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1. Introduction
1.1. Singularity formation for the parabolic-elliptic Keller-Segel system

This paper is concerned with the parabolic-elliptic Keller-Segel system

ou= V-(Vu—uVd,) . d

’ R®. 1.1
{ -AdP, =u, i (1.1)

Solutions may develop singularities in finite time. This is relevant in the perspective of
understanding the qualitative behavior of solutions to (1.1), what we describe now. This
is also interesting in regard of singularity formation for other equations, and we analyze
our result in this broader context in the comments after Theorem 1.1.

System (1.1) arises in modeling biological chemotaxis processes and stellar dynamics.
Here, u(x,t) stands for the density of particles or cells and ®,, is a self-interaction po-
tential. We refer to [27], [28] [29] for a derivation of a general formulation of (1.1) to
describe the aggregation of the slime mold amoebae Dictyostelium discoideum and [50],
[51] for the case d = 3 as a model of stellar dynamics under friction and fluctuations.
We recommend the reference [24] where the author gives a nice survey of mathematical
problems encountered in the study of (1.1) and a wide bibliography including references
of related models.

We recall that from standard argument, given a radial function ug € L>(R9), there
exists a unique local in time solution to (1.1), see [20] for example. We refer to [1]
for further results on local well-posedness in other spaces. Moreover, by a comparison
argument, if u blows up in finite time 7" > 0, there holds the lower bound of the blowup
rate

Ju(®)|| L@y = (T — )

(see [31] for other lower bounds). It is well known that the solution exists globally in
time for d = 1, see [38]. The case d = 2 is called L'-critical in the sense that the scale

transformation

VYA>0, wup(z,t)= %u(%, %), (1.2)
preserves the total mass M = [p, u(z,t)dz = [, ux(x,t)dz which is a conserved quan-
tity for (1.1). There exhibits a remarkable dichotomy:

- If M < 8m, Dolbeault-Perthame [16] proved that the solution is global in time. This
result was further completed and improved in [3]. The main ingredient in deriving the
sharp threshold 87 for global existence is the use of the free-energy functional
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Flul(t) = / u(z, 1) log u(a, 1) — %(I)u(x,t)] da, (1.3)

Ra

combined with the logarithmic Hardy-Littlewood-Sobolev inequality

/f(x)logf d:l:+—//f y)log|z — yldedy > —My(1 + logm — log My),
R2 R2

where My = [g. f(x)dx.

- If M = 87 and the second moment is finite, i.e. [p, [#|?u(x,t)dz < +o00, Blanchet-
Carrillo-Masmoudi [4] showed the existence of infinite time blowup solutions to (1.1).
Again, the free-energy functional F played a crucial role in the work [4]. Concrete exam-
ples have been constructed in [19] and [14] where the authors rectified the blowup law
obtained in [46]:

|u(t)| Lo (r2y ~ clnt as t — +oo.

Certain solutions with infinite second moments converge to a fixed stationary state [5],
with quantitative rates [8].
- If M > 8m, any positive solution blows up in finite time. Indeed, the equation for

d 9 M

— =4M (1 - —

dt/|x| u(z,t)dx ( 87r)’
R2

cannot be satisfied for all times as the right-hand side is strictly negative and the differ-

the second moment

entiated quantity is positive. Finite time blowup solutions had been predicted in [39], [9],
[26]. Rigorous constructions were later done by Herrero-Velazquez, [21], [49], Raphaél-
Schweyer [42] and the present authors [11] where the following blowup dynamics was
confirmed:

u(t)z)\;(t)U(%) with A(t) = 2¢= 5 VT —te V" (14 opr(1)),  (L.4)

where U(x) = 8(1+ |]?)~? is stationary and satisfies [, U(x)dz = 8m. This blowup dy-
namics is stable and is believed to be generic thanks to the partial classification result of
Mizoguchi [35] who proved that (1.4) is the only blowup mechanism that occurs among
radial nonnegative solutions. Other blowup rates corresponding to unstable blowup dy-

namics were also obtained in [11] as a consequence of a detailed spectral analysis obtained
n [10].

The case d > 3 is quite different from d = 2. The system is called mass-supercritical,
and the scaling transformation (1.2) preserves the L%Z-norm: |ux(0)|| parzmay =
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|w(0)|| as2(ray- There is a critical threshold on [[u(0)f4/2 that distinguishes between
the global existence and finite time blowup. In particular, the authors of [7] showed that
for initial data [|u(0)|/ a2 < C(d), where C(d) is related to the Gagliardo-Nirenberg
inequality,’ the (weak) solution is global in time. See also [12] and references therein
for earlier results concerning the global existence for (1.1). It is known that there exist
finite-time blowup solutions to (1.1), depending on the initial size of the solution, see for
example [2], [12]. Since the total mass is conserved for the solution of (1.1), note then
that in contrast with the two-dimensional case, solutions can blow up with any arbitrary
mass thanks to the relation M (ux(0)) = A\4=2M (u(0)).
We say that u exhibits Type I blowup if there is a constant C' > 0 such that

lim sup(T = ) |[u(t) | L ey < C,
t—T

otherwise, the blowup is said to be of Type II. This notion is motivated by the ODE
u; = u? obtained by discarding diffusion and transport in the equivalent equation u; =
Au + u? — V®,.Vu to the first one in (1.1).

For d > 3, the class of radial and non-negative blow-up solutions has been the most
studied. Type I blowup solutions are then asymptotically self-similar [20]. This is the case
for example in dimensions 3 < d < 9, if in addition the data are radially decreasing, as
the blow-up is then necessary Type I [37]. A countable family of exact Type I self-similar
blowup solutions was obtained in [23] (see also [45]). In dimensions d > 11, however, Type
IT blow-up exists within this class of solutions [36]. For all dimensions d > 3, for radially
decreasing data in this class, either Type I or II, the trace u(x,T) exists for z # 0 and
satisfies self-similar upper and lower bounds [47]. Other Type II blowup solutions were
formally constructed by Herrero-Medina-Veldzquez [22] in the radially symmetric setting
(without radially decreasing assumption) for d = 3. We recommend [6] for a nice survey
and numerical observations for singularity formation in three dimensions.

In this paper, we construct type II finite-time blowup solutions to (1.1) in any di-
mension d > 3, making rigorous the formal argument of [22]. A part of the mass of the
solution is concentrated around a sphere that collapses to the origin. We refer to this
pattern as a collapsing-ring blow-up, in analogy with a similar blow-up that occurs for
the nonlinear Schrodinger equation [34,17,18]. Our result is for spherically symmetric
solutions for which we show the stability of the dynamics. We introduce the profile

W(€) = %cosh_z G) .

Theorem 1.1 (Ezistence and stability of a collapsing-ring blowup solution to (1.1)). For
any d > 3, there exists an open set of spherically symmetric functions O C L™ (R%) such

1 Namely, C(d) = %C&%l+2/d)(%,d) where Cgpn is the Gagliardo-Nirenberg inequality’s constant
_d 1-_d
oIl 20 < Can (p, DIVl 13 Jloll . "7
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that for any ug € O, the solution u to (1.1) with initial data u(0) = ug blows up with
type II at time T (up) > 0 and can be decomposed as

i = O (SO o), 0

d—1 L )
)\(t):%, M(t) = Mao (1+0p7(1)),  R(t) = caM&(T—t)4 (1+0u7(1)), (1.6)

with cq = (g)é and M (ug) > 0, and
|@(t)||Loe(ray =0 as t —T. (1.7)
Moreover, the functions T : ug — T(ug) and My : ug — Moo (ug) are continuous on O.

Remark 1.2. The collapsing ring is located at the distance R(t) from the origin and has
the width A(¢). The total mass carried around the ring is [S?1|M(t), where |S971| is
the surface measure of the unit sphere in R?.

Remark 1.3. A detailed description of the open set O is given in Section 2.4. We suspect
the solution to be unstable by nonradial perturbations.

Comments: (i) Ring blowups among type II blowups and their stability. For a general
evolution equation, during a self-similar blowup all terms in the equation contribute
with equal strength to the singularity. In contrast, during type II blowup as defined
for most parabolic equations, a norm of the solution does not diverge according to the
self-similar rate, which formally means that O;u is subleading as t T 7. In the two-
dimensional blowup for the Keller-Segel equation, dyu is fully subleading [21,42,11], so
that the profile is a stationary state. This is the most studied situation among type II
blowup for evolution PDEs, see e.g. [32,41,43,13].

The only known type II blowups where 9, is subleading, but only after a space transla-
tion, in which case the blowup profile is a traveling wave, are the following. The seminal
work [33] concerned the critical gKdV equation. A one-dimensional traveling wave was
embedded in higher dimensions to produce a ring blowup for NLS in [34] (observed nu-
merically in [17,18]). However, the construction was based on a compactness argument
specific to time-reversible equations, that bypasses the stability analysis and cannot be
used here.

The present work gives then for the first time a stability result for a ring-blowup
solution involving a traveling wave. Note that any type II blowup involves two blowup
zones contributing to the singularity: an inner zone close to the blowup profile in which
0y is negligible, and an outer zone where 0; is not negligible anymore, close to the tail of
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the profile. The new challenges, in comparison with the most studied situation of type
IT blowups involving stationary states, are the following. As the profile is a traveling
wave, both equations in the inner and outer zones involve transport terms, they not only
change each equation separately, but also the way the two zones interact. In addition,
since the original equation is only approximately one-dimensional near the ring, this
generates error terms in the inner zone, while the outer zone is truly d-dimensional.
Finally, a particularity of the present situation is that the dynamics in the outer zone
is inviscid to leading order. The novelties of our analysis to deal with these issues are
explained in the strategy of the proof below.

