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AN EFFICIENT CONVEX FORMULATION FOR
REDUCED-RANK LINEAR DISCRIMINANT
ANALYSIS IN HIGH DIMENSIONS
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Abstract: In this paper, we propose a parsimonious reduced-rank linear discriminant
analysis model for high-dimensional sparse multi-class discriminant analysis. We
construct a sparse dimension reduction subspace to contain all the information
necessary for a linear discriminant analysis. We show explicitly the connections
between our model and two well-studied models in the literature: the principal fitted
component model in sufficient dimension reduction, and the multivariate reduced-
rank regression model. The likelihood-inspired efficient estimator is then recast
from a convex optimization perspective. A doubly penalized convex optimization is
proposed to unite sparsity and low-rankness in high dimensions, and is then solved
efficiently using a three-operator splitting algorithm. We establish the rank selection
consistency and classification error consistency of the proposed method when the
number of variables grows very fast with the sample size. The effectiveness of the
proposed method is demonstrated by means of extensive simulation studies and an
application to facial recognition data sets.

Key words and phrases: Dimension reduction, discriminant analysis, linear discrim-
inant analysis, nuclear norm penalty, variable selection.

1. Introduction

High-dimensional linear discriminant analysis (LDA) methods have been
widely studied and applied (e.g., Bickel and Levina (2004); Cai and Liu (2011),
Shao et al. (2011); Mai, Zou and Yuan (2012)). We consider multi-category classi-
fication with K > 2 classes, where an LDA can identify at most K —1 linearly in-
dependent discriminant directions. When the dimension of the subspace spanned
by all discriminant directions is less than K —1, this is known as the reduced-rank
LDA problem (Hastie, Tibshirani and Friedman (2009, Chap. 4.3.3)). There are
two popular approaches to this problem. The first approach includes methods
such as the penalized LDA (Witten and Tibshirani (2011)) and sparse optimal
scoring (Clemmensen et al. (2011)). These methods are high-dimensional ex-
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tensions of Fisher’s view of the LDA and an optimal scoring formulation of the
LDA, respectively. Specifically, these methods implicitly handle the low-rankness
using a sequential estimation of sparse discriminant directions. The second class
of methods, such as those of Hao, Dong and Fan (2015) and Niu, Hao and
Dong (2018), rely on a principal component analysis. Here, the low-rankness
is achieved by selecting the first several principal directions as the discriminant
directions (Niu, Hao and Dong (2018)) or by a rotation of the data (Hao, Dong
and Fan (2015)). However, these methods do not impose sparsity on the original
predictors. In addition to these statistical approaches, reduced-rank LDA meth-
ods and algorithms are gaining substantial attention in engineering applications
(e.g., Ye and Li (2005)), where a probabilistic explanation is highly desirable.

In this paper, we first introduce a model-based interpretation for the reduced-
rank LDA problem. The low-rankness is formally stated as a unique low-dimens-
ional subspace, the maximum likelihood estimator of which motivates our re-
parameterization of the target parameters, leading to an efficient convex formu-
lation. We then solve a penalized quadratic convex optimization using a three-
splitter operator algorithm, which is guaranteed to reach the global minimum.
To provide further insight into reduced-rank discriminant analysis, we discuss
how low-rankness arises naturally in the settings of ordinal classification (McCul-
lagh (1980); da Costa, Alonso and Cardoso (2008); da Costa, Sousa and Cardoso
(2010); Qiao (2015)) and response category combination (Price, Geyer and Roth-
man (2019); Wen and Koppelman (2001)).

The model-based interpretation and maximum likelihood estimator of the
low-dimensional subspace are connected to the principal fitted components model
(Cook and Forzani (2008)) in sufficient dimension reduction and to the reduced-
rank regression (Anderson (1951); Izenman (1975); Stoica and Viberg (1996))
in a multivariate linear model. By exploiting such connections, we can easily
derive the maximum likelihood estimator of the low-dimensional subspace under
the LDA model when the dimension of the predictor p is smaller than the sample
size n. Given the true rank d, the maximum likelihood estimator is obtained from
the first d eigenvectors of a symmetric p X p matrix, with rank at most K — 1.
Based on this observation, we augment the low-dimensional subspace parameter
into an overparameterized and rank-deficient matrix of dimension px K. Without
prespecifying the rank, we estimate this rank-deficient matrix parameter in high
dimensions using a nuclear norm penalization.

Convex formulations and convex relaxations of classical multivariate analy-
sis and dimension reduction methods prevail in high-dimensional settings. Our
approach differs from the convex relaxation of a sparse principal component anal-
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ysis (Vu et al. (2013)), sparse canonical correlation analysis (Gao, Ma and Zhou
(2017)), or sparse sliced inverse regression (Tan et al. (2018); Tan, Shi and Yu
(2020)). In these convex relaxation approaches, the rank or dimensionality is pre-
specified and incorporated into the optimization constraints. Then, the optimiza-
tion is over p X p symmetric matrices, subject to constraints (e.g., the parameter
space of the optimization includes projection matrices onto d-dimensional sub-
spaces). Unlike these approaches that augment the d-dimensional subspace as
p X p-dimensional matrices, our approach is much more direct. Instead of op-
timizing over subspaces, orthogonal basis matrices, or projection matrices, we
optimize directly over an unconstrained p x K-dimensional matrix parameter.
This leads to a much cheaper computation that scales better with large p.

Our approach is also an extension of the multi-class sparse discriminant anal-
ysis method of Mai, Yang and Zou (2019), which does not account for potential
low-rankness, and is thus less effective when the number of classes is big. Impor-
tantly, although our quadratic objective function is similar to that in Mai, Yang
and Zou (2019), the new maximum likelihood and least squares estimation natu-
rally leads to different weights for discriminant directions, which is not accounted
for in Mai, Yang and Zou (2019). Moreover, the doubly penalized estimation
in our model is more challenging and requires a new algorithm. Our unified
approach of deriving the quadratic objective function also extends the scope of
multi-class sparse discriminant analysis from a one-versus-all parameterization to
a one-versus-one parameterization.

