
 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

28
 A

ug
us

t 2
02

3 
royalsocietypublishing.org/journal/rsif
Research
Cite this article: Xu Z, Yue P, Feng JJ. 2023
Poroelastic modelling reveals the cooperation

between two mechanisms for albuminuria.

J. R. Soc. Interface 20: 20220634.
https://doi.org/10.1098/rsif.2022.0634
Received: 28 August 2022

Accepted: 8 December 2022
Subject Category:
Life Sciences–Physics interface

Subject Areas:
biomathematics, biomechanics, biophysics

Keywords:
glomerular basement membrane,

poroelasticity, filtration, albuminuria, gel

compression hypothesis
Author for correspondence:
James J. Feng

e-mail: james.feng@ubc.ca
© 2023 The Author(s) Published by the Royal Society. All rights reserved.
Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.

c.6350499.
Poroelastic modelling reveals the
cooperation between two mechanisms
for albuminuria

Zelai Xu1, Pengtao Yue3 and James J. Feng1,2

1Department of Chemical and Biological Engineering, and 2Department of Mathematics, University of British
Columbia, Vancouver, British Columbia, Canada V6T 1Z2
3Department of Mathematics, Virginia Tech, Blacksburg, VA 24061, USA

ZX, 0000-0001-9052-9896; PY, 0000-0001-8343-846X; JJF, 0000-0002-7141-5823

Albuminuria occurs when albumin leaks abnormally into the urine. Its
mechanism remains unclear. A gel-compression hypothesis attributes the
glomerular barrier to compression of the glomerular basement membrane
(GBM) as a gel layer. Loss of podocyte foot processes would allow the gel
layer to expand circumferentially, enlarge its pores and leak albumin into
the urine. To test this hypothesis, we develop a poroelastic model of the
GBM. It predicts GBM compression in healthy glomerulus and GBM expan-
sion in the diseased state, essentially confirming the hypothesis. However,
by itself, the gel compression and expansion mechanism fails to account
for two features of albuminuria: the reduction in filtration flux and the
thickening of the GBM. A second mechanism, the constriction of flow area
at the slit diaphragm downstream of the GBM, must be included. The
cooperation between the two mechanisms produces the amount of increase
in GBM porosity expected in vivo in a mutant mouse model, and also cap-
tures the two in vivo features of reduced filtration flux and increased GBM
thickness. Finally, the model supports the idea that in the healthy glomeru-
lus, gel compression may help maintain a roughly constant filtration flux
under varying filtration pressure.
1. Introduction
Albuminuria is a kidney disease with too much of the protein albumin leaking
through the kidney into the urine. The function of the kidney relies on micro-
vascular filtration units known as glomeruli (figure 1). Their extraordinary
size-selective barrier function can be appreciated from a few numbers. First, a
healthy human produces about 180 l of primary urine daily. Based on the
protein concentration in the plasma, this much liquid corresponds to about
10 kg of proteins being filtered by the glomeruli per day. Of this amount of pro-
teins, only about 1 g passes the glomerular filtration barrier [1]. That yields a
filtration efficiency of 99.99%. Second, even the smallest breach of this barrier
can cause severe disease. Lowering the albumin retention rate from 99.9995%
to 99.66%, for example, produces ‘catastrophic nephrotic syndromes’ [2]. There-
fore, not only is the glomerulus exceptionally effective in keeping proteins in the
blood, its ultrafiltration must also be controlled to exceptional precision.
For these reasons, it is important to understand the physical mechanisms
underlying glomerular filtration.

For the exquisite size selectivity of the glomerular filtration barrier, a
number of explanations have been proposed, and the debates and resulting
insights have been summarized by a number of reviews [2–8]. The glomerular
filtration barrier consists of three layers, a fenestrated endothelium, a glomeru-
lar basement membrane (GBM) and an epithelium of podocytes (figure 1).
While all three contribute to the barrier function [3,9–11], accumulating evi-
dence points to the GBM as key to size selectivity [2,7,12–16]. For example,
Lawrence et al. [15] observed experimentally that injected nanoparticles
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Figure 1. Schematics showing the glomerular filtration barrier in the kidney. Each glomerulus encloses a network of capillaries through which the blood is filtered. The
capillary wall consists of a fenestrated endothelium on the inside, a glomerular basement membrane (GBM) and podocytes on the outside. The liquid filtrate passes
through the endothelium and the GBM, and flows out through the slit diaphragm (SD) between the foot processes (FPs) of the podocytes into the urinary space.
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permeated into the GBM, accumulated upstream of the podo-
cytes, but none appeared upstream of the slit diaphragm
(SD). Thus, the question about the mechanism of glomerular
filtration takes on a more concrete form: how does the GBM
effect precise size selectivity?

