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Abstract

We prove that if K is a nontrivial null-homotopic knot in a closed oriented 3—manfiold Y
such that ¥ — K does not have an S x S? summand, then the zero surgery on K does not
have an S! x $? summand. This generalises a result of Hom and Lidman, who proved the
case when Y is an irreducible rational homology sphere.
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1. Introduction

Given a null-homologous knot K in a 3—-manifold Y and a slope p/q € QU {oc}, let
Y),/4(K) be the p/g—surgery on K. Gabai’s famous Property R Theorem [6] asserts, among
others, that if K is a nontrivial knot in $°, then SS(K ) is irreducible. In particular, SS(K ) does
not have an §! x $? summand.

In recently years, many generalisations of this theorem have been proved using Heegaard
Floer homology. See, for example, the overview in [14]. Hom and Lidman [9] proved two
generalisations of Property R. One result they proved is, if K is a nontrivial null-homotopic
knot in an irreducible rational homology sphere Y, then Yo(K) does not have an S' x §2
summand. The aim of this paper to remove the restrictions on the ambient manifold.

THEOREM 1-1. Let Y be a closed, oriented, connected 3—manifold, and K C Y be a non-
trivial null-homotopic knot such that Y — K does not have an S U'x $2 summand, then Yo(K)
does not have an S' x % summand.

In Gabai’s work [6], it is proved that SS(K) remembers the information of K about the
genus and fiberedness. Motivated by this result, a concept ‘“Property G” was introduced in
[13] as a generalisation of Property R. Known results on Property G are summarised in [14].
We will not give the complete definition of Property G here. Instead, we just state the explicit
result for genus—1 null-homotopic knot.

COROLLARY 1-2. Let K CY be a genus—1 null-homotopic knot, then K has Property G.
That is, if F is a genus—1 Seifert surface bounded by K, and Fc Yo(K) is the torus obtained
by capping off OF with a disk, then [ﬁ] € Hy(Yo(K)) is not represented by a sphere. Moreover,
if Yo(K) is a torus bundle over S* with fiber F, then K is a fibered knot with fiber F.
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Corollary 1-2 answers the genus—1 case of a question of Boileau [10, problem 1-80C].
There are easy counterexamples to the original question of Boileau, so one should modify
the question to add the condition on the fiber of the zero surgery. See [12] for more details.

The strategy of the proof of Theorem 1-1 is as follows. If b{(Y) > 0, the theorem easily
follows from a result of Lackenby [11] and Gabai [5]. If b;(Y) =0, we use results about
degree-one maps and a result in [4] to show that if Yo(K) = Z#(S L' §2) then 771(2) = 71 (Y).
Theorem 1-1 then follows from work of Hom and Lidman [9].

We will use the following notation. If N is a submanifold of a manifold M, let v(N) be
a closed tubular neighbourhood of N, and let v°(N) be the interior of v(N). If X, Y are two
spaces, f : X — Y is a continuous map, let f; : m1(X) — 71 (Y) be the induced map. We will
always suppress the base point in the notation when we talk about fundamental groups.

This paper is organised as follows. In Section 2, we prove general results about degree-
one maps with certain properties on the induced homomorphisms on 1. In Section 3,
we prove that if the zero surgery on a knot in Y is Z#(S' x §%), then 71(Z) = 71 (Y). In
Section 4, we use work of Lackenby [11] and Hom-Lidman [9] to prove Theorem 1-1.
Corollary 1-2 is also proved as an application of this theorem.

2. Degree-one maps which induce surface-group injective homomorphisms

In this section, we will prove results about degree-one maps which induce surface-group
injective homomorphisms on 7.

A group I' is a surface group if it is isomorphic to the fundamental group of a closed
orientable surface. Let ¢ : G — H be a group homomorphism. We say ¢ is surface-group
injective, if the restriction of ¢ to every surface subgroup of G is injective.

LEMMA 2-1. Let ¢ : G| * G2 — H be a group homomorphism. If both ¢|g, and ¢|g, are
surface-group injective, then ¢ is also surface-group injective.

Proof. Let I be a surface subgroup of Gj * G. By the Kurosh Subgroup Theorem [8,
theorem 8-3], I' is the free product of a free group and conjugates of subgroups of Gj,
i=1,2. Since I" is not a nontrivial free product, it is conjugated to a subgroup of G; for
some i. Since ¢|g, is surface-group injective, ¢ is also injective on I".

The importance of the concept of surface-group injective maps is illustrated by the next
lemma.

