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1. Introduction

1.1. Singularity formation for the parabolic-elliptic Keller-Segel system

This paper is concerned with the parabolic-elliptic Keller-Segel system

{
∂tu = ∇ · (∇u− u∇Φu),
−∆Φu = u,

in Rd. (1.1)

Solutions may develop singularities in finite time. This is relevant in the perspective of 
understanding the qualitative behavior of solutions to (1.1), what we describe now. This 
is also interesting in regard of singularity formation for other equations, and we analyze 
our result in this broader context in the comments after Theorem 1.1.

System (1.1) arises in modeling biological chemotaxis processes and stellar dynamics. 
Here, u(x, t) stands for the density of particles or cells and Φu is a self-interaction po-
tential. We refer to [27], [28] [29] for a derivation of a general formulation of (1.1) to 
describe the aggregation of the slime mold amoebae Dictyostelium discoideum and [50], 
[51] for the case d = 3 as a model of stellar dynamics under friction and fluctuations. 
We recommend the reference [24] where the author gives a nice survey of mathematical 
problems encountered in the study of (1.1) and a wide bibliography including references 
of related models.

We recall that from standard argument, given a radial function u0 ∈ L∞(Rd), there 
exists a unique local in time solution to (1.1), see [20] for example. We refer to [1]
for further results on local well-posedness in other spaces. Moreover, by a comparison 
argument, if u blows up in finite time T > 0, there holds the lower bound of the blowup 
rate

‖u(t)‖L∞(R) ≥ (T − t)−1

(see [31] for other lower bounds). It is well known that the solution exists globally in 
time for d = 1, see [38]. The case d = 2 is called L1-critical in the sense that the scale 
transformation

∀λ > 0, uλ(x, t) = 1
λ2u

(x
λ
,
t

λ2

)
, (1.2)

preserves the total mass M =
∫
R2 u(x, t)dx =

∫
R2 uλ(x, t)dx which is a conserved quan-

tity for (1.1). There exhibits a remarkable dichotomy:
- If M < 8π, Dolbeault-Perthame [16] proved that the solution is global in time. This 
result was further completed and improved in [3]. The main ingredient in deriving the 
sharp threshold 8π for global existence is the use of the free-energy functional
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F [u](t) =
∫

Rd

u(x, t)
[
log u(x, t) − 1

2Φu(x, t)
]
dx, (1.3)

combined with the logarithmic Hardy-Littlewood-Sobolev inequality
∫

f(x) log f(x)dx + 2
Mf

∫

R2

∫

R2

f(x)f(y) log |x− y|dxdy ≥ −Mf (1 + log π − logMf ),

where Mf =
∫
R2 f(x)dx.

- If M = 8π and the second moment is finite, i.e. 
∫
R2 |x|2u(x, t)dx < +∞, Blanchet-

Carrillo-Masmoudi [4] showed the existence of infinite time blowup solutions to (1.1). 
Again, the free-energy functional F played a crucial role in the work [4]. Concrete exam-
ples have been constructed in [19] and [14] where the authors rectified the blowup law 
obtained in [46]:

‖u(t)‖L∞(R2) ∼ c ln t as t → +∞.

Certain solutions with infinite second moments converge to a fixed stationary state [5], 
with quantitative rates [8].

- If M > 8π, any positive solution blows up in finite time. Indeed, the equation for 
the second moment

d

dt

∫

R2

|x|2u(x, t)dx = 4M
(

1 − M

8π

)
,

cannot be satisfied for all times as the right-hand side is strictly negative and the differ-
entiated quantity is positive. Finite time blowup solutions had been predicted in [39], [9], 
[26]. Rigorous constructions were later done by Herrero-Velázquez, [21], [49], Raphaël-
Schweyer [42] and the present authors [11] where the following blowup dynamics was 
confirmed:

u(t) ≈ 1
λ2(t)U

( x

λ(t)
)

with λ(t) = 2e− 2+γ
2
√
T − te−

√
| log(T−t)|

2 (1 + ot↑T (1)), (1.4)

where U(x) = 8(1 + |x|2)−2 is stationary and satisfies 
∫
R2 U(x)dx = 8π. This blowup dy-

namics is stable and is believed to be generic thanks to the partial classification result of 
Mizoguchi [35] who proved that (1.4) is the only blowup mechanism that occurs among 
radial nonnegative solutions. Other blowup rates corresponding to unstable blowup dy-
namics were also obtained in [11] as a consequence of a detailed spectral analysis obtained 
in [10].

The case d ≥ 3 is quite different from d = 2. The system is called mass-supercritical, 
and the scaling transformation (1.2) preserves the Ld/2-norm: ‖uλ(0)‖Ld/2(Rd) =
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‖u(0)‖Ld/2(Rd). There is a critical threshold on ‖u(0)‖Ld/2 that distinguishes between 
the global existence and finite time blowup. In particular, the authors of [7] showed that 
for initial data ‖u(0)‖Ld/2 < C(d), where C(d) is related to the Gagliardo-Nirenberg 
inequality,1 the (weak) solution is global in time. See also [12] and references therein 
for earlier results concerning the global existence for (1.1). It is known that there exist 
finite-time blowup solutions to (1.1), depending on the initial size of the solution, see for 
example [2], [12]. Since the total mass is conserved for the solution of (1.1), note then 
that in contrast with the two-dimensional case, solutions can blow up with any arbitrary 
mass thanks to the relation M(uλ(0)) = λd−2M(u(0)).

We say that u exhibits Type I blowup if there is a constant C > 0 such that

lim sup
t→T

(T − t)‖u(t)‖L∞(Rd) < C,

otherwise, the blowup is said to be of Type II. This notion is motivated by the ODE 
ut = u2 obtained by discarding diffusion and transport in the equivalent equation ut =
∆u + u2 −∇Φu.∇u to the first one in (1.1).

For d ≥ 3, the class of radial and non-negative blow-up solutions has been the most 
studied. Type I blowup solutions are then asymptotically self-similar [20]. This is the case 
for example in dimensions 3 ≤ d ≤ 9, if in addition the data are radially decreasing, as 
the blow-up is then necessary Type I [37]. A countable family of exact Type I self-similar 
blowup solutions was obtained in [23] (see also [45]). In dimensions d ≥ 11, however, Type 
II blow-up exists within this class of solutions [36]. For all dimensions d ≥ 3, for radially 
decreasing data in this class, either Type I or II, the trace u(x, T ) exists for x -= 0 and 
satisfies self-similar upper and lower bounds [47]. Other Type II blowup solutions were 
formally constructed by Herrero-Medina-Velázquez [22] in the radially symmetric setting 
(without radially decreasing assumption) for d = 3. We recommend [6] for a nice survey 
and numerical observations for singularity formation in three dimensions.

In this paper, we construct type II finite-time blowup solutions to (1.1) in any di-
mension d ≥ 3, making rigorous the formal argument of [22]. A part of the mass of the 
solution is concentrated around a sphere that collapses to the origin. We refer to this 
pattern as a collapsing-ring blow-up, in analogy with a similar blow-up that occurs for 
the nonlinear Schrödinger equation [34,17,18]. Our result is for spherically symmetric 
solutions for which we show the stability of the dynamics. We introduce the profile

W (ξ) = 1
8 cosh−2

(
ξ

4

)
.

Theorem 1.1 (Existence and stability of a collapsing-ring blowup solution to (1.1)). For 
any d ≥ 3, there exists an open set of spherically symmetric functions O ⊂ L∞(Rd) such 

1 Namely, C(d) = 8
dC

−2(1+2/d)
GN ( d

2 , d) where CGN is the Gagliardo-Nirenberg inequality’s constant 
‖v‖

L
2(p+1)

p
≤ CGN (p, d)‖∇v‖

d
2(p+1)
L2 ‖v‖

1− d
2(p+1)

L2 .
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that for any u0 ∈ O, the solution u to (1.1) with initial data u(0) = u0 blows up with 
type II at time T (u0) > 0 and can be decomposed as

u(x, t) = M(t)
Rd−1(t)λ(t)

[
W

(
|x|−R(t)

λ(t)

)
+ ũ (x, t)

]
, (1.5)

where

λ(t) = R(t)d−1

M(t) , M(t) = M∞
(
1+ot↑T (1)

)
, R(t) = cdM

1
d∞(T−t) 1

d
(
1+ot↑T (1)

)
, (1.6)

with cd = (d2 ) 1
d and M∞(u0) > 0, and

‖ũ(t)‖L∞(Rd) → 0 as t → T. (1.7)

Moreover, the functions T : u0 /→ T (u0) and M∞ : u0 /→ M∞(u0) are continuous on O.

Remark 1.2. The collapsing ring is located at the distance R(t) from the origin and has 
the width λ(t). The total mass carried around the ring is |Sd−1|M(t), where |Sd−1| is 
the surface measure of the unit sphere in Rd.

Remark 1.3. A detailed description of the open set O is given in Section 2.4. We suspect 
the solution to be unstable by nonradial perturbations.

Comments: (i) Ring blowups among type II blowups and their stability. For a general 
evolution equation, during a self-similar blowup all terms in the equation contribute 
with equal strength to the singularity. In contrast, during type II blowup as defined 
for most parabolic equations, a norm of the solution does not diverge according to the 
self-similar rate, which formally means that ∂tu is subleading as t ↑ T . In the two-
dimensional blowup for the Keller-Segel equation, ∂tu is fully subleading [21,42,11], so 
that the profile is a stationary state. This is the most studied situation among type II 
blowup for evolution PDEs, see e.g. [32,41,43,13].

The only known type II blowups where ∂t is subleading, but only after a space transla-
tion, in which case the blowup profile is a traveling wave, are the following. The seminal 
work [33] concerned the critical gKdV equation. A one-dimensional traveling wave was 
embedded in higher dimensions to produce a ring blowup for NLS in [34] (observed nu-
merically in [17,18]). However, the construction was based on a compactness argument 
specific to time-reversible equations, that bypasses the stability analysis and cannot be 
used here.

The present work gives then for the first time a stability result for a ring-blowup 
solution involving a traveling wave. Note that any type II blowup involves two blowup 
zones contributing to the singularity: an inner zone close to the blowup profile in which 
∂t is negligible, and an outer zone where ∂t is not negligible anymore, close to the tail of 
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the profile. The new challenges, in comparison with the most studied situation of type 
II blowups involving stationary states, are the following. As the profile is a traveling 
wave, both equations in the inner and outer zones involve transport terms, they not only 
change each equation separately, but also the way the two zones interact. In addition, 
since the original equation is only approximately one-dimensional near the ring, this 
generates error terms in the inner zone, while the outer zone is truly d-dimensional. 
Finally, a particularity of the present situation is that the dynamics in the outer zone 
is inviscid to leading order. The novelties of our analysis to deal with these issues are 
explained in the strategy of the proof below.

Finally, let us mention that blow-ups involving several scales may occur in other mod-
els. This is the case, for example, for Lagrangian modifications of the three-dimensional 
Euler equation [48] or for the semi-linear heat equation [15].

(ii) Link with the Burgers equation. In the renormalized partial mass variables for the 
inner zone around the ring (see (1.9) and (1.12)), the profile is Q given by (1.10) which 
is the traveling wave of the Burgers equation

∂sf = ∂2
ξf + 1

2∂ξ(f
2). (1.8)

The stability of Q for (1.8) was studied in [25,44,40,30]. The Cole-Hopf transform of 
[40] however cannot be applied here, and the spectral method developed in [44] can 
only handle exponentially localized perturbations (in L2(ω0dξ) with ω0 ≈ e|ξ|/2), which 
is not sufficient here as typical errors are only in L∞, such as the instability direction 
corresponding to the ring’s mass variation MsQ. To control the solution in the inner 
blowup zone, we thus develop here a method that extends the analysis of [44] (via the 
use of modulation and gluing techniques) to a broader class of perturbations.

1.2. Ideas of the proof

Ansatz In the partial mass variables (where |Sd−1| is the surface of the unit sphere 
in Rd)

mu(r, t) = 1
|Sd−1|

∫

|x|≤r

u(x, t)dx, r = |x|, (1.9)

the Keller-Segel system (1.1) for spherically symmetric solutions becomes

∂tmu = ∂2
rmu − d− 1

r
∂rmu + mu∂rmu

rd−1 , r ∈ R+. (1.10)

The solutions of Theorem 1.1 correspond to solutions of the form

mu(r, t) = M(t)Q
(
r −R(t)
λ(t)

)
+ m̃u(r, t), Q(ξ) = eξ/2

1 + eξ/2
, (1.11)
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with Q the traveling wave of the viscous Burgers equation ∂sf = ∂ξξf + f∂ξf , and 
λ = M−1Rd−1. Our aim is to construct a solution to (1.10) of the form (1.11) with 
M(t) → M∞, R(t) ∼ cdM

1/d
∞ (T − t)1/d and m̃u(t) → 0 as t ↑ T .

