Y = k, then the kth element

of ξY is one, and all other elements are zero. There is also an intrinsic constraint

that ΣβηE(ξY ) = 0 in (2.4). This model is exactly the principal fitted compo-

nent model when the fitting functions are chosen as the indicator functions of

Y . Hence, our discriminant subspace S is also the central subspace in the suf-

ficient dimension reduction (Cook (1998)). If we treat X as the response and

ξY as the predictor, then (2.4) becomes the multivariate reduced-rank regression

model (Izenman (1975)), and Σβη ∈ Rp×K is the rank-d regression coefficient

matrix. Such connections enable us to easily obtain the maximum likelihood

estimator for model (2.2), and further motivates our efficient convex formulation.

2.2. Efficient convex formulation for high-dimensional estimation

As discussed in Remark 1, the discriminant basis β is not identifiable, but the

discriminant subspace S is identifiable. However, optimization over the subspace

is nonconvex and expensive, in general. To facilitate a high-dimensional compu-

tation, we introduce an alternative target object B ∈ Rp×K , which is identifiable

and replaces β and S in the high-dimensional estimation.

We first consider the maximum likelihood estimator of S, which is summa-

rized in Lemma 1. Let Σ̂ = (1/n)
∑K

k=1

∑n
i=1 I(Yi = k)(Xi − X̄k)(Xi − X̄k)

>

denote the within-class covariance matrix, where I(Yi = k) takes the value one if

Yi = k, and zero otherwise, and let Σ̂b =
∑K

k=1(nk/n)(X̄k− X̄)(X̄k− X̄)> denote

the between-class covariance matrix, where X̄k is the sample mean of X in class

k, X̄ is the sample mean of X, n is the overall sample size, and nk is the sample

size for class k.

Lemma 1. Under model (2.2), the maximum likelihood estimator of S = span(β)

is Σ̂−1/2span(v̂1, . . . , v̂d), where v̂i is the ith eigenvector of Σ̂−1/2Σ̂bΣ̂
−1/2.

Based on (2.4), we can easily verify the results of Lemma 1 from previous

works (Cook and Forzani (2008); Stoica and Viberg (1996)). Lemma 1 provides

solutions to the low-dimensional reduced-rank LDA problem.

Let Û , U ∈ Rp×K , U = {π1/21 (µ1−µ), . . . , π
1/2
K (µK−µ)}, and Û be its sample

estimator. Then, Σ̂b can be rewritten as Σ̂b = Û Û>, the maximum likelihood
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estimator Ŝ = Σ̂−1/2span(v̂1, . . . , v̂d) ⊆ span(Σ̂−1Û), and in the population, B ≡
Σ−1U spans the same subspace as S. As such, we target B for the estimation of

the subspace S. Because rank(B) = d ≤ K − 1, B is overparameterized and is

estimated using rank regularization.

Following model (2.2), we can write BW = βη, where the matrix W =

diag(π
−1/2
1 , . . . , π

−1/2
K ) ∈ RK×K . Consequently, the inverse regression model (2.4)

can be rewritten in terms of B, as follows:

X = µ+ ΣBWξY + ε, ε ∼ N(0,Σ), (2.5)

where BW = βη. To avoid ambiguity of the reference to β, owing to its non-

identifiability, we henceforth refer to β as the matrix composed of the top-d left

singular vectors of B.

Inspired by the inverse regression reformulation (2.5) of the reduced-rank

LDA model, a natural way to estimate B is to use the least squares estimation

by solving the following least squares problem:

argmin
B∈Rp×K

n∑
i=1

‖(Xi − X̄)− Σ̂BŴξYi
‖22, (2.6)

where µ, W , and Σ in the inverse regression model (2.5) are replaced by their

sample estimators. Again, because B is identifiable, it is the target of the esti-

mation, and the rank constraint on B in (2.5) is yet to be imposed in the least

squares formulation (2.6). An equivalent form of (2.6) is given in Lemma 2.

Lemma 2. Assume that Σ̂ is nonsingular. Then, the least squares problem

in (2.6) is equivalent to

argmin
B∈Rp×K

1

2
tr(B>Σ̂B)− tr(B>Û). (2.7)

Based on Lemma 2, the least squares estimator of B is Σ̂−1Û , which is exactly

the plug-in estimator of B defined previously. In high dimensions, where p� n,

Σ̂ is no longer invertible, and the least squares estimator is not well defined.

However, the convex formulation (2.7), combined with penalization techniques,

provides a new way of estimating the discriminant subspace in a high-dimensional

setting.

Remark 2. Our convex formulation of (2.7) is similar to the optimization in

Mai, Yang and Zou (2019), but is motivated from an efficient likelihood-based

perspective. If we replace U = {π1/21 (µ1 − µ), . . . , π
1/2
K (µK − µ)} ∈ Rp×K with
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an unweighted one-versus-others version {(µ2 − µ1), . . . , (µK − µ1)} ∈ Rp×(K−1),
then (2.7) reproduces the objective function in Mai, Yang and Zou (2019), which

lacks a likelihood or least squares interpretation. Moreover, because of our rank

regularization, introduced later, our method allows for more flexible modifications

than those in Mai, Yang and Zou (2019). For example, we can also use a one-

versus-one parameterization to replace Û with the p ×K(K − 1)/2-dimensional

pairwise mean difference matrix.

