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Abstract

We prove that if K is a nontrivial null-homotopic knot in a closed oriented 3–manfiold Y
such that Y −K does not have an S1 × S2 summand, then the zero surgery on K does not
have an S1 × S2 summand. This generalises a result of Hom and Lidman, who proved the
case when Y is an irreducible rational homology sphere.
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1. Introduction

Given a null-homologous knot K in a 3–manifold Y and a slope p/q ∈Q∪ {∞}, let
Yp/q(K) be the p/q–surgery on K. Gabai’s famous Property R Theorem [6] asserts, among
others, that if K is a nontrivial knot in S3, then S30(K) is irreducible. In particular, S

3
0(K) does

not have an S1 × S2 summand.
In recently years, many generalisations of this theorem have been proved using Heegaard

Floer homology. See, for example, the overview in [14]. Hom and Lidman [9] proved two
generalisations of Property R. One result they proved is, if K is a nontrivial null-homotopic
knot in an irreducible rational homology sphere Y , then Y0(K) does not have an S1 × S2

summand. The aim of this paper to remove the restrictions on the ambient manifold.

THEOREM 1·1. Let Y be a closed, oriented, connected 3–manifold, and K ⊂ Y be a non-
trivial null-homotopic knot such that Y −K does not have an S1 × S2 summand, then Y0(K)
does not have an S1 × S2 summand.

In Gabai’s work [6], it is proved that S30(K) remembers the information of K about the
genus and fiberedness. Motivated by this result, a concept “Property G” was introduced in
[13] as a generalisation of Property R. Known results on Property G are summarised in [14].
We will not give the complete definition of Property G here. Instead, we just state the explicit
result for genus–1 null-homotopic knot.

COROLLARY 1·2. Let K ⊂ Y be a genus–1 null-homotopic knot, then K has Property G.
That is, if F is a genus–1 Seifert surface bounded by K, and̂F ⊂ Y0(K) is the torus obtained
by capping off ∂F with a disk, then [̂F] ∈H2(Y0(K)) is not represented by a sphere. Moreover,
if Y0(K) is a torus bundle over S1 with fiber̂F, then K is a fibered knot with fiber F.
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Corollary 1·2 answers the genus–1 case of a question of Boileau [10, problem 1·80C].
There are easy counterexamples to the original question of Boileau, so one should modify
the question to add the condition on the fiber of the zero surgery. See [12] for more details.
The strategy of the proof of Theorem 1·1 is as follows. If b1(Y)> 0, the theorem easily

follows from a result of Lackenby [11] and Gabai [5]. If b1(Y)= 0, we use results about
degree-one maps and a result in [4] to show that if Y0(K)= Z#(S1 × S2) then π1(Z)∼= π1(Y).
Theorem 1·1 then follows from work of Hom and Lidman [9].
We will use the following notation. If N is a submanifold of a manifold M, let ν(N) be

a closed tubular neighbourhood of N, and let ν◦(N) be the interior of ν(N). If X, Y are two
spaces, f : X → Y is a continuous map, let f∗ : π1(X)→ π1(Y) be the induced map. We will
always suppress the base point in the notation when we talk about fundamental groups.
This paper is organised as follows. In Section 2, we prove general results about degree-

one maps with certain properties on the induced homomorphisms on π1. In Section 3,
we prove that if the zero surgery on a knot in Y is Z#(S1 × S2), then π1(Z)∼= π1(Y). In
Section 4, we use work of Lackenby [11] and Hom–Lidman [9] to prove Theorem 1·1.
Corollary 1·2 is also proved as an application of this theorem.

2. Degree-one maps which induce surface-group injective homomorphisms

In this section, we will prove results about degree-one maps which induce surface-group
injective homomorphisms on π1.

A group � is a surface group if it is isomorphic to the fundamental group of a closed
orientable surface. Let ϕ :G→H be a group homomorphism. We say ϕ is surface-group
injective, if the restriction of ϕ to every surface subgroup of G is injective.

LEMMA 2·1. Let ϕ :G1 ∗G2 →H be a group homomorphism. If both ϕ|G1 and ϕ|G2 are
surface-group injective, then ϕ is also surface-group injective.

Proof. Let � be a surface subgroup of G1 ∗G2. By the Kurosh Subgroup Theorem [8,
theorem 8·3], � is the free product of a free group and conjugates of subgroups of Gi,
i= 1, 2. Since � is not a nontrivial free product, it is conjugated to a subgroup of Gi for
some i. Since ϕ|Gi is surface-group injective, ϕ is also injective on �.

The importance of the concept of surface-group injective maps is illustrated by the next
lemma.

LEMMA 2·2. Let X, Y be closed, oriented, connected 3–manifolds, f : X → Y be a sur-
jective map such that f∗ is surface-group injective. Let S⊂ Y be a separating 2–sphere,
and assume that R= f−1(S) is a closed, oriented, connected surface. Then there exists a
separating 2–sphere E ⊂ X so that R is obtained by adding tubes to E.

