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1 | INTRODUCTION

Let P(p, q) be an oriented prism manifold with Seifert invariants

(_17 (2a 1)! (27 1)’ (p’ q)),

where g and p > 1 are relatively prime integers. See [1, Section 2] for the convention of Seifert
invariants and basic topological properties of prism manifolds. In [1, 2], we solved the Dehn
surgery realization problem of prism manifolds for ¢ < 0 and for g > p. The theme of the present
work is to settle the remaining case 0 < g < p. In [1, Tables 1 and 2], the authors give a tabula-
tion of prism manifolds that can be obtained by positive integral Dehn surgery on Berge-Kang
knots [4]. The tables conjecturally account for all realizable prism manifolds; in particular, [1,
Table 2] suggests that for a realizable P(p, q) with ¢ > 0, we must have p < 2q + 1. Indeed, this is
the case:
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TABLE 1 P, table of P(p, q) that are realizable

Range of parameters

Type P(p,q) (let P(—p,—q) = P(p, Q) (p and r are always odd, | p| > 1)
1A P(p,—3(p* —3p +4)) p#3,5
1B P(p,—5(p* =3p +4) p=170r19 (mod 22)
|p| > 22
2 P(p.~ - 1P +11) p=2r—3 (mod 4r + 2)
r=-—1 (mod 4)
r#+-1,3
3A P(p,—5-(p+1)(p+4) = —1 (mod 2r)

r>landp>4r—1ifp>0

r>5andp<—4r—-1ifp<0
3B P(p,—5(p+1)(p+4) p=r—4 (mod 2r)

r

>5andp >3r—4ifp>0
r>land p<—-3r—4ifp<0
4 P(p,—551Cr+17p +1|) p=4r—1 (mod 2r2)
r#-3,-1,1
5 P(p,—r27;r71|r2p+1|) p=2r—5 (mod r*—2r—1)
r#1
Sporadic P(11,-30), P(17,—31),

P(13,—47), P(23, —64)
P(11,19), P(13, 34)

Theorem 1.1. If P(p, q) with q > 0 can be obtained by surgery on a knot K C S°, then p < 2q + 1.
If p = 2q + 1, then K is the torus knot T(2q + 1, 2).

Doig, in [7, Conjecture 12], conjectured that if P(p, q) is realizable, then p < 2|q| + 1. The main
result of [1] settles the conjecture for g < 0; Theorem 1.1 verifies it for g > 0.

Our second main result, Theorem 1.2, provides the solution of the realization problem for those
P(p,q)withg < p < 2g.

Theorem 1.2. The prism manifold P(p, q) with q < p < 2q can be obtained by 4q-surgery on a knot
K c S3ifand only if q = r2—§r—1(r2p — 1), withr < =3 odd and p = —2r + 5 (mod r> — 2r — 1),

D = —2r + 5. Moreover, in this case, there exists a Berge-Kang knot K, such that P(p, q) = Siq(KO),
and that K and K, have isomorphic knot Floer homology groups.

Remark 1.3. If we allow r = —1 in Theorem 1.2, we get p = 2q + 1: see Theorem 1.1.

1.1 | The complete list of realizable prism manifolds

Theorems 1.1 and 1.2 and our earlier results [1, 2] give a complete classification of prism manifolds
which can be obtained by Dehn surgery on knots in S°. These prism manifolds are tabulated in
Table 1.
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Remark 1.4. Table 1 is essentially the union of [1, Table 1 and Table 2], with input of the range of
parameters from [2, Table 2] and Theorem 1.2. There are two differences from [1, Table 2]. The
first difference is that we adapt the convention that P(—p, —q) = P(p, q) in the table, so that the
cases pqg > 0 and pg < 0 can be unified in one expression. The second difference is that we move
the family P(p, — 25{) 8+ ! ), p < 0, from Type 4 to Type 2, so that the ranges of r are the same despite
of the sign of pq.

Remark 1.5. In the arXiv version of [1], for each prism manifold in Table 1, we listed a Berge-
Kang knot realizing the corresponding surgery following the work of Berge-Kang [4]. However,
since Berge-Kang’s work is not publicly available, we did not include this list of Berge-Kang knots
in the published version of [1]. An explicit list of primitive/Seifert-fibered knots admitting prism
manifold surgeries was given in [21], independent of [4]. The existence of such Berge-Kang knots
now follows from [21].

Remark 1.6. In Table 1, we divide the surgeries into six different types so that no surgery
appears in more than one type. However, a prism manifold may appear in different types, in
the sense that it arises from multiple changemaker vectors and it is obtained from surgeries
on Berge-Kang knots belonging to different families. Such prism manifolds are the two infinite
families

P(8s + 3,—(16s + 14)) and P(8s + 13,165 + 18), s3>0,
and
P(11,-18), P(5,22), P(25, 36), P(43,117).

(The two infinite families are essentially the same family, if we allow s < 0 and the surgery
slope to be negative.) More information about these surgeries can be found in [1, Table 3] and
[2, Table 3].

1.2 | The spherical manifold realization problem

The spherical manifold realization problem asks which spherical manifolds arise from positive
integral surgery along a knot in S3. Theorems 1.1 and 1.2 and our earlier results [1, 2], combined
with Gu’s work [11] and Greene’s work [9], provide a complete classification of realizable spherical
manifolds. The interest is in finding a complete classification of knots in S* on which Dehn surgery
produce spherical manifolds. In [3], Berge proposed a complete list of knots in S* with lens space
surgeries. Indeed, Berge’s conjecture states that the P/P knots form a complete list of knots in S*
that admit lens space surgeries. All the known examples of knots on which surgeries will result
in non-lens space spherical manifolds are P/SF knots. We repeat the following conjecture from [1,
Conjecture 1.7]: it is a generalization of Berge’s conjecture.

Conjecture 1.7. Let K be a knot in S* that admits an integral surgery to a spherical manifold. Then
K is either a P/SF or a P/P knot.
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844 | BALLINGER ET AL.

1.3 | Methodology

We first provide a brief overview of the methodology undertaken to solve the prism manifold
realization problem in the cases g < 0 and g > p: the proof in both cases draws inspiration from
that of Greene for lens spaces [9]. We then discuss how (and why) the methodology is modified
for the case of the present work.

We first require a combinatorial definition.

Definition 1.8. A vector o = (0,07, ...,0,,1) € Z"" that satisfies 0 < 0, < 0] < =+ < 04 I8
a changemaker vector if for every k, with 0 < k < 0y + 0, + -+ + 0,4, there exists a subset S C
{0,1,...,n+ 1}such thatk = ), ¢ ;.

The key idea is to use the correction terms in Heegaard Floer homology in tandem with
Donaldson’s Theorem A. The following is immediate from [9, Theorem 3.3].

Theorem 1.9. Suppose that P(p, q) bounds a sharp four-manifold X(p, q). If P(p, q) arises from
positive integer surgery on a knot K in S3, then the intersection lattice on X(p,q) embeds as the
orthogonal complement o+ of some changemaker vector o € Z"+2, withn + 1 = b,(X).

See Section 5 for the definition of a sharp four-manifold, and see Subsection 1.4 for the defi-
nition of the intersection lattice. When q < 0 or q > p, it turns out that P(p, q) bounds a sharp
four-manifold X(p, q). We then solved a combinatorial problem: we classified all lattices isomor-
phic to the intersection lattice of X(p, g), whose complements are changemakers in Z"+2. There
is a heavy analysis of lattices involved that forms the main body of [1, 2]. Finally, we verified
that for every (p, q) corresponding to such a lattice, P(p, q) is indeed realized by surgery on a
P/SF knot.

We now turn our attention to the case 0 < g < p. In light of Theorem 1.1, it suffices to con-
sider g < p < 2q. When g < p < 2q, P(p,q) does not bound a sharp four-manifold. Thus, we
cannot use the embedding restriction of Theorem 1.9 — an essential step to the classification
of realizable prism manifolds in the previous two cases. Our strategy to prove Theorem 1.2 is
to replace Theorem 1.9 with another lattice theoretic obstruction for P(p, q) to being realizable,
as follows. The prism manifold P(2,1) bounds a rational homology four-ball Z, (the left two
components of Figure 2 where the 0-framed unknot is replaced by a dotted circle and a_; = 2);
and that there exists a negative definite cobordism W from P(2,1) to P(p,q) (the right n + 1
components of Figure 2). Suppose that P(p,q) arises from surgery on a knot K C S3, and let
W4q = W44(K) be the corresponding two-handle cobordism obtained by attaching a two-handle
to the four-ball along the knot K with framing 4q. Form Z := Z, Up(, ;) W; it will be a smooth
four-manifold with boundary P(p, q). The intersection lattice on Z is A(q, —p), which is defined
in Definition 3.1. Form X := W U (=W,,). We prove that the intersection lattice on X is iso-
morphic to D, @ Z"~2, where D, is the sublattice of Z* consisting of vectors the sum of whose
coordinates is even. Finally, form X:=Zu (—W4q); see Figure 1. It follows that Xisa smooth,
closed, simply connected, negative definite four-manifold with b,(Z) = n + 2 for some n > 0.
Now, Donaldson’s Theorem A [8] implies that the intersection lattice on X is the Euclidean
integer lattice Z**2. This provides a necessary condition for P(p, q) to be realizable: the lattice
A(g,—p) embeds as a codimension one sublattice of Z"*2. Our new obstruction now reads as
follows:
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THE PRISM MANIFOLD REALIZATION PROBLEM III 845

P(2,1)  P(p,q)

Zs W | —wy,

FIGURE 1 Schematic picture of the closed four-manifold X = Z, U W u —W,,. We have
X =W Uppg Wiy Z =2, Upoy W

Theorem 1.10. Suppose P(p, q) with ¢ < p < 2q arises from positive integer surgery on a knot K
inS3.

(a) The linear lattice A(q,—p) embeds as the orthogonal complement to a changemaker o €
772 n+1=by(2).

(b) There is an embedding of D, @ Z"~2 into Z"*? such that there exists some short characteristic
covector y for D, @ Z7"~* with (y,c) = i ifand only if —2q + g(K) < i < 2q — g(K).

The strategy is now apparent: determine the list of all pairs (p, q) which pass the embedding
restriction of Theorem 1.10. Finally, we verify that every manifold in our list is indeed realized
by a knot surgery: we do so by comparing the list with the list of realizable manifolds tabulated
in [1, Table 2]. The fact that the manifolds in [1, Table 2] are realizable is proved in [21]. It must
be noted that Part (a) of Theorem 1.10 only provides a necessary condition for the prism manifold
P(p, q) to be realizable. Indeed, it is easy to find pairs (p, q) that satisfy Part (a) of Theorem 1.10,
but the corresponding prism manifolds are not realizable; for example, P(13,9) and P(16,9). The
9-surgery on the torus knot T(2, 5) is L(9, 13) = L(9, 16), then work of Greene [9] shows that the
corresponding linear lattice satisfies Part (a) of Theorem 1.10. However, the manifold P(16,9) is
not realizable because of the parity of 16 (p is always odd for a realizable P(p, q) [1]); and neither
is P(13,9) by Theorem 1.2.