LEMMA 2-2. Let X, Y be closed, oriented, connected 3—manifolds, f : X — Y be a sur-
Jjective map such that f is surface-group injective. Let S CY be a separating 2—sphere,
and assume that R = f’l(S) is a closed, oriented, connected surface. Then there exists a
separating 2—sphere E C X so that R is obtained by adding tubes to E.

Proof. Let t : R — X be the inclusion map. Since f(R) = S is a sphere,
(1 (R)) Cker fi.

If R is not a sphere, since f; is surface-group injective, R must be compressible. Let R’ be the
surface obtained by compressing R, then R can be obtained from R’ by adding a tube. Let R|
be a component of R', let ' : R/1 — X be the inclusion map, then

L (m1(R)) = tx(w1(R] NR)) C (71 (R)) C ker fs.
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If R' does not consist of spheres, since f, is surface-group injective, R’ must be
compressible. So R’ can be obtained from another surface R” by adding a tube.

Continue with the above process, we conclude that R can be obtained from some spheres
by adding tubes. We can rearrange the order of the tubes, so that some tubes connecting
different spheres are added first to get a single sphere E, then R is obtained by adding other
tubes to E.

Let y1,y2 € Y be two points separated by S. Since f is surjective, both £~ (y;) and f~!(y7)
are non-empty. These two sets are clearly separated by R, so R is separating. The process of
compressing a surface does not change the homology class of the surface, hence E is also
separating.

In the rest of this section, let ¥ be a 3—manifold which has no S' x $? summand,
S1,82,...,S5, be a collection of disjoint 2—spheres in ¥ satlsfymg the followmg conditions:
Y\ ( U S ;) has n 4+ 1 components whose closures are Yl, Yz, .. Y,,, Yn+ 1, where Yn+ 11s
53 with n open balls removed, and a closed irreducible mamfold Y; # 53 can be obtained
from ¥; by capping off 3¥; = S; with a ball B;, 1 <i < n. Then

Y= #?:1 Y;.
When Y is irreducible, it is understood that n = 0.

PROPOSITION 2-3. Let X be a closed, oriented, connected 3—-manifold, andf : X — Y be
a degree-one map such that fy is surface-group injective. Then there exists a degree-one map
g: X — Y satisfying gy =f+, and each E; = g~ (S;) is a 2—sphere.

Proof. We induct on n. When n = 0, there is nothing to prove. So we assume n > 0 and
the result is proved for n — 1.

Using [17, theorem 1-1], we may assume R =f_1(Sl) is a connected surface. Let }V’o =
Y\ Y1, and let Yy be obtained by capping off 3¥, with a ball By. Let U; =f~(¥;), i =0, 1.
Then 0U; = dUy =R;.

By Lemma 2-2, there exists a separating 2—sphere E1 C X, so that Ry is obtained by adding
tubes to E7. Now Ej splits X into two parts )V(l, 5(0’ so that )V(i can be obtained from U; by
adding 1-handles and digging tunnels, i =0, 1. Let X; be the closed manifold obtained by
capping off 3X; with a ball, i =0, 1.

We claim that each map f|y, : U; — )V/i can be extended to a degree-one map f; : X; — Y;.
In fact, the manifold X; can be obtained from U; by gluing a 3—manifold V; which is obtained
from B? by digging tunnels and adding 1-handles. Since B; is a ball which is contractible,
we can extend f|y, : U; — Iv’[ to a map f; : X; — Y; by sending V; to B;. The degree of f; is 1
since the degree of f|y, is 1.

Since deg f; = 1, after a homotopy supported in V;, we may assume there exists a ball
B; C int(B;), such that f; sends B} = fi_l(B;) homeomorphically onto B;. Now we can glue
X \ int(BY), i =0, 1, together along their boundary, to get back

= (Xo \ int(Bf)) Ug2 (X \ int(BY)),
and define a map

fo#fi 1 X — Y = (Yo \ int(B))) Ugz (Y1 \ int(B)))

https://doi.org/10.1017/S0305004123000129 Published online by Cambridge University Press


https://doi.org/10.1017/S0305004123000129

220 Y1 NI

by gluing the restrictions of fy, f;. We rename
S1=8(Yo \ int(By)), E1 = 3(Xo \ int(By)),

then E; = (fo##fi) " (S1).

We claim that (fo#f])« =fi. Let D C E| be a disk such that all tubes in S| are added to
the interior of D, and let D° =FE; \ D. Let V C X be the handlebody obtained by adding
the 1-handles bounded by the tubes to v(D). Since 71(V) is a quotient of 71(dV), the map
X\ V— X induces a surjective map on 1. To prove (fo#f1)« =f«, we only need to prove
that (fo#f1)«(a) =f«(o) when « is a homotopy class represented by a loop in X \ V. We
observe that fy#f; =f on X \ (VU v(D)), and (X \ V) is the free product of the 1 of the
two components of X \ (V U v(D°)), so (fo#f1)«(a) = fi ().

