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ABSTRACT

In this paper, we study the diffusive limit of the steady state radiative heat
transfer system for non-homogeneous Dirichlet boundary conditions in a bounded
domain with flat boundaries. By taking account of the boundary layers, a composite
approximate solution is constructed using asymptotic analysis. The convergence
to the composite approximate solution in the diffusive limit is proved using a
Banach fixed point theorem. The major difficulty lies in the nonlinear coupling
between elliptic and kinetic transport equations. To overcome this difficulty, a
spectral assumption is proposed to ensure the linear stability of boundary layers.
Moreover, a combined L?-L> estimate and the Banach fixed point theorem are used
to obtain the convergence proof. This result extends our previous work [6] for the
well-prepared boundary data case to the general boundary date.

© 2023 Elsevier Masson SAS. All rights reserved.

/.

RESUME

Dans cet article, nous étudions la limite de diffusion du systéme de transfert de
chaleur radiatif en régime stationnaire pour des conditions aux limites de type
Dirichlet non homogenes dans un domaine borné avec frontiere plate. Une solution
approchée composite est construite a l'aide d’une analyse asymptotique prenant
en compte les couches limites. La convergence vers la solution approchée dans la
limite de diffusion est démontrée a ’aide d’un théoréme de point fixe de Banach.
La difficulté majeure réside dans le couplage non linéaire entre ’équation elliptique
et I’équation de transport cinétique. Pour remédier a ce probleme, une hypothese
spectrale assurant la stabilité linéaire des couches limites est proposée. De plus,
une estimation combinée L? — L* et le théoréme du point fixe de Banach sont
utilisés pour obtenir la preuve de convergence. Ces résultats étendent nos travaux
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précédents [6] pour le cas des données aux limites bien préparées au cas mal préparé
lorsque la couche limite existe.
© 2023 Elsevier Masson SAS. All rights reserved.

1. Introduction
1.1. Problem statements

We consider the following steady state radiative heat transfer system in the space z € Q = [0,1] x T2
and € S2:

e2AT® + (¢° — (T%)*) =0, (1.1)
ef - Vo + 9 — (T°)' = 0, (1.2)
with Dirichlet boundary conditions
T¢(x) = Ty(x), for x € 900 = {0,1} x T2, (1.3)
Ve (z, B) = (2, B), for (z,B) €T (1.4)

Here T° = T¢(x) is the temperature, 1) = ¥°(x, 8) is the radiation intensity. The bracket (-) denotes the
momentum (¢(3)) = [¢2 ¥(8)dS. The boundary set I is given by

F:{(Ivﬁ) Z$€aQ,ﬁ€S2},

and 'y =T N{(x,B): B-n(x) > 0} is the out-flow boundary, ' =T N{(z,B) : 5-n(x) < 0} is the in-flow
boundary, where n(z) is the exterior normal vector on the boundary. Note that the boundary conditions
are imposed only on the in-flow boundary and the value of 1) on the out-flow boundary is determined by
the system.

When the boundary data is well-prepared, i.e. 1, (z, 8) = Ty (z) for (x, B) € T'_, the solution of (1.1)-(1.2)
is shown in [6] to converge to the solution of the following nonlinear elliptic equation

4
ATy + ?WAT(S‘ =0, (1.5)
Yo =Ty, (1.6)
subject to the boundary condition
To(z) = Tp(x), for any x € 0N2. (1.7)

The convergence is proved by using two methods: the weak convergence method and the relative entropy
method. However, both methods rely on the assumption v, = Tgl to obtain the estimates that are needed
for the convergence estimates and fail for general boundary data, due to the presence of boundary lay-
ers.

The main objective of this paper is to study the diffusive limit (¢ — 0) for the general boundary data.
By adding a boundary layer correction to (1.5)-(1.6), a composite approximation can be constructed. The
convergence of the radiative transfer system (1.1)-(1.4) to this composite approximation in the diffusive
limit will be established in this paper.
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1.2. The boundary layer corrections

Here we recall the results of [7] on the boundary layer problem to system (1.1)-(1.2). For simplicity
of notations, we assume that the boundary data at the top boundary {z; = 1} is well-prepared, i.e.
Uy(x, B) = Ti(z) for (x,8) € T'_ N{z; = 1}, so that boundary layer only exists at the bottom {z; = 0}.
Introducing 7 = z1/£2, the corresponding boundary layer problem for system (1.1)-(1.2) reads as

02Ty + (i — Ty =0, (1)
1100 + ho — Ty = 0, (1.9)
with boundary conditions
To(n =0,2") = Ty(z'), for any 2’ € T?, (1.10)
Yo(n=0,2",8) = p(0,2', 8), forany 2’ € T2, (0,2',5) e I'_, (1.11)

where = —n(z) -8 = B1 and Ty = To(n, &), o = Yo(n, ', B) with ' = (x4, x3) € T2. The above problem
is also called nonlinear Milne problem of the radiative heat transfer system.

Assuming Tj, 1, are bounded, the existence of weak solutions for the above problem is proved in [7].
Moreover, the weak solutions are shown to converge as 1 — oo to some non-negative constants Tp o (') 1=
lim,, o0 To(n,z'), 1&0700(9(:’, B) = lim, o Yo(n,«’, B). These constants give the boundary conditions for the
nonlinear limit equation (1.5) by

To(x1 = 0,2") = Ty oo(2’), for any 2’ € T (1.12)

The linear stability for the nonlinear Milne problem is shown to be fulfilled under a spectral assumption,
which reads as

(A) There exists a constant 7 > 0 such that the function Ty € L (R, x T?) satisfies the inequality

loc
27 (272210, f|2dx > 4 / e270|9, (212 )2 f2da (1.13)
0

M

0\8

for any measurable function f € C1(R,) with f(0) = 0, for some constant M < 1.

The spectral assumption holds when the boundary data is close to the well-prepared case (¢ — Tf small)
and uniqueness of the nonlinear Milne problem is proved in this situation [7].

By adding the boundary layer correction to the system (1.5)-(1.6), a composite approximate solution can
be constructed. In details, we introduce a cut-off function x = x(z1) = x(en) as follows

1, for0 < a1 < %6,
x(z1) = 0, for x1 > %5, (1.14)
€ (0,1), otherwise,

where § > 0 is a small constant and will be chosen later (see Theorem 9). The boundary layer corrections
are given by

To = x(21)(To — To.se)s o = x(21) (o — Tpy o). (1.15)

The composite approximate solution is obtained by adding the above terms to the solution of (1.5)-(1.6).
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1.83. Main results

The main result of this paper is the following theorem.

Theorem 1. Let T, € C?(09) and v, € CY(T'_) be non-negative functions. Let (Ty,1o) be the smooth
solution to system (1.5)-(1.6) with boundary condition (1.12) and (Ty,1y) be the smooth solution to the
nonlinear Milne problem (1.8)-(1.11). Let the boundary layer correction (T, o) be given by (1.15). Assume
T, satisfies the spectral assumption (A) and has a lower bound Ty > a for some constant a > 0. Then for
e > 0 sufficiently small, there exists a unique solution (T¢,1°) € L (Q) x L (Q x S?) to system (1.1)-(1.2)
with boundary conditions (1.3)-(1.4), satisfying

|IT° = To = TollL=(0) = O(e), ¥ =Ty — ollL=(axs2) = O(e). (1.16)

The above theorem shows the convergence of solutions of system (1.1)-(1.4) to the approximate solution
(To + To,Té1 + @0) as € — 0. Therefore, the diffusive limit of the radiative transfer system is rigorously
justified.

In order to prove the above theorem, we need higher order approximate expansions beyond (1.5)-(1.6)
and (1.8)-(1.9). Let N > 1 be an integer, we take the ansatz for the N-th order composite approximate
solution (T%,%) as

N N
T~ T%:=) F(T+Th), o5~y =) (e + ),
k=0

k=0

where (Tk,1x) is the k-th order interior approximation (satisfying system (2.37)-(2.38)) and (T, 1) is the
k-th order boundary layer correction (defined by (2.36) and system (2.32)-(2.33)), see Section 2 for details
of the derivations. Note that due to the nonlinearity of (7¢)%, the interior expansions and boundary layer
expansions are coupled. In particular, Taylor’s expansions of the interior approximations are used for the
construction of the boundary layer corrections. The composite approximate solution is shown to satisfy

AT + (4 — (T°)*) = Ry (T, o), (1.17)

e - VYo + 4 — (T*)* = Ry (T, 0%), (1.18)
with boundary conditions

T%(x) = Ty(x), for any z € 0L, (1.19)

Vv (z, B) = ¢u(z, B), for (z,8) €', (1.20)

where R1(T%,1®) and Ry (T%,1)?) are the approximation errors and are of order eV ! (see Theorem 9).

The main idea for the proof of Theorem 1 is to show the existence and uniqueness of system (1.1)-(1.2) in
a small neighborhood of the approximate solution (7%, 1%). In order to achieve this, we construct a sequence
of functions {T%, ¥} solving

2ATH + (PP — 4(T4)3TFY = (TF1)* — 4(T)3Tk= 1), (1.21)
e - VF + pF — 4(T9)>TF = (TF1)* — 4(T9)>T+ 1, (1.22)

with boundary conditions
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T*(z) = Ty(x), for any x € 99,
W (z, B) = y(x, B), for (z,8) € T_.
This defines a mapping 7T : L>(€) x L (Qx §2) — L>(9) x L%(Qx §2) with (T*, *) = T((T*~1, y+-1)),

For £ > 0 sufficiently small and N > 5, s > 3, the mapping 7 is shown in section 4 to be a contraction
mapping in the set

O, ={(T, ) € L>=(Q) x L>(Q x S?) :
1T =T () < €° [[¢ — ¥~ axs2) <€},
where K > 0 is a positive constant. Then by the Banach fixed point theorem, there exists a fixed point
(T=,4°) of T such that T((T°,¢°)) = (T°,¢°) € Os. By the definition of T, (T°¢,1°) solves system

(1.1)-(1.2) with boundary conditions (1.3)-(1.4). For example, we can take s = 3 and N = 5 in the above
arguments and conclude that there exists a unique solution (7%,¢°) € O,_3, i.e.