In the previous cases g < 0 and g > p as well as in the lens space realization problem [9],
the first step was finding a sharp four-manifold bounded by P(p, q) (respectively, the lens space
L(p, q)): in each case, a negative definite four-manifold was found; then it was almost immediate
from the previous works of Ozsvath and Szabo [16, 18] that the four-manifold is sharp. For the case
at hand, however, P(p, q) does not bound a sharp four-manifold. We need to carefully analyze the
d-invariants of P(p, q) in each Spin® structure in terms of the d-invariants of certain Spin® struc-
tures of P(2,1) and the grading shift of the cobordism W. In particular, we generalize the notion
of sharpness to cobordisms between rational homology spheres, and show that the cobordism W
is sharp (Proposition 5.3): again, see Figure 1. Using that the intersection lattice on X is isomor-
phic to D* @ z"~2, it will be immediate that X is a sharp four-manifold (Corollary 6.4). Using this
finding, we are able to prove Theorem 1.10 and translate it into a more practical condition on the
changemaker vector o (Proposition 6.11).

1.4 | Notations

We use homology groups with integer coefficients throughout the paper. For a compact four-
manifold X, regard H,(X) as equipped with the intersection pairing Qy on X. Also, we refer to
(H,(X), —Qy) as the intersection lattice on X, where —Qy denotes the negation of the pairing of
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846 | BALLINGER ET AL.

Qy. Finally, we call an oriented three-manifold Y a realizable manifold if it can be obtained by
positive integral surgery on a knot in S* .

1.5 | Organization

This paper is organized as follows. In Section 2, we prove Theorem 1.1, thus solve the case of
the realization problem when 2q < p. In Section 3, we collect some basic results about linear
lattices and changemaker lattices from [9]. In Section 4, we study the topology of a certain type
of cobordism between rational homology 3-spheres. In Section 5, we define sharp cobordisms,
and prove that the cobordism W between P(2,1) and P(p, q) is sharp. In Section 6, we use the
result in Section 5 to prove a strengthened changemaker condition in the case g < p < 2q. In
Sections 7 and 8, we use the strengthened changemaker condition to enumerate all the possible
changemaker lattices we can have. In Section 9, we determine the pairs (p, q) corresponding to
the changemaker lattices, thus finish the proof of Theorem 1.2.

2 | PROOF OF THEOREM 1.1

The goal of this section is to prove the following upper bound of p, and then to prove Theorem 1.1.
Recall that we assume g > 0.

Proposition 2.1. IfP(p, q) is realizable, then p < 2q + 1.

Remark 2.2. If P(p,q) is realizable with p = 2|q| + 1, then K must be a torus knot [14, Theo-
rem 1.6]. Recall that for a realizable P(p, q), p is odd [1]. In particular, if we restrict attention to
hyperbolic knots on which surgeries will result in P(p, q), then p < 2|q| — 3.

2.1 | The Casson-Walker invariant of P(p, q)

Let
Ag(T) = ag + ) (T +T7) @
i>0

be the normalized Alexander polynomial of K. If K admits an L-space surgery, then |o;| < 1,
a,k) = 1,and +1 and —1 appear alternatingly among the non-zero a; [17, Theorem 1.2].

Given a real number x, let {x} = x — | x| be the fractional part of x. Given a pair of coprime
integers n, m with n > 0, let s(m, n) be the Dedekind sum

sonm= 3 ((£))((22)).

i=1

where

0, ifx e z.

() = {{x}— L, ifxeRr\z
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THE PRISM MANIFOLD REALIZATION PROBLEM III 847

Let A(-) be the Casson-Walker invariant [22], normalized so that
ASH(T(3,2) = 2.

By [12, Proposition 6.1.1], the Casson-Walker invariant of P(p, q) can be computed by the formula

A(P(p,q) = 11—2<—§ (1% - %) - 1% +3+ 1ZS(q,p)>-

Since the Dedekind sum satisfies the reciprocity law

1 1 1
R e N
we get
AP(p.4)) = g2 = (p. ) @

On the other hand, the surgery formula for the Casson-Walker invariant [5, Theorem 2.8]
implies

A(S3,(K)) = —s(1,49) + —A “_ey)

_ _(251 - 1)(4(] — ) 17
=t A Z(1). €©)

Lemma 2.3. For realizable P(p, q) with q odd, p = —1 (mod 4).

Proof. By combining (2) and (3), we have

2q-Dq-1) 1
e e —— + X
24q 4q

= A(P(p,q))

_p _plg-DCg-1) plg—-1)
T 8q 6q 4

Multiplying both sides by 24q, we get
1—6q +8q” + p(—1 + 6q — 2g*) = 6A}(1) (mod 24q).
Since Ag(l) is even and p, q are odd, we get
2g+1+p(2g+1)=0 (mod 4).

So p = —1 (mod 4). ]
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848 | BALLINGER ET AL.

2.2 | The Spin°‘ structures

The ith torsion coefficient of a knot K is defined to be

t;(K) = Zjaz’+j,

Jj=1
for i > 0, where the a; are as in (1). Let
& =1t — 1.

When K admits an L-space surgery, it is proved in [20, Proposition 7.6] that

g €10,1}.
Suppose 4q-surgery on K is P(p, q), then 4q > 2¢g(K) — 1 [19]. So

9(K) < 2q. “4)
Since (k) = 1 and @; = 0 when i > g(K)), it follows from the definition of ¢; that

t; =0 ifandonlyifi > g(K). (5)

In particular, by (4), we get

Fori > 0,
o =t — 2+t

= Ei—l - Ei'

Since 1 = Ag(1) = ay + 2 Y, «;, We can also get

cx0=1—22ai.

i>0
Thus
Ag(=1) =y +2 Y, o(-Die;

=1-4Y,,(-D's;. (7)
Given a knot K C S* and an integer n > 0, there is an affine isomorphism [15]
¢ :7Z/nZ > SpinC(Si(K)).

For simplicity, let d(S3(K), 1) = d(S3(K), (i)
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THE PRISM MANIFOLD REALIZATION PROBLEM III 849

From [15], we have

N (2i—n)2‘

4n ®

1
d(L(n,1),i) = —=
(T, 1) = —3
Using [19, Theorem 1.2], we get
d(Sy(K), i) = d(L(n,1),1) = 2tming noiy- )

Lemma 2.4. Suppose that P(p, q) is obtained by the 4q-surgery on K. Let i be an integer with 0 <
i < q. Ifiis even, we have

d(S3,(K), q — i) = d(S,(K), g +1),

and

Ifiis odd, we have
d(siq(K), q—i)= d(sjq(K), g+i)+1,

and

i

+

1
tq—i - tq+i = .

N |

Proof. Since Siq(K) is a prism manifold, it contains a Klein bottle. So the order-2 element in
H, (Siq(K )) is represented by a curve in the Klein bottle, such that the complement of the curve
in the Klein bottle is an annulus. By [13, Theorem 1.1], for any j € Z/4qZ, we have

|d(S3,(K), j) = d(S3,(K), j +2q) < 1. (10)
Since the conjugate of (j + 2q) is ¢(2q — j), we have
d(s3,(K), j + 2q) = d(S},(K), 29 = J). (1)
Let j = g —i. Using (8) and (9), we get
d(S3,(K), q — 1) — d(S3,(K), q +1)

2q — 2i — 4q)? 2q + 2i — 4q)?
__1, Qg-2izdqr , (1, Qa+2-de)
4 16q 4 4 16q 4

=i—2t,;+2,,, €7, (12)

q+i

SO d(Siq(K), q—i)— d(Siq(K), q + i) has the same parity as i. Using (10) and (11), we get

|d(53,(K). g — i) — d(S3,(K).q + D < 1.
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850 | BALLINGER ET AL.

So d(qu(K), q—i)— d(Siq(K), g +i) =0 when i is even, and d(Siq(K), q—i)— d(Siq(K), q+
i) = +1 wheniisodd. Now ¢,_; —t,; can be computed from (12). O

2.3 | The proof of Proposition 2.1

Proof of Proposition 2.1. By Lemma 2.4 and (6),

to=ty—t,, < |—|.
0 =1~ Iy [ 5 J
By [14, Lemma 6.1], p = |Ag(—1)|. Using (7), we get

p<1+4) g

i20

+1
ERY)

When q iseven, p < 2q + 1. When g is odd, p < 2q + 3. By Lemma 2.3, p # 2q + 3, so we must
have p < 2q + 1. Ll

Proof of Theorem 1.1. The first statement is Proposition 2.1. The second statement follows from
combining [14, Theorem 1.6] and [1, Lemma 2.1]. O

3 | INPUT FROM LATTICE THEORY

This section assembles facts about lattices that will be used in the paper. We mainly follow the
treatment of [1, 2, 9, 10].

Recall that an integral lattice is a finitely generated free abelian group L endowed with a positive
definite symmetric bilinear form (,) : L XL — Z. Given v € L, let |v| = (v, v) be the norm of v.
We can extend (, ) to a @Q-valued pairing on L ® Q; using it we define

L*={x e L®QKx,y) € Z,Yy € L}.

The pairing on L descends to a non-degenerate, symmetric bilinear form on the discriminant group
L=L"/L

b:LxL—Q/Z
b(x,y) =(x,y) (mod 1),

the linking form, where X denotes the class of x € L in L. The discriminant of L is the order of the
finite group L. Let

Char(L) = {x € L"|{x,y) ={y,y) (mod 2),Vy € L}
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THE PRISM MANIFOLD REALIZATION PROBLEM III | 851

denote the set of characteristic covectors for L. The set C(L) = Char(L)/2L forms a torsor over the
discriminant group L. Given y € C(L), define

'l = rk@)

d,([x]) = min { ;

x €lx] } (13)

and call an element y € Char(L) short if its norm is minimal in [y]. We call the pair (C(L), d;)
the d-invariant of the lattice L; in particular it is an invariant of the stable isomorphism type of
the lattice L [18, Theorem 4.7]. We drop L from the notation when the lattice L is understood from
the context.

3.1 | Linear lattices

Given a pair of relatively prime positive integers p, q, write g in a Hirzebruch-Jung continued
fraction

=la_;, a9, -,a,], (14)

with a; > 2 when i > 0 in equation (14).
Definition 3.1. The linear lattice A(q, —p) has a basis

{Xg5 s X} (15)
and inner product given by

ai, l=J
(xpx)=9-1, li—jl=1 (16)
0, [i—jl>1,

where the coefficients a;, for i € {0, ..., n}, are defined by the continued fraction (14). We call (15)
the vertex basis of A(q, —p).

