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Matrix Completion With Cross-Concentrated
Sampling: Bridging Uniform Sampling
and CUR Sampling

HanQin Cai”, Longxiu Huang ', Pengyu Li'“, and Deanna Needell

Abstract—While uniform sampling has been widely studied in
the matrix completion literature, CUR sampling approximates
a low-rank matrix via row and column samples. Unfortunately,
both sampling models lack flexibility for various circumstances
in real-world applications. In this work, we propose a novel and
easy-to-implement sampling strategy, coined Cross-Concentrated
Sampling (CCS). By bridging uniform sampling and CUR sam-
pling, CCS provides extra flexibility that can potentially save sam-
pling costs in applications. In addition, we also provide a sufficient
condition for CCS-based matrix completion. Moreover, we propose
a highly efficient non-convex algorithm, termed Iterative CUR
Completion (ICURC), for the proposed CCS model. Numerical
experiments verify the empirical advantages of CCS and ICURC
against uniform sampling and its baseline algorithms, on both
synthetic and real-world datasets.

Index Terms—Cross-concentrated sampling, CUR decom-
position, collaborative filtering, image recovery, low-rank matrix,
link prediction, matrix completion, recommendation system,
sampling strategy.

I. INTRODUCTION

HE problem of matrix completion (MC) [1] has received

much attention since the last decade. It has arisen in a wide
range of applications, e.g., collaborative filtering [2], [3], image
processing [4], [5], signal processing [6], [7], genomics [8], [9],
multi-task learning [10], system identification [11], and sensor
localization [12].
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In this article, we study MC under the setting of fixed rank.
Consider a rank-r matrix X with observed entries indexed by
a set {2. MC aims to recover the original matrix X from its
partial observations. Naturally, we can model this problem as a
minimization problem:

minimize %(PQ(X = XY X=X}
x
subject to rank{f) =7 (1)

where {, ) denotes the Frobenius inner product and P is the
sampling operator defined as

Pa(X) = Z [X]i,jeie;- (2)

(i,7)eq

For the success of recovery, the general setting of MC requires
the observation set {2 to be sampled via a certain unbiased
stochastic process, e.g., uniform sampling with/without replace-
ment [13], [14] or Bernoulli sampling [1] over all matrix entries.
While such sample setting has been well studied in both theo-
retical and empirical aspects [1], [13], [15], [16], [17], [18],
[19], it is too restricted in some applications due to hardware,
financial, or environmental limitations. For instance, in the ap-
plication of collaborative filtering, the rows and columns of the
data matrix represent the users and rated objects (e.g., movies
and merchandise) respectively. The unbiased sample models
implicitly assume that all users have the interest to rate all ob-
jects with same probability—something that is quite unlikely in
practice.

Here we consider CUR decomposition as a potential alter-
native for efficient MC. CUR decomposition is also known as
skeleton decomposition [20], [21], which attempts to utilize the
self-expressiveness of the data in its low-rank matrix decomposi-
tion. There are several different, yet equivalent, formats for CUR
decomposition [22]. In particular, we focus on the following
CUR format:

X=0CUR, 3)

where X is the low-rank data matrix, IR and C are selected
row and column submatrices of X, and U is the intersection
submatrix of R and C'. Obviously, (3) may not hold for arbitrary
column and row submatrices. In fact, the following theorem
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gives a necessary and sufficient condition for CUR decomposi-
tion.

Theorem 1 ([22]). For given row and column submatrices
R and C, the CUR decomposition (3) holds if and only if
rank(U) = rank(X ) = r.

Moreover, with the commonly assumed p-incoherence (see
Assumption 1 in Section II-A later), the following theorem
suggests that uniformly selected column and row submatrices
are sufficiently good for CUR decomposition.

Theorem 2 ([21], [23], [24]). Let X € R™*™ be a rank-
r matrix with p-incoherence.! Suppose we sample |Z| >
10p17 log(n) rows and || > 10uar log(n) columns uniformly
with replacement. Then U = [X]r 5 satisfies rank(U) =
rank(X') with probability at least 1 — 2.

Combining Theorems 1 and 2, one can see that an incoherent
low-rank matrix can be recovered from its uniformly sampled
rows and columns via CUR decomposition. In this sense, CUR
decomposition can be viewed as an MC solver [9], [25]. We
call the corresponding sampling model CUR sampling, i.e., full
observation on the sampled rows and columns. Nevertheless,
the model of CUR sampling is also too restricted in many
applications, especially with larger-scale problems. For instance,
in the application of larege-scale collaborative filtering, CUR
sampling implicitly assumes that some users rate all objects and
some objects are rated by all users, which is clearly impractical.

In the era of Big Data, it is urgent to explore some efficient
sampling models that suit various real-world circumstances.
While both the uniform sampling and CUR sampling have limits
in applications, the blank space between them leads to a more
flexible and attainable sampling strategy. In this work, we pro-
pose a novel sampling model, coined Cross-Concentrated Sam-
pling (CCS), to bridge the aforementioned uniform sampling
and CUR sampling. Our approach allows partial observations on
selected row and column submatrices, making it much practical
in many applications.