5 5
T° - =) L < Cé*, (1.23)
k=0 k=0 Lo ()
5 5 B
(e Z€k1/)k - Z€k¢k < Cé%, (1.24)
k=0 k=0 L (2xS?2)

which leads to (1.16) and proves Theorem 1.

One of the most elusive and difficult issues to prove Theorem 1 is to show that 7 is a contraction mapping.
This is solved by using an L?-L> estimates on system (1.21)-(1.22). In order to get an L? estimate on this
system, the following coercivity inequality

- / AT gAgd > ~Cllgl2ae, (1.25)
Q

for any function g € H'(Q), is used. This inequality can be shown to hold under the spectral assumption
(A) (see Lemma 10). The L estimate is derived based on the elliptic regularity and the maximum principle
for the radiative transport equation.

The spectral assumption (A) plays a key role in the proof of Theorem 1. First, it’s required to show
the well-posedness of the nonlinear Milne problem (1.8)-(1.11) and equations for higher order boundary
corrections (Tk, ¥r), k > 1 (equations (2.32)-(2.33)). Second, under this assumption, the exponential decay
of Ty, 9, k > 0 can be shown, which is needed in order to find the boundary condition for equation
(1.5). Third, the spectral assumption is used to show the inequality (1.25), which is crucial in order to
get the suitable L? estimate on system (1.21)-(1.22) and prove 7 is a contraction mapping. Note since
Ty, = Ti(n, o) = T(x1/e, x’), 92T may be of order 1/&? and thus the left term of (1.25) may be singular as
¢ — 0. Thanks to the spectral assumption (A), inequality (1.25) holds and overcomes this singularity.

Our work also provides another approach to justify the diffusive limit in the well-prepared case, which was
already done in [6] using different methods. Indeed, when the boundary data is well-prepared, ¢y, = T}}, no
boundary layer exists and the boundary layer corrections Tj, = 0, 1, = 0. We can thus take T = Z]k\]:o e* T,
Yo = Zszo eF4y.. Since VT is bounded, inequality (1.25) holds obviously. Therefore, Theorem 1 holds and
(1.16) implies the convergence of (T, 1°) to (Tp, o), which is the solution to (1.5)-(1.7).
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1.4. Related work

When the diffusion operator is not considered, system (1.1)-(1.2) reduces to the linear transport equation
eB-VU® +U® — (U%)/(4m) = 0. As € — 0, its solution convergences to Uy + Uy, where Uy = Up(z) is the
solution of the Laplacian equation AUy = 0 and Uy = Upy(z, ) is a boundary layer correction defined
by Uy = x(x1)(Up — UO,oo) where Uy = U(n, ', 3) is the solution to u@nﬁg + Uy — (Up)/(47) = 0. This
convergence was first rigorously proved in [4] whereas the study of this linear Milne problem was done in
[3]. However, when the boundary is not flat, ||U¢ — Uy — Up||~ does not converge to zero as ¢ — 0. In [16], a
geometric correction Ug, U§ is constructed with considerations of the curvature effects and || U —Ug — U || .
is shown to converge to zero as ¢ — 0 in the 2D unit disk [16], in the annulus [17], in the 2D convex domain
[9,14] and in the 3D convex domain [15]. For more references on the diffusive limit of the linear transport
equation, we refer the reader to [13,14] and references therein.

When the term e? AT* is replaced by £2T¢, the diffusive limit for system (1.1)-(1.2) has been studied in
many works [8,1,2,5,12]. In particular the problem has motivated the introduction of compactness techniques
specific to kinetic equations, the average lemma being at the basis of the results in [2]. Moreover, the
boundary layer problem for system (1.1)-(1.2) without the Laplacian term is constructed in [12] and the
boundary condition for the limiting system (1.5) is shown to satisfy a mixed Robin boundary condition. Such
a method is extended in [11] to construct the boundary layer approximations for system (1.1)-(1.2). However,
the method only provides the zeroth and first order approximations near the boundary and could not extend
to get higher order approximations. Since our estimates (1.23)-(1.24) need higher order expansions, here we
provide a different way to obtain the approximation boundary layer solutions up to any order.

1.5. Plan of the paper

The paper is organized as follows. In the next section, we construct the composite approximate solution
and show that it satisfies the radiative heat transfer system in the perturbative sense, in Lemma 2. In
section 3, the properties of the approximate solutions are studied and the approximation errors are shown
in Theorem 9, and inequality (1.25) is proved in Lemma 10. Finally, the proof of Theorem 1 is given, which
consists of showing the linearized stability and nonlinear stability of (1.1)-(1.2) in the neighborhood of the
approximate solution, in section 4.1 and 4.2, respectively.

Notations. Throughout the paper, some standard notations are used. The norm ||- || z2(q) and || || 2@ xs2)
are defined by || f|72q) = Jo f2dz, Vf € L*(Q) and ||g[|72(xs2) = Jos2 9°dBdz, Vg € L*(Q x S?). The
norm ||+ [|z2(r,) and ||+ || z2(r_) are defined respectively by [|g|[Z2 . ) = Jr. B-n(x)g*dBdoy, and ||g||72p_y =
Jr 18- n(x)|g*dBdo,, where o, is the surface element.

2. Asymptotic analysis

In this section, an approximate solution to system (1.1)-(1.2) is constructed via asymptotic analysis. An
interior expansion is first constructed which is valid in the interior of the domain and then a boundary layer
correction is constructed accounting for the boundary layer effects. Finally, we combine the results to get a
composite approximate solution to system (1.1)-(1.2). We here recall the simplifying assumption that the
boundary layer only occurs near the bottom {z € 9, 21 = 0}.

2.1. Interior expansion

We take the interior expansion to be

N N
Te(z) ~ Y "), (2, 8) ~ Y _ *u(x, B). (2.1)
k=0 k=0
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Define

Ru(T, ) == 2 AT + (p — T, Ra(T, ) :=eB -V + (v — T).

Plugging (2.1) into the above formulas gives

)

4N

- /P—ﬂ\
||M2

¥ (AT o + (P — C(T,R))) + VT ATy + N P2ATYy — > He(T, k),

k=0 k=N+1

o)
ot

4N
=3 (B Vs + 9 — C(TLR) + N8V — S ehe(T,k
k=0 k=N+1
where
C(T,k):= Y  TITT,,
i+j+l+m=k
i,5,l,m>0

and (T, ), k < 0 are taken to be zero.
Collecting terms with the same order, we take

AT]{;,Q + <1/}k — C(T, /{7)> =0,
5 : v/(/)kfl + 7/”6 - C(T7 k) = 07

for any £ =0,..., N. From the above two equations we obtain
ATy = (B Vp_1).

By (2.7), an iterative process on the above equation leads to

ATpy =(B-V(=f-Vipp—2 +C(T,k —1))) = =(B- V(8- Vip_2))

(8- V(B Vs + C(T,k —2) = — T AC(T, k —2)) +
Consequently, equations (2.6)-(2.7) can be rewritten as
AT+ ST AC(T ) = (8- V)P )
Vr = —B- Vi1 +C(T, k),

for any k=0,...,N.

),

(B V)*tr-s).

187

(2.2)

(2.3)

(2.4)

(2.8)

(2.9)

Note that here T} is solved by (2.8) and the solution is plugged into (2.9) to get ¥y. In addition, for

k = 0, equation (2.8) becomes
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4
AT, + %AT& -0,

which gives the nonlinear elliptic equation (1.5). For k > 1, equation (2.8) can be rewritten as the following

linear elliptic equation

4 4
AT, + ?WA(L]:TSTIC) = —?AE(T, E—1)+{((B-V)3r_1),
where
E(T,k—-1):= Z LT, T T
i+j+Hl+m=k
i l,m>1

From the above equations, residuals (2.3) and (2.4) are given by

N N AN
Ry (Z ska,Zakd)k> =N AT +NPPATY — ) R e(T k),

k=0 k=0 k=N+1

N N 4N
Re (Zs’“Tk,Zekwk> =B Vo — Y (T k),

k=0 k=0 k=N+1

where the right hand side is both formally of order eV *1.

2.2. Boundary layer corrections

We next find the approximation of system (1.1)-(1.2) near the boundary. Let n = x1/e, we take the

ansatz

N

N
TE(‘r) ~ Z€k<Tk(nax/) + Tk(x))’ we(%ﬂ) ~ Z€k(lzk(7],$,,6) + wk(x)/6>>v

k=0 k=0

where T}, 1), are the correction terms near the boundary and (Ty,y) are the interior expansions derived

in the previous subsection. Taking the above ansatz into (2.2) gives

k=0 k=0 k=0
4N
— Y T +T,k) - C(T, k)
k=N+1

N
+eNTIAL Ty +eNTPAL TN + > eF(C(T + P k) — C(P,k))
k=0
N - - -— —
+ ) MOk + Ay Thea + (Ui — C(T + P k) + C(P, k))),

k=0

and

(2.10)
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N N
Ro (Z (T + Th), Y (v + @k))

k=0 k=0

I
&

N N N

( ska,Zskm) =) (T + T, k) - C(T, k)
k k=0 k=0

AN

- Y M@ +T,k) - C(T, k)

N
+eNTB Vathy + Y F(C(T + P k) — C(P,k))
k=0
N
+ ) M (u0nti + B Varthe1 + b — C(T + P, k) + C(P, k). (2.11)
k=0

Here p = p1, ' = (x2,23), B/ = (B2,03), T(0) = Ti(x1 = 0) and P, = Py(n,2’),k = 0,..., N are the
Taylor’s expansions of Ty (en,z’),k =0,..., N around n = 0, given by

k
ol
(1, 2 :§:1l7——k10x) (2.12)
=0

Collecting terms of the same order in (2.10)-(2.11), we take

02Tk + Ap Thz + (Y — C(T + P,k) + C(P,k)) = (2.13)
1Oyt + B Varthp—1 + . — C(T + P, k) + C(P, ) =0, (2.14)

for k = 0,...,N. Let Tk} = Tk+Pk(0) = Tk+Tk(O) for any £k = 0,..., N, and 1/;0 — "ZO‘FT(?(O) and
Y = Py, + 4T3(0)T3(0), then

—(To + Po)* + Py = —Ty + T*(0),
and for k > 1,
—4(To + Po)*(Ty, + Py) + 4Py Py = —AT3 Ty + 4T3 (0)T5(0) — A(T3 — T3(0)) (P — Py(0)).