Remark 3.2. The reason that we use A(g, —p) instead of A(q, p) is that our convention for lens
spaces is different from that of [9]. In our paper, the lens space L(g, p) is oriented as the %—surgery
on the unknot, and P(p, q) is the %-surgery on RP'#RP! C RP*#RP3, so they both bound 4-
manifolds with intersection lattice A(q, —p).

An element 7 € Lis reducibleif £ = x + y for some non-zero x,y € L with (x,y) > 0, and irre-
ducible otherwise. An element # € L is breakable if £ = x + y with |x|, |y| > 3 and (x,y) = -1,
and unbreakable otherwise.
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852 | BALLINGER ET AL.

Definition 3.3. In a linear lattice, if I is any subset of {x,, x1, ..., X,,} then write [I] = } ., x. An
interval is an element of the form [I] with I = {x,, x,,;,..., X} for 0 < a < b < n. We say that a is
the left endpoint of the interval, and b is the right endpoint of the interval. Say that [I] contains
x; if I does: we often write x; € [I] in this case.

When [I] is an interval, it is easy to compute

=2+ ) (Ix;]-2). (17)

x;€[I]

Proposition 3.4 [9, Proposition 3.3]. If v € A(q, —p) is irreducible, v = €[I] for some € = +1 and
[I] an interval.

From now on, let [v] be the interval corresponding to v when v is irreducible.
Definition 3.5. A vertex x; has high weight if |x;| = a; > 2.

Proposition 3.6 [9, Corollary 3.5(4)]. An element e[I] € A(q, —p) with € € {+1} is unbreakable if
and only if [I] contains at most one vertex with high weight.

Definition 3.7. For two intervals [I] and [J] with left endpoints i, j, and right endpoints i, j;,
say that [I] and [J] are distant if either i; + 1 < j, or j; + 1 < iy, that [I] and [J] share a common
end if iy = j, or i} = j;, and that [I] and [J] are consecutive if i; + 1 = j, or j; + 1 = i;. Write
[I1 < [J]if I c J and [I] and [J] share a common end, and [I] T [J] if they are consecutive. If [I]
and [J] are either consecutive or share a common end, say that they abut. If I N J is non-empty
and [I] and [J] do not share a common end, write [I] i [J].

Direct computations show the following lemma.
Lemma 3.8. Let [I],[J] be two intervals. Then

0, [I] and [J] are distant,
. =4It [I} and [J] share a common end,
1M

-1, [I] and [J] are consecutive,

rnJll=2, Uim[J].

Proposition 3.9 [9, Corollary 3.5(2)]. The lattice A(q, —p) is indecomposable; that is, A(q, —p) is
not the direct sum of two non-trivial lattices.

Proposition 3.10 (Proposition 3.6 of [9]). If A(q, p) = A(q', p’), then q = q' and either p = p’ or
pp’ =1 (mod g).
3.2 | Changemaker lattices

When a lattice L is isomorphic to o, the orthogonal complement of a changemaker vector o €
7"+2 L is called a changemaker lattice.
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Definition 3.11. The standard basis of o is the collection S = {vy, ..., 0,1}, where

j—-1
v; = (260 + Zei> —-ej,
i=1

whenevero; =1+0,+ -+ +0;_;,and

J
vj = (Zel) —¢
i€eA

whenevero; = ¥, 0;, With A C {0, ..., j — 1} chosen to maximize the quantity ¥, , 2'. A vector

v; € S is called tight in the first case, just right in the second case as longasi < j—1landi € A
impliesthati + 1 € A, and gappy if thereissome indexiwithi € A,i < j—1,andi+ 1 & A.Such
an index, i, is a gappy index for v;.

Definition 3.12. For v € Z"*2, suppv = {i|{e;, v) # 0}.

Lemma 3.13 (Lemma 3.12 (3) in [9]). If |vy| = 2, then k is not a gappy index for any v; with
je{l,..,n+1}

Lemma 3.14 (Lemma 3.13in [9]). Each v; € S isirreducible. Furthermore, forany A C {0,1,..., j —
1}, if the vector
—ej+ )¢

isin oL, then it is irreducible.

Lemma3.15. Letv = ), , be; € ot withA C{0,1,..,n+ 1}andeach b, € {-1,1} Ifv=x+y
with (x,y) > 0, then there exists a subset B C A such that

X = Zbiei,y = Z bje;.

ieB i€A\B

Proof. Letx = Y x;e;,y = >, y;e;.Since x; +y; € {—1,0,1}, x;y; < 0.If (x,y) > 0,theneach x;y; =
0, namely, one of x;, y; is 0. So our conclusion holds. O

Lemma 3.16 (Lemma 3.15in [9]). If v; € S is breakable, then it is tight.

Lemma 3.17 (Lemma 4.2(1) in [9]). If A(q, —p) is isomorphic to a changemaker lattice, then it
contains at most one tight standard basis vector.

Lemma 3.18 (Lemma 3.12(1) in [9]). For any v; € S, we have j — 1 € supp(v;).
Definition 3.19. If T is a set of irreducible vectors in a linear lattice A(q, —p), the intersection

graph G(T) has vertex set T, and an edge between v and w if the intervals corresponding to v and
w abut. We write v ~ w if v and w are connected in G(T).
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854 | BALLINGER ET AL.

Lemma 3.20. Ifv,w are irreducible elements of a linear lattice and the intervals corresponding [v]
and [w] abut, then (v, w) # 0.

Lemma 3.21 (Lemma 4.4 in [9]). If v; and v; are distinct unbreakable standard basis vectors with
lvil, lv;] > 3, then |(v;, v;)| < 1, with equality if and only if [v;] T [v;].

Lemma 3.22 (Corollary 4.5 in [9]). Ifv; and v; are distinct unbreakable standard basis vectors with
lvil, [v;] > 3, then the high weight vertices contained in [v;], [v;] are different.

Definition 3.23. A claw in a graph G is a quadruple (v;w;,w,,w;) of vertices such that v
neighbors all the w;, but no two of the w; neighbor each other.

Lemma 3.24 (Lemma 4.8 of [9]). For any set T of irreducible elements in a linear lattice, the
intersection graph G(T) has no claws.

Definition 3.25. Given a set T of unbreakable elements in a linear lattice and v, v,,0; € T,
(v;,v,,03) is a heavy triple if |v;| > 3, and if each pair among the v; is connected by a path in G(T")
disjoint from the third.

Lemma 3.26 (Based on Lemma 4.10 of [9]). For any set T of unbreakable elements in a linear lattice,
G(T) has no heavy triples.

4 | THE TOPOLOGY OF CERTAIN COBORDISMS

In this section, we will consider the topology of a certain cobordism W : Y, — Y,. We assume
that W is obtained by adding n + 1 two-handles along a link L C Y, such that one component
L, of L represents a 2-torsion in H,(Y,), and all other components of L are null-homologous in
Y,. Moreover, we assume that |H;(Y,))| = 4 and W is negative definite. Under these assumptions,
Y, is a rational homology sphere. Lety; : Y; — W be the inclusion map, ¢ : H*(W) — H*(Y;) be
the induced maps on cohomology, and ¢f : Spin“(W) — Spin‘(Y;) be the induced maps on Spin®,
i=0,1.

We make the further assumption that Y, is the boundary of a compact 4-manifold Z, with
H\(Z,) = 7/27 and H,(Z,)) = 0, and L, is null-homologous in Z,. Let Z = Z, Uy, W.

From the handle structure of W, we can compute

H W)=~ z/22,H,(W) = 7" H{(W,Y;) = 0,H,(W,Y,) = 7z"",i=0,1.
By the Universal Coefficient Theorem,
H*W)zz7"""' @ z/27.

In particular, there exists a unique torsion class « € H2(W). Let o; = Ll.*(oc), i=0,1.
Since Z is obtained by adding two-handles to Z,, such that all attaching curves are
null-homologous in Z,, we have

H\(Z)=H,(Z))=z/2Z,

and the map H,(Z) — H,(Z, Z,) is an isomorphism.
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Lemma 4.1. The map (, , : H?*(Z) — H*(W) is injective with image containing a. The map
l;o,Zo : HX(Z,) —» H*(Y,) is injective with image generated by a,,. Moreover, [L,] € H,(Y,) is the
Poincaré dual of a,.

Proof. Using the long exact sequences
H*(Z,W) - H*(Z) - H* (W), H*(Z,,Y,) = H*(Z,) — H*(Y,),

and the fact that 0 = H*(Z,,Y,,) & H*(Z, W), we get that ¢, , and L;O 7, are injective.
By the Universal Coefficient Theorem, H*(Z) & Hom(H,(Z), Z) @ Z/2Z, so it has a unique 2-
torsion a. Since tj;, ,, is injective, ¢, ,(a) is a 2-torsion in H 2(W), which must be a. Let a, be the

restriction of « to H%(Z,). Using the commutative diagram

H*(Z) — H*(Z,),

L

H*(W) —— H*(Y,)

we see that ¢, , (a,) = a. Since H?*(Z,) =~ 7/2Z, the image of 5, 2,

Since L, is null-homologous in Z,,, there exists a properly embedded oriented surface F,, C Z,
such that 0F, = L,,. Thus the image of the Poincaré dual of [F,] under 11*,0 Z is the Poincaré dual
of [L,]. Since both [L,] and [«,] have order 2, and l;k,o,zo (ay) = ay, we get that [L,] is the Poincaré

dual of «,. O

is generated by «,.

Lemma 4.2.

(1) Fori=0,1, we have ker (g H*(W,Y;), and i is surjective. In particular, a; # 0 in H2(Y)).

(2) The kernel of the restriction map ([6)* : kerd — H?(Y,) is isomorphic to H*(W,3W), and its
image is generated by «,.

Proof.

(1) The first statement follows from the long exact sequence
I
0=H\Y,) - H*(W,Y,) » H* (W) — H*(Y;) » H*(W,Y;) = 0.

It follows that ker L;k is torision-free, so a & ker tl* Thus a; # 0.
(2) By (1), the map (L(’))* can be identified with H>(W,Y,) — H?(Y,)), which is part of the long
exact sequence

0=H'(0W,Y,) - HX(W,0W) — H*(W,Y;) - H>(W,Y;) = HX(Y,).

Thus ker(t))* is H*(W,0W).

By Poincaré duality, ()" can be identified with the boundary map d; : H,(W,Y,) — H,(Y,). By
the handle decomposition of W, we see that the image of J is generated by [L,]. By Lemma 4.1,
im(¢)* is generated by «. Ol
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856 | BALLINGER ET AL.