The GBM is a dense but porous hydrogel layer with a
polymer network consisting of laminins, collagen, nidogens
and heparan sulfate proteoglycans [7]. The transport of
water and macromolecular solute through the GBM is a mul-
tifaceted process, for which several models have been
proposed. The two-pore model focuses on steric exclusion
of larger macromolecules by pores of different sizes [17,18].
The electrokinetic model hinges on an electrostatic potential
that develops across the glomerular barrier during filtration,
which drives the negatively charged albumin back into the
plasma by electrophoresis [1,19]. These two effects probably
coexist and account for much of the sieving effect. But they
provide mostly fixed barriers to protein passage, and
cannot explain the minute difference in filtration efficiency
between a healthy glomerulus and one with albuminuria [2].

The gel permeation and diffusion model assumes that
water passes through the pores of the GBM by convection,
whereas large protein molecules rely mainly on diffusion
[13]. Albuminuria, in this model, would not be due to greater
protein transport but to suppressed solvent transport.
Although conceptually straightforward, this model predicts
outcomes that contradict several experimental observations
[2,20,21]. As an alternative, Fissell and others have proposed
a gel-compression hypothesis to explain the change of per-
meability between a healthy GBM and a diseased one
[2,6,8,21]. In health, the interdigitating foot processes (FPs)
of the podocytes exert an in-plane tension that produces a
‘buttressing force’ on the outer surface of the GBM thanks
to the curvature of the glomerular capillary [2,8,21,22]. This
can be likened to surface tension on a curved liquid surface
producing a Laplace pressure. Thus the GBM is compressed
by the filtration pressure on the endothelial side and the but-
tressing force on the epithelial side. Its permeability decreases
as a result to prevent albumin leakage. In albuminuria, on the
other hand, the damaged podocytes and FPs can no longer
supply sufficient buttressing force [3,4,9,10,21]. As a result,
the GBM changes its mode of deformation from radial
compression to circumferential expansion. The expansion
dilates the blood vessel and ‘rarifies’ the subepithelial GBM,
enlarging its pores and increasing its permeability to albumin.

Butt et al. [21] put the hypothesis to test with healthy and
diseased mice, and found four intriguing morphological and
hydrodynamic clues to albuminuria:
(i) Albuminuria strongly correlates with the shortening
of the SDs, which contain openings for the efflux of
urine downstream of the GBM (figure 1).

(ii) The glomerular filtration rate (GFR) also decreases in
the diseased mice, but by a smaller percentage than
the reduction in SD length.

(iii) The diseased mice show capillary dilatation.
(iv) The GBM also becomes thicker in the diseased mice.

From (i) and (ii), Butt et al. [21] inferred that the hydraulic
permeability of the GBM must be increased in the diseased
mice, thus providing an indirect confirmation of the gel-com-
pression hypothesis. Observation (iii) is consistent with the
hypothesized circumferential expansion. However, (iv) is a
surprise, as one may expect the circumferential expansion
of the GBM to reduce its thickness.

This work approaches the problem from the opposite
direction to that of Butt et al. [21]: we model the poroelastic
mechanics of the GBM to see if the known precursors of albu-
minuria, the weakening buttress and the shortening SD, lead
to greater GBM porosity and permeability. The model reveals
that such an outcome arises from the cooperation between
two mechanisms: the circumferential stretching of the gel
due to the loss of the FPs, and the reduction in GFR due to
SD constriction. The linkage between the two is that a
lower GFR implies a reduced Darcy drag inside the GBM,
which then compresses it less severely. Thus, the model is
able to explain all the four experimental observations, and,
using appropriate parameter values, to predict the correct
level of gel porosity that Butt et al. [21] have inferred from
in vivo data.
2. Theoretical formulation and numerical setup
2.1. Physical model
In view of recent studies of the mechanics of basement mem-
branes [23,24], we represent the GBM as a poroelastic gel
layer composed of an elastic network and aqueous solvent.
Among the three components of the glomerular filtration
barrier (figure 1), the endothelium has limited contribution
to the size-selective filtration because of its fenestrae [15].
Thus, we omit the endothelial cells and focus on the GBM
and the FPs.