We adopt the following notation throughout the paper. For a vector v =
(v1,...,vp) " € RP, we define the Ly-norm as ||vlly = (3F_; v?)l/q, for 1 < ¢ < oo.
For a matrix A = (a;;) € RP*9, let 01 > -+ + > oppin{p,q) denote its singular values,

and define the Ly j-norm and the nuclear norm as [[All21 = > 5 4( ?:1 a,%j)l/2

and [[A|l, = Z?:irf{p’q} i, respectively. The span of A, denoted as span(A) or
S4, is the subspace spanned by the column vectors of A. Let § € RP*" be
the orthonormal basis of the subspace S C RP, that is, 3’8 = I,. We use

Ps = P = BBT to denote the projection matrix onto the subspace S.
2. Reduced-Rank LDA

2.1. Model-based interpretation

We consider the multi-class classification problem for the response Y €
{1,..., K} and the predictor X € RP. In an LDA, within each class k, the
predictor is assumed to have mean up € RP and the common nonsingular co-
variance matrix ¥ € RP*P. Let 1, = Pr(Y = k) and pu = E(X) = S0 | Tt
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The Bayes rule ¢(X) : RP — {1,..., K} is the optimal classification rule in the
population, and has the following form if we assume that X | Y is normally
distributed:

k=1,...K 2

»(X) = argmax { (X o+ ,u> Y (e — p) + log ﬂk} . (2.1)

From (2.1), it is clear that the K directions ¥~ (up—pu), for k = 1,..., K, preserve
all the information of X relevant to the classification. These K directions are
not linearly independent, because ), mp(ur — ) = 0. We explicitly state the
low-rankness condition as follows.

Low-rankness condition Let S C RP be the subspace spanned by the K
discriminant directions X' (up — p), for k = 1,..., K. Then, its dimension
dim(S) =d < K — 1.

The reduced-rank LDA model is then formally presented as

Pr(Y =k)=m >0, X| (Y =k) ~ N(u,),

(2.2)
Mk:M+25Uk, k=1,...,K,

where 5 € RP*? is a basis matrix of the subspace S in the low-rankness condi-
tion, that is, S = Sg, and n = (n1,...,1K) € R¥*K denotes the corresponding
coordinates of the K discriminant directions =1 (s, — ).

Under (2.2), the Bayes rule becomes

-
¢(X) = argmax { <X — W) By + log wk} , (2.3)

k=1,.. K 2

which implies that given any observation x € RP, Pr(Y =k | X =z) =Pr(Y =
k| BTX = pTx), for k =1,...,K. In other words, the reduction of the data
from X € RP to BT X € R? is without any loss of relevant information for the
classification under model (2.2). If 3 is known, we can replace X with 37 X, and
apply the classical LDA.

Remark 1. The parameters ﬁ and n are not identifiable, because the decomposi-
tion 87 can be replaced with ﬂn, where ,6’ SO and 7 = O Ty, for any orthogonal
matrix O € R4, Nevertheless, the subspace S = span(3) is identifiable and is
the key parameter of interest in model (2.2). Here, the subspace S is called
the discriminant subspace, and its basis 3 is called the discriminant basis. The
dimensionality dim(S) = d is called the discriminant rank. Any vector in S is
called a discriminant direction.
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The reduced-rank LDA model is closely connected to the principal fitted
component model (Cook and Forzani (2008)) in sufficient dimension reduction
and to the multivariate reduced-rank regression (Izenman (1975)). To see this,
we rewrite model (2.2) in the following equivalent form:

X = p+Shnty +e, €~ N(0,5), (2.4)

where & € RX are the indicator functions of Y. If Y = k, then the kth element
of &y is one, and all other elements are zero. There is also an intrinsic constraint
that ¥6nE(&y) = 0 in (2.4). This model is exactly the principal fitted compo-
nent model when the fitting functions are chosen as the indicator functions of
Y. Hence, our discriminant subspace S is also the central subspace in the suf-
ficient dimension reduction (Cook (1998)). If we treat X as the response and
&y as the predictor, then (2.4) becomes the multivariate reduced-rank regression
model (Izenman (1975)), and ¥8n € RP*K is the rank-d regression coefficient
matrix. Such connections enable us to easily obtain the maximum likelihood
estimator for model (2.2), and further motivates our efficient convex formulation.

2.2. Efficient convex formulation for high-dimensional estimation

As discussed in Remark 1, the discriminant basis 3 is not identifiable, but the
discriminant subspace S is identifiable. However, optimization over the subspace
is nonconvex and expensive, in general. To facilitate a high-dimensional compu-
tation, we introduce an alternative target object B € RP*X which is identifiable
and replaces # and S in the high-dimensional estimation.

We first consider the maximum likelihood estimator of S, which is summa-
rized in Lemma 1. Let & = (1/n) Zk (SR IY = k) (X - X)) (X — X)) T
denote the within-class covariance matrix, where I(Y; = k) takes the value one if

Y; = k, and zero otherwise, and let S, = Zkzl(nk/n)(Xk — X)(Xx—X)T denote
the between-class covariance matrix, where X}, is the sample mean of X in class
k, X is the sample mean of X, n is the overall sample size, and ny, is the sample
size for class k.

Lemma 1. Under model (2.2), the mazimum likelihood estimator of S = span(f)
18 E_l/2span(51, ...,0q), where v; is the ith eigenvector of »-125, 5-1/2,

Based on (2.4), we can easily verify the results of Lemma 1 from previous
works (Cook and Forzani (2008); Stoica and Viberg (1996)). Lemma 1 provides
solutions to the low-dimensional reduced-rank LDA problem.

Let (7 UcRP¥E U = {7r1 2(,u1—,u) 7rK/ (,uK w)}, and U be its sample
estimator. Then, Eb can be rewritten as Eb uoT , the maximum likelihood
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estimator S = i_l/zspan(@l, ..., 0q) C span(f]_ll/j), and in the population, B =
Y ~1U spans the same subspace as S. As such, we target B for the estimation of
the subspace S. Because rank(B) = d < K — 1, B is overparameterized and is
estimated using rank regularization.