Therefore, T}, @k satisfies the equations
2T + (o — T) =0, (2.15)
o + o — T = 0, (2.16)

and for k=1,..., N,

2Ty, + Ap Tr—s + (thy, — ATHT)
+ (—A(T§ — Tg(0))(Pe — Py(0)) — E(T + P(0), k — 1) + E(P(0),k — 1)) =0, (2.17)

10y + B+ Vb1 + Ui
—AT3Ty, — AT — T3(0))(Py — Pp(0)) — E(T + P(0),k — 1) + E(P(0),k — 1) = 0. (2.18)

The boundary conditions for the above equations are
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To(n=0,2") = T,(0,2"), for any 2’ € T2, (2.19)
1;0(77:07‘%/76) :1/}6(0’1‘/’/8)7 for any (Oaxlvﬁ) € F—7 (220)
and for k=1,..., N,
Te(n=0,2") =0, foranya’' € T2 (2.21)
Ur(n = 0,2/, 8) = 1 (0) — 4T3 (0)Tx(0), for any (0,2',3) € _. (2.22)

The boundary conditions above are taken to be consistency with boundary conditions (1.3)-(1.4) such that

N
D (Ti(0,2') + Ti(0,2")) = T4(0,2'), for 2’ € T?,

h=0 (2.23)

N
D (@k(0,2, 8) + ¢r (0,2, 8)) = ¢ (0,2, 8), for(0,2",8) € T—.

k=0

2.8. Construction of the composition approrimate solution

In order to combine the interior expansions and boundary corrections, we use the cut-off function x(z1)
defined in (1.14) and we also introduce another cut-off function yo(z1) by

1, for0<z; < %5,
xo(z1) = 0, for z > 36, (2.24)
€ (0,1), otherwise.

The construction of the composite approximate solution is done via the following procedure.

Step 1. Construction of (To, o) and (Tp,1b0). We first solve (2.17)-(2.18) when k = 0:

2Ty + (tho — Ty) =0, (2.25)
100 + o — Ty = 0, (2.26)
with boundary conditions
To(n=0,2") = Tp(0,2"), for any 2’ € T2, (2.27)
do(n = 0,2, B) = (0,27, 8), for any 2’ € T?, 3 € S® and p = B1 > 0. (2.28)

This is the nonlinear Milne problem (1.8)-(1.11). It has been shown in [7] that the above problem has a
global weak solution (Tp, o) € L3, (Ry x T?)NLE (R4 x T? x S?) and as n — oo, the solution converges to
some bounded functions (To,oo, 1/;0700) independent of 7. We define the lowest order boundary layer correction

(To, ¥o) by
TO(% ZL‘/) = X(W?)(TO(% xl) - T0700<$/))? '(/_}0(777 l‘/, 5) = X(@?)(TZJO(U’ xla B) - 1[10’00(I/, 6)) (2'29)

Note due to the property of the nonlinear Milne problem, we have 1[)0,00 = Té{ oo Here and below, Ty, 1y, are
redefined by using a cut-off and is different from the same notation in section 2.2.

We next give the leading order of the interior expansion (7p, 1), which is obtained by solving (2.8)-(2.9)
for k = 0:
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ATy + %ATS‘ =0, =Ty (2.30)
with boundary conditions
T5(0,2") = To.0o(2'), To(1,2') = Tp(1,2’), for any 2’ € T2 (2.31)
Step 2. Construction of (Ty,vr) and (Ty, ) for k=1,...,N. We solve (2.17)-(2.18) for 1 < k < N:

Oy Ty + (b — AT Ti) = —x0Du Thma + (4TG5 — T3 o) (Pr — Pi(0)))

+(E(T+ Pk —1)—&(Pk—1)), (2.32)
10k + by, — AT T = —x0B' - Vartbp—1 + ATy — Ti ) (Px — Pi(0))
+(E(T+ Pk —1)— &Pk —1)), (2.33)

with boundary conditions

Te(n=0,2") =0, forany 2’ € T2 (2.34)

Ur(n=0,2",8) = B-Vr_1(0) = E(T(0),k — 1), for any 2’ € T2, 8 € S? and u > 0. (2.35)

The above problem was studied in [7] where existence and uniqueness of solutions are proved and the
solutions are also shown to converge to some bounded functions as 7 — co. We thus obtain (T}, ) by

Ti(n,2") = x(en)(Ti(n,2') = Thoo(a'), ol a’, 8) = x(en) (Wi (n, 2", B) = dio(2'. B))  (2:36)

where
Too(2’) = lim Ti(n,2'), Ypeo(@’,8) = lim ¢y (n, ', B).
7’]—>OO T[—)OO

The interior expansions (T}, ) are given, according to (2.8)-(2.9), by solving the system

4ar 4T
ATy, + 5= AUTGTy) = (8- V)*r-s) — 5-AE(T k= 1), (2.37)
V= =B Vipp_1 +4T5T + E(T, k — 1) (2.38)
with boundary conditions
Te(0,2") = Thoo(2'), Ti(1,2") = Ty(1,2), for any 2’ € T2 (2.39)

Step 8: The composite approximate solution. With the above results, the composite approximate solution
is given by
N B N B
T =" (T +Th), o= e (vn+n). (2.40)

k=0 k=0

From (2.23), (T°,4®) also satisfies the boundary conditions (1.3)-(1.4).
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2.4. Error of the composite expansion

In this section, we give the approximation errors. By the definition of (Tp, o) of (2.29) and equations
(2.25)-(2.26), as well as the relation (2.31) and ¢ 0 = T{ioo, a direct computation gives
Ey = 07Ty + (tho — (To + To(0))* + T3 (0))
= (To — To,00) 05X + 20y x0nTo + XT3 — T5oo) — ((X(To — To.00) + To.00)* = T oo)s  (2.41)

and

Eq = pdytho + o — (To + Tp(0))* + T55(0)
= 11(th0 — P0,00) X + X(T5 = Tt o) = (x(To — To,0) + To,00)" = T ) (2.42)
Using the definition of (T}, ) in (2.36) and equations (2.32)-(2.33) as well as the relation (2.34)-(2.35) and
Voo = 4T§)00Tk700, we get
E} =0T, + ApTho + (Y, — C(T + P, k) + C(P,k))
= (Tk — Tk,oo)azx + 2877X8nTk:
+ X(<4T5Tk - 4T5),00Tk700 + 4(Tg) - TOB,OO)(P]C - Pk(o))>
+(ET+Pk—1)—EPk—1))) — (C(T + P,k) — C(P,k))
+ (1= xx0)Ap Th_o, (2.43)

and

Eli = /'Lanzﬁk +B/ ’ vx’ik—l +"Zk _C(T+P7k) +C(P7k)
= (P — Vro,o0)Opx + XATGThe — ATG o T oo + 4(T5 — T5 o) (P — Pr(0))
+&(T+ Pk —1)— &Pk —1)) — (C(T + P,k) — C(P,k))
+ (1= xx0)8" - Varthy—1. (2.44)
Combining formulas (2.10) and (2.11), we get from the above equations

N

Ri(T% 0") =N ATy g + eNPPATY = Y M(C(T + T, k) — C(T, k)

k=0

4N
—C(T+Pk)+C(P k)~ > HC(T+T,k))

k=N+1
N
+ €N+1Az/TN_1 + €N+2Az/TN + Z 8kE]3, (245)
k=0

and

N
Ro(T%0") = N1 Vi =Y " eH(C(T + T, k) = C(T, k) = C(T + P, k) + C(P,k))
k=0

4N N
— > FET+T, k) +eNTB Varhy + > P B (2.46)
k=N-+1 k=0



M. Ghattassi et al. / J. Math. Pures Appl. 175 (2023) 181-215 193

Therefore, we summarize the above results in the following lemma.

Lemma 2. Let (T, 9%) be given by (2.40). Then (T*,*) satisfies system (1.17)-(1.18) with boundary con-
ditions (1.19)-(1.20), where R1 (T, ¥*), Rao(T%,¥®) are given by (2.45) and (2.46), respectively.

3. Properties of the approximate solution

In this section, we study the properties of the approximate solution (7%,1®) constructed in the previous
section. The properties of the interior approximations are shown first, followed by the properties of the
boundary layer approximations. Then, the approximate errors R (7%, %®) and R2(T%,1®), obtained in the
previous section, are estimated in Theorem 9. Finally, the coercivity inequality (1.25) is shown in Lemma 10.

3.1. Interior approximations

The interior approximation (Tp, ¢g) is obtained by solving (2.30) and (Tk,¥x), k = 1,..., N are obtained
by solving (2.37). For equation (2.30), the following lemma holds.

Lemma 3. Assume T oo € L*(T?) and Tp(1,2") € L*(T?) satisfy To.oo > 0, Ty(1,2') > 0 for any x' € T2,

Then, there exists a unique solution To € C™°(Q) to equation (2.30) with boundary condition (2.31) and the
solution satisfies To(x) > 0 for any x € Q.

Proof. The proof of the above lemma follows directly from elliptic theory. Actually, we may take u =
To+4nT3 /3 and then Au = 0 in Q and u(0,2) = Tovoo(x’)—i—élﬂf(im(m’)/& u(l,2') = T,(1,2')+4r T (1,2') /3
on the boundary. We have u € C*>(Q) and so T'€ C>*(2). O

We now provide in the following lemma a well-posedness result for the elliptic equation (2.37).

