Annals of PDE (2023) 9:9
https://doi.org/10.1007/540818-023-00148-7

MANUSCRIPT

l‘)

Check for
updates

Incompressible limit for the free surface Navier-Stokes
system

Nader Masmoudi'? . Frédéric Rousset® - Changzhen Sun*

Received: 1 November 2021 / Accepted: 16 February 2023 / Published online: 1 April 2023
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023

Abstract

We establish uniform regularity estimates with respect to the Mach number for the
three-dimensional free surface compressible Navier-Stokes system in the case of
slightly well-prepared initial data in the sense that the acoustic components like the
divergence of the velocity field are of size /¢, & being the Mach number. These esti-
mates allow us to justify the convergence towards the free surface incompressible
Navier-Stokes system in the low Mach number limit. One of the main difficulties is
the control of the regularity of the surface in presence of boundary layers with fast
oscillations.

Keywords Uniform regularity - Low Mach number limit - Free surface viscous
fluids - Boundary layer

AMS subject classifications 35B34 - 35B35 - 35B65

B Changzhen Sun
changzhen.sun @math.univ-toulouse.fr

Nader Masmoudi
masmoudi @cims.nyu.edu

Frédéric Rousset
frederic.rousset @universite-paris-saclay.fr

' NYUAD Research Institute, New York University Abu Dhabi, PO Box 129188, Abu Dhabi,
United Arab Emirates

Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York,
NY 10012, USA

3 CNRS, Laboratoire de Mathématiques d’Orsay (UMR 8628), Université Paris-Saclay, 91405
Orsay Cedex, France

4 TInstitut de Mathématiques de Toulouse - UMR 5219, Université de Toulouse; CNRS, Université Paul
Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France

@ Springer



9 Page2of134 N. Masmoudi et al.

Contents
I Introduction . . . . . . . .. 2
1.1 Reformulation of the systemin a fixeddomain . . . . . ... ... . ... ... ....... 7
1.2 Conormal spaces and notations . . . . . . . . . .. ... ... 9
1.3 Mainresults . . . . . . . . o e e 10
1.4 Main difficulties, general strategies . . . . . . . . . . . . . ..o 14
1.5 Remarks on the slightly well-prepared data assumption . . . . . ... ... ... ...... 15
1.6 Sketchof the proof . . . . . . . . . . . e 16
2 Uniform a-priori estimates . . . . . . . . . . .. 22
3 Preliminaries I: Useful lemmas . . . . . .. .. . ... . . 24
3.1 Product and commutator estimates . . . . . . . . . ... .. ..ol e 24
3.2 Regularity of the extension and some further commutator estimates . . . . . . . ... .. .. 26
3.3 Energy identities and Korn inequality . . . . . . . . .. .. ... L oo 28
4 Preliminaries II: Reformulations of the boundary conditions . . . . . . ... ... ... ..... 29
5 Preliminaries III: Projection operators . . . . . . . . . . . . . ... ... 30
5.1 Definition of the projection . . . . . . . . . . . ... 30
5.2 EIlptic eStmMALes . . . . .« o v v v v e e e e e e e e e e e e e e e 32
6 Regularity of thesurface . . . . . . . . . . . . L 40
7 High order energy estimates . . . . . . . . . . ... e e e e e 42
7.1 Energy estimate I: Highest order energy estimates . . . . . . . . . . ... ... ....... 42
7.2 Energy estimates II: High-order energy estimate for the compressible part of the system . . . 51
8 Control of the low-order energy norms . . . . . . . . . ...l 60
9 Uniform control of high order energy norms-I . . . . . . ... ... ... ... L. 68
9.1 Uniform estimates for the compressible part . . . . . . .. .. . ... ... ... ... 68
9.2 Energy estimates: Incompressible part . . . . . .. ... 71
10 e—dependent high order energy estimate-IT . . . . . . . . ... ... ... ... . ........ 88
11 Uniform control of high order energy norms-II . . . . . . . ... ... ... ... ....... 92
11.1L%° L? type norm for the compressible part . . . . . .. ... ... 92
11.2Uniform control of the gradient of the velocity-II . . . . . ... ... ... ... ...... 95
11.3Estimate of the second order normal derivatives of the velocity . . . . ... ... ... ... 110
12Control of the LS norm . . . . .. ... 111
13Proof of Theorem 1.1 . . . . . . . . . . . e 120
T4COoNVergence . . . . . . ot i e e e e 123
14.1Uniqueness of imit system . . . . . . . . . . . .. 126
15 Remarks for other reference domains . . . . . . . . . .. ... 128
T6ApPendix . . . . . . . e e e 130
References . . . . . . . . o L e 131

1 Introduction

We consider the motion of a slightly compressible viscous fluid with a free surface. It
takes the following form:

3 p® + div(p“w®) =0,
VP(p%)

5= 0, (t,x) € Ry x QF,

9 (pw®) +div(p®w® ® w®) — divLw® +
10£|t:0 - ,08, w8|t20 = w(s)y

(1.1)
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where p¢ > 0, w® € R are the density and the velocity of the fluid, P (p¢), a smooth
function of p?, stands for the pressure. The viscous tensor Lw? takes the form:

1
Lw® =2uSw’® + Adivw®ld, Sw® = E(ng + Viw®).

Here, i, A are the viscosity parameters that are assumed to be constant and to satisfy
the conditions: i > 0,2u + 34 > 0. The parameter ¢ is the scaled Mach number
which is assumed small, that is ¢ € (0, 1]. We focus on a fluid domain given by:

Q={x=2|yeR% —1<z<hi@t, y)

where the upper surface is free and the bottom is fixed. Here h°(z, y), the surface of
the fluid domain, is unknown and needs to be solved together with (p?, w?). Since the
fluid particles do not cross the surface, h° solves

0k —w (1, y, h*(1, ) -N° =0, h*(0,y) =hi(y) yeR*  (1.2)

where N¢ = (—01h®, —0,h%, 1)! denotes the outward normal vector to the surface
¥ = {x = (y,2),z = h®(t, y)}. We supplement the system (1.1) and (1.2) with
the following physical conditions. At the upper boundary, the continuity of the stress
tensor reads:

1
Lu®Né = S—Z(P(ps) — P(p))N° on X} (1.3)

where p > 0 is a reference constant density. At the bottom, we prescribe a slip
boundary condition:

w; =0, ,u83w§ = awf. (j=1,2), on {z=-—1}, (1.4)
where a is a constant that quantifies the effects of the friction at the boundary (this
can be easily generalized to a smooth function a, see [55]). The case of the Dirichlet
boundary condition at the bottom raises other difficulties even without the presence
of a free surface and is left for future work. Note that we could also consider the case
of a strip with infinite depth, see Section 15.

The system (1.1) can be obtained from a suitable scaling of the original physical
variables. Indeed, we get (1.1), (1.2) by performing the following scaling:

o(t, x) = ptlet, x), W(t, x) = ew®(et, x), h = h®(et, x), L = e, A = €A,
where p, 1, h satisfy:
3 + div(p) = 0,
3, (51) + div(ph ® W) — divLib 4+ VP () = 0, (1.5)
oth+w(t,y, h(t,y))-N=0,

where £ = 2/1S% + Adivib.
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The aim of this paper is to study the low Mach number limit problem, that is to
study the behavior of (strong) solutions to (1.1) when ¢ tends to 0. Formally, due to the
singular term Vi—(f&), the pressure (and hence the density p°) is expected to tend to
a constant state in some suitable space, one thus expect that the limit of the solutions
to (1.1), if it exists in a sufficiently strong sense, will be the solution to the following
incompressible free surface Navier-Stokes system:

20 w° + w’ - V) — 2udiv Sw’ 4+ vz =0,
divw’ =0, (t,x) e Ry x Q°, (1.6)
w0| = 0 hO = h()

=0 = Wy, " |=0 )

supplemented with the boundary conditions:

oh —wlt, y, h%(t,y)) N0 =0, (r,y) e Ry x R?,
Sw'N? = zON® on {z=r"@, y)},

wy =0, dw)=aw)(j=12) on {z=-1}

where N0 = (—9;4°, —8,40, 1)".

On the one hand, the mathematical study of free boundary problems has received
much attention since the last four decades. For the compressible viscous systems, local
well-posedness was established by Secchi-Valli [65], Zajaczkowski [77], Tani [69]
with or without surface tension. As for the incompressible free surface Navier-Stokes
equations, we refer to Solonnikov [66], Beale [9], Tani [ 70] for the local well-posedness
and Guo-Tice [35] for global well-posedness. For the well-posedness of free surface
inviscid incompressible system, the first local existence result was due to Wu [74, 75]
for alayer with infinite depth and irrotational data. Later on, similar results are obtained
by Lannes [45] for a layer with finite depth and by Zhang-Zhang [78] for rotational
data, see also the work [4]. The global well-posedness of 3d gravity water waves system
was established by Germain-Masmoudi-Shatah [31] and Wu [76] independently, and
is then generalized to the case with surface tension [19] and 2d gravity water waves
system [6, 37]. For the compressible free-surface Euler equations, one can refer to
[14, 47, 71] for local well-posedness.

On the other hand, the rigorous justification of the low Mach number limit has been
studied extensively in different contexts, depending on the generality of the system
(isentropic or non-isentropic), the type of the system (Navier-Stokes or Euler), the
type of solutions (strong solutions or weak solutions), the properties of the domain
(without boundaries, with fixed or free boundaries), as well as the type of the initial
data considered (well-prepared or ill-prepared). The mathematical justification of the
low Mach number limit was initiated by Ebin [24], Klainerman-Majda [43, 44] for
local strong solutions of compressible fluids (Euler or Navier-Stokes), in the whole
space with well-prepared data (divug = O(e), VP; = O(e?)) and later, by Ukai [72]
for ill-prepared data (divug = O(1), VP5 = O(e)). These works are then extended
by several authors in different settings. One can refer for instance to [2, 13, 57, 58] for
the study of the non-isentropic (Euler or Navier-Stokes) equations under ill-prepared
initial data whenever the domain is the whole space or the torus, and also [22, 25, 42,
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63] for bounded domains with well-prepared initial data. There are also many other
related works, one can see for example [1, 10, 16, 18, 20, 27, 34, 38, 39, 49, 50, 52].
For more exhaustive information, one can refer for example to the well-written survey
papers by Alazard [3], Danchin [17], Feireisl [28], Gallagher [30], Jiang-Masmoudi
[41], Schochet [64].

The analysis of the low Mach number limit problem for the isentropic compressible
Navier-Stokes (CNS) system in domains with fixed boundaries, which is more related
to the interest of the current paper, has been done in two different directions. Roughly
speaking, for (CNS) in fixed bounded domains, one can either justify the limit process
directly from global weak solutions, or prove that local strong solutions exist on a time
interval independent of the Mach number and use compactness arguments to pass to
the limit. For the first case, Lions and Masmoudi [49] investigated the convergence of
weak solutions to (CNS) in bounded domains with various boundary conditions. Later
on, for the same problem in bounded domains with Dirichlet boundary conditions, the
authors in [21, 40] noticed that under some geometric assumption on the domain, the
acoustic waves are damped in a boundary layer so that local in time strong convergence
(Ltzy ) holds. One can also refer to [27] for the justification of the convergence towards
a solution of the incompressible Navier-Stokes system in unbounded domains by
using the local energy decay for the acoustic system. All these results hold true for ill-
prepared initial data. Concerning the local strong solutions, uniform high order energy
estimates are established in [42] with Dirichlet boundary conditions and in [60] with
Navier-slip boundary conditions by assuming the initial data to be well-prepared.
Recently, we established in [55, 67] uniform high regularity estimates in bounded
domains with Navier-slip boundary conditions and ill-prepared initial data. To match
the boundary layer effects due to the fast oscillations and the ill-prepared initial data
assumption, we proved uniform estimates in an anisotropic functional framework with
only one normal derivative close to the boundary.

There are only a few works dealing with the low Mach number limit problem for
systems in the presence of free boundaries. They deal with inviscid systems. In [48],
Lindblad-Luo prove uniform a-priori estimates for the free boundary compressible
Euler equations in the case of a bounded reference domain. More recently, this result
is extended by Luo [51] for unbounded reference domains and by Disconzi-Luo [23]
for a bounded reference domain but with surface tension. All these results are based
on the assumption that the initial datum is sufficiently well-prepared in the sense
that the time derivatives up to at least order two are bounded initially, an assumption
which is stronger than the usual well-prepared data assumption which requires one
time derivative to be bounded initially.! Regarding viscous fluids, the author in [59]
considered the 1d compressible Navier-Stokes system with free boundaries and estab-
lished uniform estimates with respect to the Mach number and the Froude number for
both well-prepared and ill-prepared initial data. Nevertheless, within our knowledge,
there is no related work for multidimensional viscous systems. Indeed, in the multidi-
mensional case, there are several difficulties that do not appear in the 1d case, as will
be explained later, a boundary layer appears in the multidimensional case which will

I After the completion of this work, we are informed by Junyan Zhang that the usual well prepared case
for the free surface compressible Euler system could also be recovered.
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preclude the uniform control of higher order (> 2) normal derivatives of the solution.
The aim of the current work is thus to investigate the low Mach number limit problem
for 3d viscous fluids solving (1.1)-(1.4). For the simplicity of presentation (compared
to the case of general bounded domains) we choose a channel with finite depth as the
reference domain. Nevertheless, one can extend easily our analysis to the cases where
the reference domain is the half space or a bounded domain, we shall explain more
about this aspect in Section 15.

The core of the analysis in this paper is to establish some uniform high regularity
estimates in order to get the existence of a local strong solution on a time interval
independent of ¢. Due to the presence of the diffusion term as well as the singular linear
term, a boundary layer correction to the highly oscillating acoustic waves appears and
creates unbounded high order normal derivatives of the velocity. Therefore, we need
to work in a functional framework based on conormal Sobolev spaces that minimizes
the use of normal derivatives near the boundary in the spirit of [26, 54, 73]. Note that
in the current situation, we have to handle simultaneously fast oscillations in time and
a boundary layer effect so that the difficulties and the analysis will be very different
from the ones in [56], where compressible slightly viscous fluids are considered.
Indeed, the energy estimates for conormal derivatives cannot be directly obtained since
tangential vector fields do not commute with the singular part of the system. Moreover,
to include only slightly well-prepared data (we will explain later what it means), it will
be impossible for us to get uniform estimates for time derivatives. In [55], we could
establish uniform estimates for the isentropic compressible Navier-Stokes system with
Navier boundary condition in smooth fixed domains and ill-prepared initial data. For
free surface fluids, there are extra difficulties essentially related to the control of
the regularity of the free surface. Indeed, because of the occurrence of the singular
terms, the compressible part of the system behaves at time scale T = ¢/¢ like a
small viscosity approximation of the acoustic system, we thus cannot obtain uniform
extra regularity for the surface from the diffusion term. This is the main reason for
which some kind of well-prepared assumption will be needed. We could nevertheless
impose an assumption that we call slightly well-prepared which is weaker than the
usual well-prepared assumption that requires one time derivative to be of order O(1)
and thus much weaker than the assumption made for the free surface Euler system,
for example in [48], where two derivatives of the solution are assumed to be O(1)

initially. We only require the first time derivative of the solution to be of order 8_%,
this is thus intermediate between ill-prepared O(¢~!) and well-prepared O(1), see
also Remark 1.2. The main heuristics is that despite the extra difficulties arising from
the boundary layer effects (note that the presence of a boundary layer is a feature of
the viscous problem and is absent in the inviscid case), the presence of the diffusion
term can help us to gain some regularity of the surface (not necessarily uniform). It
thus allows us to include more general data compared to the corresponding works
on inviscid systems [23, 48, 51]. We shall explain more precisely below after the
reformulation of the system and the statement of the main results.
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1.1 Reformulation of the system in a fixed domain

Let us set

. P(p)— P(p)
==

b

the system (1.1) can be rewritten into the following symmetric form:

divw?
g1(e0°) (80" + w* - Vo°) + — =0,

&

VQ_
=

gz(eg‘g)(atwg +w’ - ng) —divLw® + 0, (t,x) € Ry x QF,

w8|t:0 = wS, let:() = Q8
(1.7)

where the scalar functions g1, g, are defined by:
g2()=p"=P~ (P(p)+s), gi(s)=(ngy)(s); s>—P=—P(p). (1.8)
Moreover, the boundary condition (1.3) is transformed into

Q&‘

Lu®N° = ““N° on X’ (1.9)
&

In the following, we shall work on the system (1.7), (1.2) with boundary conditions
(1.4), (1.9).

We then choose an appropriate change of coordinates to reduce the free-surface
domain to a fixed one. One natural possibility is to use Lagrangian coordinates, nev-
ertheless, since we shall consider the problem in the conormal Sobolev setting, the
Lagrangian transformation would be also only bounded in the conormal setting, this
would raise additional difficulties. Therefore, instead of using Lagrangian coordinates,
we shall use the following smoothing diffeomorphism [46], where the map will enjoy
the usual Sobolev regularity. Let us set S = R? x [—1, 0], and consider the map

o7 S - QF
. . ; (1.10)
y,2) > @, y,2) =, ¢ (2, y,2)
where
‘Pe(f,y,z)=Z+778(f,y7Z)(1+Z)~ (111)
Here 1° is given by a smoothing extension
(Fuo)(t, £, 7) = e 00HEDZ (Fpey o &) (1.12)
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where F stands for the Fourier transform with respect to the horizontal variable y €
R2, 8y is a small parameter such that det(DCID(g)) > 0, which ensures that <I>8 is a
diffeomorphism. Note that

det(D®G) = 3,¢°(0,x) =1+ A*(0,x) + (n° — h®)(0, x)
+03;7°(0,x)(1 +z) > 2¢co > 0

as long as

14+ h%@0,x) >3c) >0, Vx € S, (1.13)
|(n® — h®)(O0)|I oSy + 10:0° (0) || Loo(s) < co, (1.14)

where cp > 0 is a fixed constant. Let us notice that (1.14) holds if [|A°(0) || gsr2) <
400, for some s > 2 and § is chosen sufficiently small. Moreover, we have that

& < &
Vo™ (DliL2s) S 1R (t)|H%(R2)’

which means that we gain one half derivative.
Let us now set

ug(tv Y, Z) = wg(ta Yy, q)g(t’ Y, Z))a 08 - Qg(tv Y, q)g(t’ Y, Z))

where u® and o¢ are defined in S. Then we set, 9 uf = (0jw?) o ®°, 8?808 =
(0j9®) o ®°, where j =0, 1,2, 3 with dy = 9, 93 = 9, which yields

& 8 € 3 1
0 = — 25, =012 o =
l 9z¢° 9z¢°

.. (1.15)

The equations (1.7), (1.2) and the boundary conditions (1.9), (1.4) are reformulated
into the following systems:

. . div®’ u®
g1(ec®)(9) o +u® - V¥ 0°) + i 0,
e

&

V¢ o

&

gz(sag)(a;pgug +u® - V‘psu‘g) —div? L9 u + =0,(t,x) e Ry x 8
€
uli=0 = wo(P(x)) :=ug, 0°li=0 = 05(Pp(x)) := 0y,

(1.16)

athg_ua(tvyshe(t’y))'Nean (117)
I

£ utNe = ZN° on {z =0}, (1.18)
I

=0, pdf u’=au’ (j=12), on {z=—1). (1.19)
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1.2 Conormal spaces and notations

Before stating our results, we need to introduce some notations. We define the conormal
vector fields:

Z() = 88;, Z1 = ayl, Z) = ayza Z3 = ¢(Z)82

where the weight functionis ¢ (z) = z(1 +2)/(2 — 7)2. We then introduce the space-
time conormal space as follows, for p = 2, +o00,

LYH(S) = (f1 2% f € LP(10, 1]; L*(S)), la| < m},

with the corresponding norms:

Il pp g = Z 1Z% fll Lo 0.0, L2(S))» (1.20)

l|<m

where o = (xg, &) = (ag, a1, 02, a3) € N*. Moreover, we shall also use the L;’fjc
type norm defined by:

I Moo = Y I1Z% FllL(o.01x5)- (1.21)

le|<k
To distinguish the number of time and space derivatives, we introduce also the norm:
1 g = Y 1Zfllerqon.2sy, (1.22)
ap=j.le’|=l
and to simplify, we use
H = HIO. (1.23)
To measure the regularity along the boundary, we use:

[s]
Floras = D100 Flop i@y

j=0
|f|k,oo,t = Z |Zaf|Loo([07t]XR2). (1.24)

|| <k,a3=0

Finally, to measure pointwise regularity at a given time 7 (in particular also with7 = 0),
we shall use the semi-norms:

[s]
FOlgs = Y_ 1€ FO) gs-i @) (1.25)

j=0
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L Ol = > MZ*HOllr2s)-

o] <m
I f @O lpgir = Z 1(Z% YD L2(s) (1.26)
ap<j,le’|<l
If O k00,8 = Z 1(Z% )l L=(S)- (1.27)
lo|<k

1.3 Main results

Before stating our main result, we first introduce the definition of the compatibility
conditions which are necessary to obtain smooth enough solutions for the initial-
boundary value problem of parabolic systems.

Definition 1.1 (Compatibility condition) We say that (o5, ug) satisfy the compatibility
condition up to order m if for j =0,1.---m — 1,

(ed0)7 (L2 un®)|i—o = (ed)! (o /e)|,_,. on {z =0},

&9/ h¥|i—o = (¢8)7 (u® - N®)|,= on {z =0},

(6817 u5)[,_y=0. (<eat>f'ag’su§)|t=o=%<eat>fu§|t=o (j=1,2) on {z=—1}.
(1.28)

Note that the restriction of time derivatives of the solution at the initial time is defined
inductively by using the equations. For instance:

(3h)|i=0 = uglz=0 - (=Vyhg, 1)’

P & &
(e0;u)|j=0 = (—eug - Vug + ediv?o LPuy — VPaoy),

g2(e0y)
where

E(g):(ual ’ I/lg,z, (M(E) . NS_(at(pg)ll:O)/aZ(pS)t’ (pg():(pg (07 ):Z+778(0’ )(1+Z)

We remark that 9,¢°|;—, Bzga(g) are determined by (9;h)°|;,—9 and hg respectively
through (1.11) and (1.12).
We now define the space for the initial data:

m

YE = {(ag,ug, £) € H3(Q0)*

CH™ Y (RY) Y2(0) <+00, (0, u§), hf)satisfy }

compatibility condition up to order m

(1.29)
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where

1,00,S

1 1
Y, (0)=": IhSIH,n_%+82|h8|Hm+%+8 2[[Vo® () llm—s.00.5 I Vu® (0)]

1 1
+e2l(og, up) 3y +e2 (10, u*)(O) | 1z

co

@, u) O 1411V (0, u) )| 2

& FTIV©®, u®) ()| ym-1)

1 1
+ 2019, (0, u) ()| ymt 5y + €280 (0| s -

(1.30)
In the above, expression, w® = curl? u® stands for the vorticity.
To prove Theorem 1.1, we introduce the following quantities:
T =Emr T AT = Eowr + Ehignmr + Anr (1.31)

&

e -
Here, &  is composed of the low order energy norms &),

energy norms &,

+ and the high order

ighm,T -

1 1 3
1 1 K-
Elpw.r = 1820,(0°, ME)IIL;oLz + 2|0, u)llpoops + €2V MSIILng,

% & &
1+ &2, u)ll Lo

1
EE. =¢e2|h® 5
high,m,T | |Lloon+7
o7 || Vil 1 +e7||V2E| )
LYHE ' NL2H™ LPHl > NLEH™ !

&
I e -t (1.32)

1 1
5 & & 5 &
+e2 “8t (0%, u )”L%O'Hm_l + 2 ”8Ivu ”LZTHm—lﬂL%HC’tl)—ZmL%OHCfg—“
1 & 3
) ¢ 8 JAiv? 4,€
+ e 2| (V¥ 0%, div? u )“Li’f’HC’Z’)_ZﬂLZTHC’Z_I

& ¢ €
+ (0", u )”L?OHC"Z,_I + |Vu ||LC}OHZ7)_40L2TH£_1

whereas A’ . contains the L7 norms:

1 _1 e P
A = IVl oo + (620 (0, u®), 672 (V¥ 0, div? u)[lm—s.c0.7
+ 11Ad, £3,) (0, ") lm—4.00,7 (1.33)

1 1
+ &2 ”lvugl”m—loo,T +&2|(o°, u£)|||m—2,oo,T + |h8|m—2,oo,T-
Our main result is the following:

Theorem 1.1 (Uniform estimates) Define 0 < ¢y < % such that

sup 1(g1, &2)(s)| € [co, 1/co]
se[—3c1 P,3P/ci]
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where ) < c] < % is a fixed constant. Given m > T an integer, suppose that the initial
data belongs to Y;, is such that

1+ hy(x) = 3co >0, sup Y, (0) <+oo,
ee(0,1]

—c1P < eof(x) < PJci, YxeS8, Vee(0,1],

and b (the parameter appearing in (1.12)) is chosen such that (1.14) holds fort = 0
so that

395 > 2co, YVx eS8, Vee(0,1].