Finally, let us mention that blow-ups involving several scales may occur in other mod-
els. This is the case, for example, for Lagrangian modifications of the three-dimensional
Euler equation [48] or for the semi-linear heat equation [15].

(ii) Link with the Burgers equation. In the renormalized partial mass variables for the
inner zone around the ring (see (1.9) and (1.12)), the profile is @ given by (1.10) which
is the traveling wave of the Burgers equation

0.1 = 521 + SO %) (1.9

The stability of @ for (1.8) was studied in [25,44,40,30]. The Cole-Hopf transform of
[40] however cannot be applied here, and the spectral method developed in [44] can
only handle exponentially localized perturbations (in L?(wod¢) with wo ~ el¢1/2), which
is not sufficient here as typical errors are only in L°°, such as the instability direction
corresponding to the ring’s mass variation My Q. To control the solution in the inner
blowup zone, we thus develop here a method that extends the analysis of [44] (via the
use of modulation and gluing techniques) to a broader class of perturbations.

1.2. Ideas of the proof

Ansatz In the partial mass variables (where |S9~!| is the surface of the unit sphere
in R9)

1
my(r,t) = R / u(x,t)dx, r=|zl, (1.9)

|lz|<r
the Keller-Segel system (1.1) for spherically symmetric solutions becomes

d—1 My OrMiy,

atTnu = a»,%Tnu - Tarmu + ,,adi—l’ rec R+. (110)

The solutions of Theorem 1.1 correspond to solutions of the form

cE/2

r — R(t)
Tl ef/?

malrt) = 2100 (“ S5

)+mw@, Q(©) (1.11)
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with @ the traveling wave of the viscous Burgers equation 0,f = O f + fOcf, and
A = M~1R4"1 Our aim is to construct a solution to (1.10) of the form (1.11) with
M(t) = Moo, R(t) ~ cgMX (T — )/ and i, (t) — 0 as t 1 T

Inner blowup zone We define the inner blowup variables as

R t

r—

g_ A I - /
0

We call the inner blowup zone the set {{4,— < & < €a 4} for oy = —€4— > 1 to be
fixed suitably below, and introduce miln = x'"m, for some cut-off x' localizing in the

> &

my(r,t) = M(£)[Q(E) + my(s, €)]. (1.12)

inner blowup zone. It solves (see (2.17)):

R,

Oy’ = Zo(mg') + (3 + ) (Q +0:Q) + U + [0, — Lo, X" |my + heo.t,

(1.13)

where %) = 852 — (1/2 = Q) 0¢ + 0:Q, V¥ is the error term generated by @Q, [-,-] is the
commutator and [0s — %, x'"]m, are the boundary terms, and h.o.t denotes higher order
linear terms and nonlinear terms.

In Proposition 2.4, we recall that the operator % is self-adjoint in L?(wod¢) where
wo(€) = Q'e/2. Tt has a spectral gap on functions such that fR m;nanwodf =0
resulting in exponential decay for the linear evolution:

Z in —K’ in
€0 (Mg ) L2 (woae) < €77 *llmy' || L2 (wode) - (1.14)

Outer blowup zone We define the outer blowup variables

t
Rd—l

T M -
(=R=IEve = T:T”/ﬁdt, me(7,C) = my(s, ),
0

so that the concentrating ring is located at ¢ = 1, and the outer blowup zone as the set
{¢ < ¢ YU{¢ > (4} for |¢+ — 1] > v to be fixed suitably below. Then m. solves” (see
(3.40)) the equation

Orme = Amg — %QV + U + h.ot, for ¢ > (4, (1.15)
where & = (¢'79 —(/2) O + Vag and @, (¢) = Q(&). There holds a similar equation for

¢ < (—. Equation (1.15) dampens derivatives, as 0:Q, ~ 0 for ¢ > (4 and 9rm. solves
(see (3.44))

2 Note that, comparing with (1.13), the term corresponding to (% + %)8§Q has been incorporated in the
h.o.t. in (1.15) due to the decay |9:Q| < e €172,
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07 (0¢me) = o (Ocme) + Oc¥ + hoot.  for (> (4, (1.16)
where 24 = —((d — 1)(~% 4+ 1/2) + o/ displays exponential decay
le™ (@em) || < e T||Om® | L. (1.17)

Gluing inner and outer zones Choosing (1. The two time scales are such that 7 < s,
and the slowest linear decay between (1.14) and (1.17) is max(e "%, e™57) = ¢~ "7. As
the outer zone with the slower a priori decay (1.17) interacts with the inner zone via the
boundary terms in (1.13), we thus relax (1.14) and actually show in Lemma 3.4 that the
solution to (1.13) satisfies the energy estimate

[mg () lin < Ke™"7, (1.18)

where [[myllin = — [ m*ZymPwodf is a coercive functional, see Lemma 2.5. Since
wo() ~ elél/2  after applying parabolic regularization (Lemma 3.6), we prove that the
weighted L? bound (1.18) implies the pointwise bound for the derivative |Ogmg,| <
Ke lEl/4e=r7 5o that |0cme| < Kvle l8/4e=" as 9, = vd,. This later estimate
matches with (1.17) precisely for v~ 'e~l¢//4 = 1 corresponding to the choice

(+ =1+4v|logv]|.

Choosing €4,+. The transport field (¢*~% —(¢/2) 9. in (1.15) pushes from the outer
blowup zone toward the inner zone. Thus, the farther from the inner zone, the smaller the

effects of boundary terms should be. This is made rigorous in Lemma 3.7 where we prove
¢—¢
Oeme| < K%+ 6o (2Cy,  with ¢y =e "ei v and ¢y = e T
(1.19)

by parabolic comparison principle, and a similar estimate for ( < (_ holds. The super-
solution ¢, takes care of the boundary condition d,m.((;+) imposed by the inner zone
including the viscosity effect. By choosing

§a,x = +(4]logv| + A),

where A >> 1 is such that 34/10 < K < eA/Q, we show in the proof of Lemma 3.4 that
(1.19) implies

1105 — Lo, X™ Mgl L2 (woae) S (K e A8 Ke ™™™ < Ke ™™,

for the boundary terms in (1.13), which is compatible with (1.18).

Note that the inner and outer blowup zones overlap in {{4 - < € < (-} U{& <
£ < &4}, where we obtain a delay-type estimate for the associated parabolic transport
equations.
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Nonlinear analysis To handle nonlinear effects, the solution is controlled in a bootstrap
regime, see Definition 2.6. The parameters R and M, that are related to instability
directions around the approximate solution, are determined dynamically from (1.13) by
requiring the orthogonality [p m*d:Quodé = 0 and the cancellation |, é:‘:“ mitdé =0
respectively. This yields the dynamical system (3.5)-(3.6) driving the blowup. The other
nonlinear terms are treated perturbatively using Sobolev-type estimates.

1.3. Acknowledgments

The work of C. Collot was funded by CY Initiative of Excellence (Grant “Investisse-
ments d’Avenir” ANR-16-IDEX-0008). T. E. Ghoul and N. Masmoudi are supported
by Tamkeen under the NYU Abu Dhabi Research Institute grant of the center SITE.
N. Masmoudi is supported by National Science Foundation grant DMS-1716466.

2. Formulation of the problem
We will work in the partial mass variables (with |[S?~!| the surface of the unit sphere
in RY)
0) = i [l o (2.1
Mmy(r,t) = —— u(z, t)de, r=|x|, :
|S4=1

|z <r
in which the Keller-Segel system (1.1) for spherically symmetric solutions becomes:

d—1 My, O My,

at'rnu = 83mu - Tarmu + ,rdi—l’ r e R+. (22)

2.1. Renormalized variables

2.1.1. Hyperbolic inviscid variables

These variables describe the solution away from the ring |r — R(t)| > A(t), where
nonlinear transport is dominant and viscosity effects are negligible. For R(t) and M (t)
two positive C! functions we define the parameters

Rd—Q
v = 7

A= Ry, (2.3)

so that

d—2 .1 M,
v =y V+(d—2)(R—+—>V——y,

and the renormalization
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)
t)

dt. (2.4)

mr) = MO (=g T=mt [ T

The new unknown m,, (¢, 7) satisfies for ¢ > 0 and 7 > 79,

My 1 de ey, R, 1 M,
orma = (Gt~ 3¢) a6t a (G2 )+ (O + ) GO =
(2.5)

Remark 2.1. We shall prove that v goes to zero as 7 — oco. Then, we notice that with
the special choice

mw:]-{CZI}a B - 5 MT:O7

the inviscid equation (2.5), i.e. with v = 0, is solved both sides of the discontinuous point
¢ = 1. The Rankine-Hugoniot condition

]. . 1{€>1} ]. . 1{C>1} 1
Z | lim =t _ () + lim = — - = 2.
2 Li 1+< g 20 A e )] 7 20

asserts that the discontinuous point ¢ = 1 is steady so that 1;.>1} defines a stationary

solution for the limiting inviscid equation. The function 1;¢>1y will be the blow-up profile
in the hyperbolic inviscid variables (2.4).