Following model (2.2), we can write BW = fn, where the matrix W =
diag(ﬂ'flm, .. ,71';(1/2) € REXK " Consequently, the inverse regression model (2.4)
can be rewritten in terms of B, as follows:

X=p+XBW& +¢e, e~ N(0,%), (2.5)

where BW = fn. To avoid ambiguity of the reference to 5, owing to its non-
identifiability, we henceforth refer to 8 as the matrix composed of the top-d left
singular vectors of B.

Inspired by the inverse regression reformulation (2.5) of the reduced-rank
LDA model, a natural way to estimate B is to use the least squares estimation

by solving the following least squares problem:

n

argmin Y _ [|(X; — X) - SBWey|I3, (2.6)
BeRpxK 7

where p, W, and ¥ in the inverse regression model (2.5) are replaced by their
sample estimators. Again, because B is identifiable, it is the target of the esti-
mation, and the rank constraint on B in (2.5) is yet to be imposed in the least
squares formulation (2.6). An equivalent form of (2.6) is given in Lemma 2.

Lemma 2. Assume that 3 is nonsingular. Then, the least squares problem
in (2.6) is equivalent to

argmin 1tlr(BTiB) —tx(BT0). (2.7)
BeRrx K
Based on Lemma 2, the least squares estimator of B is i_lﬁ, which is exactly
the plug-in estimator of B defined previously. In high dimensions, where p > n,
S is no longer invertible, and the least squares estimator is not well defined.
However, the convex formulation (2.7), combined with penalization techniques,
provides a new way of estimating the discriminant subspace in a high-dimensional
setting.

Remark 2. Our convex formulation of (2.7) is similar to the optimization in

Mai, Yang and Zou (2019), but is motivated from an efficient likelihood-based

/2( 1/2

perspective. If we replace U = {ﬂ'% = )y (i — )} € RP*E with
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an unweighted one-versus-others version {(uo — 1), ..., (ux — p1)} € RP*XE=1),
then (2.7) reproduces the objective function in Mai, Yang and Zou (2019), which
lacks a likelihood or least squares interpretation. Moreover, because of our rank
regularization, introduced later, our method allows for more flexible modifications
than those in Mai, Yang and Zou (2019). For example, we can also use a one-
versus-one parameterization to replace U with the p x K (K — 1)/2-dimensional

pairwise mean difference matrix.

In high-dimensional statistics, the sparsity assumption is commonly imposed
such that only a small number of variables are active in the model. Based
Bayes rule (2.1), the jth variable X; makes no contribution to the classifica-
tion if and only if bj1 = --- = bjx = 0, where bj; is the (j,k)th element
in the matrix B. Let A denote the index set of all active variables. Then,
A = {j | there exists k such that bj; # 0}, and the sparsity level is denoted as
s = |Al.

For simultaneous variable selection and rank shrinkage, we propose the fol-

lowing doubly penalized convex optimization:

B = argmin ~tr(BTSB) — tr(BTU) + M ||Bllas + el Blle  (2.8)
BERPxK

where Ay > 0 and A2 > 0 are tuning parameters. The Lgji-norm penalty
|Bll2,1 (Yuan and Lin (2006)) and the nuclear norm penalty ||B||, have been
applied in many regularized regression and classification problems (see Roth and
Fischer (2008); Meier, Van De Geer and Biihlmann (2008); Yuan et al. (2007);
Zhou and Li (2014)). After we obtain B from (2.8), the estimated discriminant
rank d follows directly from Algorithm 1, introduced in the next section. Then,
by a singular value decomposition of E, the discriminant basis estimator is de-
fined as B = (31, ey BJ), where Bk is the left singular vector of B corresponding
to the kth largest singular value. In addition, the active set can be estimated
as A = {j | there exists k such that b]k # 0}. Once we obtain the estimated
discriminant basis ﬁ, we perform the classification on the reduced d-dimensional
data B\FX, that is, (2.3).

2.3. The algorithm

One common way to solve the doubly penalized convex optimization prob-
lem (2.8) is to impose an equality constraint and implement the alternating di-
rection method of multipliers algorithm (see Boyd, Parikh and Chu (2011)) by

iteratively solving two simpler convex optimization problems, each with only one
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penalty term. However, such an algorithm introduces an augmented term from
the equality constraint and an extra tuning parameter is involved, which makes
the tuning procedure more difficult. Instead, we adopt a simpler and more effi-
cient three-operator splitting scheme, recently proposed by Davis and Yin (2017).
In its application to problem (2.8), the three operators are SB— f]\, M0||Bll2.1,
and A20||B||x, where O denotes the subdifferentials. The implementation of the
three-operator splitting algorithm shows that the algorithm introduces no addi-
tional tuning parameters, has an easy-to-implement iteration, and is more efficient
than our alternating direction method of multipliers algorithm, which we provide
and compare it to in the Supplementary Material.

Following Davis and Yin (2017), the iteration for solving (2.8) is implemented
as follows:

(1) Proximal mapping of the Lg j-norm:

B = argmlanB AL 4 A\ ||B]l21. (2.9)
BeRvxK 2

(2) Proximal mapping of the nuclear norm:

1
c® — argmin §HC — {2B(t) — Al (EB(t )}||F + YA2]|C|«. (2.10)
CeRrPxK

(3) Update AHD: AU+ — A®) 4 o, (CH — B®),

As suggested in Davis and Yin (2017), for simplicity, we fix the constant a; = 1
for t > 0, and v = 1.99/)\max(§]), where )\max(fl) is the largest eigenvalue of
5.. See Davis and Yin (2017) for more details on these constants. The updates
of B® and C® in (2.9) and (2.10) are simply the proximal mappings of the
Lo 1-norm and the nuclear norm, the solutions of which are commonly known in
many penalization problems (Mai, Yang and Zou (2019); Zhou and Li (2014)).
We summarize the explicit forms of B® and C® in the following lemma. Define
the positive part function x4 = max{0,z}, for any x € R.