Figure 2 depicts a quarter of the glomerular capillary, and
the computational domain is an annular sector delineated by
the two arcs G1 and G2, respectively, at r = 0.9R0 and R0 + δ0 in
the undeformed state, R0 being the inner radius of the
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Figure 2. The computational domain is between the arcs G1 and G2. The
red dashed line Gi represents the interface between the blood in the capillary
lumen and the GBM. The filtration is driven by a constant pressure P1 on G1

and the flow direction is indicated by the array of arrows. The buttressing
effect of the FPs is represented by elastic springs pushing on the exit of
the domain G2. With symmetry conditions imposed on the two radial bound-
aries θ = 0 and θ = π/2, the flow is one dimension in the r-direction.
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undeformed GBM and δ0 its initial thickness. With flow, R
and δ will change. The inner arc G1 stays fixed at 0.9R0,
but the outer arc G2 moves according to r =R + δ. The fil-
tration flow is driven by the pressure difference between P1

at G1 and P = 0 in the urinary space downstream of the
FPs. The GFR can be computed from the velocity V1 at
G1 : GFR ¼ V1ð2p� 0:9R0Þ. Although the blood pressure
varies with every heart beat, for our purpose we assume a
constant average pressure P1. The flow inside the lumen is
inertialess Stokes flow along the radial direction, and the
exact position of the inner arc G1 is unimportant as long as
it is within the lumen. The GBM is a layer of poroelastic
gel, with initially constant fluid and solid volume fractions
ff0 and fs0 = 1−ff0. As the GBM is deformed by the flow,
ff and fs may vary in time and along the radial direction.
The flow is expected to be one dimension along the radial
r-direction, and one may start with a one-dimensional
setup. But as the computational cost is moderate even in
two dimensions, we have adopted a previously developed
two-dimensional setup [25] for convenience.

To reflect the morphological changes due to FP efface-
ment, we focus on two features. The first is the weakening
of the buttress force on the downstream surface of the GBM
[2,8,22]. The second is the effect of shortened and narrowed
SD on restricting the filtration flux [21,26,27]. We model the
FP buttressing force by elastic springs that resist normal
displacement of the GBM’s outer surface G2 with a radial
normal stress

t2 ¼ Eu2, ð2:1Þ
where E is an elastic coefficient and u2 is the radial displace-
ment of the outer boundary G2. This will be implemented in
boundary conditions on G2. Note that we take τ2 to be posi-
tive even though it is a compressive stress.

After passing through the GBM, the filtrate flows through
the SD into the urinary space, where the pressure can be set
to P = 0 without loss of generality. The viscous flow across the
SD requires a pressure drop

P2 ¼ mDV2, ð2:2Þ
where P2 and V2 are, respectively, the fluid pressure and vel-
ocity on G2, just outside GBM, and mD is a friction coefficient
characterizing the resistance to the fluid downstream of the
GBM. As will be seen later, mD allows us to account for the
flow restricting effect of shortened and narrowed SDs in
albuminuria.
2.2. Governing equations and boundary conditions
In our context, the flow in the lumen is of little interest, so we
treat the blood as a Newtonian fluid of viscosity mb under-
going inertialess flow, despite its non-Newtonian rheology
[28]. Its flow is governed by

r �V ¼ 0 ð2:3Þ
and

rP� mbr2V ¼ 0, ð2:4Þ
in which V and P denote the velocity and pressure,
respectively.

The GBM is an elastic porous medium that can be
described by the poroelastic theory. It consists of a fluid
phase (volume fraction ff ) and a solid phase (volume fraction
fs = 1−ff ). The continuity of each phase dictates the evol-
ution of its volume fraction:

@f f

@t
þr � (f fv f ) ¼ 0 ð2:5Þ

and

@fs

@t
þr � (fsvs) ¼ 0, ð2:6Þ

where vf and vs are the intrinsic phase-averaged fluid and
solid velocities. The motion of each phase is governed by a
force balance:

r � (f fs f )� f frpþ F s!f ¼ 0 ð2:7Þ

and

r � (fsss)� fsrpþ F f!s ¼ 0, ð2:8Þ
where σf and σs are the stress tensor for the fluid and solid
phase, respectively, and p is the pressure inside the basement
membrane. The Brinkman stress of the fluid phase is
s f ¼ m½rvf þ ðrvf ÞT �, m being the viscosity of the filtrate,
i.e. the pore fluid in the GBM. The solid velocity vs is the
material derivative of the solid displacement us: vs =Dus/Dt,
and us determines the solid stress tensor according to the
neo-Hookean model:

ss ¼ msJ
�1ðFFT � IÞ þ lsðJ � 1Þ, ð2:9Þ

where ms and λs are the Lamé constants, F ¼ r̂us is the defor-
mation gradient tensor and J = |F|. The gradient r̂ is
computed in the Lagrangian frame attached to the solid
phase [25]. Finally, the Darcy drag F s!f or F f!s between
the fluid and solid phase is given by

F s!f ¼ �F f!s ¼ jf ffs(vs � v f ), ð2:10Þ

where the drag coefficient ξ is related to the Darcy per-
meability k: ξ =mff/(kfs). For realistic parameters, the
results will show that the viscous stresses in the lumen
(equation (2.4)) and in the pores (equation (2.7)) are both
negligible relative to the Darcy drag.



Table 1. Values of model parameters and their sources.

parameters approximate values

initial capillary radius R0 7 µm [31]

initial GBM thickness δ0 0.3 µm [13]

initial solid fraction fs0 0.075 [13,21]

filtration pressure P1 5.3 kPa [8]

blood viscosity µb 4 × 10−3 Pa s [32]

filtrate viscosity µ 10−3 Pa s [33,34]

permeation coefficient η 2.7 × 10−5 µm (Pa s)−1 [21]

Lamé parameter µs 20 kPa [35]

Lamé parameter λs 20 kPa [35]

Darcy drag coefficient ξ 104 Pa s µm−2 [23,36]

FP elastic coefficient E healthy: 286 kPa µm−1

diseased: 2.57 kPa µm−1

FP viscous coefficient µD healthy: 147 Pa s µm−1

diseased: 588 Pa s µm−1

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

20:20220634

4

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

28
 A

ug
us

t 2
02

3 
With symmetry conditions imposed on the two radial
boundaries of the computational domain (figure 2), the
flow is essentially one dimension along the r-direction. On
the inner surface Gi of the GBM, we imposed the boundary
conditions BC2 developed in our earlier work [29]:

V � n ¼ ðfsvs þ ffvf Þ � n, ð2:11Þ
ðS� PIÞ � n ¼ ðfsss þ ffsf � pIÞ � n, ð2:12Þ

ðV� vf Þ � n ¼ hn � ½ðS� PIÞ � ðss � pIÞ� � n, ð2:13Þ
ðV� vf Þ � t ¼ bn � S � t ð2:14Þ

and fsðvs � vf Þ � t ¼ �bn � sst, ð2:15Þ
where n is the outward unit normal vector on the hydrogel
surface. The first two conditions enforce mass and traction
balance across the fluid–gel interface, while the last three
express the normal and tangential velocity jumps in terms
of stress jumps. In our radially one-dimensional flow, the tan-
gential velocity conditions are irrelevant. They are retained
formally because the flow setup is nominally two dimensions
(figure 2).

As noted earlier, a constant pressure P1 is imposed on the
entry to the computation domain G1. On the exit G2, the
boundary conditions should account for the buttressing
stress τ2 from the FPs. The normal traction balance is rewrit-
ten as

ðS� PIÞ � n� t2n ¼ ðfsss þ ffsf � pIÞ � n: ð2:16Þ

To complete the mathematical setup, we need a normal vel-
ocity jump condition on G2, which is derived using the
normal traction balance above in the electronic supplemen-
tary material:

ðV� vf Þ � n ¼ hn � ½ðS� PIÞ � ðss � pIÞ� � n� h
t2
fs

n, ð2:17Þ

where the pressure P2 is related to the filtration flux or V2 via
equation (2.2).