In high-dimensional statistics, the sparsity assumption is commonly imposed

such that only a small number of variables are active in the model. Based

Bayes rule (2.1), the jth variable Xj makes no contribution to the classifica-

tion if and only if bj1 = · · · = bjK = 0, where bjk is the (j, k)th element

in the matrix B. Let A denote the index set of all active variables. Then,

A = {j | there exists k such that bjk 6= 0}, and the sparsity level is denoted as

s = |A|.
For simultaneous variable selection and rank shrinkage, we propose the fol-

lowing doubly penalized convex optimization:

B̂ = argmin
B∈Rp×K

1

2
tr(B>Σ̂B)− tr(B>Û) + λ1||B||2,1 + λ2||B||?, (2.8)

where λ1 > 0 and λ2 > 0 are tuning parameters. The L2,1-norm penalty

‖B‖2,1 (Yuan and Lin (2006)) and the nuclear norm penalty ||B||? have been

applied in many regularized regression and classification problems (see Roth and

Fischer (2008); Meier, Van De Geer and Bühlmann (2008); Yuan et al. (2007);

Zhou and Li (2014)). After we obtain B̂ from (2.8), the estimated discriminant

rank d̂ follows directly from Algorithm 1, introduced in the next section. Then,

by a singular value decomposition of B̂, the discriminant basis estimator is de-

fined as β̂ = (β̂1, . . . , β̂d̂), where β̂k is the left singular vector of B̂ corresponding

to the kth largest singular value. In addition, the active set can be estimated

as Â = {j | there exists k such that b̂jk 6= 0}. Once we obtain the estimated

discriminant basis β̂, we perform the classification on the reduced d̂-dimensional

data β̂>X, that is, (2.3).

2.3. The algorithm

One common way to solve the doubly penalized convex optimization prob-

lem (2.8) is to impose an equality constraint and implement the alternating di-

rection method of multipliers algorithm (see Boyd, Parikh and Chu (2011)) by

iteratively solving two simpler convex optimization problems, each with only one
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penalty term. However, such an algorithm introduces an augmented term from

the equality constraint and an extra tuning parameter is involved, which makes

the tuning procedure more difficult. Instead, we adopt a simpler and more effi-

cient three-operator splitting scheme, recently proposed by Davis and Yin (2017).

In its application to problem (2.8), the three operators are Σ̂B − Û , λ1∂‖B‖2,1,
and λ2∂‖B‖?, where ∂ denotes the subdifferentials. The implementation of the

three-operator splitting algorithm shows that the algorithm introduces no addi-

tional tuning parameters, has an easy-to-implement iteration, and is more efficient

than our alternating direction method of multipliers algorithm, which we provide

and compare it to in the Supplementary Material.

Following Davis and Yin (2017), the iteration for solving (2.8) is implemented

as follows:

(1) Proximal mapping of the L2,1-norm:

B(t) = argmin
B∈Rp×K

1

2
‖B −A(t)‖2F + γλ1‖B‖2,1. (2.9)

(2) Proximal mapping of the nuclear norm:

C(t) = argmin
C∈Rp×K

1

2
‖C − {2B(t) −A(t) − γ(Σ̂B(t) − Û)}‖2F + γλ2‖C‖?. (2.10)

(3) Update A(t+1): A(t+1) = A(t) + αt(C
(t) −B(t)).

As suggested in Davis and Yin (2017), for simplicity, we fix the constant αt = 1

for t ≥ 0, and γ = 1.99/λmax(Σ̂), where λmax(Σ̂) is the largest eigenvalue of

Σ̂. See Davis and Yin (2017) for more details on these constants. The updates

of B(t) and C(t) in (2.9) and (2.10) are simply the proximal mappings of the

L2,1-norm and the nuclear norm, the solutions of which are commonly known in

many penalization problems (Mai, Yang and Zou (2019); Zhou and Li (2014)).

We summarize the explicit forms of B(t) and C(t) in the following lemma. Define

the positive part function x+ = max{0, x}, for any x ∈ R.

Lemma 3. Let (a
(t)
i )> denote the ith row vector of A(t). Then, the solution

B(t) in (2.9) is ((b
(t)
1 )>, . . . , (b

(t)
p )>)>, where b

(t)
i = a

(t)
i (1 − γλ1/‖a(t)i ‖2)+, for

i = 1, . . . , p. Let M (t) denote 2B(t) −A(t) − γ(Σ̂B(t) − Û), and
∑min{p,K}

i=1 σiuiv
>
i

denote the singular value decomposition of M (t). Then, the solution C(t) in (2.10)

is C(t) =
∑min{p,K}

i=1 (σi − γλ2)+uiv>i .

After enough iterations, the sequences (B(t))t≥0 and (C(t))t≥0 converge weakly

to the stationary point of the objective function (Davis and Yin (2017)). In our



REDUCED-RANK LINEAR DISCRIMINANT ANALYSIS 1257

Algorithm 1. LSLDA Algorithm

Input: Σ̂, Û , the tuning parameters λ1, λ2, and the thresholding value δ.