2.1.2. Blowup variables inside the ring
To have a better description near the shock location ¢ = 1 (the appearance of a shock
being explained in Remark (2.1)) we change variables

-1 r—R [ dr
My (¢, 7) = my (&, s), = CV =7 s=s0+ | —. (2.7)
7o
Then m,, solves the following equation for £ > —1/v and s > sq:
1 R 1 M
2 T s
Osmy = 8§mv + my,Ogmy, — 58577% + (E + 5) Oy — ﬁmv
1 d—1
— —1 20eMy, — Oy 2.8
+((1+«Sv)‘“ )m §my = VI e %em (2:8)
R, 1 d—1 M
+((d—1)u<§+§>— 5 V—M>§85mv

As we expect R, ~ —R/2, My ~ 0 and v — 0, we introduce the blowup profile @) near
the shock that cancels out the leading part in (2.8), namely @ solves the ODE
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1
2 :
02Q - S0:Q+Q0:Q =0, lm_Q(&) =0, (2.9)
whose exact solution is given by

)L 9:Q(6) = écosh‘z(i). (2.10)

Remark 2.2. Keeping only the leading order terms in (2.8) gives the Burgers equation
Osf = 8£2f+f8§f— +0¢ f, for which @Q is a traveling wave, since f(7,§) = Q(£+7/2) is an
exact solution. It travels at speed —1/2 which equals the speed of the shock determined
from the Rankine-Hugoniot condition (2.6).

2.2. Linearized problems

2.2.1. The profile
For a fixed 0 < (p < 1, we introduce Y a smooth nonnegative cut-off function with

X(¢) = {(1) ii gi ggg()]oo) (2.11)

We introduce the notation for the rescaled and localized profiles:

QO =0Q), Q) =Qu(Ox() and Q&) = Qu(¢). (2.12)

The introduction of the localized profile @, is technical, to deal with the singular non-
linear term at the origin. By the definition of x, we note that

A9 =0 for e|-2 LY Qo -a© o ¢x-G220

14 14

2.2.2. Linearized equation in the partial mass setting
We introduce the decomposition in hyperbolic inviscid variables (2.4)

muw(¢) = Qu(¢) + me(¢, 7). (2.13)

The perturbation m. then solves the equation for ( > 0 and 7 > 7p:

P (Qyms) 1 d—1 MeOcMme
aTms = CC’T — 5(3&715 +v (agme - C 8Cm€> + Cdfl
R, 1 M-
* (E * 5) COcme = pme +mp,  (214)

where the generated error is
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e = 0,4 800 Lag (g0, "0a)

R, 1 _ M, -
+ (E + 5) (0:Qu = 77 Qu. (215)

In the ring, in the blowup variables (2.7), we introduce the decomposition

mQ(S? S) = mv<§7 S) - Q(g)a (216)

that leads to the following linearized equation for £ > —1/v and s > s,

Dy = Ly(my) + L(my) + % + 0, (2.17)
subject to the boundary condition®
mq(s,—1/v) = 0.
Above, the elliptic linearized operator is defined as
%-0-(3-Q)o+@. (218)

the lower order linear term is

L(my) = —(d— 1) (%g + ) Demg + (% + %) (14 (d— 1)) dem,

1+ €

M; 1 _
Y (mq + §0emq) + (W - 1) Q0:my
+ (W - 1) my0eQ + 9 (Q — Q)my + (Q — Q)demy,  (2.19)

and the generated error is given by

. oM,
we.s) = (T +5) 1+ =109 %G - 7 (Q+606Q)
1 = 1 =~ = d—1 . ~

+ ua@z(%)&Q - %Q + Q%z) + POEXQ + QO:Qx (X — 1) — vs£0:XQ.
(2.20)

3 Note that this boundary condition is propagated with time since we consider solutions u to (1.1) that
are in L° (R%), so that m, (r) = O(r?) as r — 0 using (2.1).
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2.2.3. FEwvaluation of the parameters
The parameter functions R and M are determined via the “orthogonality” conditions:

/ Xa(E)mals, €)de = 2 / N (©)my(s,O)PQE)wo(E)dE =0, (2.21)
—1/v —-1/v
and
/mq(s,f)xl,g,+(£)d£=0, (2.22)
—1/v

where {4 4 is defined in (2.35), and for any positive constants A and a, x, and x, , are
cut-off functions defined by

Tr—a

X © = %0 (F55)s Xu(8) = X (©); (2.23)

where Y is smooth and nonnegative, and satisfies

0if |z| > 2,

and wy is the weight function

e _e\? 1
wo(§) = <e4 +e 4) = m (2.24)

Remark 2.3. The orthogonality condition (2.21) ensures a coercivity estimate for the
linearized operator %) as stated in Lemma 2.5. By the mean value theorem the second
condition (2.22) implies that there exists a point &, € (£A7+ — 2,644+ + 2) where €4 4 is
defined in (2.35) such that my (&, s) = 0. This allows us to write

¢
my (¢, 5) Z/f?smq(& s)d¢, hence, [mg(&; s)] < [€ =& [[|0gmq(s)l| Lo (e.e)-  (2:25)
£«

2.3. The linearized operator around the Burgers traveling wave

The linearized operator % appears in the study of stability of traveling wave solutions
to the viscous Burger equation. Its properties are thus well-known. We define for k£ € N
the weighted Sobolev space H’jo associated to the norm

k .
I, = > [ @ Pen(e)de

j:OR



14 C. Collot et al. / Journal of Functional Analysis 285 (2023) 110065

Proposition 2.4. The operator %y, with domain HZO, is self-adjoint on LZO (R). Its spec-
trum consists of an isolated eigenvalue which is 0 associated to the eigenfunction 0:Q,
and of the interval (—oo, —1/16].

Proof. Proposition 2.4 is obtained in [44], but one argument in the proof contains an
error that can be corrected. We thus give a proof here for sake of completeness and
mention where we correct the error using an identity of [40] related to the Cole-Hopf
transformation.

Equation (2.9) is invariant by space translation, hence the function 0.Q) satisfies
Z0:Q = 0. It belongs to L2 since [0:Q(£)] < e €1/2 and wy ~ el¢1/2. Standard ODE
arguments show that any other solution to Zpym = 0 that is non collinear to 0¢@ has
nonzero finite limits as & — +o00, preventing them to belong to L:f,o. Hence 0¢() spans
the kernel of % in Lio.

The eigenfunction 0@ associated to 0 is positive on R. A Sturm-Liouville argument
(see [44]) then implies that -, has no positive eigenvalues.

To study the rest of the spectrum, it is observed in [44] that £, can be written under

the following conjugated form as®

€
Sy = ePotye™ P with By(€) = /bo(é)dé, bo = % — % (2.26)
0

A mistake was made in [44] in the computation of .#j, and the correct operator is given

by
. 1@ 1

The operator .#q on L*(R) (with domain H?(R)) has continuous spectrum in the interval

1
—o0 <A< — ok,

has the same continuous spectrum (—oo, —1/16]. It remains to show that there are no

since it is a compact perturbation of (9? — 1—16. Hence, we deduce that %,

eigenvalues in (—1/16,0). We give a different argument from that in [44] which relied on
the aforementioned erroneous identity of .#;. Assume by contradiction that there exists
¢ € (0,1/16) and ¢ € HZ such that £y = —cip. Since % is self-adjoint in L2 and
20:Q = w, ! is another eigenfunction

[v=2 [ vocqu—o. (2.28)
R R
We claim moreover that for some C' > 0, there holds

4 Any operator of the form £ = 85 — 2b0y + c can be written as £ = eBMe™ B, where B(y) = foy b(&)dg
and M = 85 + [b' — b? + c]. A similar formulation holds for the higher dimensional case, namely that
L =A —2b.V + ¢ can be written as £ = ePMe 8 with VB =b and M = A + [AB — |VB|2 + c].
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1
(&) < Ce el = (14 V1—T60), (2.29)
whose proof is done shortly after. Letting ¢(§ fo n)dn, by [40, Theorem 2] we have
o (szvn? e
(e*%0)(¢ /8@ &, 5,m)(n)dn, L&, s,n) = e—%Tea J3(5=Q(Q)d¢.
s

Let & € R such that (&) # 0, we fix (&) = 1 without loss of generality. Then

e = /asf(ﬁ,s,nm(n)dn- (2.30)
R

On the other hand, we estimate using (2.10), fgo 1 - Q)| < C(&) + 3|nl, from which
and |Ce¢| < 1 we obtain for s > 1 that [0:T (&, 5,1)| < _iﬁ’L%. Combining this, (2.28)

and (2.29) yields for s > 1,

/aéf(&s,n)sb(n)dn < e‘%S/e&—uﬂmdn < e ths
R

This contradicts (2.30) for s large, hence, % has no eigenvalues in (—1/16,0).
It remains to prove (2.29). Using (2.10) we write

_ 18l 181
2 2

(Lo + ) (§) = (Loo®h)(§) + O(e

where %, = 8? + %35 + c. The solutions of L f = 0 are fi(£) = e ¢ with AL =
1(=1=£+/1—16c). By standard ODE arguments, as (% + ¢)i = 0, (2.31) implies that
there exists ¢ € {£1} and ¢ # 0 such that (€) ~ cooe™* as € — co. As ¢ € L2, and
wo =~ elél/2 necessarily © = +1 so [1p(&)| < e € for € > 0. The proof of [4(€)| < et€ for
¢ <0 is similar, yielding (2.29). O

)0cp(§) + O(e™ 2 )p(§) as & — oo,  (2.31)

For any m € H? ,» one obtains by integration by parts,
/m,?omwodf = — / |0em|?wod€ + /m285Qwod§. (2.32)
R R R

The above bilinear form is coercive outside the kernel of . as shown in the following
lemma.