Thus set up, the mathematical problem is solved by
finite elements with an arbitrary Lagrangian–Eulerian
scheme to track the movement of the fluid–GBM interface.
The two-dimensional computational domain is meshed by
quadrilateral elements, with bilinear Q1 discretization for
the pressures, and quadratic Q2 discretization for the vel-
ocities, stresses and the volume fractions. The code is
developed using the open-source finite-element library
deal.II [30], and algorithmic details can be found in [25].
2.3. Parameter estimation
Table 1 summarizes all the parameters of our model. Their
evaluation makes maximum use of available information in
the literature, and for some only rough ranges can be deter-
mined. Details of the parameter evaluation are given in the
electronic supplementary material, and in the following we
elaborate on the two most important parameters for testing
albuminuria, E and mD, whose estimation is also the most
subtle.

The change from the healthy to the diseased glomerulus
is modelled in part by reduction of the elastic modulus E
for the buttressing force (equation (2.1)). However, the phys-
ical origin of the buttressing force is not so much the rigidity
of the podocytes as the in-plane tension generated by the
interdigitated FPs (cf. fig. 1 of [8]). No quantitation of such
tension seems to be available in the literature, and we have
to determine E by alternative means. For the healthy state,
we choose a large enough E = 286 kPa µm−1 such that the
FPs are essentially rigid against the filtration pressure. This
particular value comes from a dimensionless modulus
�E ¼ ER0=ms ¼ 100, the numerical experimentation having
been carried out in dimensionless variables. For the diseased
state, we have tested a range of softened E values, and found
that E = 2.57 kPa µm−1 would yield 13% of capillary dilata-
tion, the observed amount in Butt’s experiments for the
diseased glomerulus [21]. Thus, the softened E for the
diseased state is chosen by fitting.

The parameter mD is key to modelling the filtration flow
(equation (2.2)). It depends on the complex flow geometry
downstream of the GBM, especially that of the SD, schemati-
cally shown in figure 3, adapted from Rodewald &
Karnovsky [37]. More recent, higher-resolution imaging has
revealed variations in SD shape and size [38,39]. For simpli-
city, however, we will adopt the rectangular pore shape and
the dimensions of Rodewald & Karnovsky [37]. The fluid
flows through the pores framed by the cross strands, the cen-
tral filament and the edge of the FP, and the primary source of
dissipation is viscous friction in the narrow passage. The pore
has width w = 14 nm, height h = 4 nm and a depth that equals
the thickness of the cross strands: d = 7 nm [27]. As w far
exceeds h, we assume planar Poiseuille flow with a parabolic
profile in the h-direction, and relate the pressure drop P2

across the SD to the flux through each pore Qpore by

P2 ¼
12mQpore

wh3
� d: ð2:18Þ

Note that we have set the pressure outside the SD to zero.
The volume flux Qpore can be estimated from the total

fluid flux V2S, S being the flow area at G2, and the number
of pores. The number of pores is N = 2L/H, L being the
total SD length over the area S and H = 11 nm being the
height of each repeating unit of cross strands, the factor of
2 accounting for the two columns of pores in the SD. Thus,
the pressure P2 can be related to the velocity V2, and we



FPs FPs

h = 4 nm

39 nm

H = 11 nm

w = 14 nm

pore

y

x

Figure 3. The SD consists of a central filament and two columns of cross
strands that bridge the central filament and each of the two apposed FP
cell membranes [37]. The fluid flows through the rectangular pores (in the
z-direction into the page) between the cross strands.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

20:20220634

5

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

28
 A

ug
us

t 2
02

3 
obtain from equation (2.2)

mD ¼ 6mdH
wh3

S
L
: ð2:19Þ

Butt et al. [21] measured the SD length per unit area as L/S =
3.5 µm−1 for the healthy glomerulus. This gives us mD =
147 Pa s µm−1 in health. FP effacement reduces the SD
length by 50–63% [21] while the SD width narrows from 39
nm to 15–20 nm [27]. Thus, L and w are each reduced roughly
by a factor of 2, and the flow area at the SD is constricted by a
factor close to 4. Accordingly, we take mD = 588 Pa s µm−1 for
the diseased state. A higher mD would reduce the flow rate
through the filtration barrier, and its effect on the confi-
guration of the GBM will be explored in conjunction with
that of a weakened buttressing force.
3. Results
We focus on the solid fraction of the GBM as it determines the
permeability and the risk for albuminuria. A higher solid
fraction means that the GBM is denser and less permeable.
We first present results for the healthy glomerulus where
the FPs can provide enough buttressing force. Then we inves-
tigate the effect of FP injury by varying the buttressing
modulus E of equation (2.1) and the viscous friction
coefficient mD of equation (2.2).