Lemma 4. Assume Tkpo € L?(T?) satisfy Tkpo >0. Given Ts,1 < s < k—1and ¥s,1 < s < k—1 satisfy
Ts € L*(Q), s € L?(Q x S?). Then there exists a unique solution Ty, € C*(Q) to equation (2.37) with
boundary conditions (2.39).

Proof. The proof of the above lemma also follows directly from elliptic theory by taking u = (1 +
16713 /3)T. O

We finish this part by giving an L®-estimate of the Taylor expansion Pj defined by (2.12).

Lemma 5. Let T, s = 0,..., N be the solution to equation (2.30) and (2.37), and Ps, s =0,...,N be given
by (2.12). Then

‘|PS("7)||L°°(T2) SC(]-_'—WS)’ fOT’ any3:0>"'aNa
for some constant C > 0.

Proof. Since T; € C>(9), 9. T,(0) are bounded for any > 0. Therefore,

S nl al s l
|Ps| = l_'a—lTs_l(()’x/) < — < C(1+1%),
=0 911 1=0

and thus the lemma holds. O
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3.2. Boundary layer approximation

The analyses of the half-space nonlinear and linear Milne problems (2.25)-(2.26) and (2.32)-(2.33) have
been carried out in [7]. Here we summarize the results in Lemma 6 and 7, for the proof we refer the reader
to [7]. First, we have the following lemma for system (2.25)-(2.26).

Lemma 6 (/7]). Given (T,(0,2"),,(0,2',8)) € L>°(T?2) x L>(T'_) satisfying T,(0,2") > 0, ¢(0,2',3) > 0
for any &' € T? and B € S? with B1 > 0. There exists a bounded solution (To,zpo) € LfOC(R+ x T2) x
L2 (R, x T? x S?%) to system (2.25)-(2.26) with boundary conditions (2.27)-(2.28). Moreover, there exists

loc

a constant function Ty oo € L>®(T?) such that

To(n,2") = To,co(x')]| < Ce™", [(n, ', B) = Tg o (a)] < Ce™ M, (3.1)

for any n € [0,00) and B €S2, 2" € T2, Here C > 0 are constants depending linearly on the constant
(fo T4 2du>§ and XNg is any fized constant in [0,1). Furthermore, for sufficiently small value of

(fo - T 2du) the solution (Ty, o) is unique.

Note that by the above lemma, zﬁo,oo := lim,, ¢ 1[)0(7]) = T(j{oo.
For system (2.32)-(2.33), the spectral assumption (A) on Tp is needed in order to show the existence,
uniqueness and exponential decay of solutions. The following lemma holds.

Lemma 7 ([7]). Given Ty € L*(Ry;C?(T?)), s € L>(Ry;C?*(T? x S?)), 0 < s < k — 1 such that

| Ts(n,2")| < Cem ™11, [y (. 2", B)] < Ce™ " (3-2)

for some constants C > 0, \,_1 > 0 and for any 2’ € T2, B € S2. Given P, € C(]0,00) x T?) satisfying
|P| < C(1 +n*~1) for some constant C > 0 for any 0 < s < k — 1. Assume Ty satisfies the spectral
assumption (A). Then there exists a unique bounded solution (Tj, Uy € L2 (RyxT?)xLE (RyxT?xS?) to
system (2.32)-(2.33) with boundary conditions (2.34)-(2.35). Moreover, there exist constants (Th. o, Vk.c0) €
L>(T?) x L>(T? x S?) such that

Ty (0, 2) = Thoo(2')] < Ce™ M, |(n, 2", B) — Ppo0(2, B)] < Ce™7, (3.3)

for any constant 0 < N < A,_1, where C' > 0 is a positive constant independent of k and the relation
’lﬁk oo = 4TO ooTk 00 holds.

Proof. It has been proved in [7] that given functions S; = S1(n,2’), So = Sa(n, 2’, 3) such that

/ X" Stdn, / / e 52dndB < oo (3.4)
0 0 S2
are bounded, the following equations

dpg + (¢ — 4T3 g) = Su, (3.5)
pond + ¢ — 4T3 g = S, (3.6)

with boundary conditions
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g(n=0,2") =0, forany 2’ € T?

b(n=0,4',8) = ¢y, for any (z,6) €T,
have a unique bounded solution (g,¢) € L (R4 x T?) x L (R4 x T? x S?). Moreover, there exists a
constant g, such that |g — goo| < Ce A7, |§ — 4T€7oogoo| < Ce=N'", for the proof of this result we refer to
the [7, Theorem 2|. Therefore, we deduce that ﬂkm = 4T€700Tk)oo.

Taking g = Tka ¢ = '(;k and Sl = _XOAx’Tk—2+<4(T€_T(ioo)(Pk_Pk(o))>+<5(T+Pv /{?—1)—5(13, k_1)>7
Sy = =x0B' - Varthp—1 + ATF = T§ o) (Py = P(0)) + (E(T + Pk — 1) = E(Pk = 1)), ¢y = - Vi1 (0) —
E(T(0),k — 1), system (3.5)-(3.6) becomes system (2.32)-(2.33) with boundary conditions (2.34)-(2.35).
Therefore, Lemma 7 holds if Sy, So satisfy (3.4).

To show (3.4), from the assumption (3.2),

/62’\/77|X0A1/Tk—2|2d77 < 0/62’\,”62’\’“1"6177 = ﬁv (3.7)
k—1 —
0 0
T oo _ T o C
2\ ’ b1 12dn < 2NN o =2M k-1 ) — . .
0/6 | XOB vw wk 1| YIS Co/e € yl 2(/\k—1 — /\/) (3 8)

Moreover, due to the assumption (3.2) and |Ps| < C(1 4+ 1*), we have

(TS — T3 00) (P = Pr(0))] = |4(To = To,00) (Px = Po(O)[(T§ + 15 o) < Ce (1 +17),

and
|E(T + Pk —1)—E(Pk—1)|
| ¥ @HPNTG+ )T+ P) Tt Pa)— Y. PBRPR,
i+j+l+m=k i+j+l+m=k
i,5,1,m>1 3,5,l,m>1
= Y (BDTT + 3TiP PPy + 61T, P + 3T T Pr)|
i+j+l+m=k
ij,l,m>1
S 0(674)\]9,177 + e*)\kfln(l + nk71)3 + 672Ak,1’r](1 _’_,',Iktfl)Q + 673)\]9,177(1 + nk*l))
< Cem M1(1 4 k3,
Therefore,
/e2A'"|4(:f’§’ — T3 o) (Pe — P(0))]2dn < 0/62/\/"6_2’\0”(1 +1%)dn
0 0
C C
= I'k+1
200 —x) T 2 (rg — e D,
and

/e”’"w(f +Pk—1)—E&Pk—1)2dy
0



196 M. Ghattassi et al. / J. Math. Pures Appl. 175 (2023) 181-215

[ o C C
S 0/62)\ ne—2/\k—177(1+n6k—6)d77+ 5 + F(6]€—5),
0

()\k—l _ /\/) 261975(/\]6_1 _ /\/)6k75

where I'(n) := (n — 1)! is the Gamma function. Combining the above inequalities with (3.7)-(3.8) implies
(3.4) and finishes the proof. O

In the above lemma, the constant N may vary for different k. In order to get a uniform constant,
we apply the above lemma iteratively. First, according to (3.1) from Lemma 6, Tp = x(Tp — Tp.00) and

Yo = x (o — 1;0,00) satisfy
| To(n, z")| < Ce™ " |o(n, o', 3| < Ce ", for any 2’ € T2, g € S?, (3.9)

for some C' > 0 and A > 0. Therefore, with the definition of Py in (2.12), we have that Py = T(0) is bounded,
i.e. |Py| < C for some constant C' > 0. Therefore, the assumptions of Lemma 7 with £ = 1 hold. We take
N = X\g — €9, with g9 > 0 being a sufficiently small number, in (3.3) and get that for any 2’ € T2, 8 € S?,

Ty (n,2") = T1 oo (@)] < Ce™ Qom0 ahy (n, 2, B) — 10 (2, B)| < Ce™Pome0ln, (3.10)
With these, T} = X(Tl - Tl,oo) and ¢y = X(Izl — 1/71,00) satisfy
Ty(n,a')| < CemGom=odn |y (n,a’, )] < Ce=Pom=0)n v (z/ € T2, B € S?). (3.11)

Moreover, from Lemma 5, |P;| < C(1 + 7). Therefore, the assumption of Lemma 7 with k& = 2 hold with
A1 = Ao — 0. We take X = A\ —e0/4 in (3.3) and get that for any 2’ € T?, 8 € S?,

Ta(n,2") = Tao(a)| < Cem N1 0/40 iy (1, 2!, B) — g0 (2, B)] < CemPam=o/Dm (3.12)
These again implies |Ty(n, )|, [ (n, 2’, B)| < Ce=PA2750/8) with Ay = A\; — £0/4 if we take N = Ay — £0/9.
We can thus apply Lemma 7 iteratively with X' = A\;_1 —g¢/s? and Ay = A\s_1 —&0/(s — 1)? in the s-th step
and get that

[ To(n,2') = Taoo(2)] < CemCemr=20/500 [y (0", B) = 4y oo (2!, B)] < CemCemeo/s0n - (3.13)

hold for any 0 < s < N for all 2/ € T2, 8 € S2. By T, = (T — Ts,oo) and 1, = x(1s — 1;3,00), the above
inequalities imply for any s =0,..., N,

Ty (n, a")| < Ce=Qom1=e0/5m 1 (1 )| < Ce~Pemr=e/s -y (o' € T2, B S?).  (3.14)

Since Ay = A\s_1 — €0/(s — 1)?,

1 1
)\N_l—60/N2=)\N_2—60/(]\7—1)2—50/]\/'2:...:)\0—60 (1+§+"'+m>. (315)

From the formula )7 | # = 72 /6, the above equation implies
2

N 00
1 1 m
)\N_1—€0/N2=)\0—80 E W S)\Q—{fo E ﬁ S/\o—EEO. (316)
n=1 n=1

Therefore, taking g9 = 3\o/72 and setting A = \o/2, the following lemma holds.
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Lemma 8. Let { (Ts,s) } be solutions to system (2.25)-(2.26) for s =0 and (2.32)-(2.33) for s > 1.
0<s<N

Then there exist constants A > 0 and C' > 0 such that for any s =0,..., N,

Ts(0,3") — Ts,00(2"), |05 (0, 2", B) — s 00 (2, B)| < Ce™,

- _ (3.17)
Ts(n,2")], [¥s(n, 2, B)| < Ce™™7,  for any (2, B) € T? x S?,

where C' > 0 is a positive constant independent of s.

