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Network Inference From Local
Measurements: Application
to Coordination of Groups
of Mobile Three-Dimensional
Printers
In recent years, three-dimensional (3D) construction printing has emerged as a viable
alternative to conventional construction methods. Particularly promising for large scale
construction are collective printing systems consisting of multiple mobile 3D printers.
However, the design of these systems typically relies on the assumption of continuous
communication between the printers, which is unrealistic in dynamically changing con-
struction environments. As a first step toward decentralized collective 3D printing, we
explore an active sensing framework allowing individual agents to reconstruct the shape
of the structure, toward assessing other agents’ progress in the absence of direct commu-
nication. In this vein, the shape of the structure is discretized as a 2D lattice embodying
its topology, such that the problem is equivalent to the inference of a network. We lever-
age environmental modifications introduced by each agent through the printing of new
layers to track the structure evolution. We demonstrate the validity of a sequential
approach based on system identification through numerical simulations. Our work paves
the way to decentralized collective 3D construction printing, as well as other applications
in collective behavior that rely on the physical medium to transfer information among
agents. [DOI: 10.1115/1.4056028]

1 Introduction

Conventional construction methods are often associated with
physical and economical inefficiencies [1–3], thereby prompting
interests in alternative construction paradigms. One of the most
promising alternatives, three-dimensional construction printing
(3DCP), leverages additive manufacturing technology to assemble
a structure. Traditionally, 3DCP relies on layer-by-layer printing,
using gantry- or robotic arm-based systems [4–6]. In the first case,
the print nozzle is precisely localized and controlled in a 3D Car-
tesian space defined with respect to the gantry. In the second case,
the material is extruded from a print nozzle attached to the end-
effector of a stationary robotic arm. Despite their accuracy, these
methods restrict the size of objects that can be printed to the size
of the printer [7,8]. Numerous efforts have sought to overcome
this limitation in scalability and achieve large-scale 3DCP. For
example, in Ref. [9], a mobile 3D printing mechanism—
consisting of a robotic arm with a print nozzle mounted on a
mobile platform—was proposed in order to expand the printing
space and print objects of sizes larger than that of the printer.

The limitation in scalability motivates the use of multi-agent
printing systems based on multiple mobile 3D printers. To the
best of our knowledge, multi-agent printing systems have only
been explored in Refs. [10–12]. Therein, authors proposed a
multi-agent 3D printing system capable of printing a large, single-
piece structure. The printing tasks were allocated to each printer
by means of a control system relying on a full connectivity
between the agents. However, whether in urban or remote settings
(such as in space exploration), construction inevitably suffers
from uncertainties and disturbances. The environment is

constantly evolving as more layers are printed: continuous com-
munication among agents is difficult, if not impossible, to guaran-
tee. As such, decentralization of the collective behavior of
printing agents is a necessity to build robust, versatile multi-agent
3D printing systems.

In the decentralized collective 3DCP paradigm, several autono-
mous printers are tasked with printing together a large structure,
whose layout is initially available. Without continuous communica-
tion with other printers, the printers cannot apprehend the progress
of the process throughout the spatial extent of the structure. Hence,
the printers must perform some form of sensing that allows them to
reconstruct the actual printed shape of the structure, such that they
can infer the progress of the other agents and act accordingly.

Here, we propose an active sensing framework that relies on
scalar measurements from on-board sensors to infer the shape of
the structure during printing. More specifically, printers shall use
the physical medium they are creating to actively sense the addi-
tion of layers by other printers and therefore track the progress of
the task. While several quantities could be measured by the
printer, for simplicity, we focus on temperature, which is a scalar
variable whose time evolution throughout the structure is gov-
erned by the classical Fourier equations [13]. The latter, once dis-
cretized, are equivalent to consensus dynamics for first-order
integrators [14].

We focus on 2D geometries, which are representative of walls
or other plate-like structures that could be printed by teams of
mobile printers, similar to previous efforts in additive manufactur-
ing [15–17]. In this vein, we approximate the shape of the struc-
ture through a 2D lattice, over which heat propagates. Ultimately,
the problem of identifying the shape of the structure becomes that
of reconstructing the topology of the lattice, a fundamental prob-
lem in network theory. Several methods for topology reconstruc-
tion have been proposed in the literature, for both deterministic
and stochastic networked systems, see, for example, Refs. [18–22]
and Refs. [23–28], respectively. A related problem, borrowing
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several methodological tools from these studies, is the inference
of the size of a system, which is a first step before the complete
topology can be determined [29–33].

To this end, we assume that the structure behaves as a linear
time-invariant (LTI) system [34] during the addition of each layer
by any of the printers. This hypothesis is valid for slow printing
speeds, such that measurements of temperature are taken in a
period of time short enough for new layers not to significantly
affect the shape of the structure. In this way, the shape of the sys-
tem is embedded within the time-invariant state-matrix that
describes the heat propagation over the 2D lattice. Thus, by recon-
structing the state-matrix of the system, we can also infer its
topology. The problem then becomes one of identifying the state-
matrix of the LTI system in order to reconstruct the shape of the
structure.

We utilize the so-called subspace identification method to
retrieve the state-matrix and other matrices of the system up to a
similarity transformation, from input and output time-series [35];
the successful application of equivalent techniques to mechanical
systems is documented in Refs. [33] and [36]. The identified,
transformed state-matrix does not directly give access to the
topology of the system: we need to reconstruct the original system
matrices. Should one possess a priori the output-matrix, they
could obtain the similarity transformation and from that the origi-
nal system matrices [22]. If all the system matrices are unknown,
the problem of reconstructing the original system matrices can be
formulated as an inverse eigenvalue problem [37], where one
searches for the specific topology that allows for matching the
eigenvalues of the identified state-matrix.