3.1. The healthy state
Our simulation starts from an initial condition with a uniform
GBM of solid fraction fs0 = 0.075 everywhere. The filtration
pressure P1 drives an outward radial flow. As a result,
the GBM is compressed by the pressure and flow, and the
capillary may dilate slightly. We are interested only in the
steady state.

The numerical results, obtained with the parameters of
table 1 for the healthy glomerulus, allow us to verify directly
the concept of gel compression [6,12]. Figure 4a depicts the
gel compression due to the filtration flow. The inset shows
that while the outer surface of the GBM has expanded
slightly (from r = 7.35 to 7.36 µm), its inner surface has been
compressed considerably (from r = 7 to 7.11 µm). Thanks to
the relatively rigid buttressing, the FPs have effectively
restrained the dilatation of the capillary. The colour contours
confirm the elevated solid fraction fs. The fs(r) profile is com-
pared before and after the compression in figure 4b. The
compression yields a roughly linear fs(r) profile, with an
average �fs ¼ 0:10, a 33% increase over the initial value of
fs0 = 0.075.

We further explore the gel compression from the pressure
and flow profiles across the GBM (figure 5). The blood inside
the lumen experiences little viscous dissipation. Thus, P(r)≈
P1 is essentially a constant. The velocity V(r) decreases with r
because of the requirement of volume conservation in the
radial flow geometry: ∂(V r)/∂r = 0. Upon entering the
GBM, the pressure suffers an abrupt drop that, according to
equation (2.12), serves to counter the solid and fluid normal
stresses inside the gel. For our low viscosity m, the viscous
normal stress is small. Thus, most of the pressure drop is
expended on σs, compressing the GBM and elevating fs

from 0.075 to 0.094 at the upstream interface (figure 4b).
Meanwhile, the velocity jumps up suddenly as required by
mass conservation of equation (2.11).

Inside the gel, p(r) continues to drop at a sharp slope
because of the Darcy drag exerted by the fluid flow on the
polymer network. Since this drag is distributed along the
GBM’s thickness, the gel suffers cumulative compression
further downstream. This explains the gradual increase of
fs with r in figure 4b. As the solid compacts the pore space,
volume conservation tends to raise the pore velocity vf(r).
Thus, vf(r) declines more gently inside the GBM than V(r)
does upstream of the gel, which is dictated by the radial geo-
metry. Finally, upon exiting the GBM, the pressure suffers
another drop to P2 = 0.463 kPa while the velocity drops to
V2 = 3.15 µm s−1.

It is interesting to observe that the filtration pressure P1, or
more precisely the pressure drop from P1 in the lumen to P =
0 at the urinary space, is expended on four sources of resist-
ance along the flow path: entry into the GBM (25% of P1, used
mostly to compress the gel); Darcy drag within the GBM
(17%); exit of the GBM (49%, mostly to counter the buttres-
sing force τ2 according to equation (2.17)); and the viscous
friction as the fluid passes through the SD (9%, according
to equation (2.2)). This insight will inform our analysis of
the filtration flow through the injured glomerulus in the
next section.

We close this section by examining the phenomenon of
renal autoregulation. The glomerulus is known for its
remarkable ability to maintain a roughly constant GFR
despite large variations of the blood pressure [40–43]. Aside
from regulation of the afferent arterioles upstream of the glo-
merulus, Fissel [2] noted that gel compression could be ‘an
additional mechanism of renal autoregulation of GFR’. To
test this idea, we have varied the filtration pressure P1 in
our model and investigated the resultant change in the
GFR, represented by the fluid velocity V1 at the inner bound-
ary of our computational domain (r = 0.9R0). As P1 increases
from the baseline value of 5.3– 20 kPa, V1 increases by only
about 61% (figure 6a). This is evidently caused by the pro-
gressive compression of the GBM (figure 6b). Kirchheim
et al. [40] measured GFR changes in dogs by varying the
renal artery pressure, and their data are compared with the
model prediction in figure 6a. The model captures the trend
of the in vivo data. Thus, ‘as pressure-driven flow increases,
resistance to further flow increases’ [2]. The model confirms
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that gel compression contributes to the autoregulation of
glomerular flow.