Lemma 2.5 (Coercivity of £). There exist § > 0 such that for all m € H), we have:

(Gom,m)a, < ~8|mll3 + (m.0Q)%s | (2.33)
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Proof. From Proposition 2.4 and the spectral Theorem, for any m € Hul,0 such that
<m’85Q>LiO = 0 there holds (.i”om,m>L30 < —1/16 Hm“%go Hence, for m € H}, , we
have

2
. 1 (m,0:Q)7-
Lom, < —— ? 6 T 0.
(Lom,m)rs < 16”m”L30 16 HagQHZLgO

We use the formula (2.32), the above inequality and [9¢Q| < % from (2.10) to write for
5 €(0,1/9):

<$0m7 m>L

2
wo

= —(5/ |a§m|2w0 + 5/m25’5Qw0 + (1 — 5)<$0m, m)LiO
R R

2
5 1-6 (1-5) %R0
< _ 2 _ 2 _— 22 =
< 5/|35m\ wot g /m wo = g Imllze, + 5 10 Q117 -
R R h

<m7 8£Q>%50
Q-

< —6lmlE +

which is the desired estimate (2.33). O
2.4. Bootstrap regime

We introduce for a constant A > 0 to be fixed later on:

(+ =1+4v|logv|, Ca+r =1xv(4llogr|+ A), (2.34)
§+ = £4{logv/], .+ = £(4[logv[ + A), (2.35)

and will refer to the zone (4, < ¢ < (4,4 as the inner zone, and to the zone {0 < ¢ <
(_}U{¢ > (4} as the outer zone. Note that these two zones overlap on {(4,- < ¢ <

C-U{C+ << Caq+}
Let x1 be a smooth nonnegative cut-off, with x1(§) = 1 for £ < 0 and x1(§) = 0 for
¢ > 1. We define

X™(5,6) = x1(6 — €a)xa(6a— — &)
Note that supp(9ex™) C [€a— — 1,64, -] U [€a+,Ea+ + 1]. We introduce
mi]n(sa 5) = Xin(sa g)mCI(Sr 5) (236)

The two main norms to control the remainder in our analysis are [|m}"| .2 . and a weighted
L*° bound for d;m. for ¢ < (_ and ¢ > (4, from which we are able to derive the leading
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dynamical system driving the law of blowup solutions as described in Theorem 1.1. The
influence of the exterior zone on the interior one is measured by the quantity

||ms||bou = ||m6||L°°([<AY,—21/,CA7,+2V}U[CA,+—2I/,<A,++2I/D (237)
F 0cmel Loo ((ca, - —20,¢a, - +2010[CA 4 —20,Ca 4 +20]) -

Since the norm ||m!"|| .2 , itself is not enough to close nonlinear estimates, we introduce
the adapted higher order regularity norm

Imgll2, = — / i Ly o de. (2.38)
—1/,

Thanks to the coercivity of % given by (A.5) and the orthogonality condition (2.21),
we have the equivalence

Imallin ~ llmg Iz, - (2.39)

For a fixed small constant 0 < n < 1, we introduce X,, a smooth cut-off function defined
as

R _J 1 for [¢—1| <1,
Xn(C) = {0 for |0 — 1] > 21, (2.40)

We define the following bootstrap estimates.

Definition 2.6 (Bootstrap regime). For A, K, k,n, My > 0 and 7 > 0, we define S(7) =
S[A, K, k,n, My](T) as the set of all functions m, € C1((0,00),R) for which there exist
M(7), R(T) > 0 with

e
4

(MR

, M
< R(7) < 4e” 3, TO < M(7) < 4M, (2.41)

such that m. defined as in the decomposition (2.13) satisfies

eme(¢ )] < e (KR 8550, +¢01), for (> ¢y (2.42)
‘347715((,7)‘ <e "7 <K%efgc_v7_c>2n + VCd’1> for0 < (¢ < (- (2.43)

and m, defined as in the decomposition (2.16) satisfies the orthogonality conditions
(2.21) and (2.22) and

g (7) [l < Ke ™" (2.44)
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Remark 2.7. The specific constant % is just for a sake of simplification and can be any
real number in the interval (i, %) The two constants A and K will be chosen such that
e34/10 < | < e4/2 to ensure certain estimates. The points ¢ = 1 + 4v|log v| are chosen
so that linear estimates in the inner and exterior zones are compatible at these points.

We claim the following proposition which is central for our analysis.

Proposition 2.8 (Existence of solutions to (2.17) trapped in S(1)). There exist constants
K,A>1,0<k,n <1 and a function My — 75(My), such that for any My > 0, for
any My > My and 19 > 75, if initially

70

Rirg)=e %,  M(r) = Mo, (2.45)
and m.(0) satisfies
ma(0) € S[A, 1, k, 1, Mo] (70), (2.46)
Oeme(m)] < ge O for €2 ¢4(0) (2.47)
Bme(m0)] < groe ¢ for 0<C<C(0), (2.45)

where (+(0) = 1 + 4uvg|logvg| with vy = RY2(19)M ~(19). Then, the solution to (2.14)
with the initial datum mc(0) exists for all T > 19 and belongs to S[A, K, k,n, My|(T) for
all T € [19, +00).

We postpone the proof of Proposition 2.8 to Section 3.5 as it is a consequence of
improved estimates obtained in Lemmas 3.4, 3.7 and 3.9 below.

3. Control of the solution in the bootstrap regime

We now fix My > 0 and pick constants A,n, k, 7 and K > 1 whose values are allowed
to change from one lemma to another. When proving Proposition 2.8 at the end of the
section, we will prove that the conclusions of all lemmas are simultaneously valid for
values of A, K,n, k, Ty as described in the proposition.

Throughout the section, we consider a solution m. to (2.14) with data m.(0) that
satisfies (2.46) and (2.47), with R(7g) = e~ ™/2 and M (7y) = My. We assume that for
some t; > 0, there exist R, M € C([0,t1],(0,00)) such that, defining 7 by (2.4), then
me(7) € S(7(t)) for all T € [19, 71| where 7y = 7(¢1), and that the parameters R and M
given by Definition 2.6 coincide with R(7(t)) and M (7(t)). We pick any so € R, define
s by (2.7) and introduce s; = s(t1).

Note that for 79 large enough, there exists t; > 0 such that this holds true and that
M and R are unique, as a consequence of the continuity of the flow of (2.14) and of
the implicit function Theorem to determine M and R from the orthogonality conditions
(2.21) and (2.22). We omit the proof of this standard fact.
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3.1. A priori bounds

Lemma 3.1. There exists A* > 0 such that for any A > A*, for any k,n, My > 0 and
K > e34/10 if 1 is large enough, then for 1o < 1 < Ti:

£

Ke "Te™ 1 for €] < 4|logv|+ A,
Img(s,8)| S vKTe 84 " (1 4+ |6 — €4 4 [)C4 ! for&>¢€ay, (3.1)
5 3 “
vEiem 3 4e™ (1) + ¢7) for & < a,-.
Imelbou S VK Te™ 5467, (3.2)
41—d d—2 4d—1 d—2
T Ty < Tz T, 3.3
M, e <rv< Mo e (3.3)

Proof. The first inequality in (3.1) is obtained from the Sobolev estimate (A.2), (2.39)
and (2.44). The second inequality in (3.1) is obtained from (2.25) and (2.42) using that
Oc =10 and 1 < K5/4e=34/8 a5 K > ¢34/10, Then, we estimate that for 1 —2n < ( <
Ca,—:

¢ ¢
¢—=¢ o s - -¢ - =<
Ki/e—3 z f(,,(g)dggf(i/e—i —dl S Kive s SwKieTsAR, +
0 0
(3.4)
3¢-—¢ 3¢-—¢

where we used (2.40), that e=5 v < e 84 for 1 —n < ¢ < Ca,— and Kie s <
Kie 1 S 1forl—2n < (¢ <1-—nfor 1y large enough depending on K. The third
inequality in (3.1) is then obtained from (2.43) using m.(0) = 0 and (3.4). Then, (3.2)
is a direct consequence of (3.1), (2.42) and (2.43). Finally, (3.3) follows from (2.3) and
(2.41). O

3.2. Modulation equations

The evolution of the modulation parameters R and M is given in the following lemma.

Lemma 3.2 (Modulation equations). There exists A* > 0 such that for any A > A*, for
any k,n, My > 0 and K > e34/10 for 74 large enough, there holds for all 7o < 7 < 71,

1 A
—’ < vt e mg() i + Allmeou, (3.5)

=y
2

S v¥logrle™ + 2”14 lmg(7) i + e lbou. (3.6)

Corollary 3.3. There exists k*(d) > 0 such that for 0 < k < k* and under the assumptions
of Lemma 5.2, for 1y large enough we have:
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d—2
v+ S| S (v e gl + v e o ) (3.7)
]_ T T M

56_5 < R(1) <2 2, 70 < M(1) < 2M,. (3.8)

Moreover, if m,, is trapped in S(7) for all T € [y, +00), there exist Roo, Mog > 0 so that

R(T) = Ryce™ 2 (1+0(e™")), (3.9)
M(7) = Moo (1 + O(e™"7)), (3.10)
V(7)) = Dooe™ 2 T (14 O(e™ 7)), (3.11)

where Voo = REZMZY, and where the constants in the O() depend on K, k, My.

Proof of Corollary 3.3. Recall v = R?*2/M and My > M,. We obtain the inequality
(3.7) by combining (3.5) and (3.6). Then, injecting (2.41), (3.3), (2.44) and (3.2) into
(3.5) yields

d T — d—2 d—2 _

%(67 R) <C(K,Mp)(em Z T+e " 4+e 2 Te ") < C(K, Mp)e ", (3.12)

for k < %. Integrating between 79 and 7 using (2.45):

R(r)=e"% [ % R(ro) + /OK,MO(G_K%)OZ% =e 2(1+ Ok 5ty x(€777)).

