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In this paper, we study the diffusive limit of the steady state radiative heat 
transfer system for non-homogeneous Dirichlet boundary conditions in a bounded 
domain with flat boundaries. By taking account of the boundary layers, a composite 
approximate solution is constructed using asymptotic analysis. The convergence 
to the composite approximate solution in the diffusive limit is proved using a 
Banach fixed point theorem. The major difficulty lies in the nonlinear coupling 
between elliptic and kinetic transport equations. To overcome this difficulty, a 
spectral assumption is proposed to ensure the linear stability of boundary layers. 
Moreover, a combined L2-L∞ estimate and the Banach fixed point theorem are used 
to obtain the convergence proof. This result extends our previous work [6] for the 
well-prepared boundary data case to the general boundary date.
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r é s u m é

Dans cet article, nous étudions la limite de diffusion du système de transfert de 
chaleur radiatif en régime stationnaire pour des conditions aux limites de type 
Dirichlet non homogènes dans un domaine borné avec frontière plate. Une solution 
approchée composite est construite à l’aide d’une analyse asymptotique prenant 
en compte les couches limites. La convergence vers la solution approchée dans la 
limite de diffusion est démontrée à l’aide d’un théorème de point fixe de Banach. 
La difficulté majeure réside dans le couplage non linéaire entre l’équation elliptique 
et l’équation de transport cinétique. Pour remédier à ce problème, une hypothèse 
spectrale assurant la stabilité linéaire des couches limites est proposée. De plus, 
une estimation combinée L2 − L∞ et le théorème du point fixe de Banach sont 
utilisés pour obtenir la preuve de convergence. Ces résultats étendent nos travaux 
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précédents [6] pour le cas des données aux limites bien préparées au cas mal préparé 
lorsque la couche limite existe.

© 2023 Elsevier Masson SAS. All rights reserved.

1. Introduction

1.1. Problem statements

We consider the following steady state radiative heat transfer system in the space x ∈ Ω = [0, 1] × T 2

and β ∈ S2:

ε2∆T ε + 〈ψε − (T ε)4〉 = 0, (1.1)
εβ ·∇ψε + ψε − (T ε)4 = 0, (1.2)

with Dirichlet boundary conditions

T ε(x) = Tb(x), for x ∈ ∂Ω = {0, 1}× T 2, (1.3)
ψε(x,β) = ψb(x,β), for (x,β) ∈ Γ−. (1.4)

Here T ε = T ε(x) is the temperature, ψε = ψε(x, β) is the radiation intensity. The bracket 〈·〉 denotes the 
momentum 〈ψ(β)〉 =

´
S2 ψ(β)dβ. The boundary set Γ is given by

Γ = {(x,β) : x ∈ ∂Ω,β ∈ S2},

and Γ+ = Γ ∩ {(x, β) : β · n(x) > 0} is the out-flow boundary, Γ− = Γ ∩ {(x, β) : β · n(x) < 0} is the in-flow 
boundary, where n(x) is the exterior normal vector on the boundary. Note that the boundary conditions 
are imposed only on the in-flow boundary and the value of ψ on the out-flow boundary is determined by 
the system.

When the boundary data is well-prepared, i.e. ψb(x, β) = T 4
b (x) for (x, β) ∈ Γ−, the solution of (1.1)-(1.2)

is shown in [6] to converge to the solution of the following nonlinear elliptic equation

∆T0 + 4π
3 ∆T 4

0 = 0, (1.5)

ψ0 = T 4
0 , (1.6)

subject to the boundary condition

T0(x) = Tb(x), for any x ∈ ∂Ω. (1.7)

The convergence is proved by using two methods: the weak convergence method and the relative entropy 
method. However, both methods rely on the assumption ψb = T 4

b to obtain the estimates that are needed 
for the convergence estimates and fail for general boundary data, due to the presence of boundary lay-
ers.

The main objective of this paper is to study the diffusive limit (ε → 0) for the general boundary data. 
By adding a boundary layer correction to (1.5)-(1.6), a composite approximation can be constructed. The 
convergence of the radiative transfer system (1.1)-(1.4) to this composite approximation in the diffusive 
limit will be established in this paper.
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1.2. The boundary layer corrections

Here we recall the results of [7] on the boundary layer problem to system (1.1)-(1.2). For simplicity 
of notations, we assume that the boundary data at the top boundary {x1 = 1} is well-prepared, i.e. 
ψb(x, β) = T 4

b (x) for (x, β) ∈ Γ− ∩ {x1 = 1}, so that boundary layer only exists at the bottom {x1 = 0}. 
Introducing η = x1/ε2, the corresponding boundary layer problem for system (1.1)-(1.2) reads as

∂2
η T̃0 + 〈ψ̃0 − T̃ 4

0 〉 = 0, (1.8)
µ∂ηψ̃0 + ψ̃0 − T̃ 4

0 = 0, (1.9)

with boundary conditions

T̃0(η = 0, x′) = Tb(x′), for any x′ ∈ T 2, (1.10)
ψ̃0(η = 0, x′,β) = ψb(0, x′,β), for any x′ ∈ T 2, (0, x′,β) ∈ Γ−, (1.11)

where µ = −n(x) · β = β1 and T̃0 = T̃0(η, x′), ψ̃0 = ψ̃0(η, x′, β) with x′ = (x2, x3) ∈ T 2. The above problem 
is also called nonlinear Milne problem of the radiative heat transfer system.

Assuming Tb, ψb are bounded, the existence of weak solutions for the above problem is proved in [7]. 
Moreover, the weak solutions are shown to converge as η → ∞ to some non-negative constants T̃0,∞(x′) :=
limη→∞ T̃0(η, x′), ψ̃0,∞(x′, β) := limη→∞ ψ̃0(η, x′, β). These constants give the boundary conditions for the 
nonlinear limit equation (1.5) by

T0(x1 = 0, x′) = T̃0,∞(x′), for any x′ ∈ T 2. (1.12)

The linear stability for the nonlinear Milne problem is shown to be fulfilled under a spectral assumption, 
which reads as

(A) There exists a constant τ > 0 such that the function T̃0 ∈ L2
loc(R+ × T 2) satisfies the inequality

M

∞̂

0

e2τx(2T̃
3
2
0 )2|∂xf |2dx ≥ 4

∞̂

0

e2τx|∂x(2T̃
3
2
0 )|2f2dx (1.13)

for any measurable function f ∈ C1(R+) with f(0) = 0, for some constant M < 1.

The spectral assumption holds when the boundary data is close to the well-prepared case (ψb − T 4
b small) 

and uniqueness of the nonlinear Milne problem is proved in this situation [7].
By adding the boundary layer correction to the system (1.5)-(1.6), a composite approximate solution can 

be constructed. In details, we introduce a cut-off function χ = χ(x1) = χ(εη) as follows

χ(x1) =






1, for 0 ≤ x1 ≤ 1
4δ,

0, for x1 > 3
8δ,

∈ (0, 1), otherwise,
(1.14)

where δ > 0 is a small constant and will be chosen later (see Theorem 9). The boundary layer corrections 
are given by

T̄0 = χ(x1)(T̃0 − T̃0,∞), ψ̄0 = χ(x1)(ψ̃0 − T̃ 4
0,∞). (1.15)

The composite approximate solution is obtained by adding the above terms to the solution of (1.5)-(1.6).
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1.3. Main results

The main result of this paper is the following theorem.

Theorem 1. Let Tb ∈ C2(∂Ω) and ψb ∈ C1(Γ−) be non-negative functions. Let (T0, ψ0) be the smooth 
solution to system (1.5)-(1.6) with boundary condition (1.12) and (T̃0, ψ̃0) be the smooth solution to the 
nonlinear Milne problem (1.8)-(1.11). Let the boundary layer correction (T̄0, ψ̄0) be given by (1.15). Assume 
T̃0 satisfies the spectral assumption (A) and has a lower bound T̃0 ≥ a for some constant a > 0. Then for 
ε > 0 sufficiently small, there exists a unique solution (T ε, ψε) ∈ L∞(Ω) ×L∞(Ω ×S2) to system (1.1)-(1.2)
with boundary conditions (1.3)-(1.4), satisfying

‖T ε − T0 − T̄0‖L∞(Ω) = O(ε), ‖ψε − T 4
0 − ψ̄0‖L∞(Ω×S2) = O(ε). (1.16)

The above theorem shows the convergence of solutions of system (1.1)-(1.4) to the approximate solution 
(T0 + T̄0, T 4

0 + ψ̄0) as ε → 0. Therefore, the diffusive limit of the radiative transfer system is rigorously 
justified.

In order to prove the above theorem, we need higher order approximate expansions beyond (1.5)-(1.6)
and (1.8)-(1.9). Let N ≥ 1 be an integer, we take the ansatz for the N -th order composite approximate 
solution (T a, ψa) as

T ε ∼ T a :=
N∑

k=0
εk(Tk + T̄k), ψε ∼ ψa :=

N∑

k=0
εk(ψk + ψ̄k),

where (Tk, ψk) is the k-th order interior approximation (satisfying system (2.37)-(2.38)) and (T̄k, ψ̄k) is the 
k-th order boundary layer correction (defined by (2.36) and system (2.32)-(2.33)), see Section 2 for details 
of the derivations. Note that due to the nonlinearity of (T ε)4, the interior expansions and boundary layer 
expansions are coupled. In particular, Taylor’s expansions of the interior approximations are used for the 
construction of the boundary layer corrections. The composite approximate solution is shown to satisfy

ε2∆T a + 〈ψa − (T a)4〉 = R1(T a,ψa), (1.17)

εβ ·∇ψa + ψa − (T a)4 = R2(T a,ψa), (1.18)

with boundary conditions

T a(x) = Tb(x), for any x ∈ ∂Ω, (1.19)

ψa(x,β) = ψb(x,β), for (x,β) ∈ Γ−, (1.20)

where R1(T a, ψa) and R2(T a, ψa) are the approximation errors and are of order εN+1 (see Theorem 9).
The main idea for the proof of Theorem 1 is to show the existence and uniqueness of system (1.1)-(1.2) in 

a small neighborhood of the approximate solution (T a, ψa). In order to achieve this, we construct a sequence 
of functions {T k, ψk}∞k=0 solving

ε2∆T k + 〈ψk − 4(T a)3T k〉 = 〈(T k−1)4 − 4(T a)3T k−1〉, (1.21)

εβ ·∇ψk + ψk − 4(T a)3T k = (T k−1)4 − 4(T a)3T k−1, (1.22)

with boundary conditions
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T k(x) = Tb(x), for any x ∈ ∂Ω,

ψk(x,β) = ψb(x,β), for (x,β) ∈ Γ−.

This defines a mapping T : L∞(Ω) ×L∞(Ω ×S2) → L∞(Ω) ×L∞(Ω ×S2) with (T k, ψk) = T ((T k−1, ψk−1)). 
For ε > 0 sufficiently small and N ≥ 5, s ≥ 3, the mapping T is shown in section 4 to be a contraction 
mapping in the set

Os :={(T,ψ) ∈ L∞(Ω) × L∞(Ω × S2) :

‖T − T a‖L∞(Ω) ≤ εs, ‖ψ − ψa‖L∞(Ω×S2) ≤ εs},

where K > 0 is a positive constant. Then by the Banach fixed point theorem, there exists a fixed point 
(T ε, ψε) of T such that T ((T ε, ψε)) = (T ε, ψε) ∈ Os. By the definition of T , (T ε, ψε) solves system 
(1.1)-(1.2) with boundary conditions (1.3)-(1.4). For example, we can take s = 3 and N = 5 in the above 
arguments and conclude that there exists a unique solution (T ε, ψε) ∈ Os=3, i.e.

∥∥∥∥∥T
ε −

5∑

k=0
εkTk −

5∑

k=0
εkT̄k

∥∥∥∥∥
L∞(Ω)

≤ Cε3, (1.23)

∥∥∥∥∥ψ
ε −

5∑

k=0
εkψk −

5∑

k=0
εkψ̄k

∥∥∥∥∥
L∞(Ω×S2)

≤ Cε3, (1.24)

which leads to (1.16) and proves Theorem 1.
One of the most elusive and difficult issues to prove Theorem 1 is to show that T is a contraction mapping. 

This is solved by using an L2-L∞ estimates on system (1.21)-(1.22). In order to get an L2 estimate on this 
system, the following coercivity inequality

−
ˆ

Ω

4(T a)3g∆gdx ≥ −C‖g‖2
L2(Ω), (1.25)

for any function g ∈ H1(Ω), is used. This inequality can be shown to hold under the spectral assumption 
(A) (see Lemma 10). The L∞ estimate is derived based on the elliptic regularity and the maximum principle 
for the radiative transport equation.

The spectral assumption (A) plays a key role in the proof of Theorem 1. First, it’s required to show 
the well-posedness of the nonlinear Milne problem (1.8)-(1.11) and equations for higher order boundary 
corrections (T̄k, ψ̄k), k ≥ 1 (equations (2.32)-(2.33)). Second, under this assumption, the exponential decay 
of T̄k, ψ̄k, k ≥ 0 can be shown, which is needed in order to find the boundary condition for equation 
(1.5). Third, the spectral assumption is used to show the inequality (1.25), which is crucial in order to 
get the suitable L2 estimate on system (1.21)-(1.22) and prove T is a contraction mapping. Note since 
T̄k = T̄k(η, x′) = T̄ (x1/ε, x′), ∂2

η T̄k may be of order 1/ε2 and thus the left term of (1.25) may be singular as 
ε → 0. Thanks to the spectral assumption (A), inequality (1.25) holds and overcomes this singularity.