A. Related Work and Contributions

1) Matrix Completion: The pioneering work [1] studies the
matrix completion problem with the Bernoulli sampling model.
By relaxing the non-convex problem to a convex nuclear norm
minimization, it shows that sampling O(rn'? log(n)) entries
is sufficient for exact recovery with high probability, which
is subsequently improved to O(rnlog?(n)) in [26]. Another
study [13] focuses on the uniform sampling model, and achieves
the same improved sample complexity O(rn log?(n)). The stan-
dard algorithms for solving the nuclear norm minimization are
semidefinite programming [27] and singular value threshold-
ing [15]. More recently, many non-convex algorithms that aim
at the original non-convex problem have also been studied: [28],
[29] use the technique of singular value projection (SVP) and
provide strong empirical performance; however, the theoretical
sample complexity is high as O(r°nlog®(n)). The works [18],
[30] are based on alternating minimization and have the sample

o simplify our expression, we assume the matrices are square throughout
the paper but all the results can be generalized to rectangular matrices.
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complexities O(r2°n log(n) 10g(%)) and O(rnlog(n) log(%))
respectively, where ¢ is the desired accuracy. Note that the term
log(1) isintroduced since [18], [30] require iterative resampling.
A series of work [17], [19], [31], [32] studies the (modified)
gradient descent methods on Grassmannian manifold where
the sharpest sample complexity is O(r?nlog(n)). [33], [34]
focus on fast Riemannian optimization approaches and achieve
the sample complexity O(r2n log?(n)). Nevertheless, all these
algorithms are designed for Bernoulli or uniform sampling
models.

Note that [16] shows the equivalence between the Bernoulli
and uniform sampling models in matrix completion. Thus, for
the ease of presentation, we only discuss the uniform sampling
model in this paper; however, we emphasize that our approach
can be easily extended to bridge between Bernoulli sampling
and CUR sampling for a similar result.

2) CUR Decomposition: For a given rank-r matrix X €
R™" CUR decomposition represents X by its submatrices.
There are two different versions of CUR decomposition. Set
C = [X]. 7 and R = [X]z .. One type of CUR decomposition
is of the form (3). Another version expresses X as CC' X R'R.
The equivalence of these two distinct CUR decompositions is
proved in [22]. Ensurance of the exact CUR decomposition is
equivalent to the condition that rank(U) = rank(X ) with U =
[Xz,7. There are deterministic [35], [36], [37] and random [21],
[38], [39], [40], [41], [42], [43] methods to select the row
and column subsets to form CUR decomposition. Deterministic
sampling needs to sample fewer rows and columns, e.g., O(r)
to guarantee CUR decomposition but it needs to access the full
data and is more computationally costly. Random sampling is
usually computationally cheaper, but it requires more rows and
columns. In the literature, there are three popularly used random
sampling distributions: uniform [21], column/row length [38],
and leverage scores [39]. Compared with the other two, uniform
sampling is the easiest and cheapest to implement and does not
need to access the full data, but it may fail to provide good
results for a generic matrix [44]. However, as discussed, if the
given matrix is incoherent, then uniform sampling can guarantee
good performance [21], [23], [24], [45].

Although the application of CUR decomposition on MC has
already been discussed in [9], [25], both papers require full
observation on the selected row and column submatrices, which,
as discussed, is too restricted in some applications.

3) Contributions: This paper bridges the uniform sampling
and CUR sampling for matrix completion (MC) problems. Un-
der the commonly used incoherence assumption, we propose
a novel sampling model, coined Cross-Concentrated Sampling
(CCS). To summarize, our main contributions are as follows:

1) We propose a flexible and attainable sampling model,
coined CCS, for MC that bridges uniform sampling and
CUR sampling (see Procedure 1).

2) We establish a sufficient condition for exact data re-
covery from the proposed CCS model, specifically
O(r’nlog?(n)) samples are sufficient to exactly recon-
struct the missing data with a high probability (see Theo-
rem 4).
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(a) Uniform Sampling (b) CCS-Less Concentrated

Fig. 1.
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(c) CCS-More Concentrated

(d) CUR Sampling

Visual illustrations of different sampling schemes. From left to right, sampling methods change from the uniform sampling style to the CUR sampling

style with the same total observations rate. Colored pixels indicate observed entries, while black pixels mean missing entries.

TABLEI
TABLE OF NOTATION

NoT. | DESCRIPTION
Pa sampling operator on the set € (see (2))
T row indices for the row submatrix R
J column indices for the column submatrix C
Qg indices set of the samples on the submatrix R
Q¢ | indices set of the samples on the submatrix C
) percentage of sampled columns or rows
p uniform observation rate on the submatrices
s overall observation size on the full matrix
o overall observation rate on the full matrix

3) We design a highly efficient non-convex algorithm,
dubbed Iterative CUR Completion (ICURC), for solving
CCS-based MC problem (see Algorithm 2). In particular,
ICURC costs merely O(nr(|Z| + |J|)) flops provided
IZ],|17] < n.

4) We demonstrate the effectiveness and efficiency of the
CCS model and the corresponding algorithm on both
synthetic and real-world datasets (see Section I'V).

B. Notation

Given matrices X € R™", [X];;, [X]z.. [X]. 7. and
[X|z 7 denote the (¢, 7)-th entry of X, the row submatrix with
row indices Z, the column submatrix with column indices .7,
and the submatrix of X with row indices Z and column indices
J, respectively. | X [|r == (3=, ;,[X]?,;)'/* denotes the Frobe-
nius norm of X, || X ||z o = maxz-(Ej[X]fJ)”? denotes the
largest row-wise £2-norm, || X ||oc = max; ; |[X]; ;|, X T repre-
sents the Moore—Penrose inverse of X, and X ' is the transpose
of X.For X, Y € R™" (X,Y) =}, ;,[X];;[Y];,; denotes
the Frobenius inner product of X and Y. The symbol [n]
denotes the set {1,...,n} for all n € ZT. T x [n] denotes
the set {(z,7) :i €Z,j € [n]} and [n] x J denotes the set
{(3,7) : i € [n], j € J}. Unless otherwise specified, the term
uniform sampling refers to uniform sampling with replacement

throughout the paper. Additionally, some important symbols are
summarized in Table 1.