The alternating projections algorithm provides a potential
approach to solve this problem [38], but it is plagued by the need
of constructing a database of graph matrices, whose number grows
rapidly with the order of the system. To overcome this issue, we
formulate the inference problem as an inverse eigenvalue problem
within a smaller search space of topologies that are proximal to a
nominal topology defined by previous instances of shape recon-
struction or by the printing plan, which is known by each agent.
This framework is valid when the differences between the actual
and nominal topologies are small (that is, the frequency at which

printers perform the shape reconstruction is sufficiently high). A
major hypothesis in the solution of the inverse eigenvalue problem
is that the specific topology we are reconstructing is univocally
determined by its spectrum (DS-graph), that is, it is the only topol-
ogy (up to a permutation) in the minimization space that generates
a state-matrix with the same eigenvalues of the identified state-
matrix [39].

We present a set of necessary identifiability conditions that
need to be satisfied in order to retrieve the correct shape of the
structure. Through numerical simulations, we confirm that, pro-
vided that the hypotheses are verified, our approach can recon-
struct the shape of the structure up to a permutation. Further, we
investigate the validity of the hypothesis that the topology is a
DS-graph, by counting the number of nonisomorphic cospectral
graphs in 2D lattice topologies with increasing number of blocks
[40]. These simulations are an original extension of the studies on
square polyominoes (plane figures formed by the union of square
blocks sharing edges) [41], addressing the issue of counting the
number of cospectral polyominoes.

The rest of this paper is organized as follows. We formulate the
mathematical problem in Sec. 2. Next, we present a review of the
subspace identification framework in Sec. 3. Section 4 introduces
our approach to infer the state-matrix of the system, and hence the
topology of the network. In Sec. 5, we investigate the identifiability
of the system, and we validate the performance of the reconstruc-
tion through simulations. We conclude in Sec. 6 with a summary
of the proposed framework and an outline for future work.

2 Problem Formulation

We consider an instance of decentralized collective 3DCP,
illustrated in Fig. 1, where mobile 3D printers collectively build a
2D structure, in the n–g plane. Each 3D printer generates heat in
the structure due to the printing process, propagating across the
printed structure [42]. The 3D printers cannot communicate with
each other, so that they seek to reconstruct the shape of the struc-
ture from measures of the temperature through on-board sensors.
This operation is repeated by each printer at regular time intervals,
such that shapes from previous reconstructions are available. In

Fig. 1 Illustration of our shape reconstruction framework. The input–output Hankel matrix is popu-
lated from input (ui) and output (yi) time-series. The time-series, comprising M time instants, are
divided into p segments. Here, Up and Yp denote the input and output Hankel matrices, respectively.
The order of the 2D lattice topology N and the transformed state-matrix AT are obtained from the RQ-
factorization of the input–output Hankel matrix. The shape of the topology is then reconstructed by
solving an inverse eigenvalue problem over a space of perturbed topologies about a nominal topol-
ogy (dashed line, red online), which is known from a previous instance of shape reconstruction or
from the printing plan.
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between reconstructions, the shape of the structure changes as
printers progress with their printing jobs.

We describe the 2D heat conduction on the structure using the
2D heat equation

@T

@s
¼ �lr2T þ 1

qc
_qv (1)

where s denotes the time, Tðn; g; sÞ is the temperature distribution,
l is the thermal diffusivity of the printing material, q is the mate-
rial density, c is the material specific heat capacity, _qvðn; g; sÞ is
the known volumetric heat rate from the heat sources (printers),
and r2ð�Þ is the Laplacian operator. As a first approximation, we
assume that the structure has adiabatic boundaries.

The heat equation in (1) can be discretized in space and time
using the finite difference method [43]. For simplicity, we assume
that the spatial discretization step is equal in both the n- and g-
directions, Ds ¼ Dn ¼ Dg. We then consider a temporal discretiza-
tion of the equation with the backward Euler method, with
uniform time-step Ds. We hypothesize that the heat that serves as
input is known, while the temperature is measured at a subset of
the points thanks to on-board sensors.

We assume that the printing speed is slow compared to the time
scale of heat propagation, such that new layers do not significantly
affect the shape of the structure while the 3D printer takes the
measurements. Whether or not a printing speed is slow depends
on the thermal diffusivity of the printed material. Since we
only consider 2D problems, we are interested in the maximum
areal printing speed, defined as the areal speed at which the
printer is spanning the 2D environment. The maximum poten-
tial areal printing speed is estimated from the maximum flow-
rate based on the depth of the structure; in our estimates, we
utilize a depth on the order of one-tenth of a meter, which is
typical of wall-like structures in civil construction. The printing
speed can be safely regarded as slow if the maximum potential
areal printing speed is higher than the thermal diffusivity of the
printed material. We assume that measurements are taken at a
sufficiently high rate, which is a reasonable assumption for the
print of civil structures that span an area on the order of tens of
square meters.