Our work also provides another approach to justify the diffusive limit in the well-prepared case, which was 
already done in [6] using different methods. Indeed, when the boundary data is well-prepared, ψb = T 4

b , no 
boundary layer exists and the boundary layer corrections T̄k ≡ 0, ψ̄k ≡ 0. We can thus take T a =

∑N
k=0 ε

kTk, 
ψa =

∑N
k=0 ε

kψk. Since ∇T a is bounded, inequality (1.25) holds obviously. Therefore, Theorem 1 holds and 
(1.16) implies the convergence of (T ε, ψε) to (T0, ψ0), which is the solution to (1.5)-(1.7).
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1.4. Related work

When the diffusion operator is not considered, system (1.1)-(1.2) reduces to the linear transport equation 
εβ ·∇Uε + Uε − 〈Uε〉/(4π) = 0. As ε → 0, its solution convergences to U0 + Ū0, where U0 = U0(x) is the 
solution of the Laplacian equation ∆U0 = 0 and Ū0 = Ū0(x, β) is a boundary layer correction defined 
by Ū0 = χ(x1)(Ũ0 − Ũ0,∞) where Ũ0 = Ũ(η, x′, β) is the solution to µ∂ηŨ0 + Ũ0 − 〈Ũ0〉/(4π) = 0. This 
convergence was first rigorously proved in [4] whereas the study of this linear Milne problem was done in 
[3]. However, when the boundary is not flat, ‖Uε−U0− Ū0‖L∞ does not converge to zero as ε → 0. In [16], a 
geometric correction Uε

0 , Ū
ε
0 is constructed with considerations of the curvature effects and ‖Uε−Uε

0−Ūε
0‖L∞

is shown to converge to zero as ε → 0 in the 2D unit disk [16], in the annulus [17], in the 2D convex domain 
[9,14] and in the 3D convex domain [15]. For more references on the diffusive limit of the linear transport 
equation, we refer the reader to [13,14] and references therein.

When the term ε2∆T ε is replaced by ε2T ε, the diffusive limit for system (1.1)-(1.2) has been studied in 
many works [8,1,2,5,12]. In particular the problem has motivated the introduction of compactness techniques 
specific to kinetic equations, the average lemma being at the basis of the results in [2]. Moreover, the 
boundary layer problem for system (1.1)-(1.2) without the Laplacian term is constructed in [12] and the 
boundary condition for the limiting system (1.5) is shown to satisfy a mixed Robin boundary condition. Such 
a method is extended in [11] to construct the boundary layer approximations for system (1.1)-(1.2). However, 
the method only provides the zeroth and first order approximations near the boundary and could not extend 
to get higher order approximations. Since our estimates (1.23)-(1.24) need higher order expansions, here we 
provide a different way to obtain the approximation boundary layer solutions up to any order.

1.5. Plan of the paper

The paper is organized as follows. In the next section, we construct the composite approximate solution 
and show that it satisfies the radiative heat transfer system in the perturbative sense, in Lemma 2. In 
section 3, the properties of the approximate solutions are studied and the approximation errors are shown 
in Theorem 9, and inequality (1.25) is proved in Lemma 10. Finally, the proof of Theorem 1 is given, which 
consists of showing the linearized stability and nonlinear stability of (1.1)-(1.2) in the neighborhood of the 
approximate solution, in section 4.1 and 4.2, respectively.

Notations. Throughout the paper, some standard notations are used. The norm ‖ ·‖L2(Ω) and ‖ ·‖L2(Ω×S2)
are defined by ‖f‖2

L2(Ω) =
´
Ω f2dx, ∀f ∈ L2(Ω) and ‖g‖2

L2(Ω×S2) =
´
Ω×S2 g2dβdx, ∀g ∈ L2(Ω × S2). The 

norm ‖ ·‖L2(Γ+) and ‖ ·‖L2(Γ−) are defined respectively by ‖g‖2
L2(Γ+) =

´
Γ+

β ·n(x)g2dβdσx, and ‖g‖2
L2(Γ−) =´

Γ−
|β · n(x)|g2dβdσx, where σx is the surface element.

2. Asymptotic analysis

In this section, an approximate solution to system (1.1)-(1.2) is constructed via asymptotic analysis. An 
interior expansion is first constructed which is valid in the interior of the domain and then a boundary layer 
correction is constructed accounting for the boundary layer effects. Finally, we combine the results to get a 
composite approximate solution to system (1.1)-(1.2). We here recall the simplifying assumption that the 
boundary layer only occurs near the bottom {x ∈ ∂Ω, x1 = 0}.

2.1. Interior expansion

We take the interior expansion to be

T ε(x) ∼
N∑

k=0
εkTk(x), ψε(x,β) ∼

N∑

k=0
εkψk(x,β). (2.1)
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Define

R1(T,ψ) := ε2∆T + 〈ψ − T 4〉, R2(T,ψ) := εβ ·∇ψ + (ψ − T 4). (2.2)

Plugging (2.1) into the above formulas gives

R1

(
N∑

k=0
εkTk,

N∑

k=0
εkψk

)

=
N∑

k=0
εk(∆Tk−2 + 〈ψk − C(T, k))〉 + εN+1∆TN−1 + εN+2∆TN −

4N∑

k=N+1
εk〈C(T, k)〉, (2.3)

R2

(
N∑

k=0
εkTk,

N∑

k=0
εkψk

)

=
N∑

k=0
εk(β ·∇ψk−1 + ψk − C(T, k)) + εN+1β ·∇ψN −

4N∑

k=N+1
εkC(T, k), (2.4)

where

C(T, k) :=
∑

i+j+l+m=k
i,j,l,m≥0

TiTjTlTm, (2.5)

and (Tk, ψk), k < 0 are taken to be zero.
Collecting terms with the same order, we take

∆Tk−2 + 〈ψk − C(T, k)〉 = 0, (2.6)
β ·∇ψk−1 + ψk − C(T, k) = 0, (2.7)

for any k = 0, . . . , N . From the above two equations we obtain

∆Tk−2 = 〈β ·∇ψk−1〉.

By (2.7), an iterative process on the above equation leads to

∆Tk−2 = 〈β ·∇(−β ·∇ψk−2 + C(T, k − 1))〉 = −〈β ·∇(β ·∇ψk−2)〉

= −〈(β ·∇)2(−β ·∇ψk−3 + C(T, k − 2))〉 = −4π
3 ∆C(T, k − 2)〉 + 〈(β ·∇)3ψk−3〉.

Consequently, equations (2.6)-(2.7) can be rewritten as

∆Tk + 4π
3 ∆C(T, k) = 〈(β ·∇)3ψk−1〉, (2.8)

ψk = −β ·∇ψk−1 + C(T, k), (2.9)

for any k = 0, . . . , N .
Note that here Tk is solved by (2.8) and the solution is plugged into (2.9) to get ψk. In addition, for 

k = 0, equation (2.8) becomes
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∆T0 + 4π
3 ∆T 4

0 = 0,

which gives the nonlinear elliptic equation (1.5). For k ≥ 1, equation (2.8) can be rewritten as the following 
linear elliptic equation

∆Tk + 4π
3 ∆(4T 3

0 Tk) = −4π
3 ∆E(T, k − 1) + 〈(β ·∇)3ψk−1〉,

where

E(T, k − 1) :=
∑

i+j+l+m=k
i,j,l,m≥1

TiTjTlTm.

From the above equations, residuals (2.3) and (2.4) are given by

R1

(
N∑

k=0
εkTk,

N∑

k=0
εkψk

)
= εN+1∆TN−1 + εN+2∆TN −

4N∑

k=N+1
εk〈C(T, k)〉,

R2

(
N∑

k=0
εkTk,

N∑

k=0
εkψk

)
= εN+1β ·∇ψN −

4N∑

k=N+1
εkC(T, k),

where the right hand side is both formally of order εN+1.

2.2. Boundary layer corrections

We next find the approximation of system (1.1)-(1.2) near the boundary. Let η = x1/ε, we take the 
ansatz

T ε(x) ∼
N∑

k=0
εk(T̄k(η, x′) + Tk(x)), ψε(x,β) ∼

N∑

k=0
εk(ψ̄k(η, x′,β) + ψk(x,β)),

where T̄k, ψ̄k are the correction terms near the boundary and (Tk, ψk) are the interior expansions derived 
in the previous subsection. Taking the above ansatz into (2.2) gives

R1

(
N∑

k=0
εk(Tk + T̄k),

N∑

k=0
εk(ψk + ψ̄k)

)

= R1

(
N∑

k=0
εkTk,

N∑

k=0
εkψk

)
−

N∑

k=0
εk〈C(T + T̄ , k) − C(T, k)〉

−
4N∑

k=N+1
εk〈C(T + T̄ , k) − C(T, k)〉

+ εN+1∆x′ T̄N−1 + εN+2∆x′ T̄N +
N∑

k=0
εk〈C(T̄ + P, k) − C(P, k)〉

+
N∑

k=0
εk(∂2

η T̄k + ∆x′ T̄k−2 + 〈ψ̄k − C(T̄ + P, k) + C(P, k)〉), (2.10)

and
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R2

(
N∑

k=0
εk(Tk + T̄k),

N∑

k=0
εk(ψk + ψ̄k)

)

= R2

(
N∑

k=0
εkTk,

N∑

k=0
εkψk

)
−

N∑

k=0
εk(C(T + T̄ , k) − C(T, k))

−
4N∑

k=N+1
εk(C(T + T̄ , k) − C(T, k))

+ εN+1β′ ·∇x′ ψ̄N +
N∑

k=0
εk(C(T̄ + P, k) − C(P, k))

+
N∑

k=0
εk(µ∂ηψ̄k + β′ ·∇x′ ψ̄k−1 + ψ̄k − C(T̄ + P, k) + C(P, k)). (2.11)

Here µ = β1, x′ = (x2, x3), β′ = (β2, β3), Tk(0) = Tk(x1 = 0) and Pk = Pk(η, x′), k = 0, . . . , N are the 
Taylor’s expansions of Tk(εη, x′), k = 0, . . . , N around η = 0, given by

Pk(η, x′) =
k∑

l=0

ηl

l!
∂l

∂xl
1
Tk−l(0, x′). (2.12)

Collecting terms of the same order in (2.10)-(2.11), we take

∂2
η T̄k + ∆x′ T̄k−2 + 〈ψ̄k − C(T̄ + P, k) + C(P, k)〉 = 0, (2.13)

µ∂ηψ̄k + β′ ·∇x′ ψ̄k−1 + ψ̄k − C(T̄ + P, k) + C(P, k) = 0, (2.14)

for k = 0, . . . , N . Let T̃k = T̄k + Pk(0) = T̄k + Tk(0) for any k = 0, . . . , N , and ψ̃0 = ψ̄0 + T 4
0 (0) and 

ψ̃k = ψ̄k + 4T 3
0 (0)Tk(0), then

−(T̄0 + P0)4 + P 4
0 = −T̃ 4

0 + T 4(0),

and for k ≥ 1,

−4(T̄0 + P0)3(T̄k + Pk) + 4P 3
0Pk = −4T̃ 3

0 T̃k + 4T 3
0 (0)Tk(0) − 4(T̃ 3

0 − T 3
0 (0))(Pk − Pk(0)).

Therefore, T̃k, ψ̃k satisfies the equations

∂2
η T̃0 + 〈ψ̃0 − T̃ 4

0 〉 = 0, (2.15)
µ∂ηψ̃0 + ψ̃0 − T̃ 4

0 = 0, (2.16)

and for k = 1, . . . , N ,

∂2
η T̃k + ∆x′ T̄k−2 + 〈ψ̃k − 4T̃ 3

0 T̃k〉

+ 〈−4(T̃ 3
0 − T 3

0 (0))(Pk − Pk(0)) − E(T̄ + P (0), k − 1) + E(P (0), k − 1)〉 = 0, (2.17)
µ∂ηψ̃k + β′ ·∇x′ ψ̄k−1 + ψ̃k

− 4T̃ 3
0 T̃k − 4(T̃ 3

0 − T 3
0 (0))(Pk − Pk(0)) − E(T̄ + P (0), k − 1) + E(P (0), k − 1) = 0. (2.18)

The boundary conditions for the above equations are
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T̃0(η = 0, x′) = Tb(0, x′), for any x′ ∈ T 2, (2.19)
ψ̃0(η = 0, x′,β) = ψb(0, x′,β), for any (0, x′,β) ∈ Γ−, (2.20)

and for k = 1, . . . , N ,

T̃k(η = 0, x′) = 0, for any x′ ∈ T 2, (2.21)
ψ̃k(η = 0, x′,β) = ψk(0) − 4T 3

0 (0)Tk(0), for any (0, x′,β) ∈ Γ−. (2.22)

The boundary conditions above are taken to be consistency with boundary conditions (1.3)-(1.4) such that

N∑

k=0
(T̄k(0, x′) + Tk(0, x′)) = Tb(0, x′), for x′ ∈ T 2,

N∑

k=0
(ψ̄k(0, x′,β) + ψk(0, x′,β)) = ψb(0, x′,β), for(0, x′,β) ∈ Γ−.