By the induction hypothesis, there exists a map gg : Xo — Yo, such that gl_l(S,-) is a sphere
for 2 <i<n, and (g1)« = (fo)«. We can define a map g = go#f] in a similar way as fo#f],
then g_l(Si) is a sphere for 1 <i < n, and

8+ = (80#f1)« = (foftf 1)« =f.

This finishes the induction step.

3. Zero surgery on a null-homotopic knot

The aim of this section is to prove the following proposition.

PROPOSITION 3-1. Let Y be a closed, connected, oriented 3—manifold which does not
have an S' x §% summand, and K C Y be a null-homotopic knot. If Yo(K) = Z#(S Ix §2),
then m(Z) = m1(Y).

We first prove a general result about surgery on null-homotopic knots.

LEMMA 3-2. Let Y be a closed, oriented, connected 3—manifold, and K C Y be a null-
homotopic knot. Let V be the 2—handle cobordism from Y to Y,,,(K) for some integer m. Then
there exists a retraction p : V — Y, so that ply, k) : Ym(K) — Y is a degree-one map.

Proof. The cobordism V deformation retracts to the space V' obtained from Y by adding a
2—cell e? along K. Since K is null-homotopic, the identity map on Y can be extended over ¢?.
Hence we have a retraction V' — Y, which implies the existence of the retraction p: V —
Y. The degree of the restriction ply,, ) : Ym(K) — Y is 1 since it induces an isomorphism

on Hs.

The existence of the above degree-one map is a well-known result. See [3, Proposition
3-2] and [7].

In the rest of this section, let V be the 2-handle cobordism from Y to X = Yo(K),p: V — Y
be the retraction in Lemma 3-2, and f = p|y, (k). Moreover, we assume Y(K) = Z#H(S! x §2).
Let Z be the submanifold of Yo(K) which is Z with a ball removed. Since Yo(K) = Z#(S' x
S2), we can add a 3—handle to V to get a cobordism W :Y — Z.

LEMMA 3-3. The restriction of fx to m (Z) is injective.
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Proof. Consider the following commutative diagram, where all maps except p are

inclusions:
Y Yo(K)~— 7 ——= 27
Ly
\ LLO : /
» Ly Lz
V—W.
Then f = p o 1.

Since the 2-handle in V is added along the null-homotopic knot K, the inclusion
ty : Y — V induces an isomorphism on ;. Since p o ty = idy, p, is an isomorphism.

Since W is obtained from V by adding a 3-handle, the inclusion V C W induces an
isomorphism on 1. We have the commutative diagram

2z
(tz)
m (W

_

1R

The manifold W (after being turned up-side-down) can be obtained from Z x I by adding
a 1-handle and a 2-handle, and the 2—handle cobordism is exactly V being turned up-side-
down. By [4, Proposition 2-1], (¢z) is injective, so (t3) is also injective.

Now consider the commutative diagram

T (Y) ™ (Yo(K)) <— m1(2)
7T1(V) .

The restriction of f; to m(Z) is just px o (1), which is injective since (i)« is injective and
Px 1s an isomorphism.

COROLLARY 3-4. The induced map f : w1 (Yo(K)) — m1(Y) is surface-group injective.

Proof. This follows from Lemmas 2-1 and 3-3.

Proof of Proposition 3-1. We will use the notations in Section 2. Since f; is surface-group
injective, we can apply Proposition 2-3 to get a degree-one map g : X = Yp(K) — Y so that
g« =/ and g~ (S;) = E; is a separating sphere whenever 1 < i< n.

Since X has an §' x $? summand, by the uniqueness part of the Kneser—Milnor theorem,
one component of X \ (U, E;) has an § ' % §2 summand.

If the S! x $? summand is in g_l()v’,ﬂ_l), then g.(S Iy {point}) is null-homotopic. It
follows that

g:(m1(X) = g (1 (Z#(S" x §))) = g.(711(2)).

Since deg g =1, g is surjective. SO g«|x,(z) is surjective. Our result follows from Lemma
3.3 since g4 = f;.

If )V(,- = g_l(f/,-) has an S! x §? summand for some i satisfying 1 < i < n, without loss of
generality, we may assume i = 1. The map g| X, extends to a map g; : X1 — Y. Suppose
that X| = Z#(S' x §?), let P C X, be {point} x S2. Then X; \ v°(P) is homeomorphic to Z;
with two open balls removed. Since 2(Y1) =0, (g1)|p is null-homotopic in Y;. We can then
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extend gi|x,\ve(p) t0 @ map hj : Z; — Y1. The new map A is again a degree-one map, so
(h1)« is surjective.