Based on these arguments, the assumption of slow printing
speed should be considered with caution for concrete structures,
since thermal diffusivity (10�6 � 10�5 m2=s) could be on the
same order or lower than the maximum possible areal printing
speed (10�5 � 10�4 m2=s) [44,45]. On the other hand, the hypoth-
esis is safely verified for metallic structures, whereby the bound
provided by thermal diffusivity (10�3 � 10�2 m2=s) is much
higher than the maximum possible areal printing speed
(10�5 m2=s) [46]. For this maximum areal rate, the time to print a
square meter of structure is on the order of hours, such that it is
plausible that measurements are taken at a sufficiently higher rate.
When the printed structure is not solid, the thermal diffusivity of
the printed material should be corrected to account for the reduced
heat propagation, introducing a smaller effective thermal diffusiv-
ity [47,48], which could hinder the validity of our assumption.
Nevertheless, the real applicability of our hypothesis is likely to
extend to a broader range of scenarios, since the maximum poten-
tial areal printing speed is an upper bound of the actual printing
speed, that printers attain only when printing at their maximum
flowrate.

Under the hypothesis of slow printing speeds, we treat the sys-
tem as an LTI system. The shape of the structure is described by a
network G ¼ fV; Eg of N nodes V ¼ fv1;…; vNg; E being the
edge set. We collate the temperature of each node in the set at
time-step t in a state vector xðtÞ 2 RN , the m inputs from the heat
generated by the 3D printers into an input vector uðtÞ 2 Rm, and
the temperature measurements on l nodes from the on-board sen-
sors into an output vector yðtÞ 2 Rl.

The time evolution of the state and output vectors is described
by a discrete LTI system [34]

xðtþ 1Þ ¼ AxðtÞ þ BuðtÞ (2a)

yðtÞ ¼ CxðtÞ (2b)

where A 2 RN�N is the state-matrix, B 2 RN�m is the input-
matrix, and C 2 Rl�N is the output-matrix.

Our approach aims at inferring the topology of the network
from the input and output time-series fuð0Þ;…; uðM � 1Þg and
fyð0Þ;…; yðM � 1Þg, respectively, where M is the length of the
time-series that we measure. The inference of the topology of the
network requires first to estimate the number of nodes in the
topology and second to identify how these nodes are connected.
To this end, we utilize basic knowledge about the system dynam-
ics to reconstruct the topology by means of system identification
techniques. The topology is assumed to be embedded in the
unknown state-matrix A that describes the dynamic evolution
over the network.

From the discretization of Eq. (1), we can express the state-
matrix A that governs the dynamics of the temperature in the
structure as

A ¼ IN � fL (3)

where IN is the identity matrix of size N, L 2 ZN�N is the combi-
natorial Laplacian matrix (embedding the 2D lattice topology),
and f ¼ lDt=D

2
s is a known gain that depends on material and dis-

cretization parameters. An alternative form to define the 2D lattice
topology is through the adjacency matrix A 2 BN�N , where
BN�N denotes the space of Boolean matrices of size N�N, whose
elements are either 0 or 1 [49]. The adjacency matrix is such that
A ij ¼ 1 if there is an edge from the i-th node to the j-th node, and
A ij ¼ 0 otherwise. For undirected graphs, A is a symmetric
matrix. We can express the Laplacian matrix in terms of the adja-
cency matrix as L ¼ D�A, where D 2 NN�N is the degree
matrix. The degree matrix is a diagonal matrix such that Dii ¼ di
is the number of nodes connected to the i-th node. The degree
matrix can be obtained from the adjacency matrix through
Dii ¼

PN
j¼1 A ij. As such, we can rewrite the state-matrix in

Eq. (3) as a function of the adjacency matrix only

AðAÞ ¼ IN � f½DðAÞ �A� (4)

We formulate the topology reconstruction problem as follows:
find the adjacency matrix A of the 2D lattice topology generating
a state-matrix A from Eq. (4) such that the system in Eq. (2) pro-
vides the measured output fyð0Þ;…; yðM � 1Þg for an input
fuð0Þ;…;uðM � 1Þg. As a first step to solve this problem, we uti-
lize the input–output time-series to retrieve the state-matrix AT up
to a similarity transformation (AT ¼ T�1AT where T 2 RN�N is
a nonsingular transformation matrix) through the subspace identi-
fication method [35].

3 Review of Subspace Identification

We rely on the subspace identification method to retrieve the
system matrices up to a similarity transformation [35]. While suf-
ficient to capture the dynamics of the system, the transformed
state-matrix does not readily provide the topology of the network,
for which we need the original state-matrix; we will address this
issue in Sec. 4.

The subspace identification method relies on the geometrical
properties of the LTI system expressed in Eq. (2) to obtain the
matrices of the LTI system up to a similarity transformation. To
correctly identify the system matrices, this approach requires the
system to satisfy a set of identifiability conditions. First, the sys-
tem must be minimal, that is, it must be both observable and con-
trollable [34]. Observability refers to the ability of reconstructing
the state of a system from measurements of its output. Controll-
ability refers to the ability of the input to drive the state of the sys-
tem to the zero state in a finite time interval. Second, the input
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signal uðtÞ in Eq. (2a) must be persistently exciting [50]: the spec-
trum of the input must contain a sufficiently large number of
harmonics.

In order to determine whether a system is observable and con-
trollable, we define the observality and controllability matrices
[34]

O ¼ ½CT;…; ðAN�1ÞTCT�T (5)

and

C ¼ ½B;AB;…;AN�1B� (6)

The LTI in Eq. (2) is observable if and only if rankðOÞ ¼ N, and
is controllable if and only if rankðCÞ ¼ N [34].