II. PROPOSED MODEL

We aim to design an efficient and effective sampling strategy
for varying circumstances in real-world applications. Motivated
by the example of collaborative filtering and CUR decomposi-
tion, we propose a novel sampling model that samples the entries
concentrated on a subset of rows and columns of the original data
matrix. Formally, let R = [X]; . and C = [X]. 7 be selected
(by indices sets Z and 7 ) row and column submatrices of the data
matrix X, respectively. Next, we uniformly (with replacement)
sample entries on R and C, i.e., the samples are concentrated on
the selected row and column submatrices. Since the visualization
(Fig. 1) of the submatrices R and C together looks like crosses,
we name this sampling model Cross-Concentrated Sampling
(CCS). Moreover, we illustrate CCS against uniform sampling
and CUR sampling in Fig. 1. One can see that CCS becomes
CUR sampling if samples are dense enough to fully observe the
submatrices, and CCS becomes uniform sampling if all rows
and columns are selected into the submatrices.

We denote the indices sets of the cross-concentrated samples
by Qg and Q¢ with respect to the notation of the submatri-
ces. The samples in the intersection submatrix U are directly
inherited from Qg U Qg2

Q ={(i,j) eQrUQc |t€Tandje T}  (4)

Thus, the expected observation rate of (2, is the sum of 2 ’s and
{lc’s observation rates. Our task is recovering the underlying
rank-r X from the observations on Qg U Q¢

minimize %(pﬂRUQC(X =3 E),X — X}
X

subject to rank(f) =7 (5)

where P is the sampling operator defined in (2). Note that P
is not a projection operator if there are repeated samples in the

2We are abusing set notation here. Since we use “sampling with replacement”
and thus allow repeated samples, {2 i and {2 are not precisely sets, and Q U
Q¢ isactually Qg + Q¢
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Procedure 1: Cross-Concentrated Sampling (CCS).

1: Input: X: access to underlying low-rank matrix.

2: Uniformly choose row and column indices Z, 7.

3:Set R = [X];;and C = [X]. ;.

4: Uniformly sample entries in R and C, then record the
sampled locations as (g and (¢, respectively.

3 Olﬂ'pllt: [X]QRUQC, QR, Qc, I, ._7

indices set. Hence, (Pa(X ), X') may not equal to ||Pa(X)||%
in our formula.

Remark 1. For successful recovery, the rows and columns
we sample from must span the full row and column space
of X. In other words, we require rank(U') = rank(X ) where
U = [X]z 7 is the intersection submatrix of R and C. By The-
orem 2, this condition can be achieved by uniformly sampling
O(rlog(n)) row and column indices if X is incoherent. One
may select as low as O(r) rows and columns based on prior
knowledge in some applications. We consider this as a necessary
condition for CCS-based matrix completion.

Example 1. Consider the famous Netflix problem where each
row of the data matrix represents a user and each column
represents a movie [2]. The CCS model randomly selects some
users and has them randomly rate a sufficient amount of movies
(perhaps through monetary incentive), then randomly selects
some movies and has adequate number of users rate them
(perhaps through website promotion). If CCS has access to some
background information of the users, then we can select fewer
butrepresentative users from various backgrounds for the survey.
Similarly, fewer but representative movies of each category will
be promoted for enough ratings. Compare to uniform sampling,
CCS is able to collect desired data points much more efficiently.
Compared to CUR sampling, CCS is more realistic, as CUR
sampling asks all the selected users to rate all existing movies,
and all existing users rate all the selected movies.

In summary, we present the CCS model as Procedure 1 for
low-rank matrices with incoherence.

A. Theoretical Results

In this section, we study the CCS model from a theoretical
perspective. In particular, we provide a sufficient condition to
guarantee the uniqueness of solutions with the samples gener-
ated by Procedure 1. The proofs are deferred to Section V.

We start with the formal expression of the widely used inco-
herence assumption.

Assumption 1 ({p1, ps}-incoherence). Let X € R™ ™ be a
rank-r matrix. X is {y1, puo }-incoherent if

fiT fiaT
Wiy < /525 and [V, < /225

for some constants z; and p5, where WXV T is the compact
singular value decomposition (SVD) of X. In some context,
we use the term p-incoherence where p := max{p;,ps} for
simplicity.
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Next, we present a variant of [24, Theorem 3.5] that shows
how the matrix properties are transformed to its uniformly sam-
pled row submatrix, which is a keystone to our main theorem.
Similar results hold for a uniformly sampled column submatrix
as well.

Lemma 3. Suppose that X € R™™" is a rank-r matrix that
satisfies Assumption 1. Let k£ denote the condition number of
X. Suppose that the indices set Z C [n] is chosen by sam-
pling uniformly without replacement to yield R = [X|z .. If
|Z| > p172 log?(n), then the following conditions hold with
probability at least 1 — ——rmy:

pir <46%m1, poer < p2, KR < 27K,

where {1, p2r} and kg are the incoherence parameters and
the condition number of R respectively.

Now, we are ready to present our main theorem and its proof
is deferred to Section V-B.

Theorem 4. Suppose X € R™*" is rank-r matrix that sat-
isfies Assumption 1. Let x denote the condition number of X.
Suppose thatZ, 7 C [n] are chosen uniformly with replacement
toyield R = [X ]z . and C = [X]. 5. Suppose Qg and Q¢ are
sampled uniformly with replacement. If

IZ| > 5128K%r? 1 2 log*(n),

|T| > 5128£°r* p1 a2 log?(n),
Qr| > 1288K%r?papa(n + |I|)log?(2n),
Qc| > 12885°r*papa(n + | T|) log” (2n),

for some absolute constant 3 > 1, then X can be uniquely
determined from (2 U (¢ with probability at least

2r 2 - 6log(n)

T pOdrlog(n) — p2p%F-2 ; (n + pyr2 logZ(n))zﬁ—z'

1

Theorem 4 shows a sufficient sample complexity for CCS-
based MC is O(r?nlog*(n)). Compared to the state-of-the-
art uniform-sampling-based MC approach [32] that requires
O(r?nlog(n)) samples, our result is merely a factor of log(n)
worse under the same incoherence assumption®. Moreover, the
same condition also guarantees the uniqueness of the solution.
Essentially, Theorem 4 states that concentrating the samples into
some properly chosen rows and columns will not blow up the re-
quired sampling complexity. Hence, based on the circumstance,
one can choose how concentrated the samples are, which can
potentially simplify the sampling process in some applications,
e.g., as we have discussed in Example 1.