(2.23)

2.3. Construction of the composition approximate solution

In order to combine the interior expansions and boundary corrections, we use the cut-off function χ(x1)
defined in (1.14) and we also introduce another cut-off function χ0(x1) by

χ0(x1) =






1, for 0 ≤ x1 ≤ 1
2δ,

0, for x ≥ 3
4δ,

∈ (0, 1), otherwise.
(2.24)

The construction of the composite approximate solution is done via the following procedure.
Step 1. Construction of (T̄0, ψ̄0) and (T0, ψ0). We first solve (2.17)-(2.18) when k = 0:

∂2
η T̃0 + 〈ψ̃0 − T̃ 4

0 〉 = 0, (2.25)
µ∂ηψ̃0 + ψ̃0 − T̃ 4

0 = 0, (2.26)

with boundary conditions

T̃0(η = 0, x′) = Tb(0, x′), for any x′ ∈ T 2, (2.27)
ψ̃0(η = 0, x′,β) = ψb(0, x′,β), for any x′ ∈ T 2,β ∈ S2 and µ = β1 > 0. (2.28)

This is the nonlinear Milne problem (1.8)-(1.11). It has been shown in [7] that the above problem has a 
global weak solution (T̃0, ψ̃0) ∈ L2

loc(R+×T 2) ∩L2
loc(R+×T 2×S2) and as η → ∞, the solution converges to 

some bounded functions (T̃0,∞, ψ̃0,∞) independent of η. We define the lowest order boundary layer correction 
(T̄0, ψ̄0) by

T̄0(η, x′) = χ(εη)(T̃0(η, x′) − T̃0,∞(x′)), ψ̄0(η, x′,β) = χ(εη)(ψ̃0(η, x′,β) − ψ̃0,∞(x′,β)). (2.29)

Note due to the property of the nonlinear Milne problem, we have ψ̃0,∞ = T̃ 4
0,∞. Here and below, T̄k, ψ̄k are 

redefined by using a cut-off and is different from the same notation in section 2.2.
We next give the leading order of the interior expansion (T0, ψ0), which is obtained by solving (2.8)-(2.9)

for k = 0:
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∆T0 + 4π
3 ∆T 4

0 = 0, ψ0 = T 4
0 (2.30)

with boundary conditions

T0(0, x′) = T̃0,∞(x′), T0(1, x′) = Tb(1, x′), for any x′ ∈ T 2. (2.31)

Step 2. Construction of (T̄k, ψ̄k) and (Tk, ψk) for k = 1, . . . , N . We solve (2.17)-(2.18) for 1 ≤ k ≤ N :

∂2
η T̃k + 〈ψ̃k − 4T̃ 3

0 T̃k〉 = −χ0∆x′ T̄k−2 + 〈4(T̃ 3
0 − T̃ 3

0,∞)(Pk − Pk(0))〉

+ 〈E(T̄ + P, k − 1) − E(P, k − 1)〉, (2.32)

µ∂ηψ̃k + ψ̃k − 4T̃ 3
0 T̃k = −χ0β

′ ·∇x′ ψ̄k−1 + 4(T̃ 3
0 − T̃ 3

0,∞)(Pk − Pk(0))

+ (E(T̄ + P, k − 1) − E(P, k − 1)), (2.33)

with boundary conditions

T̃k(η = 0, x′) = 0, for any x′ ∈ T 2, (2.34)

ψ̃k(η = 0, x′,β) = β ·∇ψk−1(0) − E(T (0), k − 1), for any x′ ∈ T 2,β ∈ S2 and µ > 0. (2.35)

The above problem was studied in [7] where existence and uniqueness of solutions are proved and the 
solutions are also shown to converge to some bounded functions as η → ∞. We thus obtain (T̄k, ψ̄k) by

T̄k(η, x′) = χ(εη)(T̃k(η, x′) − T̃k,∞(x′)), ψ̄0(η, x′,β) = χ(εη)(ψ̃k(η, x′,β) − ψ̃k,∞(x′,β)) (2.36)

where

T̃k,∞(x′) = lim
η→∞

T̃k(η, x′), ψ̃k,∞(x′,β) = lim
η→∞

ψ̃k(η, x′,β).

The interior expansions (Tk, ψk) are given, according to (2.8)-(2.9), by solving the system

∆Tk + 4π
3 ∆(4T 3

0 Tk) = 〈(β ·∇)3ψk−3〉 −
4π
3 ∆E(T, k − 1), (2.37)

ψk = −β ·∇ψk−1 + 4T 3
0 Tk + E(T, k − 1) (2.38)

with boundary conditions

Tk(0, x′) = T̃k,∞(x′), Tk(1, x′) = Tb(1, x′), for any x′ ∈ T 2. (2.39)

Step 3: The composite approximate solution. With the above results, the composite approximate solution 
is given by

T a =
N∑

k=0
εk(Tk + T̄k), ψa =

N∑

k=0
εk(ψk + ψ̄k). (2.40)

From (2.23), (T a, ψa) also satisfies the boundary conditions (1.3)-(1.4).
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2.4. Error of the composite expansion

In this section, we give the approximation errors. By the definition of (T̄0, ψ̄0) of (2.29) and equations 
(2.25)-(2.26), as well as the relation (2.31) and ψ̃0,∞ = T̃ 4

0,∞, a direct computation gives

E0
0 : = ∂2

η T̄0 + 〈ψ̄0 − (T̄0 + T0(0))4 + T 4
0 (0)〉

= (T̃0 − T̃0,∞)∂2
ηχ + 2∂ηχ∂ηT̃0 + χ〈T̃ 4

0 − T̃ 4
0,∞〉 − 〈(χ(T̃0 − T̃0,∞) + T̃0,∞)4 − T̃ 4

0,∞〉, (2.41)

and

E1
0 : = µ∂ηψ̄0 + ψ̄0 − (T̄0 + T0(0))4 + T 4

0 (0)
= µ(ψ̃0 − ψ̃0,∞)∂ηχ + χ(T̃ 4

0 − T̃ 4
0,∞) − ((χ(T̃0 − T̃0,∞) + T̃0,∞)4 − T̃ 4

0,∞). (2.42)

Using the definition of (T̄k, ψ̄k) in (2.36) and equations (2.32)-(2.33) as well as the relation (2.34)-(2.35) and 
ψ̃k,∞ = 4T̃ 3

0,∞T̃k,∞, we get

E0
k : = ∂2

η T̄k + ∆x′ T̄k−2 + 〈ψ̄k − C(T̄ + P, k) + C(P, k)〉
= (T̃k − T̃k,∞)∂2

ηχ + 2∂ηχ∂ηT̃k

+ χ(〈4T̃ 3
0 T̃k − 4T̃ 3

0,∞T̃k,∞ + 4(T̃ 3
0 − T̃ 3

0,∞)(Pk − Pk(0))〉
+ 〈E(T̄ + P, k − 1) − E(P, k − 1)〉) − 〈C(T̄ + P, k) − C(P, k)〉
+ (1 − χχ0)∆x′ T̄k−2, (2.43)

and

E1
k : = µ∂ηψ̄k + β′ ·∇x′ ψ̄k−1 + ψ̄k − C(T̄ + P, k) + C(P, k)

= µ(ψ̃k − ψ̃k,∞)∂ηχ + χ(4T̃ 3
0 T̃k − 4T̃ 3

0,∞T̃k,∞ + 4(T̃ 3
0 − T̃ 3

0,∞)(Pk − Pk(0))
+ E(T̄ + P, k − 1) − E(P, k − 1)) − 〈C(T̄ + P, k) − C(P, k)〉
+ (1 − χχ0)β′ ·∇x′ ψ̄k−1. (2.44)

Combining formulas (2.10) and (2.11), we get from the above equations

R1(T a,ψa) = εN+1∆TN−1 + εN+2∆TN −
N∑

k=0
εk〈C(T + T̄ , k) − C(T, k)

− C(T̄ + P, k) + C(P, k)〉 −
4N∑

k=N+1
εk〈C(T + T̄ , k)〉

+ εN+1∆x′ T̄N−1 + εN+2∆x′ T̄N +
N∑

k=0
εkE0

k, (2.45)

and

R2(T a,ψa) = εN+1β ·∇ψN −
N∑

k=0
εk(C(T + T̄ , k) − C(T, k) − C(T̄ + P, k) + C(P, k))

−
4N∑

k=N+1
εk(C(T + T̄ , k)) + εN+1β′ ·∇x′ ψ̄N +

N∑

k=0
εkE1

k. (2.46)
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Therefore, we summarize the above results in the following lemma.

Lemma 2. Let (T a, ψa) be given by (2.40). Then (T a, ψa) satisfies system (1.17)-(1.18) with boundary con-
ditions (1.19)-(1.20), where R1(T a, ψa), R2(T a, ψa) are given by (2.45) and (2.46), respectively.

3. Properties of the approximate solution

In this section, we study the properties of the approximate solution (T a, ψa) constructed in the previous 
section. The properties of the interior approximations are shown first, followed by the properties of the 
boundary layer approximations. Then, the approximate errors R1(T a, ψa) and R2(T a, ψa), obtained in the 
previous section, are estimated in Theorem 9. Finally, the coercivity inequality (1.25) is shown in Lemma 10.

3.1. Interior approximations

The interior approximation (T0, ψ0) is obtained by solving (2.30) and (Tk, ψk), k = 1, . . . , N are obtained 
by solving (2.37). For equation (2.30), the following lemma holds.

Lemma 3. Assume T̃0,∞ ∈ L2(T 2) and Tb(1, x′) ∈ L2(T 2) satisfy T̃0,∞ ≥ 0, Tb(1, x′) ≥ 0 for any x′ ∈ T 2. 
Then, there exists a unique solution T0 ∈ C∞(Ω) to equation (2.30) with boundary condition (2.31) and the 
solution satisfies T0(x) ≥ 0 for any x ∈ Ω.

Proof. The proof of the above lemma follows directly from elliptic theory. Actually, we may take u =
T0+4πT 4

0 /3 and then ∆u = 0 in Ω and u(0, x′) = T̃0,∞(x′) +4πT̃ 4
0,∞(x′)/3, u(1, x′) = Tb(1, x′) +4πT 4

b (1, x′)/3
on the boundary. We have u ∈ C∞(Ω) and so T ∈ C∞(Ω). !

We now provide in the following lemma a well-posedness result for the elliptic equation (2.37).

Lemma 4. Assume T̃k,∞ ∈ L2(T 2) satisfy T̃k,∞ ≥ 0. Given Ts, 1 ≤ s ≤ k − 1 and ψs, 1 ≤ s ≤ k − 1 satisfy 
Ts ∈ L2(Ω), ψs ∈ L2(Ω × S2). Then there exists a unique solution Tk ∈ C∞(Ω) to equation (2.37) with 
boundary conditions (2.39).

Proof. The proof of the above lemma also follows directly from elliptic theory by taking u = (1 +
16πT 3

0 /3)Tk. !

We finish this part by giving an L∞-estimate of the Taylor expansion Pk defined by (2.12).

Lemma 5. Let Ts, s = 0, . . . , N be the solution to equation (2.30) and (2.37), and Ps, s = 0, . . . , N be given 
by (2.12). Then

‖Ps(η)‖L∞(T2) ≤ C(1 + ηs), for any s = 0, . . . , N,

for some constant C > 0.

Proof. Since Ts ∈ C∞(Ω), ∂l
x1Ts(0) are bounded for any l ≥ 0. Therefore,

|Ps| =
∣∣∣∣∣

s∑

l=0

ηl

l!
∂l

∂xl
1
Ts−l(0, x′)

∣∣∣∣∣ ≤ C1

s∑

l=0

ηl

l! ≤ C(1 + ηs),

and thus the lemma holds. !
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3.2. Boundary layer approximation

The analyses of the half-space nonlinear and linear Milne problems (2.25)-(2.26) and (2.32)-(2.33) have 
been carried out in [7]. Here we summarize the results in Lemma 6 and 7, for the proof we refer the reader 
to [7]. First, we have the following lemma for system (2.25)-(2.26).

Lemma 6 ([7]). Given (Tb(0, x′), ψb(0, x′, β)) ∈ L∞(T 2) × L∞(Γ−) satisfying Tb(0, x′) ≥ 0, ψb(0, x′, β) ≥ 0
for any x′ ∈ T 2 and β ∈ S2 with β1 ≥ 0. There exists a bounded solution (T̃0, ψ̃0) ∈ L2

loc(R+ × T 2) ×
L2

loc(R+ × T 2 × S2) to system (2.25)-(2.26) with boundary conditions (2.27)-(2.28). Moreover, there exists 
a constant function T̃0,∞ ∈ L∞(T 2) such that

|T̃0(η, x′) − T̃0,∞(x′)| ≤ Ce−λ0η, |ψ̃(η, x′,β) − T̃ 4
0,∞(x′)| ≤ Ce−λ0η, (3.1)

for any η ∈ [0, ∞) and β ∈ S2, x′ ∈ T 2. Here C > 0 are constants depending linearly on the constant 
(´ 1

0 µ(ψb − T 4
b )2dµ

) 1
2 and λ0 is any fixed constant in [0, 1). Furthermore, for sufficiently small value of 

(´ 1
0 µ(ψb − T 4

b )2dµ
) 1

2 , the solution (T̃0, ψ̃0) is unique.

Note that by the above lemma, ψ̃0,∞ := limη→0 ψ̃0(η) = T̃ 4
0,∞.