Corollary 4.3. Foreacht € Spin®(Y,), there exists a subset
R(t) = {ro, v, = 1o + @y} C Spin“(Yy)
such that for each v € Spin®(Y,), the set
@) @) 1= (@7 N E) T (18)

is non-empty if and only if v € R(t). Moreover, the set (18) is an H*(W,3W)~torsor when it is non-
empty.

Proof. This follows from Lemma 4.2 and the fact that Spin® is an H?-torsor. O
By the long exact sequence
0= HZ(YO) - HZ(W) - HZ(Wa Yo) - H1(Y0),

H,(W) embeds as an index-2 subgroup of H,(W, Y,)) = Z"*1. Thus we can extend the intersection
form on H,(W) to H,(W,Y,), with value in iZ. Let

L= HyW,Y,) = H,(Z,Z,) = H,(Z)

be the intersection lattice on the pair (W, Y,,). Suppose that the generators corresponding to the
two-handles are x,, ..., x,,, where x,, corresponds to the two-handle attached along L,,. Let

Ly = (2%, X1, Xp)

be the sublattice of £ generated by 2x,, x4, ..., X,;; then L, can be identified with the intersection
lattice H,(W). Let

L* =Hom(L,Z7),L; =Hom(Ly,Z) D L".
Using the inner product on £, we can embed £* and E; as sublattices of £ ® Q.

Let

C={ye Loy, 2x9) = (2x0, 2x), (¥, x;) = (x;,x;) (mod 2), j> O}

Let ﬁz(W) = H?(W)/Tors = L;,andletc, : Spin®(W) — EZ(W) be the composition of the map
¢; & Spin®(W) — H?(W) and the quotient map H*(W) — ﬁz(W). Then C is the image of -

Proposition 4.4.

(1) The quotient Spin°(Y,)/{a,) can be identified with C /2L.
(2) Under the previous identification, suppose that the (a, )-orbit {t,t + o, } isidentified with y + 2.L
forsomey € C. Let R(t) = {r, v, }. Then there exist y,,y, € ¥y + 2L, such that

él ((187 [i)_l(rO’ t)) = yO + 2[:0’ El(([gy li)_l(tly t)) = y] + 2£0’
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and

Proof.

(1) By Lemma 4.2, every t € Spin“(Y}) is in the image of (], and $,,$, € Spin®(W) restrict to
the same t € Spin°(Y,) ifand only if 8, — 8, € H*(W,Y,) = H,(W,Y,) = L. So Spin°(Y;) =
Spin®(W)/L. Consider the map ¢, : Spin®(W) — C. It is surjective, and ¢,(8,) = ¢,(8,) ifand
only if 8, — 8, € (). Using the formula

c1(81) —c1(8,) = 2(8; — 8,)

we get that Spin®(Y,)/(c;) = Spin°(W)/(L + (a)) = C/2L.
(2) By Corollary 4.3, there exist 8,, 8, € Spin°(W), such that

@, ) (o ) =80+ Ly, (,6) 7 (x,1) = 8, + Ly,
Since
(81 +a) =1(8)) +ag =1 + g =1,4(8) + ) =14,
we also have
@) Mg t+a) =8 +a+ Ly, &) t+a)=8,+a+L,.
Applying ¢; to the above equalities, we get our conclusion. O

For any 8 € Spin®(W), let

c3(8) + b,(W)
gr(w.8) = ———. (19)
For any t € Spin®(Y;), let
3e€Spin®(W)
8|y, =t

Lemma 4.5. There are exactly two Spin° structures e;, e; € Spin®(Y,)) which can be extended over
Z,. Moreover,

e, =¢ey+a;, d¥,e)=0, i=0,1.

Proof. By Lemma 4.1, ay, is the restriction of a cohomology class in H*(Z,). Let ¢, € Spin°(Y,)) be a
Spin® structure which is the restriction of a Spin° structure on Z,,, then e; := ¢, + a, also extends
over Z,. Since H*(Z,)) = 7 /27, ¢, ¢, are the only two Spin® structures which can be extended over
Z,. It follows from [15, Proposition 9.9] that d(Y, ¢;) = 0. O
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Lemma 4.6. The image of
_ —2
[ (l(s)) 1({90,91}) - H (W)
is C := Char(L).

Proof. Let 3, be the restriction of a Spin® structure on Z to W, then 8, € (Lf])‘l({eo, e, }). Clearly,
—2

¢1(8,) € C. By Lemma 4.1, 1;, , is injective, so the image of H?*(Z) in H (W) can be identified

with Hom(H,(Z),Z) = Hom(H,(W,Y,), Z) = L*. Thus 61((13)‘1({%, e,}) is a 2L*-torsor. Since

C is the unique 2£*-torsor containing ¢,(3,), our conclusion holds. O

Corollary 4.7. The sum

> Dwrib (21)

teSpin®(Y;)
only depends on the lattice L and the correction terms of Y,,. In fact, if we write (21) as a function
Z(L,1dy, d,})

of £ and the multiset {d, d,} of the correction terms of the two Spin® structures other than e, ¢;,
then

P(LAdy+c,dy +c}) = D(L,{dy,d}) +c|L;/L] (22)
for any c € Q. Note that, by Proposition 4.4, |H,(Y1)| = 2|L/L].

Proof. We will give the procedure of computing (21) from £ and the correction terms of Y,,. Let
0y, 0; be the two Spin® structures other than e, e; on Y,,. We choose [z] € C/2L. By Proposi-
tion 4.4, [z] corresponds to a pair of Spin® structures t, t, = t, + a; € Spin°(Y,). There are exactly
two 2L -torsors contained in z 4+ 2L, denoted by 7, 7;.

Next we check whether z + 2L is contained in C. If it is contained in C, it follows from
Lemma 4.6 that each t; is cobordant to e, and e, i =0, 1. Since d(Y, e;) = d(Y,,¢;) =0, by
Proposition 4.4,

—(y,¥) + b,(W
Dy, (Y1,t9) = Dy(Yy,1) =0+ max LZ()
yeZ+2L 4

If z + 2L is not contained in C, then each t; is cobordant to o, and o,. By Proposition 4.4, the
multiset {Dy, (Y, t,), Dy (Y, t;)} is equal to

—(¥,y) + b,(W) —(¥,¥) + by,(W) }
— — = 5,

{max {d(YO, 0,) + max ,d(Y, 07) + max
yeT, YET

4
—(¥.y) + b,(W —(y,y) + b,(W
max {d(Yo, o) + max —X 02 i 4 max Z2 0 (W) } }
Yen 4 YeTy 4

Finally, to get (21), we add all the Dy, (Y, t,) + Dy, (Y7, t;) together, for all [z] € C/2L.
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The equality (22) follows from the above procedure, since exactly % |H,(Y,)| values of Dy, (Y, 1)
are increased by c after increasing d(Y,, 0;) by c,i =0, 1. O

5 | SHARP COBORDISMS

In this section, we will generalize the notion of sharp 4-manifolds defined by Greene [10] to 4-
dimensional cobordisms, and prove that certain cobordisms between prism manifolds are sharp.
Recall that a smooth, compact, negative definite 4-manifold X with 0X =Y is sharp if for every
t € Spin‘(Y), there exists some 8 € Spin®(X) extending t such that

¢, (8)% + by(X) = 4d(Y, t)

Definition 5.1. Let W : Y, — Y, be a smooth, connected, negative definite cobordism between
two rational homology spheres Y,, and Y;. We say W is sharp, if for any t € Spin®(Y}), we have

d(Y,,t) = Dy (Y, ).
Here Dy is defined using the formula (20).

Lemma 5.2. LetY,,Y,,Y; be rational homology spheres, W, : Y, = Y, and W, : Y, = Y; be
two negative definite cobordisms. If W = W Uy, W, is sharp, then W, is sharp.

Proof. Let 8 € Spin®(W) and let 8; = 8|W,,i = 1,2, then
c3(8) = ¢}(8)) + c}(8,).

Our conclusion follows from the above equality. [

51 | AKirbydiagram of P(p,q)

Suppose that

=la_i, a9, -,a,]

Q|

as in (14), where each qg; is > 2 when i > 0.
Figure 2 is a surgery diagram of P(p, q). The leftmost two components give rise to a surgery
diagram of P(a_,, 1), and other components give rise to a negative definite cobordism

W(p,q) : P(a_y,1) = P(p, Q).

If we replace the leftmost component, which is unknotted with slope 0, with a dotted circle
representing a one-handle, we get a negative definite 4-manifold Z(p, q) bounded by P(p, q), and
the two leftmost components give rise to a rational homology ball Z,  bounded by P(a_,, 1), with
Hy(Z, )=12z/2z.

The main result of this section is the following proposition.

Proposition 5.3. The cobordism W (p, q) is sharp.
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860 BALLINGER ET AL.

—an

FIGURE 2 A manifold bounded by P(p, q). If we replace the leftmost component with a dotted circle, we
get a negative definite 4-manifold Z(p, q)

For simplicity, we only prove the case g < p < 2q. The proof of the general case is similar. From
now on, let W = W(p, q).
5.2 | More Kirby diagrams

We will consider three other cobordisms.
When q < p < 2q,a_; = 2. We have

2 — —
2-p-d _,, 4 =lag+1,0;,...,a,]"
q-(—-9 2q-p

Consider the following surgery diagram of P(p — q, q). By [2], this diagram gives rise to a sharp
4-manifold bounded by P(p — g, q). The component with label —4 gives rise to P(1,1) = L(4, —1),
and the other two-handles give rise to a cobordism

W, : P(1,1) —» P(p —q,q).
Let

+
PTa_ laj,a),...,al 1.

By [1], P(p, —q) has a surgery diagram as in Figure 4, which gives rise to a sharp 4-manifold
bounded by P(p, —q). The two components with label —2 give rise to P(0,1) = RP3*#RP?, and the
other two-handles give rise to a cobordism

w’ : P(0,1) = P(p,—q).
Using the continued fraction

—29-(p-q) _p+g
—q—( -9 p

=[ay,d),....,a, 1",

by [2], we get a surgery diagram of P(p — q,—q) as in Figure 5, which gives rise to a sharp 4-
manifold bounded by P(p — q, —q). The component with label —4 gives rise to P(1,1) = L(4, —1),
and the other two-handles give rise to a cobordism
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—dn

FIGURE 3 A sharp 4-manifold X(p — g, q) bounded by P(p — q, q)

By Lemma 5.2, W,, W/, W{ are all sharp cobordisms.

Lemma 5.4. The intersection lattices on (W, P(2,1)) and (W, P(1, 1)) are isomorphic; also, the
intersection lattices on (W', P(0,1)) and (W', P(1,1)) are isomorphic.

