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The next-to-top term in knot Floer homology
Yi Ni

Abstract. Let K be a null-homologous knot in a generalized L-space Z with b1(Z) < 1. Let

F be a Seifert surface of K with genus g. We show that if IﬁK(Z ,K,[F], g) is supported in a
single Z /27Z-grading, then

rank HFK(Z, K, [F], g — 1) > rank HFK(Z, K., [F], g).

1. Introduction

Knot Floer homology is an invariant for null-homologous knots in 3-manifolds intro-
duced by Ozsvéth and Szabé [10] and Rasmussen [17]. Suppose that F is a Thurston
norm minimizing Seifert surface for a null-homologous knot K C Z, then H/F\K(Z LK,
[F], g(F)), which is known as “the topmost term” in knot Floer homology, captures
a lot of information about the knot complement. For example, H/F\K(Z LK, [F],g(F))
always has positive rank [9]. Moreover, H/F\K(Z ,K,[F],g(F)) has rank 1 if and only
if F is a fiber of a fibration of Z \ K over S!, see [2,5].

It is natural to ask if one can say similar things for other terms in }Tﬁ((z , K).
Baldwin and Vela-Vick [1, Question 1.11] asked whether H/ﬁ((S 3K, g(K)—1)
is always nontrivial. More specifically, Sivek [1, Question 1.12] asked whether we
always have

rank HFK(S3, K, g(K) — 1) > rank HFK(S?, K, g(K)). 1)

This inequality has been known for knots with thin knot Floer homology [8], L-space
knots [4], fibered knots in any closed oriented 3-manifolds [1]. In this paper, we will
prove (1) when H/F\K(Z, K, [F], g) is supported in a single Z /27Z.-grading.

Recall that a closed, oriented 3-manifold Z is a generalized L-space if

HFeq(Z) = 0.
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In [11], an absolute Z /27Z-grading was defined on Heegaard Floer homology. When
the underlying Spin¢ structure is torsion, one can define an absolute QQ-grading.

Theorem 1.1. Let Z be a generalized L-space with b1(Z) < 1, and let K C Z be
a null-homologous knot with a Thurston norm minimizing Seifert surface F of genus
g > 0. Suppose that HFK(Z, K, [F], g) is supported in a single 7./ 27.-grading. Then
forany d € Q, we have

rank}fﬁ(d_l(z, K,[Fl,g—1)> rankI{/f:T(d(Z, K,[F], g).

Theorem 1.1 contains some known cases of the conjectural inequality (1), includ-
ing fibered knots and knots with thin knot Floer homology.
To prove Theorem 1.1, we need the following result about HF .

Theorem 1.2. Let Y be a closed oriented 3-manifold. Suppose that G C Y is a closed
oriented surface of genus g > 2. If there exist two elements yi, y» € Hy(G) with
y1 - Y2 # 0, such that their images in Hy(Y') are linearly dependent, then the map U
is trivial on HF* (Y, [G], g — 2; Q).

Remark 1.3. When b;(Y) < 2, a simple intersection number argument shows that
the image of H1(G; Q) — H;(Y; Q) is at most 1-dimensional for any G C Y with
[G] # 0 € Hy(Y). So, Theorem 1.2 can be applied to this case. Ozsvéath and Szab6
have computed HF " (S3(K)) in the cases when K is an L-space knot [7, Proposi-
tion 8.1] and when K is an alternating knot [8, Theorem 1.4]. One can directly check
Theorem 1.2 in these two cases.

Remark 1.4. If G C Y is a closed oriented surface of genus g > 1, the map U on
HF'(Y,[G], g — 1) is trivial. The author first learned this result from Peter Ozsvith,
and learned a sketch of a proof of it from Yanki Lekili using a similar argument as
in [13, Theorem 3.1]. A proof of a more general result using the same idea as Lekili’s
was given by Wu [18]. The proof of Theorem 1.2 uses the same argument. Our proof
justifies the use of the Kiinneth formula for HF " in [18].

This paper is organized as follows. In Section 2, we will collect some results
about Heegaard Floer homology we will use. In Section 3, we prove Theorem 1.2. In
Section 4, we prove Theorem 1.1.

We will use the following notations, If N is a submanifold of another manifold
M, let v(N) be a closed tubular neighborhood of N in M, and let v°(N) be the
interior of v(N). If K is a null-homologous knot in a 3-manifold Z, let Z,,,(K) be
the manifold obtained by g—surgery on K.
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2. Preliminaries on Heegaard Floer homology

Heegaard Floer homology [12], in its most fundamental form, assigns a package of
invariants
HF, HF', HF, HF®

to a closed, connected, oriented 3-manifold Y equipped with a Spin¢ structure s €
Spin(Y).