III. A NON-CONVEX SOLVER

In this section, we discuss how to effectively and efficiently
solve the CCS-based MC problem. First, we consider directly
applying the existing uniform-sampling-based MC algorithms.

3Some works achieve better sample complexities by utilizing additional
assumption(s) that we do not use. For example, [13], [26] obtain a sample com-
plexity O(rnlog?(n)), but also use the additional assumption: [|[WV T ||, <
113+/T /n for some constant fig.
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(a) Groundtruth

(b) Observed

(c) Reconstruction

Fig. 2.  Visual results for image inpainting from the CCS-based samples via
ScalePGD algorithm [32]. See a more detailed setting in Section I'V-B.

Unfortunately, it turns out that the uniform-sampling-based al-
gorithms are not suitable for the CCS model. For example, as
shown in Fig. 2, we apply the state-of-the-art ScaledPGD [32]
on a CCS-based image recovery problem and the result is not
visually desirable. Therefore, we must develop new algorithm(s)
for the proposed CCS model.

Recall that CCS samples uniformly on the selected row and
column submatrices. Thus, a natural and simple approach is
solving the MC problem in two steps:

1) Applying certain off-the-shelf MC algorithms to recover
the submatrices R and C separately. Note that () g and Q¢
are uniformly sampled in R and C. Thus, any uniform-
sampling-based MC solver will work, provided enough
samples.

2) Applying the standard CUR decomposition, i.e., (3), to
recover X from the fully reconstructed R and C'.

This approach is named Two-Step Completion (TSC) and is
later summarized as Algorithm 3 in Section V. However, this
algorithm is not utilizing the samples in C' when recovering R
and vice versa. Thus, one does not expect TSC to be a highly
effective solver for (5).

To take full advantage of the CCS structure, we propose a
novel non-convex algorithm, coined Iterative CUR Completion
(ICURC), for the CCS-based MC problem. ICURC is built upon
the framework of projected gradient descent [28]. Notice that

E(Paguac (X))
= E(Pqg (X)) + E(Pac (X))
= p1Prxm)(X) + p2Ppix7(X)
= p1Prxge(X) + p2Prexg(X) + (p1 + p2)Prxg (X)),

(6)
193:1 2]

where py = 981, p, = 9l 7e— 3]\ 7 = (e [n] : j ¢
J}, and Z¢ = [n] \ T := {i € [n] : ¢ € I}. Therefore, in each
iteration, we divide the updating of R and C' into three part:
[R]. 7¢, [Clze ., and U. Additionally, to enforce the rank con-
strain on X, we project the updated U to its best rank-r approx-
imation. Specifically, we perform a step of gradient descent on
[R]. 7¢, [Clze.:, and U via the following formula:

[Rii1]:.7¢ = [Xklz,72 + nr[Pap(X — Xi)lz,7e,
[Criilze: = [Xilze 7 +1c[Pac (X — Xi)lze7, (D
and

Ukt = Hr ([(Xklz, 7 + mu[Paguac (X — Xi)lz,7), (8)

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 8, AUGUST 2023

Algorithm 2: Iterative CUR Completion (ICURC) for CCS.

1: Input: [X]q,u0.: observed data; Qg, Qc: observation
locations; Z, 7 : row and column indices that define R
and C respectively; ng, e, nu: step sizes; r: target
rank; e: target precision level.

2z XQ =0

e = mINE TP =N T k=0

4: while e > ¢ do ey is defined in (10)

50 [Rgsal.ge = [Xilz,ge +nr[Pag(X — Xk)lz,g¢
6:  [Crulre;: = [Xilze,7 + 1c[Pac(X — Xi)lze g
i b4 Uk—l—l =

Hr([Xklz,7 + o [Paguac (X — Xi)lz.7)
8: [Rk-',-l}:,J =Upsr

9:  [Crulr,=Ugna

10: Xpy1 =Crpa ULHRH; Do not compute, see
(11)

I1: k=k+1

12: end while

13: Output: Cy, Uy, Ry: CUR components of X .

where g, e, ny > 0 are the step sizes, and H,. is the rank-r
truncated SVD operator. We then set [Ry11]. 7 = [Crt1lz: =
U+1. Hence, updated via CUR decomposition, the approxi-
mated data matrix

Xp41=Crp ULHRHI (9

is also rank-r. Although CUR decomposition is not the most
accurate low-rank approximation, it is close enough for our
iterative algorithm.

With the initial guess X ¢ = 0, ICURC runs the above steps
iteratively until convergence. In particular, we set the stopping
criterion to be e < £ where

{(Paguac (X — Xk), X — Xy)
{(Paguae(X), X)

and ¢ is the targeted accuracy. We summarize the proposed non-
convex algorithm as Algorithm 2.

Remark 2. Inspired by [13, Theorem 7], we recommend the
step size np = pil, Ne = é, and ny = plipz for Algorithm 2,
where p; and p, are the observation rates of QQp and (¢,

respectively.