Lemma 3. Let (a ()) denote the ith row vector of AY. Then, the solution
B® in (2.9) is ((b(t)) L OIYTYT, where b = a“)( 'y)\l/Ha H )4, for
i=1,...,p. Let M® denote 2B® — A1) — (EB(t) —U), and me K O'Z'UZ'UZT
denote the singular value decomposition of M®). Then, the solution C®) i n (2.10)
is OO = S PRY 6y —yg) ]

)

After enough iterations, the sequences (B (t))tzo and (C' (t))tzo converge weakly
to the stationary point of the objective function (Davis and Yin (2017)). In our
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Algorithm 1. LSLDA Algorithm

Input: i, U , the tuning parameters A1, Ao, and the thresholding value §.
Initialization: A(®) = 0.
repeat
Step 1: Update B®: the ith row vector of B() is (bgt))T = (agt))T(l — YA/
|\a§t) ll2)+, where (a; ()T is the ith row vector of A®.

Step 2: Update C(V: calculate M®) = 2B — A®) — (SB® — ), then C) =
Zmin{pJ(}(

i—1 — YA2) 4y v , where o;, u;, and v; are defined in Lemma 3.
Step 3: Update At+D: A+ = A®) 4 o, (C) — BW),

until some stopping criterion is met.

Output Let B be the solution at termination. The discriminant rank is estimated

by d = S0 K 1(64(B) > 6), where oi(B) is the ith singular value of B. Let By

be the left singular vector of B corresponding to the kth largest singular value. The

estimated discriminant basis ﬁ (61, e Bd)

problem (2.8), which is convex, the stationary point is hence the global minimizer.
Specifically, we have the following results.

Lemma 4. For problem (2.8), by fixing v < 2/)\max(fl) and oy = 1, fort > 0,
as t — 00, both (BM);>g and (CM);>¢ converge weakly to the global minimizer
of problem (2.8).

We summarize our estimation procedure, named low-rank sparse linear dis-
criminant analysis (LSLDA) in Algorithm 1. The algorithm requires the input of
the sample matrices 5 and U the tuning parameters A\; and A2, and the thresh-
olding value §. The thresholding value ¢§ is used in the rank selection, which is
set as 1073 by default. Then, we initialize the matrix A©) = 0 and update B®,
C®, and A® iteratively, which can be solved efficiently using Lemma 3. The
update of B® in (2.9) introduces the group-structure sparsity, and the update
of C® in (2.10) introduces the low-rank structure. In the iterations, we use the
relative change || B — CW||p/(1 + [|A#+D||p) < § as the convergence criterion,
where the tolerance is set as d, the same as the thresholding value. We count
the number of nonzero singular values of B after thresholding, with the value ¢
as the estimated rank. Finally, the top d left singular vectors of B is returned
as the discriminant basis estimator B. We select the tuning parameters A\; and
Ao using cross-validation. Details of the tuning procedure are provided in the
Supplementary Material.
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Figure 1. (Left) The sample distribution plot of Y | (X3 = 6) in the employee selection
data set; (Right) the sample distribution plot of Y | (X4 = 5) in the employee selection
data set.

3. Other Applications of the Reduced-Rank LDA Model

When the number of classes K is large, low-rankness can be a useful ap-
proximation. The low-rankness condition may also appear naturally in other
situations, such as an ordinal response and an indistinguishable classification.

The first application is the ordinal classification. Many works have been
devoted to solving ordinal classification problems while accounting for the order
relation. In particular, the unimodality condition in the following is well justified
in an ordinal response (e.g., da Costa, Alonso and Cardoso (2008); da Costa,
Sousa and Cardoso (2010)).

Unimodality condition. The ordinal response Y € {1,...,K}. For any z €
RPPH Y =k | X =2)>Pr(Y =k+1| X = x) for kK > mode(Y), and
PrlY =k | X=2z)>Pr(Y=k—1|X =2x) for k <mode(Y).

The unimodality condition arises naturally in many real applications. We
use the employee selection data set from da Costa, Alonso and Cardoso (2008)
as an example. Each observation in the data set consists of four covariates X =
(X1, X2, X3, Xy) from psychometric tests, and an ordered response Y € {1,...,9}
representing the overall score of the candidate. Intuitively, for a given covariate,
if the score is known most likely to be six, there is no reason to believe it is
more likely to be four than it is to be five. To demonstrate the reasoning, we
plot the sample distributions of Y given X3 = 6 and X4 = 5 in Figure 1. From
these two plots, we observe the unimodal distributions with modes five and six,
respectively.

Now, we consider the ordinal classification under the LDA model, that is,
X | (Y =k) ~ N(ug,X). When the unimodality condition holds, the following

lemma shows that there exists an intrinsic low-rank structure in the model.
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Lemma 5. ForY € {1,...,K} and X | (Y =k) ~ N(ux,X), under the uni-
modality condition, let k' denote the smallest k such that py1 — px # 0, assume
that k' exists, and

T, 1 _
log ( 77?) < 5 (k1 — pe) 'S (ke — ), k=1, K—1.  (3.1)
Then, pg+1 — ik = og (g +1 — prr), where the constants ag, > 0, for k < K — 1.
Consequently, S = span{X ! (upy1 — px)} and d = 1.

The assumption that k" exists rules out the trivial case that S = {0}, and
(3.1) guarantees that the priors do not dominate the classification rule.

By formulating the LDA model into a multinomial logistic regression model,
one can show that X! (ux 1 —uz) is the normal vector of the splitting hyperplane
separating the consecutive classes k and k£ + 1. By Lemma 5, all the splitting
hyperplanes are parallel. This observation complies with the parallel splitting
hyperplane assumption, which is widely adopted in ordinal classification methods
under the support vector machine framework (Shashua and Levin (2002); Wang
et al. (2016)).