3.3. Residual estimates

Next we estimate R (7%, 1) and Ro(T% ¥*) (given by (2.45) and (2.46), respectively). We prove the
following theorem.

Theorem 9. Assume T, satisfies the spectral assumption (A). Then the composite approximate solution
(T*, ™) constructed in section 2, satisfies (1.17)-(1.18) with boundary conditions (1.19)-(1.20). Moreover,
the error terms Ry = R1(T*, %), Ra = Ro(T*, ¥*) satisfy

IR(T* ) llz=@) [Ra(T* %) | (@xs2) < Cane™ !+ (N +2)Ce %, (3.18)
for some constant vy > 1. Furthermore, for § > —%(N + 1)eloge, the above estimate implies
IRA(T )| L), [1R2(T% %) || L= axs2) < O™, (3.19)
where C' > 0 is a positive constant independent of €.
Proof. We first consider Ry (7%, ¢*). From (2.45), we have

R (T ¥*) = (6N+1ATN_1 + eNP2ATN + VAL Ty + €N+2Ax/TN)

4N
- ). MT+ T, k)
k=N+1
N
=Y He(T+ T k) —C(T, k) — C(T + P, k) + C(P, k)
k=0

N
3o
k=0
=: Ri1 + Ri2 + Riz + Rua. (3.20)

Estimate of Ri1 and Riz. By Lemma 4, |ATy_1|z2(0), |ATN||L2(0): [ATN-1[|L=(0) and [ATN| L0
are bounded. Moreover, from Lemma 8,

Tn 1] = [x(en)(Tn-1(n) = Tn—1,00)| < Ce™™ < C,
and thus is bounded. Similarly, A, Tn_1 and A, Ty are bounded. Therefore,
[Ri1]| ey < CeMHL (3.21)

Due to (3.17), ||Ts|| 1= () are bounded for any s = 0,..., N. Therefore,



198 M. Ghattassi et al. / J. Math. Pures Appl. 175 (2023) 181-215

| Ria|| o) < CeNTL (3.22)

Estimate of Ry3. Since x(z1) = 0 for z; > %6, Ri3(z1,2") = 0 for z1 > %6. For the region z; < gé, we
rewrite it as

Ry31

(sl =T > Mo +T,k) - C(T,k) - C(T + P k) + C(P, IR
k=0

+ > M@+ T, k) —C(T k) — C(T + P, k) + C(P,k))1
k=N+1

=: Ry31 + Ri30. (3.23)

{z1< 20}

Similarly as Ri2, Ri32 satisfies
| Risa| o () < CeN T (3.24)
For Ri32, from the definition (2.5) of C,

N 4 N 4 N 4 N 4
Rz = — < (Z M (T, + Tk)> — (Z ngk> = (Z e (P, + Tk)> + (Z gkpk> > . (3.25)
k=0 k=0

k=0 k=0

Using the formula a* — b* = (a —b)(a + b)(a® + b*) and fora —b=c—d = f

(a* = b) — (c* —d*) = (a — b)(a + b)(a® + b*) — (c — d)(c + d)(c* + d*)
= fla—c) (22> + 26> + (c+ d)(a+ b+ c+d)),

with a = Zi\;o e* (T 4+ Tr), b = ij:o S — Zﬁzo k(P +Ty), d = Zszo ekp,, f = Zgzo ek Ty, we

obtain
N 4
+ (Z {:‘kPk>
k=0

N N
= (Z aka> (Z ek (T, — Pk)> (2a® +20* + (c+d)(a+b+c+d)) . (3.26)

k=0 k=0

4

(isk(Tk +Tk> (zNjgk )4— (ésk(zﬂﬁn))

k=0 k=0

Due to (3.17),

N
Y | < Ce M = Ce (3.27)
k=0

Taylor’s formula yields

< o A N—k+1
—8 T(0,2") + ——=T +
ko, Z 0 1102+ P TG 2

Using the above formula, we get
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N N—-k GN—k+1T (5 /)
x oy k(Ek> T _
= E ek ( E l—;ﬁilTk(O,x/)Jr N R

Pt — (N —-k+1)!
N k 1 al
— Z €k Z U_‘WTk‘fl(Oa $/>7 (328)
k=0  1=0 1
with & € [0, z1]. Using the formula
N k& N N l N N-—i l l N N—k
s=k— —k,5—
DN R =D ORI fUi+s) =Y Y R k4D
k=0 I=0 1=0 k=l 1=0 s=0 k=0 =0

and taking f(k,k+1) = l—lal T (0,2), we get

fllk)=¢ il Ok=Ty(0,2) = £F " ok=tT(0, 2")
’ (k— o 70 (k—) = "1
and so
NN_kklz Nkk:nlkl
no_ /
Z WamTk(va)—ZZE ¢ l)'a“”l T,(0,2")
k=0 1=0 k=0 1=0
bkl e !
—k,k—1—
_— Z Z(‘:klf'ailkal(O,x )
k=0 1=0
Taking this relation into (3.28) leads to
N N N—k+1 /
8321 Tk(&k,l‘ ) —
D= B = 3
k=0 k=0 '

Combining this with (3.27), (3.26) satisfies
4 N 4 N 4

(Z Ek(Tk +Tk)> — (ZEka> — (Z&k(Pk +Tk)> + (ngpk>
k=0 k=0 k=0

N—k+1 /
_am i 10 Tk )| N_pi1yo 2 2
E N k1) ] 12a° + 2b° 4+ (c+ d)(a+ b+ c+ d)|

N
N—k+1
Z (N - k+)I1 ©

where we use the fact that ||a, b, ¢, d|| =) < C are bounded and ||Tx||¢s(q) < C is bounded for any s > 0.
Note that the function h(z;) := 2z FFle=A*1/¢ attains its maximum at ¥ = (N — k + 1)e/\ with the
maximum value h(z*) = (N — k 4 1)N-FH1gN=kt1l /\N=k+1 . o=(N=k+1) Therefore,

<Z €k(Tk —l—Tk)) — <Z€ka> — <26k(Pk +Tk)> + (Z&‘kpk)
k=0 k=0

k=0 k=0
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N (N—k—l—l)N_k+1 N+1 n

N+1 —(N—k+1) _ ~_N+1 n-  _n 3\ N+1
= e kz M=FH(N — k+ 1)1 = Zl yol© < G0N =D
=0 n—=

where vy = Zf:]:ol n"/(A"n!) > 1 is a constant depending on N. Therefore,

| Riz1 | zoe () < Clyn — 1)t
Combining this with (3.24), we get
| Rl o) < Cyne™ T (3.29)
Estimate of Ry4. Recalling (2.43), we have

Eg = (To — To,00)05x + 20 x5 To + x(Tg — T o) — ((x(To — To,e) + To00)* = Tgoo).  (3.30)

Since To(n, ') — To.00(2') and 9, To(n,z') exponentially decay to 0 as n — oo and 8,x(en) = €0y, x (1),
8%)((577) = £292 x(z1) are supported on the interval en € (24, 00), hence

34

[(To — To,00)02x + 28,7)(8,,T0| < Ce M (e]dy, x| + €2|611x|)177> 35 < Cee™ 5e . (3.31)

n —8e

Since To(n,2') — Tp.0o(2') decays exponentially,
T8 = Tosol = 1(To = oo  [(To + To,00) (T§ + T 00)?| < e,
and

[(X(To — To,o0) + To,00)* — T oo
= X|(To = To,00)|  IX(To — To,00) + To,00] - (X (To — To,00))? + T oo
< Ce M,

Note that for en < 1, x(en) =1 and
ATy = To o) = ((X(To = To,0) + To,00)* = Tonoe) = (Tg = Too0) = (To = Tp0) = 0.
Hence the left term of the above equation is supported on the interval en € [ié, 00). Therefore,

T = Tk o) = (o = Toe) + Tooe)! = Tioc)l S Ce™1 5 < Ce (3.32)
=4e

Combining the above inequality with (3.31), (3.30) satisfies
|EY| < Cee™% + Ce 34 < Ce™ 3. (3.33)

For k > 1, we recall (2.43):

B = ((Tk = Too) 02X + 20,50, Ti) + (X(TT — 4T3 T

+ 4T = T )(Pr = Pe(0) + (E(T + Pk = 1) = E(P.k = 1))
— (T + P.k) = C(P.k)) + (1 = xx0)Au T2

=: B}y + By + E}s.
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The term (T — Tkm)(‘??]x + 20, X9, T), can be estimated in the same way as (3.31) as

EPY)

|EY | = |(Th — Tk,oo)agx + 20, X0, x| < Cee™ 5 . (3.34)

For EQ, (1 — x(en)xo(en)) is supported in en € [14,00). By (3.17),

|Efs| < Ce™1 3 < Ce it (3.35)
154

To estimate E%,, due to (3.17),
ATETy — ATS o Thoo + 4T — T3 o) (Pr — Pr(0))] < Ce™ ™M 4 Ce (1 +n*) < C(1+n)e .

Since (E(T + P,k — 1) — E(P,k —1))/T is a polynomial of T, P of order no bigger than n*~1 and thus is
bounded, we have

T+ Pk—1)—&Pk—1)
T

E(T + Pk —1)—EPk—1)| =T '5(
< C(L4nF e,
Similarly,

T+ P k) —C(C, k)
T

C(T + P.k) - C(Pk)| = |T! \“ ] < C(1+nF)e,

Therefore,
EYy < C(1+nF)e .