Initialization: A(0) = 0.
repeat

Step 1: Update B(t): the ith row vector of B(t) is (b
(t)
i )> = (a

(t)
i )>(1 − γλ1/

‖a(t)i ‖2)+, where (a
(t)
i )> is the ith row vector of A(t).

Step 2: Update C(t): calculate M (t) = 2B(t) − A(t) − γ(Σ̂B(t) − Û), then C(t) =∑min{p,K}
i=1 (σi − γλ2)+uiv

>
i , where σi, ui, and vi are defined in Lemma 3.

Step 3: Update A(t+1): A(t+1) = A(t) + αt(C
(t) −B(t)).

until some stopping criterion is met.

Output: Let B̂ be the solution at termination. The discriminant rank is estimated

by d̂ =
∑min{p,K}

i=1 I(σi(B̂) ≥ δ), where σi(B̂) is the ith singular value of B̂. Let β̂k
be the left singular vector of B̂ corresponding to the kth largest singular value. The
estimated discriminant basis β̂ = (β̂1, . . . , β̂d̂).

problem (2.8), which is convex, the stationary point is hence the global minimizer.

Specifically, we have the following results.

Lemma 4. For problem (2.8), by fixing γ < 2/λmax(Σ̂) and αt = 1, for t ≥ 0,

as t → ∞, both (B(t))t≥0 and (C(t))t≥0 converge weakly to the global minimizer

of problem (2.8).

We summarize our estimation procedure, named low-rank sparse linear dis-

criminant analysis (LSLDA), in Algorithm 1. The algorithm requires the input of

the sample matrices Σ̂ and Û , the tuning parameters λ1 and λ2, and the thresh-

olding value δ. The thresholding value δ is used in the rank selection, which is

set as 10−3 by default. Then, we initialize the matrix A(0) = 0 and update B(t),

C(t), and A(t) iteratively, which can be solved efficiently using Lemma 3. The

update of B(t) in (2.9) introduces the group-structure sparsity, and the update

of C(t) in (2.10) introduces the low-rank structure. In the iterations, we use the

relative change ‖B(t) − C(t)‖F /(1 + ‖A(t+1)‖F ) ≤ δ as the convergence criterion,

where the tolerance is set as δ, the same as the thresholding value. We count

the number of nonzero singular values of B̂ after thresholding, with the value δ

as the estimated rank. Finally, the top-d̂ left singular vectors of B̂ is returned

as the discriminant basis estimator β̂. We select the tuning parameters λ1 and

λ2 using cross-validation. Details of the tuning procedure are provided in the

Supplementary Material.
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Figure 1. (Left) The sample distribution plot of Y | (X3 = 6) in the employee selection
data set; (Right) the sample distribution plot of Y | (X4 = 5) in the employee selection
data set.

3. Other Applications of the Reduced-Rank LDA Model

When the number of classes K is large, low-rankness can be a useful ap-

proximation. The low-rankness condition may also appear naturally in other

situations, such as an ordinal response and an indistinguishable classification.

The first application is the ordinal classification. Many works have been

devoted to solving ordinal classification problems while accounting for the order

relation. In particular, the unimodality condition in the following is well justified

in an ordinal response (e.g., da Costa, Alonso and Cardoso (2008); da Costa,

Sousa and Cardoso (2010)).

Unimodality condition. The ordinal response Y ∈ {1, . . . ,K}. For any x ∈
Rp, Pr(Y = k | X = x) > Pr(Y = k + 1 | X = x) for k ≥ mode(Y ), and

Pr(Y = k | X = x) > Pr(Y = k − 1 | X = x) for k ≤ mode(Y ).

The unimodality condition arises naturally in many real applications. We

use the employee selection data set from da Costa, Alonso and Cardoso (2008)

as an example. Each observation in the data set consists of four covariates X =

(X1, X2, X3, X4) from psychometric tests, and an ordered response Y ∈ {1, . . . , 9}
representing the overall score of the candidate. Intuitively, for a given covariate,

if the score is known most likely to be six, there is no reason to believe it is

more likely to be four than it is to be five. To demonstrate the reasoning, we

plot the sample distributions of Y given X3 = 6 and X4 = 5 in Figure 1. From

these two plots, we observe the unimodal distributions with modes five and six,

respectively.

Now, we consider the ordinal classification under the LDA model, that is,

X | (Y = k) ∼ N(µk,Σ). When the unimodality condition holds, the following

lemma shows that there exists an intrinsic low-rank structure in the model.
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Lemma 5. For Y ∈ {1, . . . ,K} and X | (Y = k) ∼ N(µk,Σ), under the uni-

modality condition, let k′ denote the smallest k such that µk+1 − µk 6= 0, assume

that k′ exists, and

log

(
πk+1

πk

)
<

1

2
(µk+1 − µk)>Σ−1(µk+1 − µk), k = 1, . . . ,K − 1. (3.1)

Then, µk+1 − µk = αk(µk′+1 − µk′), where the constants αk ≥ 0, for k ≤ K − 1.

Consequently, S = span{Σ−1(µk′+1 − µk′)} and d = 1.