The following lemma provides an intuitive example of unimodal Y | X.

Lemma 6. For Y € {1,...,K} and X | (Y =k) ~ N(u,X), assume that
Pr(Y =k)=1/K, fork=1,...,K, and py — pug—1 = -+ = pa — 1 # 0. Then,
the conditional distribution Y | (X = x) is unimodal for any x € RP.

The second application is that of the response category combination prob-
lems arising in marketing and political polling, where the product preference of
customers or the political stand of voters are not always sufficiently distinct to be
easily differentiated by statistical models. Price, Geyer and Rothman (2019) stud-
ied response category combination problems by adopting the fused lasso penalty
under the multinomial logistic regression model. The indistinguishable classes
condition they applied is stated as follows.

Indistinguishable classes condition. The response Y takes a value in {1,...,
K}. Assume that there exist some k,j € {1,..., K}, such that Pr(Y =5 | X =
z)=Pr(Y =k| X =x), for any z € RP.

Under the indistinguishable classes condition, there is no clear guidance on
how to make a prediction among classes with the same posterior probability.
Therefore, the indistinguishable categories are suggested to be combined. We
consider the indistinguishable classes condition under the LDA model, which
naturally brings the low-rank structure to the discriminant subspace. The fol-
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lowing lemma shows that our method is suitable for problems with intrinsically
(but unknown) indistinguishable classes.

Lemma 7. For Y € {1,...,K} and X | (Y = k) ~ N(ux,X), under the indis-

tinguishable classes condition, the discriminant rank d < K — 1.

4. Theoretical Properties

We establish both the non-asymptotic and the asymptotic results for the rank
determination, subspace parameter estimation, and classification error. For a new
observation (X*,Y™), let R denote the Bayes error Pr(¢(X™*) # Y™*), where ¢(-)
is the Bayes rule (2.1). Furthermore, conditioning on the training data, let R,
denote the empirical classification error from our estimator Pr(¢(X*) # Y* | ¢),
where ngS( -) is the predlctlon _by our method based on n training samples Recall
that 8 € RP*? and ﬁ € RP¥ are composed of the top-d left singular vectors of B
and the top- d left singular vectors of B respectively. We consider the following
subspace distance, which is bounded between zero and one if d = d:

D(Sp,85) = D(B, B) = (2d)~"/?||P5 — P3| . (4.1)

We consider the following three mild assumptions of bounded eigenvalues,
bounded prior probabilities, and separable classes, respectively.

(A1) There exists a constant M > 0, such that M > ¢1(X) > -+ > ¢p(2)
1/M > 0, where pr(X) is the kth largest eigenvalue of X.

v

(A2) There exists a constant T' > 0, such that 1/(TK) < m; < T/K, for all k.

(A3) There exists a constant Q > 0, such that 1/Q < (ur—p;) 'S (up—p;) < Q,
for all k& # j.

Assumption (A1) is commonly used for high-dimensional estimation (e.g.,
Cai, Zhang and Zhou (2010)). Assumption (A2) implies that the class size 7y, is
bounded away from zero and one. Assumption (A3) guarantees that the classes
are separable in terms of the finite Mahalanobis distance.

We present the non-asymptotic results in Theorem 1. Let opi, denote the
smallest nonzero singular value of B, ¢min = ¢p(X), and 7 = max{||B||21 +
| Bl|«, 2K 1/ 2. For ease of presentation, we assume that omin, @min, d, and K
are fixed. Then, 7 can be interpreted as the sparsity level of B, because the
dominating term in 7 is the Ly 1-norm as p goes to infinity. As p diverges with n,

the sparsity level is allowed to diverge with p. Thus, we allow 7 to diverge with
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n in our theoretical study. For notational simplicity, we use C' and C’ to denote
some generic positive constants that can vary from line to line.

Theorem 1. Under model (2.2) and Assumptions (A1)—(A3), for any € such
that 0 < ¢ < C1t72, and A1, X\, and 6 satisfying HeT < A1 < 6e1, 0 < Ay <
A, and (225/<pmin)1/27' < 6 < 2(22€/cpmin)1/27, with probability at least 1 —
C'p? exp(—Cne?), we have (i) d = d; (ii) D*(3,B) < C'e7?; and (iii) |R, — R| <
C'(em®)Y/3, for some constants C,C" > 0.

With proper selections of the thresholding value § and the tuning parameters
A1 and Az, Theorem 1 shows that with high probability, the discriminant rank d
and the subspace Sg are estimated accurately, and the classification error is close
to the Bayes error rate. If we further assume that logp = o(nt=%), by letting
n — oo, we obtain the asymptotic results.

Corollary 1. Under the same conditions as in Theorem 1, and logp = o(nt*%),
for A1, Ao, and § satisfying SClr(logp/n)1/2 <X\ < 6C’17(logp/n)1/2, 0< A<
A1, and Cyr(logp/n)/* < & < 2Cor(logp/n)'/*, for some positive constants Cy
and Cy, as n,p — oo, we have (1) Pr(c?z d) — 1; (i) D(B,B) — 0 in probability;
and (i) |Ry, — R| — 0 in probability.

Corollary 1 shows that the rank determination, the subspace estimation and
the Bayes classification error are consistent as n,p — 0o, where p is allowed to
grow with n at an exponential rate.

5. Simulations

To demonstrate the effectiveness of our proposed LSLDA, we conduct simu-
lations using the reduced-rank LDA model (2.2) under high-dimensional sparse
settings. In models (M1) and (M2), we vary the predictor correlation from mild
to strong. In model (M3), we have unbalanced classes. In models (M4) and (M5),
K is relatively large, where (M5) is near full-rank d = K — 2. In model (M6),
we construct the unimodal distribution of ¥ | X according to Lemma 6. In
model (M7), we include the indistinguishable classes condition, where the poste-
rior probabilities of classes 2, 3, and 4 are the same. Finally, in model (M8), we
vary the parameters s, p, n, and K one at a time to illustrate a wide range of
settings.