As described in [16, Section 2], let HF~ and HF* denote the completions of
HF™ and HF* with respect to the maximal ideal (U) in the ring Z[U]. By [16, (5)],
when c1 () is non-torsion, HF*° (Y, s) = 0. By [16, (4)], which is an exact sequence
relating HF~ (Y, s), HF> (Y, 5), HF*(Y,s), one gets [16, (6)], which is

HF(Y,s) =~ HF (Y, s), )

if ¢1(s) is non-torsion.

Let CFSO(Y, 3) be the subcomplex of CF*°(Y, s) which consists of [x,i],7 < 0.
This chain complex is clearly isomorphic to CF~ (Y, s) via the U-action. We have a
similar completion HF =,

We often use HF° to denote one of the above invariants.

When W is a cobordism from Y; to Y5, and @ € Spin® (W), there is an induced
homomorphism

FI?V’@:HF°(Y1, Gly,) — HF°(Y2, Gly,).

In [12, Section 4.2.5], Ozsvath and Szabé6 defined an action of H;(Y )/ Tors on
HF°(Y). Given y € H,(Y)/ Tors, there is a homomorphism

A,:HF°(Y) — HF°(Y)

satisfying A)Z, = 0. The following theorem is the HF= version of [3, Theorem 3.6].
See the remark following the proof.

Theorem 2.1. Suppose Y1, Y, are two closed, oriented, connected 3-manifolds, and
W is a cobordism from Y1 to Y. Let

Fi" HF='(Y;) — HF=°(Y>)

be the homomorphism induced by W. Suppose {1 C Y1, {o C Y, are two closed curves
which are homologous in W. Then

0 0
Fj o Apy) = Apgyy o Fjp
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3. The next-to-top term in HF*

We will use Q-coefficients for Heegaard Floer homology in the rest of this paper.
Let G be a closed oriented surface of genus g > 2. Let

V:S3 -G xS!

be the cobordism which consists of 2g one-handles and 1 two-handle with attaching
curve being the Borromean knot B,. Let G4, € Spin®(V) be the Spin® structure
with (¢1(©g-2),[G]) = 2g — 4, and let s,_» € Spin®(G x S!) be the restriction of
Ge2t0 G x ST
Let
Fi‘ég_z: HF=(5%) - HF="(G x S, 54_,)

be the map induced by the cobordism (V, ©¢_»), and let
y=Fpg, ). 3)
In [10, Theorem 9.3], it is shown that

HFT(G x S',5,-2) = X(g, 1) = H*(G) ® Q[U)/(U* & H'(G) ® Q[U]/(U),
“4)

with the homological action given by
4,01 =PD(y)®1, A4,0n®1) = (.y)QU. ©)

Here 6 is a generator of H%(G), and n € H'(G). We will fix an identification as
in (4). By abuse of notation, we often use 6 to denote § ® 1 € X (g, 1).
We will prove the following proposition.

Proposition 3.1. The element y defined in (3) has the form a6 + bU® for some a,b €
Q,a #0.

Let Y be a closed, oriented 3-manifold and suppose that G embeds into ¥ as a
homologically essential surface. Consider the trivial cobordism

Y x[0,1]:Y —» Y.

Let p be a point in G, and let W} be a tubular neighborhood of

xions o= [o4]) v (6 < (3).

Then W, is a cobordism from Y to Y#(G x S1). Let Wo =Y x [0,1] \ W;.
Let t € Spin©(Y) be a Spin® structure satisfying {(c1 (%), [G]) = 2(g — 2), and let
T € Spin° (Y x [0, 1]) be the corresponding Spin¢ structure. If we think of G x S! as
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the boundary of a regular neighborhood of G x {%}, then we clearly have T |5, 51 =
sg—2. By [6, Lemma 2.1],

iy 1y, © Fin ey, = i HF (Y, 1) > HE(Y, 1), (©)

Lemma 3.2. Suppose that x € HF=<°(Y, 1), then F%,? T (x) =x® y. Here y is
’ 1
defined in (3), and

x®y € HF='(Y,t) ®ou] HF=(G x S!,5,_2) C HF=°(Y#(G x S!), t#s,_»)
by the Kiinneth formula.