Proof . Let ι : R→ X be the inclusion map. Since f (R)= S is a sphere,

ι∗(π1(R))⊂ ker f∗.

If R is not a sphere, since f∗ is surface-group injective, Rmust be compressible. Let R′ be the
surface obtained by compressing R, then R can be obtained from R′ by adding a tube. Let R′

1
be a component of R′, let ι′ : R′

1 → X be the inclusion map, then

ι′∗(π1(R
′
1))= ι∗(π1(R

′
1 ∩ R))⊂ ι∗(π1(R))⊂ ker f∗.
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If R′ does not consist of spheres, since f∗ is surface-group injective, R′ must be
compressible. So R′ can be obtained from another surface R′′ by adding a tube.
Continue with the above process, we conclude that R can be obtained from some spheres

by adding tubes. We can rearrange the order of the tubes, so that some tubes connecting
different spheres are added first to get a single sphere E, then R is obtained by adding other
tubes to E.
Let y1, y2 ∈ Y be two points separated by S. Since f is surjective, both f−1(y1) and f−1(y2)

are non-empty. These two sets are clearly separated by R, so R is separating. The process of
compressing a surface does not change the homology class of the surface, hence E is also
separating.
In the rest of this section, let Y be a 3–manifold which has no S1 × S2 summand,

S1, S2, . . . , Sn be a collection of disjoint 2–spheres in Y satisfying the following conditions:
Y \ (∪n

i=1 Si) has n+ 1 components whose closures are Y̌1, Y̌2, . . . , Y̌n, Y̌n+1, where Y̌n+1 is
S3 with n open balls removed, and a closed irreducible manifold Yi 
= S3 can be obtained
from Y̌i by capping off ∂Y̌i = Si with a ball Bi, 1� i� n. Then

Y = #ni=1Yi.

When Y is irreducible, it is understood that n= 0.

PROPOSITION 2·3. Let X be a closed, oriented, connected 3–manifold, and f : X → Y be
a degree-one map such that f∗ is surface-group injective. Then there exists a degree-one map
g : X → Y satisfying g∗ = f∗, and each Ei = g−1(Si) is a 2–sphere.

Proof. We induct on n. When n= 0, there is nothing to prove. So we assume n> 0 and
the result is proved for n− 1.
Using [17, theorem 1·1], we may assume R1 = f−1(S1) is a connected surface. Let Y̌0 =

Y \ Y̌1, and let Y0 be obtained by capping off ∂Y̌0 with a ball B0. Let Ui = f−1(Y̌i), i= 0, 1.
Then ∂U1 = ∂U0 = R1.

By Lemma 2·2, there exists a separating 2–sphere E1 ⊂ X, so that R1 is obtained by adding
tubes to E1. Now E1 splits X into two parts X̌1, X̌0, so that X̌i can be obtained from Ui by
adding 1–handles and digging tunnels, i= 0, 1. Let Xi be the closed manifold obtained by
capping off ∂X̌i with a ball, i= 0, 1.

We claim that each map f |Ui :Ui → Y̌i can be extended to a degree-one map fi : Xi → Yi.
In fact, the manifold Xi can be obtained fromUi by gluing a 3–manifold Vi which is obtained
from B3 by digging tunnels and adding 1–handles. Since Bi is a ball which is contractible,
we can extend f |Ui :Ui → Y̌i to a map fi : Xi → Yi by sending Vi to Bi. The degree of fi is 1
since the degree of f |Ui is 1.
Since deg fi = 1, after a homotopy supported in Vi, we may assume there exists a ball

B′
i ⊂ int(Bi), such that fi sends B�

i = f−1
i (B′

i) homeomorphically onto B′
i. Now we can glue

Xi \ int(B�
i ), i= 0, 1, together along their boundary, to get back

X = (X0 \ int(B�
0))∪S2 (X1 \ int(B�

1)),

and define a map

f0#f1 : X → Y = (Y0 \ int(B′
0))∪S2 (Y1 \ int(B′

1))
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by gluing the restrictions of f0, f1. We rename

S1 = ∂(Y0 \ int(B′
0)), E1 = ∂(X0 \ int(B�

0)),

then E1 = (f0#f1)−1(S1).
We claim that (f0#f1)∗ = f∗. Let D⊂ E1 be a disk such that all tubes in S1 are added to

the interior of D, and let Dc = E1 \D. Let V ⊂ X be the handlebody obtained by adding
the 1–handles bounded by the tubes to ν(D). Since π1(V) is a quotient of π1(∂V), the map
X \ V → X induces a surjective map on π1. To prove (f0#f1)∗ = f∗, we only need to prove
that (f0#f1)∗(α)= f∗(α) when α is a homotopy class represented by a loop in X \ V . We
observe that f0#f1 = f on X \ (V ∪ ν(Dc)), and π1(X \ V) is the free product of the π1 of the
two components of X \ (V ∪ ν(Dc)), so (f0#f1)∗(α)= f∗(α).
By the induction hypothesis, there exists a map g0 : X0 → Y0, such that g

−1
1 (Si) is a sphere

for 2� i� n, and (g1)∗ = (f0)∗. We can define a map g= g0#f1 in a similar way as f0#f1,
then g−1(Si) is a sphere for 1� i� n, and

g∗ = (g0#f1)∗ = (f0#f1)∗ = f∗.