Proof. In Figure 2, consider the knot L, with label —a,. The canonical longitude on L, is
clearly rationally null-homologous in P(2,1) \ L,. As a result, the square of the generator of
H,(W,P(2,1)) corresponding to the two-handle attached along L, is —a,. In Figure 3, consider
the knot K|, with label —(a,, + 1). If the framing on K, is —1, the manifold we get by doing surgery
on the two leftmost components is P(1,0) which has b; > 0. Thus the slope —1 on K|, is rationally
null-homologous in P(1,1) \ K,,. As a result, the square of the generator of H,(W, P(1, 1)) corre-
sponding to the two-handle attached along K|, is —a,. So the intersection lattices on (W, P(2, 1))
and (W1, P(1, 1)) are isomorphic.

Similarly, we see that the square of the generator of H,(W’, P(0,1)) and H,(W!, P(1,1)) cor-
responding to the two-handle attached along the knot with label —a/ is —(a(’) —1). So the

0
intersection lattices are isomorphic. O

Lemma 5.5. All four cobordisms W,W,, W' ,W{ satisfy the assumptions in the beginning of
Section 4.

Proof. The cobordism W satisfies the assumptions by its construction.

For Wy, W, note that P(1,1) bounds a rational homology ball Z; with H,(Z;) & Z/2Z. Since
H,(P(1,1)) is cyclic, the kernel of the surjective map H,(P(1,1)) — H,(Z;) is 2H,(P(1, 1)). From
Figures 3 and 5, we see that the knot with label —(a, + 1) or —a/ represents an element in
2H,(P(1,1)). So W, W] satisfy the assumptions.

For W', the rational ball bounded by RP3#RP? is Z, = (RP? \ B®) X I. Clearly, the knot labeled
with —aé in Figure 4 is null-homologous in Z,. O

5.3 | The proof of Proposition 5.3
Recall from Section 5.1 that P(a, 1) bounds a rational homology ball Z, with H,(Z,) = 7/2Z.

There are exactly two Spin® structures e, ¢; € Spin°(P(a, 1)) which extend over Z,. Let 04,0, €
Spin®(P(a, 1)) be two other Spin® structures, such that d(P(a, 1), 0,) > d(P(a, 1), o).
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FIGURE 4 A sharp 4-manifold bounded by P(p, —q)

FIGURE 5 A sharp 4-manifold bounded by P(p — q,—q)

Lemma 5.6. The correction terms of P(a, 1) are
d(P(a’ 1)’ eO) = d(P(a9 1)5 e]) = 05

d(P(a,1),00) = =22, d(p(a,1),0)) = =222,

Proof. The correction terms of P(a,1) are computed in [6, Example 15], and they are

{0,0, —aT”, aT—z}' It is a standard fact that d(P(a,1),¢;) = 0,i = 0,1 [15, Proposition 9.9]. So we
a+2

must have d(P(a,1),0;) = -+ i,i = 0,1, by our choice of 0, 0;. O
Proof of Proposition 5.3 in the case ¢ < p < 2q. By [15, Theorem 9.6],

d(P(p,q),t) > Dy, (P(p,q), ). (23)
Also, since W,, W', W{ are sharp, we have
d(P(p —q,q).t,) = Dy, (P(p — ¢, 9, 1)),
d(P(p =~ q,=q). t1) = Dy (P(p = ¢, =q), t,).
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By Corollary 4.7, Lemma 5.4 and Lemma 5.6,

2
Y Dweab=-T+ Y Dy (Pr-q.0.h)
teSpin®(P(p.q)) t,ESpin“(P(p—q.9))
2
—Iq + Y Dy(P(p,—q).t) = > Dy (P(p = g, =) 11)-
teSpin®(P(p,—q)) t,€Spin“(P(p—q,~q))

Adding the above two equalities together, and using (23) and the three equalities after it, we get

o= Y d@p.o.t+ Y dP(p,—q).t) (since P(p,q) = —P(p,—q))

teSpin®(P(p.q)) tespin®(P(p,—q))

> Y Dy@e.a.h+ Y Dy(P(p.—q).t)
teSpin®(P(p.q)) teSpin“(P(p,—q))

= > Dy, (P(p = ¢, q): 1) + D Dy (P(p = ¢, =q): t1)
t,E€8pin‘(P(p—q.9)) t, ESpin‘(P(p—q.—q))

= Y, dP(p-q.q.t)+ > d(P(p — ¢, —q), 1,)
t,€8pin‘(P(p—q.9)) t,€8pin‘(P(p—q,—q))

=0.

So the equality in (23) must hold. O

6 | THE CHANGEMAKER CONDITION WHEN q < p < 2q
6.1 | Positive definite manifold with boundary P(2,1)
The goal of this subsection is to prove the following proposition.

Proposition 6.1. If X is a positive definite, simply connected four-manifold with 0X =~ P(2,1), then
the intersection form of X is isomorphic to D, @ 7"~ for some n.

Here, Dy is the sublattice of Z* consisting of vectors for which the sum of the coefficients is
even.

Lemma 6.2. IfL C Z" is an index-two sublattice, then L = D, @ 7" for some k > 1. In fact, there
are indices iy, ..., iy such that L contains exactly the elements of Z" that have even pairing with e; +

-+ + ¢;, . There are always two elements x € Lwith b(x,x) =0 (mod 1), and the other two elements
satisfy b(x,x) = k/4 (mod 1).

Proof. Let L C Z" have index two, and let i, ..., i, be an enumeration of the indices i for which
e; & L. Since L has index two, the elements +e; +e;, are all in L. Since these elements generate
Dy, we have L = D, @ 7"k,

The dual lattice L* is the set of elements of Q" with integral inner product with each element
of L, and in this representation we have that L* is the set of vectors with integer components in
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864 | BALLINGER ET AL.

all entries other than iy, ..., i}, and with the components in entries iy, ..., i) either all integers or
all half integers. Therefore, the discriminant group L can be represented by the four vectors 0,
z=¢,and

1
a= E(eil +ei2 + +eik>,
1
b = 5(—el~1 + eiz + -+ eik>.
We have (z,z) =1 =0 (mod 1), and {(a,a) = (b,b) = k/4. O

Lemma 6.3. The d-invariant of L = D; @ 7"k takes on the values 0, 0, —k/4,1 —k/4.

Proof. The d-invariant is invariant under stable isomorphisms, so we can assume L = D,.. Then
a set of short representatives of the classes of characteristic covectors is (1,...,1), (-1,1,...,1),
(0,...,0), and (2,0,...,0). These have norms k, k, 0, and 4. The result now follows: see
equation (13). O

Proof of Proposition 6.1. As in Section 5.1, P(2, 1) bounds a rational homology ball Z, with

If X is any simply connected positive definite 4-manifold with boundary P(2,1), then X :=
X Up(a1) (—2,) is aclosed, positive definite 4-manifold. Since X can be obtained from X by attach-
ing a two-handle, a three-handle and a four-handle, X is also simply connected. By [8], X has
intersection form Z".

In the long exact sequence for the pair (f ,X), we have

H;(X,X) — Hy(X) > Hy(X) » Hy(X,X) > H,(X).
We have
H;(X,X) = Hy(Z,,02,)  H(Z,) =0, H,(X,X)=~H*(Z,)~7/2Z, H,X)=0,
and both H,(X) and H z(f ) are torsionfree. Therefore, we have a short exact sequence
0 - Hy(X) - H,(X) = 7/2Z — 0,

so H,(X) is an index-two subgroup of H 2()? ) under the natural inclusion map. Since X has inter-
section lattice Z", the intersection lattice of X is an index-two sublattice of Z", so, by Lemma 6.2,
is isomorphic to D, @ 7"k,

Let X, be the positive definite plumbing 4-manifold with intersection form D,, then P(2,1) =
0X,. Since the discriminant group and linking pairing of the intersection form of a 4-manifold are
invariants of its boundary, Lemma 6.2 implies that k must be divisible by 4. Since the d-invariant
of the intersection form of a positive definite 4-manifold gives an upper bound on the d-invariant
of its boundary [15] and —X|, is sharp [16], Lemma 6.3 implies k < 4. Therefore, k = 4, and the
result follows. O

Corollary 6.4. Any negative definite, simply connected 4-manifold with boundary —P(2, 1) is sharp.
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Proof. The 4-manifold —X|, is sharp. By Proposition 6.1, any negative definite, simply connected 4-
manifold with boundary —P(2, 1) has the same intersection form as that of =X #(n — 4)CP2. []

6.2 | The changemaker condition

Whenever g < p < 2g, using Proposition 5.3, there is a sharp cobordism W from P(2, 1) to P(p, q).
Suppose P(p, q) is positive surgery on some knot K C S°. Let X = W Up p.q) (W4g(K)), then X is
anegative definite manifold with boundary —P(2, 1). Since X is obtained from W, (which is sim-
ply connected) by adding two-handles, X is simply connected. By combining Corollary 6.4 and
Proposition 6.1, X is sharp and has intersection lattice —(D, @ Z"~2). Also, for Z, the rational
homology ball with boundary P(2,1), the manifold X = X Up21) (=25) is closed, simply con-
nected and negative definite, so has intersection lattice —7"**2. From Kirby diagrams for W and
Z = W Up(y 1) (—=Z,) (see Figure 2), we can also see that the intersection lattice of Z is the linear
lattice A(g, —p) with vertex basis x,, ..., X,,, and the intersection lattice of W is (as a sublattice of
A(q, —p)) spanned by 2x,, X1, ..., X,,. Therefore, the following diagram of homology groups

H,(W) —— Hy(Z)

-

Hy(X) —— H,X)

with maps induced by inclusions is isomorphic to the diagram

(2X0s X1y eee s X ) = (Xg5 X15 e s X)) = —A(q, —D)

| l

—(D4 @D Zn—Z) -9 _Zn+2.
Lemma 6.5. As subgroups of Hy(X),

H,(W) = Hy(Z) N Hy(X).

Proof. By the exact sequence H,(Z) — HZ()? ) — HZ()? ,Z),an element § € HZ()? ) is contained in
the image of H,(Z) if and only if the image of 8 in Hz()? ,Z)=H 2(W4q (K), 5W4q(K )) is zero. Sim-
ilarly, § is contained in the image of H,(X) if and only if the image of 8 in H z(f ,X) =2 Hy)(Z,,0Z,)
is zero, and § is contained in the image of H,(W) if and only if the image of 8 in Hz()/(\ W)
Hy(Z,,0Z,) @ Hy(W,4(K),0W,,(K)) is zero. Our conclusion follows easily. O

The last piece of data we need is the class [F] € H,(=W,4(K)) C Hy(X), where F is obtained
by smoothly gluing the core of the handle attachment to a copy of a minimal genus Seifert surface
F for K; its homology class generates the second homology. Note that H,(—W,4(K)) is orthogonal

to all of H,(W) and satisfies ([ﬁ], [ﬁ]) = —4q since —W,,(K) is negative definite. Let

¢ : Z/4qZ - Spin°(P(p, q))
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be the correspondence with ¢(i) equal 8|, 4) for 8, any Spin°® structure on —W,,(K) satisfying
(c1(30), [F]) = —4q +2i (mod 8q).