After stating necessary conditions to identify the system, we
focus on the implementation in Ref. [22], which offers a strong
basis for the proposed work. We start by expressing the system in
Eq. (2a) in terms of the initial state xð0Þ as

xðtÞ ¼ Atxð0Þ þ
Xt�1

j¼1

At�j�1BuðjÞ (7)

From Eq. (2), we can write the relationship between the input
batch fuðtÞgs�1

t¼0 and the output batch fyðtÞgs�1
t¼0 as

yð0Þ
�

yðs� 1Þ

2
664

3
775 ¼ Osxð0Þ þ T s

uð0Þ
�

uðs� 1Þ

2
664

3
775 (8)

where

T s ¼

0 0 0 � � � 0

CB 0 0 � � � 0

CAB CB 0 � � � 0

� � �

CAs�2B CAs�3B � � � CB 0

2
6666666664

3
7777777775

(9)

Os ¼ ½CT;…; ðAs�1ÞTCT�T (10)

and s is the size of each batch, chosen to be sufficiently large
(s>N) [22]. Specifically, we consider p overlapping partitions of
our times-series, each of size s. Here, T s 2 Rls�ms and
Os 2 Rls�N . From Ref. [22], we can express the LTI system as

Yp ¼ OsXp þ T sUp (11)

where we have Xp ¼ ½xð0Þ; xð1Þ;…; xðp� 1Þ� 2 RN�p; Yp ¼ ½y0;
s; y1;s;…; yp�1;s� 2 Rls�p; yq;s ¼ ½yðqÞT; y ðqþ 1ÞT;…;

yðqþ s� 1ÞT�T 2 Rls; Up ¼ ½u0;s; u1;s;…;up�1;s� 2 Rms�p, and

uq;s ¼ ½uðqÞT;uðqþ 1ÞT;…; uðqþ s� 1ÞT�T 2 Rms. The matrices
Up and Yp are called the input and output Hankel matrices,
respectively [35]. Note that the input signal is persistently exciting
if the following condition is satisfied [35]

rankðUpÞ ¼ ms (12)

This expression provides a practical condition to verify whether
the input signal is persistently exciting. Note that, since Up 2
Rms�p; p � ms is a necessary condition for the system to be per-
sistently excited; given that s>N, then also p>N.

In our framework, printers do not have access to the state
dynamics, but only to the input and output Hankel matrices, which

can be assembled from the measurements of input and output,
respectively. Toward reconstructing the state-matrix, we perform
an RQ factorization of the stacked input and output Hankel
matrices

Up

Yp

" #
¼

R11 0 0

R21 R22 0

" # Q1

Q2

Q3

2
664

3
775 (13)

The order of the state-matrix can be retrieved by performing the
singular value decomposition (SVD) of R22

R22 ¼ URRRV
T
R (14)

Specifically, the estimated order of the LTI system is [35]

N̂ ¼ rankðRRÞ (15)

Note that if s<N or p<ms, it is not possible to estimate N
correctly.

The expression of UR allows us to retrieve the expression of the
transformed state-matrix AT [35]. Specifically, we find

UR ¼ OsT ¼

CT

CTðT�1ATÞ
�

CTðT�1ATÞs�1

2
666664

3
777775 ¼

CT

CTAT

�

CTA
s�1
T

2
666664

3
777775 (16)

where we have defined the transformed system matrices AT ¼
T�1AT and CT ¼ CT for an unknown, invertible similarity trans-
formation T 2 RN�N . The transformed output-matrix can now be
expressed as

CT ¼ URð1 : l; 1 : N̂Þ (17)

where we use MATLAB
VR

’s notation to extract the first l rows and N̂
columns of the matrix UR. One could estimate the state-matrix

from the pseudo-inverse C
†

T of CT, by multiplying it by the second

block of l rows of UR, such that AT ¼ C
†

TCTURðlþ 1 : 2l; 1 : N̂Þ.
However, this procedure would lead to a rank-deficient AT, since

in general l < N̂ so that the rank of C
†

TCT is less than N̂ . Thus, we
obtain the transformed state-matrix in an alternative way. As a
consequence of the structure shown in Eq. (16), the following
shift-invariance property holds

URðlþ 1 : sl; 1 : N̂Þ ¼ URð1 : ðs� 1Þl; 1 : N̂ÞAT (18)

We can compute the transformed state-matrix as follows

AT ¼ ½URð1 : ðs� 1Þl; 1 : N̂Þ�
†

URðlþ 1 : sl; 1 : N̂Þ (19)

In this case, the condition s>N guarantees that URð1 :
ðs� 1Þl; 1 : N̂Þ has rank equal to N̂ , such that
½URð1 : ðs� 1Þl; 1 : N̂Þ�

†

URð1 : ðs� 1Þl; 1 : N̂Þ ¼ IN̂ [35]. As a
result, AT is not rank-deficient through our estimation.

However, the transformed state-matrix AT does not provide
information regarding the structural properties of the network
described in the system. In Sec. 4, we propose a framework to
reconstruct the actual state-matrix and therefore the network
topology by solving an inverse eigenvalue problem.