(10)

€ =

A. Efficient Implementation

We provide the implementation details and the breakdown of
the computational costs for Algorithm 2. The steps of updating
[Rit1]z,ge and [Ciilze, g, ie., (7), cost O(|Qr| + [Qc| -
|Q2zr|) flops as we only update the observed locations. Note that
the intersection matrix U is |Z| x |J|. Thus, in (8) and (9),
computing the truncated SVD and pseudo-inverse of U . 1 costs
O(r|Z||J|) flops. Calculating X, ; in (9) seems expensive at
first sight; fortunately, we do not actually have to form the whole
n x n matrix. Looking back at (7) and (8), we only use the
selected rows and columns from X ; and they can be efficiently
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obtained via
[(Xklz,7e = [Cilz, UL[Rk]:.7« = UxUL[Rx]. 7,
[(Xklze,7 = [Cilze UL[R4]., 7 = [Cilze ULU,

(X ilz.7 = [Cilz.UL[Ry]..7 = Ug. (11)

The computational complexity of (11) is O(nr(|Z| 4 |T|)).
Finally, computing the stopping criterion ey, i.e., (10), costs
O(I2| + |2c]) flops.

Overall, ICURC costs total O(nr(|Z] + |7|)) flops per iter-
ation. Moreover, (11) also suggests that we only need to pass
the updated CUR components (i.e., [Rg]. 7, [Cklze.., and U})
to the next iteration instead of the much larger X ;. Hence, we
conclude that ICURC is computationally and memory efficient
provided |Z|,|J| < n.

Remark 3. Empirically, we observe that ICURC achieves
a linear convergence rate when the samples are concentrated
on a smaller collection of rows and columns. For the inter-
ested reader, we include several numerical results for ICURC’s
convergence behavior in the supplemental material, which can
be found on the Computer Society Digital Library at http:
//doi.ieeecomputersociety.org/10.1109/TPAMI.2023.3261185.

IV. NUMERICAL EXPERIMENTS

In this section, we compare the empirical performance of our
CCS-model-based ICURC, i.e., Algorithm 2, against the state-
of-the-art algorithms (ScaledPGD [32] and SVP [28]) based on
uniform sampling method. The related codes are provided in
https://github.com/huangl3/CCS-ICURC. All experiments are
implemented on Matlab R2020a and executed on a Linux work-
station equipped with Intel i9-9940X CPU (3.3 GHz @ 14 cores)
and 128 GB DDR4 RAM. We emphasize again that our approach
is computationally and memory efficient. All our experiments
can be reproduced with a basic laptop.

A. Synthetic Examples

In matrix completion, an important question is how many
measurements are needed for an algorithm to ensure a reliable
reconstruction of a low-rank matrix. Thus, we investigate the
recoverability of the ICURC algorithm based on the CCS model
in the framework of phase transitions:

1) Phase transition that studies the required sampling rate
over the whole matrix based on different sizes of the se-
lected row and column submatrices and different uniform
sampling rates on the selected submatrices.

2) Phase transition that explores the required measurements
over different sizes of the original problem.

On the synthetic simulation, we only consider square prob-
lems and consider a low-rank matrix X € R™" of rank 7.
Thus, we sample the same number of rows and columns in the
following simulations, i.e., |Z| = |J|. In comparison, we have
also compared our results with that of SVP and ScaledPGD
based on a uniform sampling model.

1) Empirical Phase Transition: First, we explore the recov-
ery ability of ICURC for CCS with different combinations of the
sampling number of rows and columns with |Z| = |7 | = dnand
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the uniform sampling rate p on the selected rows and columns.
This experiment runs on the matrix of size 10% x 103 and under
different rank settings with rank r € {5,10, 15}. For each rank,
we generate 20 test examples for each given pair of (4, p) and an
example is considered to be successfully solved if the relative
error

_ IX —CxULRile
1X [l

These simulation results are summarized in Fig. 3, where the
first row presents the 3D view of the phase transition results
and the second row shows the corresponding 2D view results by
adding the uniform sampling results in the last two columns.
In the 3D result, the z-axis stands for the overall sampling
rate over the whole matrix. In Fig. 3, a white pixel represents
the successful completion of these 20 tests and a black pixel
means all the 20 tests are failed. From these figures, one can
see that as the rank r increases, the required overall sampling
rate becomes larger to guarantee successful completion since
a larger rank r leads to a more difficult problem. Moreover,
regardless of the combinations of the sizes of the concentrated
row and column submatrices and the sampling rates on the
selected submatrices, we guarantee matrix completion as long
as the combinations result in a sufficiently large total sampling
rate (see the second row of Fig. 3). This observation shows that
CCS provides the flexibility to sample low-rank matrix and still
ensures the successful completion of the underlying low-rank
matrix from its samples. From the second row of Fig. 3, one
can see that the required sampling rates for ICURC on the CCS
model are comparable with that for the ScaledPGD [32] and the
SVP [28] algorithms on the uniform sampling.

We also investigate the recovery ability of our ICURC for
CCS in the framework of phase transition by studying the
relation between the required measurements of the underlying
low-rank matrices and their size n. The results are reported
in Fig. 4. Therein, we first uniformly sample a row submatrix
R € Rerlog®(m)xn and a column submatrix C € Rnxerlog®(n)
where r € {5,10,15} and ¢ € {0.25,0.5,1}. Then, we uni-
formly sample s/2 entries on each submatrix, i.e., s samples
in total and the intersection submatrix U has a denser sampling
rate than R and C'. Similar to Fig. 3, we generate 20 problems
for each given pair of (n, s) under each setting of (r,c), and a
problem is considered to be successfully solved if g < 1072
(recall ;. is defined in (12)). From Fig. 4, one can see that the
overall required samples to guarantee the recovery of the missing
data is independent of the size of the concentrated submatrices.
These observations further illustrate the flexibility of our CCS
model.