Moreover, (taking co smaller if necessary), we can also assume that

1
1(Voi, Vi) (x)| < 5o Vxe S, Vee(0,1].
o))

Then there exist Ty > 0, g9 € (0, 1], such that for any € € (0, g9], the system (1.16)-
(1.19) has a unique solution which satisfies: ./\fni’TO (0, u®) < 4o00. In particular, we
have the uniform estimate

1 &
e € —5 s @t e e
su o ,u m—1 +¢e 2 div? u , Vo -2 -1
0<8£80(”( )”LZTOHC";(S)OL‘}ZHCO S) IIC )”L;EHC’Z (SNLE H

_1 . 0f
HIVul 00,7+~ 2 N1(V0, div? u®)llm—5,00,75) < +00.
Moreover; the following properties hold: for any (t, x) € [0, Tp] x S, € € (0, &o],

3:¢°(t, x) = co, |(Vo©, V2¢*)(t, x)| < 1/co,
—2¢1P < eo®(t,x) <2P/ci. (1.34)

Remark 1.2 In view of the definition of ¥}, we have assumed that the first time deriva-

tive of the solution is of size of order £ 2 , which is better than the usual well-prepared
data case (where 9;(0®, u®)|;—¢ is assumed to be order 1). This assumption is crucial
in our analysis to control the regularity on the surface. We shall give more details in
Subsection 1.5. Note that our assumption is thus much weaker than the one in [23,
48, 51] for the inviscid system where two time derivatives are assumed to be bounded
initially.

Remark 1.3 Itisalso possible to prove the uniform estimates by imposing an alternative
assumption on the size of the acoustic waves, we can assume them to be of order ¢ in
a low regularity Hclo space and of order 1 in a higher regularity H/ norm.

Remark 1.4 In view of the definition (1.32), one has three kinds of bounds for the
solution. The first two lines of (1.32) only imply that the highest order norm with
pointwise estimates in time LY°H!” of (0, u®) can be unbounded and has a size

O(é‘_%). Nevertheless, in the two last lines of (1.32), we are able to get that the le
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type norm with maximal number of derivatives, L? H™ of (o, u®) and the L3> H/"~!
norm (so with one less derivative) are uniformly bounded. Moreover, the first term in
the fourth line of (1.32) shows that the compressible part of the remains of size O(¢ %)
in LYH" 2N L3H"L.

Theorem 1.5 (Convergence) Assuming that (ug, hg) tends to (uo, h8) in H'(S) x
L?(R?) and the assumptions made in Theorem 1.1 hold. Let (c°,u®, h®) be the
solution to (] 16)-(1.19). Then (P(p) + eo®, u®, h®) converge in C” ([0, Tp] x S) X
C ([0, Tol, L2, .(S)) x C([0, Tol, H}, .(R?)) to (P(p), u®, h®) where 0 < y < 5 and
0 <s <m — 1/2. Moreover, u® has the additional regularity:

u’ € (10, Tol, H*"2), vu® € L*([0, Tol, K™~y N L>¥([0, To] x S) (1.35)

and one can find A= LZ([O, Tol, HO™=1Y such that (uo, 7%, h0) solves uniquely the
following incompressible free-surface Navier-Stokes system:
0
5OF 10 +u® - v U0 — div?’ s U0 + v¥' 0 = 0,
div?’u® =0, (t,x) € [0, Tol x S, (1.36)

0 0 ;0 0
u'l=0 = Uug, h”li=0 = h()

with boundary conditions:

3:h° +u’(r, y,0) -N° =0, (1.37)

$?"1ONO = 7N on {z = 0}, (1.38)

=0, - 9ul=a® (j=1,2) onfz=-1). (1.39)
9,90

Here ¢° is defined in (1.11) (replacing h® by h0), N0 = (—=9,h°, —3,h°, 1)".

Remark 1.6 Due to the absence of estimate for the second order normal derivatives of
the velocity u” (and thus for the strong trace of the normal derivative), the solution

to (1.36)-(1.39), must be interpreted in the following sense: div?’u® = 0 holds in

L?([0, Tp] x S) and for any vector field ¥ = (Y1, ¥, ¥3)" € [CSO(QTO )]3 with
¥3|,=—1 = 0, the following identity holds: for any 0 < ¢ < T,

1t
,sf u® -y, -)dv,o+2u/ /sw‘)uo.vw‘)wdv?ds
S 0 JS

1t
+/3f /(u0~V‘pOu0)~de§)ds

— f (0, )dVO—I—,o/f 0 a‘/’x/fdvods+/f 70div? y dV0ds

/ / u® - Ny l/rdyds—i—a/ / u® -y +ul - ) dyds
z —1
(1.40)
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9 Page140f134 N. Masmoudi et al.

where dV,O = ﬁ(r, -)dydz.

Remark 1.7 Note that we do not end up in the classical space of existence and unique-
ness for the free boundary incompressible Navier-Stokes system, nevertheless, the
uniqueness of the solution in our functional spaces can be obtained by taking benefits
of the control of the Lipschitz norm of the solution. One can refer to subsection 14.1
for the proof.

1.4 Main difficulties, general strategies

Due to the simultaneous presence of the singular term in the equation as well as
the viscous term and boundaries, we are confronted with both difficulties resulting
from boundary layer effects and fast time oscillations. These two phenomena are well
understood when they occur separately, but some new difficulties occur when they
occur at the same time. Indeed, on the one hand, regarding the vanishing viscosity
limit problem (see for instance [54, 56]), one can estimate the high order tangential
derivatives by direct energy estimates, and then use the vorticity to control the nor-
mal derivatives. Nevertheless, for the system with low Mach number, the tangential
derivatives (dy) are not easy to control uniformly, since they do not commute with
V¥, div¥" and thus create singular commutators. Without the a priori knowledge of
the tangential derivatives, the estimate of the vorticity cannot be performed. On the
other hand, for the compressible free boundary Euler system with alow Mach number,
uniform estimates are established for example in [23, 48, 51]. Besides the difficulties
arising from the Taylor sign condition and the regularity of the surface, the idea behind
getting uniform estimates is to control first weighted time derivatives (¢9;)¥ and then
to recover space derivatives by using the equations and by direct energy estimates for
the vorticity. Here, in the case of viscous fluids, the vorticity is not easy to estimate
due to the lack of information on its trace on the boundaries. We shall explain more
precisely in the following. For the sake of notational convenience, we will drop the
¢—dependence of the solution.

Indeed, the vorticity w = curl? u solves a transport-diffusion equation with Dirich-
let boundary condition (see (4.5), (4.8)) under the form

wlps ~ dyu + div¥ulys. (1.41)

Let us consider the simplest case, the heat equation with zero source and initial data
but with nonhomogeneous Dirichlet condition in a half space :

pdf —nAf =0, flio=0, flemo=f"' (@t,x)el0,T]xR,
(1.42)

By using the heat kernel, we obtain

Lo p1
IIfIILtzHg;;IST“If |12 gm1-
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By applying this estimate to w, we see that the boundary contribution when estimating
||| L om) is more or less [(dyu, divu)|; 2 7,1, Which requires the foreknowledge
t

of the tacr[llgential derivatives and which indicates the loss of half derivative. One could
also use the (tangential) smoothing effects of the heat equation to overcome this loss
of derivative. Nevertheless, in this way, it seems impossible to extract the extra € or T’
which are essential to close the estimate. More precisely, by using maximal regularity,
one gets that

H"l
< C(”V”“L%Hgf‘,—l -+ ||Vdiv"0u||L12HC,2_z) + other terms

“w”L?H%*I < C|(dyu, div“’u)lL2 m-3 T other terms
t

which does not gain anything. Note that the constant C is independent of 7" and ¢.
To overcome these problems, we split the velocity u into a compressible part V¥ W
and an incompressible part v (see definition (5.2), (5.3)). On the one hand, the com-
pressible part is governed by the elliptic equation A? W = div¥u with mixed boundary
conditions (with homogeneous Dirichlet boundary condition on the upper boundary
and homogeneous Neumann boundary condition on the bottom). Hence the estimate
for its gradient V>W can be deduced from the estimate of div¥u. We then use induc-
tion arguments and the equations to establish high-order estimates of div¥u. On the
other hand, the incompressible part v, solves, up to the control of non-local commu-
tators, a transport-diffusion equation and hence one can use direct energy estimates
to get some suitable estimates (say || 8;"_1 v|| L*r? and | V]| L2H ), which together

with the estimates on div¥u, lead to the uniform control of ||8;”_1u|| L®L2(S) and
IVul| L2H The final task is to estimate || Vv || LR Hm which stems from a careful
study on w x n. We remark that this strategy has been employed by the authors in [55]
where uniform in low Mach number estimates are established in the case of smooth
fixed bounded domain with Navier boundary condition and ill-prepared initial data.
However, as will be explained in next subsection, there are various extra difficulties
for the free boundary problem arising from the control of the regularity of the surface.

1.5 Remarks on the slightly well-prepared data assumption

In the free surface setting, a very sensitive part of the analysis is the control of the
regularity of the surface. This is the reason why we have to allow the initial data to be
slightly well-prepared. Indeed, since the incompressible part v® satisfies the boundary
condition (see (1.51), (1.52))

2uS?v — TId)N|,—o = 21 (divPuld — VY VO W)N|,_o,

in order to perform energy estimates for v at order m — 1, it requires infor-

mation on ||[V3W|| ;2ym-3, which, by elliptic estimates, can be controlled by

t co

IVdivPul|,2,,m—2 and |h| .  1.Nevertheless, due to the fast oscillations, we cannot
L7 Hg, le "2

expect |h|L (or alternatively ||Vul| 12 ym) to be uniformly bounded. A similar

]
2 fym+~
tH 2
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problem occurs when one recovers the L2 H™~! norm of V2W from the one of div¥u
by elliptic estimates. To overcome this problem, we assume the data to be slightly
well-prepared so that ||div?u|| Loogl can be proved to be of order e, 0<v <1to

be chosen). This can make an extra ¢’ appear in front of |h|L 1 in the process

2I:Im+ 2
1
of the elliptic estimates (one can refer to Step 3 of the following subsection for more

details). In turn, to control uniformly the term 7 || L2 ntd which reduces to the esti-
1

mate of &7 || Vul| L2Hm» W€ Must assume that the compressible part (div¥u, Vo) has

the size of O(¢!=?) in LIZHC”},_]. Indeed, when performing the highest-order energy
estimates, we need to be careful with the singular term

t
8219—1/ /Zaa (2%, div¥]u +Z%u - [Z%,V¥]o dVids, |a| =m. (1.43)
0Js = — —

(2, 350 lu VAN A

By direct computations, these terms can be bounded by (up to other good terms and

upon the foreknowledge of |8l9h|L2ﬁm ) )

O—1,.0
& e’ h Zo ~1[IVu u Vo A(—, |h|;,— ,
| ILzﬁm%(ll IIleHCrg tIVullo,co,r + |l IILtzHCrgIII l0,00,¢) (Co \hlm—2,00,1)

t

which can be uniformly bounded if
1Zoll 21 = O ™), NIVollo,c0, = O™,

By optimizing, ¥ = 1 — %, we shall thus prove the uniform estimates by assuming

that (Vo, divPu)|,— = 0(8%). By using the same ideas, it would be also possible to
establish uniform estimates by assuming that the compressible part is of size at O(¢?)
(% < ¥ < 1) in a low regularity space (say Hclo) and O(e!~?) in a higher regularity
space (say Hc’?j)—l).

One may wonder whether the introduction of the Alinhac good unknown which
is used frequently in free boundary problems can help us to avoid to lose derivatives
on the surface and to get uniform estimates without any size assumption on the data.
However, this quantity does not seem useful here. Indeed, the use of the Alinhac
good unknown would require the validity of the Taylor sign condition (33 o' |,—o > 0),
which seems out of reach for ill-prepared data since o solves a transport equation with
a source term of size of O(e~1).

1.6 Sketch of the proof

Let us explain the main steps for the proof of Theorem 1.1. The uniform energy
estimates will be established in the following steps:
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Step 1: e —dependent high-order energy estimates and ¢ —independent high-order
time derivative estimates.

In this step, we aim to obtain two kinds of energy estimates. The first one is the
estimate of 8% (o, u)ll Loc gm and ||8%8, (o, u)llL?on_L Since the spatial conormal
vector fields Z1, Z,, Z3 do not commute with V¥ and div?, it seems hard to get the
uniform estimate of || (o, u)|| oo ym by direct energy estimates. Nevertheless, it is easy
to get an ¢ —dependent estimate involving the control of ||V (o, u) || L2H This can be
done by applying Z(|a| < m) to the system (1.16) and then by performing standard
energy estimates making use of the symmetric structure. We remark that at this stage
we do not lose regularity on the surface. Indeed, besides the term listed in (1.43)
(setting ¥ = %), the possible most problematic commutator term is

t
1
8/ f ZYN - 0,LuZ%u dVyds, dVy; = — dydz
0 JS 09

. 1 1
which can be bounded by: 82|h|L$Hm+%|lu||LtzHé’$ lle20;L%u||o0,;- Note that the

. . . 1
2 1 s available owing to the control of 2| Vu|| L2H™ and

. 1
estimate of &2 |h|L
! o : . .
lle20;L%ul|c0,; by the terms appearing in A, , using the equation of the velocity.

. 1 . .
The estimate of [[£29; (0, u) || o3ym—1 can also be derived by straightforward energy
estimates. The main observation is that: although the weighted time derivatives

1 . . .
e2(e 8t)k8, do not commute with V¥, their commutator can be uniformly controlled
even for the singular term. Indeed, direct computation shows that fork <m — 1,

(]

& d;¢

whose L%LZ(S ) norm is uniformly controlled as long as k > 1 thanks to the bounded-

ness of |8% E),zh |L 3 (see (6.2)). We remark that in view of the definition (1.12), the

2 gm—

boundedness of N can be derived from that of 4. The case k = 0 needs to be treated
differently and is explained in the next step.

. . . 1 . 1

The second kind of estimate is for the terms &2 |[(V¥o, div¥u)||, oo pym-1, &2

t co
Vediv¥ .
” le‘uHLtZHCO 1,
not detail more here.

which follows again from direct energy estimates, we thus do

Step 2. Uniform lower order energy estimates. In this step, we aim to show the
boundedness of ||8% oy (o, u)|| Ler2- We remark that a naive energy estimate fails due
to bad commutators with the singular term. Actually, the L,2L2(S) norm of the term

e2 [0, div¥]u = g2 9;(N/0,¢) - 0,u 1s out of control. The trick to avoid this problem
is to multiply d/(1.16); by £d,0 and multiply 3,(1.16), by £dfu. In this way, the
singular term can be dealt with as:
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1t
/ / 3 V?odlu + 8f divvud, o dVds
0 JS

t t
:/ / 8 u - No,;o dyds +/ / 8/ uld;, V¥]o dVids,
0 Jz=0 0 JS

where dV; = 0,¢ dydz. The first boundary term combined with another boundary
term which comes from the integration by parts of the viscous term, result in a good
term that can be controlled. Namely

t
g/ / 3 [—m’u n zId] N-9%u dyds =
0 Jz=0 €

1
—s/ / (—b”u + zIcl) 8N - 9%u dyds.
0 Jz=0 €

Note that the trace of % on the upper boundary can be expressed as the spatial tangential
derivatives of the velocity (see (4.1)) which can be easily treated by the trace inequality.

(1.44)

The second term in (1.44) is also manageable since 8_% I[9;, V¥]o || [212(S) can be
roughly bounded by ||8_% \ados ”L,ZLZ(S)-
It should be mentioned that the above strategy does not apply for the control of

e% 13y, Z3)0; (o, u)|| Ler2 due to the bad commutator terms. We thus use the strategy
of the splitting mentioned before to deal with them in the following steps.

Step 3. Recovering high order spatial derivatives of (Vo, VV?W) by induction.
Denote by VYW the compressible part of the velocity which is defined by the unique
solution to the elliptic equation with mixed boundary conditions:

—divP VO = —div¥u,
V|,=0 =0, (1.45)
W|.—_; = 0.

In this step, we aim to control the L,ZHC’Z_I norm of V¥ (o, VW), which can be

1 . . .
reduced to the control of ¢~ 2 [[(V¥0, div¥u)|| ;2 ym—1. We will use the equation and
t co

induction arguments to recover the latter. Indeed, let us rewrite the system (1.16) as
follows:

—divPu = g1€0,0 + egiu - Vo, (1.46)
—pecurl? w — V¥ (a —Qu+ k)sdiv“’u) = gredu + egou - Vu. '
where
E:(u17u2’u2) = M],I/lz,— .
0z
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In view of (1.46), one wants to show that for j +1 <m — 1,

B 1 1 _1 @
e 21 divPull 20 S €200 Ml 29450 + O€2) S e 2IVE 0l 29541010 + O),
(1.47)
1 1 1
e 2IV¥0ll 20 SNE20: VOV 295010 + Xny + O(e2)

_1 .
5 e 2 ||d1V(p”||L,2HJ'+‘J—' + XmJ + O(l), (148)
where
1 . 1

which has been controlled in the first step. These two inequalities in hand, we can
conclude by induction arguments. Note that the inequality (1.47) results from the
equality (1.46); and the product estimate (3.8). To obtain (1.48), we take div¥ of the
equation (1.46), and use the boundary condition (1.18) to get the following elliptic
equation:

A% (£0) = div?[ped, VoW + e(£2Led, + gou - Viu] =: div?G
e0|;=0 = —2ep(d1uy + dau2) + &(@w X N)3|z=0 (1.49)
nl|;=—1 =G -n+ pecurl’ w x n|,—_1.

where 0 = o/ — 2u + A)div¥u. Inequality (1.48) is thus the consequence of the
elliptic estimates in the conormal setting (see Section 5). We remark that the trace of
o x N involves only tangential derivatives of the velocity on the boundary (see (4.2)).
Now that div¥u has been bounded, we can control the compressible part of the
velocity V2W by again elliptic estimates. Nevertheless, there will be a loss of one
derivative on the surface if no smallness condition is made on the compressible part.
Indeed, as V¥ W solves equation (1.45), we have by the elliptic estimates that

1
2 .
IVl 2ot S (Al ey + ||d1V(pM||Lt2Ho,m—1)A<a,Am,r) (1.50)

where A denotes a polynomial. This estimate involves more regularity of the surface

than that we can afford since we have only the control of |h|L2H’”‘ 1. Nevertheless,
t

checking the proof of the elliptic estimates for V> W, we find that the main problematic
term is indeed VW Z*VN (la| = m — 1,29 = 0), whose L%LZ(S) norm can be
bounded by

_ ¥
VDl ]y S A Vol e, IVl gy 1] ey

Ltsz"rz

The right hand side can be controlled if ||div¥ul| L2H. = (9(8%). Hopefully, once

assuming 8%(8,0, d;u)(0) to be bounded uniformly in Hclo (S), we can show that
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1(V?o, divPu) || LXHL = O(e > ). This is one reason that we need the initial data to be
slightly well-prepared.

Step 4. Uniform energy estimate of the incompressible part of the velocity. Set
v = u — VP the incompressible part of the velocity. By the computations in Section
5, we find that v solves the following system:

POV — nAYY + V7 = —(f + V¥9q + p[P;, 0] 1u),
div¥v =0,

QuS?v — 7Id)N|,—o = 2u(divPuld — (V¥)>W)N|._o, (1.51)
V3|;=—1 =0, ,uafvj =aujl;=—1, j=1,2,
where Q;, IP; are time-dependent projectors defined in (5.2) (5.3) and
f= (82“ Vo B2 pgatq)“) ,VPq = Qi (f — nA%v),
€
Vér =P, [V‘/’ (5 -eu+ A)div%)] . (1.52)
e

Note that V¥ does not vanish identically since Q; V¥ # V¥ and that V7 is actually
not singular though it seems to involve o /¢. Indeed by the definition of Q; and the
boundary conditions (4.1) (4.2), w solves the elliptic equation:

Almr =0,
Tl=0 = —2u(d1uy + douz) — 2 (IT(d1u - N, dou - N, 0))3,
-1 =0.

The key point is that the trace of = on the upper boundary can be uniformly bounded.
In view of (1.51), we expect to perform energy estimates to get a priori control of
1 1
1 @ 1
”v“Lf’O_HC’Z‘l’ ||.<82 a‘lf”L?OHc"Z_z and ||Y U“LIZHCrZ—l, lle2 8tVU||L§>oHCrZL7—2. Qf course, due
to the interaction with the compressible part through the boundary, their control rely
also on the information for the compressible part V¥ W and we cannot get higher order
estimates.

Step 5. Control of the normal derivative of the velocity. We have obtained
the estimates of [|[V¥u|,2,m-1 in Step 3 and Step 4. It remains to control
t co

1 . 1 C
e 2|[(V¥0, div¥u)|l ;oo ym—2 and [[(Vv, £20; VV)|| | oo ym—4, Which is useful to control
t co t co

the L7S, norm of the solution. The former quantity can be obtained again by induction

arguments while the latter quantity can be deduced from that of w x n. Indeed, we
have roughly the estimate:

1 1 1
1V, 628, V)l e s < 10, £28) (@ X W] vyt + 10, £28,0)]| o 2

1
101, 820,11 e -
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. . 1 . .
Let us explain the estimate of [|(Id, £29;) (@ X M) || ; o ;ym-4. Direct computations show
t co
that:

w X n|ysg = —2I1(31u - n, du - n, 0)’ (1.53)

where [T = Id 343 — n ® n. We define the modified vorticity w, = @ x n+ 2I1(d;v -
n, drv - n, 0), so that:

wnlps = —2I1(0; VW - n, VW - n, 0)'.

The advantage of working on wy, rather than @ x n is that the former one only involves
the compressible part of velocity on the boundary, whose estimates have been estab-
lished in Step 3. To estimate wy, we shall thus instead use a lifting of the boundary
conditions by using the Green’s function of the solution to the heat equation with non-
homogenous boundary conditions and control the remainder by energy estimates.

More precisely, let »” solves the heat equation (1.42) with boundary condition
o 1.—o = wn|,—0, we use (1.42) to get roughly that:

1(d, £2 8ol | < T4 (|3, £29) V|, o s + [(0d, £20,)R] oo grn 3 )
’ t) Wy L?cHé?f‘l ~ ’ t L?OH’”_3 ) t L[OOHm—3

1 1 . 1
< TH(IAd, £20,)div2u ] s + 10, €201 o ).

The remainder w, — a)ﬁ can then be controlled by direct energy estimates.

Step 6. L%, estimates. This final step is dedicated to the estimates of the L7
type norms defined in A, 7. Most of them can be controlled thanks to the Sobolev
embedding and the quantities appearing in &, 7. The estimate of the remaining terms

1 . . .
€ 2|IVo|lm-5.00,7 and ||Vul|1,00,; are obtained from the maximum principle of the
damped transport equation satisfied by Vo and the estimate for the heat equation
satisfied by w.

Structure of the paper: We state the uniform a-priori estimates in Section 2, which
are shown in the following sections. Some preliminaries (useful lemmas, identities,
projections, and elliptic estimates) are first shown in Sections 3-5. The control of the
energy norm &, 7 is achieved in Sections 6-Section 11. The Lg¥, type estimates are
established in Section 12. Theorem 1.1 and Theorem 1.5 are then proved in Section 13
and Section 14 respectively. In Section 15, we explain how our results can be extended
to the case when the reference domain is changed into a channel with infinite depth.

Finally, one technical product estimate is presented in the appendix.
Further notations

e We denote A(-, -) a polynomial that may differ from line to line but independent
of ¢ € (0, 1].

e The traces on the upper boundary {z = 0} and lower boundary {z = —1} for a
function f € H'(S) are denoted by f?! and f?2 respectively.

e We use the notation < for < C(1/cg) for some number C(1/cg) that depends only
on 1/cop.
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e We use the notation L2L2 L2([0 t] xS).
o Wedenote | fllg, = If 25 + IV Fll 2t

2 Uniform a-priori estimates
Our main a priori estimate is the following:

Theorem 2.1 Let co € (0, %] such that:

sup |(g1, &2)(s)| € [co, 1/col (2.1
se[—Sclﬁ,313/cl]

where 0 < c1 < % is a fixed constant. Suppose that for some 0 < T < 1, for all
(t,x) €0, T] xS, ¢ €0, 1], it holds that:

0.0°(t,x) > co,  |(Vo?, V) (1, x)| < 1/co, —3c1P <eo®(t,x) <3P/cy.
(2.2)

Then there exist two continuous functions P;, P, : Ry x Ry — Ry, and 9 > 0
which are independent of €, such that the following estimate holds:

s pl(i Y5 (0)) + (T + e)ﬁPz(%, Y (0) + Ny 1) (2.3)

where N . is defined in (1.31).

This theorem is a direct consequence of the following two propositions.

Proposition 2.2 Under the assumption of Theorem 2.1, there exist two € —independent
continuous functions P3, Py : Ry x Ry — Ry, such that:

e < p_o,(l Y5(0)) + (T + &) P4( ! Y (0) + N 7). (2.4)

Proof This proposition is obtained by energy estimates, we split it into several sections
(Section 6-11). By Lemma 6.1 for the estimate of the surface, Lemmas 7.1, 7.4, 10.1
for e —dependent estimates to the highest order, Lemmas 9.1, 9.3, 11.1, 11.3, 11.10
for the uniform estimates, we can find two polynomials As, Ag whose coefficients are
independent of ¢, such that:

1
& 2 €2 e 2 Yve (2
(ghigh,m,T) = A5<C07 |h |L<;9[_}m*l + Ym(O) )Ym(O)

[\S

+(T + 8)4A6< 10 NZ,r)- (2.5)
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By Lemma 8.1, there exist polynomials A7, Ag whose coefficients are independent of
&, such that:

~ 1
Erow,1)* S A7(5, |h8|§,oo,T)(Y;<0>2+<52igh,m,T)2>
1 |
+(T+e)2 As( — NE 7 ).
(o)) ’
By the Sobolev embedding ‘the same equation’, H 5 (R2) — L®(R?),

2
B o S |h€|

o "

-

we thus find two polynomials Ag and A g such that:

1
(& )7 < Ag(—, |h8| i
()]

F YE (0) )Y,fl 0)?
Hm

(T +s)4Alo( ) 2.6)

By (6.3), there exists a polynomial A1y, such that:

L>®H"™ b

1
IS YE (0)? +T2A11( o N,Zy)-

Plugging this inequality into (2.5), one finds two other polynomials A1, A3, and a
constant ¢ > 0, such that:

1 1
(S;igh,m,T) A2 (— Y (0) ) + (T +&)"2 A3 (a Y, (0) +Nn81,T> :

We thus finish the proof by inserting the above inequality into (2.6). O

Proposition 2.3 Assume that (2.2) holds, we have the a-priori estimate for the
L L>®(S) norms,

1 1 -
— A(— Yo <0)) +A<c—,|h8|3,oo,,>5;,T
1
+(E 1) +<T+e4)A14( - mT> 2.7

where A4 is a polynomial with € —independent coefficients.