4 Topology Reconstruction

Here, we illustrate our original approach to reconstruct the net-
work topology for the LTI system in Eqs. (2a) and (2b) from the
transformed state-matrix AT obtained through the subspace

011006-4 / Vol. 145, JANUARY 2023 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/dynam

icsystem
s/article-pdf/145/1/011006/6942789/ds_145_01_011006.pdf by N

YU
 Polytechnic U

niversity School of Engineering user on 29 August 2023



identification method, by first inferring the original state-matrix
A. To this end, we leverage the following relation that holds for
similar matrices [34]

eigðATÞ ¼ eigðAÞ ¼ K (20)

where K 2 RN̂�N̂ is a diagonal matrix containing the sorted
eigenvalues of the matrices AT and A.

By virtue of Eq. (20), the topology reconstruction problem
reduces to an inverse eigenvalue problem [38], in which we seek
to find an adjacency matrix Â such that the corresponding state-
matrix ÂðÂ Þ from Eq. (4) has the same eigenvalues of the trans-
formed matrix obtained from the subspace identification method.
This problem is equivalent to the following minimization

Â ¼ argmin
X2S�BN̂�N̂

jjK� eigðIN̂ � fðDðXÞ �XÞÞjj22 (21)

where N̂ is the estimated order of the network obtained from
Eq. (15), S is the minimization space that contains the family of
all possible graphs of size N̂ , and K ¼ eigðATÞ is computed from
Eq. (19). To accurately infer N̂ and AT, the LTI system must be
identifiable: (1) the system must be minimal (that is, observability
Eq. (5) and controllability matrices Eq. (6) are full rank [34]), and
(2) the input-signal must be persistently exciting [51] as in
Eq. (12).

We investigate the minimality of the system, and hence the
reconstructability of the topology of the structure, under condi-
tions of increasing complexity on the system input- and output-
matrices B and C: (1) fully actuated and measured systems
(B ¼ C ¼ IN); (2) partially actuated and fully measured systems
(B 6¼ IN and C ¼ IN); and (3) partially actuated and measured sys-
tems (B 6¼ IN and C 6¼ IN).

4.1 Case 1: Fully Actuated and Measured Systems. In this
case, all the nodes in the network are actuated and measured
(B ¼ C ¼ IN). The system is minimal as it is observable
(rankðOÞ ¼ N) and controllable (rankðCÞ ¼ N). The identifiability
of the system depends only on the excitation condition, whereby
the input signal must satisfy the persistent excitation condition in
Eq. (12).

We leverage knowledge of the output-matrix to obtain the rela-
tion between the original system and the transformed system,
obtained from subspace identification. Specifically, since C ¼ IN ,
we first assemble the Hankel matrix from Eq. (11), perform the
RQ factorization in Eq. (13), use the singular value decomposition
in Eq. (14), and finally obtain the similarity transformation matrix
from Eq. (16), as T ¼ CT. Thus, the estimated state-matrix is
expressed as

Â ¼ CTATC
�1
T (22)

The topology is finally reconstructed by plugging Eq. (22) in Eq.
(4) and inverting this relation to obtain the adjacency matrix. Due
to numerical approximations, Â may contain elements that are not
exact integers: in practice we round each element to the closest
integer.

The chosen assumptions on the input- and output-matrices are
restrictive for collective 3DCP applications. For large scale struc-
tures, the printers cannot actuate and measure all the nodes along
the spatial extent of the structure. Hence, it is necessary to loosen
such restriction to ensure practicality of our framework for shape
reconstruction.

4.2 Case 2: Partially Actuated and Fully Measured Sys-
tems. Similar to the previous case, all the nodes in the network
are measured (C ¼ IN), so that the system satisfies the observabil-
ity condition. We loosen the restriction on the input-matrix and
assume only a subset of the nodes are actuated. Hence, the

identifiability of the system is not guaranteed and depends on the
choice of actuated nodes such that the system is controllable. In
case of successful selection of the nodes to ensure minimality, we
leverage knowledge of the output-matrix and reconstruct the
topology using Eq. (22), similar to the previous case.

Despite loosening the restriction on the system inputs, we still
rely on the unrealistic assumption on the output-matrix (C ¼ IN).
In reality, each printer has access to only a subset of the nodes,
located in its local environment. In fact, we cannot assume any
prior knowledge of the input- and output-matrices as the topology
and size of the network are initially unknown. As such, it is
important to investigate the inference and reconstruction of the
shape of the structure for the general case of partially actuated and
measured system (B 6¼ IN and C 6¼ IN).

4.3 Case 3: Partially Actuated and Measured Systems.
Here, we actuate and measure only a subset of the nodes. Hence,
the identifiability of the system depends on the choice of actuated
and measured nodes such that the system is controllable and
observable. Further, in the previous two cases, we use knowledge
about the output-matrix to obtain the estimated state-matrix. How-
ever, in this case the output-matrix is unknown and it is not possi-
ble to compute the transformation matrix T in order to obtain the
estimated state-matrix Â. As such, we make use of the relation in
Eq. (20) that holds for similar matrices and solve an inverse eigen-
value problem to reconstruct the network topology.

We start by expressing the optimization problem in Eq. (21) as

Â ¼ argmin
X2S�BN̂�N̂

jjK� eigðIN̂ � fðDðXÞ �XÞÞjj22 (23)

Several challenges arise when solving the problem in Eq. (23).
First, the problem is constrained to the integer domain since all
entries of the adjacency matrix must be binary. Second, even in
solving the problem as a mixed-integer nonlinear programing
problem, the objective function is nonconvex due to the existence
of cospectral nonisomorphic graphs, which share the same spec-
trum but do not have the same shape. Consequently, the optimiza-
tion problem must be constrained beyond the spectral properties
of the network in order for the estimation to converge to the
desired topology.