<1072,

Eg (12)

B. Image Recovery

In this section, we compare the matrix completion perfor-
mances solved by ICURC using CCS and by ScaledPGD [32]
and SVP [28] using uniform sampling for image recovery.
The simulations are tested on two grey-scaled images, namely
“Building™ and “Window™ of size 2000 x 3000 by recording

“*https://pxhere.com/en/photo/57707.
>https://pxhere.com/en/photo/ 1421981,
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Fig. 3. Empirical phase transition in the overall sampling rate o, the percentage of selected rows and columns 4, and uniform sampling rates on the selected

submatrices p. Row I: 3D-view of the empirical phase transition of ICURC. Row 2: 2D view of empirical phase transition of ICURC (in the red box), ScaledPGD (in
the blue box), and SVP (in the green box). Left: r = 5. Middle: » = 10. Right: v = 15. One can see that as rank increases, the required overall sampling rate increases
correspondingly. Additionally, the CCS model provides flexibility in obtaining a sufficient amount of data to ensure completing the missing data successfully and
the performance of the ICURC algorithm from the CCS-based samples is comparable to that of the state-of-the-art algorithms (SVP and ScaledPGD) from the

uniform-sampling-based samples.

reconstruction quality and runtime. The reconstruction quality
is measured by the signal-to-noise ratio (SNR), which is defined
as

[ X ||z

SNRgz(X) = 20log;g [ ——b —
X — Xl

where X is the original image and X represents the recon-
structed image.

__In this simulation, we aim to find a rank-20 approximation
X for the given image X. First we generate the observa-
tions according to the CCS model. We randomly select the
concentrated row and column submatrices R and C' with row
indices 7 of size dm and column indices .7 of size dn columns,
ie., R=[X]z. and C = [X]. 7. Then, we randomly select
S entries on each submatrix and denote the corresponding
indices of the observed entries by {2g and {}¢c, which result
in two partially observed submatrices Rops = [Py (X )]z, and
Cobs = [Pac (X)].,7. As aresult, we obtain a partially observed
image whose observed entries are concentrated on R and C.
Then we fill in the missing pixels by applying our ICUR al-
gorithm. In comparison, we also generate amn observations
based on the uniform sampling model over the original matrix
X. After that, we fill in the missing data via ScaledPGD or SVP.
The above processes are repeated for 10 times.

The averaged test results on different « (i.e., overall observa-
tion rates) are summarized in Table II. Meanwhile, we provide
some visual results in Fig. 5. It shows that all the algorithms
achieve visually reliable results. Additionally, in comparison
with the visual results in Fig. 2, our ICURC algorithm has a
much better performance than SVP and ScaledPGD algorithms
in solving the image inpainting problems when the observed
pixels are selected based on our CCS model. From Table II,
one can observe that regardless of different combinations of
the sizes of the concentrated row and column submatrices and
the sampling rates, the qualities of the results from ICURC are
similar as long as the overall sampling rates are the same. This
observation further illustrates the flexibility of the CCS model.
Additionally, one can also find that ICURC on CCS achieves
comparable (even better) quality with the algorithms on the uni-
form sampling model. From the runtime perspective, our ICURC
on the CCS model is substantially faster than ScaledPGD and
SVP on uniform sampling.

C. Recommendation System

Recommendation systems aim to predict the users’ prefer-
ences from partial information of personalized item recom-
mendations. Each dataset in a recommendation system can be
represented as a matrix by arranging each item’s ratings as a row
and each user’s ratings as a column. If we view the unobserved
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Fig.4. Empirical phase transitions of ICURC in overall observation size s and problem size n. The column (resp. row) number of the concentrated column (resp.

row) submatrix equals to erlog?(n). Row I: v = 5. Row 2: v = 10. Row 3: r = 15. Left: ¢ = 0.25. Middle: ¢ = 0.5. Right: ¢ = 1. The required samples for
guaranteed matrix completion are independent of the size of the concentrated submatrices.

TABLEII

IMAGE INPAINTING RESULTS ON BUILDING AND WINDOW DATASETS. UNDER VARIOUS SETUPS OF CCS, ICURC CAN ACHIEVE HIGHER SNR WITH SHORTER

RUNTIME COMPARED WITH OTHER METHODS

DATASET | Building Window

OVERALL OBSERVATION RATE (a) | 10 % 12 % 4% | 10% 12 % 14 %
ICURC-8 23.762 24.750 25.195 | 31.792 32.343  32.5533
ICURC-9 23.688 24.557 25.108 | 31.831 32.513 32.984

SNR ICURC-10 23.629 24.229 24.823 | 31.546 32.364 32.911
ScaledPGD 20.593 21.722 21.734 | 31.338 31.918 32.693
SVP 18.065 18.940 19.607 27.451 294900 30.8541

ICURC-8 0.400 0.366 0.306 0.339 0.244 0.313

ICURC-9 0.482 0.416 0.395 0.343 0.313 0.364

RUNTIME (sec) ICURC-10 0.616 0.518 0.425 0.627 0.462 0.396

ScaledPGD 3.518 3.405 3.230 2.722 2.314 2.141

SVP 9.925 14.675 14.661 10.626 10.102 9.873
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ICURC-10

=

Visual results for image inpainting by setting rank » = 20 and the percentage of selected rows and columns § = 10%. ScaledPGD and SVP are based on

the uniform sampling model with the same observed number of entries as the one based on CCS. All algorithms achieve visually reliable results.