Inner blowup zone We define the inner blowup variables as

ξ = r −R

λ
, s = s0 +

t∫

0

dt̃

λ
, mu(r, t) = M(t)

[
Q(ξ) + mq(s, ξ)

]
. (1.12)

We call the inner blowup zone the set {ξA,− ≤ ξ ≤ ξA,+} for ξA,+ = −ξA,− 1 1 to be 
fixed suitably below, and introduce min

q = χinmq for some cut-off χin localizing in the 
inner blowup zone. It solves (see (2.17)):

∂sm
in
q = L0(min

q ) + (Rτ

R
+ 1

2)∂ξQ− Ms

M
(Q + ξ∂ξQ) + Ψ̃ + [∂s − L0,χ

in]mq + h.o.t,

(1.13)

where L0 = ∂2
ξ − (1/2 −Q) ∂ξ + ∂ξQ, Ψ is the error term generated by Q, [·, ·] is the 

commutator and [∂s−L0, χin]mq are the boundary terms, and h.o.t denotes higher order 
linear terms and nonlinear terms.

In Proposition 2.4, we recall that the operator L0 is self-adjoint in L2(ω0dξ) where 
ω0(ξ) = Q−1eξ/2. It has a spectral gap on functions such that 

∫
Rmin

q ∂ξQω0dξ = 0
resulting in exponential decay for the linear evolution:

‖esL0(min
q )‖L2(ω0dξ) ≤ e−κ′s‖min

q ‖L2(ω0dξ). (1.14)

Outer blowup zone We define the outer blowup variables

ζ = r

R
= 1 + νξ, ν = Rd−1

M
, τ = τ0 +

t∫

0

M

Rd
dt̃, mε(τ, ζ) = mq(s, ξ),

so that the concentrating ring is located at ζ = 1, and the outer blowup zone as the set 
{ζ < ζ−} ∪ {ζ > ζ+} for |ζ± − 1| 1 ν to be fixed suitably below. Then mε solves2 (see 
(3.40)) the equation

∂τmε = A mε −
Mτ

M
Qν + Ψ̄ + h.o.t, for ζ ≥ ζ+, (1.15)

where A =
(
ζ1−d − ζ/2

)
∂ζ + ν∂2

ζ and Qν(ζ) = Q(ξ). There holds a similar equation for 
ζ ≤ ζ−. Equation (1.15) dampens derivatives, as ∂ζQν ≈ 0 for ζ ≥ ζ+ and ∂ζmε solves 
(see (3.44))

2 Note that, comparing with (1.13), the term corresponding to (Rτ
R + 1

2 )∂ξQ has been incorporated in the 
h.o.t. in (1.15) due to the decay |∂ξQ| ! e−|ξ|/2.
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∂τ (∂ζmε) = A1(∂ζmε) + ∂ζΨ̄ + h.o.t. for ζ ≥ ζ+, (1.16)

where A1 = −((d − 1)ζ−d + 1/2) + A displays exponential decay

‖eτA1(∂ζmin
ε )‖L∞ ≤ e−κτ‖∂ζmin

ε ‖L∞ . (1.17)

Gluing inner and outer zones Choosing ζ±. The two time scales are such that τ 3 s, 
and the slowest linear decay between (1.14) and (1.17) is max(e−κ′s, e−κτ ) = e−κτ . As 
the outer zone with the slower a priori decay (1.17) interacts with the inner zone via the 
boundary terms in (1.13), we thus relax (1.14) and actually show in Lemma 3.4 that the 
solution to (1.13) satisfies the energy estimate

‖mq(s)‖in ≤ Ke−κτ , (1.18)

where ‖mq‖in = − 
∫
min

q L0min
q ω0dξ is a coercive functional, see Lemma 2.5. Since 

ω0(ξ) ≈ e|ξ|/2, after applying parabolic regularization (Lemma 3.6), we prove that the 
weighted L2 bound (1.18) implies the pointwise bound for the derivative |∂ξmq| !
Ke−|ξ|/4e−κτ , so that |∂ζmε| ! Kν−1e−|ξ|/4e−κτ as ∂ξ = ν∂ζ . This later estimate 
matches with (1.17) precisely for ν−1e−|ξ|/4 = 1 corresponding to the choice

ζ± = 1 ± 4ν| log ν|.

Choosing ξA,±. The transport field 
(
ζ1−d − ζ/2

)
∂ζ in (1.15) pushes from the outer 

blowup zone toward the inner zone. Thus, the farther from the inner zone, the smaller the 
effects of boundary terms should be. This is made rigorous in Lemma 3.7 where we prove

|∂ζmε| ≤ K5/4φ1 + φ2 ζ ≥ ζ+, with φ1 = e−κτe
3
8

ζ−ζ+
ν and φ2 = e−κτζd−1

(1.19)

by parabolic comparison principle, and a similar estimate for ζ ≤ ζ− holds. The super-
solution φ1 takes care of the boundary condition ∂ζmε(ζ+) imposed by the inner zone 
including the viscosity effect. By choosing

ξA,± = ±(4| log ν| + A),

where A 1 1 is such that e3A/10 ≤ K ≤ eA/2, we show in the proof of Lemma 3.4 that 
(1.19) implies

‖[∂s − L0,χ
in]mq‖L2(ω0dξ) ! (K1/4e−A/8)Ke−κτ 3 Ke−κτ ,

for the boundary terms in (1.13), which is compatible with (1.18).
Note that the inner and outer blowup zones overlap in {ξA,− ≤ ξ ≤ ξ−} ∪ {ξ+ ≤

ξ ≤ ξA,+}, where we obtain a delay-type estimate for the associated parabolic transport
equations.
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Nonlinear analysis To handle nonlinear effects, the solution is controlled in a bootstrap 
regime, see Definition 2.6. The parameters R and M , that are related to instability 
directions around the approximate solution, are determined dynamically from (1.13) by 
requiring the orthogonality 

∫
Rmin

q ∂ξQω0dξ = 0 and the cancellation 
∫ ξA,++1
ξA,+

min
q dξ = 0

respectively. This yields the dynamical system (3.5)-(3.6) driving the blowup. The other 
nonlinear terms are treated perturbatively using Sobolev-type estimates.

1.3. Acknowledgments

The work of C. Collot was funded by CY Initiative of Excellence (Grant “Investisse-
ments d’Avenir” ANR-16-IDEX-0008). T. E. Ghoul and N. Masmoudi are supported 
by Tamkeen under the NYU Abu Dhabi Research Institute grant of the center SITE. 
N. Masmoudi is supported by National Science Foundation grant DMS-1716466.

2. Formulation of the problem

We will work in the partial mass variables (with |Sd−1| the surface of the unit sphere 
in Rd)

mu(r, t) = 1
|Sd−1|

∫

|x|≤r

u(x, t)dx, r = |x|, (2.1)

in which the Keller-Segel system (1.1) for spherically symmetric solutions becomes:

∂tmu = ∂2
rmu − d− 1

r
∂rmu + mu∂rmu

rd−1 , r ∈ R+. (2.2)

2.1. Renormalized variables

2.1.1. Hyperbolic inviscid variables
These variables describe the solution away from the ring |r − R(t)| 1 λ(t), where 

nonlinear transport is dominant and viscosity effects are negligible. For R(t) and M(t)
two positive C1 functions we define the parameters

ν = Rd−2

M
, λ = Rν, (2.3)

so that

ντ = −d− 2
2 ν + (d− 2)

(
Rτ

R
+ 1

2

)
ν − Mτ

M
ν,

and the renormalization
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m(r, t) = M(t)mw(ζ, τ), ζ = r

R
, τ = τ0 +

t∫

0

M(t̃)
Rd(t̃)dt̃. (2.4)

The new unknown mw(ζ, τ) satisfies for ζ > 0 and τ ≥ τ0,

∂τmw =
(

mw

ζd−1 − 1
2ζ

)
∂ζmw + νζd−1∂ζ

(
∂ζmw

ζd−1

)
+

(
Rτ

R
+ 1

2

)
ζ∂ζmw − Mτ

M
mw.

(2.5)

Remark 2.1. We shall prove that ν goes to zero as τ → ∞. Then, we notice that with 
the special choice

mw = 1{ζ≥1},
Rτ

R
= −1

2 , Mτ = 0,

the inviscid equation (2.5), i.e. with ν = 0, is solved both sides of the discontinuous point 
ζ = 1. The Rankine-Hugoniot condition

1
2

[
lim

ζ→1+

(1{ζ≥1}
ζd−1 − 1

2ζ
)

+ lim
ζ→1−

(1{ζ≥1}
ζd−1 − 1

2ζ
)]

= 0, (2.6)

asserts that the discontinuous point ζ = 1 is steady so that 1{ζ≥1} defines a stationary 
solution for the limiting inviscid equation. The function 1{ζ≥1} will be the blow-up profile 
in the hyperbolic inviscid variables (2.4).

2.1.2. Blowup variables inside the ring
To have a better description near the shock location ζ = 1 (the appearance of a shock 

being explained in Remark (2.1)) we change variables

mw(ζ, τ) = mv(ξ, s), ξ = ζ − 1
ν

= r −R

Rν
, s = s0 +

τ∫

τ0

dτ

ν
. (2.7)

Then mv solves the following equation for ξ > −1/ν and s ≥ s0:

∂smv = ∂2
ξmv + mv∂ξmv −

1
2∂ξmv +

(
Rτ

R
+ 1

2

)
∂ξmv −

Ms

M
mv

+
( 1

(1 + ξν)d−1 − 1
)
mv∂ξmv − ν

d− 1
1 + νξ

∂ξmv. (2.8)

+
(

(d− 1)ν
(
Rτ

R
+ 1

2

)
− d− 1

2 ν − Ms

M

)
ξ∂ξmv

As we expect Rτ ∼ −R/2, Ms ≈ 0 and ν → 0, we introduce the blowup profile Q near 
the shock that cancels out the leading part in (2.8), namely Q solves the ODE
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∂2
ξQ− 1

2∂ξQ + Q∂ξQ = 0, lim
y→−∞

Q(ξ) = 0, (2.9)

whose exact solution is given by

Q(ξ) = e
ξ
2
(
1 + e

ξ
2
)−1

, ∂ξQ(ξ) = 1
8 cosh−2(ξ4). (2.10)

Remark 2.2. Keeping only the leading order terms in (2.8) gives the Burgers equation 
∂sf = ∂2

ξf+f∂ξf− 1
2∂ξf , for which Q is a traveling wave, since f(τ, ξ) = Q(ξ+τ/2) is an 

exact solution. It travels at speed −1/2 which equals the speed of the shock determined 
from the Rankine-Hugoniot condition (2.6).

2.2. Linearized problems

2.2.1. The profile
For a fixed 0 < ζ0 3 1, we introduce χ̄ a smooth nonnegative cut-off function with

χ̄(ζ) =
{

0 if ζ ∈ [0, ζ0],
1 if ζ ∈ [2ζ0,∞). (2.11)

We introduce the notation for the rescaled and localized profiles:

Qν(ζ) = Q(ξ), Q̄ν(ζ) = Qν(ζ)χ̄(ζ) and Q̄(ξ) = Q̄ν(ζ). (2.12)

The introduction of the localized profile Q̄ν is technical, to deal with the singular non-
linear term at the origin. By the definition of χ̄, we note that

Q̄(ξ) = 0 for ξ ∈
[
−1
ν
,− (1 − ζ0)

ν

]
, Q̄(ξ) = Q(ξ) for ξ ≥ − (1 − 2ζ0)

ν
.

2.2.2. Linearized equation in the partial mass setting
We introduce the decomposition in hyperbolic inviscid variables (2.4)

mw(ζ) = Q̄ν(ζ) + mε(ζ, τ). (2.13)

The perturbation mε then solves the equation for ζ > 0 and τ ≥ τ0:

∂τmε = ∂ζ(Q̄νmε)
ζd−1 − 1

2ζ∂ζmε + ν

(
∂2
ζmε −

d− 1
ζ

∂ζmε

)
+ mε∂ζmε

ζd−1

+
(
Rτ

R
+ 1

2

)
ζ∂ζmε −

Mτ

M
mε + mE , (2.14)

where the generated error is
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mE = −∂τ Q̄ν + Q̄ν∂ζQ̄(ζ)
ζd−1 − 1

2ζ∂ζQ̄ν + ν

(
∂2
ζ Q̄ν − d− 1

ζ
∂ζQ̄ν

)

+
(
Rτ

R
+ 1

2

)
ζ∂ζQ̄ν − Mτ

M
Q̄ν . (2.15)

In the ring, in the blowup variables (2.7), we introduce the decomposition

mq(ξ, s) = mv(ξ, s) − Q̄(ξ), (2.16)

that leads to the following linearized equation for ξ > −1/ν and s ≥ s0,

∂smq = L0(mq) + L(mq) + mq∂ξmq

(1 + νξ)d−1 + Ψ, (2.17)

subject to the boundary condition3

mq(s,−1/ν) = 0.