We constrain the minimization space S to a family of perturbed
topologies Sd about a nominal topology ~A 2 B

~N� ~N , known from
previous instances of shape reconstruction or the printing plan,
where ~N is the number of nodes in the nominal topology. Follow-
ing the idea that the nominal topology corresponds to the shape
from the previous reconstruction, we hypothesize that the network
topology has only a small additive deviation from the nominal
topology. As such, only a limited number of nodes d ~N ¼
N̂ � ~N � 0 are affected by the uncertainty in the printing, while
the remaining ~N were already present in the previous recon-
structed shape, or have been printed according to the printing
plan. The adjacency matrix of the perturbed topology can then be
partitioned as

Â ¼
~A Â 12

Â
T

12 Â 22

2
4

3
5 (24)

where Â 22 2 BdN̂�dN̂ encodes the connections between the nodes
of the unknown additive perturbation, and Â 12 2 B

~N�dN̂ consid-
ers the connections between the two sets of nodes. The minimiza-
tion only considers variations in matrices Â 12 and Â 22, whose
number of elements is much smaller than that of Â . Thus, we
reformulate the integer optimization problem presented in
Eq. (23) over a smaller minimization space.

It is important to note that the minimization searches for a 2D
lattice topology that matches the eigenvalue set K obtained from
the identification. To guarantee the convergence to the exact
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topology of the system, the topology must be distinguishable by
its spectrum across the minimization space [39]. A graph is deter-
mined by its spectrum (DS-graph) with respect to a generalized
adjacency matrix (the actual adjacency matrix or the combinato-
rial Laplacian) if it does not have a nonisomorphic cospectral
counterpart with respect to that matrix [39]. While 2D lattice top-
ologies are not DS-graphs in general, we hypothesize that the
topology we need to reconstruct is a DS-graph over the reduced
minimization space. As such, we expect the estimated topology to
match the topology of the network up to a permutation P 2 BN̂�N̂

ðA ¼ PÂPTÞ.

5 Simulations

In this section, we conduct a series of numerical simulations to
elucidate the feasibility of our approach for shape reconstruction,
as well as the plausibility of our hypotheses. First, we investigate
the conditions under which the system is minimal. Second, we
examine the plausibility of our hypothesis that the topology we
seek to reconstruct is a DS-graph over the space of perturbed top-
ologies. To this end, we seek to enumerate the number of 2D lat-
tice topologies (polyominoes) for an increasing number of unit
blocks, showing that only a small fractions of these topologies are
not DS-graphs. Finally, we show over a few different examples
that our approach can accurately reconstruct complex printed
shapes.

5.1 System Minimality. We start by investigating the influ-
ence of the number of actuated and sensed nodes, in terms of frac-
tion of the total number of nodes, on the estimated size of network
N̂ . Specifically, we generated rectangular topologies embodied in
2D lattice representation of different orders: N¼ 30, 50, and 80.
During each iteration, we also randomize uniformly the number of
nodes on each side of the rectangular topologies, while maintain-
ing constant the overall number of nodes. We first considered a
fully observable system, C ¼ I, with a persistently exciting input
signal generated using the randi function on MATLAB. Further,
we selected a fraction of the nodes m/N as actuated nodes. The
nodes were chosen uniformly at random and the simulations
were performed for different selection of m/N. For each combi-
nation of N and m/N, simulations were repeated for 50 trials.
We found that m=N � 0:2 guarantees that the system is con-
trollable (Fig. 2).

Similarly, in order to investigate the minimum number of meas-
ured nodes to identify the system, we considered a fully controlla-
ble system (B ¼ I) with partial observation. We repeated the
simulations for different choices of measured nodes l/N. Similar
to the case of the partially controllable system, Fig. 3 shows that
for l=N � 0:3 the system is always observable.

5.2 Plausibility of DS-Graph Hypothesis. In Sec. 4, we
hypothesized that the 2D lattice topology we seek to reconstruct is
a DS-graph over the space of perturbed topologies. In other words,
by matching the eigenvalues of the state-matrix, we could
uniquely determine the network topology among the entire set of
perturbed topologies, up to a permutation. While for special
graphs some results on cospectral graphs are available [39], there
is no general test for finding cospectral graphs from properties of
the graph matrices or topology.

To support the validity of our hypothesis, we provide evidence
through combinatorial simulations. Specifically, we conducted
simulations to count the cardinality of the set of all possible topol-
ogies that can be formed for a given number of square blocks NB.
We then grouped isomorphic topologies in subsets such that any
two graphs selected from independent subsets were nonisomor-
phic. Finally, we compared the spectrum of all subsets to check
for the existence of nonisomorphic cospectral graphs.

In order to generate the set of nonisomorphic graphs, one can
rely on a brute force approach, searching for all possible graphs

and grouping each graph with its isomorphic counterparts. How-
ever, this approach is computationally very demanding. We relied
on an exhaustive approach leveraging the symmetries in 2D lattice
topologies to generate all their isomorphic counterparts. This pro-
cedure has been proposed in Ref. [52] for counting hexagonal and
triangular polyominoes [41]. The symmetries of 2D lattice topolo-
gies include four rotations (0, 90, 180, and 270 deg), and for each
of these rotations a reflection about the horizontal and vertical
axes passing through a central block (Fig. 4).