We set ni, = 30, s = 10, and p = 3000, unless otherwise specified. Let n
denote the total training sample size. For all models, we generate a separate
validation set of size n for parameter tuning, and a test set of size 5n for model
evaluation. We set X as a block-diagonal matrix of blocks Y and I5500), where
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3 € R500x500 s positive definite. Recall that X | (Y = k) ~ N(u, ) and
S = X 'span(ug — p1, ..., px — p1). We fix gy = 0, and define 6 = X~ gy,
for k = 1,...,K — 1. Then, we generate the discriminant basis § € RP*? by
taking the top-d left singular vectors of § = (0y,...,0k_1) € RP*(K=1) " For a
matrix A = (a;;) € RP*P, we say it has the AR(r,p) structure if a;; = rI"=7/ for
i,j = 1,...,p, the CS(r,p) structure if a;; =1 for i = 1,...,p, and a;; = r for
1 # j. For each model, the number of classes K, the vectors 6y, the matrix i and
the discriminant rank d are listed as follows, where 0); denotes the jth element
of 0. The vectors 0 in each model are designed to keep the Bayes error to less
than 20%.

(M1) (Mild correlation) K = 4, d = 2, 0y; takes the value 0.8 for i = 1,...,5, and
zero otherwise, 6; takes the value 0.8 for i = 6, ..., 10, and zero otherwise,
and 03 = 01 + 6. The matrix ¥ = AR(0.5, 500).

(M2) (Strong correlation) The same as in (M1), except 03 = 1.56; + 1.502 and

5 = I1p ® CS(0.3,50).
(M3) (Unbalanced data) The same as in (M2), except that the class sizes (in the
training set) are now 10, 10, 50, and 50.

(M4) (Large K) K =7,d =2, 0121 =2, and 02 9; = —4, fori =1,...,5. For
k=3,...,K -1, 0, =(k/2 —1)(0; + 02). Furthermore, ¥ = AR(0.5, 500).

(M5) (Near full-rank basis) K =7, d = 5, 6y; takes the value two for i = 2k — 1,
2k, and k =1,...,5, and zero otherwise, and 65 = 0.5 2221 0. In addition,
S = AR(0.5, 500).

(M6) (Unimodality) K =4, d =1, 6, = 204, and 03 = 36;, where 6; takes the
value one for ¢ = 1,...,5, the value —1 for : = 6, ..., 10, and zero otherwise.
In addition, ¥ = I1p ® CS(0.3,50).

(M7) (Indistinguishable classes) K = 4, d = 1, and 6, = 6, = 63, where 6y,
takes the value one for i =1,...,5, the value —1 for ¢ = 6,...,10, and zero
otherwise. In addition, ¥ = I1p ® CS(0.3, 50).

In each model setting, we compare our LSLDA method with several com-
petitors, including the supervised PCA-based LDA (SPCALDA; Niu, Hao and
Dong (2018)), multi-class sparse discriminant analysis (MSDA; Mai, Yang and
Zou (2019)), sparse optimal scoring (SOS; Clemmensen et al. (2011)), penalized
LDA (SOS; Witten and Tibshirani (2011)), and penalized multinomial logistic
regression model (Logistic, Friedman, Hastie and Tibshirani (2010)). The five
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Table 1. The means (and standard errors) of the classification error (%), subspace
distance D, TPR (%), and FPR (%) on simulated data generated from Models (M1)—
(M6). The results are based on 200 replicates. The standard errors for the TPR and
FPR are all less than 3.5%, and are thus omitted.

Method Err(%) D TPR(%) FPR(%) Err(%) D TPR(%) FPR(%)
Model (Ml) Model (MZ)
Bayes 17.4(0.1) - - 14.2(0.1) - -
LSLDA 18.9(0.1) 0.321(0.538 ) 99.9 0.8 16.4(0.2) 0.379(0.975 ) 99.7 0.6
PP 56.8(0.3) 1.121(0.035)  100.0  100.0 58.7(0.4) 1.170(0.008)  100.0  100.0
SPCALDA 48.2(0.2) 1.296(3.406) 100.0 100.0  33.6(0.1) 1.411(3.328) 100.0 100.0
MSDA 22.4(0.2) 0.809(0.453) 775 0.1 19.9(0.2) 0.815(0.442) 78.8 0.2
SOS(g=K —1)  24.3(0.2) 0.656(0.474) 97.3 0.5  35.4(0.2) 0.981(0.261) 66.3 0.8
SOS(q = d) 19.7(0.1) 0.443(0.722) 97.0 0.4 33.2(0.2) 0.843(0.309) 70.5 0.5
PLDA(g=K —1) 49.2(0.2) 1.056(0.056) 1000  100.0 32.3(0.1) 1.055(0.424)  100.0 97.0
PLDA(q = d) 48.8(0.4) 0.931(0.065)  100.0 1000  33.9(0.2) 0.932(0.331) 99.7 95.5
Logistic 22.1(0.2) 0.799(0.404) 82.8 0.3  24.7(0.2) 0.877(0.428) 74.2 0.3
Model (M3) Model (M4)
Bayes 8.6(0.1) 3.2(0.1)
LSLDA 10.8(0.2) 0.525(1.415) 98.9 0.6 9.0(0.3) 0.698(1.604) 88.0 2.2
PP 41.6(0.4) 1.168(0.008) 100.0 100.0  45.0(0.4) 1.315(0.030) 100.0 100.0
SPCALDA 25.0(0.7) 0.857(0.646)  100.0 1000 28.0(0.3) 1544(7.625)  100.0  100.0
MSDA 13.3(0.1) 0.872(0.448) 67.8 0.2 12.3(0.4) 1.207(0.386) 57.2 0.8
SOS(g=K —1)  19.5(0.1) 0.978(0.273) 64.7 0.8  12.2(0.1) 1.189(0.038) 70.2 1.1
SOS(q = d) 18.9(0.2) 0.839(0.322) 69.5 0.5  8.2(0.1) 0.649(0.082) 69.2 0.3
PLDA(g=K —1) 17.6(0.1) 1.059(0.336)  100.0 98.0 18.7(0.2) 0.536(0.220) 89.4 0.0
PLDA(q = d) 19.6(0.6) 0.939(0.216)  100.0 98.0 18.7(0.2) 0.536(0.220) 89.4 0.0
Logistic 46.8(1.3) 0.977(0.134) 22.1 0.6 27.4(0.2) 1.241(0.386) 74.0 0.5
Model (Ms) Model (MG)
Bayes 10.1(0.1) - - 13.9(0.1) - -
LSLDA 11.6(0.1) 0.235(0.208)  100.0 0.2 15.2(0.1) 0219(1.461)  100.0 0.7
PP 60.0(0.2) 0.999(0.019)  100.0 1000 61.9(0.3) 1.446(0.030)  100.0  100.0
SPCALDA 54.7(0.2) 1.179(1.484)  100.0 1000 61.1(0.2) 2.269(4.379)  100.0  100.0
MSDA 13.0(0.1) 0.496(0.457) 96.1 0.1 18.4(0.2) 1.059(0.209) 98.8 0.2
SOS(¢g=K —1) 14.9(0.1) 0.530(0.420) 100.0 0.9 25.0(0.2) 1.029(0.131) 100.0 0.9
S0S(q = d) 13.6(0.1) 0.428(0.514) 99.9 0.9 15.6(0.1) 0.241(0.475)  100.0 0.1
PLDA(g=K —1) 50.5(0.4) 0.888(1.186) 86.4 76.5  60.9(0.2) 1.344(0.054) 1000  100.0
PLDA(g = d) 56.0(0.7) 0.832(1.081) 81.7 70.5  68.2(0.1) 0.899(0.161) 99.0 99.0
Logistic 12.4(0.1) 0.451(0.300) 99.8 04  34.5(0.2) 1.138(0.320) 90.0 0.5