For system (2.32)-(2.33), the spectral assumption (A) on T̃0 is needed in order to show the existence, 
uniqueness and exponential decay of solutions. The following lemma holds.

Lemma 7 ([7]). Given T̄s ∈ L2(R+; C2(T 2)), ψ̄s ∈ L2(R+; C2(T 2 × S2)), 0 ≤ s ≤ k − 1 such that

|T̄s(η, x′)| ≤ Ce−λk−1η, |ψ̄s(η, x′,β)| ≤ Ce−λk−1η (3.2)

for some constants C > 0, λk−1 > 0 and for any x′ ∈ T 2, β ∈ S2. Given Ps ∈ C([0, ∞) × T 2) satisfying 
|Ps| ≤ C(1 + ηk−1) for some constant C > 0 for any 0 ≤ s ≤ k − 1. Assume T̃0 satisfies the spectral 
assumption (A). Then there exists a unique bounded solution (T̃k, ψ̃k) ∈ L2

loc(R+×T 2) ×L2
loc(R+×T 2×S2) to 

system (2.32)-(2.33) with boundary conditions (2.34)-(2.35). Moreover, there exist constants (T̃k,∞, ψ̃k,∞) ∈
L∞(T 2) × L∞(T 2 × S2) such that

|T̃k(η, x′) − T̃k,∞(x′)| ≤ Ce−λ′η, |ψ̃(η, x′,β) − ψ̃k,∞(x′,β)| ≤ Ce−λ′η, (3.3)

for any constant 0 < λ′ < λk−1, where C > 0 is a positive constant independent of k and the relation 
ψ̃k,∞ = 4T̃ 3

0,∞T̃k,∞ holds.

Proof. It has been proved in [7] that given functions S1 = S1(η, x′), S2 = S2(η, x′, β) such that

∞̂

0

e2λ′ηS2
1dη,

∞̂

0

ˆ

S2

e2λ′ηS2
2dηdβ < ∞ (3.4)

are bounded, the following equations

∂2
ηg + 〈φ− 4T̃ 3

0 g〉 = S1, (3.5)
µ∂ηφ + φ− 4T̃ 3

0 g = S2, (3.6)

with boundary conditions
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g(η = 0, x′) = 0, for any x′ ∈ T 2,

φ(η = 0, x′,β) = φb, for any (x,β) ∈ Γ−,

have a unique bounded solution (g, φ) ∈ L2
loc(R+ × T 2) × L2

loc(R+ × T 2 × S2). Moreover, there exists a 
constant g∞ such that |g − g∞| ≤ Ce−λ′η, |φ − 4T̃ 3

0,∞g∞| ≤ Ce−λ′η, for the proof of this result we refer to 
the [7, Theorem 2]. Therefore, we deduce that ψ̃k,∞ = 4T̃ 3

0,∞T̃k,∞.
Taking g = T̃k, φ = ψ̃k and S1 = −χ0∆x′ T̄k−2+〈4(T̃ 3

0 −T̃ 3
0,∞)(Pk−Pk(0))〉 +〈E(T̄+P, k−1) −E(P, k−1)〉, 

S2 = −χ0β′ ·∇x′ ψ̄k−1 + 4(T̃ 3
0 − T̃ 3

0,∞)(Pk − Pk(0)) + (E(T̄ + P, k − 1) − E(P, k − 1)), φb = β ·∇ψk−1(0) −
E(T (0), k − 1), system (3.5)-(3.6) becomes system (2.32)-(2.33) with boundary conditions (2.34)-(2.35). 
Therefore, Lemma 7 holds if S1, S2 satisfy (3.4).

To show (3.4), from the assumption (3.2),

∞̂

0

e2λ′η|χ0∆x′ T̄k−2|2dη ≤ C

∞̂

0

e2λ′ηe−2λk−1ηdη = C

2(λk−1 − λ′) , (3.7)

∞̂

0

e2λ′η|− χ0β
′ ·∇x′ ψ̄k−1|2dη ≤ C

∞̂

0

e2λ′ηe−2λk−1ηdη = C

2(λk−1 − λ′) . (3.8)

Moreover, due to the assumption (3.2) and |Ps| ≤ C(1 + ηk), we have

|4(T̃ 3
0 − T̃ 3

0,∞)(Pk − Pk(0))| = |4(T̃0 − T̃0,∞)(Pk − Pk(0)||(T̃ 2
0 + T̃ 2

0,∞)| ≤ Ce−λ0η(1 + ηk),

and

|E(T̄ + P, k − 1) − E(P, k − 1)|

=
∣∣∣

∑

i+j+l+m=k
i,j,l,m≥1

(T̄i + Pi)(T̄j + Pj)(T̄l + Pl)(T̄m + Pm) −
∑

i+j+l+m=k
i,j,l,m≥1

PiPjPlPm

∣∣∣

=
∣∣∣

∑

i+j+l+m=k
i,j,l,m≥1

(T̄iT̄j T̄lT̄m + 3T̄iPjPlPm + 6T̄iT̄jPlPm + 3T̄iT̄j T̄lPm)
∣∣∣

≤ C(e−4λk−1η + e−λk−1η(1 + ηk−1)3 + e−2λk−1η(1 + ηk−1)2 + e−3λk−1η(1 + ηk−1))

≤ Ce−λk−1η(1 + η3k−3).

Therefore,

∞̂

0

e2λ′η|4(T̃ 3
0 − T̃ 3

0,∞)(Pk − Pk(0))|2dη ≤ C

∞̂

0

e2λ′ηe−2λ0η(1 + ηk)dη

= C

2(λ0 − λ′) + C

2k+1(λ0 − λ′)k+1 Γ(k + 1),

and

∞̂

0

e2λ′η|E(T̄ + P, k − 1) − E(P, k − 1)|2dη
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≤ C

∞̂

0

e2λ′ηe−2λk−1η(1 + η6k−6)dη + C

2(λk−1 − λ′) + C

26k−5(λk−1 − λ′)6k−5 Γ(6k − 5),

where Γ(n) := (n − 1)! is the Gamma function. Combining the above inequalities with (3.7)-(3.8) implies 
(3.4) and finishes the proof. !

In the above lemma, the constant λ′ may vary for different k. In order to get a uniform constant, 
we apply the above lemma iteratively. First, according to (3.1) from Lemma 6, T̄0 = χ(T̃0 − T̃0,∞) and 
ψ̄0 = χ(ψ̃0 − ψ̃0,∞) satisfy

|T̄0(η, x′)| ≤ Ce−λ0η, |ψ̄0(η, x′,β| ≤ Ce−λ0η, for any x′ ∈ T 2, β ∈ S2, (3.9)

for some C > 0 and λ > 0. Therefore, with the definition of P0 in (2.12), we have that P0 = T0(0) is bounded, 
i.e. |P0| ≤ C for some constant C > 0. Therefore, the assumptions of Lemma 7 with k = 1 hold. We take 
λ′ = λ0 − ε0, with ε0 > 0 being a sufficiently small number, in (3.3) and get that for any x′ ∈ T 2, β ∈ S2,

|T̃1(η, x′) − T̃1,∞(x′)| ≤ Ce−(λ0−ε0)η, |ψ̃1(η, x′,β) − ψ̃1,∞(x′,β)| ≤ Ce−(λ0−ε0)η. (3.10)

With these, T̄1 = χ(T̃1 − T̃1,∞) and ψ̄1 = χ(ψ̃1 − ψ̃1,∞) satisfy

|T̄1(η, x′)| ≤ Ce−(λ0−ε0)η, |ψ̄k(η, x′,β)| ≤ Ce−(λ0−ε0)η, ∀ (x′ ∈ T 2, β ∈ S2). (3.11)

Moreover, from Lemma 5, |P1| ≤ C(1 + η). Therefore, the assumption of Lemma 7 with k = 2 hold with 
λ1 = λ0 − ε0. We take λ′ = λ1 − ε0/4 in (3.3) and get that for any x′ ∈ T 2, β ∈ S2,

|T̃2(η, x′) − T̃2,∞(x′)| ≤ Ce−(λ1−ε0/4)η, |ψ̃2(η, x′,β) − ψ̃2,∞(x′,β)| ≤ Ce−(λ1−ε0/4)η. (3.12)

These again implies |T̄2(η, x′)|, |ψ̄2(η, x′, β)| ≤ Ce−(λ2−ε0/8) with λ2 = λ1 − ε0/4 if we take λ′ = λ2 − ε0/9. 
We can thus apply Lemma 7 iteratively with λ′ = λs−1 − ε0/s2 and λs = λs−1 − ε0/(s − 1)2 in the s-th step 
and get that

|T̃s(η, x′) − T̃s,∞(x′)| ≤ Ce−(λs−1−ε0/s
2)η, |ψ̃k(η, x′,β) − ψ̃2,∞(x′,β)| ≤ Ce−(λs−ε0/s

2)η, (3.13)

hold for any 0 ≤ s ≤ N for all x′ ∈ T 2, β ∈ S2. By T̄s = χ(T̃s − T̃s,∞) and ψ̄s = χ(ψ̃s − ψ̃s,∞), the above 
inequalities imply for any s = 0, . . . , N ,

|T̄s(η, x′)| ≤ Ce−(λs−1−ε0/s
2)η, |ψ̄s(η, x′)| ≤ Ce−(λs−1−ε0/s

2)η, ∀ (x′ ∈ T 2, β ∈ S2). (3.14)

Since λs = λs−1 − ε0/(s − 1)2,

λN−1 − ε0/N
2 = λN−2 − ε0/(N − 1)2 − ε0/N

2 = · · · = λ0 − ε0

(
1 + 1

22 + · · · + 1
N2

)
. (3.15)

From the formula 
∑∞

n=1
1
n2 = π2/6, the above equation implies

λN−1 − ε0/N
2 = λ0 − ε0

N∑

n=1

1
N2 ≤ λ0 − ε0

∞∑

n=1

1
n2 ≤ λ0 −

π2

6 ε0. (3.16)

Therefore, taking ε0 = 3λ0/π2 and setting λ = λ0/2, the following lemma holds.



M. Ghattassi et al. / J. Math. Pures Appl. 175 (2023) 181–215 197

Lemma 8. Let 
{(

T̃s, ψ̃s

)}

0≤s≤N
be solutions to system (2.25)-(2.26) for s = 0 and (2.32)-(2.33) for s ≥ 1. 

Then there exist constants λ > 0 and C > 0 such that for any s = 0, . . . , N ,

|T̃s(η, x′) − T̃s,∞(x′)|, |ψ̃s(η, x′,β) − ψ̃s,∞(x′,β)| ≤ Ce−λη,

|T̄s(η, x′)|, |ψ̄s(η, x′,β)| ≤ Ce−λη, for any (x′,β) ∈ T 2 × S2,
(3.17)

where C > 0 is a positive constant independent of s.

3.3. Residual estimates

Next we estimate R1(T a, ψa) and R2(T a, ψa) (given by (2.45) and (2.46), respectively). We prove the 
following theorem.

Theorem 9. Assume T̃0 satisfies the spectral assumption (A). Then the composite approximate solution 
(T a, ψa) constructed in section 2, satisfies (1.17)-(1.18) with boundary conditions (1.19)-(1.20). Moreover, 
the error terms R1 = R1(T a, ψa), R2 = R2(T a, ψa) satisfy

‖R1(T a,ψa)‖L∞(Ω), ‖R2(T a,ψa)‖L∞(Ω×S2) ≤ CγNεN+1 + (N + 2)Ce−
λδ
4ε , (3.18)

for some constant γN > 1. Furthermore, for δ > − 4
λ (N + 1)ε log ε, the above estimate implies

‖R1(T a,ψa)‖L∞(Ω), ‖R2(T a,ψa)‖L∞(Ω×S2) ≤ CεN+1, (3.19)

where C > 0 is a positive constant independent of ε.