Consider a set of nonisomorphic (nonidentical) graphs consist-
ing of NB � 1 blocks. For each graph, we add a block to an adja-
cent grid and performed these transformations about a reference
block of the graph (denoted by a red dot in Fig. 4, in the second

Fig. 2 Effect of the number of actuated nodes on the controll-
ability of the system. The horizontal axis corresponds to the
number of actuated nodes as a fraction of the total number of
nodes, the vertical axis corresponds to the average estimated
size of the system across all trials as a fraction of the total num-
ber of nodes, and the error bar denotes the standard deviation
across all trials.

Fig. 3 Effect of the number of measured nodes on the observ-
ability of the system. The horizontal axis corresponds to the
number of measured nodes as a fraction of the total number of
nodes, the vertical axis corresponds to the average estimated
size of the system across all trials as a fraction of the total num-
ber of nodes, and the error bar denotes the standard deviation
across all trials.
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row from the bottom and middle column) to obtain its isomor-
phisms, keeping record of the explored adjacent grids in these
transformations. In each step, we examine a new unexplored adja-
cent grid until all the adjacent grids are explored. As such, we
divide the set of all possible graphs into subsets, each containing a
list of isomorphic graphs. We repeat these steps for all possible
graph configurations, while discarding graphs already generated
from the transformations. By doing so, we substantially decrease
the computational time in generating the subsets.

We generated the families of 2D lattice topologies for NB from
three to ten; we summarize the results in Table 1 where NI-graphs
denotes the number of nonisomorphic graphs, CS-graphs (A) the
number of cospectral graphs with respect to the adjacency matrix,
and CS-graphs (L) the number of cospectral graphs with respect
to the Laplacian matrix. The counting results on the number of
nonisomorphic graphs are in agreement with those presented in
[41,53]. Up to ten blocks, we did not find any nonisomorphic

cospectral topology with respect to the adjacency or the Laplacian
matrix. We cannot exclude cospectral nonisomorphic graphs for
large values of NB. These results support the claim that only a
small fraction of 2D lattice topologies are cospectral nonisomor-
phic graphs, such that our hypothesis that the topology we want to
reconstruct is a DS-graph over the space of perturbed topologies
is viable.

5.3 Examples of Reconstruction. We demonstrate the feasi-
bility of our shape reconstruction framework through a series of
different examples. These examples include both symmetric and
asymmetric structures with nominal symmetric and asymmetric
topologies with a different number of layers affected by uncer-
tainty, associated with common types of printing inaccuracies. In
these simulations, we selected an appropriate rescaling of the vari-
ables such that l¼ 1. In addition, we hypothesized that the inputs
were applied and outputs were measured on the same subset of
nodes, covering 30% of the nominal size ~N and chosen uniformly
at random. The input time-series were chosen to be binary input
signals generated using idinput in MATLAB, validated to be per-
sistently exciting as per Eq. (12).

The minimization was performed with a brute-force algorithm.
First, we generated the entire set of perturbed topologies about the
known nominal topology, based on the difference between the
number of nodes in the nominal and actual topologies. Specifi-
cally, we started from the nominal topology and explored all the
ways of appending nodes until the required node count was
reached. Next, we evaluated the objective function in Eq. (20) for
each perturbed topology. We then selected the estimated topology
by choosing the perturbed topology that minimizes the cost func-
tion in Eq. (20). We demonstrate two examples of topologies con-
sisting of 52 and 58 nodes in Fig. 5. In both cases, we were
successful in exactly inferring the actual shape of the printed

Fig. 4 Illustration of the proposed algorithm to generate a set of nonidentical graphs. Con-
sidering an L-shaped graph consisting of four blocks as an example, we leveraged symme-
tries in 2D lattice topologies to generate nonidentical topologies. These symmetries can be
summarized by the following geometrical transformations: 0, 90, 180, and 270 deg rotation,
and a reflection about the horizontal and vertical axes passing through a reference block
(mirror lines denoted as lM-lM).

Table 1 Count for the number of nonisomorphic vertex graphs
(NI-graphs), cospectral graphs with respect to the adjacency
matrix (CS-graphs (A)), and cospectral graphs with respect to
the Laplacian matrix (CS-graphs (L))

NB NI-graphs CS-graphs (A) CS-graphs (L)

3 2 0 0
4 5 0 0
5 12 0 0
6 35 0 0
7 108 0 0
8 369 0 0
9 1285 0 0
10 4655 0 0
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structure starting from its nominal topology and available
measurements.

The examples we presented are representative of common inac-
curacies in layer-by-layer printing [54]. Figure 5(a) demonstrates
the case when the printed structure has distorted layers due to
induced deformations and residual stresses. This is common dur-
ing sequential deposition of layers during the printing process,
which introduces deformations that either exceed dimensional tol-
erances or physically prevent additional material from being
deposited [54]. On the other hand, Fig. 5(b) demonstrates defor-
mations due to insufficient substrate support where the deposited
layer is not able to serve as a solid foundation for successive
layers deposited above it [54].

While the proposed framework has a low computational cost in
terms of computational time, we acknowledge computational lim-
itations that arose in populating the Hankel matrix in Eq. (13)
imposed by the conditions on the length of segments s and number
of partitions p. As the structure grows larger with the deposition
of more layers (N increases), more inputs are required to ensure
the system is controllable (m increases, see Fig. 2) and longer
time-series are needed to retrieve the size of the system in
Eq. (14) (s increases, since s>N). Hence, the number of partitions
increases (p increases, since p � ms). The size of the Hankel mat-
rices exceeded the admissible memory allocation in MATLAB of 20
gigabytes for large topologies (N> 100).