Proof. By [7, Proposition 4.4], there is a commutative diagram (note that we switch
the order of the tensor product)

=<0
Y#S3.t

HF=°(Y,t) @ HF=°(S?) HF=°(Y, 1)
id ®F‘§’0@g*21 FV—T,‘I’le

F=0
HF=(Y,t) ® HF=°(G x S',s,_») HF=C(Y#(G x S1), t#s,_»)

Y#HG xS thsg_o
_—_ 5

Our conclusion follows from this commutative diagram. |

Proof of Proposition 3.1. We choose Y =G x S! and x = U6. By (6) and Lemma 3.2,
U6 =Fp0 o5 (UO) = F2 (U ® y) = Fj52 (6 @ Uy).

Since UB # 0, Uy # 0. From the structure of X(g, 1) in (4), we see that any homo-
geneous element y (with respect to the Z /2Z-grading) satistying Uy # 0 must be of
the form a6 + bUB, a # 0. ]

Lemma 3.3. Forany y1,y> € Hi(G) C H1(G x S'), we have
Ay, 0 Ay, (¥) = (y1-72)Uy.

Proof. By Proposition 3.1, y = a8 + bU8. By the module structure of X (g, 1) in (4)
and (5), Uy = aU#, and

Ay, 0 Ay () = (PD(y1), y2)aUB = (y1 - y2)aUB. ™

Proof of Theorem 1.2. Let t € Spin®(Y) be as above. Assume further that U # 0 on
HF*(Y,1). By (2), Ux # 0 for some x € HF=°(Y, t). By (6) and Lemma 3.2,

X = F%,g ) F%,?(x) = F%,g(x R ). @)
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Let¢; C G be a closed curve representing y;, i = 1,2. Let y] € H1(Y#(G x S')) be
represented by ¢; x point C G x S', and let y" € H;(Y) be represented by ¢; CGCY .
Then (¢; X [%, 1]) N W, defines a homology between y; and y/’. By Lemma 3.3 and (7)
we have

(y1-72)Ux = vav‘z)(x ® (y1-y2)Uy)
= Fj, (x ® Ay, 0 Ay, (7))
=Fj5)(Ay; 0 Ay (x ® 7)),

where the last equality follows from the fact that the actions of Al’i and Ayé on the

HF=°(Y, t) factor are trivial.
Since y{ and y; in H;(Y') are linearly dependent, we get

Fid(Ay 0 Ay (x®y) = Ao Ay Fl(x®y) =0

by Theorem 2.1 and the fact that Af, = 0 for any y € H;(Y). This contradicts the
assumption that y; - y» # 0 and Ux # 0. [

4. Proof of the main theorem

Let K be a null-homologous knot in a generalized L-space Z. Let F be a Thurston
norm minimizing Seifert surface of K with genus g > 2. By the proof of [10, The-
orem 5.1], we can choose a Heegaard diagram for (Z, K) such that

CFK(Z.K,[F),i)=0 if]i| > g.
Given s € Spin‘(Z), let
C = CFK®(Z, K, s, [F)).

then
C@i,j)y=0, if|i—j|>g. (3)

Let
Af =Cl{i=0orj>k}, BT=C{i =0}
and define maps

+ . 4+ +
vk,hk.Ak — B

as in [15]. More precisely, v,j is the natural quotient map (or the vertical projec-
tion) onto B, and h,j is essentially a horizontal projection. By [15, Theorem 2.3],
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v,j and h,j can be identified with certain chain maps induced by a two-handle cobor-
dism W,/(K): Z,(K) — Z.

When s is a torsion Spin® structure, by [14], there is an absolute Q-grading on
HF'(Z,s), so there is an absolute Q-grading on C. The shift of the absolute grading
of maps induced by cobordisms is computed as in [14, Theorem 7.1]. In particular, if
we identify v,‘: and h,j with maps induced by the cobordism W, (K), the difference
between the grading shifts of v,‘: and h,j is

2k —n)*> — 2k +n)*>
_ . =

2k. (€))

Proposition 4.1. Let F be the closed surface in Zy(K) obtained by capping off oF
with a disk. Let s, € Spin®(Zy(K)) be the Spin€ structure satisfying that

Se2lzwek) = Slz\wek),  (c1(sg—2), [F]) = 2(g —2).

If there exists an elementa € H,(C{i <0, j > g —2}) such that Ua # 0, then there
also exists an element a’ € HF'(Z(K), $¢—2) such that Ua' # 0.