Proof 1ts proof is presented in Section 12. O
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3 Preliminaries I: Useful lemmas

In this section, we list some elementary lemmas which will be often used throughout
this paper.

3.1 Product and commutator estimates

We begin with the following product and commutator estimates in R2.
Lemma3.1 Ler f, g : RZ — R belong to the spaces appearing in below. For any

s>1,

A (fO)l 2wy SIS s @2y lgloo®2) + 181 s @2y f | Lo 2 (3.1)
I[A®, f]g|L2(R2) S |f|H-Y*l(R2)|g|LOO(R2) + |f|W1»00(R2)|g|Hsfl(R2) (3.2)

Forany —1 < s <1,

I[A®, g]f|L2(R2) S |f|Hs—l(R2)|g|H2+(Rz), (3.3)

| f8las @2y S 1 ks ey min{[g] it g2y, 181wice®2) }- (3.4)

where (A* f)(y) = fg_—l>y((1 + |«§|2)%f($)), a™ denotes a real number that is larger
but arbitrary close to a.

The product estimate (3.1) and the commutator estimate (3.2) can be found in [8] for
example, (3.3) is indeed a restatement of (A.6) in [11]. The proof of (3.4) is presented
in the appendix.

Corollary 3.2 Let k > 2 be an integer, one has the following estimates:

(O] iy SO 18D iy +18O] gty [f O]y GS)
|[Za7 f]g(t)|H% S |f(t)|l:l[%]+|g(t)|1:1k71 + |g(t)|ﬁ[k%l]+1+|f(t)|l_~lk+%’ |O[| = k,

N

(3.6)
where H* is defined in (1.25), and commutator [Z%, flg = Z*(fg) — fZ%g.
Proof For any |«| < k, we write
z(fom = > + > )Z”f(t)za—ﬂg(r) (3.7)

1BI<-1 Je—pI<[19

Inequality (3.5) can then be derived from product estimate (3.4). The proof of (3.6)
follows in the same way. O

The following (crude) product estimates in Lloon ! will be useful for instance in the
elliptic estimates.
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Lemma3.3 Let Z% = (¢98,)) 2% with Z = (Z1, Z», Z3), /| <1 =k — j, k > 2.
One has the crude estimates: for any integer n € [0, k — 1]

ICFOY Dt = 1f Ol llgln o0, + 18O N f llk—n—1,00,6, (3.8)
IZ%, fleli2s) S ( >, IIf(f)IIHj’,z/>|||g|||n,oo,z

-/

+(le@lpgi-1a + 1O lpgia- )N fllk—n—1.001-  (3.9)

We also have the following composition estimates:

Corollary 3.4 Suppose that € C°(Q,) N L%Hc’ﬁ with
A =Y, x) < Ay, V(t,x) € Q.
Let F(-) : [A1, A2] — R be a smooth function satisfying

sup  [FY|(s) < B.
s€[A1,Az], j<m

Then we have the composition estimate:

IEW ) = FO)prgm = AB, 1Yz, o0 MY L2 g s (3.10)

Corollary 3.5 Let g1(c0), g2(¢0) defined in (1.8) and assume Property (2.1) and
Assumption (2.2) hold. Then one has the following estimates: for j = 1,2

1

18 (e0) = &)l p g S €A (5, |||a|||[r;],oo,,) ol 2 - (3.11)
1

1Zgj 1yt < A (5, |||o|||[r;],oo,,) 10, Zo) ppgnt. (3.12)
1

1Zgjlp 1 < €A (5, |||o|||[r;],oo,,) 1ol . (3.13)

Proof Inequality (3.11) is a direct consequence of the composition estimate (3.10). To
get (3.12), (3.13), one can apply (3.8) forn = [’”T_l] — 1 and use again (3.10). O

The next lemma states the generalized product estimate and commutator estimate [32].

Lemma 3.6 For || < m,ag = 0 we have the product estimate and commutator
estimates:

1Z*(foll 22 S WM p2pg0mNglo0.00.0 + N8N L2940m W f M0i00,e,  (3.14)
I0Z%, f1gll 22 S N f N 2g0mliglo.cor + 181 L290m 1 f 100 (3.15)
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We finally state the following Sobolev embedding and trace inequalities whose proofs
can be found in Proposition 2.2 of [54].

Lemma3.7 Foreacht € [0, T], we have:

| |
Ol 7oorg < CVAO®O?, IR L S1+sy > 2,51, >0, (3.16
IfOllLes) S ICf f)()”Htaln(s)”f()”Htazn(S) 1+52 1,52 (3.16)
|, O gs w2y + 1 =Dlgs g2
1 1
< 2 1/2 -
N ||azf(f)||Hi;;1/2($)||f(t)||H$11/z(S) + ”f(t)”Hf;;l/z(S)’ sz 5 (3.17)

where we have used the notation | f ()| us, (s) = IA* fF(Ol2(s)-

3.2 Regularity of the extension and some further commutator estimates

We first show that the diffeomorphism & has the same regularity as u in S, which
stems from the fact that the extension function ¢ gains half a space derivative with
respect to i. Before stating the main estimates, let us recall that ¢ and 7 are defined
in (1.11), (1.12).

Lemma 3.8 For any integers j, k > 0, we have the following estimates:

1[(e0:)! Vol gr(sy S [(d)! (2, ')IHH%(RZ), (3.18)
190l 2048) SVl 2 gieiod oy (3.19)

Moreover, we have the Lﬁ‘; estimates for n :
(&) () lwroois) S I M1 wroowey S Vhlitjoos-  (3.20)

Proof These estimates can be deduced from Young’s inequality and the following
estimates:

RTINS =3 gy~ 18022 ()
/ e 0Tz S8, E) T IFT (e )y S 1
-1 )

One can refer to Proposition 3.1 of [54] for the detail of the case j = 0. The case for

j > 0 follows from the observation that time derivatives commute with the actions
@(h) and n(h). O

Lemma 3.9 Suppose that: 9,¢(t, x) > co for (t,x) € [0, T]xS. Then forany k € N,

f

0z

1
SA|—. |k +
L2k ~ (CO | |[§]—|—1,oo,t |||f|||[§]7oo’,>

Ovhﬁg+wwﬁ%>,pzl+m. (3.21)
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Proof Let us write:

fo_ f o n+9:n(l+z)
0,0 1+n+0dn(+2) 14+n+0dn(14+2)

Therefore, one obtains (3.21) by applying the product estimate (3.8) for n = [%] and
composition estimate (3.10) for F(x) = 1j‘r—x O<x<l). O

Remark 3.10 Similar to (3.21), under the same assumption as in Lemma 3.9, the fol-
lowing estimate also holds true,

f

1
< A —, h + |
] B (CO 1h]1,00. |||f|||o,oo,t>(||f||L;HO,k

+|h|L;’ﬁk+%)’ p =2, +o0.

(3.22)

The next lemma contains useful commutator estimates.

Lemma 3.11 Under the assumption (2.2), the following commutator estimates hold,
for j=1,2,3,|a| <k

1
IZ*, 051 f Nl 22 S A (5’ Ihl[g]ﬂ,oo,,) 1215 ciens L NV Sl oo
' (3.23)

1
+A (%’ |h|k_n,oo,t> IVFll gt O<n<k—1).

If vg = 0, we have that:

1 1
¢
I0Z%, 031 22 S A(g, |h|1,oo,t)||vf||L[2H§0—l + A(g, ”'vfulo’oo’t)'h'L%ﬁ“%'
(3.24)

Moreover, for k > 3,

1
I[Z§9:. N f 22 S A(a 13- f, €019z fllo,00,: (R, 0:h)|k—2,00,1

P 1
+ ( / |88t2h(s)|,%_2’oods) i ) (3.25)
0

[ 42
. (EMZ_I 24371, 11 200 731+ 20 f||LlooH1).

Proof By the definition (1.15) for V¥,

(2%, 871f = [2%,N; /9918, f + (N;/9:9)[Z%, 3] (3.26)
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Moreover, there exist smooth functions Cy g «, Cy o Which depend on derivatives
of ¢ such that:

[2%.0.)= Y CppaZld.= D CpyadZ". (3.27)

IBl=<la|-1 lyl=IBl—1

Therefore, we get (3.23) by (3.9), (3.21). and get (3.24) by (3.15), (3.22).
Next, for (3.25), we use the following direct expansion

[Zléat,g]w = ( Z + Z )(Ck,lzloc_latg Z(l)w)
0<i<l O0<k—I<k-3
+Cr2ZE 20,8 Z3w. (3.28)

to obtain:

k
I1Zo0:, glwll 212 S 11 Z00: gl 2gp-1 w1 oo, + 1 Zowll 251 11018 13,001

+ 1 Zowll gopg1 112201l 1200
(3.29)

Applying (3.29) with g = g—é, w = 0d; f, and using (3.18), we get (3.25). O

3.3 Energy identities and Korn inequality

We present some identities which will be often used in the energy estimates. For
notational convenience, from now on, we will skip the e-dependence of the solution.

Lemma 3.12 It holds that:
@ ] 1 2
g1, +u-V¥9o @) -o®)dV, = -0, | gilo|"(H)dV
S 2 Js
1 @ . 2
—5 8(8, g1 +div¥(giu))|o|“(t) dV;, (3.30)
1

fgz(3f+u~v‘”)u(t)-u(t) dV; = Eat/ g lul*(t) dV,, (3.31)
S S
f (—div?’Lu + VYo /e) - u(r) dV,

S

— / 2018¢u(0))? + Aldiveu@)|> dV,

S

—/ odiv¥u(r) dv,+a/ luc|? dy. (3.32)
S z=—1

where u; = (uy, uz, 0)' denotes the tangential components of u, dV, = 0,¢ dydz is
the measure in S coming from the change of variable (1.10).
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Proof By direct computations, one can obtain the following identities:

fsa}”f(t)g(t)dvt = —fo(t)aj’g(z)dvlJr/aS fHg®N;dy, j=1,2,3
fs 9 F(Dg(t) AV, = B, fs Fo(t)dvs — fs F(P (1) dV, + / _ F0swnhdy,

which, along with the equation (1.17)- (1.19) lead to (3.30)-(3.32). Note that in the
derivation of (3.31), we have used the fact that a;"gz +div?(gou) =0in [0,¢] x S. O

The next lemma shows that one can control the gradient of the velocity by S?u.

Lemma 3.13 (Korn’s inequality) Suppose that (2.2) is true, then there exists Ao(%),
A (%) such that:

/ |Vu|*(t)dV, < Ao (i) / IVeul*(t) dV,
S €0 S

1
< Ay (—)/(|S¢u|2+|u|2)dv,.
(&0)] S

As a consequence, we have also:

! 2 1 ! 2 2
f / [Vu|“dVsds < A | — / /(IS‘pul + |u|7) dVsds. (3.34)
0 JS &) 0 JS

4 Preliminaries Il: Reformulations of the boundary conditions

(3.33)

In this section, we reformulate some boundary conditions which will be frequently
used in the energy estimates:

Proposition 4.1 The following boundary condition on {z = 0} hold:

o
Z = 2u + 2div¥u — 21 (01u; + dur) + w(w x N)3, “4.1)
wxn=-=2I0u-n,du-n,0), (4.2)
M(dyu) = —T1(d1u - n, dou - m, 0)', (4.3)

9u-n = INI*8%u -n — (n19yu - n + nadou - )
= IN|(divPu — d1u1 — drup) — (n101u - n + nrdyu - n) 4.4)

where w = V? x u, I1 = Id3 —n @ n, here 1ds denotes the identity matrix of order 3.

Proof The first identity can be deduced from the boundary condition (1.18). Indeed,
by taking the third component of (1.18), one gets that on the upper boundary {z = 0},

7 — adivPu + 2udfu - N+ pu[(Vou — (V¥u)") - N,
€

= 2u + A)divPu — 2(01u1 + duz) + p(w x N)3.
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Note that we have used the identity
82/)1/{ -N = div¢u — 81141 — 82142 (4.5)

which holds indeed in the whole domain S. For the second identity (4.2), we have that
on the upper boundary:

pw x N = ull(w x N) = 2uIl( — (V¥u)'N + S?uN)
= I( — 2u(V?u)'N + (o/e — Adiv¥u)N) (4.6)
= —2uI1(d1u - N, du - N, 0)’.

Note that (V¥u)’ - N = (3ju - N, dou - N, 0)' + (3¥u - N)N. The inequality (4.3) can
be derived in a similar way:

pnI(0¢u) = ul2S%un — (V¥u)" - n) = —puI1((V¥u)" - n). 4.7)
The inequality (4.4) follows from direct computations and identity (4.5).

Remark 4.2 By the identity: [N|0¥u = d4u — n1d;u — nydru, we have also:
|N|H8fu =T1(01u - n, dou -n, 0) — IT(n191u + M dru). 4.8)

Remark 4.3 In view of (4.5), (4.8), we have that 8¥u ~ div¥u + dyu on {z = 0}, so
that:

1
b,1 ~
|(V¥u) 2k S A<c MdivZullo,co,r + Nl 00, + |h|l,oo,t>
0

4.9)
(|(diV¢u)b’1|legk + |I/tb’1|Ll2]_}k+l + |h|Lt2gk+1).
Recall that we denote for any f, 2! = f|.—o. O
5 Preliminaries lll: Projection operators
5.1 Definition of the projection
We define the projection operator Q;:
Q : L3S, V)’ — LX(S, dV)’ 5.0)

[—=Qf=V¥
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where p satisfies the elliptic equation with mixed boundary condition:

—A%0=—div’f inS
0l:=0 =0 (5.2)
0l.=—1=f-e3

where e3 = (0, 0, 1)’. We define also the projection
P; =1d — Q. (5.3)

Let us notice that IP;, (Q; depends actually on ¢(¢, -), but we used a lighten notation.

Remark 5.1 Let us notice that the definition of the projection (Q; is not the same as the
standard Leary projection where only the Neumann boundary condition is involved.
Nevertheless, the definition (5.2) is classical in free boundary problems, one can refer
for example to [9].

Remark 5.2 We remark that these two projectors are time-dependent since ¢ depends
on . One also notes that in general, P, V¥ #£ 0, Q; V¥ # V?. These facts will lead to
some extra commutators when we act the projection to the equations (1.16)5.

Let us set v = P;u, VW = Q;u. Applying the P; projection on the velocity
equation (1.16),, one gets:

pdf v+ P V¥ (o /e = 2(u + Mdiviu) = =P, (f — nA¥v) — p[Py, 8 Ju

where

82— P
€

f= ed/u + gou - Véu.

By definition P, V¥ can be expressed as a gradient, we thus denote
Vér =P, V¥ (0 /e — 2(n + A)div¥Pu).
To shorten the notation, we denote further
Vlq = -Qi(f — nA%v).
Therefore, the above equations read:
P37V — uAYv + VPr = —(f + V¥9q + plP;, 87 1u). (5.4)

We are now in position to compute the boundary values of v. On the bottom, in light
of (1.19) and the fact 3¥ ¥ = u3, we get that

a
V3|,=—1 =0, 3;‘0vf|zz_1 = ag’u,|z:_1 — V‘tpaf‘lﬂz:_l = ;uf|zz_1. (5.5
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where V¥ = (37, 05,0), fr = (fi, f2,0)". Note that V¥ = (31, d2,0)" on the
boundary {z = —1} since d;¢|,——1 = 0.

On the upper boundary, one first notices that by definition, 7 |,—0 = o /¢ — 2(u +
A)div?u. Therefore, with the aid of the condition (1.18), we find that:

2S%v — 71d3)N|.—o = 2 (div¥ulds — (V#)2W)N|,—o. (5.6)

5.2 Elliptic estimates

In this section, we establish some useful elliptic estimates in the conormal setting. We
first consider the problem:

—A?0 = —div¥ F
0l=0=0 (5.7)
0l;=—1 =F-e3+g

where e3 = (0,0, 1)!, F, g are given source terms. To perform elliptic estimates, it
would be convenient to write it in a more explicit way. By a straightforward calculation,
one finds that:

1 1 1
div? () = a—div(P-), A a—P*V‘/’, AY = a—diV(EV)

z 4 7@
where
9, ¢ 0 0 1
P = 0 o 0|, E=—PP* (5.8)
—d1p —dg 1 it

Denote F = PF,the equation (5.7) s then equivalent to the following elliptic problem:

—div(EVp) = —divF

0lz=0=0 s (5.9)
(EVo - e3)];=—1 =F""+g
where F3b 2 = fb2. e3. In this paragragh, we study the elliptic equations for a given

time 7.

Lemma 5.3 (Elliptic estimates) Suppose that ||V¢|leo.r < 1/co, ;¢ > co, we have
the following estimates: for any k > 0,

I |
IVe®l g+ IV200l g, S A V2.0 (IVF O,

HIFS + 0] iy). (5.10)
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andfor j+1=k,1>1,j >0,
< 1
IV0Wlrgss S A( = IV 41 1o Mgt o ) IO oy

1
+A(—, |h|[k;3],oo,,>(||F<t>||Hj,z +18(0)] H) (5.11)

€0

1
IVo)llpi < A<£, IVollit) 1 . + |h|[k;3],oo,,)|h(r>| o

1 .
+A<—, |h|[k;3]m,t) (||dwF(r)||Hj,l_1

€0

+|<F3’”2,g><t)|gk_5), (5.12)
V200l < A=, 1l iV F (1) [l9i0 + |(F22, @)(0)]
Q Hj'l ~ CO’ [%]’oo’[ v H]J 3 ’g I:Ik+%

+A(%|||VQ|||[@1],OO,, + |h|[k;s],oo,t)

(nwmno,oo,,m(rn g TR H) (5.13)
£2 18,V s < A(% |h|k+1,oo,z> (ns%atF(z)qu,z + 2381l Ly y)

+85A(%, 1Vell 1,004 + 18thlk-1.001 + |h|k,oo,t)

(kD)1 iy + V0O (5.14)

: 1 oo
le20: Vo) lipit S A(g, |h|[’<;r3],oo,t> <||823tleF(f)||Hj,1—1 +
% b,2
e20,(F ,g)(t)|ﬁké)

I 1
+A<g’ ||8 2VQ||[%],OO,I + |(h’ al‘h, )l[k-;S],OO,t>
1
(I(Sarh,h)(t)IHkJr% +e2[[Ve®)ll gx )- (5.15)

Remark 5.4 We shall use (5.14) when k < m — 3 since as will be seen later, |4],;—2,00.1
can be uniformly controlled. The inequality (5.15) will be used when m — 3 < k <
m — 1.

Proof We first notice that by using assumptions: [|V¢|leor < 1/co, ;¢ > co, E
is uniformly elliptic, that is, one can find ¢(1/co) such that for any vectors X € R3,
EX-X > (| X|*>. Theinequality (5.10) can be proved easily by the variational arguments
and the use of Poincaré inequality:

lollz2s) < ClIVo®)llL2s)-
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Note that the generic constant C is independent of ¢ and €. More precisely, by testing
(5.9) by o(¢), we easily get that:

8||VQ(t)||L2(S) < /SEVQ(t) -Vo(t)dx = —/Sg(t)divF(t) dx
+ / ) 1(F3b’2+g)(t)9(t) dy

b .
= 5IVellzzs) + CsldivE (@)l 12(s)

+I(F 0] )
The estimates of the higher-order norms || Vo(¢) || y«+1 can be obtained again from vari-
ational arguments and commutator estimates. We skip them since they are essentially
included in the proof of other inequalities (for instance (5.11) and (5.13)).
We now begin to prove (5.11). Letar = (j, &'), Z% = (¢9,)/ Z]' 252 Z5* . If a3 # 0,
taking Z* derivatives on the equation shall destroy the divergence form. The trick

to avoid this problem is to use another vector field Z3 = Z3 + 9,¢l1d, such that:
730. = 3. Z5. By induction, we have for any oz > 1, Z 30, = 0 23‘3, which yields

799, =: (0,) 29 25 750, = 0, 2°.
It is useful to notice further that for any f,
I(Z = Z) f D28y S N O llggi-- (5.16)
(S)
Taking Z¢ derivative on the equation (5.9), we find that:
—div(E(Z%V0))=div([Z%, E]Vo—Z*F)+div(Z*—Z*)[(EV0). - F:]),
ZanZZO:O9 b2
Z%(EV0) - e3];=—1={g3=0) 2% (F5""+g).

(5.17)

Note that we denote by X; = (X, X»,0)" the horizontal components of a three
dimensional vector X. Testing equation (5.17) by Z%p, we obtain:

811 2%Voll3 5/ EZ%VoZ%Vodx
S
:/ EZ“VQ-[Z“,V]de—/[Z“,E]VQ-VZ“de
S (5.18)

/(Z“ Z*)((EVo): — Fr) - VZ“de—I—/ Z%F -VZ% dx
S

— / Tio3=0)Z% g Z%0 dy.
7=—1
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Combined with Young’s inequality, property (5.16) and the trace inequality (3.17),
this yields

1Z°Ve®lias) S NIF Iy +18®F,

+(Vo, EVOY D)7y + II1Z%, EIVe®) 72, (5:19)
It follows from the product and commutator estimates (3.8), (3.9) that:

1Yol 10 = A /) (IF (D) llpgrs +180] iy + V0O 37
+ 1YW =101 Ell gt g, + NEON giaIVell ) o,)-
(5.20)

By Lemma 3.8 and the expression of E in (5.8), we get

1 1
NE 2,00, S A (5 |h|n+l,oo,t) MEO Ny S A (5 Ihl[g]H,oo,t) Ih(t)lﬁk+%-
(5.21)

Inserting (5.21) into (5.20), we arrive at:

1
“VQ(I)“]:[/'J <A (aa |||VQ"|[§]_1,OOJ + |h|[k'53],oo,,> |h(t)|[_~lk+%

1 (5.22)
+A (— lhl[km,t) (IF @i +180] 51y

+IVoD)llpgii-1npi-1) -

The inequality (5.11) then follows by induction on j and /.
To get (5.12), it suffices to observe that the last three terms in (5.18) can indeed be
replaced by:

/ Z%divFd,Z%0 dx —/ Z%F3+g)Z%dy, if a3 =0,2%=20,2%
S

——
— / (Z% — Z%)Y(EVo) - VZ%0 dx/ Z%divF (Z3 + 0.¢)(Z%0) dx,
S S
if a3 #£0,2% = 23Z%.
To prove (5.13), we first estimate [|d,Vo(?)|ly;.: and then use the equation itself
to recover ||312Q(I) ll7¢j.1. The estimate of |3y, Vo(7)][y. is almost identical to that of

(5.12). For this one, we only need to distinguish the highest derivatives hitting on E
(or finally on 4). Hence, when estimating the term [Z%0,, E]V o, we write

[Z%dy, E]Vo = (Z%0,E)Vo + other terms
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9 Page360f134 N. Masmoudi et al.

and control the first term as

1
I(Z*3yE)Vo D)l L2s) S IVello.cor A <5 |h|[§]+2,oo,t> (O] 13-

We now sketch the proof of (5.14) and (5.15). For (5.14), we first have the following
inequality analogues to (5.19).

1 1 1
le2Z%8, Vo®ll7a(s) S 23 F (013, + |ezafg<r>|2k,%

1 1
+ 11628, (Vo, EVO)YD)17,01 + 1628, 2%, EIVo(D) ]2,

where the last two terms can be bounded in a rather rough way:

1 1 1
€20, (EVo)(®)llpgia S €20, Vo)llpgii-1 A (5 |h|k,oo,t>

1 1
+e2A <—, IVello,co,r + |8th|k—1,oo,t> (10:h(t)] -, 1
co H" 2

+ 1V i)

1 1 1
e2||[0:Z%, EIVo() 125y < €21 Z% (0 EVo)() 12(s) + €227, E]3; Vo ()| 12(s)
1 1
S We20,Vollyji-1api-10 A o |1k, 00,1
1 1
+e2A (—, IVell,co,: + |3th|k—1,oo,t> (|10:h(1)] ~pal
c0 H" "2

+ 1Yo Ol e ).