Above, the elliptic linearized operator is defined as

L0 = ∂2
ξ −

(1
2 −Q

)
∂ξ + Q′, (2.18)

the lower order linear term is

L(mq) = −(d− 1)ν
(1

2ξ + 1
1 + νξ

)
∂ξmq +

(
Rτ

R
+ 1

2

)
(1 + (d− 1)νξ) ∂ξmq

− Ms

M
(mq + ξ∂ξmq) +

( 1
(1 + ξν)d−1 − 1

)
Q̄∂ξmq

+
( 1

(1 + ξν)d−1 − 1
)
mq∂ξQ̄ + ∂ξ(Q̄−Q)mq + (Q̄−Q)∂ξmq, (2.19)

and the generated error is given by

Ψ(ξ, s) =
(
Rτ

R
+ 1

2

)
(1 + (d− 1)νξ) ∂ξQ̄− Ms

M

(
Q̄ + ξ∂ξQ̄

)

− (d− 1)ν
(1

2ξ + 1
1 + νξ

)
∂ξQ̄ +

( 1
(1 + ξν)d−1 − 1

)
Q̄∂ξQ̄− ν

d− 1
1 + νξ

∂ξQ̄

+ ν∂ζ χ̄
(
2∂ξQ− 1

2Q + Q2χ̄
)

+ ν2∂2
ζ χ̄Q + Q∂ξQχ̄

(
χ̄− 1

)
− νsξ∂ζ χ̄Q.

(2.20)

3 Note that this boundary condition is propagated with time since we consider solutions u to (1.1) that 
are in L∞(Rd), so that mu(r) = O(rd) as r → 0 using (2.1).
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2.2.3. Evaluation of the parameters
The parameter functions R and M are determined via the “orthogonality” conditions:

∞∫

−1/ν

χA(ξ)mq(s, ξ)dξ = 2
∞∫

−1/ν

χA(ξ)mq(s, ξ)∂ξQ(ξ)ω0(ξ)dξ = 0, (2.21)

and
∞∫

−1/ν

mq(s, ξ)χ1, ξA,+
(ξ)dξ = 0, (2.22)

where ξA,+ is defined in (2.35), and for any positive constants A and a, χA and χA,a are 
cut-off functions defined by

χA,a(ξ) = χ0
(x− a

A

)
, χA(ξ) = χA,0(ξ), (2.23)

where χ0 is smooth and nonnegative, and satisfies

χ0 ∈ C∞(R), χ0(x) =
{

0 if |x| ≥ 2,
1 if |x| ≤ 1,

and ω0 is the weight function

ω0(ξ) =
(
e

ξ
4 + e−

ξ
4

)2
= 1

2∂ξQ(ξ) . (2.24)

Remark 2.3. The orthogonality condition (2.21) ensures a coercivity estimate for the 
linearized operator L0 as stated in Lemma 2.5. By the mean value theorem the second 
condition (2.22) implies that there exists a point ξ∗ ∈

(
ξA,+ − 2, ξA,+ + 2

)
where ξA,+ is 

defined in (2.35) such that mq(ξ∗, s) = 0. This allows us to write

mq(ξ, s) =
ξ∫

ξ∗

∂ξmq(ξ, s)dξ, hence, |mq(ξ, s)| ≤ |ξ − ξ∗|‖∂ξmq(s)‖L∞(ξ∗,ξ). (2.25)

2.3. The linearized operator around the Burgers traveling wave

The linearized operator L0 appears in the study of stability of traveling wave solutions 
to the viscous Burger equation. Its properties are thus well-known. We define for k ∈ N
the weighted Sobolev space Hk

ω0 associated to the norm

‖m‖2
Hk

ω0
=

k∑

j=0

∫

R

(∂j
ξu)2ω0(ξ)dξ.
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Proposition 2.4. The operator L0, with domain H2
ω0 , is self-adjoint on L2

ω0(R). Its spec-
trum consists of an isolated eigenvalue which is 0 associated to the eigenfunction ∂ξQ, 
and of the interval (−∞, −1/16].

Proof. Proposition 2.4 is obtained in [44], but one argument in the proof contains an 
error that can be corrected. We thus give a proof here for sake of completeness and 
mention where we correct the error using an identity of [40] related to the Cole-Hopf 
transformation.

Equation (2.9) is invariant by space translation, hence the function ∂ξQ satisfies 
L0∂ξQ = 0. It belongs to L2

ω0 since |∂ξQ(ξ)| ! e−|ξ|/2 and ω0 ≈ e|ξ|/2. Standard ODE 
arguments show that any other solution to L0m = 0 that is non collinear to ∂ξQ has 
nonzero finite limits as ξ → ±∞, preventing them to belong to L2

ω0 . Hence ∂ξQ spans 
the kernel of L0 in L2

ω0 .
The eigenfunction ∂ξQ associated to 0 is positive on R. A Sturm-Liouville argument 

(see [44]) then implies that L0 has no positive eigenvalues.
To study the rest of the spectrum, it is observed in [44] that L0 can be written under 

the following conjugated form as4

L0 = eB0M0e
−B0 with B0(ξ) =

ξ∫

0

b0(ξ̃)dξ̃, b0 = 1
4 − Q

2 . (2.26)

A mistake was made in [44] in the computation of M0, and the correct operator is given 
by

M0 = ∂2
ξ +

[1
2

Q

(1 + eξ/2) − 1
16

]
. (2.27)

The operator M0 on L2(R) (with domain H2(R)) has continuous spectrum in the interval 
−∞ < λ ≤ − 1

16 , since it is a compact perturbation of ∂2
ξ − 1

16 . Hence, we deduce that L0
has the same continuous spectrum (−∞, −1/16]. It remains to show that there are no 
eigenvalues in (−1/16, 0). We give a different argument from that in [44] which relied on 
the aforementioned erroneous identity of M0. Assume by contradiction that there exists 
c ∈ (0, 1/16) and ψ ∈ H2

ω0 such that L0ψ = −cψ. Since L0 is self-adjoint in L2
ω0 and 

2∂ξQ = ω−1
0 is another eigenfunction

∫

R

ψ = 2
∫

R

ψ∂ξQω0 = 0. (2.28)

We claim moreover that for some C > 0, there holds

4 Any operator of the form L = ∂2
y − 2b∂y + c can be written as L = eBMe−B , where B(y) = ∫ y

0 b(ξ)dξ
and M = ∂2

y + [b′ − b2 + c]. A similar formulation holds for the higher dimensional case, namely that 
L = ∆ − 2b.∇ + c can be written as L = eBMe−B with ∇B = b and M = ∆ + [∆B − |∇B|2 + c].
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|ψ(ξ)| ≤ Ce−µ|ξ|, µ = 1
4(1 +

√
1 − 16c), (2.29)

whose proof is done shortly after. Letting φ(ξ) =
∫ ξ
0 ψ(η)dη, by [40, Theorem 2] we have

(esL0ψ)(ξ) =
∫

R

∂ξΓ̃(ξ, s, η)φ(η)dη, Γ̃(ξ, s, η) = e−
s
16
e−

(ξ−η)2
4s

√
4πs

e
1
2
∫ ξ
η ( 1

2−Q(ζ))dζ .

Let ξ0 ∈ R such that ψ(ξ0) -= 0, we fix ψ(ξ0) = 1 without loss of generality. Then

e−cs =
∫

R

∂ξΓ̃(ξ, s, η)φ(η)dη. (2.30)

On the other hand, we estimate using (2.10), | 
∫ ξ0
η (1

2 −Q)| ≤ C(ξ0) + 1
2 |η|, from which 

and |ζe−ζ | ! 1 we obtain for s ≥ 1 that |∂ξΓ̃(ξ0, s, η)| ! e−
s
16+ |η|

4 . Combining this, (2.28)
and (2.29) yields for s ≥ 1,

∣∣∣∣∣∣

∫

R

∂ξΓ̃(ξ, s, η)φ(η)dη

∣∣∣∣∣∣
! e−

1
16 s

∫

R

e( 1
4−µ)|η|dη ! e−

1
16 s.

This contradicts (2.30) for s large, hence, L0 has no eigenvalues in (−1/16, 0).
It remains to prove (2.29). Using (2.10) we write

((L0 + c)ψ)(ξ) = (L∞ψ)(ξ) + O(e−
|ξ|
2 )∂ξψ(ξ) + O(e−

|ξ|
2 )ψ(ξ) as ξ → ∞, (2.31)

where L∞ = ∂2
ξ + 1

2∂ξ + c. The solutions of L∞f = 0 are f±(ξ) = eλ±ξ with λ± =
1
4(−1 ±

√
1 − 16c). By standard ODE arguments, as (L0 + c)ψ = 0, (2.31) implies that 

there exists ι ∈ {±1} and c∞ -= 0 such that ψ(ξ) ∼ c∞eλ±ξ as ξ → ∞. As ψ ∈ L2
ω0 and 

ω0 ≈ e|ξ|/2 necessarily ι = +1 so |ψ(ξ)| ! e−µξ for ξ ≥ 0. The proof of |ψ(ξ)| ! eµξ for 
ξ ≤ 0 is similar, yielding (2.29). !

For any m ∈ H1
ω0 , one obtains by integration by parts,
∫

R

mL0mω0dξ = −
∫

R

|∂ξm|2ω0dξ +
∫

R

m2∂ξQω0dξ. (2.32)

The above bilinear form is coercive outside the kernel of L0 as shown in the following 
lemma.

Lemma 2.5 (Coercivity of L0). There exist δ > 0 such that for all m ∈ H1
ω0 we have:

〈L0m,m〉L2
ω0

≤ −δ‖m‖2
H1

ω0
+ 〈m, ∂ξQ〉2L2

ω0
. (2.33)
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Proof. From Proposition 2.4 and the spectral Theorem, for any m ∈ H1
ω0 such that 

〈m, ∂ξQ〉L2
ω0

= 0 there holds 〈L0m, m〉L2
ω0

≤ −1/16 ‖m‖2
L2

ω0
. Hence, for m ∈ H1

ω0 , we 
have

〈L0m,m〉L2
ω0

≤ − 1
16‖m‖2

L2
ω0

+ 1
16

〈m, ∂ξQ〉2L2
ω0

‖∂ξQ‖2
L2

ω0

.

We use the formula (2.32), the above inequality and |∂ξQ| ≤ 1
2 from (2.10) to write for 

δ ∈ (0, 1/9):

〈L0m,m〉L2
ω0

= −δ

∫

R

|∂ξm|2ω0 + δ

∫

R

m2∂ξQω0 + (1 − δ)〈L0m,m〉L2
ω0

≤ −δ

∫

R

|∂ξm|2ω0 + δ

2

∫

R

m2ω0 −
1 − δ

16 ‖m‖2
L2

ω0
+ (1 − δ)

16
〈m, ∂ξQ〉2L2

ω0

‖∂ξQ‖2
L2

ω0

≤ −δ‖m‖2
H1

ω0
+

〈m, ∂ξQ〉2L2
ω0

‖∂ξQ‖2
L2

ω0

,

which is the desired estimate (2.33). !

2.4. Bootstrap regime

We introduce for a constant A > 0 to be fixed later on:

ζ± = 1 ± 4ν| log ν|, ζA,± = 1 ± ν(4| log ν| + A), (2.34)
ξ± = ±4| log ν|, ξA,± = ±(4| log ν| + A), (2.35)

and will refer to the zone ζA,− ≤ ζ ≤ ζA,+ as the inner zone, and to the zone {0 < ζ ≤
ζ−} ∪ {ζ ≥ ζ+} as the outer zone. Note that these two zones overlap on {ζA,− ≤ ζ ≤
ζ−} ∪ {ζ+ ≤ ζ ≤ ζA,+}.

Let χ1 be a smooth nonnegative cut-off, with χ1(ξ) = 1 for ξ ≤ 0 and χ1(ξ) = 0 for 
ξ ≥ 1. We define

χin(s, ξ) = χ1(ξ − ξA,+)χ1(ξA,− − ξ).

Note that supp(∂ξχin) ⊂ [ξA,− − 1, ξA,−] ∪ [ξA,+, ξA,+ + 1]. We introduce

min
q (s, ξ) = χin(s, ξ)mq(s, ξ). (2.36)

The two main norms to control the remainder in our analysis are ‖min
q ‖L2

ω0
and a weighted 

L∞ bound for ∂ζmε for ζ ≤ ζ− and ζ ≥ ζ+, from which we are able to derive the leading 
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dynamical system driving the law of blowup solutions as described in Theorem 1.1. The 
influence of the exterior zone on the interior one is measured by the quantity

‖mε‖bou = ‖mε‖L∞([ζA,−−2ν,ζA,−+2ν]∪[ζA,+−2ν,ζA,++2ν]) (2.37)
+ ν‖∂ζmε‖L∞([ζA,−−2ν,ζA,−+2ν]∪[ζA,+−2ν,ζA,++2ν]).

Since the norm ‖min
q ‖L2

ω0
itself is not enough to close nonlinear estimates, we introduce 

the adapted higher order regularity norm

‖mq‖2
in = −

∞∫

−1/ν

min
q L0m

in
q ω0dξ. (2.38)

Thanks to the coercivity of L0 given by (A.5) and the orthogonality condition (2.21), 
we have the equivalence

‖mq‖in ∼ ‖min
q ‖H1

ω0
. (2.39)

For a fixed small constant 0 < η 3 1, we introduce χ̂η a smooth cut-off function defined 
as

χ̂η(ζ) =
{

1 for |ζ − 1| ≤ η,

0 for |ζ − 1| ≥ 2η. (2.40)

We define the following bootstrap estimates.