The assumption that k′ exists rules out the trivial case that S = {0}, and

(3.1) guarantees that the priors do not dominate the classification rule.

By formulating the LDA model into a multinomial logistic regression model,

one can show that Σ−1(µk+1−µk) is the normal vector of the splitting hyperplane

separating the consecutive classes k and k + 1. By Lemma 5, all the splitting

hyperplanes are parallel. This observation complies with the parallel splitting

hyperplane assumption, which is widely adopted in ordinal classification methods

under the support vector machine framework (Shashua and Levin (2002); Wang

et al. (2016)).

The following lemma provides an intuitive example of unimodal Y | X.

Lemma 6. For Y ∈ {1, . . . ,K} and X | (Y = k) ∼ N(µk,Σ), assume that

Pr(Y = k) = 1/K, for k = 1, . . . ,K, and µk − µk−1 = · · · = µ2 − µ1 6= 0. Then,

the conditional distribution Y | (X = x) is unimodal for any x ∈ Rp.

The second application is that of the response category combination prob-

lems arising in marketing and political polling, where the product preference of

customers or the political stand of voters are not always sufficiently distinct to be

easily differentiated by statistical models. Price, Geyer and Rothman (2019) stud-

ied response category combination problems by adopting the fused lasso penalty

under the multinomial logistic regression model. The indistinguishable classes

condition they applied is stated as follows.

Indistinguishable classes condition. The response Y takes a value in {1, . . . ,
K}. Assume that there exist some k, j ∈ {1, . . . ,K}, such that Pr(Y = j | X =

x) = Pr(Y = k | X = x), for any x ∈ Rp.

Under the indistinguishable classes condition, there is no clear guidance on

how to make a prediction among classes with the same posterior probability.

Therefore, the indistinguishable categories are suggested to be combined. We

consider the indistinguishable classes condition under the LDA model, which

naturally brings the low-rank structure to the discriminant subspace. The fol-
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lowing lemma shows that our method is suitable for problems with intrinsically

(but unknown) indistinguishable classes.

Lemma 7. For Y ∈ {1, . . . ,K} and X | (Y = k) ∼ N(µk,Σ), under the indis-

tinguishable classes condition, the discriminant rank d < K − 1.

4. Theoretical Properties

We establish both the non-asymptotic and the asymptotic results for the rank

determination, subspace parameter estimation, and classification error. For a new

observation (X?, Y ?), let R denote the Bayes error Pr(φ(X?) 6= Y ?), where φ(·)
is the Bayes rule (2.1). Furthermore, conditioning on the training data, let Rn
denote the empirical classification error from our estimator Pr(φ̂(X?) 6= Y ? | φ̂),

where φ̂(·) is the prediction by our method based on n training samples. Recall

that β ∈ Rp×d and β̂ ∈ Rp×d̂ are composed of the top-d left singular vectors of B

and the top-d̂ left singular vectors of B̂, respectively. We consider the following

subspace distance, which is bounded between zero and one if d̂ = d:

D(Sβ ,Sβ̂) = D(β, β̂) = (2d)−1/2‖Pβ − Pβ̂‖F . (4.1)

We consider the following three mild assumptions of bounded eigenvalues,

bounded prior probabilities, and separable classes, respectively.

(A1) There exists a constant M > 0, such that M ≥ ϕ1(Σ) ≥ · · · ≥ ϕp(Σ) ≥
1/M > 0, where ϕk(Σ) is the kth largest eigenvalue of Σ.

(A2) There exists a constant T > 0, such that 1/(TK) ≤ πk ≤ T/K, for all k.

(A3) There exists a constant Q > 0, such that 1/Q ≤ (µk−µj)>Σ−1(µk−µj) ≤ Q,

for all k 6= j.

Assumption (A1) is commonly used for high-dimensional estimation (e.g.,

Cai, Zhang and Zhou (2010)). Assumption (A2) implies that the class size πk is

bounded away from zero and one. Assumption (A3) guarantees that the classes

are separable in terms of the finite Mahalanobis distance.

We present the non-asymptotic results in Theorem 1. Let σmin denote the

smallest nonzero singular value of B, ϕmin ≡ ϕp(Σ), and τ = max{‖B‖2,1 +

‖B‖?, 2K1/2}. For ease of presentation, we assume that σmin, ϕmin, d, and K

are fixed. Then, τ can be interpreted as the sparsity level of B, because the

dominating term in τ is the L2,1-norm as p goes to infinity. As p diverges with n,

the sparsity level is allowed to diverge with p. Thus, we allow τ to diverge with
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n in our theoretical study. For notational simplicity, we use C and C ′ to denote

some generic positive constants that can vary from line to line.

Theorem 1. Under model (2.2) and Assumptions (A1)–(A3), for any ε such

that 0 < ε ≤ Cτ−2, and λ1, λ2, and δ satisfying 5ετ < λ1 ≤ 6ετ , 0 < λ2 ≤
λ1, and (22ε/ϕmin)1/2τ < δ ≤ 2(22ε/ϕmin)1/2τ , with probability at least 1 −
C ′p2 exp(−Cnε2), we have (i) d̂ = d; (ii) D2(β, β̂) ≤ C ′ετ2; and (iii) |Rn−R| ≤
C ′(ετ2)1/3, for some constants C,C ′ > 0.