Proposition 6.6. There is an extension r € Spin®(X) of p(i) over X with ¢, () a short characteristic
covector of D, @ Z"~% ifany only if g(K) < i < 4q — g(K).

Proof. Since X has boundary —P(2, 1) and b,(X) = n + 2, we have that for any v € Spin°(X),

(c,(1)* + (n+2)
4 bl

d(—=P(2,1), r|p(2,1)) 2 (24)
and since X is sharp this is an equality if and only if ¢;(r) is a short characteristic covector of
—H,(X) = D, @ 7"2. Similarly, for any 8, € Spin°(W),

(,(8))*+(n+1)

2 (25)

dP(p, @), 811p(p,q) = d(P(2,1), 81 |p1) +

and since W is sharp as a cobordism, for each t € Spin®(P(p, q)) there is some 8, € Spin°(W) such
that this is an equality and 8;[p(, o) = t.
For 8, € Spinc(—W4q(K)) with

(c1(8y), [F]) = —4q + 2i
(so that in particular (i) = 8,|p p,q)), we have

(—4q + 2i)?

(01(30))2 = 4q

Using (8) and (9), we have

—(c1(8p))* — 1

d(P(p, q), §0|P(p,q)) = 4

- 2tmin{i,4q—i}(K)-
Since t;(K) > 0 and (5),

—(c1(89))* — 1

) (26)

d(P(P, Q), §0|P(p,q)) <

with equality if and only if (c,(3,), [F]) = —4q + 2i for some i with g(K) < i < 4q — g(K). Note
that inequality (24) is the difference of inequalities (26) and (25) if 8|p(, ¢) = 81lp(p,q)- If 9(K) <
i < 4q — g(K), then there is some extension 8, of ¢(i) over —W,,(K) that achieves equality in (26),
and there is always some extension s; of (i) over W achieving equality in (25). These two Spin®
structures glue to a Spin® structure ron X = W U (=W 4,(K)) that will achieve equality in (24), so
¢,(r) is short and r|p(, ) = @(0).

Conversely, if r € Spin®(X) has ¢, (r) short, then r achieves equality in (24), so 8, = "|—W4q(1<)
and 8; = x|y, will achieve equality in (25) and (26), respectively. Therefore, 8| p(p 4) = tlp(p,q) Will
equal ¢(i) for some g(K) <i < 49 — g(K). O
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Putting all of these together, we have a Euclidean lattice z"*2 = —H,(X), with a corank-1,
linear sublattice

—H,(W) 2 A(q, —p) = (Xg, - » Xp,)
and a sublattice D, @ 7"~? = —H,(X) such that
(2Xgs v s X ) = Xy o s X0y N (D4 D z7"2). 27

Since A(g, —p) has discriminant g and corank 1 and is embedded primitively in Z"*2 (this fol-
lows from the long exact sequence of the pair (X U Z,, W U Z;)), the orthogonal complement
of A(g,—p) has discriminant q and rank 1, so is generated by a vector ¢ with (o,o) = q. Since
I([F], [F])| = 4q and [F] is contained in the orthogonal complement of A(g, —p), we must have
[F] = 20. Therefore, Proposition 6.6 gives the following:

Proposition 6.7. If P(p, q) is the result of 4q surgery on some knot K C S* and q < p < 2q, then
there is an embedding of A(q,—p) into Z"*2 as the orthogonal complement of a vector o and an
embedding D, @ Z7"~? < Z"*? such that there exists some short characteristic covector y for D, @
7" 2 with (x,0) = i ifand only if —2q + g(K) < i < 2q — g(K).

Pushing the logic of Proposition 6.6 a little further, the Alexander polynomial of K can be
recovered from o

Proposition 6.8. For 0 < i < 2g, the torsion coefficient t;(K) satisfies

[()(,)() —n—Z] '

t(K) = min g

X€E€Char(D,®7"?)
(x,0)=2q—i

Proof. Since [F] = 20 and the intersection lattice on X is D, @ 72, any characteristic covector
x for D, @ 72 with (), o) = 2q — i is the first Chern class of a Spin® structure r on X with

(c,(x),[F]) = —4q + 2i. (28)

(Note that we need to change the sign of the inner product.) Then, exactly as in the proof of
Proposition 6.6, the restriction of r to —W,, = —W,,(K) satisfies

—(cy (x| —W4q))2 -1

4

d(P(p, q)a rlP(p,q)) = - 2tl(K) (29)
Let 8, be the restriction of r to W, then $§, satisfies

(8D +(n+1)

d(P(p,q), 811p(p,g) = d(P(2,1),81|p 1)) + n (30)
Combining (29) and (30) together,
— 2 _ 2 d(P(2,1),t
LK) < () -—(n+2) (P(2,1) |P(2,1))_ 31)

8 2
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Using Proposition 5.3, some 8; € Spin“(W) achieves equality in (30) with 8, |p p.q = (). Let
r € Spin®(X) be the extension of 8, with (28), then t achieves equality in (31). Therefore,

—(c; ()’ = (n+2) B d(P(2,1),t|p21))

t(K) = min 32
l( ) r€Spin®(X) 8 2 (32)
(c1(x),[Fy=—4q+2i
Since t;(K) is an integer and d(P(2, 1), t|p(, 1)) Will always be either 0 or —1, we get
—(c;(¥)> —(n+2
W= min [ (e, () — ( )]' -
reSpin®(X) 8

(c1(v),[Fly=—4q+2i

Finally, Spin® structures r on X with (28) correspond (under the first Chern class and a change
in the sign of the inner product) with characteristic covectors y of D, @ Z"~2 with {y, o) = 2q — i,
and —(c,(x))? = (¥, x), so the desired formula follows. O

By Proposition 6.2, specifying a sublattice D, @ Z"~2 C Z"*? is equivalent to choosing four
indicesa > b > ¢ > d such thatforv € Z"*2,v € D, ® Z" 2 ifand onlyif (v, e, + e, + €. + e4) is
even. The characteristic covectors for D, @ Z"~? come in two types: those that are the restrictions
of characteristic covectors of Z"+2, which can be represented by elements of Z"**2 with all entries
odd, and those that are not, which can be represented by elements of Z**? with the entries in
positions a, b, ¢, and d even and all other entries odd. Call these two types of covectors even and
odd, respectively. The short characteristic covectors are exactly the ones with all odd entries equal
to +1, and the even entries (if any) equal to +2, 0, 0, and 0 in some order.

Asin [9], we will assume o = (0, 0y, ..., 0,,41) With

0<0)<0; < SOy
Moreover, we can assume that for any two indices i, j € {0, 1, ..., n + 1}, we always have
i>j, ifo; = 0j,l € {a,b,c,d},and j & {a,b,c,d}. (34)

Definition 6.9. Let Short(D, @ Z"~2) = Short,, U Short,, with Short, = Short(Z") the set of
even short characteristic covectors and Short, = Short(D, & Z"~2) — Short,, the set of odd
characteristic covectors. Let

and

Xl = _2ea - Z i

i¢{a,b,c,d}

be the elements of Short, and Short,, respectively, minimizing (y, o). Let

_J1_ 0
To—{z()( x)

X € Shorto}
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THE PRISM MANIFOLD REALIZATION PROBLEM III 869

and

_J1._ 1
Tl—{z()( X))

X € Shortl}

be called the sets of even and odd test vectors, respectively.

For y € Z"*2, let x; denote the component of y corresponding to the index i. The following
result is easy to see.

Proposition 6.10. For y € Ty, (X4, Xe» Xp> Xa) is 0ne of (+1,0,0,1), or (0,+1,0, 1), or (0,0, +1, 1),
or (0,0,0,2), or (0,0,0,0).

Proposition 6.11. The sets {(x,0) | x € Ty} and {{x,0) | x € T;} are both intervals of integers
beginning at 0. Also,

n+1
Y 0, = max{(x,0) | x € To} = max{(y,0) | y € T;} £ 1. (35)
i=0

Proof. By Proposition 6.7, the set {(x,o) | x € Short(D, @ Z"~?)} is an interval of integers. For
each i € {0, 1}, the set {(y,0) | x € Short;} contains the elements of this interval with the same
parity. So the parities are different for i = 0 and i = 1. In particular, both sets are arithmetic pro-
gressions of step size 2, so subtracting off the smallest element and dividing by 2 gives intervals
beginning at 0. O
Corollary 6.12. o is a changemaker.

Proof. The set 7, consists of just vectors with all entries 0 or 1. O

Proof of Theorem 1.10. This follows from the combination of Corollary 6.12 and Proposi-
tion 6.7. O

Corollary 6.13. 0, = 0, + 0, + 0, + 6, where 6 € {—1,1}.

Proof. Using (35), we see that

n+l1
Zoi=20a+< Z aj>il.
i=0 jé{a,b,c,d}

The result is now immediate. [l

Lemma 6.14. An irreducible vector v € ot has an odd pairing with the vector e, + e, + e, + e, if
and only if [v] contains x,,.

Proof. Suppose v € o' is irreducible. The pairing (v, e, + e, + e, + e4) is even if and only if v €
D,® Z"—2, which is equivalent tov € (2xg, ..., X,,) by (27). Since v is irreducible, v & (2x, ..., X,,)
if and only if [v] contains x,,. O
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870 | BALLINGER ET AL.

Let
G=14o0y4+0,+ - +04. (36)

Lemma 6.15. There exists y € T, with (x,0) = G. Let f be the minimal index such that f > d and
f &{a,b,ct.If x, =0, then

G

A\

O'f.
If x, # 0, then
Gzo,—0,=0.+0,4+6.

Proof. Using Proposition 6.11, there exists y € 7; with (y, o) = G.If y, = 0, by Proposition 6.10 we
have y;, = x. = x4 = 0, then there must be an index i > d, i & {a, b, c}, with y; # 0 as otherwise
(x,0) <G.So

G={(x,0)>0;20;.
If y, # 0, by Proposition 6.10, we have

G={(x,0)20,—0,=0.+0,5+6. O

7 | BOUNDING THE INDEX d

In Sections 7 and 8, we will classify the linear changemaker lattices restricted by Theorem 1.10.
As in our previous papers [1, 2], we will use the techniques introduced by Greene [9]. The basic
strategy is, for such a lattice ol, we will analyze the standard basis vectors, which are irreducible
by Lemma 3.14, and other irreducible vectors of interest. By Proposition 3.4, irreducible vectors
are intervals up to sign reversal, hence the pairings between them can be computed (up to sign
reversal) by (17) and Lemma 3.8, which only involve the weights of high weight vertices and the
relative positions of intervals.