TABLE III
DATASETS INFORMATION FOR COLLABORATIVE FILTERING. HERE, «x 1S THE
OVERALL OBSERVATION RATE
DATASET | #USERS #ITEMS o« (%) RATING RANGE
ML-100K 943 1682 4.190 1-5
ML-10M 2000 3000 32.92 1-10
FilmTrust 1508 2071 2.660 1-8

ratings as missing entries of data matrices, predicting the missing
ratings can be considered a matrix completion problem, as the
underlying matrix is expected to be low-rank since only a few
factors contribute to an individual’s preferences [46]. In this sec-
tion, we evaluate the performance of our CCS model solving by
ICURC algorithm on three datasets namely the Movie-1 M, the
Movie-10 M datasets from the Movielens research project® [47]
and the FilmTrust dataset’ [48]. Fora given dataset, we first gen-
erate an item-user matrix of size m x n. Due to the large size and
low observation rate of the Movie-10 M dataset, we follow the
instructions in [49] to extract a 2000 x 3000 submatrix based on
the observation rates on rows and columns. The characteristics of
all the data used in our simulations are summarized in Table III.

To evaluate the performance, we employ the Cross-Validation
method. For each run, the observed data is randomly split into
training and testing sets denoted by in and . [50]. More
specifically, we randomly select §m rows and én columns and
then randomly choose amn entries from the observed entries on
the selected rows and columns to form Q&}n for CCS model. For
comparison, we also randomly choose aomn entries from the ob-
served data over the whole matrix to form a new training dataset
Qg}n based on the uniform sampling model. The information on
the training and testing sets for each data matrix is summarized
in Table III. After the training and testing datasets are generated,

6Movie-100 K and the Movie-10 M datasets can be downloaded from https:
/lgrouplens.org/datasets/movielens.

TFilmTrust dataset can be found at https://guoguibing.github.io/librec/
datasets.html.

we run the ICURC algorithm on Q") | and ScaledPGD and SVP

train®
algorithms on Ql(ri?n.

Following [50], we adopt two different methods to measure
the recommendation quality on the testing datasets. The first one
is the hit-rate (HR) which is defined as the ratio of the number

of hits to the size of the testing dataset:

_ #thits
|Qest|

where a predicted rating P; is considered as a hit if its rounded
value is equal to the actual rating A; in the test set. To penalize
each missed prediction and to emphasize the errors, we also
computed the Normalized Mean Absolute Error (NMAE) [51],
[52] defined as follows:

_ 1
|Qtest|{8max -

where Spax and Spin denote the maximum and minimum rating,
respectively.

Fig. 6 summaries the averaged numerical results over 10
independent trials. One can see that the results for the ICURC
algorithm based on the CCS model have better performance
compared with the ones for ScaledPGD and SVP algorithms
on the uniform sampling model. Specifically, ICURC can reach
higher HR and lower NMAE in a much shorter runtime com-
pared with other methods. This further illustrates that ICURC
is computationally efficient. Fixing the overall sampling rate
for the CCS model, one can observe that the performances
for different combinations of the concentrated row and column
submatrices are comparable. This observation further illustrates
the flexibility of our CCS model.

(13)

NMAE (14)

s 5 IR

1EQen

D. Link Prediction

In link prediction problems, we are givena graph G = (V, E),
that has vertices V' and edges F, represented in an adjacency
matrix A. If there exists an observed link between vertices
1 and j, then A;; = 1; otherwise A;; = 0. Link prediction
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Fig. 6. Bar-plot results on the recommendation system data. The performances are measured in HR, NMAE, and runtime. Top: overall observation rate o« = 10%.

Middle: o« = 20%. Bottom: o = 30%. When overall observation rate « is fixed,
methods in uniform sampling.

problem aims to learn the distribution of existing links and,
thus, to predict the potential links in the graph [53]. In this
section, we evaluate the performance of our CCS model solved
by the ICURC algorithm on three link prediction datasets namely
Blogs® containing the hyperlinks between blogs in the context
of 2004 US election, Opsahl® indicating flights between airports
around the world, and Figeys'? describing interactions between
proteins. The three datasets come from the Koblenz Network
Collection (KONECT [54]). The characteristics of these datasets
are summarized in Table IV.

To evaluate the performance of our methods, we follow the
works of [53], [55] by randomly dividing the existing links into
training and testing samples. From the perspective of matrix
completion, this is the same as randomly splitting the observed
entries of the adjacency matrix A into corresponding {24 and
Qtest- Similar to the setup of the recommendation system problem
in Section I'V-C, we generate different training datasets based
on the CCS model and non-CCS model and denote them as
Q) and Q2 respectively. We apply ICURC algorithm on

train train

8Blogs dataset can be found in http://konect.cc/networks/moreno_blogs.

9Opsahl dataset can be found in hitp:/konect.cc/networks/opsahl-
openflights.

I0Figeys dataset can be found in http:/konect.cc/networks/maayan-figeys.

the ICURC performs better under various CCS conditions compared with other

TABLE IV
INFORMATION FOR LINK PREDICTION DATASETS. HERE, o IS THE OVERALL
OBSERVATION RATE

DATASET | SizE (#NODES) o (%)
Blogs 1224 1.269
Opsahl 2939 0.353
Figeys 2239 0.357

Qg}n and ScaledPGD and SVP algorithms on eri}n. We also
adopt two popular metrics, Precision [56], which focuses on
the top predicted links, and Area Under the receiver operating
characteristic Curve (AUC) h [57], which evaluates the entire set
of predicted links. Precision is defined as the ratio of the actual
number of connected edges to the predicted number of connected
edges. Links predicted by algorithms can be interpreted as the
likelihood of unobserved (new) links; the higher likelihood indi-
cates a greater possibility of an unobserved link [53]. We sort the
entries of predicted links in descending order and select the top L
links. L is chosen to be the cardinality of the testing dataset [53].
Let L, be the number of links in the top L predicted links
that appear in the testing dataset, Precision can be calculated
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methods in uniform sampling.

by

Precision = L—m, (15)
L

where the higher Precision is, the more accurate of the prediction

is [56].