Moreover, when en < %, x(en) = 1 and due to the formula C(T + P, k) — C(P, k) = 4(Tp + Po)*(T) + Py) —
4P3P, + E(T 4 Pk — 1) — E(Pk — 1) as well as
ATGTy, — ATG oo Thoo + 4T3 — Tj 00 (P — P1(0))
= 4T + Po)*(Tx + Pr(0)) — 4T3 o Pe(0) + 4((To + Po)® — 1§ o) (Pr — Pi(0))
= 4(To + Po)s(Tk + P — 4P5’P]€,
where we use the fact that Py = Ty(0) = Tp,c0, we have EY, = 0 on the interval en € [0, 15). Thus

1 AS
9, < Fye=An < e i-
By < C(1+n"%)e 1n>% —C(1+€k)e .

Combining this with (3.34) and (3.35), we obtain

Ad

1 1
BRI < Cee™ % + Ce™ % + C(1+ )e™# < Ce™# + Coe &2,
€ €

Combining the above estimate with (3.33), we arrive at
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We can take € < 1/2 so that Z,ivzl ek < Zszl 1/2F <1 and get

|Ry4| = < (N +2)Ce 3.

N
DB
k=0

By the regularity of solutions, we have

Ad

||R14||Loo(Q) < (N+2)C€7@.

Taking the above inequality and (3.21), (3.22) and (3.29), we obtain

A8

IRA(T*, )| Lo () < Cyne™ ! + (N +2)Ce % (3.36)

One can estimate Ro(T%,%®) given by (2.46) in the same way. Recalling (2.46),

4N
Ro(T%9") = (N8 Vb + N3 - Vo) = D F(C(T+ T, k)
k=N-+1
N N
— > MC(T + T, k) = C(T, k) — C(T+ P,k) + C(P, k) + > _"E},
k=0 k=0

=: Ra1 + Ra2 + Ra3 + Roaa.

By the boundness of solutions to the interior expansion and boundary layer corrections, |Rai| = O(eN+1),
|Raa| = O(eVF1). The term Raz is the same as that of Rj3 without integration over 8 € S? and thus can
be estimated in the same way, |Ri3| < CyneN L. Finally, Ros can be estimated in the same way as Riq4,
whereas the only difference is the term g (1, — zﬂkm)&,x, which is supported on en € [ié, o0) and thus can
be estimate by

(P — 1/31‘,,00)6‘77“ < (]e*/\771n>4A < Qe o/4e,
— a4

and |Ros| < (N 4 2)Ce~a=. Thus (3.36) also holds for Ro(T*,4%), i.e.
IR (T, )| = (axs2) < Cane¥H + (N +2)Ce™ . O
3.4. Proof of inequality (1.25)
Next we prove inequality (1.25) under the spectral assumption (A).

Lemma 10. Let (T'*,¢®) be the composite approzimate solution constructed in the previous section. Assume
the spectral assumption (A) holds for the solution Ty of the nonlinear Milne problem (1.8)-(1.11) where
Ty > a for some constant a > 0. Then, for ¢ > 0 sufficiently small, the following inequality holds

—/4(T“)39Agdx = /4(Ta)3v92dz— /V(4(T“)3) - gVgdz
Q Q Q

> / IVgl2dz — Cllg|2a 0, (3.37)
Q

for any function g satisfying g(0) = 0 and for some constants k > 0, C' > 0 depending on M, where M < 1
is the constant in (1.13) of the spectral assumption.
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Proof. Note that 7% = Zi\’:o ¥ (T, 4 Ty) where Ty = x(x1)(Tx — Th.0o). We split the integration over
domain inside and outside the boundary layers.
Outside the boundary layer. In the domain x; > %5, x(r1) =0and T* = Zszo e*T},, which only contains

the interior approximations. Since ||T||cs(q) is bounded for any s >0 and k =1,..., N,
/ 4T3\ Vg|*dx — / V(4(T*)3) - gVgdx
an{e>34) an{z>34)
= / 4(T*)3|Vg|*dz — / 2T)3/?Vg - 6(T) 2V T gdx
an{z:>34) an{z: >34}

1
> / AT VP — / HT*P|VgPde

an{z:>34) on{z: >34}
1
_ 5 / 36Ta|VTa|292dx
on{z, >34}
> / 2T |Vgl2dz — Cllg|2a . (3.38)
an{z:>34)

Inside the boundary layer. In the domain x; < %5, boundary layer effects play a role. First we split the
integral as

/ AN / VA(T")) - gVgda

an{a1<3) an{a1<3)

N / ATV g|*da — / Vo (4(T*)) - gV gdae

an{a1<3} on{z1<3}
b [ aalonslar— [ 0,4 gougde =1+
an{z1<3} on{z1 <3}

Since ||V (T)[|12(q) is bounded, we can estimate [; the same as (3.38):

hz [ 2PVl - Clal. (3.39)

an{e <3}

To estimate I, we use the spectral assumption (A). Near the boundary, the composite approximate solution
(T%,1%) is close to the solution (Tp, o) of the nonlinear Milne problem (1.8)-(1.11). Using the equation

N 3
(T%)° = (Z " (T, + Tk)) = (To + To)® + &G,
k=0

where G = 3(To+Tp)? Yopy €5~ (Tu+T) +6(To+T0) (g ¥ (T +Ti))? +3(To+To) (X gy €1 (Th+
Ty))?, we can rewrite I as
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1
1225_2/

T2

4(To + Tp)? + 4eG)|0, 9> dnda’

o
\mw

3
1 ; _ )
— 5—2//8 (4T + T)? + 4eG) g0, gdndz
T2 0

3

1 T ~
=5 [ d [Tdio,g - 0,47)90,9)dn
T2 0

1
+E—2/d$
’]1‘2

(4(To + To)® — 4T3)|0, 9/ dn

\m‘w

0

Oy (4(To + To)* — 4T) 90, gdnda'

1
+ 3 /d 4(G|dyg|* — 8,Ggdyg)dn
T2
=: Ipy + Ioo + 23 + Io4.
The spectral assumption (A) implies

1
121_5_2/d

T2

(4T3|0y 9> — 0, (AT3) 90y g)dn

°°|w O\ﬂw

> / / AT 1001? — 5 (4TI, + 36T010, o %))
3
1 8e
> o [ o' [0, - 367210, ToP o)
T2 0

OO‘OJ

1 - M
> / /4T3|<9ng| di.

For Iy, since Ty = Ty + x(en)(To — Tp(0)), it holds that

(To + To)* = T3 = (To + x(en)(To — To(0)) — To)(T§ + To(To + To) + (T + To)?)
= ((To — To(0)) — (1 — x(en))(To — To)) (T + To(To + To) + (To + Tn)?)
= (02, To(&)en — (1 — x(em)(To — To))(T§ + To(To + To) + (To + To)?).

Since we are considering the integration over z1 = en € [0, 36] and (1 — x(en)) is supported on [14, 34],
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J
2

) ) 35C i
I = —/ / (4T + To)® — 4T5)|0pg|?dn < @/dx’/@gl?dn-
T2 0

0

Oo‘w

For 123, due to

O (T + Tp)* — 1)
= 9y(To + x(en)(To — To(0)) — To) (T + To(To + To) + (To + To)*)
+ (To + x(en)(To — To(0)) — Tp)o (To + To(To + To) + (To + To)?)
= ex’'(en)(To — To(0))(To — To(0)) — To) (T3 + To(To + To) + (To + To)?)
+ (x(en) = DO To(T3 + To(To + To) + (To + To)?)
+ (02, To(&)en — (1 = x(en)(To — To)) 0y (T3 + To(To + To) + (To + To)?),

with consideration of en € [0, 26] and (1 — x(en)) being supported on [14, 28], it holds that

T2

< ¢ / /|wm+ 19118ngl)dn
T2 0
350 ¥
<3 / /g+@mm

38
Be
Iy = / / 4Ty + To)® — 4T3) g0, 9dn
0
368
8e

For I>4, we have

IQ4—/d.’IJ

Combining the above estimates gives

ed(Gl0ygl* — 0,Ggdyg)dn (I + 10yg[*)dn

\m
|/\

o | Q
\

O\%lz

OO‘W

38
8e
350
4%@md Lﬁﬁ+@”
T2 0

——/m/gﬂwwm

By the assumption of the lemma, Ty > a, hence 47, 8 > 4a® for some constant a > 0. We can take sufficiently
small € and ¢ such that ¢ < (1 — M)a®/C and 36C/8 < (1 — M)/8, and we get from the above inequality

/ /4T0 |8ng|2d17

OO‘C'J

onlw
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Combining this with (3.38) and (3.39) implies

—/4(T“)39Agdx: /4(T“)3|Vg|2da:—/V(4(T“)3) - gVgdx
Q Q Q
> [ arpvePdos [ AT VagPds

an{a:>36) anfz:<36)

|w

o)
e

1—M 5
1c2 /dx//‘LTg’anIQd??C||9||2L2(Q>
T2 0

0|

+

> #[[Vall7e ) = Cllalza),

where k = min{2a3, (1 — M)a®}, which finishes the proof of Lemma 10. O
4. Diffusive limit

In this section, we prove Theorem 1 by estimating the difference between the solution (7°%,%) to system
(1.1)-(1.4) and the constructed approximate solution (7% %), which satisfies (1.17)-(1.20). Setting g :=
T —T% ¢ := )¢ — %, functions (g, ¢) then satisfy

EAg+ (o — (T +g)" + (T")") = =Ry (T, "), (4.1)
eB-Vo+¢—(T%+g)* + (T)* = —Ra (T, 0, (4.2)

with boundary conditions

g(x) =0, forzx € 09,
6(z,8) = 0, for (z,8) € T_.

In order to prove Theorem 1, we first derive suitable estimates on a linearized system and then use the
Banach fixed point theorem to show the existence of the above problem near zero solutions, leading to the
convergence of (T¢,¢°) to (T, ¢*) as ¢ — 0. Note that the right hand sides of equations (4.1) and (4.2)
reduces to zero as € — 0.