This finishes the induction step.

3. Zero surgery on a null-homotopic knot

The aim of this section is to prove the following proposition.

PROPOSITION 3·1. Let Y be a closed, connected, oriented 3–manifold which does not
have an S1 × S2 summand, and K ⊂ Y be a null-homotopic knot. If Y0(K)= Z#(S1 × S2),
then π1(Z)∼= π1(Y).

We first prove a general result about surgery on null-homotopic knots.

LEMMA 3·2. Let Y be a closed, oriented, connected 3–manifold, and K ⊂ Y be a null-
homotopic knot. Let V be the 2–handle cobordism from Y to Ym(K) for some integer m. Then
there exists a retraction p : V → Y, so that p|Ym(K) : Ym(K)→ Y is a degree-one map.

Proof. The cobordism V deformation retracts to the space V ′ obtained from Y by adding a
2–cell e2 along K. Since K is null-homotopic, the identity map on Y can be extended over e2.
Hence we have a retraction V ′ → Y , which implies the existence of the retraction p : V →
Y . The degree of the restriction p|Ym(K) : Ym(K)→ Y is 1 since it induces an isomorphism
on H3.

The existence of the above degree-one map is a well-known result. See [3, Proposition
3·2] and [7].
In the rest of this section, let V be the 2–handle cobordism from Y to X = Y0(K), p : V → Y

be the retraction in Lemma 3·2, and f = p|Y0(K). Moreover, we assume Y0(K)= Z#(S1 × S2).
Let Ž be the submanifold of Y0(K) which is Z with a ball removed. Since Y0(K)= Z#(S1 ×
S2), we can add a 3–handle to V to get a cobordism W : Y → Z.

LEMMA 3·3. The restriction of f∗ to π1(Ž) is injective.
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Proof. Consider the following commutative diagram, where all maps except p are
inclusions:

Then f = p ◦ ι0.
Since the 2–handle in V is added along the null-homotopic knot K, the inclusion

ιY : Y → V induces an isomorphism on π1. Since p ◦ ιY = idY , p∗ is an isomorphism.
Since W is obtained from V by adding a 3–handle, the inclusion V ⊂W induces an

isomorphism on π1. We have the commutative diagram

The manifold W (after being turned up-side-down) can be obtained from Z × I by adding
a 1–handle and a 2–handle, and the 2–handle cobordism is exactly V being turned up-side-
down. By [4, Proposition 2·1], (ιZ)∗ is injective, so (ιŽ)∗ is also injective.

Now consider the commutative diagram

The restriction of f∗ to π1(Ž) is just p∗ ◦ (ιŽ)∗, which is injective since (ιŽ)∗ is injective and
p∗ is an isomorphism.

COROLLARY 3·4. The induced map f∗ : π1(Y0(K))→ π1(Y) is surface-group injective.

Proof. This follows from Lemmas 2·1 and 3·3.
Proof of Proposition 3·1. We will use the notations in Section 2. Since f∗ is surface-group

injective, we can apply Proposition 2·3 to get a degree-one map g : X = Y0(K)→ Y so that
g∗ = f∗ and g−1(Si)= Ei is a separating sphere whenever 1� i� n.
Since X has an S1 × S2 summand, by the uniqueness part of the Kneser–Milnor theorem,

one component of X \ (∪n
i=1 Ei) has an S1 × S2 summand.

If the S1 × S2 summand is in g−1(Y̌n+1), then g∗(S1 × {point}) is null-homotopic. It
follows that

g∗(π1(X)= g∗(π1(Z#(S
1 × S2)))= g∗(π1(Z)).

Since deg g= 1, g∗ is surjective. So g∗|π1(Z) is surjective. Our result follows from Lemma
3·3 since g∗ = f∗.
If X̌i = g−1(Y̌i) has an S1 × S2 summand for some i satisfying 1� i� n, without loss of

generality, we may assume i= 1. The map g|X̌1 extends to a map g1 : X1 → Y1. Suppose

that X1 = Z1#(S1 × S2), let P⊂ X1 be {point} × S2. Then X1 \ ν◦(P) is homeomorphic to Z1
with two open balls removed. Since π2(Y1)= 0, (g1)|P is null-homotopic in Y1. We can then
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extend g1|X1\ν◦(P) to a map h1 : Z1 → Y1. The new map h1 is again a degree-one map, so
(h1)∗ is surjective.
Using Lemma 3·3, we see that g∗ is injective on π1(X0#Z1). (Recall that X0 is obtained

from X by replacing X̌1 with a ball.) In particular, (h1)∗ is injective, so

π1(Z1)∼= π1(Y1).