Proof. We first consider R1(T a, ψa). From (2.45), we have

R1(T a,ψa) = (εN+1∆TN−1 + εN+2∆TN + εN+1∆x′ T̄N−1 + εN+2∆x′ T̄N )

−
4N∑

k=N+1
εk〈C(T + T̄ , k)〉

−
N∑

k=0
εk〈C(T + T̄ , k) − C(T, k) − C(T̄ + P, k) + C(P, k)〉

+
N∑

k=0
εkE0

k

=: R11 + R12 + R13 + R14. (3.20)

Estimate of R11 and R12. By Lemma 4, ‖∆TN−1‖L2(Ω), ‖∆TN‖L2(Ω), ‖∆TN−1‖L∞(Ω) and ‖∆TN‖L∞(Ω)
are bounded. Moreover, from Lemma 8,

|T̄N−1| = |χ(εη)(T̄N−1(η) − T̃N−1,∞)| ≤ Ce−λη ≤ C,

and thus is bounded. Similarly, ∆x′ T̄N−1 and ∆x′ T̄N are bounded. Therefore,

‖R11‖L∞(Ω) ≤ CεN+1. (3.21)

Due to (3.17), ‖T̄s‖L∞(Ω) are bounded for any s = 0, . . . , N . Therefore,
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‖R12‖L∞(Ω) ≤ CεN+1. (3.22)

Estimate of R13. Since χ(x1) = 0 for x1 ≥ 3
8δ, R13(x1, x′) = 0 for x1 ≥ 3

8δ. For the region x1 ≤ 3
8δ, we 

rewrite it as

R131{x1≤
3
8 δ}

= −
4N∑

k=0
εk〈C(T + T̄ , k) − C(T, k) − C(T̄ + P, k) + C(P, k)〉1

{x1≤
3
8 δ}

+
4N∑

k=N+1
εk〈C(T + T̄ , k) − C(T, k) − C(T̄ + P, k) + C(P, k)〉1

{x1≤
3
8 δ}

=: R131 + R132. (3.23)

Similarly as R12, R132 satisfies

‖R132‖L∞(Ω) ≤ CεN+1. (3.24)

For R132, from the definition (2.5) of C,

R131 = −
〈(

N∑

k=0
εk(Tk + T̄k)

)4

−
(

N∑

k=0
εkTk

)4

−
(

N∑

k=0
εk(Pk + T̄k)

)4

+
(

N∑

k=0
εkPk

)4〉
. (3.25)

Using the formula a4 − b4 = (a − b)(a + b)(a2 + b2) and for a − b = c − d = f

(a4 − b4) − (c4 − d4) = (a− b)(a + b)(a2 + b2) − (c− d)(c + d)(c2 + d2)

= f(a− c)
(
2a2 + 2b2 + (c + d)(a + b + c + d)

)
,

with a =
∑N

k=0 ε
k(Tk + T̄k), b =

∑N
k=0 ε

kTk, c =
∑N

k=0 ε
k(Pk + T̄k), d =

∑N
k=0 ε

kPk, f =
∑N

k=0 ε
kT̄k, we 

obtain

(
N∑

k=0
εk(Tk + T̄k)

)4

−
(

N∑

k=0
εkTk

)4

−
(

N∑

k=0
εk(Pk + T̄k)

)4

+
(

N∑

k=0
εkPk

)4

=
(

N∑

k=0
εkT̄k

)(
N∑

k=0
εk(Tk − Pk)

)
(
2a2 + 2b2 + (c + d)(a + b + c + d)

)
. (3.26)

Due to (3.17),

∣∣∣∣∣

N∑

k=0
εkT̄k

∣∣∣∣∣ ≤ Ce−λη = Ce−
λx1
ε . (3.27)

Taylor’s formula yields

Tk(x1, x
′) =

N−k∑

l=0

xl
1
l! ∂

l
x1Tl(0, x′) + ∂N−k+1

x1

(N − k + 1)!Tk(ξk, x′)xN−k+1
1 .

Using the above formula, we get
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N∑

k=0
εk(Tk − Pk) =

N∑

k=0
εkTk −

N∑

k=0
εkPk

=
N∑

k=0
εk

(
N−k∑

l=0

xl
1
l! ∂

l
x1Tk(0, x′) + ∂N−k+1

x1 Tk(ξk, x′)
(N − k + 1)! xN−k+1

1

)

−
N∑

k=0
εk

k∑

l=0

ηl

l!
∂l

∂xl
1
Tk−l(0, x′), (3.28)

with ξk ∈ [0, x1]. Using the formula

N∑

k=0

k∑

l=0
f(l, k) =

N∑

l=0

N∑

k=l

f(l, k) s=k−l==
N∑

l=0

N−l∑

s=0
f(l, l + s) l→k,s→l==

N∑

k=0

N−k∑

l=0
f(k, k + l)

and taking f(k, k + l) = εk xl
1
l! ∂

l
x1Tk(0, x′), we get

f(l, k) = εl
xk−l

1
(k − l)!∂

k−l
x1 Tl(0, x′) = εk

ηk−l

(k − l)!∂
k−l
x1 Tl(0, x′)

and so

N∑

k=0

N−k∑

l=0
εk

xl
1
l! ∂

l
x1Tk(0,x′) =

N∑

k=0

k∑

l=0
εk

ηk−l

(k − l)!∂
k−l
x1 Tl(0, x′)

k→k,k−l→l==
N∑

k=0

N∑

l=0
εk

ηl

l! ∂
l
x1Tk−l(0, x′).

Taking this relation into (3.28) leads to

N∑

k=0
εk(Tk − Pk) =

N∑

k=0
εk

∂N−k+1
x1 Tk(ξk, x′)
(N − k + 1)! xN−k+1

1 .

Combining this with (3.27), (3.26) satisfies
∣∣∣∣∣∣

(
N∑

k=0
εk(Tk + T̄k)

)4

−
(

N∑

k=0
εkTk

)4

−
(

N∑

k=0
εk(Pk + T̄k)

)4

+
(

N∑

k=0
εkPk

)4∣∣∣∣∣∣

≤ Ce−
λx1
ε

N∑

k=0
εk

|∂N−k+1
x1 Tk(ξk, x′)|
(N − k + 1)! xN−k+1

1 |2a2 + 2b2 + (c + d)(a + b + c + d)|

≤ C
N∑

k=0
εk

1
(N − k + 1)!x

N−k+1
1 e−

λx1
ε ,

where we use the fact that ‖a, b, c, d‖L∞(Ω) ≤ C are bounded and ‖Tk‖Cs(Ω) ≤ C is bounded for any s ≥ 0. 
Note that the function h(x1) := xN−k+1

1 e−λx1/ε attains its maximum at x∗
1 = (N − k + 1)ε/λ with the 

maximum value h(x∗) = (N − k + 1)N−k+1εN−k+1/λN−k+1 · e−(N−k+1). Therefore,
∣∣∣∣∣∣

(
N∑

k=0
εk(Tk + T̄k)

)4

−
(

N∑

k=0
εkTk

)4

−
(

N∑

k=0
εk(Pk + T̄k)

)4

+
(

N∑

k=0
εkPk

)4∣∣∣∣∣∣
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≤ CεN+1
N∑

k=0

(N − k + 1)N−k+1

λN−k+1(N − k + 1)!e
−(N−k+1) = CεN+1

N+1∑

n=1

nn

λnn!e
−n ≤ C(γN − 1)εN+1,

where γN :=
∑N+1

n=0 nn/(λnn!) > 1 is a constant depending on N . Therefore,

‖R131‖L∞(Ω) ≤ C(γN − 1)εN+1.

Combining this with (3.24), we get

‖R13‖L∞(Ω) ≤ CγNεN+1. (3.29)

Estimate of R14. Recalling (2.43), we have

E0
0 = (T̃0 − T̃0,∞)∂2

ηχ + 2∂ηχ∂ηT̃0 + χ〈T̃ 4
0 − T̃ 4

0,∞〉 − 〈(χ(T̃0 − T̃0,∞) + T̃0,∞)4 − T̃ 4
0,∞〉. (3.30)

Since T̃0(η, x′) − T̃0,∞(x′) and ∂ηT̃0(η, x′) exponentially decay to 0 as η → ∞ and ∂ηχ(εη) = ε∂x1χ(x1), 
∂2
ηχ(εη) = ε2∂2

x1χ(x1) are supported on the interval εη ∈ (3
8δ, ∞), hence

|(T̃0 − T̃0,∞)∂2
ηχ + 2∂ηχ∂ηT̃0| ≤ Ce−λη(ε|∂x1χ| + ε2|∂x1χ|)1η≥ 3δ

8ε
≤ Cεe−

3λδ
8ε . (3.31)

Since T̃0(η, x′) − T̃0,∞(x′) decays exponentially,

|T̃ 4
0 − T̃ 4

0,∞| = |(T̃0 − T̃0,∞| · |(T̃0 + T̃0,∞)(T̃ 2
0 + T̃0,∞)2| ≤ Ce−λη,

and

|(χ(T̃0 − T̃0,∞) + T̃0,∞)4 − T̃ 4
0,∞|

= χ|(T̃0 − T̃0,∞)| · |χ(T̃0 − T̃0,∞) + T̃0,∞| · |(χ(T̃0 − T̃0,∞))2 + T̃ 2
0,∞|

≤ Ce−λη.

Note that for εη < 1
4 , χ(εη) = 1 and

〈χ〈T̃ 4
0 − T̃ 4

0,∞〉 − 〈(χ(T̃0 − T̃0,∞) + T̃0,∞)4 − T̃ 4
0,∞〉 = 〈T̃ 4

0 − T̃ 4
0,∞〉 − 〈T̃ 4

0 − T̃ 4
0,∞〉 = 0.

Hence the left term of the above equation is supported on the interval εη ∈ [ 14δ, ∞). Therefore,

|〈χ〈T̃ 4
0 − T̃ 4

0,∞〉 − 〈(χ(T̃0 − T̃0,∞) + T̃0,∞)4 − T̃ 4
0,∞〉| ≤ Ce−λη1

η≥ δ
4ε

≤ Ce−
λδ
4ε . (3.32)

Combining the above inequality with (3.31), (3.30) satisfies

|E0
0 | ≤ Cεe−

3δ
8ε + Ce−

λδ
4ε ≤ Ce−

λδ
4ε . (3.33)

For k ≥ 1, we recall (2.43):

E0
k = ((T̃k − T̃k,∞)∂2

ηχ + 2∂ηχ∂ηT̃k) +
(
χ(〈4T̃ 3

0 T̃k − 4T̃ 3
0,∞T̃k,∞

+ 4(T̃ 3
0 − T̃ 3

0,∞)(Pk − Pk(0))〉 + 〈E(T̄ + P, k − 1) − E(P, k − 1)〉)

− 〈C(T̄ + P, k) − C(P, k)〉
)

+ (1 − χχ0)∆x′ T̄k−2

=: E0
k1 + E0

k2 + E0
k3.
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The term (T̃k − T̃k,∞)∂2
ηχ + 2∂ηχ∂ηT̃k can be estimated in the same way as (3.31) as

|E0
k1| = |(T̃k − T̃k,∞)∂2

ηχ + 2∂ηχ∂ηT̃k| ≤ Cεe−
3λδ
8ε . (3.34)

For E0
k3, (1 − χ(εη)χ0(εη)) is supported in εη ∈ [ 14δ, ∞). By (3.17),

|E0
k3| ≤ Ce−λη1

η>
δ
4ε

≤ Ce−
λδ
4ε . (3.35)

To estimate E2
k2, due to (3.17),

|4T̃ 3
0 T̃k − 4T̃ 3

0,∞T̃k,∞ + 4(T̃ 3
0 − T̃ 3

0,∞)(Pk − Pk(0))| ≤ Ce−λη + Ce−λη(1 + ηk) ≤ C(1 + ηk)e−λη.

Since (E(T̄ + P, k − 1) − E(P, k − 1))/T̄ is a polynomial of T̄ , P of order no bigger than ηk−1 and thus is 
bounded, we have

|E(T̄ + P, k − 1) − E(P, k − 1)| = |T̄ |
∣∣∣∣
E(T̄ + P, k − 1) − E(P, k − 1)

T̄

∣∣∣∣

≤ C(1 + ηk−1)e−λη.

Similarly,

|C(T̄ + P, k) − C(P, k)| = |T̄ |
∣∣∣∣
C(T̄ + P, k) − C(C, k)

T̄

∣∣∣∣ ≤ C(1 + ηk)e−λη.

Therefore,

E0
k2 ≤ C(1 + ηk)e−λη.

Moreover, when εη < 1
4 , χ(εη) = 1 and due to the formula C(T̄ + P, k) − C(P, k) = 4(T̄0 + P0)3(T̄k + Pk) −

4P 3
0Pk + E(T̄ + P, k − 1) − E(P, k − 1) as well as

4T̃ 3
0 T̃k − 4T̃ 3

0,∞T̃k,∞ + 4(T̃ 3
0 − T̃ 3

0,∞)(Pk − Pk(0))
= 4(T̄0 + P0)3(T̄k + Pk(0)) − 4T̃ 3

0,∞Pk(0) + 4((T̄0 + P0)3 − T̃ 3
0,∞)(Pk − Pk(0))

= 4(T̄0 + P0)3(T̄k + Pk) − 4P 3
0Pk,

where we use the fact that P0 = T0(0) = T̃0,∞, we have E0
k2 = 0 on the interval εη ∈ [0, 14δ). Thus

E0
k2 ≤ C(1 + ηk)e−λη1

η>
δ
4ε

≤ C(1 + 1
εk

)e−λδ
4ε .

Combining this with (3.34) and (3.35), we obtain

|E0
k| ≤ Cεe−

3δ
8ε + Ce−

λδ
4ε + C(1 + 1

εk
)e−λδ

4ε ≤ Ce−
λδ
4ε + C

1
εk

e−
λδ
4ε .

Combining the above estimate with (3.33), we arrive at
∣∣∣∣∣

N∑

k=0
E0

k

∣∣∣∣∣ ≤
N∑

k=0
|E0

k| ≤ Ce−
λδ
4ε +

N∑

k=1
εk

(
1 + 1

εk

)
e−

λδ
4ε ≤ (N + 1)Ce−

λδ
4ε + Ce−

λδ
4ε

N∑

k=1
εk.
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We can take ε < 1/2 so that 
∑N

k=1 ε
k ≤

∑N
k=1 1/2k ≤ 1 and get

|R14| =
∣∣∣∣∣

N∑

k=0
E0

k

∣∣∣∣∣ ≤ (N + 2)Ce−
λδ
4ε .

By the regularity of solutions, we have

‖R14‖L∞(Ω) ≤ (N + 2)Ce−
λδ
4ε .