Definition 2.6 (Bootstrap regime). For A, K, κ, η, M0 > 0 and τ > 0, we define S(τ) =
S[A, K, κ, η, M0](τ) as the set of all functions mu ∈ C1((0, ∞), R) for which there exist 
M(τ), R(τ) > 0 with

e−
τ
2

4 < R(τ) < 4e− τ
2 ,

M0
4 < M(τ) < 4M0 (2.41)

such that mε defined as in the decomposition (2.13) satisfies

∣∣∂ζmε(ζ, τ)
∣∣ < e−κτ

(
K

5
4 e−

3
8

ζ−ζ+
ν χ̂η + ζd−1

)
, for ζ ≥ ζ+, (2.42)

∣∣∂ζmε(ζ, τ)
∣∣ < e−κτ

(
K

5
4 e−

3
8

ζ−−ζ

ν χ̂η + νζd−1
)

for 0 < ζ ≤ ζ− (2.43)

and mq defined as in the decomposition (2.16) satisfies the orthogonality conditions 
(2.21) and (2.22) and

‖mq(τ)‖in < Ke−κτ . (2.44)
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Remark 2.7. The specific constant 3
8 is just for a sake of simplification and can be any 

real number in the interval 
(1

4 , 
1
2
)
. The two constants A and K will be chosen such that 

e3A/10 ≤ K ≤ eA/2 to ensure certain estimates. The points ζ = 1 ± 4ν| log ν| are chosen 
so that linear estimates in the inner and exterior zones are compatible at these points.

We claim the following proposition which is central for our analysis.

Proposition 2.8 (Existence of solutions to (2.17) trapped in S(τ)). There exist constants 
K, A 1 1, 0 < κ, η 3 1 and a function M̄0 /→ τ∗0 (M̄0), such that for any M̄0 > 0, for 
any M0 ≥ M̄0 and τ0 ≥ τ∗0 , if initially

R(τ0) = e−
τ0
2 , M(τ0) = M0, (2.45)

and mε(0) satisfies

mu(0) ∈ S[A, 1,κ, η,M0](τ0), (2.46)

|∂ζmε(τ0)| <
1
2e

−κτ0ζd−1 for ζ ≥ ζ+(0), (2.47)

|∂ζmε(τ0)| <
1
2ν0e

−κτ0ζd−1 for 0 ≤ ζ ≤ ζ−(0), (2.48)

where ζ±(0) = 1 ± 4ν0| log ν0| with ν0 = Rd−2(τ0)M−1(τ0). Then, the solution to (2.14)
with the initial datum mε(0) exists for all τ ≥ τ0 and belongs to S[A, K, κ, η, M0](τ) for 
all τ ∈ [τ0, +∞).

We postpone the proof of Proposition 2.8 to Section 3.5 as it is a consequence of 
improved estimates obtained in Lemmas 3.4, 3.7 and 3.9 below.

3. Control of the solution in the bootstrap regime

We now fix M̄0 > 0 and pick constants A, η, κ, τ0 and K > 1 whose values are allowed 
to change from one lemma to another. When proving Proposition 2.8 at the end of the 
section, we will prove that the conclusions of all lemmas are simultaneously valid for 
values of A, K, η, κ, τ0 as described in the proposition.

Throughout the section, we consider a solution mε to (2.14) with data mε(0) that 
satisfies (2.46) and (2.47), with R(τ0) = e−τ0/2 and M(τ0) = M0. We assume that for 
some t1 > 0, there exist R, M ∈ C1([0, t1], (0, ∞)) such that, defining τ by (2.4), then 
mε(τ) ∈ S(τ(t)) for all τ ∈ [τ0, τ1] where τ1 = τ(t1), and that the parameters R and M
given by Definition 2.6 coincide with R(τ(t)) and M(τ(t)). We pick any s0 ∈ R, define 
s by (2.7) and introduce s1 = s(t1).

Note that for τ0 large enough, there exists t1 > 0 such that this holds true and that 
M and R are unique, as a consequence of the continuity of the flow of (2.14) and of 
the implicit function Theorem to determine M and R from the orthogonality conditions 
(2.21) and (2.22). We omit the proof of this standard fact.
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3.1. A priori bounds

Lemma 3.1. There exists A∗ > 0 such that for any A ≥ A∗, for any κ, η, M̄0 > 0 and 
K ≥ e3A/10, if τ0 is large enough, then for τ0 ≤ τ ≤ τ1:

|mq(s, ξ)| !






Ke−κτe−
|ξ|
4 for |ξ| ≤ 4| log ν| + A,

νK
5
4 e−

3
8Ae−κτ (1 + |ξ − ξA,+|)ζd−1 for ξ > ξA,+,

νK
5
4 e−

3
8Ae−κτ (χ̂η(ζ) + ζd) for ξ < ξA,−.

(3.1)

‖mε‖bou ! νK
5
4 e−

3
8Ae−κτ , (3.2)

41−d

M0
e−

d−2
2 τ ≤ ν ≤ 4d−1

M0
e−

d−2
2 τ . (3.3)

Proof. The first inequality in (3.1) is obtained from the Sobolev estimate (A.2), (2.39)
and (2.44). The second inequality in (3.1) is obtained from (2.25) and (2.42) using that 
∂ξ = ν∂ζ and 1 ≤ K5/4e−3A/8 as K ≥ e3A/10. Then, we estimate that for 1 − 2η ≤ ζ ≤
ζA,−:

K
5
4

ζ∫

0

e−
3
8

ζ−−ζ̃

ν χ̂η(ζ̃)dζ̃ ! K
5
4

ζ∫

0

e−
3
8

ζ−−ζ̃

ν dζ̃ ! K
5
4 νe−

3
8

ζ−−ζ̃

ν ! νK
5
4 e−

3
8Aχ̂η + νζd,

(3.4)

where we used (2.40), that e− 3
8

ζ−−ζ̃

ν ≤ e−
3
8A for 1 − η ≤ ζ ≤ ζA,− and K

5
4 e−

3
8

ζ−−ζ̃

ν ≤
K

5
4 e−

η
4ν ! 1 for 1 − 2η ≤ ζ ≤ 1 − η for τ0 large enough depending on K. The third 

inequality in (3.1) is then obtained from (2.43) using mε(0) = 0 and (3.4). Then, (3.2)
is a direct consequence of (3.1), (2.42) and (2.43). Finally, (3.3) follows from (2.3) and 
(2.41). !

3.2. Modulation equations

The evolution of the modulation parameters R and M is given in the following lemma.

Lemma 3.2 (Modulation equations). There exists A∗ > 0 such that for any A ≥ A∗, for 
any κ, η, M̄0 > 0 and K ≥ e3A/10, for τ0 large enough, there holds for all τ0 ≤ τ ≤ τ1,

∣∣∣∣
Rτ

R
+ 1

2

∣∣∣∣ ! ν + e−
A
4 ‖mq(τ)‖in + A‖mε‖bou, (3.5)

∣∣∣∣
Ms

M

∣∣∣∣ ! ν3| log ν|e−A
2 + ν2e−

3
4A‖mq(τ)‖in + ‖mε‖bou. (3.6)

Corollary 3.3. There exists κ∗(d) > 0 such that for 0 < κ ≤ κ∗ and under the assumptions 
of Lemma 3.2, for τ0 large enough we have:
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∣∣∣∣ντ + d− 2
2 ν

∣∣∣∣ ! ν
(
ν + e−

A
4 ‖mq‖in + ν−1‖mε‖bou

)
, (3.7)

1
2e

− τ
2 ≤ R(τ) ≤ 2e− τ

2 ,
M0
2 ≤ M(τ) ≤ 2M0. (3.8)

Moreover, if mu is trapped in S(τ) for all τ ∈ [τ0, +∞), there exist R̃∞, M∞ > 0 so that

R(τ) = R̃∞e−
τ
2
(
1 + O(e−κτ )

)
, (3.9)

M(τ) = M∞
(
1 + O(e−κτ )

)
, (3.10)

ν(τ) = ν̃∞e−
d−2
2 τ

(
1 + O(e−κτ )

)
, (3.11)

where ν̃∞ = R̃d−2
∞ M−1

∞ , and where the constants in the O() depend on K, κ, M̄0.

Proof of Corollary 3.3. Recall ν = Rd−2/M and M0 ≥ M̄0. We obtain the inequality 
(3.7) by combining (3.5) and (3.6). Then, injecting (2.41), (3.3), (2.44) and (3.2) into 
(3.5) yields

| d
dτ

(e τ
2 R)| ≤ C(K, M̄0)(e−

d−2
2 τ + e−κτ + e−

d−2
2 τe−κτ ) ≤ C(K, M̄0)e−κτ , (3.12)

for κ ≤ d−2
2 . Integrating between τ0 and τ using (2.45):

R(τ) = e−
τ
2



e
τ0
2 R(τ0) +

τ∫

τ0

OK,M̄0(e
−κτ̃ )dτ̃



 = e−
τ
2 (1 + OK,M̄0,κ(e−κτ0)).

This gives the first inequalities in (3.8) upon choosing τ0 large depending on κ, M̄0, K. 
The second inequalities in (3.8) are obtained similarly using Mτ = ν−1Ms. Then, if mq

is trapped in S(τ) for all τ ∈ [τ0, +∞), we rewrite the above identity as

R(τ) = e−
τ
2

(
e

τ0
2 R(τ0) +

∞∫

τ0

OK,M̄0(e
−κτ̃ )dτ̃

︸ ︷︷ ︸
=R̃∞

−
∞∫

τ

OK,M̄0(e
−κτ̃ )dτ̃

)

= e−
τ
2 (R̃∞ + O(e−κτ )),

where the constant in the last O() depends on κ, K, M̄0. This results in (3.9). The 
inequality (3.10) is obtained similarly using (3.6), and (3.11) follows from (3.9) and 
(3.10) as ν = Rd−2M−1. This ends the proof of the Corollary. !

Proof of Lemma 3.2. Step 1. Computation of R. We claim that for τ large enough,
∣∣∣∣
Rτ

R
+ 1

2

∣∣∣∣ ! e−
A
4 ‖mq‖in + ν + A

∣∣∣∣
Ms

M

∣∣∣∣ . (3.13)
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To show (3.13), we differentiate (2.21) with respect to s, use equation (2.17) and the 
localization of χA to get

0 =
+∞∫

−1/ν

[
L0(mq) + L(mq) + mq∂ξmq

(1 + νξ)d−1 + Ψ
]
χAQ

′ω0dξ. (3.14)

We now compute the contribution of all terms above. For the first one, using L0(Q′) = 0
we obtain |L0(χA)Q′]| ! A−1e−|ξ|/21{A≤|ξ|≤2A}, so that using that L0 is self-adjoint in 
L2
ω0 :
∣∣∣∣∣∣∣

+∞∫

−1/ν

L0mqχAQ
′ω0dξ

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

+∞∫

−1/ν

mqL0
[
χAQ

′
]
ω0dξ

∣∣∣∣∣∣∣
! A−1

∫

A≤|ξ|≤2A

|mq|e−
|ξ|
2 ω0dξ

! A−1




∫

A≤|ξ|≤2A

|mq|2ω0dξ





1
2



∫

A≤|ξ|≤2A

e−|ξ|ω0dξ





1
2

! A−1e−
A
4 ‖mq‖in,

(3.15)

where we used that ω0 ! e|ξ|/2 and (2.39) (valid for A large enough). For the second, 
since Q̄ = Q for |ξ| ≤ 4| log ν| + A + 1, one has

L(mq) = −(d− 1)ν
(1

2ξ + 1
1 + νξ

)
∂ξmq +

(
Rτ

R
+ 1

2

)
(1 + (d− 1)νξ) ∂ξmq

− Ms

M
(mq + ξ∂ξmq) +

( 1
(1 + ξν)d−1 − 1

)
Q̄∂ξmq +

( 1
(1 + ξν)d−1 − 1

)
mq∂ξQ̄

and hence for |ξ| ≤ ξA,+ + 1, we have the rough estimate

|L(mq)| !
(∣∣∣∣

Rτ

R
+ 1

2

∣∣∣∣ + ν〈ξ〉 + |Ms|
M

|ξ|
)
∂ξmq +

(
|Ms|
M

+ ν|ξ|e−
|ξ|
2

)
|mq|, (3.16)

provided that ν is small enough, i.e. that τ0 is large enough depending on M̄0 from (3.3). 
Using (3.16), |∂ξQ| ! e−|ξ|/2 and (2.39) we estimate

∣∣∣∣∣∣∣

+∞∫

−1/ν

L(mq)χAQ
′ω0dξ

∣∣∣∣∣∣∣
!

(∣∣∣∣
Rτ

R
+ 1

2

∣∣∣∣ +
∣∣∣∣
Ms

M

∣∣∣∣ + ν

)
‖mq‖in. (3.17)

The nonlinear term is estimated by Cauchy-Schwarz and (2.39),
∣∣∣∣∣∣∣

+∞∫

−1/ν

mq∂ξmq

(1 + νξ)d−1χAQ
′ω0dξ

∣∣∣∣∣∣∣
!