With proper selections of the thresholding value δ and the tuning parameters

λ1 and λ2, Theorem 1 shows that with high probability, the discriminant rank d

and the subspace Sβ are estimated accurately, and the classification error is close

to the Bayes error rate. If we further assume that log p = o(nτ−4), by letting

n→∞, we obtain the asymptotic results.

Corollary 1. Under the same conditions as in Theorem 1, and log p = o(nτ−4),

for λ1, λ2, and δ satisfying 5C1τ(log p/n)1/2 < λ1 ≤ 6C1τ(log p/n)1/2, 0 < λ2 ≤
λ1, and C2τ(log p/n)1/4 < δ ≤ 2C2τ(log p/n)1/4, for some positive constants C1

and C2, as n, p→∞, we have (i) Pr(d̂ = d)→ 1; (ii) D(β, β̂)→ 0 in probability;

and (iii) |Rn −R| → 0 in probability.

Corollary 1 shows that the rank determination, the subspace estimation and

the Bayes classification error are consistent as n, p → ∞, where p is allowed to

grow with n at an exponential rate.

5. Simulations

To demonstrate the effectiveness of our proposed LSLDA, we conduct simu-

lations using the reduced-rank LDA model (2.2) under high-dimensional sparse

settings. In models (M1) and (M2), we vary the predictor correlation from mild

to strong. In model (M3), we have unbalanced classes. In models (M4) and (M5),

K is relatively large, where (M5) is near full-rank d = K − 2. In model (M6),

we construct the unimodal distribution of Y | X according to Lemma 6. In

model (M7), we include the indistinguishable classes condition, where the poste-

rior probabilities of classes 2, 3, and 4 are the same. Finally, in model (M8), we

vary the parameters s, p, n, and K one at a time to illustrate a wide range of

settings.

We set nk = 30, s = 10, and p = 3000, unless otherwise specified. Let n

denote the total training sample size. For all models, we generate a separate

validation set of size n for parameter tuning, and a test set of size 5n for model

evaluation. We set Σ as a block-diagonal matrix of blocks Σ̃ and I2500), where
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Σ̃ ∈ R500×500 is positive definite. Recall that X | (Y = k) ∼ N(µk,Σ) and

S = Σ−1span(µ2 − µ1, . . . , µK − µ1). We fix µ1 = 0, and define θk = Σ−1µk+1,

for k = 1, . . . ,K − 1. Then, we generate the discriminant basis β ∈ Rp×d by

taking the top-d left singular vectors of θ = (θ1, . . . , θK−1) ∈ Rp×(K−1). For a

matrix A = (aij) ∈ Rp×p, we say it has the AR(r, p) structure if aij = r|i−j| for

i, j = 1, . . . , p, the CS(r, p) structure if aii = 1 for i = 1, . . . , p, and aij = r for

i 6= j. For each model, the number of classes K, the vectors θk, the matrix Σ̃, and

the discriminant rank d are listed as follows, where θkj denotes the jth element

of θk. The vectors θk in each model are designed to keep the Bayes error to less

than 20%.

(M1) (Mild correlation) K = 4, d = 2, θ1i takes the value 0.8 for i = 1, . . . , 5, and

zero otherwise, θ2i takes the value 0.8 for i = 6, . . . , 10, and zero otherwise,

and θ3 = θ1 + θ2. The matrix Σ̃ = AR(0.5, 500).

(M2) (Strong correlation) The same as in (M1), except θ3 = 1.5θ1 + 1.5θ2 and

Σ̃ = I10 ⊗ CS(0.3, 50).

(M3) (Unbalanced data) The same as in (M2), except that the class sizes (in the

training set) are now 10, 10, 50, and 50.

(M4) (Large K) K = 7, d = 2, θ1,2i−1 = 2, and θ2,2i = −4, for i = 1, . . . , 5. For

k = 3, . . . ,K − 1, θk = (k/2− 1)(θ1 + θ2). Furthermore, Σ̃ = AR(0.5, 500).

(M5) (Near full-rank basis) K = 7, d = 5, θki takes the value two for i = 2k− 1,

2k, and k = 1, . . . , 5, and zero otherwise, and θ6 = 0.5
∑5

k=1 θk. In addition,

Σ̃ = AR(0.5, 500).

(M6) (Unimodality) K = 4, d = 1, θ2 = 2θ1, and θ3 = 3θ1, where θ1i takes the

value one for i = 1, . . . , 5, the value −1 for i = 6, . . . , 10, and zero otherwise.

In addition, Σ̃ = I10 ⊗ CS(0.3, 50).

(M7) (Indistinguishable classes) K = 4, d = 1, and θ1 = θ2 = θ3, where θ1i
takes the value one for i = 1, . . . , 5, the value −1 for i = 6, . . . , 10, and zero

otherwise. In addition, Σ̃ = I10 ⊗ CS(0.3, 50).