Proof. Consider the short exact sequence of chain complexes
vi,
0—>C{i<0,j>g—-2}—>A; ,—> BT >0, (10)

which induces an exact triangle.

By [15, Section 4.8], CF T (Zo(K), 5¢—2) is quasi-isomorphic to the mapping cone
of

vy, +hy 5t Af , — BT

So, there is also an exact triangle. We will use a standard argument to compare these
two exact triangles.

Case 1: s is a torsion Spin¢ structure. Since Z is a generalized L-space,
v = (v;_z)*: H*(A;_z) — H,(B™)
is surjective. So
H.(C{i <0, > g—2}) =~ kerv

as a Q[U]-module.
By (9), v;_z and h;_z have different grading shifts. Since Z is a generalized
L-space,
v+ b= (] _p)x + (hg_y)x He(A7_,) — Hi(BY)
is surjective. So
HF " (Zo(K),5¢-2) = ker(v + h)

as a Q[U]-module.
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Since v is homogeneous and surjective, there exists a homogeneous homomorph-
ism p: Hy(B") — H, (A;_z) satisfying
vop=id.

By (9) and the assumption that g(F) > 2, the grading shift of 4 is strictly less than the
grading shift of v, so the grading shift of ph is negative. As the grading of H (A;_z)
is bounded from below, for any x € H., (A;_z), (ph)™(x) = 0 when m is sufficiently
large. So, the map

id—ph + (ph)? = (ph)* + -+ Ha(Ag ) — Hu(A] )

is well defined, and it maps ker v to ker(v + £).
Assume that a € ker v is a homogeneous element with Ua # 0. Then

a' = (id—ph + (ph)* — (ph)® + ---)(a) = a + lower grading terms € ker(v + h)

S0
Ua' = Ua + lower grading terms

which is nonzero since Ua # 0.

Case 2. s is non-torsion. Since Z is a generalized L-space, HF T (Z,s) = 0. Namely,
H.(B™) = 0. By the two exact triangles at the beginning of this proof, we have

H.(C{i <0,j > g—2}) = HF"(Zo(K), 5g-2)
as Q[U]-modules. So, our conclusion holds. [

We will use the following elementary lemma in linear algebra.

Lemma 4.2. Let V,W be two linear spaces over a field ¥, and let V1, W1 be their
subspaces, respectively. If v € V\ Vi, w € W\ Wy, then

v®w¢V1®W+V®W1.

Proof. Suppose that dimV = m, dimV; = m, dimW = n, dimW; = n;. We can
choose a basis

V1, ey Um
of V, such that vy, ..., vy, is a basis of Vi, and v = vy, +1. Similarly, we choose a
basis

w1, ey Wy
of W, such that wy, ..., wy, is a basis of Wy, and w = wy, +1. Then

v Qwj, 1<i<m,1=<j<n,
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is a basis for V® W. Now, V| ® W 4+ V ® W, is spanned by
viQw;, 1<i<mporl=<j<ny.
S0,V ® W = vy, +1 @ Wy, +1 is not in this subspace. [ ]

Let 0 be the differential in C = CFK®, d¢ be the component of d which preserves
the (i, j)-grading, 0, be the component of d which decreases the (i, j)-grading by
(0, 1), and d,, be the component which decreases the (i, j)-grading by (1, 0). Since
0% = 0, each homogeneous summand of 92 is zero. If we consider the summand of 92
which preserves the (i, j)-grading, we get

3 =0.

Similarly, considering the summands of 9% which decrease the (i, j)-grading by (0, 1),
(1,0), and (1, 1), respectively, we get

0,000+ 0900, =0, 9dyo0dg+0dgody =0, (11)

and
0w 00z + 0,000+ 09009y =0 onC(0,2), (12)

where in the last equation we use the fact that C(—1, g) = 0 (see (8)).
It follows from (11) that 0, and d,, induces homomorphisms on the homology
with respect to the differential dg, denoted by ()« and (9y)«. By (12),

(0w)x 0 (92)x =0 (13)
on H.(C(0, g)).

Theorem 4.3. Let Z be a generalized L-space, K C Z be a null-homologous knot.
Let F be a Seifert surface of K with genus g > 2. Let d € Q satisfy

HFK;+1(Z, K, [F], ) = 0. (14)

If there exist two elements y1, y» € Hi(F) with y1 - y2 # 0, such that the images of
v1, Y2 in Hi(Z) are linearly dependent, then

rank}ﬁ:\Kd(Z, K,[Fl,g) < rank}ﬁ:\Kd_l(Z, K,[Fl,g—1).