∣∣∣∣
∫

m2
qχAω0

∣∣∣∣

1
2
∣∣∣∣
∫

|∂ξmq|2χAω0

∣∣∣∣

1
2

! ‖mq‖2
in. (3.18)
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Finally, for the error term, as χ̄ = 1 for |ξ| ≤ ξA,+ + 1 we compute that there:

Ψ(ξ, s) =
(
Rτ

R
+ 1

2

)
(1 + (d− 1)νξ) ∂ξQ− Ms

M
(Q + ξ∂ξQ)

− (d− 1)ν
(1

2ξ + 1
1 + νξ

)
∂ξQ +

( 1
(1 + ξν)d−1 − 1

)
Q∂ξQ− ν

d− 1
1 + νξ

∂ξQ

(3.19)

so that using Q ≤ 1 and |∂ξQ| ! e−|ξ|/2, we obtain

+∞∫

−1/ν

ΨχAQ
′ω0dξ =

(
Rτ

R
+ 1

2

)



+∞∫

−1/ν

[Q′]2χAω0dξ + O(ν)



 + O
(
A

∣∣∣∣
Ms

M

∣∣∣∣ + ν

)
.

(3.20)
Injecting (3.15), (3.17), (3.18), (3.20) in (3.14), using (2.44) shows (3.13) for τ0 large 
enough.

Step 2. Computation of M . We claim the following:
∣∣∣∣
Ms

M

∣∣∣∣ ! ν‖∂ζmε‖bou +
∣∣∣∣
Rτ

R
+ 1

2

∣∣∣∣
(
ν‖∂ζmε‖bou + ν2e−A/2

)
+ ν3| log ν|e−A/2. (3.21)

To show it, we differentiate in time the orthogonality condition (2.22) and use the equa-
tion (2.17) to write

0 =
+∞∫

−1/ν

[
L0mq + L(mq) + mq∂ξmq

(1 + νξ)d−1 + Ψ(ξ, s)
]
χ̄dξ −

+∞∫

−1/ν

mq∂sχ̄dξ, (3.22)

where we write for short in this proof χ̄ = χ̄1,ξA,+
(ξ). Recall that supp

(
χ̄
)
⊂ (ξA,+ −

2, ξA,+ + 2). Using (2.18), integrating by parts, and then using (2.25) and ∂ξ = ν∂ζ , we 
estimate

∣∣∣∣∣∣∣

∞∫

−1/ν

L0mqχ̄dξ

∣∣∣∣∣∣∣
!

+∞∫

−1/ν

|∂ξmq|
(∣∣∂ξχ̄

∣∣ + χ̄
)

+ |mq||∂ξQ|χ̄
)
dξ

! ‖∂ξmq‖L∞(ξA,+−2,ξA,++2) = ‖mε‖bou. (3.23)

Using (3.16), (2.25) and supp
(
χ̄
)
⊂ (ξA,+ − 2, ξA,+ + 2), we get that:

∣∣∣∣∣∣∣

+∞∫

−1/ν

L(mq)χ̄dξ

∣∣∣∣∣∣∣
! ‖mε‖bou

(∣∣∣∣
Rτ

R
+ 1

2

∣∣∣∣ + ν| log ν| + |Ms

M
|| log ν|

)
. (3.24)
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For the nonlinear term, we have by (2.25),
∣∣∣∣∣∣∣

+∞∫

−1/ν

mq∂ξmq

(1 + νξ)d−1 χ̄dξ

∣∣∣∣∣∣∣
! ‖mε‖2

bou. (3.25)

As Q = 1 + O(e−|ξ|/2) and |∂ξQ| ! e−|ξ|/2, we use (3.19) and suppχ̄ to write

Ψ(s, ξ) = −Ms

M

(
1 + O(ν2| log ν|e−A/2)

)
+ O

(
|Rτ

R
+ 1

2 |ν
2e−A/2

)
+ O(ν3| log ν|e−A/2).

From the above identity, we deduce

∞∫

−1/ν

Ψχ̄dξ = −Ms

M




∫

R

χdξ + O(ν2| log ν|e−A
2 )



 + O
(
ν2e−

A
2 (|Rτ

R
+ 1

2 | + ν| log ν|)
)
.

(3.26)
Using (2.3) and 

∣∣∂sχ̄
∣∣ ≤ |ντ |1ξA,+−2≤ξ≤ξA,++2, (2.25), we estimate

∣∣∣∣∣∣∣

+∞∫

−1/ν

mq∂sχ̄dξ

∣∣∣∣∣∣∣
! ν‖mε‖bou

(
1 +

∣∣∣∣
Rτ

R
+ 1

2

∣∣∣∣ +
∣∣∣∣
Ms

M

∣∣∣∣

)
. (3.27)

Injecting (3.23), (3.24), (3.25), (3.26) and (3.27) in (3.22), using that 
∫
R χdξ > 0 and 

| log ν|‖mε‖bou → 0 as τ0 → ∞ from (2.42), shows (3.21).

Step 3. End of the proof. Combining (3.21) and (3.13) shows (3.5) and (3.6). !

3.3. Improved ‖mq‖in bound

The following lemma shows that ‖mq‖in is a Lyapunov functional in the trapped 
regime.

Lemma 3.4 (Monotonicity of ‖mq‖in). There exist δ2 > 0 and C > 0 such that the 
following holds. There exists A∗ > 0 such that for any A ≥ A∗, for any κ, η, M̄0 > 0 and 
K ≥ e3A/10, for τ0 large enough, for all s0 ≤ s ≤ s1:

d

ds
‖mq(s)‖2

in ≤ −δ2‖mq(s)‖2
in + Ce

A
2 ν−2‖mε(τ)‖2

bou + Cν2. (3.28)

Proof. In this part we shall write χ = χin
A

introduced in (2.36) for sake of simplicity. We 
obtain from (2.17), from the commutator relation

L0(χmq) = χL0mq + 2∂ξχ∂ξmq +
(
∂2
ξχ− (1

2 −Q)∂ξχ
)
mq,
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and from the self-adjointness of L0 in L2
ω0 , the energy identity

1
2
d

ds
‖mq(s)‖2

in

= −
∞∫

−1/ν

L0m
in
q

[
L0m

in
q +

(1
2 −Q

)
∂ξχmq − ∂2

ξχmq − 2∂ξmq∂ξχ + ∂sχmq

]
ω0dξ

−
∞∫

−1/ν

L0m
in
q

[
L(mq)χ + χ

mq∂ξmq

(1 + νξ)d−1 + Ψχ
]
ω0dξ. (3.29)

The linear term Since min
q has compact support within (−ν−1, ∞), we may extend min

q

by 0 for ξ ≤ −ν−1 in order to apply Lemma A.2. Using (2.21) and (2.36) we obtain ∫
Rmin

q ∂ξQχAω0dξ = 0. Applying (A.6) and using (2.18) yield

∞∫

−1/ν

|L0m
in
q |2ω0dξ ≥ δ1‖min

q ‖2
H2

ω0
≥ δ̄‖mq‖2

in, for some δ̄ > 0. (3.30)

The boundary terms By definition of χ and using (3.7) (implying |ντ | ! ν), we have
∣∣∂k

ξχ
∣∣ ! 1{(ξA,+≤|ξ|≤ξA,++1)},

∣∣∂sχ
∣∣ ! |ν|1{(ξA,+≤|ξ|≤ξA,++1)}. (3.31)

Note that

ω0(ξ) ≈ ν−2e
A
2 for ξA,+ ≤ |ξ| ≤ ξA,+ + 1, (3.32)

we then estimate by using the two above inequalities, (2.37) and ∂ξ = ν∂ζ ,
∣∣∣∣∣∣∣

∞∫

−1/ν

[(1
2 −Q

)
∂ξχmq − ∂2

ξχmq − 2∂ξmq∂ξχ + ∂sχmq

]2
ω0dξ

∣∣∣∣∣∣∣
! ν−2e

A
2 ‖∂ζmε‖2

bou.

(3.33)

The generated error term We recall from (3.19) that for |ξ| ≤ ξA,+ + 1,

Ψ =
(
Rτ

R
+ 1

2

)
∂ξQ− Ms

M
(Q + ξ∂ξQ) + Ψ̃, (3.34)

Ψ̃ =
(
Rτ

R
+ 1

2

)
(d− 1)νξ∂ξQ− (d− 1)ν

(1
2ξ + 1

1 + νξ

)
∂ξQ

+
( 1

(1 + ξν)d−1 − 1
)
Q∂ξQ− ν

d− 1
1 + νξ

∂ξQ. (3.35)
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For the first term, we use the fact that L0 is self-adjoint in L2
ω0 , L0∂ξQ = 0 and (2.18), 

then Cauchy-Schwarz, (3.31), |∂ξQ| ! e−|ξ|/2, and ω0 ≈ e|ξ|/2 to write
∣∣∣∣∣∣∣

(
Rτ

R
+ 1

2

) ∞∫

−1/ν

L0m
in
q ∂ξQχω0dξ

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣

(
Rτ

R
+ 1

2

) ∞∫

−1/ν

min
q

(
(∂2

ξχ− (1
2 −Q)∂ξχ)∂ξQ + 2∂ξχ∂2

ξQ

)
ω0dξ

∣∣∣∣∣∣∣
(3.36)

!
∣∣∣∣
Rτ

R
+ 1

2

∣∣∣∣ ‖mq‖in





ξA,++1∫

ξA,+

e−
|ξ|
2 dξ





1
2

! νe−
A
4

∣∣∣∣
Rτ

R
+ 1

2

∣∣∣∣ ‖mq‖in ! ν‖mq‖in,

where we used the rough estimate e−A/4|Rτ/R+1/2| ! 1 from (3.5) for the last inequal-
ity. For the second term, using the self-adjointness of L0, (2.18), then Cauchy-Schwarz, 
|L0Q| ! e−|ξ|/2, (3.31), Q = 1 + O(e−|ξ|/2), |min

q | ! |mq| and ω0 ≈ e|ξ|/2 and (2.25)
yields

∣∣∣∣∣∣∣

∞∫

−1/ν

L0m
in
q (Q + ξ∂ξQ)χω0

∣∣∣∣∣∣∣
=

∣∣∣∣∣

∞∫

−1/ν

min
q L0(Q + ξ∂ξQ)χω0dξ

+
∞∫

−1/ν

min
q

(
(∂2

ξχ− (1
2 −Q)∂ξχ)(Q + ξ∂ξQ) + 2∂ξχ(2∂ξQ + ξ∂2

ξQ)
)
ω0dξ

∣∣∣∣∣

! ‖min
q ‖L2

ω0
+

∫

ξA,+≤|ξ|≤ξA,++1

|mq(ξ)|e
|ξ|
2 dξ ! ‖mq‖in + ‖mε‖bouν

−2e
A
2 .

Using (3.6), (2.44) and (3.2) (so that ν−1‖mε‖bou ! 1), we get the rough bound |Ms
M | ! ν. 

Thus,

|Ms

M
|‖mq‖in ! ν‖mq‖in.

Second, using (3.6) and the inequality xy ≤ x2/2 + y2/2 yields

|Ms

M
|‖∂ζmε‖bouν

−1e
A
2 ! ν| log ν|‖mε‖bou + e−A/4‖mε‖bou‖mq‖in + ν−2‖mε‖2

boue
A
2

! ν4| log ν|2e−A
2 + e−Aν2‖mq‖in + ν−2‖mε‖2

boue
A
2 .

We conclude by using the three previous inequalities,
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∣∣∣∣∣∣∣

Ms

M

∞∫

−1/ν

L0m
in
q Qχω0

∣∣∣∣∣∣∣
! ν‖mq‖in + ν4| log ν|2e−A

2 + ν−2‖mε‖2
boue

A
2 . (3.37)

To estimate the remaining term, using (3.5) and |∂ξQ| ! e−|ξ|/2 we obtain |Ψ̃(s, ξ)| !
ν〈ξ〉e−|ξ|/2. Hence, we have by Cauchy-Schwarz and ω0 ≈ e|ξ|/2,

∣∣∣∣∣∣∣

∞∫

−1/ν

L0m
in
q Ψ̃χω0

∣∣∣∣∣∣∣
! ‖L0m

in
q ‖L2

ω0
‖Ψ̃χ‖L2

ω0
! ν‖L0m

in
q ‖L2

ω0
.

Injecting (3.36), (3.37) and the above inequality in (3.34), then using (3.30) and xy ≤
µx2/2 + µ−1y2/2 shows that

∣∣∣∣∣∣∣

∞∫

−1/ν

L0m
in
q Ψχω0

∣∣∣∣∣∣∣
≤ C

(
ν‖L0m

in
q ‖L2

ω0
+ ν4| log ν|2e−A

2 + ν−2‖mε‖2
boue

A
2

)
(3.38)

≤ Cµ‖L0m
in
q ‖2

L2
ω0

+ Cµ−1ν2 + ν−2‖mε‖2
boue

A
2

≤ 1
10‖L0m

in
q ‖2

L2
ω0

+ Cν2 + ν−2‖mε‖2
boue

A
2 ,

if µ > 0 has been chosen small enough.

The small linear term and the nonlinear term We first estimate using (3.16), (3.5), 
(3.6) and (3.1) that for |ξ| ≤ ξA,+ + 1:

L(mq) + mq∂ξmq

(1 + νξ)d−1 = o(|∂ξmq|) + o(|mq|),

where the o() is as τ0 → ∞, and is uniform for |ξ| ≤ ξA,+ + 1. Hence, using the above 
inequality, then the decomposition (2.36), and then (3.32) and ω0(ξ) ≈ e|ξ|

2/2:

∞∫

−1/ν

χ2|L(mq) + mq∂ξmq

(1 + νξ)d−1 |
2ω0dξ =

∞∫

|ξ|≤ξA,+

... +
∞∫

ξA,+≤|ξ|≤ξA,++1

...