In each model setting, we compare our LSLDA method with several com-

petitors, including the supervised PCA-based LDA (SPCALDA; Niu, Hao and

Dong (2018)), multi-class sparse discriminant analysis (MSDA; Mai, Yang and

Zou (2019)), sparse optimal scoring (SOS; Clemmensen et al. (2011)), penalized

LDA (SOS; Witten and Tibshirani (2011)), and penalized multinomial logistic

regression model (Logistic, Friedman, Hastie and Tibshirani (2010)). The five
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Table 1. The means (and standard errors) of the classification error (%), subspace
distance D, TPR (%), and FPR (%) on simulated data generated from Models (M1)–
(M6). The results are based on 200 replicates. The standard errors for the TPR and
FPR are all less than 3.5%, and are thus omitted.

Method Err(%) D TPR(%) FPR(%) Err(%) D TPR(%) FPR(%)

Model (M1) Model (M2)

Bayes 17.4(0.1) – – – 14.2(0.1) – – –

LSLDA 18.9(0.1) 0.321(0.538) 99.9 0.8 16.4(0.2) 0.379(0.975) 99.7 0.6

PP 56.8(0.3) 1.121(0.035) 100.0 100.0 58.7(0.4) 1.170(0.008) 100.0 100.0

SPCALDA 48.2(0.2) 1.296(3.406) 100.0 100.0 33.6(0.1) 1.411(3.328) 100.0 100.0

MSDA 22.4(0.2) 0.809(0.453) 77.5 0.1 19.9(0.2) 0.815(0.442) 78.8 0.2

SOS(q = K − 1) 24.3(0.2) 0.656(0.474) 97.3 0.5 35.4(0.2) 0.981(0.261) 66.3 0.8

SOS(q = d) 19.7(0.1) 0.443(0.722) 97.0 0.4 33.2(0.2) 0.843(0.309) 70.5 0.5

PLDA(q = K − 1) 49.2(0.2) 1.056(0.056) 100.0 100.0 32.3(0.1) 1.055(0.424) 100.0 97.0

PLDA(q = d) 48.8(0.4) 0.931(0.065) 100.0 100.0 33.9(0.2) 0.932(0.331) 99.7 95.5

Logistic 22.1(0.2) 0.799(0.404) 82.8 0.3 24.7(0.2) 0.877(0.428) 74.2 0.3

Model (M3) Model (M4)

Bayes 8.6(0.1) – – – 3.2(0.1) – – –

LSLDA 10.8(0.2) 0.525(1.415) 98.9 0.6 9.0(0.3) 0.698(1.604) 88.0 2.2

PP 41.6(0.4) 1.168(0.008) 100.0 100.0 45.0(0.4) 1.315(0.030) 100.0 100.0

SPCALDA 25.0(0.7) 0.857(0.646) 100.0 100.0 28.0(0.3) 1.544(7.625) 100.0 100.0

MSDA 13.3(0.1) 0.872(0.448) 67.8 0.2 12.3(0.4) 1.207(0.386) 57.2 0.8

SOS(q = K − 1) 19.5(0.1) 0.978(0.273) 64.7 0.8 12.2(0.1) 1.189(0.038) 70.2 1.1

SOS(q = d) 18.9(0.2) 0.839(0.322) 69.5 0.5 8.2(0.1) 0.649(0.082) 69.2 0.3

PLDA(q = K − 1) 17.6(0.1) 1.059(0.336) 100.0 98.0 18.7(0.2) 0.536(0.220) 89.4 0.0

PLDA(q = d) 19.6(0.6) 0.939(0.216) 100.0 98.0 18.7(0.2) 0.536(0.220) 89.4 0.0

Logistic 46.8(1.3) 0.977(0.134) 22.1 0.6 27.4(0.2) 1.241(0.386) 74.0 0.5

Model (M5) Model (M6)

Bayes 10.1(0.1) – – – 13.9(0.1) – – –

LSLDA 11.6(0.1) 0.235(0.298) 100.0 0.2 15.2(0.1) 0.219(1.461) 100.0 0.7

PP 60.0(0.2) 0.999(0.019) 100.0 100.0 61.9(0.3) 1.446(0.030) 100.0 100.0

SPCALDA 54.7(0.2) 1.179(1.484) 100.0 100.0 61.1(0.2) 2.269(4.379) 100.0 100.0

MSDA 13.0(0.1) 0.496(0.457) 96.1 0.1 18.4(0.2) 1.059(0.209) 98.8 0.2

SOS(q = K − 1) 14.9(0.1) 0.530(0.420) 100.0 0.9 25.0(0.2) 1.029(0.131) 100.0 0.9

SOS(q = d) 13.6(0.1) 0.428(0.514) 99.9 0.9 15.6(0.1) 0.241(0.475) 100.0 0.1

PLDA(q = K − 1) 50.5(0.4) 0.888(1.186) 86.4 76.5 60.9(0.2) 1.344(0.054) 100.0 100.0

PLDA(q = d) 56.0(0.7) 0.832(1.081) 81.7 70.5 68.2(0.1) 0.899(0.161) 99.0 99.0

Logistic 12.4(0.1) 0.451(0.300) 99.8 0.4 34.5(0.2) 1.138(0.320) 90.0 0.5

competitors are implemented using the R packages SPCALDA, msda, sparseLDA,

penalizedLDA, and glmnet, respectively. We also include a simple projection

pursuit (PP) method that first projects the data onto Û ∈ Rp×K to reduce the

dimension of X from p to K. The LDA is then performed on the K-dimensional

reduced predictor. In addition, we include the Bayes error, that is, the best possi-

ble error rate. The implementations of SOS and PLDA in the R packages provide

the option of prespecifying the number of discriminant directions, denoted by q.