70

This gives the first inequalities in (3.8) upon choosing 7y large depending on &, M, K.
The second inequalities in (3.8) are obtained similarly using M, = v=! M. Then, if m,
is trapped in S(7) for all 7 € [y, +00), we rewrite the above identity as

R(r)=e"2 (e%’R(m) + / O xz, (€777 )d7 — / OKMO(e*“*)d%)
TO , T
R

"% (Roo + O(e™"T)),

where the constant in the last O() depends on &, K, My. This results in (3.9). The
inequality (3.10) is obtained similarly using (3.6), and (3.11) follows from (3.9) and
(3.10) as v = R¥"2M ~1. This ends the proof of the Corollary. O

Proof of Lemma 3.2. Step 1. Computation of R. We claim that for 7 large enough,

M
e gl + v+ 4|7

. (3.13)

R 1
R 2
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To show (3.13), we differentiate (2.21) with respect to s, use equation (2.17) and the
localization of x , to get

+o00
0= / [.,%(mq) + L(mg) + % + qf] X QwodE. (3.14)
—-1/v

We now compute the contribution of all terms above. For the first one, using %,(Q’) =0
we obtain |.%(x,)Q']| S A7Le ¥1/21 4 |¢|<2a}, so that using that .% is self-adjoint in

LEJO
—+ o0 —+ o0
_ _1&l

| tamicQunds| = | [ [, @unde| 470 [ e Fundg
~1/v ~1/v A<|E|<24

1 1

2 2
<A™ / 1y [2wode / e Velwodg | < A e mygllin,

A<|g|<2A A<L[E|L2A
(3.15)

where we used that wy < elél/2 and (2.39) (valid for A large enough). For the second,
since Q = Q for |¢| < 4|logv| 4+ A + 1, one has

L(my) = —(d — 1) (%g + ) Demng + <& 4 1) (1 + (d— 1)) dem,

1+ vE R 2

M 1 _ 1 _
_ i (ﬂlq4—£ék7nq)‘+ (zif;jg;jg:T —-1>(Qéanq-+ (Zij;ig;jE:T-—-l)7nqékCQ

and hence for [£] < &4 4 + 1, we have the rough estimate

R, M, M, _lel
L)l 5 (|55 + 5|+ 10 + ) dem + (4 vile # Y il 10)

provided that v is small enough, i.e. that 79 is large enough depending on M from (3.3).
Using (3.16), [0:Q| < e71¢/2 and (2.39) we estimate

+oo

R, 1 s
[ v @onde| < (15 54| 5] +0) e a7
—-1/v

The nonlinear term is estimated by Cauchy-Schwarz and (2.39),

+oo 1
mgOem 2
[ e Q| < | [ i S lmalf (319

1
2‘

/ 1Bemal?X Ao

—1/v
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Finally, for the error term, as x = 1 for || < €4 4+ + 1 we compute that there:

R

w69 = (45 ) L+ D aQ-

M
a7 (@ T€0:Q)

1 1 1 d—1
(

0:Q
3.19)

so that using Q@ < 1 and [0:Q| < e~1¢1/2, we obtain

+oo +o0

/ Uy, Q'eodé — <%+ %) / QX swodé + OW) | + O (A‘J\]\{[

—1/v —1/v

wr).

(3.20)
Injecting (3.15), (3.17), (3.18), (3.20) in (3.14), using (2.44) shows (3.13) for 7y large
enough.

Step 2. Computation of M. We claim the following;:

R, 1 _ _
S v]|0cme |lbou + ‘— + —‘ (l/||3<m5||bou + % A/2> + 3| logrle” /2. (3.21)

M

M
R 2

To show it, we differentiate in time the orthogonality condition (2.22) and use the equa-
tion (2.17) to write

+o0 too
9
0= / [.,%mq + L(my) + % FUe, s)} e — / masxde,  (3.22)
—1/v —1/v

where we write for short in this proof x = x, . (€). Recall that supp(y) C (a4 —
2,€4,+ +2). Using (2.18), integrating by parts, and then using (2.25) and ¢ = v0,, we
estimate

[e%¢) +oo
/ fomq)_(dﬁ 5 / |8gmq\(|0§)2‘—|—)Z)+\qu8£Q\)_()d§
—-1/v —1/v
S 0emgllo(es s —2.64 4 +2) = lImellbou- (3.23)

Using (3.16), (2.25) and supp()Z) C (Ea+ — 2,644+ +2), we get that:

“+o00
R,

_ 1 M;
[ Llmarde| & el (|57 + 5| + vltosv + 13 logrl ). (320

—1/v
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For the nonlinear term, we have by (2.25),

+oo

myOem,
/ WWE < lImeBou- (3.25)
—1/v

As Q =14+ 0(e71€/2) and |0:Q| < e €172 we use (3.19) and suppy to write

M
M

R. 1, ,_ )
V(s &) = - (1 + 0| logV|e‘A/2)) +0 (|§ + 5 lv%e A/Q) +O(v*| log vje=*/2).

From the above identity, we deduce

oo

M; _a _a Ry 1
/ Ui = —— /Xd§+0(u2\1ogy|e 2) +(9(u2e 3(|?—|—§]+V]10g1/|)>.
—-1/v R

(3.26)
Using (2.3) and [0sx| < [vr| 1, —2<e<en s 12, (2.25), we estimate
o R, 1| |M
/ mq0sXdE| S v||me|lbou (1 + ‘ET + 5‘ + ‘ ]\j ) . (3.27)
—1/v

Injecting (3.23), (3.24), (3.25), (3.26) and (3.27) in (3.22), using that [p xd¢ > 0 and
| log v|||me||bou — 0 as 79 — oo from (2.42), shows (3.21).

Step 3. End of the proof. Combining (3.21) and (3.13) shows (3.5) and (3.6). O
3.3. Improved ||mg||in bound

The following lemma shows that |mgl|in is a Lyapunov functional in the trapped
regime.

Lemma 3.4 (Monotonicity of |[mgyl|in). There exist 62 > 0 and C > 0 such that the
following holds. There exists A* > 0 such that for any A > A*, for any k,n, My > 0 and
K > 3410 for 1o large enough, for all s < s < s1:

d 2 2 4 -2 2 2
75 Ima(s)llin < —02llmqg ()l + Ce v me(7)lloon + Cv°. (3.28)
Proof. In this part we shall write x = x introduced in (2.36) for sake of simplicity. We
obtain from (2.17), from the commutator relation

1
Zo(xmg) = xLomg + 20¢x0gmy + <8§2X - (5 - Q)65X) Mg,



24 C. Collot et al. / Journal of Functional Analysis 285 (2023) 110065

and from the self-adjointness of % in LZO, the energy identity

T . 1
= — / Zomy' _iﬂomg‘ + <§ — Q) Oexmg — 8gxmq — 20emgOex + 8sxmq] wod§

in [ mqOcm
= [ iy B+ xR

st o o

The linear term  Since miln has compact support within (—v~!, c0), we may extend miqn

by 0 for € < —v~! in order to apply Lemma A.2. Using (2.21) and (2.36) we obtain
Jg mi?0:Qx awodé = 0. Applying (A.6) and using (2.18) yield

/ \fomi]n\zwodﬁ' > (51Hm§1n]|%[2 > §|lmyl|Z,, for some & > 0. (3.30)
wo
1/

The boundary terms By definition of x and using (3.7) (implying |v-| < v), we have

k
06x| S L(tea s <lel<en vy 19sX| S WIL{en s <lel<en 1)) (3.31)

Note that

A
2

wo(€) m v %e for €44 <[€[<€aq +1, (3.32)

we then estimate by using the two above inequalities, (2.37) and 0¢ = v0,

/ [ (5 - Q) dexmy — O xmg — 20emgdex + 85qu] wod€| S v2e? | 0cme | Fon-
~1,

(3.33)
The generated error term We recall from (3.19) that for |{] < &4 4+ + 1,
R, 1 M, -
V= (f + 5) 0¢Q — 77 (Q +£0:Q) + ¥, (3.34)

- (R, 1 1 1
d—1

1
+ (W —1) QagQ—V1+V€a§Q. (335)
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For the first term, we use the fact that % is self-adjoint in LEJO, Z00:Q = 0 and (2.18),
then Cauchy-Schwarz, (3.31), |0:Q| < e €172 and wy =~ el€l/2 to write

RT 1 r in
(— + 5) / ZLomy, O Qxwod§

R
—1/y

R’T 1 r in 2 1 2

=( 7 +3) [ mi (08— (G~ Q0x)0Q +20x0ZQ ) wode (3.36)
—1/,

R, 1 i 5 Ry 1

- _ el _A T
L B A N - [ v

A+

where we used the rough estimate e=4/4|R, /R+1/2| < 1 from (3.5) for the last inequal-
ity. For the second term, using the self-adjointness of %y, (2.18), then Cauchy-Schwarz,
| 40Q| < e 812, (331), Q = 1+ O(e™ /%), Imit| < mg| and wy ~ elél/2 and (2.25)
yields

/o%mf,n(QﬂLSagQ)Xwo :‘ /mzno%(QJrfaéQ)Xwodi

~1, ~1,
b [ i (@B G - @000(Q + €0:@) + 200x(206Q + €52Q) ) e
—1/u
in Ll —2 A
Shoglez, + [ i@ S Il + e

€a,+<[€]<€a 141

Using (3.6), (2.44) and (3.2) (so that v~ !{|me||bou < 1), we get the rough bound |4
Thus,

S

| M
M

mallin < vlimallin.

Second, using (3.6) and the inequality zy < x2/2 + y?/2 yields

A

M. _
- Ime l[boullmallin + v~ Ime|[Boue®

| te?
M

|||aCmE||bouV_ € —A/4

S vog vl[mellpon + €

A

S vtlogrPe + e M2 myllin + v 2 Ime||Pone® .