= o(‖mq‖2
in) + o(ν−2‖mε‖2

boue
A/2).

We thus obtain by using Cauchy-Schwarz, the above inequality and then (3.30),
∣∣∣∣∣∣∣

∞∫

−1/ν

L0m
in
q

(
χL(mq) + χ

mq∂ξmq

(1 + νξ)d−1

)
ω0dξ

∣∣∣∣∣∣∣
(3.39)
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! ‖L0m
in
q ‖L2

ω0

(
o(‖mq‖in) + o(ν−1eA/4‖mε‖bou

)

= o
(
‖L0m

in
q ‖2

L2
ω0

+ ν−2eA/2‖mε‖2
bou

)
.

Conclusion Injecting (3.30), (3.33), (3.38) and (3.39) in (3.29) shows (3.28) and con-
cludes the proof of Lemma 3.4. !

3.4. Improved exterior bound

In this subsection we improve the bootstrap bounds (2.42) and (2.43). We first study 
the exterior zone ζ ≥ ζ+ = 1 + 4ν| log ν| (or ξ ≥ ξ+ = 4| log ν|). We have from (2.5)
Q̄ν(ζ) = Qν(ζ) = 1 +O(ν2) for ζ ≥ ζ+. We write the equation satisfied by mε as a linear 
equation:

∂τmε = A mε + Pmε + E for ζ ≥ ζ+, (3.40)

where the main order operator A and the lower order operator P (note that P depends 
on mε, i.e. we are including nonlinear transport terms in the operator P) are

A =
( 1
ζd−1 − 1

2ζ
)
∂ζ + ν∂2

ζ , P = P1∂ζ + P0, (3.41)

P1 = Qν − 1
ζd−1 − ν

(d− 1)
ζ

+ mε

ζd−1 +
(
Rτ

R
+ 1

2

)
ζ, P0 = ∂ζQν

ζd−1 − Mτ

M
, (3.42)

and the error E is defined from (2.9),

E = ∂τQν − Mτ

M
Qν +

[
Qν

( 1
ζd−1 − 1

)
− ζ − 1

2 − ν
(d− 1)

ζ
+

(
Rτ

R
+ 1

2

)
ζ

]
∂ζQν .

(3.43)

Equation (3.40) dampens derivatives in the sense that the equation for mε,1 = ∂ζmε is

∂τmε,1 = A1mε,1 + P1mε,1 + F for ζ ≥ ζ+, (3.44)

where A1, P1 and F are given by

A1 = −
(
d− 1
ζd

+ 1
2

)
+

( 1
ζd−1 − 1

2ζ
)
∂ζ + ν∂2

ζ , (3.45)

P1 = P1∂ζ +
(
∂ζP1 + P0

)
, F = ∂ζE + ∂ζP0mε. (3.46)

The damping of Equation (3.44) is formalized using supersolutions. We introduce

φ1(ζ, τ) = 1
2K

5
4 e−κτe−

3
8

ζ−ζ+
ν , φ2(τ) = 1

2e
−κτζd−1. (3.47)
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Lemma 3.5. Recall χ̂η is defined by (2.40). There exist η∗(d) > 0 and κ∗ > 0, such that 
for any 0 < κ ≤ κ∗ and 0 < η ≤ η∗, for any K, M̄0, A > 0, for τ0 large enough, one has 
for all τ0 ≤ τ ≤ τ1 and ζ ≥ ζ+,

(
∂τ − A1

)(
φ1χ̂η + φ2

)
(ζ, τ) ≥ 1

16ν φ1(ζ, τ)χ̂η + 3
16φ2(τ). (3.48)

Proof. We first compute

(∂τ − A1)(φ1χ̂η) = χ̂η

(
∂τφ1 − A1φ1

)
− [A1, χ̂η]φ1,

with the commutator

[A1, χ̂η] = 2νχ̂′
η∂ζ +

[
νχ̂′′

η +
( 1
ζd−1 − 1

2ζ
)
χ̂′
η

]
.

Recall ζ+ = 1 + 4ν| log ν|. We compute using (3.47) and (3.45):

∂τφ1 − A1φ1
φ1

= 3
8ν

[ 1
ζd−1 − 1

2ζ −
3
8 + ντ

ν

(
ζ − 1 − 4ν

)]
+ d− 1

ζd
+ 1

2 − κ.

Since ντ
ν = −d−2

2 + o(1) (a consequence of (3.7)) where the o(1) is as τ0 → ∞, there is 
a constant 0 < η 3 1 such that for τ0 large enough

1
ζd−1 − 1

2ζ −
3
8 + ντ

ν

(
ζ − 1 − 4ν

)
≥ 1

16 , for ζ ∈ [1, 1 + 2η].

We also have for κ < 1/2, using again ντ
ν = −d−2

2 + o(1), d−1
ζd + 1

2 − κ > 0 for ζ > 0. 
Hence, combining the three above equality and inequalities we end up with

∂τφ1 − A1φ1 ≥ 1
16ν φ1 for ζ ∈ [1, 1 + 2η]. (3.49)

Using that the support of χ̂′
η̃ and χ̂′′

η̃ is 1 + η ≤ ζ ≤ 1 + 2η, (3.47), ζ+ = 1 + 4ν| log ν|, 
and that for ζ ≥ 1 + η there holds e− 3

8
ζ−ζ+

ν ≤ ν−
3
2 e−

3η
8ν we estimate

∣∣∣[A1, χ̂η]φ1

∣∣∣ ! K
5
4 e−κτν−

3
2 e−

3η
8ν ≤ νφ2, (3.50)

for τ0 large enough depending on η, K. A direct computation using (3.47) yields for 
κ < 1

4 :

∂τφ2 − A1φ2 =
[
−κ + 1

2 + d− 1
2ζ − ν

(d− 1)(d− 2)
ζ2

]
φ2 ≥ 1

4φ2 for ζ > 0. (3.51)

Combining (3.49), (3.50) and (3.51) yields the desired estimate (3.77) for τ0 large 
enough. !



C. Collot et al. / Journal of Functional Analysis 285 (2023) 110065 29

Lemma 3.6. There exist κ∗(d) > 0 and A∗ > 0, such that for any 0 < κ ≤ κ∗, A ≥ A∗

and K > 0 with e3A/10 ≤ K ≤ e
3
2A, for any M̄0, η > 0, for τ0 large enough one has for 

all s ≥ s0:
∣∣∂ξmq(s, ξ−)

∣∣ +
∣∣∂ξmq(s, ξ+)

∣∣ ! Kνe−κτ + ν2. (3.52)

Proof. We only establish the estimate (3.52) at ξ = ξ+ since those estimate at ξ = ξ− can 
be obtained by a very similar computation. We use a standard parabolic regularization 
argument. We write χ = χ1,ξ+ to ease notations. Note supp(χ1,ξ+) ⊂ {|ξ− ξ+| ≤ 2} and 
1{|ξ−ξ+|≤2} ! χ2,ξ+ . We introduce m̃q = χmq which solves from (2.17):

∂sm̃q = ∂2
ξ m̃q + f, f = f̃ + χΨ, (3.53)

f̃ = χ

(
(Q− 1

2)∂ξmq + ∂ξQmq + L(mq) + mq∂ξmq

(1 + νξ)d−1

)

+ (∂sχ− ∂2
ξχ)mq − 2∂ξχ∂ξmq.

We now estimate f . Using (3.16), (3.5), (3.6) and (3.1), we get |f̃ | ! (|mq| +|∂ξmq|)χ2,ξ+ . 
Thus, applying Cauchy-Schwarz, then using (2.44) and ω0(ξ) ≈ ν−2 on supp(χ2,ξ+) yields

‖f̃‖L2(R) ! ‖mq‖in‖χ2,ξ+
√
ω0

−1‖L2 ! νKe−κτ . (3.54)

Next, using (3.6) and (3.2) and eA/10 ≤ K yields |Ms/M | ! ν2 + νK5/4e−3A/8e−κτ . 
Hence, we estimate from (3.19), Q(ξ) = 1 + O(e−|ξ|/2) and |∂ξQ(ξ)| ! e−|ξ|/2, for all 
|ξ − ξ+| ≤ 2:

|Ψ(s, ξ)| ! |Ms

M
|Q(ξ) +

(
|Rτ

R
+ 1

2 | + |Ms

M
|| log ν| + ν| log ν|

)
|∂ξQ(ξ)|

! ν2 + νK5/4e−3A/8e−κτ

and hence,

‖χΨ‖L2(R) ! ν2 + νK5/4e−3A/8e−κτ . (3.55)

Injecting (3.54) and (3.55) in (3.53) yields

‖f(s)‖L2(R) ! νKe−κτ (1 + K1/4e−3A/8) + ν2. (3.56)

For s ≥ s0, we introduce s̃0 = max(s − 1, s0) and get from (3.53) the representation 
formula

m̃q = Ks−s̃0 ∗ m̃q(s̃0)︸ ︷︷ ︸
=m̃1

q

+
s∫

s̃0

Ks−s′ ∗ f(s′)ds′

︸ ︷︷ ︸
=m̃2

q

, Ks(ξ) = (4πs)− 1
2 e−

ξ2
4s . (3.57)
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Note that ‖Ks‖L1 = 1 and ‖∂ξKs‖L2 ! s−3/4 by direct computations. Hence, if s̃0 = s0
then by Young’s inequality, the localization of χ, (2.47) and ∂ξ = ν∂ζ , (2.46) and (A.2),

‖∂ξm̃1
q‖L∞(R) ! ‖Ks−s0‖L1(R)‖∂ξm̃q(s0)‖L∞(R)

! ‖∂ξmq(s0)‖L∞(|ξ−ξ+(s0)|≤2) + ‖mq(s0)‖L∞(|ξ−ξ+(s0)|≤2) ! νe−κτ ,

(3.58)

while if s̃0 = s − 1, then using (3.1) and the localization of χ yields

‖∂ξm̃1
q‖L∞(R) ! ‖∂ξK1‖L2(R)‖m̃q(s− 1)‖L2(R) ! νKe−κτ . (3.59)

Finally, using (3.56) and 
∫ 1
0 s−3/4ds < ∞ we obtain

‖∂ξm̃2
q‖L∞ !

s∫

s̃0

‖∂ξKs−s′‖L2‖f‖L2ds′ ! νKe−κτ (1 + K1/4e−3A/8) + ν2. (3.60)

Injecting (3.58), (3.59) and (3.60) in (3.57) and K ≤ e3A/2 yields the estimate (3.52). !

Lemma 3.7. There exists K∗ ≥ 1 and κ∗ > 0 such that if A, K, κ, η, M̄0 satisfy the 
conditions of Lemmas 3.5 and 3.6, with K ≥ K∗ and 0 < κ ≤ κ∗, then for all τ0 ≤ τ ≤
τ1:

∣∣∂ζmε(ζ, τ)
∣∣ ≤ φ1(ζ, τ)χ̂η + φ2(τ) for ζ ≥ ζ+, (3.61)

where φ1 and φ2 are defined in (3.47), and χ̂η is introduced in (2.40).

Proof. Step 1. Proof assuming a technical estimate. The proof relies on the standard 
parabolic comparison principle, where we shall construct a super/sub solution for the 
equation satisfied by ∂ζmε. We claim the following: for τ0 large enough, for all τ ≥ τ0
and ζ ≥ ζ+,

∣∣P1
(
φ1(ζ, τ)χ̂η(ζ) + φ2(τ)

)∣∣ + |F (ζ, τ)| ≤ 1
32ν φ1(ζ, τ)χ̂η + 1

8φ2(τ). (3.62)

We proceed with the proof of (3.61), establishing (3.62) later on. From (3.48) and (3.62), 
we obtain that φ1χ̂η + φ2 is a supersolution to (3.44) for τ ≥ τ0 and ζ ≥ ζ+ thanks to

(
∂τ − A1 − P1

)(
φ1(ζ, τ)χ̂η + φ2(τ)

)
− F > 0. (3.63)

Next, at the initial time τ0 we have because of (2.47) that for all ζ ≥ ζ+(τ0),

mε,1(τ0, ζ) ≤ φ2(τ0) ≤ (φ1χ̂η + φ2)(τ0, ζ). (3.64)
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At the boundary, we combine (3.52), (3.3) and (3.47) to get for all τ0 ≤ τ ≤ τ1:

mε,1(τ, ζ+) ≤ φ1(τ, ζ+) ≤ (φ1χ̂η + φ2)(τ, ζ+), (3.65)

if κ is small enough, K is large enough and then τ0 is large enough. Combining (3.44), 
(3.63), (3.64) and (3.65), we can apply the maximum principle for φ1χ̂η +φ2 −mε,1 as a 
supersolution for the parabolic operator ∂τ − A1 −P1 on the set {τ0 ≤ τ ≤ τ1, ζ ≥ ζ+}
that is nonnegative at its boundary, and we obtain φ1χ̂η +φ2 −mε,1 ≥ 0 on this set, i.e.

mε,1(ζ, τ) ≤ φ1(ζ, τ)χ̂η(ζ) + φ2(τ).