AUC measures the area under the receiver operating charac-
teristic curve, which can be interpreted as the probability that
a randomly chosen missing link from the set of predicted Qe
is given a higher likelihood than a randomly chosen potentially
non-existing link (which is the set of all unobserved links from
() [57], [58]. The AUC is calculated as:

AUC — Ym + 0.5y, :

y

where y is the number of independent comparisons between each
randomly picked pair of a missing link and a non-existing link.
ym is the times that the missing links have a higher predicted
likelihood than non-existing links while y, counts the number of
times if their likelihoods are equal. We use y = 5000. The degree
to which the AUC exceeds 0.5 illustrates how much better the
predictions are compared with a random guess [55].

Fig. 7 summarises the averaged numerical results over 10
independent trials for each fixed r, «, and J. One can see that
based on the CCS model, ICURC performs better compared with
the ones based on the uniform sampling model solved by other
methods. Particularly, when the overall sampling rate is fixed,

(16)

the ICURC based on different concentrated rows and columns
can reach higher Precision and AUC under shorter intervals.
This, again, confirms the computational efficiency of ICURC
and the flexibility of our CCS model.

V. PROOFs

In this section, we provide the proofs for the theoretical results
presented in Section II-A, i.e., Lemma 3 and Theorem 4.

A. Proof of Lemma 3

Proof of Lemma 3 We invoke [24, Theorem 3.5]. By setting
§ = 0.75 and y = 7 log?(n) in that theorem, the following in-

equalities hold
VS v
= <
= |||, <2

pir < 4k?pa,

par < po,
ko < 2 H1TK,

with probability at least

T T
1- 2 >1- 0.4rlog(n) *
exp((0.75 4 0.251og(0.25) )r log“(n)) n

This completes the proof. u
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Algorithm 3: Two-Step Completion (TSC) for CCS.

1: Input: [X]g,ua.: observed data; 2, Qc: observation
locations; 7, J: row and column indices that define R
and C respectively; r: target rank; MC: the chosen
matrix completion solver.

2: R =MC([X]ag,7)

3: C = MC([X]ag,T)

4:U =C(Z,:)

5:X = éaﬁ

6: Output: X : approximation of X .

B. Proof of Theorem 4

The proof of our main theorem (i.e., Theorem 4) is based
on our Two-Step Completion (TSC) algorithm. For the ease of
readers, we state the TSC algorithm first.

Proof of Theorem 4 Since T and 7 are chosen uniformly from
[n], according to Lemma 3 we have that

poc < 4%, pim < 4P,
ke < 2¢/park, Kp < 2\/l2Tk,

with probability at least 1 — ——2—. Thus,

N —
WeVele < QWvTﬁxﬂz\!m

and
-
W RV glle < 2ﬁvmmzﬂ‘m
2r

hold with probability at least 1 — — 1oy
By [13, Theorem 2], the following two statements hold:
1) |Q¢| > 128x272u1 po(n + | J|) Blog?(n) for some 3 >
1 ensures that C is the minimizer to the problem

minimize  [|C.
c
subject to PQC(E?) = Pac(C)
with probability at least

. 6 10g(n) B 1
(n+ por?log®(n))26-2  n267°-2

2) |Qgr| > 128k2r2u; pg(n + |Z|) Blog?(n) for some 8 > 1
ensures that R is the minimizer to the problem

minimize || ).
R

subject to ?ﬂﬂ(ﬁ) =Pan(R)
with probability at least
B 6log(n) _ 1
(n + por2log’(n))26-2  n26°°-2°
Since ke < 2/fi2Tk and kg < 2,/j12Tk, we thus have
rank(C') = rank(R) = rank(X ) =r.

10111

According to [22, Theorem 5.5], we thus have X = C U'R,in
other words, the CUR decomposition CU R can reproduce the
original X.

Combining all the statements above, X can be exactly recov-
ered from (2 U Qg with probability at least

2r 2 - 6log(n)

T p0d4rlog(n) — p2895-2 ; (n+ per? logz(n))zﬁ—z'

1

This completes the proof. |

VI. CoNCLUSION AND FUTURE DIRECTIONS

This paper proposes a novel, easy-to-implement, and practi-
cally flexible sampling model, coined Cross-Concentrated Sam-
pling (CCS), for matrix completion problems that bridges the
classical uniform sampling model and the CUR sampling model.
For this model, we provide a sufficient sampling bound to ensure
the uniqueness of the solution for this matrix completion prob-
lem. Furthermore, we develop an efficient non-convex algorithm
to solve the CCS-based MC. The efficiency of the algorithm is
illustrated on synthetic and real datasets. The simulations also
show that CCS provides flexibility to acquire sufficient data to
ensure the successful completion that can potentially save costs
in some real applications.

There are four lines for future work. First, the sufficient
bound in this paper is not tight. One can see that if the CUR
sampling model is applied to a low-rank matrix of size n x n,
O(nrlog(n)) samples can ensure the successful completion
with a high probability. There is room to improve the sampling
bound for our CCS model. Second, it would be helpful to analyze
the convergence guarantee of ICURC in future work. Third, our
empirical simulations have shown the promising performance
of ICURC, but there is likely still room for improvement. More
efficient approaches will be developed with the theoretical foun-
dation as a guide. Lastly, this novel sampling model is based on
matrix CUR decomposition. Recently, tensor CUR decompo-
sitions have been proposed (cf. [59], [60]). In low-rank tensor
approximation, the original tensor can be well-approximated
by making good use of merely one smaller-sized subtensor
and a small collection of fibers from each mode. Therefore,
there is no need to access the full tensor, which makes tensor
CUR decompositions memory and computationally efficient.
We plan to generalize the proposed sampling model into this
tensor setting.
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