We conclude by using the three previous inequalities,
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A

M - _A _ A
]\j / Zomy' Qxwo| S vllmgllin + v logvPe™ 2 + v 2| me|Eoue® - (3.37)
—1/u

To estimate the remaining term, using (3.5) and [9:Q| < e €1/ we obtain |¥(s,&)| <
v(€)e~l€l/2 Hence, we have by Cauchy-Schwarz and wy ~ el¢l/2,

[ o] < 1 Loz, 192, S v Zo oz,
—1/,

Injecting (3.36), (3.37) and the above inequality in (3.34), then using (3.30) and zy <
px? /2 + p~1y?/2 shows that

/ LomPUxw| < C (V||Zomiqn||,;ao + v logv[2e™ % + V_2||m5||12)0u€%> (3.38)
1/
~ _ _ A
< CpllZomy |1z + Cp~'v? + 172 Ime|[one

1
< gllomg i, +Cv* +v 2 mellBoue?
if > 0 has been chosen small enough.

The small linear term and the nonlinear term We first estimate using (3.16), (3.5),
(3.6) and (3.1) that for || < &a 4 + 1:

0
9% — o(|0emg]) + o(|my]),

HOm) gt -

where the o() is as 79 — oo, and is uniform for |§| < {4 4 + 1. Hence, using the above
inequality, then the decomposition (2.36), and then (3.32) and wg(§) ~ elél’/2,

o a o o0
[ eim) + Ty e = [ o
-1/v [€1<€a,+ €a,+<[€1<€a ++1

- O(||mQH12n) + O(V_QHmEH%)oueA/Q)‘

We thus obtain by using Cauchy-Schwarz, the above inequality and then (3.30),

ra . MgOem
/ Lomy' (XL(mq) + XW) wod§ (3.39)
—1/y
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S 1omi ez, (olllmalln) + 00~ e/ lmelluon )

= o (I1Lomiy 32, +v 22 mel R

Conclusion Injecting (3.30), (3.33), (3.38) and (3.39) in (3.29) shows (3.28) and con-
cludes the proof of Lemma 3.4. O

3.4. Improved exterior bound

In this subsection we improve the bootstrap bounds (2.42) and (2.43). We first study
the exterior zone ¢ > (4 = 1+ 4v|logv| (or £ > & = 4|logv|). We have from (2.5)
Q,(C) =Q,(¢) = 1+0(v?) for ¢ > ¢,. We write the equation satisfied by m,. as a linear
equation:

orme = Am. +Pm.+ FE for ¢ > (4, (3.40)

where the main order operator o/ and the lower order operator P (note that P depends
on mg, i.e. we are including nonlinear transport terms in the operator P) are

1 1
o = <ﬁ - 54) e + v, P = P10 + P, (3.41)
Qv —1 (d - 1) Me R, 1 8<QV M.
P = = —v c +Cd_1+ f—'—ﬁ ¢, Py = = - (3.42)

and the error E is defined from (2.9),

M. 1 ¢—1 d—1 R, 1
EZ@TQu_ﬁQu‘f’{Qu(F—l)— 5 —I/( c )+<§+§)C:|6CQV
(3.43)

Equation (3.40) dampens derivatives in the sense that the equation for m. 1 = d¢me is
Ormeq = me1 +Pimes + F for ¢ > (4, (3.44)
where o7, P; and F are given by
d—1 1 1 1
o = — <T + 5) + (Cd—_l — §C) 84 + 1/8?, (3.45)
P1 =P+ (0cPL+Py), F=0E+ 9 Pome.. (3.46)

The damping of Equation (3.44) is formalized using supersolutions. We introduce

1 ¢—¢ 1
o1(¢,7) = §K%e_’”e_% v+, o) = ée_mCd_l. (3.47)
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Lemma 3.5. Recall x,, is defined by (2.40). There exist n*(d) > 0 and v* > 0, such that
for any 0 < k < k* and 0 < n < n*, for any K, My, A > 0, for 7y large enough, one has
foralltg <7 <71 and { > (4,

1 3
(67' - M) (¢15€77 + ¢2)(C7T) > 16—V¢1(C7 7-)9277 + E(bQ(T) (348)

Proof. We first compute

(87' - %)(gbl)%n) = 27) (8T¢1 - JZflﬁbl) - [,Qfl,)%n]¢1,

with the commutator

Cd—l

Recall (4 =1+ 4v|logv|. We compute using (3.47) and (3.45):

. . ) 1 1.
[, Xy] = 2vX,0¢ + ll/xg + ( - §C) X%] )

8T¢1 — r,fol(bl 3 1 1 3 Vr d—1 1
T T e 2 S AT (R Sk
& s |c1 3¢ st (¢ V)| + ci tgoh
Since & = —452 4 o(1) (a consequence of (3.7)) where the o(1) is as 79 — oo, there is

a constant 0 < n < 1 such that for 7y large enough

1 1. 3 u, 1
T S R N 1,1+ 27).
= 5¢C—g+ (¢ v) 2 15, for (€114 21

We also have for £ < 1/2, using again %= = —922 4+ o(1), % +3—x>0for ¢ >0.

Hence, combining the three above equality and inequalities we end up with

1

Using that the support of Y7 and X7 is 1 +n < ¢ <1+ 2n, (3.47), (4 = 1+ 4v[logv|,

3

¢—¢
and that for ( > 1 + n there holds e"8 v < v=3e" % we estimate
’[4271,)277]%‘ < Kie "y~ 8e s < Vs, (3.50)

for 7o large enough depending on n, K. A direct computation using (3.47) yields for
K< i:
1 d-1 (d—1)d-2) 1
87—¢2 — 9Q71¢2 = |:—,‘£—|— 5 + QC -V CQ ¢2 > Z¢2 for C > 0. (351)
Combining (3.49), (3.50) and (3.51) yields the desired estimate (3.77) for 7y large
enough. O
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Lemma 3.6. There exist k*(d) > 0 and A* > 0, such that for any 0 < k < K*, A > A*
and K > 0 with e34/10 < K < e%A, for any My,n > 0, for 1o large enough one has for
all s > sq:

[Omq(s,62)] + |Demq(s, €4)] S Kve ™™ + 02, (3.52)

Proof. We only establish the estimate (3.52) at £ = £, since those estimate at £ = £_ can
be obtained by a very similar computation. We use a standard parabolic regularization
argument. We write x = x1,¢, to ease notations. Note supp(x1,e,) C {|{ —&4+] < 2} and
Lije—e, <2} S X2.6, - We introduce g = xmg, which solves from (2.17):

asﬁ'Lq = gmq + fa f = .f"" X\IIJ (353)

1 B
f=x ((Q - g)aémq + 0:Qmg + L(mgy) + %)

+ (Osx — 8gx)mq — 20 x0cmy.

We now estimate f. Using (3.16), (3.5), (3.6) and (3.1), we get | f| < (|mq|+|0emqg|)x2.¢. -

Thus, applying Cauchy-Schwarz, then using (2.44) and wo(§) ~ v~2 on supp(x2,¢, ) yields

~ -1 —KT
[flleew) S Imgllinllx2,e, Voo |z S vEKe ™. (3.54)

Next, using (3.6) and (3.2) and e?/10 < K yields |M,/M| < v? 4+ vK>/4e=34/8¢=r7,
Hence, we estimate from (3.19), Q(£) = 1+ O(e~1€l/2) and |0:Q(¢)| < e~ I€1/2] for all
E—e] <2

My R, 1
wle@+ (1 + 3141

5 V2 + VK5/46—3A/86—HT

M;
W(s.¢)l 5 | v los v+ vltog 1) 10:0(€)
and hence,
XUl p2®) S V2 + vK/Aem34/8emrT, (3.55)

Injecting (3.54) and (3.55) in (3.53) yields

17(5) oy S vEe ™ (14 KHAe34/5) 02, (3.56)
For s > sg, we introduce §p = max(s — 1,sp) and get from (3.53) the representation
formula
2
My = Ks—z, * mq(30) +/KS_S/ x f(s")ds', Kq(&) = (471'8)_%6_3_5. (3.57)
:\’ﬁ:l 50

q

-~
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Note that || K||z1 = 1 and ||0:Ks||z2 < s73/4 by direct computations. Hence, if 35 = sg
then by Young’s inequality, the localization of x, (2.47) and 0¢ = v, (2.46) and (A.2),

10cmglle®) S (K s—sollLr(®)l|Ocrirg(50)] Lo (m)

KT

S 10emq(s0)ll oo (je—es (so)1<2) T Img(s0) oo (e—gs(so)<2) S ve ",
(3.58)

while if 59 = s — 1, then using (3.1) and the localization of y yields
10e772g || oo ) S 106 K1 ]| 2Ryl (s — 1)l| 22wy S vEe™™. (3.59)

Finally, using (3.56) and fol s73/4ds < 0o we obtain
10¢7mg || Lo S / |10 Koo | 21 fll 2ds’” S v e ™ (14 K4 4% 402 (3.60)
So

Injecting (3.58), (3.59) and (3.60) in (3.57) and K < e34/2 yields the estimate (3.52). O

Lemma 3.7. There exists K* > 1 and k* > 0 such that if A, K,rk,n, My satisfy the
conditions of Lemmas 3.5 and 3.6, with K > K* and 0 < k < k*, then for all o < 7 <
71

[Ocme (¢, 7)< 1 (G )% + da(r)  for (= ¢y, (3.61)
where ¢1 and @2 are defined in (3.47), and X, is introduced in (2.40).
Proof. Step 1. Proof assuming a technical estimate. The proof relies on the standard
parabolic comparison principle, where we shall construct a super/sub solution for the

equation satisfied by 0:m.. We claim the following: for 7y large enough, for all 7 > 7
and C Z C+,