4.1. Linearized system

We first linearize system (4.1)-(4.2) around zero and consider the following linear system:

2Ag + (¢ — 4(T“)3g> =ry+(r), (4.3)
eB-Vo+¢—4(T")>g=ry+r, (4.4)

where r1 = r1(x),r = r(x, 5), and ro = ra(x, 8) are given functions and the boundary conditions are taken
to be

g(x) =0, for any z € 99, (4.5)
¢(x,8) =0, for any (z,8) e T'_. (4.6)
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The existence of solutions to the above problem and suitable estimates on the solutions are stated in the
following lemma.

Lemma 11. Let ¢ > 0 and (T, 9%) be the composite approzimate solution constructed in section 2. Assume
r1 € L®(Q), and r,mo € L>=(Q x S?). Then, there exists a unique solution (g, ¢) € L°°(Q) x L>®(2 x S?) to
system (4.3)-(4.4) with boundary conditions (4.5)-(4.6). Moreover, the solution (g, $) satisfies the following
estimates

el|dllz2axs) + ellgllm) + VElDl L2,y + ¢ — 4(T*) gl L2 (xs?)
C
< Ofrll2oxs2) + g(||7“1\|L2(Q) + 722 (xs2)); (4.7)

and

|l o (axs2) + llgll L= (@)
c C
< Sllrllzzxs?) + (il +lIrallzz @xs) + Clirzllie @xs?) + ClIrll=(9) (4.8)

where C' > 0 is a constant depending on k,|Q| not depending on . Here k is the constant in inequality
(3.37) of Lemma 10.

Proof. Existence of the linear system (4.3)-(4.4) with homogeneous boundary conditions (4.5)-(4.6) follows
from standard theory of elliptic and transport equations. To derive estimates (4.7) and (4.8), we first derive
the energy estimate. Then the L? type estimate is derived. Finally, the L type estimate is shown.

Step 1: The energy estimate. We multiply (4.3) by 4(7%)3g and (4.4) by ¢, and integrate over z € € and
B € S? to get

—/624(T‘1)39Agdx+ // 56-V%2dﬁdx+ / (¢ — 4(T*)3g)*dBdx

Q QxS2 QxS?

= || ératsae— [areyonds+ [ @ -a@Pgrapas. (49)

QxS2 Q QxS2
The boundary condition (4.6) implies
2
// B - V?dﬂd;v = 5//5 -n¢?dBdo, = s//,@ -n¢*dBdo, = €|l 72r, - (4.10)
QxS2 r e
By Lemma 10, inequality (3.37) implies

- / A(T*)gAgdz > 5]V 2aq) — Cllgl2 (- (4.11)
Q

Applying Young’s inequality on the last term of (4.9) gives
1 1
[ (0-aypgdsas <5 [ - aaeygraan 5 [ dsa.
QxS2 QOxS2 QxS2

Taking the above inequality and (4.10), (4.11) into (4.9), we obtain the following energy estimate:
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1 a
e2k(|VgllZa (o) +elldllizr,) + §||¢ — 4T gl 72 axs2)

1

< Ce?||g[l72 () + prodfde — [ 4(T*Pgride + = |[7]|72xs2)- (4.12)

@) 5 (2x52)
QO xS2 Q

Step 2: The L? estimate. First we estimate the L? norm of g. Given p = p(z, 3) € L*(Q x S?), define the
operator A : L?(Q) — L?(Q) by

eB-Vo+p—h=p, inQxS?

¢(z,B) =0, for (z,8) e T'_, (4.13)

Ah = (¢ —h), where ¢ solves {

for h = h(x) € L?(2). Then for any function ¢ = £(x) € C?() satisfying ¢ = 0 on 952,

/Ah de—//go h)tdpdx

Q S2
= —//Eﬁ-Vgoﬁdde—i-//pEdﬁdx
Q S2 Q S2

—Q/SZ5@ﬁ-V€dﬂdm—5[/ﬂ-ng@€dﬁdaw +Z¥p€dﬁdm
:5//(gp—h)6~V€d5dx—0+//p€d6dx

Q S2 Q S2

:—e//aﬁ Vg - Vfdﬁdx+£// B - Vﬁdﬁdx—l—//pﬁdﬂd:c

Q S2 Q §2

_ //@ 1)(8 - V)20dBdx + £ // V)2(dBdz

Q S2 Q S2

— /B nep - Vﬁdﬁdaw—FE//pﬁ Vfdﬁdm—i—//pédﬁdx

Q S2

=—¢ //5 V)2(8 - VpdBda + & // (8- V) tdBdr + = /thx
Q

Q S2

—e / B npB - Vidfdo, + ¢ / / pB - VidBdx + / / pldBdz

Q S2

= / / ©)/4n)(B - V)3 tdpdx — & / (B- V)28 - npdBdo,

Q s2 ry

+e // (B-V)*dBdz + 2 —/hAde—a /,8 npB - VedBdo,

Q S2
+5//pﬁ Vﬂdﬁder//pEdﬁdx
Q S2 Q s2

> —Ce|lp — (@) /(4m) || L2axs2) | ¥l 30y — CE2(| V2 L2000l 2(r )
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4r
— C%lpll 2caxs2) 1| m2(0) + 52; hAldx — C*(|V 1| 200 )l L2 (s )
Q

~ Cellpllzexse 1l + / / pldpdz,
Q S2

where (8- V/) =0 and {(3-V)3¢) = 0 are used. These two equalities are due to £ = £(x) not depending on
5. By the trace theorem and Sobolev embeddings, the above inequality implies

/.Ah-édx
Q

47
> 762 / hALdx — C%|l o — () /(A7) || 2(axs2) 1| m2 @) — C2 1)l 2o @l L2 (rs)

Q

— C2||t|| 2 |l 2ryy — CE2llpll L2 axs) 1l m2 (o) — Cellpll L2@xs2) 14 (o)

+l/:/yﬂdﬁdx. (4.14)

Q S2

Let p=ro+ 1,0 =¢,h=4(T%)3g in (4.13), equation (4.3) can be written as
2Ag + AA(T*)3g) = r1 + (r).
Let ¢ be the solution to

Al =g, in ,
£ =0, on 9.

We multiply the previous equation by ¢ and integration by parts to get

g/fm+!AWTmem:/m+www.

Q Q

By (4.14), and the properties of the elliptic equations ||£[|z2) < Cllgllz2), 1€llms@) < Cllgllar @), we
have

/A(4(T“)Sg)€d:c
)

41
> 62? /4(Ta)3g2dl" — C%|¢ — (¢} /(47) || L2axs2y 9l ) — C2|gll 2@yl Bl L2y

Q

— Cgll 2@ 0l 2ryy — Celllrallzaxsz) + 17 L2 axs2)) 9]l L2 @)

+//(r2 + r)ldpdx

Q S2

4 a a
82? AT g dae — C*||¢p — 4T*) gl 72(axs2) — CE N9l F () — Ce°ll9l T q)

Q

Y

1
- C53||¢||%2(r+) - ZEQHQH%Z(Q) - C€2H¢||%2(r+) - C(||7”||%2(st2) + ||7"2||2Lz(nxs2))
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1
— 32l + [ [ (rat reasa,

Q S2

where

¢ —4T*) gl L2axs2) = o — (@) /47 + ($) /4T — 4(T*) gl L>(2xs?)
= ll¢ — (¢) /47|l L2(axs2) + [{0)/4m — 4(T*)?gll 2(axs?)
> ¢ — (9) /47| L2 (axs?)

is used in the last inequality. Taking it into the previous equation gives

lgl72 () + 2 12(T)**gll72(q
< Ce%|¢ — (4T*)° gl 2 axs2) + CE°llgllTr o) + C*[10lI72(r,

+C(HT’||%2(Q><S2) + ||T2||%2(Q><S2)>+/7"1€d$—//7‘2£dﬂd.r
Q Q S2

< C%||¢ = (4T gl 72 axs2) + CE°llgllin ) + C2 101172,
C 1
+ ClIrllZeoxs2) + Ir2lz2@xs) + 5 (Inillzzi) + 72172 @xs2) + 727191172 0)-
Combining this inequality with (4.12), we obtain for e sufficiently small (¢ < min{1,x}/C),
62’f||V9H2L2(Q) + 52||2(Ta)3/29“%2(9) + €||¢||%2(F+) + ¢ — 4(Ta>39”%2(§2><§2)

C
< Clirlitsgaessy + S5 (Inliae + Iralaqugey) + [ éradss
QxS2

- /4(T“)3gr1dﬂc.

Q

Using the inequalities

//gbrgdﬂd:t://(qﬁ—4(T‘1)3g)r2dﬂd$+//4(T‘1)3gr2d,@dw
Q S2

O $2 O $2
< L. (T3 gl12 1 2
< 2||¢> (T)° 9l 2 (xs2) + 2H7”2||L2(Qx§2)
1 . C
+ Z€2||2(T )*2gll72) + 6—2||7“2”%2(st2)
and

. 1 . C
- [ AT grids < G 12T 1y + 1 e
Q

we get

EllglF o) + EXII2(T)* gl 20y + el Dl 2(r,y + 16 — 4T gll72(xs2)

C
< C||TH%2(Q><SQ) + 5—2(||7"1||%2(Q) + ||7"2||2L2(Qx82))~



M. Ghattassi et al. / J. Math. Pures Appl. 175 (2023) 181-215 211

Note that

E10l72xs?y < €210 — 4T gll72xs2y + € 14(T)%gll72 (082
<&l — 4T gll72xs2y + Ce* 9l 720,

due to T* being bounded. Therefore, we combine the previous two inequalities and arrive at the estimate
(4.7).