In this section, we will prove that d = 0, where d is the index defined after the proof of
Proposition 6.8. We assume that d > 0 for contradiction.

Recall that we write (e, ey, ..., €,,1) for the orthonormal basis of Z"*2, and o = Y, oe;. Since
(g, —p) is indecomposable (Proposition 3.9), g, # 0, otherwise o+ would have a direct summand
Z.So o, = 1. By Lemma 6.14, we have that [v;] contains Xx,,. Set

w=20e,+e;+e.+e, —e, 37
where 6 € {—1, 1} is as in Corollary 6.13. The strategy in this section is to analyze v; and w.
Lemma 7.1. w is an irreducible vector of a*. Also, x, & [w].
Proof. Corollary 6.13 shows that w is in o*. Suppose w = x + y with x,y € o+ and (x,y) > 0.

If both x,y are non-zero, by Lemma 3.15 we may assume that one of the vectors is e; — ¢, and
the other is —e,, + e}, + e,. Both vectors will then be irreducible and x,, € [x], [y] by Lemma 6.14.
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THE PRISM MANIFOLD REALIZATION PROBLEM III | 871

That implies (x,y) # 0, which is a contradiction. The second statement is immediate from
Lemma 6.14. Ol

Corollary 7.2. If one of the following two conditions holds, then 6 = 1:

@ o;=1;
(2) there exists a vector v with (v, e;) = —(v, e;) = 1, max supp(v) = d and |(v,w)| < 1.

Proof. If oy =1and 6 = —1, then w = (—ey + ¢,) + (e, + ¢, — ¢,) is reducible, a contradiction to
Lemma 7.1.

If there exists a vector v as in the statement, then since (v,e,) = —(v,e;) =1 and
max supp(v) = d, we have (v, w) = 6 — 1. Using [(v,w)| < 1, we have 6 = 1. O

Remark 7.3. When d > 0, we have [v,] contains x,. For any 0 < i < d, [v;] does not contain x.
Also, supp(v;) N supp(w) = @ or {0}, so |[(w, v;)| < 2.

Lemma 7.4. Suppose that 0 & supp(v,), then [v,] T [w].

Proof. Since 0 ¢ supp(v,), we can compute
(w,vg) = —1. (38)

Note that x, € [vy] and x,, & [w]. Assume that [v,] T [w] does not happen, then either [w] < [v,]
or [vg] M [w].

If [w] < [v,], then by Lemma 3.8 we have [(w,v;)| = |[w| — 1 = 4, contradicting (38).

If [vy] i [w], by Lemma 3.8 and (38), we have |[vy] N [w]| = 3, and there exists € € {—1, 1}
such that w = ¢[w] and vy = —€[vy]. So w + v, = e([w] — [vy]) = x + ¥ with [x] and [y] being
distant, and we may assume X, € [x]. Since v, is not tight, v, is unbreakable (Lemma 3.16). By
Proposition 3.6 and (17), |vy| = |[[w] N [vg]| = 3, and |x| = 2. We get v,y = e; + e4_; — e, for some
0<i<d-—1,and

wHvy=0e,+e +e;_;+e.+e, —e,

Using Lemmas 3.15 and 6.14, and the fact that x, € [x], we have either x = e¢; — e, for some j €

{0,i,d — 1} or x = —e, + ¢), for some k € {c,b}. If x = ej—eg then 0j =0y which forces o, =
oy, contradicting Corollary 6.13. If x = —e;, + ¢, then 8 = —1 and o), = 1, which forces 5, =1,

contradicting Corollary 7.2. O
Lemma 7.5. Suppose that 0 & supp(v,) and |(v;,vg)| = 1 for someiwith0 <i < d. Theni = 1.

Proof. Sincei < d, x, ¢ [v;] by Lemma 6.14. We have [v,;] ¥ [w] by Lemma 7.4.

If [v;] T [vg], then [v;] and [w] share their left end. If |v;| > 2, by Lemma 3.8 we have 2 <
[(v;, w)|, and the equality holds only when |v;| = 3. Since (v;, w) = (v;, e,), we have (v;, ;) = 2
and |v;| = 3, which is not possible. So |v;| = 2 in this case.

If [v;] and [v,] share their right end, then we must have |v;| = 2 by Lemma 3.8.

In the above two cases, we have |v;| = 2 and [v;] abuts the right end of [v,], so [(v;,w)| =1,
which implies i = 1 since v; = ¢;_; — ¢; by Lemma 3.18.
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872 | BALLINGER ET AL.

If [v;] th [vg], then |[v;]1 N [vg]] = |vy| = 3. By Lemma 3.22, v; is tight. If i > 1, |v;| > 6 = |w| +
vzl —2 = |[vg] U [w]]. Since [vg] T [w], the interval [v;] must contain all high weight vertices of
[w] by (17). Thus |{w, v;)| > |w| — 2 = 3, a contradiction (Remark 7.3). O
Lemma 7.6. v, is not gappy.

Proof. Suppose for contradiction that v, is gappy. Take the index i to be the smallest gappy index
of v,. First suppose that i = 0. Then, using Lemma 3.13, v; will be tight with |v;| = 5. Note that
(w,vy) =26, |vy| = |w| =5, so [w] M [v,] with [[v;] N [w]| = 4, and there exists € € {—1, 1} such
that w = e[w] and v, = B¢[v,]. It follows that w — Ov; = x + y with [x] and [y] being distant,
|x| = |y| = 3. Now

w—0v; =—6ey+06e,+e;+e.+e,—e,.

Since x,, ¢ [w], [v,], we have x, & [x], [y]. Using Lemma 3.15, one of x, y has the form e +e +
e;, where j € {0,1}, {k, I} C {d, c, b}, but this vector is not in o', a contradiction.

Suppose i > 0. Then i = min supp(v,) by [9, Paragraph 2 in Section 6, and Propositions 8.6, 8.7,
8.8]. Since (v;,1,vy) = 1 (Lemma 3.18), by Lemma 7.5 we have i + 1 = 1, a contradiction. O
Proposition 7.7. minsupp(vy) < 1.

Proof. Seti = minsupp(v,). Ifi > 0, since (v;,v;) = —1, by Lemma 7.5 we have i = 1. O

Let G be defined as in (36). Our strategy is to first find a bound for G, and then find a bound for
the integer d. Next, we do a case-by-case analysis to find that indeed d = 0.

Lemma 7.8. v, is not tight.
Proof. Suppose for contradiction that v, is tight. Using Lemma 6.15, we get
o4 =G > min{o;,04 + 0, + 6} > min{oy, 204 — 1},
which is not possible by (34) and Corollary 7.2. O
Combining Proposition 7.7 and Lemmas 7.6 and 7.8, we have:
Corollary 7.9. v; = v, g€y +€; + -+ — ey Withv, , € {0, 1}.

With the notation of Corollary 7.9 in place, we start the analysis to deduce d = 0. The following
identity will be useful to keep in mind:

04 =G—2+Ud’0. (39)
Lemma 7.10. Ifeither |vy| > 2o0rd =1, then

Gzo,+0.40.
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THE PRISM MANIFOLD REALIZATION PROBLEM III | 873

Proof. Let y be the vector as in Lemma 6.15. By that lemma, it will suffice to show y, # 0. Assume
that y, = 0, then Lemma 6.15 implies that G > o > 0. Using (39), we have that G < 04 + 2, so
op €{oq+1,04 + 2} Moreover, if oy = o4 + 2, then vy, = 0, hence d > 1 by Corollary 7.9.

Ifaf=o*d+1,setv}=—ef+ed+e0.1fcrf=ad+2,set

o = {—ef+ed+el+e0, ifo, =1,

In either case, v} is irreducible and also in o*. Since (v}, e, +ey,+e. +ey) =1, wegetthatx, €
[U}]. So [vs] and [U}] share their left endpoint. If [vg| > 2, then |(v, U}>| > 2by Lemma 3.8, which
contradicts the direct computation |(v, v’f)l < 1.1fd =1, then v, = ¢, — e; by Corollary 7.9, and

v} = —e; +e; +¢,. We get (v, v}) = 0: this is still giving a contradiction since the intervals [v,]
and [v}.] share their left endpoints, and so (v, v}) # 0. O

Proposition 7.11. If |vy| = 2, then eitherd = 1,G = 2, orelsed = 2, G € {3,4}.
Iflvgl > 2, thend € {3,4},0 = =1, v =0,and1+d <G < 5.

Proof. If |vg| = 2, our conclusion follows from Corollary 7.9 and (39).
Now we assume |v;| > 2. Using Lemma 7.10 and (39), we have

G204+0.+62>20;+6=2G—-2+0v,0)+6,
thus
G <4—06-2v,. (40)

If d < 2, by Corollary 7.9 and the assumption that |vy| > 2 we have v; , = 1and d = 2. We have
X, € [v,] while x, ¢ [w]. Since |v,| = 3 < |w], [v,] and [w] do not share their right endpoint, so
we must have [(v,, w)| < 1 by Lemma 3.8. Then 6 = 1 by Corollary 7.2. So G < 1 by (40), which is
not possible.

If d > 3, it follows from (40) and (36) that

4-0-2v0,0>2G>d+1>4,
so@=—1,vd,0=0,d<4andG<5. [l
Proposition 7.11 implies d € {0, 1, 2, 3, 4}. We now argue that d = 0.
Proposition 7.12. d = 0.

Proof. Suppose thatd = 1. Using Lemma 7.8, we get that v, = —e; + ¢,. By (40),G = 2and o, = 1.
By Corollary 7.2 and Lemma 7.10, we get that

2=G2o0,+0,+123,

which is a contradiction.
Suppose d = 2. It follows from Proposition 7.11 that |v,| = 2. We separate the cases to whether
o,(=0,)islor2.
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874 | BALLINGER ET AL.

First assume that 0; = 0, = 1. If ¢ # 3, then x,, € [v;] by Lemma 6.14, thus [v,] and [v;] share
their left endpoint. So (v;,v,) # 0. In particular, 1 & supp(v;). Since o, = 0, = 1, 0 & supp(vs;),
o |v3| = 2, which is impossible as o; > 1 by (34). If ¢ = 3, note that 6 = 1 by Corollary 7.2, by
Lemma 6.15 we have

3=G> min{of,a3 + 2}

By (34), 0 > 03, so we have 03 < 2. If 05 = 1, then |v3| = 2, (v3,w) = 0 and (v3, v,) = —1. Since
Xy € [vs], [v;] abuts the right endpoint of [v, ]. Since [v,] T [w] by Lemma 7.4, we get (v;, w) # 0,a
contradiction. If o5 = 2,thenv; = —e; + e, + e;. Wehavev; ~ v; ~ vy, |V | = |Uy| = 2,[v,] T [w],
so [v;] contains the leftmost high weight vertex of [w], which contradicts the fact that (v;, w) = 0.