The bound −mε,1 ≤ φ1χ̂η + φ2 is obtained similarly. Combining these two bounds 
concludes the proof of (3.61).
Step 2. Control of the lower order terms. We now prove (3.62). Recall (3.42) and (3.41). 
From (2.25) and (2.42), we write for ζ ≥ ζ+,

|mε(ζ, τ)|
ζd−1 ≤ 1

ζd−1

ζ∫

1+νξ∗

|∂ζmε(ζ ′)|dζ ′ ≤ ζK
5
4 e−κτ . (3.66)

Recall ζ ≥ ζ+ = 1 + 4ν| log ν| corresponds to ξ ≥ ξ+ = 4| log ν|. We use the exponential 
decay Q(ξ) = 1 + O(e−ξ/2) for ξ ≥ 0 with e−ξ/2 ! ν2 for ζ ≥ ζ+, (3.66), and (3.5) to 
estimate for ζ ≥ ζ+,

|P1(ζ, τ)| ! |Qν − 1| + ν

ζ
+ |mε(ζ, τ)|

ζd−1 +
∣∣∣∣
Rτ

R
+ 1

2

∣∣∣∣ ζ

! e−
ξ
2 + ν + ‖∂ζmε(τ)‖L∞(ζ≥ζ+) +

(
ν + e−

A
4 ‖mq(τ)‖in + A‖mε‖bou

)
ζ

! K
5
4 e−κτζ,

where we used (2.44) and (3.2) for the last inequality and took κ small enough τ0 large 
enough, and similarly

|∂ζP1(ζ, τ)| ! |∂ζQν(ζ)| + |Qν − 1| + ν + |mε(ζ, τ)|
ζd

+ |∂ζmε(ζ, τ)|
ζd−1 +

∣∣∣∣
Rτ

R
+ 1

2

∣∣∣∣

! K
5
4 e−κτ ,

and, using in addition (3.6) and Mτ = ν−1Ms,

|P0(ζ, τ)| ! |∂ζQν(ζ)| +
∣∣∣∣
Mτ

M

∣∣∣∣ ! ν + ‖mq(τ)‖in + ν−1‖mε(τ)‖bou ! K
5
4 e−κτ .

Hence, using that φ1 ≤ K5/4ν−3/2e−
3η
8ν for ζ ≥ 1 + η and φ2 = e−κτζd−1/2:
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∣∣P1φ1(ζ, τ)χ̂η

∣∣ +
∣∣P1φ2(τ)

∣∣

≤ |P1∂ζφ1(ζ, τ)|χ̂η + |∂ζP1 + P0|φ1χ̂η + |P1∂ζ χ̂η|φ1 +
(
|∂ζP1 + P0|φ2(τ) + |P1||∂ζφ2|

)

!
( 3

8ν |P1| + |∂ζP1| + |P0|
)
φ1χ̂η + |P1|φ11{1+η≤ζ≤1+2η}

+
(
|∂ζP1| + |P0| + ζ−1|P1|

)
φ2(τ)

! 3
8νK

5
4 e−κτφ1χ̂η + K

5
2 ν−

3
2 e−

3η
8ν φ2 + K

5
4 e−κτφ2(τ) ≤ 1

64ν φ1(ζ, τ)χ̂η + 1
16φ2(τ),

(3.67)

for τ0 large enough.
We now estimate the source term F = ∂ζE+∂ζP0mε. Using (3.42), |∂j

ξQ(ξ)| ! e−|ξ|/2

for j = 1, 2 and (3.66) we obtain for ζ ≥ ζ+,

∣∣∂ζP0(ζ)mε(ζ)
∣∣ =

∣∣∂ζ
(∂ζQν

ζd−1
)
(ζ)mε(ζ)

∣∣ !
(
|∂2

ζQν(ζ)| + |∂ζQν(ζ)|
) |mε(ζ)|

ζd−1

! 1
ν2 e

− ξ
2 ‖∂ζmε‖L∞(ζ≥ζ+). (3.68)

Next, using |ντ/ν| ! 1 from (3.7) and |∂j
ξQ(ξ)| ! e−|ξ|/2 for j = 1, 2, for ζ ≥ ζ+,

∣∣∂ζ∂τQν(ζ)
∣∣ = 1

ν
|ντ
ν
|
∣∣∂ξQ(ξ) + ξ∂2

ξQ(ξ)
∣∣ ! 1

ν
ξe−

ξ
2 ,

and similarly, using that ζ − 1 ≥ ν yields the estimate
∣∣∣∣∂ζ

(
Qν∂ζQν

( 1
ζd−1 − 1

))∣∣∣∣ +
∣∣∣∂ζ

[
(ζ − 1)∂ζQν

]∣∣∣ +
∣∣∣∂ζ

[ν
ζ
∂ζQν

]∣∣∣

!
(∣∣∂ζQν

∣∣2 +
∣∣∂2

ζQν

∣∣
)

(ζ − 1) + |∂ζQν | ! 1
ν
ξe−

ξ
2 .

We estimate using Mτ = ν−1Ms, (3.5) and (3.6) for ζ ≥ ζ+:
∣∣∣∣

(
Rτ

R
+ 1

2

)
∂ζ(ζ∂ζQν) −

Mτ

M
∂ζQν

∣∣∣∣ !
∣∣∣∣
Rτ

R
+ 1

2

∣∣∣∣ |ζ∂
2
ζQν | +

(∣∣∣∣
Rτ

R
+ 1

2

∣∣∣∣ +
∣∣∣∣
Mτ

M

∣∣∣∣

)
|∂ζQν |

! |ζ∂2
ζQν | + |∂ζQν | ! 1

ν2 ξe
− ξ

2 ,

where we used the rough estimate ζ ≤ ξ. Injecting the three above inequalities in (3.43)
shows |∂ζE| ! ν−2ξe−ξ/2. Combining this with (3.68) gives |F | ! ν−2ξe−ξ/2. Now, 
observe from the definition (3.47) of φ1 and φ2 that ξe−ξ/2 ≤ ν2| log ν|eκτφ1(τ, ζ) for 
ζ ≥ ζ+ = 1 + 4ν| log ν| for K large enough, and ξe−ξ/2 ≤ e−η/3νφ2(τ) for ζ ≥ 1 + η for 
τ0 large enough depending on η. Hence, for ζ ≥ ζ+,

|F | ! ν−2ξe−ξ/2 ! | log ν|eκτφ1(τ, ζ)χ̂η + ν−2e−
η
3ν φ2(τ) ≤ 1

64ν φ1(ζ, τ)χ̂η + 1
16φ2(τ),
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where we used (3.3) and took κ small enough, and then τ0 large enough. Combining the 
above inequality and (3.67) shows the desired estimate (3.62). !

We now turn to the control of the solution over the interval ζ ∈ (0, ζ−). We have by 
(2.5),

∂τmε = A −mε + P−mε + E for ζ ≤ ζ−, (3.69)

where

E = ∂τ Q̄ν +
[
Q̄ν

( 1
ζd−1 − 1

)
− ζ − 1

2 − ν
(d− 1)

ζ
+

(
Rτ

R
+ 1

2

)
ζ

]
∂ζQ̄ν − Mτ

M
Q̄ν .

(3.70)

A − = −1
2ζ∂ζ + ν

(
∂2
ζ − d− 1

ζ
∂ζ

)
, (3.71)

P− = P−
1 ∂ζ + P−

0 , P−
1 = Q̄ν

ζd−1 + mε

ζd−1 +
(
Rτ

R
+ 1

2

)
ζ, P−

0 = ∂ζQ̄ν

ζd−1 − Mτ

M
.

(3.72)

The equation for mε,1 = ∂ζmε reads as

∂τmε,1 = A −
1 mε,1 + P−

1 mε,1 + F− for ζ ≤ ζ−, (3.73)

where

A −
1 = −1

2ζ∂ζ −
1
2 + ν

(
∂2
ζ − d− 1

ζ
∂ζ + d− 1

ζ2

)
, (3.74)

P−
1 = P−

1 ∂ζ +
(
∂ζP

−
1 + P−

0
)
, F− = ∂ζE + ∂ζP

−
0 mε. (3.75)

We introduce

φ−
1 (ζ, τ) = 1

2K
5
4 e−κτe−

3
8

ζ−−ζ

ν , φ−
2 (ζ, τ) = 1

2νζ
d−1e−κτ . (3.76)

Lemma 3.8. There exist η∗(d) > 0 and κ∗ > 0, such that for any 0 < κ ≤ κ∗ and 
0 < η ≤ η∗, for any K, M̄0, A > 0, for τ0 large enough, one has for all τ0 ≤ τ ≤ τ1 and 
ζ ≤ ζ−,

(
∂τ − A −

1
)(
φ−

1 χ̂η + φ−
2
)
(ζ, τ) ≥ 1

16ν φ
−
1 (ζ, τ)χ̂η + 1

4φ
−
2 (τ). (3.77)

Proof. By a direct computation, one obtains for all 1 − 2η ≤ ζ ≤ 1,

∂τφ
−
1 − A −

1 φ−
1

φ−
1

= 3
8ν

(1
2 − 3

8 + ντ
ν

(1 − 4ν − ζ)
)

+ 1
2 + 3

8ζ (d− 1) − κ− ν
d− 1
ζ2 ≥ 1

16ν ,
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where we used the fact that 0 < ν → 0 uniformly as τ0 → ∞, |ντ
ν | ! 1 from (3.7), and 

took η > 0 small enough. Using the fact that 
(
∂2
ζ − d−1

ζ ∂ζ + d−1
ζ2

)
ζd−1 = 0, we obtain

∂τφ
−
2 − A −

1 φ−
2

φ−
2

= d

2 − κ + ντ
ν

= 1 − κ + o(1) ≥ 1
2 , (3.78)

where we used that |ντ
ν = d−2

2 + o(1) from (3.7). With a computation that is so similar 
to that establishing (3.50) in the proof of Lemma 3.5, so that we omit it, we moreover 
have for ζ ≤ ζ−,

|[A −
1 , χ̂η]φ−

1 | = o(φ−
2 ),

where [A −
1 , χ̂η] = A −

1 χ̂η − χ̂ηA
−
1 and o() stands for τ0 → ∞ and is uniform in τ, ζ. 

Combining the three above inequalities yields the desired estimate (3.77). !

Lemma 3.9. We assume that mq(τ) ∈ SK,κ(τ) for τ ∈ [τ0, τ1] and τ1 > τ0 1 1, there 
exists 0 < η 3 1 and the following holds true for all τ ∈ [τ0, τ1]:

∣∣∂ζmε(ζ, τ)
∣∣ ≤ φ−

1 (ζ, τ)χ̂η + φ−
2 (ζ, τ) for 0 < ζ ≤ 1 − 4ν| log ν|, (3.79)

where χ̂η is introduced in (2.40).

Proof. The proof is the same as for (3.61) by using the comparison principle, so we skip 
redundant details. Due to the localized cut-off function χ̂η, we note that the estimate 
(3.62) holds true also for ζ ∈ [1 −2η, ζ−], so that using in addition (3.77) on this interval 
we have

[
∂τ − A −

1 − P−
1
](
φ−

1 (ζ, τ)χ̂η + φ−
2 (τ)

)
− F−(ζ, τ) ≥ 1

32ν φ1(ζ, τ)χ̂η + 1
8φ2(τ). (3.80)

Since χ̂η ≡ 0 for ζ ≤ 1 − 2η it remains to check that φ−
2 satisfies

[
∂τ − A −

1 − P−
1
]
φ−

2 (ζ, τ) − F−(ζ, τ) > 0, for ζ ∈ (0, 1 − 2η). (3.81)

To this end, we first recall from (3.78) the estimate ∂τφ−
2 −A −

1 φ−
2 ≥ 1

2φ
−
2 . We estimate 

for ζ ∈ (0, 1 − 2η) by using (2.43) and mε(0) = 0,

|mε(ζ, τ)| =

∣∣∣∣∣∣

ζ∫

0

mε,1(ζ ′, τ)dζ ′
∣∣∣∣∣∣
! νe−κτ ζd.

We also have by the definition (2.12) of Q̄ν and (3.5),
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|P−
1 ζ−1| + |∂ζP−

1 | + |P0| !
|∂ζQ̄ν |
ζd−1 + |Q̄ν |

ζd
+ |mε(ζ, τ)|

ζd
+ |mε,1|

ζd−1 +
∣∣∣∣
Rτ

R
+ 1

2

∣∣∣∣

! 1
νζd0

e−
|ζ−1|

2ν + νe−κτ + K
5
4 e−κτ ! ν

ζd0
+ K

5
4 e−κτ ! K

5
4 e−κτ .

Hence, for τ0 large enough, we have

|P−
1 φ−

2 | ≤
(
(d− 1)|P−

1 ζ−1| + |∂ζP−
1 | + |P−

0 |
)
φ−

2 ≤ CK
5
4 e−κτφ−

2 ≤ 1
16φ

−
2 .