The inequality (5.14) then follows from induction on j, /. For (5.15), similar to (5.12),
we have:

1
le2 2%, Vo(®)|3,

1 . 2 Lo b2 2
(S) S Ne20:divF ()ll5,0 + |62 (F3 ,atg)(t)|ﬁk_%

1 1
+ [le20;(Vo, EVQ)O)”;_U,I*I + |29, 27, E]VQ(I)“iz(S)-
The last two terms are bounded as
1 1
le28:(Vo, EVOYD)17,.-1 + I1e28:Z%, EIVo®)|72s,)
1 1
S €210, Vo) llygii-1ppgi-10 A (5 Ihl[szrS],ooJ)
AL ety
+ 5’ “8 Q”[%],OO,Z‘

1
H @k Dl ) (1@ DO] g + 21Vl )
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We obtain (5.15) again by induction on j and /. O

Remark 5.5 Similar to (5.11), (5.15) the following estimate also hold, for j +/ = k >
3,

1
Vo) |l gt < A(—, |h|k_n,oo,t) (nF(r)nHk + 1g(0)] )
co co co H 2
1
+|||VQ|||n,oo,,A<5, |h|[§]+1,oo,,>|h<t>| e (1=0.1), (5.23)
1 1
218, Vo(t) s + €218,V 0 (1)l pgj—1
1 1
SA =, 1hlkoos )| 11628 F(0)l3
(&)
1 . 1 b,2
e ddivE (1) lgia1Tp=1y + €28 (F3 2, )]
1 1
+A(5, |h|k,oo,z)|||ezatvmno,oo,tm(m .
1 1 1
+szA(5, le™2 Vel o, + 10k, ath>|[k;s],oo,,)

X(|ath(t)|gk+% + IIVQ(t)IIHg;U)- (5.24)

Corollary 5.6 Let V¥W = Q;u be the compressible part of the velocity, we have the
following two estimates:

1 1
I9V@l 2 gt + 198 2 S (T +e)2A( Nm,T), (5.25)

)
€0
1 1 1
2 2 4 < - 2 iv? _
llez0;,V \I]”L,ZHC"}) 1S A(CO, |h|L?oﬁm%)||e 0,div u”LtzHc”Z 2

+(T + 8)5A<l,Nm,T>a (5.26)

€0
1 1
2 4 2 ¢
82119 VIV oo 2 + 8210 VVEW| s

N

<al L 39, div? 39
N 5,| |L?°I:I'"_l lle20,div ””L?"HC”Z,*S_F”S t””L;’on*2

+(T +8)5A(%,Nm,T). (5.27)
0

Proof We begin with the proof of (5.25). Let us detail the estimate of || VVOW|| 5 w1,
t co
the other term can be obtained by similar arguments. It suffices to show that:

1 .
VI Wl 1 S A (o Wl .00, IOVl
| 1 (5.28)
Al — h|l . . 2h| . .
+ (CO,Nm,T)q ot F 1AL )

2 2
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9 Page380f134 N. Masmoudi et al.

which leads to (5.25). By definition, W solves the elliptic equation:

div(EVW) = div(Pu),
W|.—o =0, (5.29)
nV|.—_1 = 0.

We apply (5.13) for F = Pu, divF = 8,9 divPu, F2'* = ¢ = 0 to get:

1
2 .
v qJ”LtzHC"Z,*l S A(C()’ |h|[’é’]+2,oo,z) ”aZ(PdIV(pu”L?HC"é*I

1 _1
+ A(g, Il 142,00, + lle ZW|||V;]_1,OOJ)(|h|L? g

D=

1
+ |82h|Ltzgm+%).

By the product estimate (3.8), we find

N
IV 2 et S IVPE 2 gt + ||V<ﬂazw)||LtzH£1

Z

1 .
<A (—, |h|[’§]+2,oo,t) Idiv¥u ||L,2Hc"ff1
co (5.30)

1 -1 -
+ A(a, |l im142,00,0 4 e ™2 (VW diveu)llpm) -1 00,

1
(k] . . g2lh| . . )
(1l gt + €2 i)

[N

Moreover, the Sobolev embedding (3.16) combined with the inequality (5.10) gives
fork > 0,

_1 _1
e NV lig -t 00 S & UV my + IV i51)

1 co t co

2
t co

| 1 (5.31)
< —_ m ~2div¥ m
S A<c0’ |h|[2]+2,oo,t)“8 2div uHLOOH[*J'

Plugging this inequality into (5.30), we arrive at (5.28).
Moreover, by applying (5.15), (5.24), (5.31) to the solution of (5.29), we get (5.26)
and (5.27). O

Corollary 5.7 Consider the elliptic system with nontrivial Dirichlet upper boundary
condition:

—div(EVp) = —divF,
0l;=0 = b, s (5.32)
(EVQ)-e3l;=—1 = F3'" + g.
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The following estimates hold:

1 :
IVolloo,r S A(—, |h|3,oo,t)<||d1VF“L°°H1 + 151 + 18l 3),(5-33)
Co t Hco L Ll H2

o
i H?2
1 1 1 1
e 2|\Vo®) it S A . lle 2VQIII[g]_LOO,, + Ihl[%],oo,t + & 2|b|Lmﬁ[§]+1+

t

TG

_1 1
+e 21\(5, Ihl[kf],oo,,)(llF(f)IIHj,t + Ib(f)lﬁk+%
+|g(t)lﬁk_5>, (5.34)
1
Vel gk N A(a, Ihlk—j,oo,r>(||F(t)||Hg_<0 + Ib(t)lHH% + Ig(t)lL?on_5>

1 .
+A(5, IVollj.cor + |h|[§]+1’oo,t)|h(t)|ﬁk+%, k>2,j=0
ot (5.35)

1 1 1
310,00l < A(%’ |h|k+1,oo,t) (nezatF(r)nH;«o
1 1
Hedab0)] 1 +edag ] 1)
1 1
+82A(5, IVolli,co,r + 10:hlk—1,00,r + |h|k,oo,t>
(|8[h(t)|ﬁk+% + Vel gx ). (5.36)

Proof We introduce the lifting:

_ 2/:\2 A
o (t,y,2) = F L (@b, ) +2),
and reformulate the problem as:

—div(EVe!) = —div(F — EVo™)
QL|z=0 =0
0:0 ;=1 = (F — EVo) -3+ g.

We apply Lemma 5.3 with F — EVo" . Note that we use again the product estimate
(3.8) to bound E V. Moreover, Young’s inequality and the definition of o give:

IV Ollsgir S BON ey 1V gy oos S 1Blg e S 18]

~rk + .
LZOOH[2]+1

O
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6 Regularity of the surface

In this section, we prove some regularity properties for the surface /4. Here and in the
sequel, we will denote m > 7 an integer. We also recall that Ny, 7, En.1, Am.1 are
defined in (1.31).

Lemma 6.1 The following regularity estimates hold: 0 <t < T,

3] 3 +e2|3h] - < Emr +EX 6.1)
82|8 hl 3 |828 hl 3
H 2 I & )
1
+ 3 let(edy) Rt 5A<—,Nm,r), (6.2)
2 CO
k<m-—1
1
h> el 5Y,§<0)+T%A(—,Nm,T), (6.3)
LPH" 2 LPH™T2 co

where A denotes a polynomial that may change according to the contexts.

Proof Proof of (6.1): We have by using the equation (1.17), the product estimate (3.5)
the trace inequality (3.17) and the definition of &, r that:

[\J

1
NIy =l NI

S (14 lul o ns -|—|h| m%)|82(th)|

2 (71

S L+ En, T)(||82(M vu)llLoon 1+82|h| Lof m+1) mT+5mT

Note that we have [m 1] +1<m-2, [ ]—|— =m-—5 L for m > 5. The quantity
|0:h |L°°H’”‘ 3 can be dealt with in the same way, we thus 0m1t the proof.

t
Proof of (6.2): Let us detail the estimates of the first two terms, the last one can be
controlled by similar calculations. Again, we use the equation (1.17) for A, the product
estimate (3.5), the trace inequality (3.17) to obtain that

1 1 1
e2|oh| .. 1 S |(e20u-N,u-e29,N)| . 3
0]y S (670 Nl g
1
§|828tu|L 2 gl +3 1Al LA™ 1+(1+|h| L% J+”)|828tu| 28" m-3
1
+|828tk|L$°H’"‘%|M|L2H[m]+3+|828th| 12 ]+]|M|L2 m3

1
5 A<_a Nm,T)~
co
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For the second term, we use Equation (1.17) and the trace inequality to get:
292h < lle2d,0.(u - N 29,(u - N
€207R1, g S e300 Nl s + 1820, M)l .
With the aid of identity (4.4) and the product estimate (3.8), we then find that:

16292 g
t

I\J\m

1 1o :
< A(_o A t)(||eza,dw‘ﬂu||L;>0H:;3 G, &2 000l oo -2

+ [(h, sf@hﬂLMw%)
1

S A(_’ Nm,T)-
€0

1
Proof of (6.3). We first explain the estimate of |h|L°°Hm‘% . Acting ZO‘Ay2 (la| <m —

1,23 = 0) on (1.17), one obtains:
1 1 1 1
(O + uydy)(Z*AFh) — ZAjuz = f =: [A3, uy]Z*0yh — A3 ([Z%, uy1dyh).
1
Multiplying this equation by Z%Aj h and integrating in space and time, we get that:

1
Z* AT RO S1Z°hO)F

1 2 2 2 64
TNl oo (3P + 1Ty + )
By the trace inequality (3.17),
s, et S V2, 6.5)
L2A™

To estimate the first term in f, we apply the commutator estimate (3.3) to get that:

|[A2,uy]z°fayh|LzL2 S1ZE0yh oy byl
(6.6)

1
@, Vil gzsy S T2Em 7

Sl e
L2H

For the second term in f, we have by the commutator estimate (3.6) and the trace
inequality (3.17) that:

LZ%, uyldyhl 5 0 Slul o 1|h| -} +|h| LIV Ul B
L7H?2 L;H 2 2 LyH™ 2 (67)
<g
~ m,T‘
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m

Inserting (6.5)-(6.7) into (6.4), we achieve (6.3) for | A |Lc>o u
t

could be handled in a similar way, upon using the uniform boundedness of

1
1. Theterme2 |h 1
4 Bl ey

1
£2|Vull 2 0

7 High order energy estimates

In this section, we prove two kinds of energy estimates, namely the ¢—dependent
high order conormal energy estimates involving at least one spatial derivative, and the
higher order estimates when only the time derivatives are involved. These quantities
we are going to bound appears in the definition of energy norms Epjgn m,7 in (1.32)
and are necessary to prove the uniform estimates shown in Sections 10-12.

7.1 Energy estimate I: Highest order energy estimates

Lemma 7.1 Suppose that (2.2) holds for some T > O then for any 0 <t < T, then
we have the following energy estimates:

1 1
ell (@ )17 gy eI Vull72 0 S €l (0, u>(0>||%,£+(T+e>zA(5, Nm,T).
(7.1)

Proof Let us start with (7.1) for m = 0 which is standard. Performing direct energy
estimates for (1.16) we get by identities (3.30)-(3.32) that:

1 t
5/(g1|0|2+g2|u|2)(t)d1),+/ /2/L|S‘pu|2+k|div‘pu|2dvsds
S 0 JS

1 2 2 1 ¢ .0 2
=3 S(g1|0| + g2|ul7)(0) dVy + 5 S(at g1 +div¥(giu))|o |- dVds

t
—a// |u,|2dyds
0 Jz=-1

where u; = (uy, uz, 0)". Thanks to (2.1) and assumption (2.2), we have:

(7.2)

. 1
187 g1 + div® (g1u)llo,00,r < A(a, l(o, w100t + V(0 w)llo,00,r + [7]1,00,1)

1
S A (_, Am,t) .
€0

In view of the Korn inequality (3.34), the trace inequality (3.17), one gets by using
Young’s inequality that:

1
1@ )1 7e0 2+ IVall72, 2 < 1100, u0)l172 5, + A(a’ Am,t) I w72,

1
< N0, w0l s + TA(%’ Am,,> TCAnIFos (7.3)
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We now detail the high order estimates in (7.1). Let « be a multi-index with 1 <
|| < m, applying Z% on the equation (1.16), and denoting (6%, u%) = Z%(o, u), one
obtains the system:

g1(df +u - Vo4 —co L[z dive]u,
2 +u - VO —dive Z LOu+ V0 =C¢—L[z%, V¥lo+[Z%, div? 1L u.

(7.4)
where the commutators are given by:
ce =z~ %]8@0 +[Z%, g1uylVyo + [Z%, g1U.0;]o,
(7.5)
co = [z %]ea,u + (2%, gouyIVyu + [Z2%, g2U.d-1u,
with N_ 3
u . J—
U, =22 (7.6)
0z¢
Note that we have from (1.15) that
o +u-V¥ =20 +u,Vy,+U,o,. (7.7)

The energy equality then reads:

1 t
—/(g1|0“|2+g2|u“|2)(t)dvt—|—/ /2,u|Z“S“’u|2+A|Z°‘div‘/’u|2dvsds
2 /s 0o Js (7.8)

=Fy +F'+-- + FY.

where

1
Fy = /S(g1|aa|2—|—g2|ua|2)d]/0,

2
1 t
Fi' =3 /0 fs (87 &1 + div? (g1w)0*|* dVyds,
t
Py = _f / [Z% NI(LYu — (o/e)Id) - u® dyds [ig;—0),
0 Jz=0
t
Fy = / / Z%L%u - [Z2%, V¥u dVyds,
0 JS
1
F} = —f /[Z“, div?1L%u - u® dVds,
0 JS
1
F3' :/ / Coo* +Cy - u* dVds,
0 JS

1 t
F¢ = ——/ f o%[Z%, div?u +u® - [Z%, V?]o dVds,
&€ Jo JS

t
F = —af / |Z%|? dyds.
0 Jz=-1
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The first two terms can be controlled directly by:

1
e(FS1+ IFED) S el 290, ) 0|25, + TA (5’ Am,t) 120 12 25

(7.9)
For the boundary term F5', which vanishes identically if a3 = 0, we split it as:
t
Fy = —/(; Z:O(ﬁ“’u — (0/e)Id)Z*N - u® + [Z%, (LYu — (0/&)Id), N]u® dyds
=: 5 + F.
By duality and (3.4), F} can be bounded as:
PSS LU = @/ oy 1| ()] 2t 2N ot
By the identities (4.1), (4.3), (4.4) and the definition (1.33), we have:
(LOu—(o/D " 1211 00 S A(% im0, F AV Ul )1 oo
+|||u|||[r;],oo,t> (7.10)

1
5 A<_9 Am,t)-
€0

Hence, by the trace inequality and Young’s inequality, we get that:
el ES | < 8l Vul2s,, + (12012, | + 112, ) A —. A
2= L7 HE, LgH% L7L? o T

For F73,, we use successively the Cauchy-Schwarz inequality, the estimate (7.10) and
the trace inequality (3.17) to get:

F51 S 1™ 212|127, £ = (o /o)A N[ 2
N |(Ma)b’1|L12L§(|(£(pu, o/ m1-1,00, /Bl 2 m + (LU 0/E)] 2 m
|N|['"T+‘]+1,oo,t)
1
< 8IVuly + C(SA(a, Am,,)(uun%m,t

. (p 1 90 2
+ VAV ull 2 gt 14V ul] 2 e+ 1R17 2 )-
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To summarize, we can control & F' as:

1 1
e|Fy| < 28¢(Vull},, + CaA(a, Am,t) (Tsm@wﬁw +e2(luln,
t
+e||Vdiveul?,, . ) ). (7.11)
L7 Hg,

Let us detail the estimate of F3'. We use the estimate (3.23) for n = 2 and Young’s
inequality to get that:

o o P
eF| < el Z°L u||L;L2<||Vu||L;Hg_1 + |h|Ltzﬁ,,,+;)

1 |
5 2
A(—, |hlm—2,00,t + €2 |||VM|||2,oo,r) < delVull}2ym
(o)) t Heo

1 2 2
+ A(gv Am,l) (SHVMHL,ZHC"],I + T8|h|Loogm+é)-

t

(7.12)

Similarly, for F4, by Holder’s inequality, the commutator estimate (3.23) and the
definition (1.33), we find

|8Ff| =< 3||”a||L12L2||[Za, dngﬂ]Ewu”LtZLZ

1 1 1
S e2 ||u“||L%L2A<5, |lm—2,00,r + €2 |||v£¢u|"2,oo,t>

1
(|h|L,2I{7’"+5 + ||82V£‘”u||LtzH£1)
1 1 2
S(T"_S)zA _,Am’t gm te
Cco ’
(7.13)
Next, we control Fjs as:
1 1
e|FS| = T2)le2 (0%, u)|lpeor2lle2 (G5 CDIl 212

It thus remains to estimate (Cg, C) defined in (7.5). Taking benefits of the commutator
estimate (3.9) and the estimate (3.13) for g1, g», we obtain:

1 1 1
le7 (€8 CDN 212 S A(%’ Am,t>(||(o, llpns €2 lhl )
Therefore, we obtain:

1
eF2| < TiA(—, Am,t>€,i . (7.14)
C0 ’
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Let us split ' as: F' = F¢'| + F¢', with

1

t 1 !
F¢| = __/ / o“[Z%, div¥]u dVids, Fg', = ——/ / u® - [2%,V¥]o dVsds.
eJo Js €Jo JS

For F¢', thanks to the commutator estimate (3.23),

1 1
Y1 <|eg"20% 2 @ div?
e Fg 1 S lle™20% 12282 I1Z%, diveTull 2,2

1 _1 1
S (le2 00|l 2qm-1 + e 2Voll 2 gm-1)(e2 |h|L,2FIm+%
3|V N
+ & H u”L,zHgﬂ_]) aa m,t

1
< (T+e)éA<—,Am,,>53”.
(o)) ’

(7.15)

Similarly, by using the fact that (recall m > 7),

_1 1
e 2 |||VU |||2,00,t 5 A(%’ Am,t)a

we finally find:

1
o
leFgol S IIMIILgHC:g(IIVGIILtzHg1+|h|Lt2gm+l |||VU|||2,oo,z)A<£, |Alm—2,00,

)
(7.16)

S|

1
S (T+e)%A(—, Am,t)e,i -
Cco ’
Gathering (7.15) and (7.16), we find that:

1
leFE| < (T+e)iA<—,Am,,>£3”. (7.17)
Cco ’

Finally, for the boundary term F', we apply the trace inequality (3.17) and Young’s
inequality to get that:

(7.18)

6| Ff| S 88l VZur sy + CoTel Zuel} oo s

Collecting (7.9), (7.11), (7.12), (7.13), (7.14), (7.17), (7.18) and summing up for
|a| < m, we find by Korn’s inequality (3.34) and by choosing § small enough,

1 1
ell(@. g0y + €NV T2 S €110 )OI + (T + s)2A(5, Am,z>5,i,,.

O
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Theorem 7.2 (Estimates for High-order time derivatives) Under the same assumption
as in Lemma 7.1, we have the following estimates: forany 0 <t < T,

2

2
ell9: (o i) poogym—1 + €N Vel 2501

) (7.19)

1 1
< elldy (o, WO 2 s + (T +e)2A<a,Nm,T

Proof Due to the singular terms in the system (1.16), we need to deal with the zero

order and the higher order estimates for 8% ¢ (o, u) differently. We will prove in (8.2)
the zero order estimate:

1 1
ell; (0. 1) 7 oe 2 + €0 Vil 5 < €lly (0, 1) O)II7 + (T + e)zA(a,Nm,T).

Let us stress that this estimate does not depend on the higher order estimate to be
shown here and vice versa.

We now focus on the higher order estimates. Substituting Z% by e Zlg o (1 <k <
m — 1) in (7.8), we find that:
P 1t
| wizioor + alzipul o +e [ [ 2nizbsseur
0

+ A ZE8,div¥ul* dVyds
k k k

(7.20)

where Fé‘ — F7k are defined in the same way as Fj' — F;’ (defined in (7.8)) by changing

Z% into &2 Zé ;. Our following task is to control Fé‘ — F7k one by one. The first two
terms can be controlled by:

1
|F§ + FE1 S elldyo, w3 + TA(%’ Am,,>e||ata||i?on. (7.21)
Now, for the term
k : k o k
Fy =—¢ [Zy0;, N1(Lu — —1Id)Z0,u dVds,
0 Jz=0 &

we first use the duality (-) b Cauchy-Schwarz inequality and the estimate (7.10)
X

to control it as:

k Lk Lk 1
|F5] S lgzZOaIulL%Hé|82208th|L,2H5A(£’ Am,t)
1 1 o
+|822’58tu|Lt2L§|82[Z’58t, N, (L — gId)]\L%Lg.
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By (6.1), the trace inequality (3.17) and Young’s inequality, the first term in the right
hand side of the above inequality is bounded by:

1 1 1
5||ezz’gv‘pa,unilzL2 +(T + 8)2A< , Am,,)g,i,t.

€0

Moreover, we use the expansion (3.28), the estimates (4.9), (6.1), the trace inequality
(3.17) successively to control the second one as:

1 1
Cle2 Zgdrul 212 (62 18:h] 12 g | (L7u, 0 /)™ i o,
1
+e2|(L%, /)" | 2 guldrhl gy o)

1 1 1
< 5||szz’(§v<oa,u||izL2 + (T + 8)2A(5, A )em -

Note that by (4.1), (4.3), (4.4), one has that:

1 1 . 1 1
2 (L%u, )" 2 et S (182 @yu, div/i)™ 2 gy + 62 |h|L;,;m>A(C—, Am,t)
0

1 1 1 ) 1
S et (lqulngHCrg—l + &2 ||VM||LI2H3; + &2 ||Vd1Vu||LtzHg—1)A o’ At

11 1
+ T2 |82h|L?OI:ImA<5’ Am,t)
1 1 1
5 (84 + TZ)A<_’ Am,z>gm,t-
o
We thus find that:

1 1 1
|F¥| < 23||gzz{;v%"a,m(izL2 + (T + 8)2A(g, At )m - (7.22)

Next, with the aid of the commutator estimate (3.25) and the estimate (6.2), we can
control the commutator [Zlg 0;, V¥]u as:

k 2
I[Z¢ 0, V(p]MHLIZLZ S (|88[ h|L2 m—3 + ”88t8z”“L127—[mmeL?0Hl)

1 1
A (o W0l [ 2000 2,00,

Coy :
+ /|eza,h(s)|m_2,oods )
0

< A(i,Nm,T>.

€0
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Therefore, we bound the term
t
Ff = ef / ZE0,LOu - [Z5,, V1u dVids
0 JS
by using Young’s inequality and the assumption k < m — 1,

1
|F¥| < 8el| 250, Voull?,,, + A —, Nt ). (7.23)
L7L o

We proceed to estimate
t
Ff = —8/ / [2168,, div?1L%u - z{;a,u dVds.
0 JS
By the expansion (7.29), the estimate (6.2), and the assumption k < m — 1, we obtain:

1
2 ¢ .
_%—I—g 0. L “||L,2Hm—1)

m

1 .
le2[Z8a,, div?1L%u 27 S (|88,2h|L2ﬁ
t

|
A(aa g2 "lazﬁ(pu"l[%]—l,oo,t"—lalh|[mT—1],oo7z+|h|[mTH]’oo’t)

< A(i,Nm’T).