Next we suppose (d = 2and) o, = 0, = 2. Thenv; = 2¢, —e;, v, = e; — e,. We have x,, € [v,],
Xy & [v;], [w], [v,] abuts both [v,] and [w], and 2 = |v,| < |v;| = |w]|. So [v,] and [w] share their
left endpoint. It follows from Lemma 3.8 that [(v;, w)| = 4, which is not possible by Remark 7.3.

Suppose d € {3,4}. Proposition 7.11 impliesv; = —e; + e4_; + -+ + €;, 0 = —1. Also, by Propo-
sition 7.11 and (36), we have 5> G > 2+ 0, +0,, s0 0; = 1. Let U/, = vy — ¢; + ¢, then v/, is
irreducible by Lemma 3.15, |v£l| =d < |w| =5, and (v&,w) = —2. Since x,, € [vé] and x, ¢ [w],

by Lemma 3.8 we must have [v:j] M [w] with |[v"1] N [w]| = 4, and there exists € = +1, such that
[

vl e[v(’i] and w = —e[w]. Hence
vi+w=e([v)]-[w))=—e,+e,+e. +es + - te,
is reducible, a contradiction to Lemma 3.15. O

8 | THECASEd =0

We now turn our attention to the classification in the case d = 0: in what follows, we classify all
changemaker linear lattices of this sort.

Lemma8.1. c=10,=1ando, =0, + 1
Proof. By Lemma 6.15, we have
1=G > min{o;,0, — 05} > min{oy,0, + 0y — 1} = min{os, 0, }.

If f=1,then1> Ofs which contradicts (34). So f > 1, thus ¢ = 1 and o, = 1. Hence the above
inequality becomes an inequality, which means o, = o, + 1. 1

For the rest of the section, we will replace w in (37) with
w' =—e, +e, +e,. (41)
The following is an immediate corollary of Lemma 8.1.

Corollary 8.2. The vector w' is an irreducible, unbreakable vector in g+, and x, € [w'].

Proof. It follows from Lemma 8.1 that w’ € ot. Since |w’| = 3, it is irreducible and unbreakable.
The fact that x, € [w’] follows from Lemma 6.14. O
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Lemma 8.3. b =2, 0 =1, and o, = 2. Hence (0, ...,0,) = (1,1,1, 2ls], 2) for some s > 0.

Proof. Suppose toward a contradiction that b > 2. Since oy, = 0, = land b > 2, 0, € {2,3}.

If o, = 2, then (v,,v;) =0, {(vy,w’') =1 and (v;,w’) = —1. Since |v;| = 2 and x, & [v;], [v;]
abuts the right end of [w']. If [v,] also abuts [w’], noting that x, & [v,], it abuts the right end
of [w'], so [v,] abuts [v,], contradicting the fact that (v,,v,) = 0. Thus by Lemma 3.8 we must
have [v,] i [w'], |[v,] N [w']] = 3, v, = €[v,] and W’ = e[w’] for some € € {1,—1}. It follows that
w’ — v, is reducible. However, w’ — v, = —e, + ¢, + e, — ¢, is irreducible by Lemma 3.15 and the
fact that o, = 0}, + 1, a contradiction.

If o, = 3, then [v,] contains x,, so [w'] < [v,]. However, since |[w’| = 3, Lemma 3.8 implies that
|{(v,, w")| = 2, contradicting the direct computation (v,,w’) = 1.

Having proved b = 2, we must have o, € {1,2,3}. If o, = 2, the interval [v,] contains X, so
[v,] and [w'] share their left end, a contradiction to the direct computation (v,,w’) =0.If o, =
3, using Proposition 6.11, there must be some y € 7; with (y, o) = 2. Moreover, since {0, 1,2} =
{d,c, b}, op>0,=3. Therefore, y, # 0 by Proposition 6.10. Using Lemma 8.1, 0, = 4. So 0}, > 4
if k > b =2 by (34). To get (¥, o) = 2, it must be the case that for some i € {b,c,d}, y; = —1 and
xj =0for j #i,a. Then (x,0o) is either 1 or 3, a contradiction.

Therefore,b = 2,0, =1,and o, =0, +1 = 2. O

Lemma 8.4. 0, = 2s + 3 fori > a. Thatis, o = (1,1,1, 25,2, 25 + 3l with s,t > 0.

Proof. First, consider v,,;. By (34), 0,1 > 2, so m :=minsupp(v,,;) < a. If m > 3, then
s:=a—-3>0. Let j =minsupp(v,,), by Lemma 83, j=m—-1if m>3, and j=m—-2 if
m = 3. There would be a claw (V5 Vg1, Uppg1s U j), a contradiction to Lemma 3.24. Therefore,
supp(v,41) N {0, 1,2} is non-empty, thus is one of {0, 1, 2}, {1, 2}, or {2} by Lemma 3.13.

We note that x, € [v,] no matter s =0 or s > 0.

We claim that there is no index j such that v; is tight. Otherwise, we have j > a and [v;] con-
tains x,, so [v,] < [v;]. If s > 0, (v,, v;) = 0, a contradiction to [v,] < [v;]. If s = 0, then |v,| = 3,
hence [(v,, v;)| = 2 by Lemma 3.8, contradicting the direct computation (v, v;) = 1.

If me{0,1}, then 3 & supp(v,,;) since otherwise (vs;,v,,;) =2, a contradiction to
Lemma 3.21. Then since |v;| =2 for 3 <i<a, v, is just right by Lemma 3.13 and the
claim in the last paragraph.

If m = 0, we have (v3,0,,;) =1, and x; & [v,,,]. We also have (v;,v;) = —1, and x, & [v;].
If s > 0, then (v3; vy, Uy, V,41) Will give a claw, a contradiction (Lemma 3.24). If s = 0 then [v;]
contains x,, so [v,] and [v,,,] must both abut the right end of [v;], contradicting the fact that
they are orthogonal.

If m =1, since |{a, b, c,d} Nnsupp(v, )| =3, X5 € [Vgi1]- So [v,] < [Vgq1] and [(Vg41, V)] =
|v,| — 1. This contradicts the direct computation of (v,, v, ;) no matter s = 0 or s > 0.

If m=2, then v, ;, =e;+e +--+e,—e,,, for some 3<k<a. If 3<k<a, thereisa
claw (Uy; Ug_15 Ugq15Vgqr) (Lemma 3.24). If k = a and a > 3, then x, € [v,] but x; & [v,,1]-
Since (v,,V,41) = —1 and |v,| = 2 < |v,4; |, we have [v,] T [v,41]- If s =1, then since |v,| =
2, (v3,v,) = —1, [vs] and [v,, ;] will share a hight weight vertex, which is not possible by
Lemma 3.22. If s > 1, then (v,,v,_,) = —1 and x, & [v,_;], so [v,_;] abuts the right endpoint
of [v,]. Recall that [v,, ;] also abuts the right endpoint of [v,], hence (v,,;,V,_;) = *1, a con-
tradiction to the direct computation (v, ,v,_;) = 0. Therefore, k = 3, so v, is just right and
Ogqe1 =28+ 3.
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Finally, suppose that for some j > a + 1, |v;| > 2. Take j to be the smallest such index. Then
v; is unbreakable by our earlier claim. Let £ = minsupp(v;). If either # >a+1 or 3<¢ <
a, there will be a claw (vf;vf_l,v,gﬂ,vj) (when ¢ > 3) or (vf;vf_z,v,gﬂ,vj) (when ¢ = 3),
contradicting Lemma 3.24.

If £ = a, then [v;] contains x, so [v,] and [v;] share their left endpoint. No matter s = 0 or
s > 0, [v;] is connected to [v,] via a (possibly empty) sequence of norm 2 vectors, so the intervals
[vs] and [v;] will share a high weight vertex, a contradiction to Lemma 3.22.

If £ < 3, then v; is connected to the path v; ~ vy ~ v, ~ v, in the intersection graph G(S). If
¢ €41,2}, Vj ~ Uy, SO there is a heavy triple (v3, Vg1, vj), contradicting Lemma 3.26. If £ = 0, it
follows from Lemma 3.13 that 1,2 € supp(v;). By Lemma 3.21, |{v3, v;)| < 1,80 3 € supp(v;) and
vj ~ U3. Now 4,...,a € supp(v;) by Lemma 3.13, 80 (Uy11,0;) 25 +2—12> 1,80 0j ~ Ugyq. We
again have a heavy triple (v3, Vg4, 0;), contradicting Lemma 3.26. O

9 | PROOF OF THEOREM 1.2

Lemma 8.4 specifies a changemaker vector in Z"*? whose orthogonal complement is the lin-
ear changemaker lattice A(q, —p). From the integers a,, a;, ... a,, in (16), we can recover p and
q using (14). Since g < p < 2q, we have

p _
= =1[2,ap,0;,..,a,]".

We use the following facts:

Lemma 9.1 [9, Lemma 9.5 (2) and (3)]. For integers s,t,b with b > 2 and s, t > 0:
@ [~,b,207 U] = [, b—1,—t];
Q) If[25t1 b, .. = § then [—(s+2),b—1,..]" = ﬁ
‘We have
o=(1,1,1,250 2 25 + 31]),

with s,¢ > 0. One can check that the standard basis of the linear changemaker lattice
S = {01355 V3501, 05, U gy s U 43}
coincides with its vertex basis with norms given by
251 3,22, 5 4 3,211,

By Lemma 6.14, [v,, ] contains X, so vy, 3 = X,. Hence, we have

P
q

= [2+13,2,2, 5 + 3,271~

Using Lemma 9.1, we see that

q=7+4s+9t + 12st + 4s%t, and

p =11 + 45 + 14t + 165t + 4s°t.
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It is straightforward to check that

1

2
— (*p-1),
r2—2r—1( p=D

q:
withr = —2s—3and p = t(r> —2r — 1) — 2r + 5.

Proof of Theorem 1.2. Suppose P(p, q) = Siq(K ), the above computation shows that (p, g) must be
as in the statement. On the other hand, if (p, q) is as in the statement, it follows from [1, Table 2]
and [21] that there exists a Berge-Kang knot K, such that P(p, q) = Siq (K,)- For the second state-
ment, we note that K and K, correspond to the same changemaker vector. Using Proposition 6.8,
we know that Ay = Ag , s0 HFK(K) = ﬁﬁ{(Ko) by [17, Theorem 1.2]. O
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