Taking the above inequality and (3.21), (3.22) and (3.29), we obtain

‖R1(T a,ψa)‖L∞(Ω) ≤ CγNεN+1 + (N + 2)Ce−
λδ
4ε . (3.36)

One can estimate R2(T a, ψa) given by (2.46) in the same way. Recalling (2.46),

R2(T a,ψa) = (εN+1β ·∇ψN + εN+1β′ ·∇x′ ψ̄N ) −
4N∑

k=N+1
εk(C(T + T̄ , k))

−
N∑

k=0
εk(C(T + T̄ , k) − C(T, k) − C(T̄ + P, k) + C(P, k)) +

N∑

k=0
εkE1

k

=: R21 + R22 + R23 + R24.

By the boundness of solutions to the interior expansion and boundary layer corrections, |R21| = O(εN+1), 
|R22| = O(εN+1). The term R23 is the same as that of R13 without integration over β ∈ S2 and thus can 
be estimated in the same way, |R13| ≤ CγNεN+1. Finally, R24 can be estimated in the same way as R14, 
whereas the only difference is the term µ(ψ̃k − ψ̃k,∞)∂ηχ, which is supported on εη ∈ [ 14δ, ∞) and thus can 
be estimate by

|µ(ψ̃k − ψ̃k,∞)∂ηχ| ≤ Ce−λη1
η≥ δ

4ε
≤ Ce−λδ/4ε,

and |R24| ≤ (N + 2)Ce−
λ
4ε . Thus (3.36) also holds for R2(T a, ψa), i.e.

‖R2(T a,ψa)‖L∞(Ω×S2) ≤ CγNεN+1 + (N + 2)Ce−
λδ
4ε . !

3.4. Proof of inequality (1.25)

Next we prove inequality (1.25) under the spectral assumption (A).

Lemma 10. Let (T a, ψa) be the composite approximate solution constructed in the previous section. Assume 
the spectral assumption (A) holds for the solution T̃0 of the nonlinear Milne problem (1.8)-(1.11) where 
T̃0 ≥ a for some constant a > 0. Then, for ε > 0 sufficiently small, the following inequality holds

−
ˆ

Ω

4(T a)3g∆gdx =
ˆ

Ω

4(T a)3|∇g|2dx−
ˆ

Ω

∇(4(T a)3) · g∇gdx

≥ κ

ˆ

Ω

|∇g|2dx− C‖g‖2
L2(Ω), (3.37)

for any function g satisfying g(0) = 0 and for some constants κ > 0, C > 0 depending on M , where M < 1
is the constant in (1.13) of the spectral assumption.
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Proof. Note that T a =
∑N

k=0 ε
k(Tk + T̄k) where T̄k = χ(x1)(T̃k − T̃k,∞). We split the integration over 

domain inside and outside the boundary layers.
Outside the boundary layer. In the domain x1 > 3

8δ, χ(x1) = 0 and T a =
∑N

k=0 ε
kTk, which only contains 

the interior approximations. Since ‖Tk‖Cs(Ω) is bounded for any s > 0 and k = 1, . . . , N ,
ˆ

Ω∩{x1>
3
8 δ}

4(T a)3|∇g|2dx−
ˆ

Ω∩{x1>
3
8 δ}

∇(4(T a)3) · g∇gdx

=
ˆ

Ω∩{x1>
3
8 δ}

4(T a)3|∇g|2dx−
ˆ

Ω∩{x1>
3
8 δ}

2(T a)3/2∇g · 6(T a)1/2∇T agdx

≥
ˆ

Ω∩{x1>
3
8 δ}

4(T a)3|∇g|2dx− 1
2

ˆ

Ω∩{x1>
3
8 δ}

4(T a)3|∇g|2dx

− 1
2

ˆ

Ω∩{x1>
3
8 δ}

36T a|∇T a|2g2dx

≥
ˆ

Ω∩{x1>
3
8 δ}

2(T a)3|∇g|2dx− C‖g‖2
L2(Ω). (3.38)

Inside the boundary layer. In the domain x1 ≤ 3
8δ, boundary layer effects play a role. First we split the 

integral as
ˆ

Ω∩{x1≤
3
8}

4(T a)3|∇g|2dx−
ˆ

Ω∩{x1≤
3
8}

∇(4(T a)3) · g∇gdx

=
ˆ

Ω∩{x1≤
3
8}

4(T a)3|∇x′g|2dx−
ˆ

Ω∩{x1≤
3
8}

∇x′(4(T a)3) · g∇x′gdx

+
ˆ

Ω∩{x1≤
3
8}

4(T a)3|∂x1g|2dx−
ˆ

Ω∩{x1≤
3
8}

∂x1(4(T a)3) · g∂x1gdx =: I1 + I2.

Since ‖∇x′(T a)‖L2(Ω) is bounded, we can estimate I1 the same as (3.38):

I1 ≥
ˆ

Ω∩{x1≤
3
8}

2(T a)3|∇x′g|2dx− C‖g‖2
L2(Ω). (3.39)

To estimate I2, we use the spectral assumption (A). Near the boundary, the composite approximate solution 
(T a, ψa) is close to the solution (T̃0, ψ̃0) of the nonlinear Milne problem (1.8)-(1.11). Using the equation

(T a)3 =
(

N∑

k=0
εk(Tk + T̄k)

)3

= (T0 + T̄0)3 + εG,

where G = 3(T0+T̄0)2
∑N

k=1 ε
k−1(Tk+T̄k) +6(T0+T̄0)2(

∑N
k=1 ε

k−1(Tk+T̄k))2+3(T0+T̄0)(
∑N

k=1 ε
k−1(Tk+

T̄k))2, we can rewrite I2 as
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I2 = 1
ε2

ˆ

T2

3
8εˆ

0

4(T0 + T̄0)3 + 4εG)|∂ηg|2dηdx′

− 1
ε2

ˆ

T2

3
8εˆ

0

∂η(4(T0 + T̄0)3 + 4εG)g∂ηgdηdx′

= 1
ε2

ˆ

T2

dx′

3
8εˆ

0

(4T̃ 3
0 |∂ηg|2 − ∂η(4T̃ 3

0 )g∂ηg)dη

+ 1
ε2

ˆ

T2

dx′

3
8εˆ

0

(4(T0 + T̄0)3 − 4T̃ 3
0 )|∂ηg|2dη

− 1
ε2

ˆ

T2

dx′

3
8εˆ

0

∂η(4(T0 + T̄0)3 − 4T̃ 3
0 )g∂ηgdηdx′

+ 1
ε2

ˆ

T2

dx′

3
8εˆ

0

ε4(G|∂ηg|2 − ∂ηGg∂ηg)dη

=: I21 + I22 + I23 + I24.

The spectral assumption (A) implies

I21 = 1
ε2

ˆ

T2

dx′

3
8εˆ

0

(4T̃ 3
0 |∂ηg|2 − ∂η(4T̃ 3

0 )g∂ηg)dη

≥ 1
ε2

ˆ

T2

dx′

3
8εˆ

0

(4T̃ 3
0 |∂ηg|2 −

1
2(4T̃ 3

0 |∂ηg|2 + 36T̃0|∂ηT̃0|2g2))dη

≥ 1
2ε2

ˆ

T2

dx′

3
8εˆ

0

(4T̃ 3
0 |∂ηg|2 − 36T̃0|∂ηT̃0|2g2)dη

≥ 1 −M

2ε2

ˆ

T2

dx′

3
8εˆ

0

4T̃ 3
0 |∂ηg|2dη.

For I22, since T̄0 = T0 + χ(εη)(T̃0 − T0(0)), it holds that

(T0 + T̄0)3 − T̃ 3
0 = (T0 + χ(εη)(T̃0 − T0(0)) − T̃0)(T̃ 2

0 + T̃0(T0 + T̄0) + (T0 + T̄0)2)

= ((T0 − T0(0)) − (1 − χ(εη))(T̃0 − T̄0))(T̃ 2
0 + T̃0(T0 + T̄0) + (T0 + T̄0)2)

= (∂x1T0(ξ)εη − (1 − χ(εη))(T̃0 − T̄0))(T̃ 2
0 + T̃0(T0 + T̄0) + (T0 + T̄0)2).

Since we are considering the integration over x1 = εη ∈ [0, 38δ] and (1 − χ(εη)) is supported on [ 14δ, 38δ],



M. Ghattassi et al. / J. Math. Pures Appl. 175 (2023) 181–215 205

I22 = 1
ε2

ˆ

T2

dx′

3
8εˆ

0

(4(T0 + T̄0)3 − 4T̃ 3
0 )|∂ηg|2dη ≤ 3δC

8ε2

ˆ

T2

dx′

δ
2εˆ

0

|∂ηg|2dη.

For I23, due to

∂η((T0 + T̄0)3 − T̃ 3
0 )

= ∂η(T0 + χ(εη)(T̃0 − T0(0)) − T̃0)(T̃ 2
0 + T̃0(T0 + T̄0) + (T0 + T̄0)2)

+ (T0 + χ(εη)(T̃0 − T0(0)) − T̃0)∂η(T̃ 2
0 + T̃0(T0 + T̄0) + (T0 + T̄0)2)

= εχ′(εη)(T̃0 − T0(0))(T̃0 − T0(0)) − T̃0)(T̃ 2
0 + T̃0(T0 + T̄0) + (T0 + T̄0)2)

+ (χ(εη) − 1)∂ηT̃0(T̃ 2
0 + T̃0(T0 + T̄0) + (T0 + T̄0)2)

+ (∂x1T0(ξ)εη − (1 − χ(εη))(T̃0 − T̄0))∂η(T̃ 2
0 + T̃0(T0 + T̄0) + (T0 + T̄0)2),

with consideration of εη ∈ [0, 38δ] and (1 − χ(εη)) being supported on [ 14δ, 38δ], it holds that

I23 = − 1
ε2

ˆ

T2

dx′

3δ
8εˆ

0

∂η(4(T0 + T̄0)3 − 4T̃ 3
0 )g∂ηgdη

≤ C

ε2

ˆ

T2

dx′

3δ
8εˆ

0

(ε|g||∂ηg| +
3δ
8 |g||∂ηg|)dη

≤ 3δC
8ε2

ˆ

T2

dx′

3δ
8εˆ

0

(g2 + |∂ηg|2)dη.

For I24, we have

I24 = 1
ε2

ˆ

T2

dx′

3δ
8εˆ

0

ε4(G|∂ηg|2 − ∂ηGg∂ηg)dη ≤ C

ε

ˆ

T2

dx′

3δ
8εˆ

0

(|g|2 + |∂ηg|2)dη.

Combining the above estimates gives

I2 ≥ 1 −M

2ε2

ˆ

T2

dx′

3δ
8εˆ

0

4T̃ 3
0 |∂ηg|2dη − 3δC

8ε2

ˆ

T2

dx′

3δ
8εˆ

0

(|g|2 + |∂ηg|2)dη

− C

ε

ˆ

T2

dx′

3δ
8εˆ

0

(|g|2 + |∂ηg|2)dη.

By the assumption of the lemma, T̃0 ≥ a, hence 4T̃ 3
0 ≥ 4a3 for some constant a > 0. We can take sufficiently 

small ε and δ such that ε < (1 −M)a3/C and 3δC/8 ≤ (1 −M)/8, and we get from the above inequality

I2 ≥ 1 −M

4ε2

ˆ

T2

dx′

3δ
8εˆ

0

4T̃ 3
0 |∂ηg|2dη.
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Combining this with (3.38) and (3.39) implies

−
ˆ

Ω

4(T a)3g∆gdx =
ˆ

Ω

4(T a)3|∇g|2dx−
ˆ

Ω

∇(4(T a)3) · g∇gdx

≥
ˆ

Ω∩{x1>
3
8 δ}

2(T a)3|∇g|2dx +
ˆ

Ω∩{x1≤
3
8 δ}

2(T a)3|∇x′g|2dx

+ 1 −M

4ε2

ˆ

T2

dx′

3δ
8εˆ

0

4T̃ 3
0 |∂ηg|2dη − C‖g‖2

L2(Ω)

≥ κ‖∇g‖2
L2(Ω) − C‖g‖2

L2(Ω),

where κ = min{2a3, (1 −M)a3}, which finishes the proof of Lemma 10. !

4. Diffusive limit

In this section, we prove Theorem 1 by estimating the difference between the solution (T ε, ψε) to system 
(1.1)-(1.4) and the constructed approximate solution (T a, ψa), which satisfies (1.17)-(1.20). Setting g :=
T ε − T a, φ := ψε − ψa, functions (g, φ) then satisfy

ε2∆g + 〈φ− (T a + g)4 + (T a)4〉 = −R1(T a,ψa), (4.1)
εβ ·∇φ + φ− (T a + g)4 + (T a)4 = −R2(T a,ψa), (4.2)

with boundary conditions

g(x) = 0, for x ∈ ∂Ω,

φ(x,β) = 0, for (x,β) ∈ Γ−.

In order to prove Theorem 1, we first derive suitable estimates on a linearized system and then use the 
Banach fixed point theorem to show the existence of the above problem near zero solutions, leading to the 
convergence of (T ε,ψε) to (T a,ψa) as ε → 0. Note that the right hand sides of equations (4.1) and (4.2)
reduces to zero as ε → 0.