[P1 (610 + 62| +IFG DI S 51 (G )% + 50(r) (3:62)

We proceed with the proof of (3.61), establishing (3.62) later on. From (3.48) and (3.62),
we obtain that ¢;X, + ¢2 is a supersolution to (3.44) for 7 > 79 and ¢ > (4 thanks to

(0r — et = P1) (1(C, )Ry + ¢2(1)) — F > 0. (3.63)
Next, at the initial time 7y we have because of (2.47) that for all ¢ > (4 (1),

me,1(70,¢) < ¢d2(10) < (P1Xy + ¢2) (70, C). (3.64)
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At the boundary, we combine (3.52), (3.3) and (3.47) to get for all 79 < 7 < 7:

me1(7,Cy) < o1(7, ¢ ) < (d1Xy + 92)(7, (1), (3.65)

if k is small enough, K is large enough and then 7y is large enough. Combining (3.44),
(3.63), (3.64) and (3.65), we can apply the maximum principle for ¢1X, + ¢2 —m. 1 as a
supersolution for the parabolic operator 0, — @4 — Py on the set {70 <7 <7, ( > (4}
that is nonnegative at its boundary, and we obtain ¢1X, + ¢2 —m. 1 > 0 on this set, i.e.

mE,l(C; T) < ¢1 (CvT)Xﬂ(C) + ¢2<T)'

The bound —m.1 < ¢1X, + ¢2 is obtained similarly. Combining these two bounds
concludes the proof of (3.61).

Step 2. Control of the lower order terms. We now prove (3.62). Recall (3.42) and (3.41).
From (2.25) and (2.42), we write for ¢ > (4,

e (G, 1
hn¢§—¥rﬂ S Cd—l

¢
[ 1ol < et (3.66)

14vE*

Recall ( > (4 = 1+ 4v|logv| corresponds to £ > &, = 4|logv|. We use the exponential
decay Q(€) = 14 O(e=¢/2) for ¢ > 0 with e=¢/2 < 12 for ¢ > (4, (3.66), and (3.5) to
estimate for ¢ > (4,

R,

1
| e

PGS 1Qu =11+ + chigfﬂ

_£ _A
S5 b vt |0me (Ml csen) + (v + € FImg(Dlln + Allme bou ) ¢
< Kie "¢,

~Y

where we used (2.44) and (3.2) for the last inequality and took k small enough 7y large
enough, and similarly

10 PL(C, )] < 18cQu(O)] +1Qu — 1] + v+ [me (¢, 7)] n |0¢me(C,7)] N ’RT %’

Cd Cd—l

5
a1, KT
S Kie ™,

and, using in addition (3.6) and M, = v=1 M,

5 _
S vt Img(T)llin + v [me (1) bou S Kie™".

~

M,
P71 S 16U + |57

Hence, using that ¢; < K5/4p=3/2¢=8 for ( > 1+ and ¢y = e "7¢41/2:
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P11 (¢ 7)Xn| + |Pro2(7)]
< |P10cd1 (¢, 7)|Xn + [0cPr + Pold1 %y + |PrOckn|d1 + (|0cPr + Poldz(T) + | P1]|0c d2])

3 A
5 <8_V|P1| + |8<P1| + |PO|) ¢1X77 + |P1|¢11{1+77§CS1+27]}

+ (|0 Pr| + |Po| + ¢ Pu]) 2 (7)
3

<
~ Ru

1 1
K%e_mgbﬁ(n + K%V_%e_g_g@ + K%G_M%(T) < 64—V¢1(Ca T)Xn + 1_6¢2(T)’
(3.67)
for 79 large enough.

We now estimate the source term F' = 0¢ E +0¢ Pym.. Using (3.42), \8gQ($)| < e lél/2
for j = 1,2 and (3.66) we obtain for { > (,,

0:Q, me
o)) = |oc(EE) @m0 £ (12001 + ocue)]) 2t
S %e‘g 19cmellz=czc)- (3.68)

Next, using |v,/v| <1 from (3.7) and ]32@(5)] < e lEl/2 for j=1,2, for ¢ > ¢y,

£
2

1 v, 1. _
0:0:Qu(Q)] = ~171[0:Q(€) + £02Q(E)] < e,
and similarly, using that ¢ —1 > v yields the estimate

’ag (anng(Cdi_l - 1))' +oc(¢ - 1)0:Q)]

+ ‘34 [%&Qv}

< (10, +102Qu]) (¢~ 1)+ 0] £ Sgef.

We estimate using M, = v~tM,, (3.5) and (3.6) for ¢ > (4:

R 1 M R 1 R 1 M.
I -7 < |22 4 Z 2 I -7
1
< 1C02Qu +10:Qu] £ Sget,

where we used the rough estimate ¢ < . Injecting the three above inequalities in (3.43)
shows |0:E| < v 2¢e¢/2. Combining this with (3.68) gives |F| < v~26e~¢/2. Now,
observe from the definition (3.47) of ¢; and ¢y that £e¢/2 < v2?|logv|e" ¢1(T, () for
¢ > (¢4 =1+4v|logy| for K large enough, and &e~¢/2 < e~/ ¢y (1) for ¢ > 1+ 7 for
To large enough depending on 7. Hence, for ¢ > (.,

o o . 1 1
FI S w2602 S [ log e dn(m, Oy + 12 F(r) < g1 (1) + 1502(0)
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where we used (3.3) and took k small enough, and then 7y large enough. Combining the
above inequality and (3.67) shows the desired estimate (3.62). O

We now turn to the control of the solution over the interval ¢ € (0,{_). We have by

Orme = m:+P m.+ FE for ¢<(_, (3.69)
where
5.0 5 1 (-1 (d-1) (R, 1 _ M, -
E—aT@ﬁ{QV(Cdl 1) e +(R +2M 000~ Q.
(3.70)
1 d—1
o == C0 v <a§ - T8<> : (3.71)
- _ _Q, me R, 1 _ o 0eQ, M,
Promact B B =g (Frg)e B oG-
(3.72)

The equation for m. ; = O¢m. reads as

Ormey =2 me1 +Pyrme1 +F for ¢ <(_, (3.73)
where
o = —%gag — % +v (83 - %64 + %) : (3.74)
Py =P 0c+ (0cPr +Py),  F~ =0cE+0:Py me. (3.75)
We introduce
br(Cr) = SE TR g (G = pucte. (370)

Lemma 3.8. There exist n*(d) > 0 and k* > 0, such that for any 0 < k < k* and
0 <n<n*, for any K, My, A > 0, for 19 large enough, one has for all 7o < 7 < 11 and
¢ <,

(0 — A7) (67 10 +03) (C.7) = 107 ()R + 703 (7). (3.77)

_16

Proof. By a direct computation, one obtains for all 1 —2n < { <1,

3 d—1 1
—1)— kg — >
8§( i 2~ 16v’

Vr

Or i — A b7 _3(1
2

3 1
o =l a3t (1—4u—§))+ —
1
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where we used the fact that 0 < v — 0 uniformly as 79 — oo, [%=| < 1 from (3.7), and

took n > 0 small enough. Using the fact that (83 — %& + dg_zl)Cd_l = 0, we obtain

Orpg — Ay ¢y d Vr 1
= — — — =1 > — .
e 5 Rt 1 m+0(1)_2, (3.78)

where we used that |22 = 952 4 (1) from (3.7). With a computation that is so similar
to that establishing (3.50) in the proof of Lemma 3.5, so that we omit it, we moreover
have for { < (_,

[ Xy | = o(93),

where [, Xy = @ Xn — Xn@ and o() stands for 7y — oo and is uniform in 7,¢.
Combining the three above inequalities yields the desired estimate (3.77). O

Lemma 3.9. We assume that my(7) € Sk x(7) for 7 € [10,71] and 71 > 170 > 1, there
exists 0 < n < 1 and the following holds true for all T € [19,71]:

lﬁng(C,T)‘ <1 (6 T)Xg + 05 (¢, 1) for 0< (¢ <1—4v|logr|, (3.79)
where X, s introduced in (2.40).
Proof. The proof is the same as for (3.61) by using the comparison principle, so we skip
redundant details. Due to the localized cut-off function x,, we note that the estimate

(3.62) holds true also for ¢ € [1 —2n,(_], so that using in addition (3.77) on this interval
we have

00 — o7 = PI)(O7 (PR + 67 (1) = F(67) 2 2da (G, 7) + goa(r). (3:80)

Since X, = 0 for ¢ <1 — 27 it remains to check that ¢, satisfies
0- — )" = Pr |5 (¢, 1) = F~(¢,7) >0, for ¢ €(0,1—2n). (3-81)
To this end, we first recall from (3.78) the estimate 0;¢; — @ ¢5 > %gbz_ . We estimate

for ¢ € (0,1 — 2n) by using (2.43) and m.(0) =0,

¢
|mmm=/ﬁm¢mwsww@
0

We also have by the definition (2.12) of @, and (3.5),
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0@, QU I D)l | Jme
~ Cd—l Cd C’d Cd—l

<Le K2 +V€ NT+K4 _HT<—_|_K4 SJK%B_HT.
Vel ¢

Hence, for 7y large enough, we have

[Py ¢+ 0P| + | Pol

ML
R 2

1
Préy] < ((d=DIPTC +10cPT| + Py [)dy < CKie™6; < 1265

For the estimate of F'~, we have the rough estimate for ¢ € (0,1 — 2n),

L e 1 _n B B
Z/ZCd Pl S 202d-1° vy S v,
0

IF(Cm) S

for 7y large enough. Gathering all the above estimates yields the estimate (3.81). Com-
bining (3.80) and (3.81) shows that for all 0 < { < (_:

00 — 7 = PLY (07 (G700 + 93 (1) = F7(Go7) 2 501 + 56a(7),

The end of the proof of Lemma 3.9 is then exactly as that of Lemma 3.7, relying on the
above inequality, so we omit it. O

3.5. Proof of Proposition 2.8 and conclusion of the main theorem

Proof of Proposition 2.8. We first improve estimates introduced in Definition 2.6 by a
% factor. We claim that for all 7 € [y, 71]:

1 T MO

26 ~2 SR( )§26_53 7 §M<T)§2M07 (382)
1 ¢—¢
[Om. (¢, 7)] < 5e7 (Kie 8%y +1),  for¢ >, (3.83)
Loor (g3 880 d—1
[Ome(¢,7)] < 5o (KR Ry + ¢ ) for0<C<C., (3.84)
K —KT
g ()l < e (3.55)

The inequality (3.82) is proved in Corollary 3.3. The inequalities (3.83) and (3.84) are
proved in Lemmas 3.7 and 3.9 (using (3.47)). Hence it only remains to prove (3.85). Let
f(r) = Ilmqg(7)I[f,, We aim at proving

2

f(r) < %6_2"”, V71 € [10,71]- (3.86)

From (3.3) we infer that for k < dfzz, we have v? < 7257 for 1y large enough depending
on My. Lemma 3.4, together with this inequality and (3.2) then implies
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(e f) < € (Cr2e R [me (1) [y + OV?) < 82072 (CK%e—% v c) . (3.87)

Recall that 9T = v so that < (Jys — 2k7) > %2 for 19 large enough. From this, we deduce
that e%2(s0— ) < e2n(ro—7) and fSO P25 295 < %6525*2’”. Integrating (3.87) with
time s using these two inequalities yields

S

+C>/652§2m(§)d§

S0

jot

e

e

f(s) < €007 f(s0) + e (CK

A
4

4 +C> < 2T <C’K2e 4 +C),
(3.88)

< eQ&(TO—T)f(SO) —2KT <0K2€

where we used (2.44) with constant K = 1 at initial time so from (2.46). The estimate
(3.88) implies (3.86) upon choosing K large enough with Ke~2 small enough. Hence
(3.82), (3.83), (3.84) and (3.85) are valid.

Let now T be the set of times 71 > 7 such that the solution is trapped on [, 71].
By continuity, the set T is closed. Now, for any 7 € 7T, the inequalities underlying
Definition 2.6 are strict inequalities at time s; as they are improved by the factor %
using (3.82), (3.83), (3.84) and (3.85). Hence by continuity of the flow of (2.2), we have
[min(7y — 0,79), 71 + 6] C T for some § small enough, so that 7 is open in [sg,0). By
connectedness, 7 = [sp, 00) which concludes the proof of Proposition 2.8. O

Proof of Theorem 1.1. Theorem 1.1 is just a direct consequence of Proposition 2.8. Re-
call that 2 = gd—((?), we use (3.10) and (3.9) to write
dr ]\4oo
dt Rd

LR CIE

Solving this equation yields the existence of T' > 0 such that

. —2 log (Z]‘;go (T — t)) 1+ or(1)]. (3.89)

Hence, the estimate (3.9) is written in terms of the ¢ variable as

R(t) = Rme%[% log<ijﬁ\/[§ (T—t))] [1 + 0t—>T(1)} = [gMOO(T — t)]

-

[1 + 0t—>T(1)] .

Unwinding the change of variables (2.1), (2.4), (2.13), one gets

M

u(r) = 7oy (0:Q€) +alr)),  alr) = —a70eQ(€) — 96 Q(€) + =7 9em=(Q),

Cdl Cdl
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where Q(¢) = Q,(¢). Since the solution is global in time 7, the desired estimate (1.7)
for @ then directly follows from (2.10), (2.7) and (3.11) to estimate the first term, and
(2.42), (2.43) and (2.44) to estimate the second one (upon using a parabolic regularity
argument for £ < & < ¢, similar to Lemma 3.6 that we omit).

We now turn to the continuity of the blowup dynamics. Fix ug satisfy the requirements
of Proposition 2.8, and let u solve (1.1) with data ug. Then any vy close enough to
ug in L™ satisfies the requirements of Proposition 2.8 with same bootstrap constants
(A, K, ...), so that the solution v to (1.1) with data vy blows up at time 7T'(vg) and satisfies
(1.5), (1.6) and (1.7) as well. We now prove the continuity of 7" and M. Let 7, M,,, R,
and 7,, M,, R, denote u and v related parameters respectively. Integrating the relations
dt/dr = RY/M, and using (3.9) and (3.10) we obtain:

_ [ Ri) R % R
T(up) = | de, | M, (1) — Moo (ug H—/‘ < Ce V1 > 71,(0),
(3.90)

_ [ R RIE)| e
T(vg) = A M, () dr, | My (T) — Moo(vo)| + / ‘W‘ dr < Ce V7 > 7,(0),
(3.91)

with same constant C' > 0. Let now 6 > 0. There then exists t5 € [0,7(ug)) such
that Ce="™(ts) < §/4. By continuity of the flow of (1.1) with respect to the initial
data in L>°(R?) (see [1] and references therein), we have that T'(vy) > ts for vg close
to ug, and that 7, - 7,, R, — R, and M, — M, uniformly on [0,%s], as vo —
uo. Hence for vy close enough to ug, Ce ") < §/3, |M,(ts) — My(ts)| < 6/3, and
\fT”((g)‘s) ]\IZ (T)d - fT“((g)d) ]\IZ ((T))d | < §/3. Combining these inequalities with (3.90) and
(3.91) one obtains that |T'(vg) — T(ug)| < 0 and |My(vg) — Moo (ug)| < 6. This proves
the continuity of 7" and M., and ends the proof of Theorem 1.1. O

Data availability
No data was used for the research described in the article.
Appendix A. Functional analysis

Lemma A.1 (Poincaré and Sobolev in Holjo). There exists C > 0 such that the following

inequalities hold true for any u € H}JO,

/ fu(y) P (y)dy < C / 18,u(y) Pwo(y)dy, (A1)
R R
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lu(€) \<C’e_% /\8 u(y)|?wo(y)dy for all £ € R. (A.2)

Proof. The second inequality (A.2) is a direct consequence of the fundamental Theorem
of Calculus and of Cauchy-Schwarz. Indeed, as wou? € L(R), there exists y,, — —oo such
that wo(yn)u?(yn) — 0 and hence u(y,) — 0. For y < 0, we have u(y) = u(y,) + fyyn Oyu
so that u(y) = foy Oyu by letting n — oco. We estimate since wy ~ elél/2;

Yy % Y 3
u(y)] = | / dyu| < / 18,20 / wil] < / OyulPwn | et
— o0

— 00 — 00 — o0

<
<
N
N

For y > 0 the proof is the same upon replacing —oo by oo in the integrals. Hence (A.2)
is proved. From (A.2), we deduce

2

[y s [10,0)Penv)d. (A.3)
R

-2

Take now x a cut-off function such that x(y) = 2 for y > 1, x(y) = 0 for y < 1, and
write u1(y) = x(y)u and us(y) = x(—y)u. We have for i = 1,2, integrating by parts:

1
/uiﬁyuiwody = —i/u?aywody.
R R

Since on (—o0,1] and [1, 00) we have Jywy ~ wo from the formula (2.24), we deduce that

/!ui|2w0 N /uiayuiw() fori=1,2.
R

R

Applying Cauchy-Schwarz and Young inequalities yields

/ g Py < / 18, wilPwo < / 18, ul%wo, (Ad)

R R R

where we used (A.2) in the last inequality. Combining (A.3) and (A.4) shows (A.1). O

Lemma A.2 (Coercivity of £). There exists A*,61 > 0 such that the following holds
true for all A > A*. Assume that f € Hfjo satisfies fR fO:Qxawod = 0. Then:

51, <~ [ Lo Fnds (A5)
R
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1l 1, < [ Vs Punds, (A6)
R
Proof. We first decompose
f=c0:Q+g, with /g@gQwo =0. (A.7)
R

We compute by integrating (A.7) against 0 Qwy that ¢ = ||8€Q||Z§ Jr F(1=x4)0:Quodé.
wo

Using Cauchy-Schwarz, wo(€) ~ el€1/2 and [0:Q(&)| < 714172 we get |c| < €_A/4|\f”LgO-
Thus:

I£1ms, < 2Ngllm, and [ Loffunds = [ Loggunde, (A8)
R R
IFllms, <2lglluz, and [1£oflzz, = ICogllza, (4.9)

for A large enough for the inequalities, and using L,0:Q = 0 for the equalities.
We now apply Lemma 2.5 to g and get (—Log, 9>L50 > 6lg||3;1 - This inequality and
wo
(A.8) imply the first estimate (A.5) of the Lemma. Using |xy| < d|z|/2 + |y|/20 we have
(—Log, 9>Lio < HEOgH%aO /26 + (5Hg||%i0 /2. Combining these two inequalities yields

lgllmz, <67 ILogllze, - (A.10)

Since Log = agg — (1/2 — Q)0eg + 0:Qg, we deduce |8§g| < |Log| + |09l/2 + |g]/2, so
that:

102gll22, < ICogliz, + gl (A.11)

Combining (A.10) and (A.11) shows Hg“HEO < C(9)||Logl|z2 - Combining this inequality
and (A.9) shows the second inequality of the Lemma (A.6). O
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