We also get that g∗ is injective on π1(X0). Since g|X̌0 : X̌0 → Y̌0 is a degree-one proper
map, (g|X̌0 )∗ is surjective. So

π1(X0)∼= π1(Y0).

Since Z ∼= X0#Z1, Y = Y0#Y1, we have

π1(Z)∼= π1(X0) ∗ π1(Z1)∼= π1(Y0) ∗ π1(Y1)∼= π1(Y).

4. Proof of the main theorem

In this section, we will prove Theorem 1·1 and Corollary 1·2.
Proof of Theorem 1·1. when b1(Y)> 0 Without loss of generality, we may assume M =

Y \ ν◦(K) is irreducible. Since b1(Y)> 0, there exists a closed, oriented, connected surface
S in the interior of M, so that S is taut in M. Notice that for the ∞ slope on K, the core of
the surgery solid torus, which is K, is null-homotopic. Using [11, theorem A.21], which is a
stronger version of the main result in [5], we conclude that each 2–sphere in Y0(K) bounds
a rational homology ball. Hence Y0(K) does not have an S1 × S2 summand.

PROPOSITION 4·1. Let Y1, Y2 be two closed, oriented, connected 3–manifolds. If
π1(Y1)∼= π2(Y2), then

rank̂HF(Y1)= rank̂HF(Y2).

Proof. This is a well-known consequence of the Geometrisation Theorem. As in [2,
theorem 2·1·3], if π1(Y1)∼= π2(Y2), then there is a one-to-one correspondence between the
summands of Y1 and the summands of Y2, such that any pair of summands in the correspon-
dence consists of either homeomorphic manifolds, (the homemorphism does not necessarily
preserve the orientation), or lens spaces with the sameH1. Our result then follows from basic
properties of Heegaard Floer homology [15, 16].

Proof of Theorem 1·1. when b1(Y)= 0 Without loss of generality, we may assume Y \K
is irreducible. Assume that Y0(K)= Z#(S1 × S2). By Proposition 3·1, π1(Y)∼= π1(Z). Using
Proposition 4·1, we get rank̂HF(Y)= rank̂HF(Z). Our conclusion follows from [9, theorem
1·1].
Proof of Corollary 1·2. The first statement follows from Theorem 1·1. We only need

to prove the second statement. In this case, Y0(K) is a torus bundle over S1. By Lemma
3·2, there exists a degree-one map f : Y0(K)→ Y . Then f∗ is surjective. We claim that Y is
S1 × S2,RP3#RP3 or a spherical manifold. Then our conclusion follows from [1].
If Y is reducible, then either Y = S1 × S2 or Y is a nontrivial connected sum. If Y = S1 ×

S2, we are done. Now we assume Y is a nontrivial connected sum, so π1(Y)∼= A ∗ B with
A, B nontrivial. Let T be a fiber of Y0(K), then f∗(π1(T)) is an abelian normal subgroup of
π1(Y)= f∗(π1(Y0(K))). By the Kurosh Subgroup Theorem [8, theorem 8·3], f∗(π1(T)) is also
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a free product of free groups and conjugates of subgroups of A, B. Since f∗(π1(T)) is abelian,
it must be either a subgroup of Z or the conjugate of a subgroup of A or B. Since f∗(π1(T))
is a normal subgroup of π1(Y)∼= A ∗ B, the latter case cannot happen.
Now f∗(π1(T)) is a subgroup of Z. Since f∗ is surjective, π1(Y)/f∗(π1(T)) is a cyclic group.

If f∗(π1(T))= {1}, then π1(Y) is cyclic, a contradiction to π1(Y)∼= A ∗ B. So f∗(π1(T))∼=Z.
If π1(Y)/f∗(π1(T))∼=Z, then π1(Y) contains Z2 as a finite index subgroup, which is not

possible since Z2 is not the fundamental group of any closed 3–manifold. If π1(Y)/f∗(π1(T))
is finite, then π1(Y) contains Z as a finite index subgroup. It follows that Y is finitely covered
by S1 × S2, thus it must be S1 × S2 or RP3#RP3.
Now we consider the case Y is irreducible. If Y is a spherical manifold, we are done. If Y

is irreducible and not a spherical manifold, then f∗ is injective by [18, theorem 4]. So f∗ is
an isomorphism, a contradiction to the fact that b1(Y0(K))> b1(Y).
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