4.1. Linearized system

We first linearize system (4.1)-(4.2) around zero and consider the following linear system:

ε2∆g + 〈φ− 4(T a)3g〉 = r1 + 〈r〉, (4.3)
εβ ·∇φ + φ− 4(T a)3g = r2 + r, (4.4)

where r1 = r1(x), r = r(x, β), and r2 = r2(x, β) are given functions and the boundary conditions are taken 
to be

g(x) = 0, for any x ∈ ∂Ω, (4.5)
φ(x,β) = 0, for any (x,β) ∈ Γ−. (4.6)



M. Ghattassi et al. / J. Math. Pures Appl. 175 (2023) 181–215 207

The existence of solutions to the above problem and suitable estimates on the solutions are stated in the 
following lemma.

Lemma 11. Let ε > 0 and (T a, ψa) be the composite approximate solution constructed in section 2. Assume 
r1 ∈ L∞(Ω), and r, r2 ∈ L∞(Ω ×S2). Then, there exists a unique solution (g, φ) ∈ L∞(Ω) ×L∞(Ω ×S2) to 
system (4.3)-(4.4) with boundary conditions (4.5)-(4.6). Moreover, the solution (g, φ) satisfies the following 
estimates

ε‖φ‖L2(Ω×S) + ε‖g‖H1(Ω) +
√
ε‖φ‖L2(Γ+) + ‖φ− 4(T a)3g‖L2(Ω×S2)

≤ C‖r‖L2(Ω×S2) + C

ε
(‖r1‖L2(Ω) + ‖r2‖L2(Ω×S2)), (4.7)

and

‖φ‖L∞(Ω×S2) + ‖g‖L∞(Ω)

≤ C

ε2 ‖r‖L2(Ω×S2) + C

ε3 (‖r1‖L2(Ω) + ‖r2‖L2(Ω×S2)) + C‖r2‖L∞(Ω×S2) + C‖r‖L∞(Ω), (4.8)

where C > 0 is a constant depending on κ, |Ω| not depending on ε. Here κ is the constant in inequality 
(3.37) of Lemma 10.

Proof. Existence of the linear system (4.3)-(4.4) with homogeneous boundary conditions (4.5)-(4.6) follows 
from standard theory of elliptic and transport equations. To derive estimates (4.7) and (4.8), we first derive 
the energy estimate. Then the L2 type estimate is derived. Finally, the L∞ type estimate is shown.

Step 1: The energy estimate. We multiply (4.3) by 4(T a)3g and (4.4) by φ, and integrate over x ∈ Ω and 
β ∈ S2 to get

−
ˆ

Ω

ε24(T a)3g∆gdx +
¨

Ω×S2

εβ ·∇φ2

2 dβdx +
¨

Ω×S2

(φ− 4(T a)3g)2dβdx

=
¨

Ω×S2

φr2dβdx−
ˆ

Ω

4(T a)3gr1dx +
¨

Ω×S2

(φ− 4(T a)3g)rdβdx. (4.9)

The boundary condition (4.6) implies
¨

Ω×S2

εβ ·∇φ2

2 dβdx = ε

¨

Γ

β · nφ2dβdσx = ε

¨

Γ+

β · nφ2dβdσx = ε‖φ‖2
L2(Γ+). (4.10)

By Lemma 10, inequality (3.37) implies

−
ˆ

Ω

4(T a)3g∆gdx ≥ κ‖∇g‖2
L2(Ω) − C‖g‖2

L2(Ω). (4.11)

Applying Young’s inequality on the last term of (4.9) gives
¨

Ω×S2

(φ− 4(T a)3g)rdβdx ≤ 1
2

¨

Ω×S2

(φ− 4(T a)3g)2dβdx + 1
2

¨

Ω×S2

r2dβdx.

Taking the above inequality and (4.10), (4.11) into (4.9), we obtain the following energy estimate:
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ε2κ‖∇g‖2
L2(Ω) + ε‖φ‖2

L2(Γ+) + 1
2‖φ− 4(T a)3g‖2

L2(Ω×S2)

≤ Cε2‖g‖2
L2(Ω) +

¨

Ω×S2

φr2dβdx−
ˆ

Ω

4(T a)3gr1dx + 1
2‖r‖

2
L2(Ω×S2). (4.12)

Step 2: The L2 estimate. First we estimate the L2 norm of g. Given ρ = ρ(x, β) ∈ L2(Ω ×S2), define the 
operator A : L2(Ω) 1→ L2(Ω) by

Ah = 〈ϕ− h〉, where ϕ solves
{

εβ ·∇ϕ + ϕ− h = ρ, in Ω × S2,

ϕ(x,β) = 0, for (x,β) ∈ Γ−,
(4.13)

for h = h(x) ∈ L2(Ω). Then for any function 2 = 2(x) ∈ C2(Ω) satisfying 2 = 0 on ∂Ω,

ˆ

Ω

Ah · 2dx =
ˆ

Ω

ˆ

S2

(ϕ− h)2dβdx

= −
ˆ

Ω

ˆ

S2

εβ ·∇ϕ2dβdx +
ˆ

Ω

ˆ

S2

ρ2dβdx

=
ˆ

Ω

ˆ

S2

εϕβ ·∇2dβdx− ε

¨

Γ

β · nϕ2dβdσx +
ˆ

Ω

ˆ

S2

ρ2dβdx

= ε

ˆ

Ω

ˆ

S2

(ϕ− h)β ·∇2dβdx− 0 +
ˆ

Ω

ˆ

S2

ρ2dβdx

= −ε

ˆ

Ω

ˆ

S2

εβ ·∇ϕβ ·∇2dβdx + ε

ˆ

Ω

ˆ

S2

ρβ ·∇2dβdx +
ˆ

Ω

ˆ

S2

ρ2dβdx

= ε2
ˆ

Ω

ˆ

S2

(ϕ− h)(β ·∇)22dβdx + ε2
ˆ

Ω

ˆ

S2

h(β ·∇)22dβdx

− ε2
ˆ

Γ+

β · nϕβ ·∇2dβdσx + ε

ˆ

Ω

ˆ

S2

ρβ ·∇2dβdx +
ˆ

Ω

ˆ

S2

ρ2dβdx

= −ε3
ˆ

Ω

ˆ

S2

(β ·∇)22β ·∇ϕdβdx + ε2
ˆ

Ω

ˆ

S2

ρ(β ·∇)22dβdx + ε2 4π
3

ˆ

Ω

h∆2dx

− ε2
ˆ

Γ+

β · nϕβ ·∇2dβdσx + ε

ˆ

Ω

ˆ

S2

ρβ ·∇2dβdx +
ˆ

Ω

ˆ

S2

ρ2dβdx

= ε3
ˆ

Ω

ˆ

S2

(ϕ− 〈ϕ〉/4π)(β ·∇)32dβdx− ε3
ˆ

Γ+

(β ·∇)22β · nϕdβdσx

+ ε2
ˆ

Ω

ˆ

S2

ρ(β ·∇)22dβdx + ε2 4π
3

ˆ

Ω

h∆2dx− ε2
ˆ

Γ+

β · nϕβ ·∇2dβdσx

+ ε

ˆ

Ω

ˆ

S2

ρβ ·∇2dβdx +
ˆ

Ω

ˆ

S2

ρ2dβdx

≥ −Cε3‖ϕ− 〈ϕ〉/(4π)‖L2(Ω×S2)‖2‖H3(Ω) − Cε3‖∇22‖L2(∂Ω)‖ϕ‖L2(Γ+)
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− Cε2‖ρ‖L2(Ω×S2)‖2‖H2(Ω) + ε2 4π
3

ˆ

Ω

h∆2dx− Cε2‖∇2‖L2(∂Ω)‖ϕ‖L2(Γ+)

− Cε‖ρ‖L2(Ω×S2)‖2‖H1(Ω) +
ˆ

Ω

ˆ

S2

ρ2dβdx,

where 〈β ·∇2〉 = 0 and 〈(β ·∇)32〉 = 0 are used. These two equalities are due to 2 = 2(x) not depending on 
β. By the trace theorem and Sobolev embeddings, the above inequality implies

ˆ

Ω

Ah · 2dx

≥ 4π
3 ε2

ˆ

Ω

h∆2dx− Cε3‖ϕ− 〈ϕ〉/(4π)‖L2(Ω×S2)‖2‖H3(Ω) − Cε3‖2‖H3(Ω)‖ϕ‖L2(Γ+)

− Cε2‖2‖H2(Ω)‖ϕ‖L2(Γ+) − Cε2‖ρ‖L2(Ω×S2)‖2‖H2(Ω) − Cε‖ρ‖L2(Ω×S2)‖2‖H1(Ω)

+
ˆ

Ω

ˆ

S2

ρ2dβdx. (4.14)

Let ρ = r2 + r, ϕ = φ, h = 4(T a)3g in (4.13), equation (4.3) can be written as

ε2∆g + A(4(T a)3g) = r1 + 〈r〉.

Let 2 be the solution to

∆2 = g, in Ω,

2 = 0, on ∂Ω.

We multiply the previous equation by 2 and integration by parts to get

ε2
ˆ

Ω

g2dx +
ˆ

Ω

A(4(T a)3g) · 2dx =
ˆ

Ω

(r1 + 〈r〉)2dx.

By (4.14), and the properties of the elliptic equations ‖2‖H2(Ω) ≤ C‖g‖L2(Ω), ‖2‖H3(Ω) ≤ C‖g‖H1(Ω), we 
have

ˆ

Ω

A(4(T a)3g)2dx

≥ ε2 4π
3

ˆ

Ω

4(T a)3g2dx− Cε3‖φ− 〈φ〉/(4π)‖L2(Ω×S2)‖g‖H1(Ω) − Cε3‖g‖H1(Ω)‖φ‖L2(Γ+)

− Cε2‖g‖L2(Ω)‖φ‖L2(Γ+) − Cε(‖r2‖L2(Ω×S2) + ‖r‖L2(Ω×S2))‖g‖L2(Ω)

+
ˆ

Ω

ˆ

S2

(r2 + r)2dβdx

≥ ε2 4π
3

ˆ

Ω

4(T a)3g2dx− Cε3‖φ− 4(T a)3g‖2
L2(Ω×S2) − Cε3‖g‖2

H1(Ω) − Cε3‖g‖2
H1(Ω)

− Cε3‖φ‖2
L2(Γ+) −

1
4ε

2‖g‖2
L2(Ω) − Cε2‖φ‖2

L2(Γ+) − C(‖r‖2
L2(Ω×S2) + ‖r2‖2

L2(Ω×S2))
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− 1
4ε

2‖g‖2
L2(Ω) +

ˆ

Ω

ˆ

S2

(r2 + r)2dβdx,

where

‖φ− 4(T a)3g‖L2(Ω×S2) = ‖φ− 〈φ〉/4π + 〈φ〉/4π − 4(T a)3g‖L2(Ω×S2)

= ‖φ− 〈φ〉/4π‖L2(Ω×S2) + ‖〈φ〉/4π − 4(T a)3g‖L2(Ω×S2)

≥ ‖φ− 〈φ〉/4π‖L2(Ω×S2)

is used in the last inequality. Taking it into the previous equation gives

ε2‖g‖2
L2(Ω) + ε2‖2(T a)3/2g‖2

L2(Ω)

≤ Cε3‖φ− (4T a)3g‖2
L2(Ω×S2) + Cε3‖g‖2

H1(Ω) + Cε2‖φ‖2
L2(Γ+)

+ C(‖r‖2
L2(Ω×S2) + ‖r2‖2

L2(Ω×S2)) +
ˆ

Ω

r12dx−
ˆ

Ω

ˆ

S2

r22dβdx

≤ Cε3‖φ− (4T a)3g‖2
L2(Ω×S2) + Cε3‖g‖2

H1(Ω) + Cε2‖φ‖2
L2(Γ+)

+ C(‖r‖2
L2(Ω×S2) + ‖r2‖2

L2(Ω×S2)) + C

ε2 (‖r1‖2
L2(Ω) + ‖r2‖2

L2(Ω×S2)) + 1
4ε

2‖g‖2
L2(Ω).

Combining this inequality with (4.12), we obtain for ε sufficiently small (ε ≤ min{1, κ}/C),

ε2κ‖∇g‖2
L2(Ω) + ε2‖2(T a)3/2g‖2

L2(Ω) + ε‖φ‖2
L2(Γ+) + ‖φ− 4(T a)3g‖2

L2(Ω×S2)

≤ C‖r‖2
L2(Ω×S2) + C

ε2 (‖r1‖2
L2(Ω) + ‖r2‖2

L2(Ω×S2)) +
¨

Ω×S2

φr2dβdx

−
ˆ

Ω

4(T a)3gr1dx.

Using the inequalities
ˆ

Ω

ˆ

S2

φr2dβdx =
ˆ

Ω

ˆ

S2

(φ− 4(T a)3g)r2dβdx +
ˆ

Ω

ˆ

S2

4(T a)3gr2dβdx

≤ 1
2‖φ− 4(T a)3g‖2

L2(Ω×S2) + 1
2‖r2‖

2
L2(Ω×S2)

+ 1
4ε

2‖2(T a)3/2g‖2
L2(Ω) + C

ε2 ‖r2‖
2
L2(Ω×S2)

and

−
ˆ

Ω

4(T a)3gr1dx ≤ 1
4ε

2‖2(T a)3/2g‖2
L2(Ω) + C

ε2 ‖r1‖
2
L2(Ω),

we get

ε2κ‖g‖2
H1(Ω) + ε2‖2(T a)3/2g‖2

L2(Ω) + ε‖φ‖2
L2(Γ+) + ‖φ− 4(T a)3g‖2

L2(Ω×S2)

≤ C‖r‖2
L2(Ω×S2) + C

ε2 (‖r1‖2
L2(Ω) + ‖r2‖2

L2(Ω×S2)).
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Note that

ε2‖φ‖2
L2(Ω×S2) ≤ ε2‖φ− 4(T a)3g‖2

L2(Ω×S2) + ε2‖4(T a)3g‖2
L2(Ω×S2)

≤ ε2‖φ− 4(T a)3g‖2
L2(Ω×S2) + Cε2‖g‖2

L2(Ω),

due to T a being bounded. Therefore, we combine the previous two inequalities and arrive at the estimate 
(4.7).