competitors are implemented using the R packages SPCALDA, msda, sparseLDA,
penalizedLDA, and glmnet, respectively. We also include a simple projection
pursuit (PP) method that first projects the data onto U € RP*K to reduce the
dimension of X from p to K. The LDA is then performed on the K-dimensional
reduced predictor. In addition, we include the Bayes error, that is, the best possi-
ble error rate. The implementations of SOS and PLDA in the R packages provide
the option of prespecifying the number of discriminant directions, denoted by g¢.
We consider both the full-rank option (i.e., specifying ¢ = K — 1) and the option
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Figure 2. Scatter plots of the first two discriminant components BT X and B; X estimated
using the LSLDA, and the first two components estimated using the other competitors.
The rank d = 2 is given for the SOS and PLDA. The plots are based on one replicate in
Model (M2), and the samples in each class are represented by different symbols.

of using the true rank (i.e., specifying g = d).

We compare the methods using several criteria, including the classification
error, subspace estimation error, true positive rate (TPR), and false positive
rate (FPR). The subspace estimation error is measured by the subspace distance
defined in (4.1). With the true active set A and the estimated active set A,
we obtain the TPR = |4 N A|/|A| and the FPR = |A N A°|/|.A¢|. We report
these comparison criteria over 200 replicates under Models (M1)—-(M6) in Ta-
ble 1. Owing to space limitations, the results under model (MT7), which is further
evaluated under different criteria, and the estimated ranks from the LSLDA and
SPCALDA (the only two methods that are able to select ranks) are provided in
the Supplementary Material.

Overall, the proposed method significantly outperforms the competitors. It
is almost as good as the Bayes rule in terms of classification, and provides the
best subspace estimation and variable selection results. The only exception is in
model (M4), where the SOS with true rank information outperforms the LSLDA,
which is still significantly better than the other methods. Note that with the
knowledge of the true rank d, the results of the SOS improve substantially over
the standard (full-rank) SOS. Both the PP method and the SPCALDA fail in



REDUCED-RANK LINEAR DISCRIMINANT ANALYSIS 1265

all criteria, owing to the lack of variable selection. Because the PP method gives
consistently poor performance, we exclude it from all subsequent simulations. In
Table S3 in the Supplementary Material, we show that our method can select
the rank consistently, whereas the SPCALDA severely overestimates the rank in
most settings.

The classification error of the MSDA is usually close to that of our method.
However, the MSDA fails to estimate the discriminant subspace accurately and
tends to miss important variables. The logistic regression performs poorly, be-
cause it is expected to lose efficiency compared with the LDA-based methods.
Comparing models (M1) and (M2), the LSLDA and MSDA are more robust
to strong correlation than are the other methods. For the unbalanced data in
model (M3), the LSLDA performs well on both majority and minority classes;
additional results are provided in the Supplementary Material. The results from
Models (M6) and (MT) also confirm the effectiveness of our proposed method in
the ordinal classification and response category combination problems.

For Model (M2), Figure 2 shows the first two discriminant directions/components
from each method (based on 1/3 of the test data, and from one replicate). From
Figure 2, the four classes are well separated by our estimator, which is the clear
winner in this setting.

We construct another model to study the effects of the sample size n, the
number of classes K, the sparsity level s, and the total number of predictors
p. The covariance matrix ¥ and the vectors 0, for k = 1,..., K — 1, are given
as follows, where we set ||%1/26;|]y and ||2'/26s||z as fixed in order to keep a
reasonable Bayes error.

(M8) 01; = w, for i = 1,...,s, 6aoj—1 = z and bp9j = —z, for j = 1,...,5/2,
where the positive constants w and z are selected such that ||$1/26;|, =
|12, = 5. Fork=3,...,K—1, 60 = (k/2—1)(0; +63). The covariance
matrix ¥ has the AR(0.5, p) structure. The discriminant rank d = 2.