6 Conclusions

In this work, we consider the problem of collective mobile 3D
construction printing, where a group of 3D printers collectively
prints a structure. We aim at taking a first step toward the decen-
tralization of these systems by proposing an active sensing frame-
work that leverages modification in the environment to
reconstruct the shape of the printed structure. By doing so, we
facilitate communication among the agents to allow individual
agents to track and assess the evolution of the printed structure
and eventually take corrective actions.

The shape of the printed structure is approximated by a 2D lat-
tice, which we seek to reconstruct. We rely on input and output
time-series of the heat propagation across the structure and previ-
ous shape reconstructions or knowledge of the printing plan to
infer the actual shape of the structure. By modeling heat propaga-
tion as a linear time-invariant system, we employ system identifi-
cation techniques to reconstruct the lattice topology. First, we
leverage the subspace identification method [55] to retrieve the
system matrices up to a similarity transformation, provided that

the system meets a series of identifiability conditions: the system
must be minimal and persistently excited. We then solve an
inverse eigenvalue problem to reconstruct the 2D lattice topology,
over a reduced minimization space that leverages the shape recon-
structed in the previous measurement instance or the a priori
knowledge of the printing plan by the agent to define a series of
potential perturbed topologies.

We investigate the reconstruction problem under the following
conditions imposed on the system input- and output-matrices B
and C: (1) fully actuated and measured systems (B ¼ C ¼ IN); (2)
partially actuated and fully measured systems (B 6¼ IN and
C ¼ IN); and (3) partially actuated and measured systems (B 6¼ IN
and C 6¼ IN). We further investigate the inference problem under
partial measurement and actuation. Specifically, we demonstrate
the minimality of the system by varying the number of driver and
observer nodes as a fraction of the total number of nodes. We
show that it is sufficient to actuate and measure 30% of the nodes
in the network to ensure a minimal representation condition, nec-
essary for successful identification.

In the proposed framework, we hypothesize that the 2D lattice
topology we seek to reconstruct is a DS-graph over the space of
perturbed topologies: it is sufficient to have knowledge of the
eigenvalues of the graph with respect to a graph matrix in order to
infer its eigenvectors. We provide evidence through combinatorial
simulations to support this hypothesis. For topologies consisting
of NB square blocks, we generate the set of all possible 2D lattice
topologies, leveraging their symmetries, similar to what was done
in Ref. [52]. We find that, up to NB ¼ 10, there are no nonisomor-
phic cospectral topologies with respect to the adjacency or the
Laplacian matrix. We further demonstrate the feasibility of our
shape reconstruction framework through simulated examples.

Although our framework accurately reconstructs the exact
topology of the system, it is not free of limitations that we plan to
address in future work. First, while the proposed methodology
improves on previous techniques in terms of scalability, it is still
computationally unfeasible for large networks. To address this
issue, one may consider including a time component to the print
plan known a priori. By predicting the trajectory of the printing
nozzle, the minimization space can be further reduced such that
the perturbation are dictated by the printing direction. Large net-
works could also cause the Hankel matrix in Eq. (13) to become
ill-conditioned, such that the subsequent RQ and SVD factoriza-
tions could be numerically unstable. In this case, algorithms for
computing the factorizations should be carefully selected to
ensure relevant results even for ill-conditioned matrices [56,57].
Second, the proposed framework assumes that the discrepancy

Fig. 5 Demonstration of the proposed reconstruction framework of 2D lattice topologies
where the nominal topology is denoted in a dashed border line (red online): (a) 52 nodes,
symmetric real and nominal topologies, with two perturbed layers and (b) 58 nodes, asym-
metric real and nominal topologies, with three perturbed layers
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between the nominal and actual topology is small. This assump-
tion may be restrictive if there are significant errors in the print-
ing. We plan to extend our framework by incorporating partial
connectivity between the 3D printers, based on physical proxim-
ity, allowing some of the agents to directly share information and
identify larger errors in the printing. Third, the hypothesis of slow
printing speed should be relaxed to apply our framework to any
printable material, for which the time-scale of conduction may be
similar to the one of printing. A potential approach to relax this
constraint is considering the topology as a time-varying network,
in which the time-scale of the addition of nodes is governed by
the printing speed. Fourth, environmental factors may cause issues
in the implementation of the current shape reconstruction algo-
rithm. Not only may the 3D printed structure be subject to other
forms of heat exchange, such as convection and irradiation, but
also measurements from sensors may be noisy. Addressing this
limitation requires the extension of our framework to stochastic
noisy systems, in line with previous efforts in the literature [22].
Last, while our investigation provides an insight on conditions
that guarantee the minimal system representation, one is often
restricted on the choice of actuation and sensing nodes. An inter-
esting approach to solve this problem could be designing the ini-
tial printing plan to ensure a minimal system representation.

Overall, our work demonstrates the possibility of actively uti-
lizing a physical medium to enable indirect transfer of information
between agents, a framework that could be extended beyond col-
lective 3DCP to design and understand collective systems. One
example is in modeling the interactions in fish schools utilizing
the physical medium to maintain a collective swimming formation
[58]. One can think of hydrodynamic interactions between the fish
as perturbations introduced in the environment that dictate the for-
mation maintained by the school [59], working in conjunction or
at odds with visual cues. Surprisingly, some species [60] can
school in the absence of vision, suggesting that active modifica-
tion of the environment may be of critical importance to the
school to maintain formation.
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