Step 3: L∞ estimate. We now derive the L∞ estimate of g, φ. First, by the maximum principle for linear 
transport equation (see for example Lemma 3.1 in [16]), the following estimate holds for (4.4):

‖φ‖L∞(Ω×S2) ≤ ‖4(T a)3g‖L∞(Ω) + ‖r2‖L∞(Ω×S2) + ‖r‖L∞(Ω×S2).

Since ‖T a‖L∞(Ω) is bounded,

‖φ‖L∞(Ω×S2) ≤ C‖g‖L∞(Ω) + ‖r2‖L∞(Ω×S2) + ‖r‖L∞(Ω×S2). (4.15)

We now give the L∞ estimate of g. Equation (4.3) can be written as

∆g = f, (4.16)

with f = (−〈φ − 4(T a)3g〉 + r1 + 〈r〉)/ε2. According to the elliptic regularity, we have

‖g‖L∞(Ω) ≤ C(‖g‖L2(Ω) + ‖f‖L2(Ω)).

Combining the above inequality with (4.7), we obtain

‖g‖L∞(Ω) ≤ C(‖g‖L2(Ω) + ‖f‖L2(Ω))

≤ C

ε
‖r‖L2(Ω×S2 + C

ε2 (‖r1‖L2(Ω) + ‖r2‖L2(Ω×S))

+ C

ε2
(
‖φ− 4(T a)3g‖L2(Ω) + ‖r1‖L2(Ω) + ‖r‖L2(Ω×S)

)
.

Adding the above inequality with (4.15) and using (4.7) on the last term of the above inequality, we arrive 
at estimate (4.8), which finishes the proof. !

4.2. Nonlinear system

We now show the existence and uniqueness of solutions to system (1.1)-(1.2) around the constructed 
composite approximate solution (T a, ψa) and finish the proof of Theorem 1. Due to the equivalence between 
system (4.1)-(4.2) and (1.1)-(1.2), we only need to show the existence and uniqueness of solutions for 
(4.1)-(4.2) in the neighborhood of zero.

Proof of Theorem 1. The proof of existence and uniqueness is obtained using the Banach fixed point the-
orem. We first construct a sequence of functions and then show the sequence is a contraction sequence. 
Finally we show the convergence of (g, φ) to zero as ε → 0.

Construction of the sequence of functions. Let {g0, φ0} be zero functions

g0(x) = 0, φ0(x,β) = 0,
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and for n ≥ 1, {gn, φn} are defined recursively by

ε2∆gn + 〈φn − 4(T a)3gn〉 = −R1 + 4π(6(T a)2(gn−1)2 + 4(T a)(gn−1)3 + (gn−1)4), (4.17)
εβ ·∇φn + (φn − 4(T a)3gn) = −R2 + 6(T a)2(gn−1)2 + 4(T a)(gn−1)3 + (gn−1)4, (4.18)

with boundary conditions

gn(x) = 0, for x ∈ ∂Ω,

φn(x,β) = φb(x,β), for (x,β) ∈ Γ−.

The above system defines a mapping T with (gn, φn) = T ((gn−1, φn−1)).
Note that the above system is the same with (1.21)-(1.22) in the introduction. Let Tn = gn + T a, 

ψn = φn + ψa, then a direct computation using (4.17)-(4.18) gives

ε2∆Tn + 〈ψn − 4(T a)3Tn〉 = 〈(Tn−1)4 − 4(T a)3Tn−1〉 + ε2∆T a + 〈ψa − (T a)4〉 −R1,

εβ ·∇ψn + ψn − 4(T a)3Tn = (Tn−1)4 − 4(T a)3Tn−1 + εβ ·∇ψa + ψa − (T a)4 −R2,

which implies (1.21)-(1.22) after using (1.17)-(1.18).
The contraction mapping. Let Y = L∞(Ω) and W = L∞(Ω ×S2). We consider the solution in the function 

space

Os := {(g,φ) ∈ Y ×W : ‖g‖L∞(Ω) ≤ εs, ‖φ‖L∞(Ω×S2) ≤ εs},

with s > 0 is a constant to be chosen later.
First we show T maps the space Os onto itself. Assume the residuals satisfy ‖R1‖L∞(Ω), ‖R2‖L∞(Ω×S2) ≤

εp for some constant p > 0. Next, we show if (gn−1, ψn−1) ∈ Os, then (gn, ψn) ∈ Os. By (4.7) with 
r1 = −R1, r2 = −R2 and r = 6(T a)2(gn−1)2+4T a(gn−1)3+(gn−1)4, the following estimate holds (assuming 
s ≥ 1):

ε‖φn‖L2(Ω×S2) + ε‖gn‖H1(Ω) +
√
ε‖φn‖L2(Γ+) + ‖φn − 4(T a)3gn‖L2(Ω×S2)

≤ C

ε

(
‖R1‖L2(Ω) + ‖R2‖L2(Ω×S2)

)
+ C

(
‖6(T a)2(gn−1)2 + 4T a(gn−1)3 + (gn−1)4‖L2(Ω)

)

≤ Cεp−1 + C(‖gn−1‖2
L4 + ‖gn−1‖4

L8)
≤ Cεp−1 + C(‖gn−1‖L∞(Ω)‖gn−1‖L2(Ω) + ‖gn−1‖3

L∞‖gn−1‖L2(Ω))
≤ Cεp−1 + C‖gn−1‖2

L∞ + C‖gn−1‖4
L∞

≤ Cεp−1 + Cε2s.

Assuming p − 2 > s and 2s − 1 > s, i.e. p > s + 2 and s > 1, the above inequality implies

‖gn‖H1(Ω), ‖φn‖L2(Ω×S2) ≤ Cεp−2 + Cε2s−1 ≤ εs,

for ε sufficiently small (ε ≤ (1/C)1/(s−1)). Moreover, by (4.8),

‖φ‖L∞(Ω×S2) + ‖g‖L∞(Ω) ≤
C

ε2
(
‖6(T a)2(gn−1)2 + 4T a(gn−1)3 + (gn−1)4‖L2(Ω)

)

+ 1
ε3 (‖R1‖L2(Ω) + ‖R2‖L2(Ω×S2)) + ‖R2‖L∞(Ω×S2)
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+ ‖6(T a)2(gn−1)2 + 4T a(gn−1)3 + (gn−1)4‖L∞(Ω)

≤ Cε2s−2 + εp−3 + εp + Cε2s

≤ Cε2s−2 + εp−3.

Assuming p − 3 > s and 2s − 2 > s, i.e. p > s + 3 and s > 2, the above inequality implies

‖gn‖L∞(Ω), ‖φn‖L∞(Ω) ≤ Cε2s−2 + εp−3 ≤ εs,

for ε sufficiently small (ε ≤ (1/C)1/(s−2)). Thus we obtain that (gn, φn) ∈ Os and therefore T maps Os

onto itself.
Next we show the map T is a contraction mapping. Let hn = gn − gn−1, ϕn = φn − φn−1, then they 

satisfy

ε2∆hn + 〈ϕn − 4(T a)3hn〉 = 4πfn,
εβ ·∇ϕn + ϕn − 4(T a)3hn = fn,

where

fn = 6(T a)2(gn−1)2 + 4(T a)(gn−1)3 + (gn−1)4 − (6(T a)2(gn−2)2 + 4(T a)(gn−2)3 + (gn−2)4)
= 6(T a)2(gn−1 + gn−2)hn−1 + 4T ahn−1((gn−1)2 − gn−1gn−2 + (gn−2)2)

+ hn−1(gn−1 + gn−2)((gn−1)2 + (gn−2)2).

Using (4.7) with r1 = r2 = 0, r = fn, we obtain

ε‖ϕn‖L2(Ω×S) + ε‖hn‖H1(Ω) +
√
ε‖ϕn‖L2(Γ+) + ‖ϕn − 4(T a)3hn‖L2(Ω×S2)

≤ ‖fn‖L2(Ω×S2) ≤ Cεs‖hn−1‖L2(Ω),

hence

‖hn‖H1(Ω) + ‖ϕn‖L2(Ω×S) ≤ Cεs−1‖hn−1‖L2(Ω).

Using (4.8) with r1 = r2 = 0, r = fn, we obtain

‖ϕn‖L∞(Ω×S2) + ‖hn‖L∞(Ω)

≤ C

ε2 ‖fn‖L2(Ω×S2) + C‖fn‖L∞(Ω) ≤ Cεs−2‖hn−1‖L2(Ω) + Cεs‖hn−1‖L∞(Ω).

Assume s ≥ 3, then Cεs−2, Cεs < 1 for ε sufficiently small, the above inequality implies

‖hn‖L∞(Ω) + ‖ϕn‖L∞(Ω×S2) ≤ C1(‖hn−1‖L∞(Ω) + ‖ϕn−1‖L∞(Ω×S2)

for some constant 0 < C1 < 1. Therefore, for p ≥ s + 3 and s ≥ 3, T is a contraction mapping. By the 
Banach fixed point theorem, there exists a unique fixed point (g, φ) such that (g, φ) = T ((g, φ)). Therefore, 
there exists a unique solution to (4.1)-(4.2) in Os.

Taking s = 3 and p = 6, we can conclude that

‖g‖L∞(Ω) + ‖ϕ‖L∞(Ω×S2) ≤ Cε3.
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Note that in order to obtain R1, R2 = O(ε6), we need to take n = 5 in the expansion and by Lemma 9, 
‖R1‖L∞(Ω), ‖R2‖L∞(Ω×S2) ≤ Cε6. We have

∥∥∥∥∥T
ε −

5∑

k=0
εkTk −

5∑

k=0
εkT̄k

∥∥∥∥∥
L∞(Ω)

≤ Cε3,

∥∥∥∥∥ψ
ε −

5∑

k=0
εkψk −

5∑

k=0
εkψ̄k

∥∥∥∥∥
L∞(Ω×S2)

≤ Cε3.

Therefore, we get

‖T ε − T0 − T̄0‖L∞(Ω) ≤ Cε,

‖ψε − T 4
0 − ψ̄0‖L∞(Ω×S2) ≤ Cε,

which is (1.16) and finishes the proof. !

Remark 12. The existence for system (1.1)-(1.4) can also be obtained using the maximum principle (see 
Appendix A for the proof).
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Appendix A. Existence of the steady state radiative transfer system

Next we prove the existence for the steady state radiative transfer system (1.1)-(1.2) with boundary 
conditions (1.3)-(1.4). The existence for the corresponding time dependent case is given in [10].

Theorem 13. Assume γ1 ≤ Tb ≤ γ2 and γ4
1 ≤ ψb ≤ γ4

2 for some constants 0 ≤ γ1 ≤ γ2. There exists a weak 
solution (T ε, ψε) ∈ L∞(Ω) × L∞(Ω × S2) to (1.1)-(1.2).

Proof. We show the existence by using the fixed-point theorem. Let A := {T ε ∈ L∞(Ω) : γ1 ≤ T ε ≤ γ2}. 
We define the operator F : A → A with θ = FT by solving

εβ ·∇ψ + ψ = T 4,

ψε(x,β) = ψb(x,β), for (x,β) ∈ Γ−,
(A.1)

and

ε2∆θ − 4π2θ4 = −〈ψ〉,

θ(x) = Tb(x), for x ∈ ∂Ω.
(A.2)

Next we show if γ1 ≤ T ≤ γ2, then γ1 ≤ θ ≤ γ2. First the maximum principle for the transport equation 
implies

γ4
1 ≤ ψ ≤ γ4

2 . (A.3)
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The maximum principle for equation (A.2) also implies γ1 ≤ θ ≤ γ2. Suppose θ reaches its maximum at 
xM ∈ Ω, then if xM ∈ ∂Ω, θ(XM ) = Tb ≤ γ2 and thus θ(x) ≤ θ(xM ) ≤ γ2 for any x ∈ Ω. Otherwise if xM

is an interior point, then ∆θ(xM ) ≤ 0, and so

4π2θ4(xM ) ≤ 〈ψ(xM , ·)〉 ≤ 4π2γ4
2 , (A.4)

hence θ(x) ≤ θ(xM ) ≤ γ2. Using a similar contradiction argument, θ(x) ≥ γ1 can be shown.
Since F maps A to itself and A is a convex compact subset of the Banach space L∞. Hence by Schauder’s 

fixed point theorem, there exists a fixed point (T ε, ψε) of F . Since this fixed point satisfies (A.1) and (A.2), 
hence (T ε, ψε) is a solution to (1.1)-(1.2) with boundary conditions (1.3)-(1.4). !

Remark 14. Unlike the time dependent case, where the uniqueness can be shown by showing F is a con-
traction mapping (with time step small), we are not able to show F in the above proof is a contraction 
mapping and thus uniqueness is not guaranteed by the above theorem. However, the uniqueness can be 
obtained from Theorem 1.
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