€0

We thus control F, f by the Cauchy-Schwarz inequality:

k 1ol Lok
|Fy | = T2e20ull ppopge €2 [Zg0r, div 1L ull 125

1 1 (7.24)
5 T2A I Nm’T .
o

The next term Fsk is defined by
t
FF=¢ / f Ckzbd,0 + CX - ZEd,u dVyds.
0 JS
To continue, we need the following proposition to control the commutators & > (C(’ﬁ , C,’j ):

Proposition 7.3 For commutators

81
C!; = |:Z]68[’ e :|88t0' + [Zl(;at, gluy]vyo' + [Zgat9 gleaZ]G’
(7.25)
81
Cl/]: == |:Z]0<al’ ?:|88ﬂ/l + [Z](;at, g]uy]vyu + [Zgal’ glUZaZ]M'
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we have the estimate: fork <m — 1

1
||8%(C§,CL]§)”L12L2 §A< NmT)

co’

We will postpone the proof of this proposition and continue to estimate the remaining
terms Fsk — F7k. By using Proposition 7.3, Fsk can be estimated as:

1.1 1 1 1
|F5k| S T2|le2d (o, M)HL;’OHmfl ||82(C§,C]J)||L3L2 S T2A<5,Nm,T)- (7.26)

For the term
t
Ff = —f / Z8d,0 - [Z8d,, div¥lu + ZEo,u - (250, V1o dVyds,
0 JS
we can apply commutator estimate (3.25) to obtain:

1 .
e 2(IZ§0r, divelull 2,2 + 11Z50r, V1ol 12,2)

1

S A= N (1820281

co’ TH"

3

2

1

0;V(o, ”)”L,ZH’”*ZOL?OHI) S A a,Nm,T .
This estimate, combined with the Cauchy-Schwarz inequality, yields:

k 3 !

|F| ST2A( —, N7 |- (7.27)
€0

Finally, we control the last term

t
F;‘ = —as/ / |Z§8tuf|2dyds
0 Jz=-1

by the trace inequality (3.17) and Young’s inequality:

t
1
FF < 58/ / 1288, VOu|*dVyds + (T + &) A(—, Am.)En - (7.28)
0 JS €0 '

Collecting (7.21)-(7.28), summing up for k < m — 1 and choosing § small enough,

we find (7.19). O
We now give the proof of Proposition 7.3.
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Proof of Proposition 7.3 We use the following two expansions
Lo 1 L
e2[Zy 0 fle = Y (ChzZogZy ' era, f)

0=l=[5]-1

1 1 _
+ Y. (Chzyler0,825 7 f)

[7]<l=m—1

(7.29)
1 _ _1—7 L 1 _
e2[Zy "o flg = > (ChZogZy ™ Terd, f) + ChZoe2 0,825 2 f
0o<i<1
1 1 _
+ Y €Lz letagZy T ).
3<i<m—1

In light of the second expansion, we control the last term in C,’f‘l as follows:

1 _ 1
e2 12~ 00 1Uz10:u) 22 S Mzl oo 18784 (1U2) | 2gm

1 _ 1
+ €20, 0zull poorg 1 2 z(gle)HLgoLZ + [le2 8 0zull f29m—1 181Uz llm—3.00.1
1
SJ A(_3 Nm,T)-

]

The remaining terms appearing in C’(’I”_1 , C,;”_l can be estimated by using the first
expansion:

1 _ _ _
le2cy =" =t =125 0y, @1 UL 10wl 22

2
1
S Y Lle2di(gj /e, gjuy, ;U 231 (N0, Wl ).000 + IVO N2 -1,00.0)

j=1
1
+lledi(gj/e, gjuy, iUty €2 9:(Zo, V) (o, M)llL;Hm_z]
1
5 A<_a Nm,T>~

€0

7.2 Energy estimates ll: High-order energy estimate for the compressible part of
the system

In this step, we estimate the compressible part (V¥o, div¥u) :

Lemma 7.4 Under the same assumption as in Lemma 7.1, the following estimates
hold:

IVediveu|?

e((V¥o, diveu)]|? 121

LOHM! +

1 > A (7.30)
S A(a, |h12,00,1) Y (0) + (T + 8)2A(£,Nm,T>,
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Proof Let B be a multi-index satisfying |8] < m — 1. Applying Z# V¥ (resp. ZP) to
the equation for o (resp. u), we find that:

2187 +u - V‘/’)ZﬂV‘po—l— ZPVediviu= Rﬁ
2287 +u - VO ZBu+pcurl? ZBow — (2M+A)V‘9Zﬂdlv‘/’u—|— 7ZPVeo= Rﬂ
(7.31)

where
RE=RE, +RE,+RE,. RE=RE +...RE,. (7.32)
with

Rﬂ = 2P (V¥218¢0 + V¥ (giu) - V¥0),
ul = [ZF, g2/eledru + (2P, g1uy]Vyu,
= [ZF, g1/e1ed, VY0 + (2P, g1uy1V, VY0,
R 2 =[2°, 1U.d.]u,
RE, =12, g1U.8.1V%0,
RE 3 = —ulZP curl?lo + Qu + V2P, V91diveu
and U, is defined in (7.6). Taking the scalar product of (7.31) by (ZPV¥o,

—Vv¢ZPdiv¥u)" and by integrating in space and time, one gets the following energy
identity:

1
3 / (611Z° V90 + ga ZPdivul?) (1) AV, + @u + W IVE 2P diviul

B B B
T S L (7.33)
with:
1
5 =35 [ (128590l + gz’ diveu?) 0 av,
S
1 t
= —f /(8?81 —I—diV‘p(glu))|ZﬂV¢G|2stds,
2Jo Js
t
Jzﬁ = / / (Vg - 3Y ZPu 4+ V¥ (gou) ® V‘pZﬂu)ZﬂdiV‘pu dVids,
0 JS

t
J3ﬂ :/ /gz(af—l—u~V‘p)([Zﬁ,div‘p]u)ZﬂdiV‘pustds,
0 JS

t
Jf :/ / 22(0; —|—uy8y)Z’3u -NZPdiveu dydsIig,—o},
0 Jz=0
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1 t
I = ——/ / ZPVeo(ZF, V¥ ]divPu dVyds,
€Jo JS
t
J6’8 = u/ / curl? ZPw - V¥ ZPdivPu dVyds,
0 JS
t
i =f / RE . 7PV + RE .V ZPdiviu dVyds.
0 JS
The first three terms can be controlled directly:

eJl < el|(V¥a, diveu)(0)| (7.34)

Hm Is

8(]1 + Jz) < &(||(o, u)IIEm .+ |h|? L2gm 1) (7.35)

D—

In order to bound J3’3 , we need to control (8;0 +u-V9[ZP, div¥]u. By the identity
(7.7), we can write

2 Uz
) +u-V? =0 +u 0 +uyd + ?Z}

uN 8;(/)

Since U, |ys = = 0, we have by the fundamental theorem of calculus and

(3.20) that:

los =

1
Uz /#Mo,00.t S MUz 32U M0,00.0 S A(— (e, Vi) llo.00.r + 1]2.00.1)

S A(L Am,t>. (7.36)

€0
Therefore, we see that:
1 +w- VOIZP, divelull 2,2

1 1
< EA(_’ Am,t) (€8s, £2)[Z°, div¥ull 22 (7.37)
Cco t
Let us first consider:

ed[ZP, div¥lu = ea,(ai[zﬂ, 3 lu) + [ 2P, gat(al)]azu +[2?, ai]ga,azu.

[4% % [a'%

In view of Lemma 3.9, the identity (3.27) and the commutator estimate (3.9), the first
two terms in the right hand side of the above identity can be bounded by:

(IIVMIILsz 1+ (R, 8ath)|

l\)

1
A (5, IVl 0,0 + 1Al 142.00.0)-
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For the third one, we control it as:

B N
ZP, — |€0;0;u
0z

Vu
b0 IVulli, oo,

2 m—1
L:HY,

~

< ‘

L7212

1( N !
+ lle2 (ﬁ) llm—2.00.¢ €2 0: 0zuell 12 2

Z

1
S A<_’ Am,t>gm,t-

€0

Gathering the previous two estimates, we find that:

1
||88,[Zﬂ, diV‘p]M”LtZLz < A( , Am,t>5m,t-

€0

In a similar way, we have:

1
leZ[ZP, div¥lull 22 < A( ,Am,z>gm,t-

<o
Plugging the above two estimates into (7.37), we can then control J3ﬂ as:

1
el S erldiveu/e? | 2ot e @f +u- VOIZP, div/lull 2,

i 1 ) (7.38)
ceta(l A
Cco ’

We now switch to estimate J, f . On the one hand, if Z# = Z’(;, k <m — 1, we have by
the trace inequality (3.17) that:

1
1 1
S (20 (. Viyll p2qm-1 + 1162 Vaell 2 gm ) Alllello,c0.0) S Allluello.co.0)Em.r-
Therefore, by the trace inequality (3.17), we get that in this case:
edf < e\ Zkdivoul 2,016 (0 + uydy) ZKul 2,0 IN|
4~ 0 L2218 808 T Uy Oy) Lol 22 1N10,00,1
1o 1 1 ..
S e2(1divou/e2 17 5y +e2 VAV Ul o0 +E5 A Uullo oo A co.0)
13 13

1
S e2 Allullo,co,+1hl1,00,0)Em - (7.39)

On the other hand, if Z# contains at least one spatial tangential derivatives dy,, dy,, we

control 8.]3/3 as follows. By the equation (1.16), and the identity (4.1), we can express

div®u on the boundary {z = 0} as:

div¥u = eg1(0; + uydy) (ediv¥u + 2pue(dyuy + druz) — pe(w x N)3) on {z = 0}.
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This, together with the product estimate (3.14), the identity (4.2) and the trace inequal-
ity (3.17) yields that:

1(ZPdivPu)b!|

L?H™2
< 1divew)? 5 <el(diviu)t, a,ubt, (0 x N o
Sl oy S el(@vin! o @ < N)| e
1 1 1 .
§82(82(|h| T + ||Vu||L2Hm 1)A< 0 .Am,,> +82||Vd1VM||Lt2HCn(1;1

1 1
+é& 2 Vu ”erHchA (5 , |k |2,oo,t)),
which, combined with the Young’s inequality, allows us to control € J f as:

B 1 1 _1_g .
EVARS A(a, |h2,00,1) 182 (€3, SZ)ZﬂuleH% E zzﬂdmetzH_l
L. 1
< 82 VAV u |2, 1 + Colle? Vull2z , A(— o hhoer) (740)
1 1 2
+T2A _,Amvt 51’71['
C0 ’
In view of (7.39) and (7.40), we find that:

1
771 < 8eAVAN Ul s + Colle Tl A 111 c)

co

1
(T +e)5A<—,Am,,)5,31 N (7.41)
Cco ’

Next, thanks to (3.23), Jsﬁ can be bounded by:

el < e/l 2o (IVAV ] 2 g2 + 1B Lt
1 Y
(= 1hlm-2.00.0 + 18:div¥ull1,00.,)
€0
| | 1
< ¢2 2112 . _
S e (IVa/e2 15 1 + 1VANuly o + 1T, _Z)A(CO,Am,t)

1
£2

N

1
A(_, Am,t>gnz,l r-
Cco ’

Note that by the equation (1.16);, we have 0,div¥u = 0,(g1€9; + su, 9y + eU;0;)0,
we thus get that

(7.42)
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18:div ull 00, S A(1/co, (0, VO ll2,00, + Nty Vi)t 00,0

1
+|h|3,oo,t) N A(g, Am,t>~

For the next term J6’3 , we assume f3 = 0, since otherwise it vanishes identically. It

follows from integration by parts that:

t
J6ﬂ :,u/o / O(Zﬁa) x mI1V¥ ZPdiv¥u dyds
7=

13
+u// ZP (w2, —w1,0) - (3y, 0)ZPdivPu dyds
0 Jz=-1

B B
=Jo1+t Jo

where ® = V¥ x u = (w1, w2, w3)". In light of the boundary condition (1.19), we
have by integration by parts along the boundary and the trace inequality (3.17) that:

1 1 1 1
Se2(flull?, 182 Vull 7 + lull g2 gm)

B b,2 . b2
‘9‘]6,2 < elu |Ltggm|Zﬂ(dlv‘Pu) |L,2L2 S L2 L2

1 1 1
i@l 2 IV Aiv? 1l 2 . -
(J|div u”L,ZHggug Vdiv uHL,zHc"Z*l + ||div u”LtzHZﬁ 1)
1
S Szgr%z,t-
(7.43)

For Jé \» since ITV? = TI(d1, 92, 0)', we also integrate by parts along the boundary
to get:

1 .
sJé1 < 8A<£, Am,t) (!(Zﬂ(a)b’l X 1), Z’Sn)|L2H% |Z’3(dlv‘pu)b’1|L2H%

+[(ZPo™, 18,27 m, a)b’l])‘Ltng|Zﬂ(div"’u)b’1|LtzL§>.

Thanks to the boundary condition (4.2), we have that
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Moreover, by (4.5) (4.8), we have:
2P 210 < (1) 2 g + 1@ h>|Ltz;,m)A(%, Am,t),
0,27 1.0 123 5 G0z + 81,300 (A
< (@2 )™ o g+ 1™ h)|L,2gm)A(£, Am,t).
Hence, by the trace inequality and Young’s inequality, we end up with:

. 1
edgy < SelVEAVeullTs 0 + el Vul]s A (o hl2.cr)

. (7.44)
(p 2 m
+A( e mt)<e||de ull32 - 2 ekl oy elullen).
Summing up (7.43) and (7.44), and using (9.4), we obtain:
eJP < 2862 V¥divPul +C A(l |hls, )||82Vu|| )
1 1
+(T + 8)2A<c—, Am,z>5i,t- (7.45)
0
Finally, for J7ﬁ , by Young’s inequality,
eJf < 5el|V ZPdiveul)?, o+ Cse|RP ”L2L2
o2 (1V90/62 12, 1 + eI REN2 ). (7.46)

Hence, it suffices to control g2 | (RE, Rg )| 1212 Let us first see the estimate of ng.
In view of the definition (7.32), we have by the product estimate (3.8) and Corollary 3.5
that

1 B < 1 1 1 _1
e Rg 1 llp2p2 S €2A E’Am,t lullgm s + (280, &2 Vo)l 2 g

(7.47)
+ |h| >
2
Similarly, by the commutator estimate (3.9) and Corollary 3.5, we have that:
1B 1 1 _1
2| Rgoll 22 S €2A o’ At |(Nullgn s +lle” 20| gm,
AL e ): (7.48)
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For Rg 3, we split it as:

RE L =[2P, 1U./$12:V%0 + (21U./$)[ZF, $10. V9o
1+a1U,[ZP, 8,1V%0 =: (1) + (2) + (3). (7.49)

Thanks to the commutator estimate (3.9), we have:
1 1
e2| (D22 S 2Vl 2 pyma lg1Uz/@lljms1y o
1
o @
+ &2 181U/ 2 -1 1V2 0 N1 o

Note that as U, vanishes on the boundary, we have by Hardy’s inequality,

1 1 1
e2 18102/l 2t S e 101U 2yt + &2 181Uz 2 g

< 1 . 1
~ A a’ Am,t (”(O" u, VO’ leM)”LtZHL"’é*I + |82h|L21:1m+%

t

2

1
2
+ |8 ath|L12ﬁn171 )'

Moreover, as for (7.36), the fundamental theorem of calculus leads to:

1 1
81U/l o S € Uz Uty o, (1 + 12810001 o)
I 1 Lot o
PN R A IS T e
1 1
+ |82h|[#],oo,t + le2 afhl[’"Tﬁ],oo,t

+ €0y w2y, 00,0 + (A, 3th)|[”2’]+1>-

In view of Equation (1.17) and the definition (1.33), we conclude:

1 1
e2081U/9lms1 oo, S A(a,Nm,T). (7.50)
We thus obtain that:
1 1 1
e2|(Dliz2,2 N 82A<C—,Nm,7>- (7.51)
0

It remains to estimate (2), (3) in (7.49). By induction, one has up to some smooth
function which depends only on ¢ and its derivatives,

(2P, ¢1= Y s, 279,

y<B.lyl=IBl—1
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The above identity, combined with (3.27), (7.50) yields:
1 1 oe 1 1
e2[1(2) + Gl 22 S e2IVPa /e 2 ymr A o’ Am.t )
To summarize, we have obtained:
1B 1 1
82||RJ,3”L12L2 5 A a,Am’t 825m,t- (752)
Collecting (7.47)—(7.52), we thus arrive at:
1 B 1 1
82||R0’||L12L2 SEZA C_,Nm’T . (7.53)
0

To finish the estimates of the right hand side of (7.46), it remains to control Rg which
is defined in (7.32). We first find, in a similar way as for the control of Rg, that:

1 1 1
e2|[(RY |+ RE D202 S ‘9“\(5’ Am,t)sm,t. (7.54)

From the identities:

N N
[Z8, curl?]w = |:Z’3, —8{| x w, [ZP,V?]ldiviu = |:Zﬁ, —8{| div¥u,
09 0
R5’3 can be treated thanks to (3.23) as:
1 B < 1 1 -
e2Ry sl 202 S A(g, |hlm—2,00,1 + €219 (@, div¥u)l1,00,1)
1 .
(e2 10z (@, div?u)l 2 g2 + R , 1) (7.55)

t

1 1 1
< J— 2 2 m— 2 m .
NA<CO,Am,z>(e 192l 3 -2 + X lullgm s+ 1R, 1)

t

Combining (7.54) and (7.55), one finds that:

1 1 1
e |REN 2,2 S (T + e)zA(g, Am,t)em,t. (7.56)

Plugging (7.53) and (7.56) into (7.46), we finally get that:

1
elJl| < 882||V¢Zﬂdiv“’u||izL2 + (T + g)hx(a, Am,,>531,[. (7.57)
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Collecting (7.34)-(7.42), (7.45), (7.57), and summing up for k < m — 1, we find that
by choosing é small enough,

® v? ) 112 v 112
e||(V¥ao, div M)HL§>°HC’2*1 + ¢||V¥div u“L?Hc’ﬁ*l

. 1 |
S el (Voo dlv(pu)(())'l%ic’?fl * A(%’ |h|2,oo,t> lle2 V‘”u“i%Hm

+(T +e)§A< : Nm,T).

C(),

This inequality, combined with (7.1) leads to (7.30). O

8 Control of the low-order energy norms

This section is devoted to the control of the lower order term &y, 7. and

1 1 3
Elow. = 2100, W) e 12 + €2 @, W) | oo pgs + €3 1VHull 20 (B.D)

Except the first norm, the other norms appearing in &£, r are indeed not crucial to
get an estimate uniformly in ¢. Nevertheless, their presence allows us to take benefit
of the known local existence results [65, 68, 77] (see Theorem 13.1 in Section 13).

Lemma 8.1 Under the assumption (2.2), the following estimate holds:

1 1 1
5120w,T < A(a, IhI%,oo,T)(Yn% 0) + g}%igh’m’T) + (T + S)ZA(a, Nm,T)- (8.2)

Proof This lemma is the consequence of the following three lemmas. O

The first term in &y, 7 is estimated in the next lemma. Before stating the result, it is
convenient to introduce the notation:

1 1 0 -
Adoor = A<a’ (o, w)ll2.00.0 + &2 1(V¥0, divu) I, 00.s
1
+e2[IV2ullo,00, + |h13,00,1), (8.3)

where A denotes a polynomial that may differ from line to line. Note that by the
equation for 4 (1.17), we have:

107 12,000 S A2,00,1- (8.4)

Lemma 8.2 Assuming that (2.2) holds true, then for every 0 <t < T, we have the
following estimate,

1
10,0, 1)1 2 + NV S £l (0, O as) + (T +6)2 Az 7Ep 1
(8.5)
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Proof Denote Zy = €9;. Applying 8,‘p (resp. dy) on (1.16); (resp.(1.16)7), one gets
that:

1
g1 +u-V)(9,0) + -3 divvu = T,
(8.6)
220 +u-V)@3 u)+ -9, V0 — div? (8, L%u) = T,
I

where
To=T+1}+T,). T.=T'+T}+T +7T, (8.7)

with the following definitions:

) )
1) = ( ’8g1>(sat teu Vo, TP =g u-Vie, T} = —ﬁaz(z- Vo),
Z

0
Tl N ( t§2>(8t +u- V)I/t, 7-1,{2 = g28tﬂ‘ Vu,

u

a
7,) = [0, div’1L%, T} = —g2(d w-w(ﬁazu).
Z

where u = (u1, uz, U;) and U, is defined in (7.6). Taking the scalar product of (8.6)
and 8(8,0, df u)t, integrating in space and time, we get by using Lemma 3.12 that

1
2/ g1|a,a|2(z)+g2|a;"u|2(z)dv,—ef /div‘ﬂ(atﬁu)a;‘)u(s)dvsds
S 0 JS

(8.8)
=lo+5L+- 14

where

_¢ 2 ® 12
Iy = > 881|azf7| (0) + g219; ul*(0) dV,

t
I = / / 803/ divPu + 8, V¥o - 3/ u dVds,
0 JS

t
12=f// 10|30 2 dyds,
2 Jo J:=0

e (! .
I = —f / (8,"’g1 + —d1V(g1z3z<p)>|8t0|2(S)stds,
2Jo Js 0z

t
14:8//8,07;+8;pu-7udvsds.
0 JS

We focus on the control of /1 — I4 in the following. Let us with /1, which is the most
involved one and explains why we need to perform energy estimate in this non-standard
way. Let us integrate by parts in space to get:
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t t
nzf /at‘”u-[af,V‘”]advsdH/f 08/ u-Ndyds =: I + By.
0 JS 0 Jz=0

Since [9;, V¥]o = [0, %]GZO’, it follows from the Cauchy-Schwarz inequality that:

N
1Tl S0 ullp2p2 |00 2,0 |||at<8_)|”0,oo,t
’ 32 (8.9)

1 1 -3
S T2 Mg 0182 [ Bht, Vil op2 672V | 2.

~Y

Note that Ay o 1s defined in (8.3).

The boundary term B combined with the boundary term arising from the integration
by parts of the viscous term (in the right hand-side of (8.8)), lead to some cancellations,
we thus first rewrite the viscous term:

1 t
—ef fdiv¢(a,£¢u)-a,‘/’u(s)dvsds =e/ f 0 LYu - V98] u dVyds
0 JS 0 JS

! t
+8a/ / |3tut|2dyds—g/ / atL:wMN-a;pudyds, (8.10)
0 z=—1 0 7=0
=: B

2

In view of the boundary condition (1.18), the identities (4.9), (4.1) as well as the trace
inequality (3.17), we have:

t
B+ By = —8/ / 3 u - (ﬁ‘pu — zId3>8,Ndyds
0 Jz=0 €

<e <£¢u . g1c13)<9,N
&

|3;p“|L,2L§

L?Lg

1

<ez(llezdul?s,, + lezul®s,, + IVul2,,, + [Vdivu)?, ,
~ L?H L?’H L?H)Y L’L

1
A(_a |8th|0,oo,t + |h|1,oo,t>
€0

1
< 8§A27oo,[€31 I

~

We can also estimate the first two terms in the right hand side of (8.10). By using
Young’s inequality and the fact [V¥, 87] = 0,
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t
ef / O L%u - V93 udVyds
A7)
= 8/ / atﬁ(p 8tku — 8—8 V‘pu)dV ds

ze/ f2M|8,S‘pu|2+A|8,div‘pu|2stds (8.11)
0 Js

1 1
— A2 00,tll€2 atﬁ(p””LtZLZ ez 3ZV¢M||L[2L2

t
A
> s/ f w9 S%u)? + =19;diveu|*dVsds — cM,ATAZ,w,t||s%v¢u||§le.
0 Js 2 i

Moreover, by the trace inequality, we have

t
e[ P ayds < selaveuily,,
0 Jz=—1

+T Cel| Dhttr, Vur) oo 2 A2000-  (8.12)

Therefore, we get by collecting (8.9)-(8.12) that:

t
I +ef /divw(a,,cwu)-a;"u(s) dVsds (8.13)

—g/ / 1|9 S%ul® + —Iatdlv‘”ulzdvsds—|—88||8,V“’u||L2L2
+ (T + 8)§A2,oo,tgm,t

We are now left to control /o — I4. The estimates of I, I3 are direct, we write

2] 5 eldrhloo 1210 =017 2

151 S AUV, )l + 10, 0100, + 2.0 ll62 81012 (8.14)

L2
We remark that in view of the boundary condition (4.1), one has
00220 = 3;(0|:=0) = €8; (2p + AM)div¥u — 2u(d1u1 + d2u2) + (@ x N)3|.=).

Therefore, by the trace inequality (3.17), we have:

L] < Slath|oo,t|at0| L2 S (||Vd1V¢u||L2H1 + [ (u, VM)HLsz
(8.15)
+ |h|L2H2)AZOOt S EAZOOZ((: m,t

As for the term 14, it can be bounded directly by
1 1 1 1 1
114 S T2 (e Toll 22082000 Nl o2 + 182 Tull 22 €2 Bull Lo 2). (8.16)
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It thus remains to control the commutators 7, 7, defined in (8.7). By the explicit
expression of 7, 7,,, we can obtain that:

1 1
e21(To. T)ll 22 S Moo (1620, (0. 1) 12,2 + V(0. )]l 251 )
,S Az’oo,[ng. (817)

For instance, since we have:
e2T) = e29¥(g1/e)(ed; +eu- Vo, 2T = e28,(g2/e)(ed; + eu - V)u
by:
162 (T} + T S Avoos(lle2d@. )l 22 + IV 0. 1)1 212) S Moo
Collecting (8.16)-(8.17), we obtain that
1] < T2 Mg 2. (8.18)

Now, in view of the estimates: (8.14)-(8.15), (8.13) (8.18), we get by choosing § small
enough, that

1 t A
58/ g110:0 () 482107 ul* (1) dv,+e/ //LIB,S"”LLIZ—FEIBtle"”uIZstds
S 0 JS

1 2 @ 2 @ 2 1 2
=3¢ 8119:017(0)+g2[8u|*(0) dVo+38e (V¥ d,ull 2 o +(T + )2 A2,00, &y -
(8.19)

From an explicit commutator, We can write that:

t
A
/ /,u|8,S‘pu|2—|——|8,div‘pu|2dvsds
0o Js 2
: 2 AL 2 1 2
> [ [ istaa + S idiveaul dvids - A, THIVHIR o
0 Js 2 '

Hence, by using Korn’s inequality (3.34) and by choosing § small enough, we finally
obtain (8.5). O

The following two lemmas are devoted to the estimates of the other norms appearing
in &pw. 7, for the proof of Lemma 8.1.

Lemma 8.3 Suppose that (2.2) are holds, then we have forany 0 <t < T,

2
L?H]

t **co

3 2 -1 3 2 2 2 -1 2
eIV ps + 67 IV 0N +6VZ0 ISy + 67 1970

SV + (T + &) Aroe il . (8.20)
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Proof By applying 2V to the equation (1.16); and expressing the term & V¢div¥u
by using the velocity equations (1.16);, we find that V¥o solves

Vo = Q) (8.21)

2810 +u- V)V + :
= 2u+ A

where

Q) = —£2g|V¥s (ed; 4+ eu - V)o — 2g1V¥u - V90

LE
curl” w —
2u+ A 2u+ A

g2(0; + eu - Vyu.

Next, by taking div¥ of the equation (8.21), we find that AYc solves:

szgl(at +u-V)AYs + 3 Ao = div? Q; — ezg’IV‘p(f -£0;V¥o

— 2V (giu) - YV (8.22)

=: H.

Standard energy estimates for (8.22) yield:

2
L?H!

t " fco

12 -1 ®
elAY ol ey +e 1A%
< || A% (0) 2 TA e||AYo |
Sell Ol + T At coell 1700 1
1 _1 _1 1
+T20le 2 A%l 21 (e 2 Hll oot + €2 Mioo,1Em.t)

IS DS 1 _1
ST A1 oo i€y + T2 120,V ull oo g + 87 Mg o i ) lE 2 A0 || 21 .
It thus follows from Young’s inequality that

2 -1 2 2 2

Moreover, we can get also that:

2 —1 2
0. A% e + 6 10:0%0 2,

1 .
S eld:A%0 (072 + T Azcos (IleV30 1700 2 + 1628, Vdivie |} o o + €€, )

<SY2(0) + TAz,oo,té’,fw.