Proof. By (8), the chain complex C{i < 0, j > g — 2} has the form

Ozw laz (15)
C(-2,g-2) <5— C(-1.-2)
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where
Cin(—1,g—1) = Cys_y(-2,g —2) = CFK.(Z,K,[F], g2),

and
Ci2(—1,g—2) = CFK«(Z,K,[F],g —1).
By abuse of notation, we will use d, and d,, to denote their restrictions
0.:CFK4(Z. K. [F).g) - CFK4_1(Z. K.[Fl.g — 1)
and
8w3 CFKd—l(Z’ K? [F]’ g - 1) e CFKd(Z’ K? [F]7 g)
Using (13), we have

rank ker(d;) «
= rank HFK;(Z, K, [F], g) — rankim(0; )«
> rank HFK (Z,K,[F], g) —rankker(dy )«
= rank}ﬁ:\Kd(Z, K,[Fl,g)— rank}ﬁ:\Kd_l(Z, K,[F],g — 1) + rankim(dy ) «.
If - -
rank HFK;(Z, K, [F], g) > rankHFK,;_{(Z, K, [F], g — 1), (16)

then
rank ker(d; )+« > rankim(dy, ) «,

so there exists an element x € ker(d;)«, such that Ux ¢ im(dy)«. Let £ € Cy_»(—1,
g — 1) be a closed chain representing x, then d,(§) is an exact chain in C;_3(—1,
g — 2). So, there exists an element n € Cy_»(—1, g — 2) with don = 9,(£). By (11)
and (12),

900w = —0wdon = —0wdz(§) = dodzw (§).

S0, dwn — 0w (£) is a closed chain in Cg_3(—2, g — 2) =~ CFKy4,(Z. K, [F]. g).
By (14), dyn — 0,4 (§) is exact, so there exists an element { € Cy_,(—2, g — 2) with
00 = 91N — 05 (§). This means that § — n + £ is a cycle in the mapping cone (15).

Now, we want to prove U(§ —n + {) = U£ is not exactin (15). Otherwise, assume

Ut =93¢ +n1+), (17)
where

£ eCas(-1,g—1), neCis(-1,g-2), ¢ eCs3(-2.8g—-2).
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Considering the components of (17), we get

0= 805’, (18)
0= 0,& + do7, (19)
Ut = 0;0€ + 0y’ + 00C'. (20)

By (18), £ is a cycle in Cy_3(—1,g — 1) = C/F\Kd_l(Z, K,[F], g). By (14), & is
exact, so there exists w € Cy_»(—1, g — 1) with dpw = &’. Using (11) and (19), we
get

do(n — 0,w) = 0.

Using (12) and (20), we get
U§ = —090zpw + dy (7]/ —0;w) + 30§/7

which means that U£ is homologous to an element in d, (ker dg). Since [U§] = Ux ¢
im(dy ) «, we get a contradiction.

Now, we have proved that U # 0 in the mapping cone (15). By Proposition 4.1,
we have U # 0 in HF ' (Z,(K), [f‘], g — 2), a contradiction to Theorem 1.2. ]

Remark 4.4. The above proof can be greatly simplified if we use the “reduction
lemma” [4, 17] in homological algebra. In fact, the author’s original approach was
using the Reduction Lemma. The reason that we choose the current argument is that
we want to understand the diagonal map

Hy(C(—1.g —1)) > H«(C(-2.8 —2))

after reduction, which may be important if we try to generalize our result to other
knots.

Proof of Theorem [.1. When g > 2, this follows from Theorem 4.3.
If g = 2, we assume (16) holds. As in the proof of Theorem 4.3, there exists an
element x € ker(d;)«, such that Ux ¢ im(dy,)«. Consider the element

x ®x € HFKy4(Z, K, [F].g) ® HFKy(Z. K. g) =~ HFK, 4 (Z#Z, K#K,[F§F],2g).

In the complex CFK*(Z#Z, K#K), we can check x ® x € ker(d;)«, while, by
Lemma 4.2, U(x ® x) ¢ im(dy)«. Let y1, ¥» be a pair of elements in H;(F) with
Y1 + Y2 # 0. We can think of y1, y» as elements in the first summand of H,(F{F) =~
H,(F) & H;(F). Then the images of y1, y» in H1(Z#Z) are linearly dependent. So,
we can apply Theorem 1.2 to get a contradiction as in the proof of Theorem 4.3.

The case g = 1 can be proved similarly by considering a three-fold connected
sum. ]
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