The averaged classification errors over 200 replicates for each method are
displayed in Figure 3. The SOS and PLDA in the comparison use the true rank
by specifying ¢ = d, which are better than their full-rank versions. In general,
the LSLDA outperforms all the other competitors. As we increase the sample
size n, all methods except for the PLDA and SPCALDA converge quickly to the
Bayes error. When K increases, the low-rank estimators, LSLDA and SPCALDA,
are more robust than the others. However, for the MSDA, SOS, and Logistic,
because more redundant directions are estimated, their performance worsens as
K increases. Furthermore, as the sparsity level s increases, the classification
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Figure 3. The means of the classification errors (%) as one of the parameters n, K, s,
and p varies. The results are based on 200 replicates in Model (M8). The rank d = 2 is
provided as known for the SOS and PLDA. We set (K, s,n,p) = (4,20, 120,500) as the
default for all simulations, except for the varying K setting, where we have n = 360, and
for the varying p setting, where we have n = 240.

errors of the MSDA, SOS, and Logistic increase rapidly. This might be due to
the poor variable selection, as seen in Table 1. When p increases, the performance
of the LSLDA, MSDA, SOS, and Logistic is not affected significantly. Thus, our
proposed method is effective in a wide-range of parameter settings.

In Section S2.2 of the Supplementary Material, we report the computation
time of all the LDA-based methods (LSLDA, SPCALDA, MSDA, SOS, and
PLDA). The results suggest that the LSLDA is indeed computationally efficient
and scalable to very high dimensions.

6. Real-Data Analysis

We study three face image data sets, face94, face95, and grimace, collected
by Spacek (2009). For each subject k, ny = 20 images are taken with variations
of facial expression, position of the face in image, head scale, and so on. The
task is to classify these images to the corresponding subject. In face94, we have
K = 20 males. In face95, we use only the face images of the first 15 subjects out
of the total 72 subjects, so K = 15. Finally, grimace contains K = 18 subjects.
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Table 2. The means (and the standard errors) of the classification error (%) and the
estimated sparsity level s over 100 training—test set splits.

LSLDA PP SPCALDA MSDA  SOS  PLDA Logistic

eeoq FTCA) 02(0.0) 0.0(00)  04(01) 02(00) 03 (0.0) L0(0.1) 583(0.3)
5 233.2(10.3) 500.0(0.0) 500.0(0.0) 66.5(0.7) 104.5(10.0) 500.0(0.0) 10.9(0.3)

fceps  FI0) 24.5(0.5) 24.6(0.4)  247(0.4) 33.6(0.5) 275 (0.4) 441(0.4) 36.50.4)
5 227.6 (3.4) 500.0(0.0) 500. 0(0 0) 24.3(0.4) 326.8(14.4) 500.0(0.0) 24.1(0.3)

, Err(%) 0.0(0.0) 0.0(0.0) 0.1(0.1) 0.0(0.0) 0.1 (0.0) 1.1(0.1) 0.5(0.1)
grimace ¢ 241.5 (3.1) 500.0(0.0) 500.0(0.0) 76.8(1.2) 130.1 (0.6) 500.0(0.0) 23.8(0.3)

In each data set, grayscale images of size 180 x 200 are transformed into a vector
of dimension 360,000. Following Mai, Yang and Zou (2019), we perform F-test
variable screening (designed for multi-category responses) on these predictors,
and keep p = 500 variables.

To compare our LSLDA method with the same competitors in the simula-
tions, each data set is randomly split into training and test sets with a 3 : 1
ratio, and the tuning parameters are selected using five-fold cross-validation on
the training set. After the model is refitted with the selected tuning parameters,
the evaluation on the test set is recorded. The averaged classification error and
the estimated sparsity level 5 over 100 training—test set splits are recorded in Ta-
ble 2, which shows that our method achieves competitive classification accuracy
on all data sets. Compared with the PP method and the SPCALDA, our method
produces a sparse estimator. Moreover, although the PP method is also highly
accurate on the real data sets, it produces a (K — 1)-dimensional reduction of
the data, whereas the LSLDA is more aggressive in achieving a low-rank data
projection. On the other hand, compared with the other sparse competitors, our
estimator uses a low-rank structure to attain a lower classification error.

The averaged estimated rank d from the LSLDA (versus the SPCALDA)
on face94, face95, and grimace are 7.7 (versus 3.6), 9.4 (versus 14.5), and
11.5 (versus 6.3), respectively. The standard errors are all less than 0.5. Both
methods produce a low-rank estimator, with neither method showing a clear
advantage. We provide a low-dimensional visualization of the data points using
the two methods. In the Supplementary Material, we show that the LSLDA has
better visualization and separation of the classes than the SPCALDA does.

7. Conclusion

In this study, we consider the reduced-rank LDA model in high dimen-
sions. Motivated by the low-dimensional likelihood-based dimension reduction
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approach, we propose a doubly penalized convex optimization and develop a
computationally efficient algorithm. Simulations and a real-data analysis provide
complementary perspectives for the LSLDA. Simulations suggest that the pro-
posed LSLDA method is widely applicable, provided the sample size is not too
small (e.g., ny > 10) and the Bayes classifier is reasonably sparse (e.g., s < 100).
We tested the LSLDA on data sets with dimensions up to 25,000, finding that
the algorithm converges within a reasonable amount of time. The low-rank as-
sumption may be especially desirable when the number of classes is large, but the
advantage becomes clearer when K is as small as four in the simulations. Owing
to the synergy between the low-rank and sparse-inducing penalties, our method
is, in general, more accurate and robust than existing sparse LDA methods (such
as the PLDA and SOS), whereas the nonsparse projection-based classification
methods (such as the SPCALDA and PP method) clearly fail under sparsity
assumptions. However, in a real-data analysis, the nonsparse projection-based
methods perform well. The LSLDA adapts to these problems by automatically
learning a less sparse (s > 200 from p = 500), but low-dimensional (7 < d<11
from K = 15) structure from these data sets, and outperforms most of its com-
petitors.

Supplementary Material

The online Supplementary Material includes our alternating direction method
of multipliers algorithm, which we compare with the proposed three-operator
splitting algorithm, as well as additional numerical results and technical proofs.
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