To sum up the model predictions for the healthy glomer-
ulus, the filtration flow compresses the GBM and increases its
solid fraction. Thus, its permeability to large molecules is
reduced. This confirms the idea of the gel compression.
Next, we use the healthy state as a baseline to investigate
the effects of FP injuries.
3.2. The diseased state
As discussed in §2.3, the effacement of the podocyte FPs is
modelled through two effects: the softening of the buttressing
modulus E, and the constriction of the SD via the friction
coefficient mD. In the following, we will proceed in two
steps. First, we reduce E from the healthy value to the dis-
eased value while keeping mD at the healthy value (table 1).
Then we increase mD to the diseased value.

Figure 7 compares the steady-state solution for the healthy
and ‘diseased’ glomerulus, the latter having a weakened but-
tress (E = 2.57 kPa µm−1) but the healthy mD = 147 Pa s µm−1.
First, the most obvious effect of the weakened E is the
pronounced capillary dilatation (figure 7a); the inner radius
of the GBM has expanded from 7.11 to 8.41 µm (figure 7b).
Second, the capillary dilatation stretches the GBM and makes
it thinner. This is clear from figure 7c, where we have aligned
the inner surface of the GBM by translating the fs(r) profile
for the diseased glomerulus. TheGBM thickness has decreased
from 0.257 to 0.237 µm. Third, the stretching of the GBM also
expands the gel and reduces its solid fraction (figure 7c),
thanks to a Poisson ratio ν = 0.25 that is below 0.5. Averaged
over the GBM thickness, �fs has decreased by 7%, from 0.10
to 0.093. Finally, as a direct result of the reducedfs and thinner
δ, the GBM presents a lower resistance to filtration, and the
GFR has increased by 28% (figure 7b).

These model predictions confirm two features of the gel-
compression hypothesis [2,6,8,21]: dilatation of the capillary
and increased porosity in the GBM. However, they also
contradict two other experimental observations. First, exper-
iments show a lower filtration rate in the injured glomerulus
[21,26,44], whereas our model predicts the opposite (figure
7b). Second, GBM thickening is a well-known feature in albu-
minuria and other glomerular diseases [7,45]. The model
predicts GBM thinning (figure 7c).
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The key to resolving these contradictions is the shortening
and narrowing of the SD due to FP effacement, another mor-
phological manifestation of podocyte injury. In our model,
this is represented by increasing the friction factor mD to
reflect the constricted area available to the filtrate [21,26,27].
Figure 8 compares the steady-state solutions for the healthy
glomerulus and for a ‘diseased’ glomerulus with both sof-
tened E and elevated mD. First, the amount of capillary
dilatation is smaller in figure 8a than in figure 7a. Second,
the higher mD effectively reduces the GFR, which now falls
below the healthy solution (figure 8b). Third, the model
now predicts a slightly thicker GBM than the healthy solution
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(figure 8c). This is thanks to the reduced GFR; the fluid now
exerts a smaller Darcy drag onto the solid network to com-
press the gel. Thus, including the additional mechanism of
SD constriction has resolved the contradictions between
figure 7 and in vivo observations. Fourth and most interest-
ingly, the GBM becomes even more porous with the raised
mD; �fs is now about 12% below that of the healthy glomeru-
lus. This is again attributable to the decreased flow rate that
exerts less compression on the GBM.

The contrast between the healthy and injured state can also
be appreciated from how the filtration pressure P1 is expended
on the four sources of resistance. In the diseased state depicted
in figure 8, the most notable change is an increase in the resist-
ance of the SD, from 9% of P1 in the healthy state to 31% in the
diseased state. This is at the expense of the other three
obstacles: the entry resistance has declined from 25% to 16%,
the Darcy drag from 17% to 13%, and the exit resistance
from 49% to 40%. These declines are at the root of the smaller
capillary dilatation (figure 8a), reduced GFR (figure 8b) and
enhanced GBM rarefaction (figure 8c).