Next, we see that:

2 112 2 2 112
eIV ey, S EIVO ey + 02013 o
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By the expressions of A%q,

N2
APy — IN]
0z

920 + Ayo + 31 (N13%0) + 9 (N20%0) + N1 32810

1 N
+N20¢ 000 + ~0,00. | — |, (8.23)
2 0,9

Therefore,

2 12 2 2
eIV ]y S eA1/C0, 113,000 IVO e po + ENAYT ey

SYZO) + (T + ) A200iEL .
Note that |/ 3 o0, 18 included in the definition of A3 o ; (8.3). We have further that:

3 112 2 2 2 2
eIV 12 pn S B0 AY0 2o + 80200, V2021 S Y2O)

+(T + 8)A2,oo,t531,t-
In a similar way, the following estimate holds also:

1312 1212 2 2
& ”v OllLtzL2 +¢ ”v O—”LtzHclU rg Ym(O) + TAQ,,OO,l‘gm,['
The proof of (8.20) is now finished. O

Remark 8.4 In a similar way, one can also show that:
1
V30l 251 S Y(0) + (T + )2 Ems. (8.24)
Lemma 8.5 Assume that (2.2) holds, then we have for any 0 <t < T :

—1 2 2 3. 12 3 4 12
TNV pa + eVl o + £ IVA U,

1 (8.25)
SA 113,00, €NV 117 0 1 + Epignm,s) + (T + ) A2,00.0Ep -

Proof By taking div¥ on (1.16),, we see that o solves the following elliptic problem:
—A%(0/e) = div? G,
o/e = 2u+ A)divPu — 2u (0 uy + dhuz) — u(w x N)3 on {z = 0},(8.26)

oje=—-G-es+pcurl?w-e3 on {z=—1},

where

G = pd%u+ gou - Vou+ 2" Ledfu — Qu+MVediviu.  (8.27)
£
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Note that on the upper boundary we have boundary identity (4.2) for @ x N and on
the bottom, we have

peurl? o x e3 = n(3Y wp — 85 w1) = a(@uy + duz). (8.28)
Applying the elliptic estimate (5.10), we find that:

_1 1 Lo
£ 2| V20 |l peore S A(g’ 1713.00.) (€2 [(diV¥ G, G) | 1o 2

1
FleT2oP | s 16T @)

L L;’OH%)

1 1 1
SA (_0 1713, 00, t)(82 ||d1V¢”||L;>°H2 + ||8231M||L;’°H610
1 . 1
+ ||52 atle(pMHL?OLZ) +82A2,00,:Em 1

S A hoe) V0 e, + ) + 64 AacosEnr
where G is defined in (8.27). Note that by (1.16); and the definition of &, ;,
e2|diveull o> S €2 1V20 [l oo g1 + €2 AdooiEm.
Next, we get by the equation of velocity (1.16) that:
euAfu = go(0; +u - Vyu — (u+ 1) V¥divYu + Vo.

Moreover, a direct computation shows that:

2
APy = |E|3 ¢|)|28Z2 + Ayu + 31 (N197u) + 92(N20%u)
Z
1 N
FN1OL01u + N2d? ou + = d.ud, | —|. (8.29)
2 0.9

By using the previous two identities successively, we find the following two estimates

1 3 1 1 2
e 1V2ullpopz S 82 10 A%l o2 + &2 1920l oo g1 Ao

Se 2||V<7||L°<>H1 +e3]v2 olliLgemy, + 11,

[\SI[9%}

®H
+ “878[M”L§>0H1 + SZAZ,OO,tgm,t-
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and

3.4 3 o2 3 3
t

Y

1 1 3

o3 Lie2 33
S g2V GllLt?LZ +ez||V uHLtZHl +£2||V (o, u)”LtZHClOAZ,oo,t
+ 8A2,oo,tgm,t

1 3 1
S 210l 29 + 21V 21 + (T2 + €)Mz 0 Ems

1
5 Y (0) + (T + 8)51\2,<>o,tgm,z-

Note that in the second estimate, (8.24) has been used in the derivation of the last
inequality. O

As stated in the beginning, we can now finish the proof of Lemma 8.1 since gathering
(8.5), (8.20) and (8.25) we finally obtain (8.2).

In the following several sections (Sections 9-11), we aim to show the estimate of
high order norms &xjgp,m, 1 defined in (1.32).

9 Uniform control of high order energy norms-I

In this section, we focus on the uniform L?H™~! estimates for V¢ (o, u). We first
bound the higher order norms for (V¥o, div¥u) by using elliptic estimates for o and
the equations to recover spatial derivatives from time derivatives iteratively. Then, we
perform direct energy estimates for the incompressible part v (v = P;u solves (5.4))
to get the uniform control for ||[V¥v|| L2H! (and also ||v|| Lo A4S by-product).

9.1 Uniform estimates for the compressible part

In this subsection, we focus on the uniform estimates of the compressible part of the

solution. More precisely, we shall establish the estimate of ||(V¥o, div¥u)||, 2 m-1.
t co

Lemma 9.1 Suppose that (2.2) is true, we can find some polynomial A, such that, for
any0) <t <T,

e NI(Voo, divPw) 17, ey + 67 IVdiveul?

ZHY, L?H[?
| N 9.1)
S A(—, 1h? ~m_l)Y,%,(o)+<T+e>zA<—,f\/m,r)-
(o)) L%OH 2 co
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More precisely, we have for any j,l with j +1 <m — 1,
1 . o1
e 2||(V¥o, div¥u)ll 2940 S (T + 8)2A(C—,Nm,r)
0
1
+ (e2IVdiveul 2 ym (9.2)

1 1 1
+&2[IV¥ull 2 ym + €2 101 (0, u)IIL;Hm—l)A(g, |h|L%oI_}m—é>'
Proof By using the equation (1.16); for o, we have:

— 410
VdivPu = g,(0)ed, Vo + gv<(g1—gl()
I

€0i0) + g1u - VG), (9.3)
combined with the product estimate (3.8), this yields:

! . _1 11
e 2| Vdiveull o pm2 S €72Vl 2 yme +ezA(c—,Am,,)5m,t. (9.4)
co co 0

By (7.1), (7.19), (7.30), (9.4), we can derive (9.1) from (9.2). In what follows, we shall
establish (9.2) by induction on the number of conormal spatial derivatives. Firstly, let
us rewrite the equation (1.16); as:

(gl —£1(0)
&

div¥u = g1(0)ed;o + ¢ gdio + giu - Vo), 9.5)

By the product estimate (3.8), we obtain:
B 1 1 1
e AV ul 2yt S N2k N pn s + 2 A( s Ans )

Moreover, as o solves by the elliptic problem (8.26), we can apply the elliptic estimate
(5.34) with

b=0oc"! g=(epcurl’ w-e3)’?
F = ¢ PG (the vector G is defined in (8.27), the matrix P is defined in (5.3))

and the identity (8.28) to get:

1
€ 2||V¢’0||L2Hm I ,SA(— |hljm ]+loot) <||<9ZG||L,277£'“—1

~ 3
L}H ‘2)

1
+ <— Al 211,000 + 1™ 2Vo, 82G)|||[ = loot>|h|

_1
+ e 2021 dyul?|

=

L?A"™
1
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By the definition (8.27) of G and the product estimate (3.8),

1 1
lle> Gllig 1000 < A(—, Am,r),
o

B —

) 1 1
(uazunL;Hm_l VAo ull 1) + eZA(—, Am,t)f:m,t.

1
2 <
162Gl 2pgn 1 S & -

Moreover, thanks to the identity (4.1) and the trace inequality (3.17), we have that:

1
5 b,2
2 El
2~m_% + ¢ |8yu | 2~m_%

t t

e 2]

1 |
< - 2 iv¥ _
S A<CO, |h|Ltooﬁm;)e (IVull 2 gy + 1V Ul 2 1)

(T + g)éA( ! Nm,T).

co’

Gathering the previous four inequalities, we get (9.2) for j < m — 1,/ = 0. For a
given integer [ (1 <[ < m — 1), assuming now that (9.2) holds for (j,! — 1) with
Jj +1 < m — 1 we then prove that it is also true for (j,/) with j +1 < m — 1. By
equation (9.5) and the product estimate (3.8), we get:

1 1 1 1
€ 2 ||d1V(p”||Lt2Hj,l S lle20roll p29gi + (T + 8)2A<£,var)

1 1 1
< ||8_§V‘p0'||Lt2Hj+l,14 + (T + 8)2A<C—, Nmr>
0

< R.H.S of (9.2).

For the estimate of V¥, we first remark that in the elliptic equation (8.26), G (defined
in (8.27)) can be simplified slightly by changing 8/u into 3 VW, since div¥v =
0, Btwvglzz_l = 0. Denote thus

G = polVOW + gou - Vou + 2P
&

edfu — u + 1) V¥divPu.

We can use again the elliptic estimate (5.34) to get that:

1 1 1
e IVe0l 2y S (T + e)zA(a,Nm,T)

1 1~
+A(5, |h|L;’OFI’"5) (”82 Gll 29450

1
2 iv¥ _
+¢ (”V””L?HZZ + || Vdiv ullleHﬂ 1))
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1 1
<Al = i b A4V ; Vediv? m—

1 1
+||V¢”“L,2Hgg> —|—(T—+-8)2A< Nm,T)-

co’

Since W solves the elliptic problem (5.29), we can apply the elliptic estimate (5.15)
and the estimate (5.31) to get that:

1 1 1o
||€28tV¢‘I’||L[2Hj.I S A(a, |h|[’g]+1,oo,t)5 2 ||d1V¢u||Lt2Hj+lJfl

€0

+(T+s)5A<i,Nm,T).

Combining the two previous inequalities and using the induction assumption to esti-
mate ||div9"u||leHj+1,1,1, one finds:

g2 IV90 | 23450 S RH.S of (9.2).

9.2 Energy estimates: Incompressible part

In this subsection, we focus on the analysis of the incompressible part of the velocity
v = P;u whose estimates can be obtained from direct energy estimates. By (5.4)-(5.6),
v solves the following system:

pof v — uAYv + V9 = —(f + V¥q + plP:, 8 Tu),
uS?v — wId)N|.—g = 2u(div?uld — (V¥)2W)N|._o, (9.6)
Vi1 =0, wdfvjl.— =aujl——1, j=12.

where

Vr =P, V¥ /e —2(n + A)divPu) =: P, VY0, 9.7)

f= ?(88?u+8u-ku)+,5u-v¢’u, Vg = —Q;(f — uA%v).

(9.8)

Before stating the main result for v, it is useful to establish some auxiliary estimates
for V¥m, f, V¥q.

Proposition 9.2 Under the assumption (2.2), the following LZZLZ(S) type estimates
hold: for any m > 17,

1

1 1
_ iv? _ 2 _ 2 L, < _
AN 2 gt Qe Fll 2 g2 €210 f 2y + € ||f||L?oHC@zNA<CO,Nm,T), (9.9)
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1 1 1
1902 -1 + €2 1V9q oo -2 + 2 10V q 2 pgm 2 < A(a,Nm,T), 9.10)
1
IVl s < A(a’ |h|5,oo,,)em,f, .11
1 1 1
IVl 22 S A( o Wrlne.00 ) IVl 2ot +TEA( = Now ), 9.12)
1 1 1 1 1
e IVl oo A(%’ |h|m_z,oo,t> &3 Vull ot + €3 A(Q,Nm,T), (9.13)

1 1 1 1 1
82||atV7T||Lt2HL{g*3 ,S A av |h|m—2,oo,t lle20; (u, VM)HLIZHC"(I,’z + (T +¢)2A E’Nm,T s
9.14)

1 1
I[P, 3?]M||LIZH£*1 + (I[P, a;(p]M”LtooHCn;ﬂ + lle2 0[Py, 3;/7]M||Lt2HCn(572 S A(g’Nm,T)- (9.15)

Proof Proof of (9.9). In view of definition of f in (9.8), we give details for the estimate
of u - VPu and div? (u - V¥u), the other terms can be controlled in the similar manner.
First, for the L™ H”~2 norm, we have thanks to the product estimate (3.8) that:

1 1 1
2w - VO < A(— +ez||V EAY
£2lu MIIL?ng—zNA(CO,IIIMIII[g],OO,[ 2 NVullpz1-1,00,e) 1t 82 V¥ ull oo -2

1
< A(g, Am,T)gm,T~

For the first three norms in the left-hand side of (9.9), we first have by the product
estimate (3.14),

R v( v? .
|lu -V u||Lt2Ho,m—1 + [|div¥ (u v“)||L,27-(0~m—2

0,00,t

1

+ IVAivZully oo, ) (1 VOl 29 g0m-1 + IIV9divYull 29 0m-2).-

. . 1

It remains to control ||d;div¥ (u - V¥u)|| > ym-3 and €2 [|3; (u - V¥u)|| ;2 ym—2. We can
. . t co t co

estimate them in a rather rough way:

led;div? (u - VOu)l 2 ym-3 S (60, V¥u - VOu, 9, (u - V¥div¥u))|| ;>
t co t

S IV¥Pullo oo

m—3
HL'()

¢ ¢ ¢
IVZull 2 gm—2 + lled: Voullo,co,e Vol 2 s
1 1
+&2110,VOull 2 ym-alle2 Veullm—a,00.1
L2H! ,00,

+ |||V‘pdiV(pM|||[%]—2,oo,t||M||LI2H£72 + |||1ft|||[mTfl],oo,,IIV‘pdiV%t||Lt2HCn;f2

1
5 A(_’ -Am,t>gm,T,
€0

1 @ 1 @ 1 ®
82||8t(u'v u)“LtzchZ;2 5 ||(u-828,V u,e20u -V M)HLIZHC"Z;Z
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t
1 1 2 L
S Nullvcorlle?0:Voull 2 ym—2 + ||s28,V‘pu||L?oH$_4(/0 ()15, 00d5) 2

t
1 1 1
1 17 %) > 2
||828tu“Lt2HCrZ_2 IV¥ullo,co,r + IV ullLtzHC”é_2(/(; “8282‘M(S)||m—3,oods)

< A(i,Nm’T>.

€0

Proof of (9.10) Let us now show the estimate (9.10) for ¢. By the definition of Q; in
(5.2) and the fact that div¥ A¥v = 0, g solves the elliptic problem:

div(EVq) = —div(Pf),
q|Z=O = Oa
0 qleei =—f e3l,=—1 + 8

where P and E are defined in (5.8) and g = (A%®v3)?2 = A%w3|.—_;. Applying the
elliptic estimate (5.35), (5.10) for F = f, we find:

1 .
Vgl 2pm1 S A(%’ ln—2,00,0 + I1div¥ fll oo+ '(A‘pvs)b’z

. mot 4 |h] APp3)b:2 , 1
U2t 11 ey + ‘( v3) erﬁW%) (9.16)
1 1 )
e2(|Vgll oo ym—2 S A(—, |hlm—2,00.¢ + 1AV £l oo 1+ ‘(A"”va)b’z 5 )
t co CO t tan L?OHHZM
1 1 1
(&2 2 1(AY)P:2 3
(82||f||L?OH$—2 +82|(A%v) ILooﬁm% +82|h|ngm_%), (9.17)

t t

1
e Vall,2

m—2
Heo

1 | 1. 1
< A(c—, (. €2 ) 2,00, + [l 2dive fll oo g2 + ’(Id, £70,)(A%3)"2
0 co

5)
L*H,?

tan

1
sl ea)

90 22 + s%mtm‘ﬂv)”’%m and -3 FIVal2 ).
(9.18)
It follows from direct computations that:
Av3 = APuz — 3¢9divPu = (37)%uz + (89)%uz — (37 8%uy + 850%us).
This, combined with the identities
=1 =31, 95|:=—1 =102

as well as the boundary condition (1.19), yields:

(APu3)P? = —%(alul + daun)”. (9.19)
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In light of (9.9), (9.16)—(9.18), (9.19), we find (9.10) by the trace inequality (3.17).

Proof of (9.12)—(9.14). Let us switch to the estimate of rr. By definition,  satisfies
the following elliptic problem:

div(EVr) =0,
anZO = 9b’17
3?7.”1:_1 - Oa

where 621 = 6|,_¢. Therefore, to prove (9.11), we apply (5.33) to get that:

IVl 000 S IVl ooz + IVl 003
1

< A —, |h eb,l .

SAC 4ol 2

By using the boundary conditions (4.1) (4.2), we have that on the upper boundary,

0 = —2u(d1u1 + douz) — 2 (T (31u - N, dou - N, 0))3, (9.20)

hence, by the product estimate (3.4) and the trace inequality (3.17), we get:

1
b,1 < 1
01t S V0l + Nl )A (o s )

This ends the proof of (9.11).
Now, we can apply (5.35) and (9.11) to get that for p = 2, 400,

1
b,1
IVl pgm—2 S A( ,Ihlm—z,oo,z)IQ |
t co CO

!p l”!m—;z
—l_ 3 [\ [} ’
P gm—3 m,

In view of (9.20), one has by the product estimate (3.4) and the trace inequality (3.17)
that

(9.21)

671 <a(L |h|m V|
L{J[j]mfk+% ~ C()’ [5]1+1,00,1 LfHCrﬁ_l

1
Al — -
+ (COJAm,T)lhlLf;Hm_

which, combined with (9.21), yields (9.12)-(9.13). Finally, for the estimate of (9.14),
we use the elliptic estimate (5.36) to obtain that:

, (9.22)

D=
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1
2 @ -
& ”8[V ﬂllLtzHLrZ 3

1 1 1
< _ 5 b,1 5 AQ.\D,2
S Y 1 ) S NS G
1 1
+82A(_,Nm7’r>,
0

we thus obtain (9.14) by observing that:

1

5 b,1
£20,0” -
| t |Lt2 m_%

1 1 1 1
S A(%’ |h|m—2,oo,t)52 1|0 (ue, V‘”M)IIL;Hggfz + (T + 8)2/\(5,/\%1)-

Proof of (9.15). Finally, we estimate the commutator between the projection and the
time derivative. Set VYW = Qy 8;0 u, then

[Pr, 0] = —[Q;. 81 = V(¥ — W).
By definition, W1 — W solves the elliptic problem:

o:h
A (W) —3f W) =0, (\vl—ai”\muzo—a’—aw 9 (W1 — 8/ W)|;.=—1 =0.

144

It follows from (5.23) and the product estimate (3.14) that:

IVe (w1 — 9 W)l 2

m—1
t Hco

0,71 X
2

1 orh
S A(_9 |h|m—2,c>o,t + t_
o 0z

)‘(h —0d; V)
LWHZ

1 .
S A (o Wil + 1030, + 1Vl o3,

2 Sm
Lid (9.23)

(19,h] L2/ LIV, 00,0 + 1V, vz‘If)IILsz 18 hlm—3,00,1)-

Combined with (5.25), (5.27), (5.31), this yields the control of the first quantity in
(9.15). The second quantity can be controlled in a similar way, we omit the proof. O

Lemma 9.3 Suppose that m > 7 and (2.2) holds, then we have the following high

order energy estimate for v: forevery 0 <t < T,

||v||200Hm 1+IIV*”v||L2Hm = (— Ihl2 . +Y2(O)>Y2(0)

oj—

©H
(T tetia ( mT) 9.24)
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Remark 9.4 By using the elliptic estimates (5.11) and (5.31), we have:
1 -
VW) et < A(%’ Y[g](0>)<||u<0>||HCn;-l +1hO) 1)

where Y;n1(0) = ||(div?u)(0)|| (=
'z Heg'
Since v = u — V¥V, we thus get:

Is) + 2jai<r2141 1 (Z M O0) Lo g2) S Y (0).

1
1. VA Ol gt £ A Y (0)) Y (0).

Remark 9.5 By the control of normal derivative of the compressible part (5.25), (9.1)
and of the incompressible part (9.24), one deduces that:

1 I 1
IV9ull? s, sA(—,|h|2 . )Y,,2,<0)+<T+s>zA<—,Nm,T).<9.25)
t Heo co L €0

_1

H 2
Proof Let a = (ap, '), o] = k < m — 1. We can assume that Z% contains at least
one spatial vector field (ie. |&’| # 0), since ”v“LtOOHmfl and [|[V¥v| ;29ym-1 can be

derived directly from the norms that have been bounded. Indeed, one has by elliptic
estimates (5.23) and (5.13) that

1
lvll oepgm-1 < Il (us V‘”‘IJ)IIL;mefl S IIMIILgonlA<5, |h|m—2,oo,t>

1 1

+ (T + 8)2A(—,Nm,T).
€0

1

IVl L2 gm-1 S N (u, V*”‘IJ)IIL;Hm—l N A(a, |l —2.00.) I Vitll p29:m-1
1 1
(&)
Applying Z% to (9.6)1, we obtain:

p0f Z% — 2udiv? Z*S%v + V¥ Z%
= —Z(f + VY + pIP;, 0 lu) — [Z%, V] 4+ 2u[Z°, div¥]S%u — p[Z*, 3] Tv.

Performing standard energy estimates, we obtain the energy identity:

1 t t
—,3/ |Z“v|2(t)dV,+2,u/ /|Z“s¢v|2dvsds+a/ / |Z%v |*dyds
2 Js 0 Js 0 Jz=—1

=: Ko+ K1 +---Ks,
(9.26)
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where

1 1 !
Ko = —,5/ 1Z%v]*(0) dVy, Ky = —,5/ f 3:h|Z%v|* dyds,
2 S 2 0 Jz=0
t t
Ky = ZM/ / Z%8%v - [Z%, VP vdVds, K3 = / / Z°Q2uS%v — wld)N - Z%v dyds,
0 JS 0 Jz=0
t t
K4 = / / Z%r[div?, Z%v dVids, Ks = —/ / Z%v - [Z2%, V¥]m dV,ds,
0Js 0Js
t t
Ke = —5/ f Z% - [Z%, 3¢ Tv dVyds, Ky =2M/ /[za,div‘/’]s‘/’v-z%dmds,
0Js 0Js
t
Kg = —f / Z% - (Z°(f + V¥9q + pIP:, 8 lu)) dVds.
0Js
By the trace inequality,

t
2 2 2 2

a Z%v.|"dyds > —§||Vv — Cs(||IVv L+ v ,

/0 fz=—1| |7dyds = 4| ”L%ijo s (|l ”leHCk”l l ”L%Hg,)

(9.27)

we will choose § sufficiently small in the end. Our following task is to estimate Ko — g
one by one. By Remark 9.4, we get that:

Ko < A(%, Y2 (0))Y.2(0). (9.28)

Thanks to the trace inequality and Young’s inequality, K| can be treated as:

2
Ky 5 |8th|0,oo,t(||vzav||Lt2L2“ZaU“LtzLZ + ”Zav”Ltsz)

| (9.29)
2 2 2
< BIVOlGa 0, + Coll VoI s + A 1hloc0 ) IV

For the term /C,, to deal with the commutator term [Z%, V¥]v, we apply (3.24) if
oo = 0 and (3.23) if g > 1 and find that:

1
2, 9 N0liz S A (o U0 108 20 )Ly + e )
1
A 1 S 200 ) 0l 3 (9.30)

D=

1 1
g T A<_7Nm,T) + A<_1 |(h’ gal‘h)|m—2,00,l)||vvl|L2Hf”2'
(&) Cco 1o

Note that by the estimate (5.31), we have:

IVUlli o0, S NV, VO 00,0

1 . 1
< A(—, IVetllio0. + V14,00, + ||d1v¢u||L;»oHCz) < A(—,Nm,f)
Cco 0 Cco
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9 Page780f134 N. Masmoudi et al.

Therefore, by Young’s inequality, one can control C; by:

1
K2 <8IVl + A(g’ Ch, ea,h>|m_z,oo,t)||Vv||§t2H£)_,

1
+T%A(—,Nm,T>. (9.31)
0

For the boundary term X3, we use the boundary condition (9.6); to split it into two
terms:

t
Ks = / / Z*(2p(div?uld — VYVYW)N) - Z% — [Z2% N]2uSv — n1d) - Z*v dyds
0 Jz=0

=: K31 + Ks2.

Since k3 vanishes if a3 # 0, we may assume that Z% = 9, Z%. It then follows by
duality that:

< |7u @ ) R v vI%
Ks1 <12 ”|L3H%|Z (2u(div¥uld — V¥V \I/)N)|L

1.
21

Thanks to product estimate (3.5), we obtain fork <m — 1,

L?H?

V4 (2,u,(div‘/’u1d — (V‘”)Z)N)l |
. 2
S |(le(pM, (V(P) lII)'LIZI:Ik_% |h|LtooI:1[k%l]+2+

R0 ¥)2
1R e 1@V (VW] i

. ) 1
S (IVAivEull 2 g2 + [divZull 2 ym-1) A o Al o gmt T IIV‘Ifllz,oo,;)
co co 0

L
T HT 2

1 1
T2A| — h . .
+ <co’Nm’T> (l lL;’OH’"‘% te L§>°H’"+i>

< (T+e)£A<l,Nm,T).