We consider both the full-rank option (i.e., specifying q = K − 1) and the option
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Figure 2. Scatter plots of the first two discriminant components β̂>
1 X and β̂>

2 X estimated
using the LSLDA, and the first two components estimated using the other competitors.
The rank d = 2 is given for the SOS and PLDA. The plots are based on one replicate in
Model (M2), and the samples in each class are represented by different symbols.

of using the true rank (i.e., specifying q = d).

We compare the methods using several criteria, including the classification

error, subspace estimation error, true positive rate (TPR), and false positive

rate (FPR). The subspace estimation error is measured by the subspace distance

defined in (4.1). With the true active set A and the estimated active set Â,

we obtain the TPR = |Â ∩ A|/|A| and the FPR = |Â ∩ Ac|/|Ac|. We report

these comparison criteria over 200 replicates under Models (M1)–(M6) in Ta-

ble 1. Owing to space limitations, the results under model (M7), which is further

evaluated under different criteria, and the estimated ranks from the LSLDA and

SPCALDA (the only two methods that are able to select ranks) are provided in

the Supplementary Material.

Overall, the proposed method significantly outperforms the competitors. It

is almost as good as the Bayes rule in terms of classification, and provides the

best subspace estimation and variable selection results. The only exception is in

model (M4), where the SOS with true rank information outperforms the LSLDA,

which is still significantly better than the other methods. Note that with the

knowledge of the true rank d, the results of the SOS improve substantially over

the standard (full-rank) SOS. Both the PP method and the SPCALDA fail in
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all criteria, owing to the lack of variable selection. Because the PP method gives

consistently poor performance, we exclude it from all subsequent simulations. In

Table S3 in the Supplementary Material, we show that our method can select

the rank consistently, whereas the SPCALDA severely overestimates the rank in

most settings.

The classification error of the MSDA is usually close to that of our method.

However, the MSDA fails to estimate the discriminant subspace accurately and

tends to miss important variables. The logistic regression performs poorly, be-

cause it is expected to lose efficiency compared with the LDA-based methods.

Comparing models (M1) and (M2), the LSLDA and MSDA are more robust

to strong correlation than are the other methods. For the unbalanced data in

model (M3), the LSLDA performs well on both majority and minority classes;

additional results are provided in the Supplementary Material. The results from

Models (M6) and (M7) also confirm the effectiveness of our proposed method in

the ordinal classification and response category combination problems.

For Model (M2), Figure 2 shows the first two discriminant directions/components

from each method (based on 1/3 of the test data, and from one replicate). From

Figure 2, the four classes are well separated by our estimator, which is the clear

winner in this setting.

We construct another model to study the effects of the sample size n, the

number of classes K, the sparsity level s, and the total number of predictors

p. The covariance matrix Σ and the vectors θk, for k = 1, . . . ,K − 1, are given

as follows, where we set ‖Σ1/2θ1‖2 and ‖Σ1/2θ2‖2 as fixed in order to keep a

reasonable Bayes error.

(M8) θ1i = w, for i = 1, . . . , s, θ2,2j−1 = z and θ2,2j = −z, for j = 1, . . . , s/2,

where the positive constants w and z are selected such that ‖Σ1/2θ1‖2 =

‖Σ1/2θ2‖2 = 5. For k = 3, . . . ,K−1, θk = (k/2−1)(θ1+θ2). The covariance

matrix Σ has the AR(0.5, p) structure. The discriminant rank d = 2.

The averaged classification errors over 200 replicates for each method are

displayed in Figure 3. The SOS and PLDA in the comparison use the true rank

by specifying q = d, which are better than their full-rank versions. In general,

the LSLDA outperforms all the other competitors. As we increase the sample

size n, all methods except for the PLDA and SPCALDA converge quickly to the

Bayes error. When K increases, the low-rank estimators, LSLDA and SPCALDA,

are more robust than the others. However, for the MSDA, SOS, and Logistic,

because more redundant directions are estimated, their performance worsens as

K increases. Furthermore, as the sparsity level s increases, the classification
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Figure 3. The means of the classification errors (%) as one of the parameters n, K, s,
and p varies. The results are based on 200 replicates in Model (M8). The rank d = 2 is
provided as known for the SOS and PLDA. We set (K, s, n, p) = (4, 20, 120, 500) as the
default for all simulations, except for the varying K setting, where we have n = 360, and
for the varying p setting, where we have n = 240.

errors of the MSDA, SOS, and Logistic increase rapidly. This might be due to

the poor variable selection, as seen in Table 1. When p increases, the performance

of the LSLDA, MSDA, SOS, and Logistic is not affected significantly. Thus, our

proposed method is effective in a wide-range of parameter settings.