Step 8: L>° estimate. We now derive the L*> estimate of g, ¢. First, by the maximum principle for linear
transport equation (see for example Lemma 3.1 in [16]), the following estimate holds for (4.4):

[l L (xs2) < [4(T) gl () + T2l Lo (axs2) + [I7]| L0 (2x52)-
Since ||T%|| Lo (@) is bounded,
[l (@xs2) < CllgllLe @) + [Ir2llLe@xs2) + 7]l L= (@xs2)- (4.15)
We now give the L estimate of g. Equation (4.3) can be written as
Ag = f, (4.16)
with f = (= (¢ — 4(T*)3g) +r1 + (r))/e%. According to the elliptic regularity, we have
91l z=(@) < Clgllr2) + I fllz2())-
Combining the above inequality with (4.7), we obtain
9l < Clgllz) + [1fllz2(0))
C C
< Zlrlzz@xsz + S (llrillza) + lIrallzzoxs))
c a\3
t3 (¢ = 4T gl ) + Ir1llL2() + 7l 2xs)) -

Adding the above inequality with (4.15) and using (4.7) on the last term of the above inequality, we arrive
at estimate (4.8), which finishes the proof. O

4.2. Nonlinear system

We now show the existence and uniqueness of solutions to system (1.1)-(1.2) around the constructed
composite approximate solution (7%, %) and finish the proof of Theorem 1. Due to the equivalence between
system (4.1)-(4.2) and (1.1)-(1.2), we only need to show the existence and uniqueness of solutions for
(4.1)-(4.2) in the neighborhood of zero.

Proof of Theorem 1. The proof of existence and uniqueness is obtained using the Banach fixed point the-
orem. We first construct a sequence of functions and then show the sequence is a contraction sequence.
Finally we show the convergence of (g, @) to zero as € — 0.

Construction of the sequence of functions. Let {g°, #°} be zero functions

9°(x) =0, ¢°(x,8) =0,
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and for n > 1, {g", ¢"} are defined recursively by

e?Ag" + (9" = A(T*)’g") = =Ry +4m(6(T)*(g" ") + 4(T)(g" )% + (9" ™))", (4.17)
ef- V" +(¢" —4(T°)°g") = =Rz + 6(T)*(¢"~)* + 4(T*)(¢" ") + (¢" 1), (4.18)

with boundary conditions
g"(x) =0, for z € 09,
¢n(xvﬁ) = ¢b(x7/8)7 for ($7ﬁ) el_.

The above system defines a mapping 7 with (¢", ¢") = T ((¢g" 1, 6" 1)).
Note that the above system is the same with (1.21)-(1.22) in the introduction. Let T" = g™ + T,
Y™ = @™ + 1*, then a direct computation using (4.17)-(4.18) gives
€2ATn 4 <wn _ 4(Ta)3Tn> — <(Tn—1)4 _ 4(Ta)3Tn—1> 4 EQATa + <wa _ <Ta)4> _ Rla
E/B . V@/J” + wn _ 4(Ta)3Tn — (Tn71)4 _ 4(Ta)3Tn71 4 Eﬁ . vwa 4 % _ (Ta)4 _ Rg,
which implies (1.21)-(1.22) after using (1.17)-(1.18).

The contraction mapping. Let Y = L°°(2) and W = L> (2 x S?). We consider the solution in the function
space

Os = {(g,(ﬁ) EY xW: ||g||L°°(Q) < 557 ||¢”L°°(Q><S2) < 53}’

with s > 0 is a constant to be chosen later.

First we show 7 maps the space O, onto itself. Assume the residuals satisfy || R1]| =), [|R2|lz=@xs2) <
eP for some constant p > 0. Next, we show if (¢" 1, 9" 1) € Oy, then (¢",¢") € Os. By (4.7) with
1 = —Ri,r2 = —Rg and 7 = 6(T*)2(g"1)2+4T(g" )3+ (g"1)4, the following estimate holds (assuming
s>1):

elld™llr2xs2) + ellg"lm(0) + VElS" L2,y + 16" — 4T*)’g" || L2 (axs2)
C a n— a n— n—
< - (IRl 20 + IR2ll2axs2)) + C (II6(T*)*(¢" ") +4T*(¢" ") + (6" ) 22(e))
<O+ C(lg" M7 + N9 L)
<O+ O(lg" Hlze@llg™ Hlzz@) + 19" Iz lg™ ez ()
< Ce" N+ Cllg" e + Cllg™ 7
< CeP~! 4 02,

Assuming p—2 > s and 2s — 1 > s, i.e. p > s+ 2 and s > 1, the above inequality implies
g™ | 1.0, |9 L2 (axs?) < CeP™2 4 Ce? 71 < &,

for € sufficiently small (¢ < (1/C)Y(~1). Moreover, by (4.8),

16(7)%(g" ™) +4T(¢" ) + (6" ) |l 22(@)

—~

C
9l oo (axs2) + |9l L= (@) < 2

| —

+ = (IR1llz2() + R2ll2(@xs2)) + [ R2ll e (axs2)

w

3
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+16(T*)*(g" ") +4T(¢" ") + (6" )| (0
< Ce?572 L P73 4 P 4 Ce?8

< 0625_2 +Ep—3.
Assuming p —3 > s and 2s — 2 > s, i.e. p > s+ 3 and s > 2, the above inequality implies
9™ | Lo (), 10" | Lo (@) < Ce**72 + P73 <€,

for € sufficiently small (¢ < (1/C)Y(5=2)). Thus we obtain that (¢",¢") € O, and therefore 7 maps Oy
onto itself.

Next we show the map 7 is a contraction mapping. Let h" = g" — g" !, ¢" = ¢" — ¢"~ !, then they
satisfy

EQAhn + <¢n _4(Ta)3hn> — 47Tfn7
e - V" + " —A(T*)>h" = fp,

where

o =6(T")*(g" ) + 4T*)(g" )" + (¢" )" = (6(T*)*(g"~)* + 4AT*)(g" )" + (4" )"
— 6(Ta)2(gn—1 _|_gn—2)hn—1 4 4Tahn—1((gn—1)2 _ gn—lgn—2 4 (gn—2)2)
e U s [(Vi AR Vs B

Using (4.7) with 11 =re =0, r = f,,, we obtain

elle™ | z2axs) + ellB™ ) + VElle™ 22w,y + ll¢™ — 4(T*)R™ || 2axs?)

< | fallzzaxszy < Ce*||W" | p2(,
hence
IR 1m0+l lL2(axs) < Ce* MR | 2.
Using (4.8) with r; =79 =0, r = f,,, we obtain

™| oo (axs2) + 1M || Lo (02)

C S— n— S n—
< 5_2||fn||L2(Q><S2) + Cll fulle ) < Ce 2R 120y + Ce* R M| oo (o) -

Assume s > 3, then Ce*~2,Ce® < 1 for € sufficiently small, the above inequality implies

IR Lo () + 19" Lo (axs2) < Cr[R" ™ | zoo () + 110" Lo (2xs2)

for some constant 0 < C; < 1. Therefore, for p > s+ 3 and s > 3, T is a contraction mapping. By the
Banach fixed point theorem, there exists a unique fixed point (g, ¢) such that (g, ¢) = T((g, ¢)). Therefore,
there exists a unique solution to (4.1)-(4.2) in Os.

Taking s = 3 and p = 6, we can conclude that

gl @) + el axs?y < Ce.
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Note that in order to obtain R;,Re = O(g%), we need to take n = 5 in the expansion and by Lemma 9,
HRlHLoo(Q), ||R2||Loo(Q><S2) § 066. We have

5 5
T° — Zeka — Zska < Ce3,
k=0 k=0 L>(Q)
5 5
(0 *ZEklﬁk stszk <Ce?
k=0 k=0 L>(QxS?)

Therefore, we get

HTE — TO — TO”LOO(Q) < CE,
[ = Ty — ol L= (axs2) < Cé,

which is (1.16) and finishes the proof. O

Remark 12. The existence for system (1.1)-(1.4) can also be obtained using the maximum principle (see
Appendix A for the proof).
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Appendix A. Existence of the steady state radiative transfer system

Next we prove the existence for the steady state radiative transfer system (1.1)-(1.2) with boundary
conditions (1.3)-(1.4). The existence for the corresponding time dependent case is given in [10].

Theorem 13. Assume v1 < Ty < 72 and ’yjl < < 751 for some constants 0 < 1 < 5. There exists a weak
solution (T¢,1°) € L°°(2) x L>(2 x S?) to (1.1)-(1.2).

Proof. We show the existence by using the fixed-point theorem. Let A := {7 € L>®(Q) : v; < T° < 75}.
We define the operator F : A — A with § = FT by solving
&8 Vi +y=T",

Al
VE(x, B) = Yp(x, B), for (x,8)eTl_, (A1)

and

2A0 — 420" = — (),

(A.2)
0(x) =Ty(x), forz e 0N.

Next we show if 73 < T < 79, then 77 < 6 < 75. First the maximum principle for the transport equation
implies

Vi < < s (A.3)



M. Ghattassi et al. / J. Math. Pures Appl. 175 (2023) 181-215 215

The maximum principle for equation (A.2) also implies 73 < 6 < 2. Suppose 0 reaches its maximum at
xp € Q, then if zpy € 09, 0(X ) = Ty, < 2 and thus 0(x) < 0(zpr) < 2 for any x € Q. Otherwise if zps
is an interior point, then Af(zps) < 0, and so

4720 (war) < (Ylaar, ) < dn%y3, (A.4)

hence 6(x) < O(zpr) < 2. Using a similar contradiction argument, 6(z) > v, can be shown.

Since F maps A to itself and A is a convex compact subset of the Banach space L*°. Hence by Schauder’s
fixed point theorem, there exists a fixed point (7¢,1)°) of F. Since this fixed point satisfies (A.1) and (A.2),
hence (7¢,°) is a solution to (1.1)-(1.2) with boundary conditions (1.3)-(1.4). O

Remark 14. Unlike the time dependent case, where the uniqueness can be shown by showing F is a con-
traction mapping (with time step small), we are not able to show F in the above proof is a contraction
mapping and thus uniqueness is not guaranteed by the above theorem. However, the uniqueness can be
obtained from Theorem 1.
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