D —
=

€0

We remark that by the estimate (5.31), one has that for/ < [%]—HJr < [%]Jr <m-3
(sincek <m—1,m >17),

(VW] oo i S IVOVO? W oo+ 1OV W oo
N (”(VdiV(pU, diV(p“)“L?ogl + |h|L;>01:11+5/2>A
1 4
. VoI -1 0o, + 1Al [2142,00.0

1
S A(—, N, 7).
Co
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Therefore, by the trace inequality and Young’s inequality, we get:

1 1
K3 < 8||Vv||it2HCko + C3||Vv||it2HCko,1 + (T + 8)2A< Nm,T>~ (9.32)

C()’

For K32, in order not to involve too many derivatives on the surface, we write it further
as:

Ky = — Atf O(Z,uS(pv —ald)Z*N - Z% + [Z%, (§%v — 71d), N]1Z%v dyds
=
=: K321 + Ka2.
By the definition (9.7) for = we have that on the upper boundary,
T =0=—-2u(01u; + duz) — 2u(M(d1u - N, dhu - N, 0)")3. (9.33)

Moreover, thanks to the boundary condition (4.8), we can indeed express 3¢ v on the
upper boundary. On the one hand, we have the identity:

ag)v N =div¥v — 01v] — dhva = —(91v] + D212). (9.34)
On the other hand, by the identity (4.8), one deduces:

|N|Hag)v = |N|H8fu — |N|HV¢8§0\P
= I1(d1u - n, dru - n, 0)’ (9.35)
— II(m01u + npdru) — |N|I1(91, 02, O)Z({if\l—’,

One thus has that:

1 1
|(S¢U, ﬂ)b’1|1,oo,t 5 A(g, Il (v, V“"I')Illz,oo,z + |h|2,oo,t) 5 A(gaNm,T)-

Therefore, by duality and the trace inequality (3.17), we obtain
(] _ o o
o < 1200870 = 7 ldloe | Z°N] 112501 1

2 2
< 5||Vv||L12HCk0 + C5||VU||L12HCI<071 (9.36)

1
+ (0125 e + T|h|iwﬁm_5>A(5,Nm,T).
t co {

Next, we can control K32, in the following way:
Kan S |Zav|L[2L%(|h|Lt2ﬁm—1 |($P0, 7)11.00.0 + 1(SP0, )2 1 |hlm=2,00,t)-
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By virtue of the boundary conditions (9.33)-(9.35), we obtain that:
[($%v. D201 S S A(1hlm=2.00,0 + (0, VEW) [l2,00,0) (1 (v, VEW) 2 e + IhILsz)-

Combined with the trace inequality (3.17), Young’s inequality and the elliptic estimate
(5.25), we find:

2 2 2 L 1
Kazz < 8V0ll7a e + CollVOIT it + (10132 s + (T + e>z)A<—

k] Nm,T)-
€0

This estimate, together with (9.36), (9.32), gives (with possibly another Cy)

K3 < 381V0132 0 + ColIVUIT, e

2 (9.37)
+ (”U”i?Hc"o + (T + 8)2)A(—

i)

7Nm,T)-

For the term /Cy4, since Z* contains at least one spatial derivative, we can estimate it
as:

1
Ka S IVl 2 i <||VU||L,2HL-"(71A(_O’ Ihlm—z,oo,z)
+1hl 120 k+1A( MV Ullteor + 1lm— ZOOt))

We then apply (9.12) and the elliptic estimate (5.25) to estimate V¥ as:

1
V¥ 7l 2 g <A(— |l — 2oot)||VM||L2Hk +T2A< )
1
S,A(a’ |h|m—2,oo,t>”vv”L2Hk +(T+8)2A< ’Nm T)

Therefore, by Young’s inequality, we get:

1 1
K4 §5||VU||itsz +A( Al ZOOI)”VU”izHCkol +(T+8)2A<—

’ Nm,T)-
€0

Similarly, for s, by applying (3.21), (9.12), (9.11), we obtain:
1
Ks S ”v”L%chg A 5, 17 lm—2,00,1 ||V7T||LI2HL{<0
1
+ A(—, IVl o0, + |h|m—2,oo,t>|h| m_>
(ely) 2

1 1 1
S llzge | A = 1hlm—2.00 JIVVI 2 + (T +&)2A —, N7 | )-
co CO t “Fco CO
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Combined with the Young’s inequality, this yields:

1
Ks < 8IVvl?,,, +CsA —, |hl2 v|?
5= ” ||Lt2Hcl‘{0 8 CO | |m—27oo’[ || ||L12Hck0

+(T +8)A(CL,Nm,T>- (9.38)
0

For the term [Cg, we use similar arguments as in (9.30) to deal with the commutator
term:

[z, 2%

1
(‘QZ—(paZ]vHL%L2 S (IVll 2 it + (T + s)i)A(—,Nm,T).

€0

Therefore, we control g by the Cauchy-Schwarz inequality to get:

0
Ko < ”Zch”Ltsz H [z* da Z]UHL%LZ

1 | (9.39)
SNV et + (101 ot + (T e>2)A(5,Nm,T).

We are now ready to estimate 7. In order not to lose normal derivative, we split it
into three terms:

K7 = K71+ K72+ Ky3.

with

IC71_2M/ f VAR a]< ) Z%v dVds,
N
Ko —2u/ / (a Z“(—S“’vN) (azz"‘s%)a—) - Z%v dVds,
t'4
N
K7z = —2,u/ f A (S%Bz (—)) - Z% dVds.
0 JS d:¢

To deal with K71, we can use the identity (3.27) to integrate by parts in space. By doing
so, we are led to control the following type of terms (up to some smooth functions
that depends only on ¢ and its derivatives)

/ /ZV<—S¢UN>8 (Z%v0,¢) dxds,

f / zv (—S‘va)Zo‘va pdyds, |yl <k-—1.
S %
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The first type of term can be controlled easily by:

1
SIVOIZ2 0 +CaA( 200 NIV ot + TA( Nt )

I co co

while the second type of terms can be bounded by:

1 1
|U|Lt2[_”1k (|S¢U|Lt21:1k—1 + T2>A<_a Nm,T)

€0

1 1
S |U|Lr21:1k(|(v, V¢‘I’)|Lt21:1k + Tz)A(a,Nm,T)

t co 1‘ co

1
SS”VUH Hk +(||v|| Hk +(T+8)2) (g’Nm,T>

Hence, we get that:

t co

1 1
+ (nvnitzmo + (T + e)z)A(a,Nm,T).

For K7,, we use again integration by parts to split it into three terms: K7, = K721 +
K722 + K723, with

K < 2(3||VU||L2H1< + C8A( Nl 200 z)”VUHLzHCkOI
(9.40)

! N
Ryt = —2u f / [Za’_]Swv'az(zavazw)dxds,
0 JS 0,

! N
IC722 = 2/J,/ / Z“S§”v . az<—>Z"‘v dXdS,
0 JS 0
! N
K703 = 2/;/ / |:Z“, —]S‘pv - Z%v0,¢p dyds.
0o Jas WR3%

In view of the expressions of these three terms, one can show by the commutator
estimate (3.9) that

K72 < 811 V0l1} Hk+caA< A7, 200,)||Vv||L2HCkOI

1
<||v||LtzHcko+<T+e>z) (g,Nm,T)

Note that the boundary term K723 can be controlled in a similar way as 3. We thus
skip the details.

(9.41)
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For K73, to avoid losing regularity on the surface, we use the assumption that
|a’| > 1 to integrate by parts in space. By doing so, we find that it can be bounded as:

1
2 2
K73 < 8190l 2 00 + CBA(E, |h|m_z,oo,t) 190113 0.

T + s)%AG,Nm,T). (9.42)
0

We remark that there is no boundary contribution in the process of integration by parts
since the spatial vector fields are tangent to the boundary. Collecting (9.40)—(9.42),
we finally find that:

K7 < 431V Hk+caA< 2, 2oo,)uwanHkl

(9.43)
2 1 N,
(nvuLzH[ﬁ + (T +e) ) (5, m,T).
It remains to treat the last term g. By (9.9) (9.10), (9.15), we have:
Ks S ”v”L,ZHL"O(H(f’ V(pCI)”L%HCkO + I[Py, a;p]ullLtZHZ;())
(9.44)

1
S ”v“L?Hc”é'A(a’ NmT)

Gathering (9.27)—(9.31), (9.37)—(9.39), (9.43), (9.44), we find by using Korn’s
inequality (3.34) and by choosing § small enough that forany 0 < |o| =k <m — 1,

101 + V9012 0 S Y2(0>+A( R mt)nvwvnmfol

1 1
0l 2+ T+ DA = Ny ).

Therefore, by induction (on k), we get (up to changing possibly the polynomial)

m—~

f’ 7279 45)
—,Nm,T).

€0

1
1% 2 2
1012 s s+ V90121 S (T (0)+”vv”L2L2)A(_c0’|h| . )

1
+ (||U||L12H£1[1)—l + (T + 8)2)A<
1 . .
By (5.27), we can extract an extra 7’2 from |[v||, > ,m-1. More precisely, we obtain:
t co

1 1 1
IVll 2 -1 S N, V‘p‘P)IlLtzHCrgfI S T2 (u, Vw‘I’)IIL;oHCn;fl S T2A<—,J\/m,T>-

€0
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Moreover, thanks to the elliptic estimate (5.10) and the definitionv = P,u = u— V%Y,
we also have:

IVull22 = IIVMIIL;LzA(g, |13,00.¢)-

Inserting the above two estimates and (7.19) into (9.45), we finally arrive at (9.24). O

. . 1 C oy
In the following lemma, we prove some estimates for €2 d;v, which is useful to the
. 1
estimate for £2d,u later.

Lemma 9.6 Under the assumption (2.2), the following estimate for v holds:

g2 0,02 +1le29, Vo2
L HG S
| Lo (9.46)
2 2 2 5
§A<—,|h| - +Ym(O))Ym(O)+(T+e)zA<—,Nm,T).
co LY®H"™2 o

Proof The proof of this Lemma is very similar to the previous one, we thus only sketch
its proof. We have by the elliptic estimate (5.15) that:

1 1
”8 2 Btv ||L)<‘>O'Hm72 + ”8 2 8,Vv ||L,2Hm_2

1 1
S €20, (u, VOV [l pooggm—2 + 11620,V (u, VEW)[I 1 294m2

1 1 1 1o
5 A(C—, |h|m—2,oo,t) <||828,u||L;>on2 + ||828tVl/l”Lt2Hm—2 + ||8281d1V(pu||Lt2Hm2>
0

[Nl

1 1 1
+ (T + 8)2A(a, .Am,,) (lB,hlL?oﬁm% + |(h, e2 a’h)|L;>ogm71 )

For any multi-index 8 with |8| = k < m — 2, direct energy estimates for v yield:

1 t
—,58/ |Z’38tv|2(t)dV,+2,u8/ /|Zﬁ8,S‘pv|2stds
20 s 0 Js

t
—I—ae/f 1Z8 3,0, |2 dyds (9.47)
0 Jz=-1

=: Ko+ K1 +---Ks,

where Ky — Kg are terms analogues to Ko — Kg defined in (9.26) in which Z¢ is
replaced by e 7P 0.

At first, thanks to the trace inequality (3.17), Korn’s inequality (3.34) and Young’s
inequality, we have:

1
ae/ / 1ZPov.|* dyds > —8¢]1 270,913,
0 Jz=—1 t

~Co(ell VI s + €001 -2) (9:48)
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The remaining task is thus to estimate I&l — I@g. We assume that Z# contains at least
0ne~spatial conormal derivative Z; (i = 1, 2, 3).
KC1 : Similar to the proof of (9.48), we have by the trace inequality (3.17), Young’s

inequality and Korn’s inequality (3.34) that:

~ 1 ?
K= —g/ / a:h)ZP3;v|? dyds
2 Jo J:=0

1
< 8e)| 2P 9, S vl + C5A<a, Am,t)<Te||zﬁatv||§?oLz + 0 VOl ).

(9.49)

K By Young’s inequality, X, can be controlled similarly:

t
m:sz /Zﬁa,S‘pv-[Zﬁa,,V‘p]vstds
0 JS
< aeuzﬁazs‘f’vniw + Cse|[2°,, vw]v||igL2-

Since

[z, 091f = Z° (at(;\l—f) -azf) - [sz‘, ?—ﬂa,azf

+a_[Z 78Z]at82f’ _] == 1’2’3’

Z

we can use the fact that || = kK < m — 2 to get that:

1o g 0 1 1
e N1Z0. 071 flyzre S A\ oo hlm2000 )e2 10V fll 2yt
1 1 3 9.50
+ A g,"l(Id’gzaz‘)azfl"O,oo,t+|(h,8th)|m—3,oo,t 2019 fll 2z ©50)

1
+ |(h’ 828th)|L12]:’1k+%)'

‘We thus obtain that:

- 1 1 1
Ky < (SSHZﬂatS(pv”isz + C,;A(—, |h|m—2,oo,t) €20, Vull 2 pyr1 + (T + 5)A<_7Nm,T)-
1 CO t Hco CO

K3 : Regarding the estimate of

t
K3 = s/ f ZP3,2uS%v — 71d)N - ZP3,v dyds,
0 Jz=0
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as we did for K3, we write:

ZP3,2uS%v — 1N = 21 ZP 3, ((div¥uld — (V¥)*W)N) + [Z2P 3, N1(2uS¥v — 7 1d)
— 2u7ZP8,(divPuld — (V)2 W)N + £2[ZP8,, NJQu(divPuld — (V¥)2W) + 2u8%v — 71d).

By using the trace inequality (3.17) and Lemma 5.3, we get in a similar way as for
(9.50) that:

£7| 2P, (diveuld — (V*2W)N|
L

ZH 2
t 7y
1 1
S 1hl2.c0. 1182 8, (divPu, (V92O [ 2 pn2 + [1€20, V(divou, (V)W) 12 s
t *fco t Hico
1 1 . oo e
5 A(c_, |h|m_2,00’[)(||82 atVdIV(pM”szHm—S + “8 2 atdIVq)M”Ltsz—Z) +e2A c_, Nm’T .
0 co co 0

Moreover, by the boundary conditions (9.33)-(9.35), we have

62 (273, NIQu(diveuld — (V9)*W) + 2u8%v — x1d)] 2,
r iy

| 1
< le20r(S%v . diviu, (VP I ut A ko)

1
+ A(—. |(1d, £28,, Z)(5%v, 7. div¥u, (V)29 o 00 + 18l 1.00.)
o
1 . 1
: (3§|(S(pv, 7, div¥u, (V)Z‘I’)|Ltzgk + |(h, 828th)|Lt2[1k+1)

1 1 . . 1
< (le2 8,01 2 + l1£2 3 (div¥u, leV‘”u)lngHk—l)A(c—, |7k c0.1)
co 0

+(T +e)5A( 1 Nm,T).

C()’

Therefore, by duality, the Cauchy-Schwarz inequality and Young’s inequality (3.34),
we obtain that:

- 1

“ 51
) 9.51)
+C5A(

2 1 . 2 1 : 2
— 112 o) (120, (0, div2u) |2, o + lle2 8 Vdiveu|
(&) t Hco

L,2HC"$’3)'
K4 : K4 : has the following expression:

t
IC4=8/ /Zﬁatn[div‘”,zﬁat]vdvsds
0 JS
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By Holder inequality, the estimate (9.14) for ¢ : Vo,m, the Korn inequality (3.34) and
the commutator estimate (9.50) we get:

- 1
K4 < ||87V3zﬂ||Lsz 1||82[d1V¢ zP Flvll 22 = 5||€23th||Lsz

t **co

—I—Cal\( B o) €28, 99012, i+ e diveul?

L2 k L2 Hm -2 )

1
+ (T + S)ZA(_,Nm,T>.
o
@ By the Cauchy-Schwarz inequality and estimates (9.12), (9.14), we obtain:
Co < |lg2 7P 317By, V¥
KsSllezz 8;U||L12L2||82[Z 0, V ]7T||L12L2
1 1 1
S 2ol (A oo 1m0 )12Vl g

+(T+e)5A(i,Nm,T))
Co

| 1 1
< 5||8§8;VU||it2Hk + (T +5)2A<5,Nm,r>.

(9.52)

IC6,IC8 By (9.9), (9.10), (9.15), we have:

1 1
e2 010 (f + V9 + [P, 9 W)l 2 s S A(E,Nm,T)
In addition, since |B| = k < m — 2, the following estimate holds:
1 )
2[ZPs,, =0
& ”[ t 9.0 z]U”LIQLZ
1 1
< A(g, |(h, 0:h)|m=3,00,: + IV, 823th|||o,oo,r)

1 1 1
(128, Vv, V0)ll 12 -3 €78, Vo, V0| s Brh, £2020)] 2 )

1
5 A<_a Nm,T)-
co

Therefore, we control 166 + Iﬁg as:

d
Ko+ Ks < HszzﬂatUHLsz (82 H [Zﬂat’ at(p ]UHL?LZ
+ez |ZP8,(f + V¥?q + [P, 8¢ 1u) Hmz) (9.53)

€0

1
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9 Page88of134 N. Masmoudi et al.

& For this term, one needs to integrate by parts to avoid losing normal derivatives.
By following the same lines as the control of 7 in Lemma 9.3, we find that:

~ 1
K7 = 8le20i Vol +A( Al mf)lle VOV,

|
+(T+e)%A<C—,Nm,T>.
0

Plugging (9.49)-(9.54) into (9.47), we get by choosing § small enough and by using
Korn inequality (3.34) that forany 0 < k <m — 2,

2 2 \v/ < 2
€201 o i + 1820 V01T 0 S 1E20O)T o o

+ (T—"-E);A(L,./\/'m’T)
€0

2
+A<— Ihlm 2.00 t)(IISZ B;V‘vaLsz |+ ||82 8;V‘/Jd1v“’u||L 2 pym—3 + ||82 Btdlv‘puHLsz,Z) 2)

t ~fco t77°co

where we have used the convention that || - || H = 0, if/ < 0. This estimate, combined
with (6.3), (8.5), (9.1) and the induction on k yields (9.46). O

10 £e—dependent high order energy estimate-I|

. . . 1 D
In this subsection, we aim to control &2 || Vul|; oo ym-1, Which is useful for the control
t co
of L* type norms.

Lemma 10.1 Under the assumption (2.2), we have forany 0 <t < T,

1
8||Vu||Loon ! NA<— |h| . +Y2(0)>Y2(0)

i (10.1)
+ (T + 8)4 < )
Proof We will prove the following estimates:
2 1 !
&2 Vil eyt S ¥ (©) + (T +)FA( — N
o
—I—A< |h|m 200’)(”82V””L,2Hgg + ||82Vd1V¢u||L2HC,,; | (10.2)

+ ||823t(u V“)HLsz INL2HM™ 2)
By (7.1), (7.19), (7.30), (9.46), we can then find a polynomial A, such that (10.1)
holds.

The inequality (10.2) can be obtained by direct energy estimates. Applying
Z%, la| < m —1to (1.16);, taking the scalar product with —27%(div? L%u) and
integrating in space and time, we get by integration by parts that:
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1
w/ |Z¥S%u|? (1) dV; + —sx/ |Z%div¥u|?(t) AV, + e|| Z4dive LOu)?,
S 2 S LiL

(10.3)

a
+ 58/ 1Z%u:*(t)dy = Ko + K1 + -+ + Ks,
z=1

where

1
Ko :8;1,/ |Z%SPul?(0) dVy + —a,\/ |Z%div?u|?(0) dVy + C—’g/ |Z%7|%(0)dy,
S 2 Js 2 J=1
t
Ky = —e/ / (0:[V?, Z¥Tu + [V?, 81Z%u) - Z%LPu dVsds,
0JS
t
Ky = 8/ / 0 Z%u - [Z%, div¥]1L%u dV,ds,
0Js

! g —1
K3 = g/ / VA ( 88[u> - Z%div? LPu dVgds,
0JS

&

t
K4 =8/ / Z%(VP0)Z%(div¥ L%u) dV,ds,
0JS
t
K5 = —8/ / Z%LPuN - 9; Z%u dyds.
0 Jas
At first, by the trace inequality (3.17):
a 1
Se f 1Z%: (1) dy = =812 Vu@) %, — Coellul e re (10.4)
Z=1 co t co

Next, for the term K, we use (3.23) to find that:

¢ 1 ¢ ga
K1 SIVPull 2 gm-r [ €A 5,|8th|0,oo,t IVull 2 gr + €0, 0VE, Z5ull 272 )
By using the identity (3.26), we find that:

o e 1 N N . il N1
0 [Z%, Vo lu=¢2|2% 20, — ) |0,u +&0;| —[Z%,0;Ju ) + 2| Z%, — |£20,0,u.
9z 9z 2%

The LtzL2 norm of the first two terms in the right hand side can be controlled by:

1 1 1 1
82A(5, [(h, €20:h)|m—2,00.1 + |||Vu|||1,oo,t> (IIVullLtzH;gz +[(h, &2 ath)|Lt2[_}m—l )

1
,se%A(—,Nm,T).

co

(]
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Moreover, the third term can be bounded as:

1 N |1 101
. 32[2“, 8_:|828taz” N T2|||823tVM|||LgHy

fa%

(5
g2 —
0z

1 I 1
+ 82A<£|||523tvu|”0,oo,z + |h|m—2,oo,z>

L7212 m—2,00,t

1
2 _
(20, Vull 2 s + 1A 1)

< (T+s)5A(i,Nm,T).

€0

The previous two estimates then lead to:

1 1
[EE VA Vg0]M||L2L2 S(T+ S)ZA(C—, Nm,T),
! 0

from which we find that;

K1 < (T+s)5A(Cl,Nm,T>. (10.5)
0

. 1 ) .
Thanks to the commutator estimate (3.23), we control the term £2[Z%, div?]L%u in
the term K> as follows:

1 . 1 1
e2I[Z%, div¥]1L%ull 2,2 S A(g, lle2 8 L%l 00.r + |h|m72,oo,t)|h|L o

—~o

|

1 1
+ A (C—, Ihlm—z,oo,z> |I8% VLUl aym—a ST PA (—, Nm,T)-
0 t co
Therefore, by Cauchy-Schwarz inequality, K> can be bounded by:

1
K < lledull 2y 162 [ 29, div1L%ull 2,0 < TéA(—,Nm,T). (10.6)
t co co

Moreover, by the product estimate (3.8), we obtain:

| 1

K3+ Ky < 8lle2 Z°div? Loul|?, ,, + C(SEA(C—, Am,t) I, )l pn. (10.7)
! 0
For the term K5, we use the boundary condition (1.18) to split it as :
t
K5 = —8/ / Z%00/€)0; Z%u - N+ [Z% N1L%u - 0, Z%udyds =: K51 + Ks).
0 Jz=0
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Thanks to the trace inequality (3.17) and the boundary conditions (4.5), (4.8), K5, can
be bounded as:

1 1
Ks» < £20,Z% 1 |e2[Z%, N1L%u |
52 S le20; lL%H’?' [ 1 |L12H§

1 1 1 1
S (||823z(M’ Vi)l 2pgn-1 + ||ezanu||LtzHCn;z> (82 lhlL;ﬁM%A(g, Am,r)

|
+e§A(—,Nm,,))
co

1
S (T + 8)%A<C—, Am,t>gr%1,t'
0

For K51, we take benefits of the boundary condition (4.1) and the trace inequality
(3.17) to find that, if Z% = (gd;)’, j <m — 1,

I
Ks1 S eiA<—, Am,,)(n(eiat(u, Vu), diveu, e2Vdiveu)|2,,,,
(&) t

2 2
FIVHI s 102, )

tzl:’Im—z
1 1
584/\ _,Am,[ g}’%’ll"
Cco ’

if Z* = 7379, this term vanishes on the boundary and if Z% = dy ze,

1 1 o
Ks1 S1e2Z%o/e)| - 11€20;Z%u| 1 |hl2,00,t
L2H? L?H?

torYy oty

1 1o . 1 1
SA(Q,|h|m_z,oo,t>(||szde‘/’unitz%,.+||82Vu||2 + 120, (u, Vi) 17, 2

—|—T1A ! A ||
2 —

t ~ 1.
Co’ " L2H™

Sl

The previous three inequalities yield:

1 1 1
K5 S (T + 8)4A<£7 Am,t)‘%%y; + A(g’ |h|m—2,<>o,t)

1 1 1
A 1e2 vdivPu|? +llezVul®,.  + |le2 Vu)|?
(“8 div MHL,ZHC"Zfl le u”LtzHC’Z &2 0; (ue, u)”L,zHc’Z’zﬂL,zH’"_l :

Inserting this inequality and (10.4)-(10.7) into (10.3), using Korn’s inequality (3.33)
and choosing § small enough, we obtain (10.2). O
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9 Page920f134 N. Masmoudi et al.

11 Uniform control of high order energy norms-lIi
11.1 Lf°L2 type norm for the compressible part

In this section, we aim to get the a-priori estimates for ||[(V¥0, div¥u) ||, oo ym—2. This
t co
is mainly done by induction arguments.

Lemma 11.1 Suppose that (2.2) is true, we have forany 0 <t < T,m >,

-1 17 s Q@ 2
e (VP divin)l} oo s

1 ) , ) | 1 (11.1)
S,A(—, A | +Ym(0)>Ym(0)+(8+T)4A(—,Nm,T).

co L®A™™ Co

N

Proof We shall prove for for j +1 < m — 2 that:

1 .
72 [[(V40, diveu) | oy

<@+eia( LN ) a2 e 8,diveul oo g1 ]
~ € CO’ m,T CO’ m—2,00,t € rdiviu L?OH(‘I() L?OHZ;?% (11.2)
1 1 1
+ A(g, |h|L?oﬁm_5)<uez 00 (0. 1) 20 + 1 V(@ 1) 1),
and also:
1 . 1
63 0,@iveu, V2o) g < 1630, (0, )l oorge

+(T +8)5A< ! Nm,T).

co’

(11.3)

These two inequalities, together with (7.19), (7.30) and (10.1) lead to (9.1). Indeed,
thanks to the estimate (7.19), we derive that:

T 1
le29;(div¥u, V¥o)llpoopy1 < A(a, |h|m—2,oo,t>Ym(O)

+(T+s)5A(l,Nm,T).

o
Inserting this inequality into (11.2), and using the estimate (7.19), (7.30), (10.1), we
find (11.1).
We present the proof of (11.2). First of all, for any non-negative integers j, / such
that j 4+ < m — 2, it follows from the equation (9.5) that:

Y 1 1
72 [ divull ropgir < lle2 0l oopgis + €2 |

g1 — 81(0)
(Te‘at + g1u - V)OHL?OH/'J

: (11.4)
I I I
< ||873t0||L§>on—2,0 + e 2 V¢0||L;>0Hj+1,171]1{121} + 82A<C—, Am,z)gm,,.