Using Lemma 3-3, we see that g, is injective on 1(Xo#Z1). (Recall that Xy is obtained
from X by replacing X with a ball.) In particular, (1), is injective, so

m1(Zy) = m(X).

We also get that g, is injective on 71(Xp). Since g| % :)V(o — Iv/o is a degree-one proper
map, (g|5(0)* is surjective. So

1(Xo) = 1 (Yo).
Since Z = Xy#Z1, Y = Yo#Y1, we have

m(Z2) = m1(Xo) * m1(Z1) = 71 (Yp) * w1 (Y1) = my(Y).

4. Proof of the main theorem

In this section, we will prove Theorem 1-1 and Corollary 1-2.

Proof of Theorem 1-1. when bi(Y) > 0 Without loss of generality, we may assume M =
Y \ v°(K) is irreducible. Since b;(Y) > 0, there exists a closed, oriented, connected surface
S in the interior of M, so that § is taut in M. Notice that for the oo slope on K, the core of
the surgery solid torus, which is K, is null-homotopic. Using [11, theorem A.21], which is a
stronger version of the main result in [5], we conclude that each 2—sphere in Yy(K) bounds
a rational homology ball. Hence Y (K) does not have an S x $2 summand.

PROPOSITION 4-1. Let Y1,Y> be two closed, oriented, connected 3—manifolds. If
71(Y1) E mp(Yr), then

rank[-/IF(Yl) = rank]fIF(Yz).

Proof. This is a well-known consequence of the Geometrisation Theorem. As in [2,
theorem 2-1-3], if 1 (Y1) = m2(Y3), then there is a one-to-one correspondence between the
summands of Y7 and the summands of Y7, such that any pair of summands in the correspon-
dence consists of either homeomorphic manifolds, (the homemorphism does not necessarily
preserve the orientation), or lens spaces with the same H;. Our result then follows from basic
properties of Heegaard Floer homology [15, 16].

Proof of Theorem 1-1. when b1(Y) = 0 Without loss of generality, we may assume Y \ K
is irreducible. Assume that Yo(K) = Z#(S! x §2). By Proposition 3-1, 71 (Y) = m1(Z). Using
Proposition 4-1, we get rankHF(Y) = rankHF(Z). Our conclusion follows from [9, theorem
1-1].

Proof of Corollary 1-2. The first statement follows from Theorem 1-1. We only need
to prove the second statement. In this case, Yo(K) is a torus bundle over S L By Lemma
3.2, there exists a degree-one map f : Yo(K) — Y. Then f; is surjective. We claim that Y is
S1 x §2, RP3#RP3 or a spherical manifold. Then our conclusion follows from [1].

If Y is reducible, then either Y = S! x 2 or Y is a nontrivial connected sum. If ¥ = S! x
S2, we are done. Now we assume Y is a nontrivial connected sum, so 71(Y) = A % B with
A, B nontrivial. Let T be a fiber of Yy(K), then f,(;r1(7T)) is an abelian normal subgroup of
71(Y) = fi (1 (Yo(K))). By the Kurosh Subgroup Theorem [8, theorem 8-3], f;.(;r1(T)) is also
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a free product of free groups and conjugates of subgroups of A, B. Since f,.(;r1(T)) is abelian,
it must be either a subgroup of Z or the conjugate of a subgroup of A or B. Since f, (771 (T))
is a normal subgroup of 7{(Y) = A % B, the latter case cannot happen.

Now fi(r1(T)) is a subgroup of Z. Since f; is surjective, w1 (Y)/fi (71 (T)) is a cyclic group.
If fi (71 (T)) = {1}, then 71 (Y) is cyclic, a contradiction to w1 (Y) = A x B. So f,(71(T)) = Z.

If m1(Y)/fi (1 (T)) = Z, then 71 (Y) contains 72 as a finite index subgroup, which is not
possible since Z? is not the fundamental group of any closed 3—manifold. If 7r{(Y)/fx (71 (T))
is finite, then 71 (Y) contains Z as a finite index subgroup. It follows that Y is finitely covered
by S! x §2, thus it must be S! x S? or RP3#RP3.

Now we consider the case Y is irreducible. If Y is a spherical manifold, we are done. If Y
is irreducible and not a spherical manifold, then f; is injective by [18, theorem 4]. So f; is
an isomorphism, a contradiction to the fact that b1 (Yo(K)) > b1(Y).
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