In Section S2.2 of the Supplementary Material, we report the computation

time of all the LDA-based methods (LSLDA, SPCALDA, MSDA, SOS, and

PLDA). The results suggest that the LSLDA is indeed computationally efficient

and scalable to very high dimensions.

6. Real-Data Analysis

We study three face image data sets, face94, face95, and grimace, collected

by Spacek (2009). For each subject k, nk = 20 images are taken with variations

of facial expression, position of the face in image, head scale, and so on. The

task is to classify these images to the corresponding subject. In face94, we have

K = 20 males. In face95, we use only the face images of the first 15 subjects out

of the total 72 subjects, so K = 15. Finally, grimace contains K = 18 subjects.
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Table 2. The means (and the standard errors) of the classification error (%) and the
estimated sparsity level ŝ over 100 training–test set splits.

LSLDA PP SPCALDA MSDA SOS PLDA Logistic

face94
Err(%) 0.2 (0.0) 0.0(0.0) 0.4(0.1) 0.2(0.0) 0.3 (0.1) 1.0(0.1) 58.8(0.3)

ŝ 233.2(10.3) 500.0(0.0) 500.0(0.0) 66.5(0.7) 104.5(10.0) 500.0(0.0) 10.9(0.3)

face95
Err(%) 24.5 (0.5) 24.6(0.4) 24.7(0.4) 33.6(0.5) 27.5 (0.4) 44.1(0.4) 36.5(0.4)

ŝ 227.6 (3.4) 500.0(0.0) 500.0(0.0) 24.3(0.4) 326.8(14.4) 500.0(0.0) 24.1(0.3)

grimace
Err(%) 0.0 (0.0) 0.0(0.0) 0.1(0.1) 0.0(0.0) 0.1 (0.0) 1.1(0.1) 0.5(0.1)

ŝ 241.5 (3.1) 500.0(0.0) 500.0(0.0) 76.8(1.2) 130.1 (0.6) 500.0(0.0) 23.8(0.3)

In each data set, grayscale images of size 180× 200 are transformed into a vector

of dimension 360,000. Following Mai, Yang and Zou (2019), we perform F -test

variable screening (designed for multi-category responses) on these predictors,

and keep p = 500 variables.

To compare our LSLDA method with the same competitors in the simula-

tions, each data set is randomly split into training and test sets with a 3 : 1

ratio, and the tuning parameters are selected using five-fold cross-validation on

the training set. After the model is refitted with the selected tuning parameters,

the evaluation on the test set is recorded. The averaged classification error and

the estimated sparsity level ŝ over 100 training–test set splits are recorded in Ta-

ble 2, which shows that our method achieves competitive classification accuracy

on all data sets. Compared with the PP method and the SPCALDA, our method

produces a sparse estimator. Moreover, although the PP method is also highly

accurate on the real data sets, it produces a (K − 1)-dimensional reduction of

the data, whereas the LSLDA is more aggressive in achieving a low-rank data

projection. On the other hand, compared with the other sparse competitors, our

estimator uses a low-rank structure to attain a lower classification error.

The averaged estimated rank d̂ from the LSLDA (versus the SPCALDA)

on face94, face95, and grimace are 7.7 (versus 3.6), 9.4 (versus 14.5), and

11.5 (versus 6.3), respectively. The standard errors are all less than 0.5. Both

methods produce a low-rank estimator, with neither method showing a clear

advantage. We provide a low-dimensional visualization of the data points using

the two methods. In the Supplementary Material, we show that the LSLDA has

better visualization and separation of the classes than the SPCALDA does.

7. Conclusion

In this study, we consider the reduced-rank LDA model in high dimen-

sions. Motivated by the low-dimensional likelihood-based dimension reduction
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approach, we propose a doubly penalized convex optimization and develop a

computationally efficient algorithm. Simulations and a real-data analysis provide

complementary perspectives for the LSLDA. Simulations suggest that the pro-

posed LSLDA method is widely applicable, provided the sample size is not too

small (e.g., nk ≥ 10) and the Bayes classifier is reasonably sparse (e.g., s ≤ 100).

We tested the LSLDA on data sets with dimensions up to 25,000, finding that

the algorithm converges within a reasonable amount of time. The low-rank as-

sumption may be especially desirable when the number of classes is large, but the

advantage becomes clearer when K is as small as four in the simulations. Owing

to the synergy between the low-rank and sparse-inducing penalties, our method

is, in general, more accurate and robust than existing sparse LDA methods (such

as the PLDA and SOS), whereas the nonsparse projection-based classification

methods (such as the SPCALDA and PP method) clearly fail under sparsity

assumptions. However, in a real-data analysis, the nonsparse projection-based

methods perform well. The LSLDA adapts to these problems by automatically

learning a less sparse (ŝ ≥ 200 from p = 500), but low-dimensional (7 ≤ d̂ ≤ 11

from K = 15) structure from these data sets, and outperforms most of its com-

petitors.

Supplementary Material

The online Supplementary Material includes our alternating direction method

of multipliers algorithm, which we compare with the proposed three-operator

splitting algorithm, as well as additional numerical results and technical proofs.
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