In summary, our model predicts that the two pathological
consequences of FP effacement, the softening of the buttres-
sing force on the GBM and the reduction of flow area at the
SD, each contribute to albuminuria, but through distinct
pathways. The weaker buttress allows the GBM to bulge out-
ward and expand its circumference. The constriction of flow
area at the SD reduces the GFR, a long-recognized feature
of glomeropathy [21,26,44], which in turn reduces the
compaction of the GBM by the interstitial flow. Thus, both
conspire to increase the porosity and permeability of the
gel. Notably, the thickening of the GBM, which may appear
counterintuitive in view of the circumferential stretching of
the gel layer, is predicted as a consequence of the suppression
of GFR.
4. Discussion
Our initial motivation was to build a mechanical model to
test the so-called gel-compression hypothesis [2,6,8], which
seeks to explain the onset of albuminuria by the following
chain of events:

(a) Injuries to the FPs of the podocytes cause a loss of but-
tressing force on the GBM.

(b) This in turn leads to dilatation of the glomerular capillary
under filtration pressure, and circumferential stretching
of the GBM.

(c) The stretching increases the GBM porosity and per-
meability, allowing proteins to leak from the blood into
the urine.

Our model demonstrates how (b) and (c) arise from (a), and
thereby confirms the gel-compression hypothesis. In fact, as
the GBM is compressed in the healthy state but expands in
albuminuria, the hypothesis should perhaps be called the



royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

20:20220634

9

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

28
 A

ug
us

t 2
02

3 
‘gel-deformation hypothesis’. Moreover, the model supports
the idea that in the healthy glomerulus, gel compression
contributes to renal autoregulation of the filtration flux,
i.e. the maintenance of a roughly constant flow rate under
varying blood pressure.

In comparing the model predictions further with
experimental observations [21], we realize that the gel com-
pression and expansion is only part of the story. The other
part is the reduction in the GFR by the constriction of avail-
able flow area at the SDs, another salient manifestation of
FP injury. This is an important mechanical pathway because
GFR reduction is a clinical hallmark of albuminuria [26,44].
Moreover, our model has revealed two additional conse-
quences: the lower flow velocity produces less Darcy drag
inside the gel, less compression and a secondary reduction
in fs, and it also leads to a thickening of the GBM despite
the circumferential stretching.

Therefore, our model not only confirms the gel-defor-
mation hypothesis, but also uncovers the cooperation
between two mechanisms: gel expansion due to the wea-
kened FP buttress, and GFR reduction due to SD
constriction. Between these two, the model is able to account
for all the qualitative trends seen in animal models [21].

Quantitatively, Butt et al. [21] measured the changes in
GFR and SD length in a mutant mouse model exhibiting
albuminuria, and used a membrane transport model [46] to
estimate the increase in hydraulic permeability. Then they
were able to back out the required decrease in solid fraction
from the Carman–Kozeny equation. Their data imply a
reduction of fs from 0.1 to 0.0864 for two-week-old mutant
mice, and further down to 0.0794 for four-week-old mutant
mice. Based on the parameter values of table 1, our poroelas-
tic model predicts roughly the same amount of gel expansion;
the average solid fraction of the GBM decreases from fs = 0.10
to 0.088 due to the softening FPs and SD constriction. While
Butt et al. deduced the GBM rarefaction in albuminuria from
the measured transport, our model goes in the opposite direc-
tion: it starts with the poroelastic mechanics of the GBM, and
shows that it indeed yields the correct amount of gel expan-
sion under physiological conditions.

In terms of GFR reduction and GBM thickening, the model
predicts the correct qualitative trend, but underpredicts the
experimental values of Butt et al. [21] by much. The GFR is
30% lower in the mutant mice, whereas the model predicts a
3% decrease (figure 8b). The GBM thickens by some 8%
in vivo, while the model yields a mere 1.5% increase. These
two discrepancies are probably related, and the likely causes
include the geometric simplifications in the model that disre-
gards any spatial variations along the circumference of the
capillary (figure 2), and the uncertainties in evaluating some
of the model parameters (table 1).

To conclude, we have built a poroelastic model for the
GBM, and used it to study the mechanical factors in the
onset of albuminuria. Our main findings are

— The model confirms that effacement of podocyte FPs
leads to circumferential stretching of the GBM.

— This increases the porosity of the gel layer, effectively con-
firming the gel-deformation hypothesis.

— A second mechanism, constriction of the filtration area at
the SD, cooperates with the circumferential stretching to
further increase GBM porosity.

— Using the best estimates of parameter values, the model
reproduces roughly the correct amount of porosity
increase in the gel as expected from experimental obser-
vations, but underpredicts the reduction in glomerular
filtration flux and the magnitude of GBM thickening.
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