For the estimate of F−, we have the rough estimate for ζ ∈ (0, 1 − 2η),

|F (ζ, τ)| ! 1
ν2ζd

e−
|ξ|
2 1{ζ≥ζ0} ! 1

ν2ζ2d−1
0

e−
η
ν eκτφ−

2 ! νφ−
2

for τ0 large enough. Gathering all the above estimates yields the estimate (3.81). Com-
bining (3.80) and (3.81) shows that for all 0 < ζ ≤ ζ−:

[
∂τ − A −

1 − P−
1
](
φ−

1 (ζ, τ)χ̂η + φ−
2 (τ)

)
− F−(ζ, τ) ≥ 1

32ν φ1(ζ, τ)χ̂η + 1
8φ2(τ).

The end of the proof of Lemma 3.9 is then exactly as that of Lemma 3.7, relying on the 
above inequality, so we omit it. !

3.5. Proof of Proposition 2.8 and conclusion of the main theorem

Proof of Proposition 2.8. We first improve estimates introduced in Definition 2.6 by a 
1
2 factor. We claim that for all τ ∈ [τ0, τ1]:

1
2e

− τ
2 ≤ R(τ) ≤ 2e− τ

2 ,
M0
2 ≤ M(τ) ≤ 2M0, (3.82)

∣∣∂ζmε(ζ, τ)
∣∣ ≤ 1

2e
−κτ

(
K

5
4 e−

3
8

ζ−ζ+
ν χ̂η + 1

)
, for ζ ≥ ζ+, (3.83)

∣∣∂ζmε(ζ, τ)
∣∣ ≤ 1

2e
−κτ

(
K

5
4 e−

3
8

ζ−−ζ

ν χ̂η + νζd−1
)

for 0 < ζ ≤ ζ−, (3.84)

‖mq(τ)‖in ≤ K

2 e−κτ . (3.85)

The inequality (3.82) is proved in Corollary 3.3. The inequalities (3.83) and (3.84) are 
proved in Lemmas 3.7 and 3.9 (using (3.47)). Hence it only remains to prove (3.85). Let 
f(τ) = ‖mq(τ)‖2

in, we aim at proving

f(τ) ≤ K2

4 e−2κτ , ∀τ ∈ [τ0, τ1]. (3.86)

From (3.3) we infer that for κ < d−2
4 , we have ν2 ≤ e−2κτ for τ0 large enough depending 

on M̄0. Lemma 3.4, together with this inequality and (3.2) then implies
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d

ds
(eδ2sf) ≤ eδ2s(Cν−2e

A
2 ‖mε(τ)‖2

bou + Cν2) ≤ eδ2s−2κτ
(
CK

5
2 e−

A
4 + C

)
. (3.87)

Recall that dτds = ν so that d
ds (δ2s − 2κτ) ≥ δ2

2 for τ0 large enough. From this, we deduce 
that eδ2(s0−s) ≤ e2κ(τ0−τ) and 

∫ s
s0
eδ2s̃−2κτ(s̃)ds̃ ≤ 2

δ2
eδ2s−2κτ . Integrating (3.87) with 

time s using these two inequalities yields

f(s) ≤ eδ2(s0−s)f(s0) + e−δ2s
(
CK

5
2 e−

A
4 + C

) s∫

s0

eδ2s̃−2κτ(s̃)ds̃

≤ e2κ(τ0−τ)f(s0) + e−2κτ
(
CK

5
2 e−

A
4 + C

)
≤ e−2κτ

(
CK

5
2 e−

A
4 + C

)
,

(3.88)

where we used (2.44) with constant K = 1 at initial time s0 from (2.46). The estimate 
(3.88) implies (3.86) upon choosing K large enough with Ke−

A
2 small enough. Hence 

(3.82), (3.83), (3.84) and (3.85) are valid.
Let now T be the set of times τ1 ≥ τ0 such that the solution is trapped on [τ0, τ1]. 

By continuity, the set T is closed. Now, for any τ1 ∈ T , the inequalities underlying 
Definition 2.6 are strict inequalities at time s1 as they are improved by the factor 1

2
using (3.82), (3.83), (3.84) and (3.85). Hence by continuity of the flow of (2.2), we have 
[min(τ1 − δ, τ0), τ1 + δ] ⊂ T for some δ small enough, so that T is open in [s0, ∞). By 
connectedness, T = [s0, ∞) which concludes the proof of Proposition 2.8. !

Proof of Theorem 1.1. Theorem 1.1 is just a direct consequence of Proposition 2.8. Re-
call that dτdt = M(t)

Rd(t) , we use (3.10) and (3.9) to write

dτ

dt
= M∞

R̃d
∞

e
d
2 τ
[
1 + O(e−κτ )

]
.

Solving this equation yields the existence of T > 0 such that

τ = −2
d

log
(
dM∞

2R̃d
∞

(T − t)
)[

1 + ot→T (1)
]
. (3.89)

Hence, the estimate (3.9) is written in terms of the t variable as

R(t) = R̃∞e
1
2

[
2
d log

(
dM∞
2R̃d∞

(T−t)
)]
[
1 + ot→T (1)

]
=

[d
2M∞(T − t)

] 1
d
[
1 + ot→T (1)

]
.

Unwinding the change of variables (2.1), (2.4), (2.13), one gets

u(r) = M

Rd−1λ
(∂ξQ(ξ) + ũ(r)), ũ(r) = 1

ζd−1 ∂ξQ̃(ξ) − ∂ξQ(ξ) + 1
ζd−1 ∂ξmε(ζ),
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where Q̃(ξ) = Q̄ν(ζ). Since the solution is global in time τ , the desired estimate (1.7)
for ũ then directly follows from (2.10), (2.7) and (3.11) to estimate the first term, and 
(2.42), (2.43) and (2.44) to estimate the second one (upon using a parabolic regularity 
argument for ξ− ≤ ξ ≤ ξ+ similar to Lemma 3.6 that we omit).

We now turn to the continuity of the blowup dynamics. Fix u0 satisfy the requirements 
of Proposition 2.8, and let u solve (1.1) with data u0. Then any v0 close enough to 
u0 in L∞ satisfies the requirements of Proposition 2.8 with same bootstrap constants 
(A, K, ...), so that the solution v to (1.1) with data v0 blows up at time T (v0) and satisfies 
(1.5), (1.6) and (1.7) as well. We now prove the continuity of T and M∞. Let τu, Mu, Ru

and τv, Mv, Rv denote u and v related parameters respectively. Integrating the relations 
dt/dτ = Rd/M , and using (3.9) and (3.10) we obtain:

T (u0) =
∞∫

τu(0)

Rd
u(τ)

Mu(τ)dτ, |Mu(τ) −M∞(u0)| +
∞∫

τ

∣∣∣∣
Rd

u(τ̃)
Mu(τ̃)

∣∣∣∣ dτ̃ ≤ Ce−κτ ∀τ ≥ τu(0),

(3.90)

T (v0) =
∞∫

τv(0)

Rd
v(τ)

Mv(τ)dτ, |Mv(τ) −M∞(v0)| +
∞∫

τ

∣∣∣∣
Rd

v(τ̃)
Mv(τ̃)

∣∣∣∣ dτ̃ ≤ Ce−κτ ∀τ ≥ τv(0),

(3.91)

with same constant C > 0. Let now δ > 0. There then exists tδ ∈ [0, T (u0)) such 
that Ce−κτu(tδ) ≤ δ/4. By continuity of the flow of (1.1) with respect to the initial 
data in L∞(Rd) (see [1] and references therein), we have that T (v0) ≥ tδ for v0 close 
to u0, and that τv → τu, Rv → Ru and Mv → Mu uniformly on [0, tδ], as v0 →
u0. Hence for v0 close enough to u0, Ce−κτv(tδ) ≤ δ/3, |Mv(tδ) − Mu(tδ)| ≤ δ/3, and 
| 
∫ τv(tδ)
τv(0)

Rd
v(τ)

Mv(τ)dτ −
∫ τu(td)
τu(0)

Rd
u(τ)

Mu(τ)dτ | ≤ δ/3. Combining these inequalities with (3.90) and 
(3.91) one obtains that |T (v0) − T (u0)| ≤ δ and |M∞(v0) −M∞(u0)| ≤ δ. This proves 
the continuity of T and M∞ and ends the proof of Theorem 1.1. !

Data availability

No data was used for the research described in the article.

Appendix A. Functional analysis

Lemma A.1 (Poincaré and Sobolev in H1
ω0). There exists C > 0 such that the following 

inequalities hold true for any u ∈ H1
ω0 ,

∫

R

|u(y)|2ω0(y)dy ≤ C

∫

R

|∂yu(y)|2ω0(y)dy, (A.1)
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|u(ξ)| ≤ Ce−
|ξ|
4




∫

R

|∂yu(y)|2ω0(y)dy





1
2

for all ξ ∈ R. (A.2)

Proof. The second inequality (A.2) is a direct consequence of the fundamental Theorem 
of Calculus and of Cauchy-Schwarz. Indeed, as ω0u2 ∈ L1(R), there exists yn → −∞ such 
that ω0(yn)u2(yn) → 0 and hence u(yn) → 0. For y ≤ 0, we have u(y) = u(yn) +

∫ y
yn

∂yu

so that u(y) =
∫ y
0 ∂yu by letting n → ∞. We estimate since ω0 ≈ e|ξ|/2:

|u(y)| = |
y∫

−∞

∂yu| ≤




y∫

−∞

|∂yu|2ω0





1
2



y∫

−∞

ω−1
0





1
2

!




y∫

−∞

|∂yu|2ω0





1
2

e
y
4 .

For y ≥ 0 the proof is the same upon replacing −∞ by ∞ in the integrals. Hence (A.2)
is proved. From (A.2), we deduce

2∫

−2

u2dy !
∫

R

|∂yu(y)|2ω0(y)dy. (A.3)

Take now χ a cut-off function such that χ(y) = 2 for y ≥ 1, χ(y) = 0 for y ≤ 1, and 
write u1(y) = χ(y)u and u2(y) = χ(−y)u. We have for i = 1, 2, integrating by parts:

∫

R

ui∂yuiω0dy = −1
2

∫

R

u2
i ∂yω0dy.

Since on (−∞, 1] and [1, ∞) we have ∂yω0 ≈ ω0 from the formula (2.24), we deduce that

∫

R

|ui|2ω0 !

∣∣∣∣∣∣

∫

R

ui∂yuiω0

∣∣∣∣∣∣
for i = 1, 2.

Applying Cauchy-Schwarz and Young inequalities yields
∫

R

|ui|2ω0 !
∫

R

|∂yui|2ω0 !
∫

R

|∂yu|2ω0, (A.4)

where we used (A.2) in the last inequality. Combining (A.3) and (A.4) shows (A.1). !

Lemma A.2 (Coercivity of L0). There exists A∗, δ1 > 0 such that the following holds 
true for all A ≥ A∗. Assume that f ∈ H2

ω0 satisfies 
∫
R f∂ξQχAω0dξ = 0. Then:

δ1‖f‖2
H1

ω0
≤ −

∫

R

L0ffω0dξ, (A.5)
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δ1‖f‖2
H2

ω0
≤

∫

R

|L0f |2ω0dξ. (A.6)

Proof. We first decompose

f = c∂ξQ + g, with
∫

R

g∂ξQω0 = 0. (A.7)

We compute by integrating (A.7) against ∂ξQω0 that c = ‖∂ξQ‖−2
L2

ω0

∫
R f(1 −χA)∂ξQω0dξ. 

Using Cauchy-Schwarz, ω0(ξ) ≈ e|ξ|/2 and |∂ξQ(ξ)| ! e−|ξ|/2 we get |c| ! e−A/4‖f‖L2
ω0

. 
Thus:

‖f‖H1
ω0

≤ 2‖g‖H1
ω0

and
∫

R

L0ffω0dξ =
∫

R

L0ggω0dξ, (A.8)

‖f‖H2
ω0

≤ 2‖g‖H2
ω0

and ‖L0f‖L2
ω0

= ‖L0g‖L2
ω0
, (A.9)

for A large enough for the inequalities, and using L0∂ξQ = 0 for the equalities.
We now apply Lemma 2.5 to g and get 〈−L0g, g〉L2

ω0
≥ δ‖g‖2

H1
ω0

. This inequality and 
(A.8) imply the first estimate (A.5) of the Lemma. Using |xy| ≤ δ|x|/2 + |y|/2δ we have 
〈−L0g, g〉L2

ω0
≤ ‖L0g‖2

L2
ω0
/2δ + δ‖g‖2

L2
ω0
/2. Combining these two inequalities yields

‖g‖H1
ω0

≤ δ−1‖L0g‖L2
ω0
. (A.10)

Since L0g = ∂2
ξg − (1/2 − Q)∂ξg + ∂ξQg, we deduce |∂2

ξg| ≤ |L0g| + |∂ξg|/2 + |g|/2, so 
that:

‖∂2
ξg‖L2

ω0
≤ ‖L0g‖L2

ω0
+ ‖g‖H1

ω0
. (A.11)

Combining (A.10) and (A.11) shows ‖g‖H2
ω0

≤ C(δ)‖L0g‖L2
ω
. Combining this inequality 

and (A.9) shows the second inequality of the Lemma (A.6). !
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