0

@ Springer



Incompressible limit for the free surface... Page930f134 9

Let us control || V¥o || LOOHIL- As before, we denote

0 =0o/e—2(u+ r)div¥u.
By the equation of velocity,

V0 = —0fu — f + nA%v,
where

gz_pea,(pu-l—u-V‘pu,v:IP’tu.

f=
We thus get that:

_1 1 : 1
e 2 IV¥allppepin S €2 IVEAIvPull oo g2 + 2| (Br, Q) VIO oogyi

S e VI + IV g
| .
+ 62 [ (V9 [Qr, 3 1, V94) | oo
=: (11.5)1 + (11.5)2 + (11.5)3.

where we have used the defintion (9.7),(9.8). By the elliptic estimate (5.24),

1
||828,V‘pl11||L?on,l

I 1 1 1 .
ST+ 8)2A<—,Nm,T) + A(—, |h|m—2,oo,t> le20,div¥ullpoo i [R] 3
(&) co t Hco L?OHCO 5

1 1 Lo
+ A(%’ |h|m—2,oo,t) <||823tM||L;>°Hm2,0 + lle2 atle(pu||Ll°°HjJ—1H{lzl}).
(11.6)

Next, by the elliptic estimate (5.13), we find:

1,01 1 1 .
2 ||ai_¢azw‘l’||L,°CH:?f2 < 52A(a,/\/m,r)(udlv"auHL?CHgz + |h|L |+ Iath|L[oo,;,m72)

tOOI:I’n_z
1 1
5821\ _,./\/’m’T .
(&)
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9 Page940f134 N. Masmoudi et al.

Together with (11.6), this yields:

1
le20f Ve W Il sopgit

1 1 1 1 .
S (T + 8)2A(—,Nm,T> + A(—, |h|m—2,oo,t> le20,div¥ulljoogr Al 3
C0 Cco t Hco Ltoo - 5

1 1 Lo
+ A(%’ |h|m—2,oo,t) (Ile2 Ote | oo pgm—20 + ||828td1v“’u||L;>°Hj,l1]1{121}).
(11.7)

Let us control the terms (11.5),,(11.5)3 appearing in (11.5):
o (11.5) = g% (IVdiv®u ”L?OH[,'},‘Z' Thanks to the equation (9.3), we have:

1
1 - @
g2 ||leV u”L?Can:,72

a —1
(J—‘pazo, A4 (gz 88;0) , V¥ (gou - VO’))
€

4%

1 3
<eg2 ||V‘”0||L$OH£Z—1 + &2

reng 1)

1 1 1
S e2IV90ll oot + €2 A(C_NmT)
: 0

o (11.5)3 = 8% (V¥q, V¢, [Q, B;D]u)HL?OHC,?;z. By (9.10), (9.13), (9.15), we have
that:

1 1 1
€2 ||(V¢Q7 Vi, [Qr, a;p]u)HLSOHC’ﬁ*Z 5 A(a’ |h|m—2,oo,t) “‘ezvullL?OHC";*l

+85A(i,Nm,T). (11.9)

€0

Inserting (11.7)-(11.9) into (11.5), we achieve that:

1 1 1 1.
V0 || poogin S €2A —, N1 | + Al —. [Blm—2,00, ) I1€20,div¥u|| oo g1 |R] 3
! (&) (o)) t co 1,00 5

. 1 1 1
+ (Idiv?ull pooggivri-1 + €2 0ull oo pgm—2.0 + 1l€2V (o, Wl oo gm-1) A (5, |h|m—2,oo,t)-
(11.10)

Together with (11.4) and induction arguments, this yields (11.2). O

Remark 11.2 By the estimates (5.27) (5.26) and (9.1), (11.1), we find
29,V W 29,(V9)2w
”‘9 t “L?OHC’Z—Z + ”8 t( ) ||L;>OHC"£—3QL{2HC"Z)—2
1 1
S A(—, |h|? noy T Y,%,(O))YHE(O) + (e + T)4A<—,Nm,T).
0

€0
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which further, together with (9.46), yields that:

1 1
le20;u “L?OH;Z_Z + [le2 8tVM”L[ZI.[CnZ—Z

. , , L (11.11)
§A<—, lhl” 1 +Ym(0)>Ym(0)+(8+T)4A<—,Nm,r>.
cQ LH" 2 co

11.2 Uniform control of the gradient of the velocity-II

In this subsection, we aim to control the L?oHé’},_A' norm of (Vu, 8%8,Vu) More
precisely, the following lemma will be proved.

Lemma 11.3 Under the assumption (2.2), for any 0 <t < T, we have the following
estimate:

1
IVull s+ 12 0Vl o s
| A (11.12)
2 2 2 7
co LY®H"™2 co

Proof By the identities (4.8) and

|N|H(3épu) =I(0fu —ndju —nydru)
=w XN+ H((un)t -n—njoiu — 112321/!)
=wxn+IOu-n, dhu-n,0) —I(nd1u + ndu),

we have that:

¢ _ w?
IVl oo s S A<co’ |h|m_z,oo,t) il oo s+ 1@ 5 1, V)] oo s,

1 1 1
1o oe 1 5 e
lle2 0,V ””L?"Hg’;“‘ < A(—CO, |h|m_2,oo,,)||82atullL?oHc,Z_3 + |le2 9 (w X n, div M)||Lfongr(1)—4

+(T+s)5A<l,/\/m,T>.
€0

Therefore, (11.12) can be derived from the estimate (11.11), Lemma 7.4 for div¥u,
Lemma 9.3 for v, Lemma 6.1 for & as well as the next lemma for w x n. O

Lemma 11.4 Suppose that Assumption (2.2) is true, then the following estimate holds:
2 19 2 <Y+ (T +e)ia( =N,
05 A} s+ 1200 @ X MG s S Ya (@) (T +3A( . Ny

1 1 1
A 200 |0, 8200, €3V (11.13)

m—2-
L7° Heg

@ Springer



9 Page 96 of 134 N. Masmoudi et al.

Proof As explained in the introduction, although w x n satisfies a transport-diffusion
equation without singular terms, one cannot control it by direct energy estimates due
to the lack of information of the trace of @ x n on the boundary. Since

(w x N)|,—¢ = 2IT(d1u - n, dou - m, 0)|,—o.

A natural attempt in order to do energy estimates is to introduce the modified vorticity:
@ = wxn—T1(d1u-n, du-n, 0)'. Nevertheless, if taking this way, we are confronted
with the original difficulty due to the presence of a singular term in the equation of w xn.
However, since the singular term appears only in the equation of the compressible part
of the velocity, it is still useful to introduce the following quantity:

wp = o xn—2I1(d1v-n, dv -n, 0). (11.14)

where v is the incompressible part of the velocity. As will be seen later, the main
advantage to work on wy rather than w x n is that up to remainders, one can reduce the
estimate of wy, to that of the compressible part of the velocity and one can extract some
extra power of T in the estimates, which is essential to establish the local existence
on a uniform time interval.

Since away from the boundary, the conormal space is equivalent to the standard
Sobolev space, it suffices to estimate wy near the boundary. In the following, we shall
focus on its control near the surface, the case near the bottom is similar (and is even
simpler, one can refer to [55] for details). To overcome the difficulty resulting from
the nontrivial boundary condition, the general strategy to get a uniform estimate for
wp 18 to split its system into two systems, one carries on the nonlinear terms and the
initial data but with trivial Dirichlet boundary condition, while the other one is just a
free heat equation with zero initial data and nontrivial Dirichlet boundary condition.
The first system can be treated by direct energy estimates because of the homogeneous
Dirichlet boundary condition. The analysis of the second system relies on the explicit
formulae for the heat equation in the half-space.

To use the explicit formulae of the heat equation in the half-space, it is convenient
to use a coordinate system in which the Laplacian has a good form. We thus use the
following normal geodesic coordinates:

D, S, =R? x [—k, 0] —
(v,2) = (z(t’ y)) + zn”1(y)

where n?! = % = (—01h, —02h, 1)/y/1 + |Vh|? denotes the outward normal

vector. Straightforward computations show that:

(11.15)

1 0 n?! dn® 3,n’ 0
DO, = 0 1 n5')+z(amb dnbo0
d1h oh ng’l 3111% 82nl3’ 0
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Therefore, as long as |h|2 co.T < +00, and k small enough, we have that: det(D®,) >
Oon|[0, T]x S,, hence CDt is a diffeomorphism between S, and dD, (S¢). The Rlemann
metric induced by the pullback of the Euclidean metric in €2; through CD ! has the

block structure:
(8,20

where § is a matrix that depends on the gradient of ®,. Therefore, the Laplacian in
this metric takes the form:

Agf =07f+ %@(ln gD f + Ag f, (11.16)

where

~jii e~ L ~ ~
Agf=—1 Y 8,:(@712120, ) 18l =detg.
1812 1<i,j<2
We take a cut off function y = XO(%), where xo(s) : R_ — Ris asmooth function
supported on [— %, 0] and equal to 1 on the interval [—%, 0], C(x) is chosen such that

&,(R? x [-C,,0]) C ét(SK), the following task is to estimate y wyp. Let us begin
with the derivation of the equations satisfied by x wy. First of all, by taking the curl of
(1.16),, we find that w = curl? u solves:

(p0f — uA?)w = G® (11.17)
with

G”=—u-V’o0+w- -Vu — wdivfu

Vg
——— X ((¢0; +eu - V)u) —|—
€

82 (s0; + su - Vo).

Hence xw x nis governed by:
(P93 — uA?) (xo x m) =
with

G = xG” xn— puA?(xmw
—2uV¥9w x V¥ (xn) + pw x 3 (xn). (11.18)

By (9.6), v satisfies the equation:
p0v — Ay = —(f + Vg + p[P;, 37 Ju) — V¢ =: H,
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9 Page98of134 N. Masmoudi et al.

which gives:
(P — uA?)@jv-N) = L;
with

)
<

+60v- 37N —2uV?9;v - V!N — uA’N - d;v.

Denote ¢ = 2(d1v - N, v - N, 0)', L = (L1, L», 0). Therefore, by recalling the
definition of projection IT = Id3 — n ® n, it holds that:

(p0f — uA?)(xg) = Gy,

where
s _ 5 5, 0¥ ¢
G = 2xTIL + px[9;, Mg — pxa—[az, ] + ux[I1, A%]g
Z
+p10f, x1Mg + ulx, A?IMs. (11.19)
We thus finally find that:
(p3 — nA?)(xwp) = G§ + GY. (11.20)

For the sake of notational simplicity, we denote { = x @y, Gf( =G i + G‘)‘;. Consider

£(t,x) =¢(@t, @' o ®,(x)),

then E [0, T] x §¢ — R solves the system:

(B — nAQE = Gy + 5D 3, d; - VL,
Cli=o = £(D " 0 Do),
lz=0 = —2I1(8; V¥W - n, 3, VYW - n, 0)'| ;.

where A, is defined in (11.16). Since ¢ vanishes in the vicinity of {z = —«}, we can
extend it by zero to the whole lower half space R> . Denote

Il @y = D0 12 Flur sy

lor|<k
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By Proposition 11.5, we have:

— < m— < — r m—

||§||L?°HC”Z; 4S) ~ ”C”L?OHC(, YR3y ~ A(C()’ |h|m—2,oo,t)”§”L;>0Hw YR3 )
L 1

le20,¢ ”L,OOHZJ_“(S) S le20;¢ ||L;>OHC"Z)—4(R3_)

<2 79,2

S A o o200 ) U202 o s )
Lo~ 1 1

+82||§||L;>OHC{Z—3(R3_))+82A aaNm,T >

1~ 1 1
e? ||§“L;’OHC"},_3(R3_)) 5 A(aa Ihlm—2,oo,t> ||82§||L?°Hgg_3($)

<a(Ln v T el 1N
~ 5’| lm—2,00.t | ll€ MIIL?OH;:’)*3(3)+( +eé) 57 m,T |-

Therefore, (11.13) follows from the estimate:

~ 1~ 1 1
1.2 0Dl o g 4(5) S Y2O) + (T + s>4A(5,Nm,T>, (11.21)

which is the consequence of Lemma 11.7 and Lemma 11.8. O
Proposition 11.5 Suppose that T, : R> — R3 is a C"3 diffeomorphism with

T.(y,0) = y,Vy € R2. For any function f(t,-) which supported on S, and for
p = 2, 400, it holds that

1G5 T koo S ANCT . 8 Dllk.oo) L Nicour- (11.22)
V£ T g w3y S ANCT 8D llkoo.) |l it 2 - (11.23)

1 1
le20sLf (s, Tl s w2y S AT, 8- Dllk.oo.)le2 @1 2) £l g s

1
+e2 A10: (T, 3. T)lk—1,00.0 1 f LY HE (R?)
HIZE lo,00,e A U199 T Nl o0 gt ) (11.24)

where we denote Z = (dy,, 0y,, Z3) the spatial conormal derivatives.

Remark 11.6 Since <I>t_1 o &D, = d)t_l(t, y1 + znlf’l, y2 + zng’l,h + zné”l), and
ID®; | < |h|1 00, We have that:

_ ~ _ ~ 1
(@, o @, 0,2, 0 @) lkcos S A(E’ hlkt1.00.1)-

Proof The proof of this lemma just follows from the Leibniz rule, we thus omit the
proof. O
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As explained before, to show (11.21), we write ¢ =11+ &, where 71, & satisfy
the following two systems:
{(fsat —pd)E =0, (t,x)el0,T]xR2, (11.25)
Cili=0 =0, Cilz=0 = ;=0 = —2I1(8; VW - n, 3, VW - n, 0)'| ;.

(pd; — MAg)Cz = GX + D, (DP,) IV + Ma (In|ghd.¢1 — nAgl,
Oli=0 = Cli=0,  C2l;=0 = 0.

(11.26)
Lemma 11.7 Under the assumption (2.2), it holds that, for any 0 <t < T,
11 20,20l oo s sy + 11 282D 2 s
< TiA<i,Nm,T>, (11.27)
€0
1d, €23, By, Z)E1 | oo, 11xd ) S A(%,Nm,T). (11.28)

Proof We present the estimates for 8%8@1 appearing in the inequality (11.27), the
estimates for ¢; is similar and easier Let y = (v/, y3) a multi- index such that |y| <

m—4, 2" =270, Z¥ where 7l = = Z)°Z)' Z}*. Taking Z],

tan tan

(11.25), we get:

an ON the equation of

(PO, — U2 (ZhndiC1) =0, (,x)€[0,T] xR,
Ztanaté—llt —0 =0, Ztanat§1|2 =0 = ZtanaZ“Z =0-

By the explicit formulae of the heat equation on the half-line, we have that:

1
Amji(t — 5))?

12 / ~
Z709 (e =) Z] 0L |.=o(s, y) ds (11.29)

t
S%Zyatfl(t,y,z) = 2;18%/
0

where (1 = /p. To continue, we need the following estimate whose proof is elemen-
tary and is left for the reader: for any / > 0

2
__z _1
1Z39: (™ ) [ 12(0,00) S (0 = )72, (11.30)

Now, taking the L%Li norm of (11.29) and applying (11.30), we find that for any
O0<tr<T,

1 ~ 1~
e 27 081l e 2y S T¥162 0,8 |zl e s
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By the trace inequality (3.17) and the estimate (5.27), we get that:

1~ 1
|£20:811e=0l oo m—a S |(VEW, €20, VIW)| o0 s

1 1
A <—, [(h, &2 8zh)|m—3,o<>,t)
(&)

< N£20,(VOW, VV9W), (VOW, VYW | s
t co
1 1
A _’|(h,828th)|m—3,oo,t <
co

1
A<_’ Nm,T)-
€0

Combined the previous two inequalities, one finds:

(&)

1~ 1 1
7 — <Tipl = _
||8 atCl”L?OHCO 4(R3_) ~ T A(CO’N;’naT)

Similarly, by employing Young’s inequality and the estimate (5.25), we obtain that:

1.~ 1,1, =~
le2 881l 2 s ) S T 4167 9 leol 12 gm

1
< T%A(—, |(h, £d¢hlm—2,00.) - 28, (V¥ W, VVPW), e~ 2 (VOU, YV 2y s
CO t co
1 1
S T4A(_’ Nm,T)-
C

The above inequality then leads to (11.27). We now show the Ltofjc estimate (11.28). It
results from (11.29) that: forany ¢ > 0,z > 0, j = 1,2, 20 = 1d, Z! = (¢29;. ;).

. . t 2 3 L2
J z J 3 /A —1~2.-2 < 3 T I
||Ztan§1(t’ ) Z)”Lgo = |Ztan{1|Z=O‘L[OOL§o/(; 2n— ez (2[2(1 _S))2€ = ds
S C(ﬁ)‘zl!anE”Z:O‘LTOOL%o (1131)

_1 1
S AET NIV l2,00,0 + |A12,00,6 + 162 01h]1,00,1)

where C(f1) is a constant that depends only on ft. In the same fashion, we have

t
1Z381(2, - D)Ly < <¢2n—1ﬁ2¢<z>z—1 fo z‘ZP( %)ds) Z1lz=0
s LY
T 11.32)
< C(1)|Z1 ;=0 SANV Y100 + 1hl1.000)s

L&LS

where P(2) = |(1 — z2)|z3¢=%. Note that ¢ (z)z~! = (1 + 2)/(2 — 2)? is uniformly
bounded for z > 0. The proof of (11.28) is now finished.

O
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9 Page 1020f 134 N. Masmoudi et al.

Lemma 11.8 Suppose that (2.2) holds, for any 0 < t < T, we have the following
estimates:

~ ~ l ~
182013 e s g ) + 10V 820 €20 VEDIZ 2 a3
1 1
SY2(0) + T4A(5,Nm,r), (11.33)
629,82 + 828, VE 2
152 poo =4 (R3) 1V OS2l 2 m—d g3y

1
SA(Y20) +E2,)Y2(0) +TiA<c—,Nm,T>. (11.34)
0

Proof Again, we only give the details for the estimate of 8% 0; ;:2, the one of 52 18 similar
and slightly easier to deal with. Let 8 be a multi-index such that |8| = k < m — 4.
Since

a5, (131—3\5ii 1515 A
Az = 0;(gV0;-) —9;(1g]"2)g" |gl29; f,

to avoid losing derivatives on the surface, it is convenient to rewrite the system (11.26)
as:

(50 — pd? — poi(870;))22 = Fy, (11.35)
Oli=0 = Cli=0,  $2lz=0 =0,

~

; NPT | . - o
Fy = Gy = oy (D®) ™' VE + 2 (In [g)0:F + udy (I g1)g1 0, + oy (70;51).

Note that we have used the summation convention for i, j = 1, 2. Applying Z# on
the equation (11.35), we get that:

1, _ i ~ 1 pt 1 ~ 1 e~
e2(poy — pdZ — ud; (37 (2P ,50) = 2Pe20, F + ul2Pe20;, 921 + noi[2Pe20,. 3¢,
from which we get the energy inequality:

1
PENZP 0O g ) + mellZP 8021172 o ) + 1 /0 /R 8% ZP8,5y - 9, 2P 955 duds

< Pl ZP L), + e (11.36)

t
fo /R 2P0 0218 - 2,52 dxds

t ~
f /R3 ZPF} - 2P dxds
0 ~

+ ue +e

t
f / 127, 31000, 2P &y dxds
0 JRZ
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As long as « is chosen small enough, the matrix (gll ?2) is positive definite, so
21 822

that the last two terms in the first line of (11.36) control C, ||8% vVZB, 52 Ik

L?L2(R3)
the sequel, to lighten the notation load and without much ambiguity, we shall denote

.In

”f”L,pHLk(, = Hf”LfHL’.‘(,(Ri)’ Hf”szHLko = ”f”szHcko(S)’ p =2, +o0.

We begin now to estimate the last three terms of the right hand side of (11.36). At first,
we have up to some smooth functions depending on ¢,

(2. 92] = Z *ﬁ,BaZZZﬁ+ Z g,y 0. 27
1B1=<IBl—-1 ly1<IBl—1

Therefore, thanks to integration by parts and Young’s inequality, we write:

t
m// (2P, 8218, - ZP 3,8, dxds|
0 Jr?

< 8el|0:ZP 08117 o

Cse(10.8,55 1%, 1 8,502, ). 11.37
+Coe (10802l i + 181821155 s (11.37)

Similarly, by Young’s inequality, we have:

t
/w!/o /R 128, 810,62 - i 2P 8 Lo dxds| < 8 VZP 8,021 75 2 s |
- (11.38)

1 1 ~ 1~ ~
+ C5A<—, |(h, &2 3h) 2,000 + |afh|2,oo,,)<||(cz, 20015 s+ EN22017 5 s
o] t Heo 7 Heo

We are now in position to control the last term in (11.36). We split it into several terms:

t ~
g/ /3 ZPo,Ff - 2P, dxds =: Ji + Ja+ Tz + Ta.
0 JRZ
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9 Page 104 0f 134 N. Masmoudi et al.

with
t -~ ~
Ji = gf / 72P8,GS, - 2P8,L, dxds,
0 JR3
t ~ ~ ~ ~
T = /38/ /3 2P, ((D®y) o,y - VE) - 2P 9,85 dxds,
0 JR

t
J3 = ME/ /3 Zﬁa,ai(gf”ajg]) . Zﬂatg‘zdxds,
0 JRZ

1 1 - ~
Ty = 5#8/ A; 289, (3.(1n [g)3.Z) - 29 9,8 dxds,
0 -

1 t L. ~
Js = EMS/ /3 Z’gat(ai(ln|g|)§”8j§) - ZP 3, dxds.
0 JRZ

To estimate 73, let us split it into two terms J» = J>1 + J22 :

t
Tl = ,3ef f@ zPy, (div((Dés)—lasés)E)zﬂa,fz dxds,
0 JRZ

t
Ty = 58/ /3 zﬂa,al(((Dés)—lasés)g)zﬂa@ dxds.
0 JR2

We emphasize that since there is no gain of the regularity of ® from that of / (roughly
speaking, one needs k + 1 derivatives of & to control k derivatives of ®), careful
attention needs to be paid to the regularity of the surface in the following computations.
To estimate />, in order not to lose regularity on the surface, we consider two cases.
If Z# contains at least one spatial conormal derivative, we integrate by parts in space,
and then use Young’s inequality to get:

~ ~ 1~ 1
To1 < 8elIVZP0 8172 2 g ) + (1E. 20i D32 s + 162 07R 172 5 s)

~ 1 1
AN 00, + 1Ry €28:h) lm—2,00,0 + 19t lm—3,00, + 16287 1lm—5,00.¢)-

Moreover, we have by Proposition 11.5 and estimate (11.27) that for / = 3, 4

~ 1~ ~ 1~ o~ 1~
162, €28l 2 pym—t < (5, 28, 8), (81, €20 E0) Ml 2 gy
1 1 1 1 1
5 ”(vu’ Siatvu)”L%Hc’z_lA(g’ |(h’ gjalh)ll’VZ—l—F],OO,Z) + T4A<C_’ Nm,T)
(11.39)

co’

< A(i,/\/m,T) if | =3,

€0

TiA(i Nm,r) ifl =4,
<
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and by (11.28) that:

| s
1(Id, €207, By, Z3)& |l Loo(10.71xR3 )

1 1 1
S Ad, £29;, 3y, Z3)¢ 0,00, A(1€20h12,00, + 17]3,00,0) S A(—, Am,t)-

€0
(11.40)
Therefore, by combining (6.2), we obtain that in this case,
- 1 1
To1 = 86IVZP 0N s, + TZA(a,Nm,T). (11.41)

If Z8 = (£9,)F, (k < m —4), thanks to (6.2), (11.27), (11.39), (11.40), we can control
Ja1 as:

1~ 1 ~ ~
NS ||878’§2||L12HC"(’,_4A(5’ I(Z, €3:O)M0,00, + Goo,i (h))

1 3 ~ 1~
E2h. 20D 2 s + 1o 20D 2 pgns)  (11.42)
1
K Nm,T) )

€0

<TIA

where
1 1 3
Goot(h): = |(h, €20,1) |l m—2.00.0 + |0thlm—3.00.0 + [(€207h, €20 1) | 1m—5.00.1-

Note that by (6.1)-(6.2), and the Sobolev embedding H 3 (R2) < L®(R?),

1
Goo,t (M) S A( Nm,T)-

C(),

Collecting (11.41) and (11.42), we finally get that

B 12 a(L

For J», we write ZPo; = [ZP, 01+ 9, ZP, we integrate by parts for the second term
and follow similar arguments as in the estimate of />; to get that:

- 1 1
Jn < 8”vzﬂ§2“2L,2L2(Ri) + T‘U\(a,Nm,T).

Combined with (11.43), this yields:

- 1
B 112 1
I < 28||IVZ Ol @, + T4A(—CO,/\/,n,T). (11.44)
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For 3, we integrate by parts again and use the Cauchy-Schwarz inequality to get:

1 iy ~ 1~
T3 S 1620080, S0l 221182082l 2 s

1 1 ~ 1~ 1.~
S A(a, |(h, Szath)|m—2,oo,t)”(§1a828z§1)||Lt2Hcm0*3||528t§2||Lt2HCfZ*3-

By estimates (11.27), (11.39), we find that:

1
5 < T1A<—,Nm,T>. (11.45)
co

We begin now to estimate 74. By writing
9:(In [g))3:¢ = —32(In|g)¢ + 0. (d-(In |g])Z),
we can follow the similar computations as in the estimates of /> to obtain (it is indeed

easier in the sense that 83 (In|g|), 9;(In |g]) involve only two derivatives of & thanks
to Remark 11.6)

1 ~ 1 1 ~ 1.
Ja = 8120V ZPQll75 o ) + A(a’ (B, szazhnm_z,oo,,) I, 220017 s
1 Bz 12 (1
<81le20VZP Gl 5 a g, + T2 A 5,/\fm,T : (11.46)

We proceed to estimate J5. If Z P = (£9,)%, we control it by inequalities (6.2), (11.27),
(11.39):

1~ 1 1~ 1
J5 S ||823t§2||Lt2H5_g—4A<5, ez ¢l 00, + |(h, 828th)|m—2,oo,t)
~ l ~
<||<;, e20, D)l 2 s + 1602h 2 H)

1
< TiA(—,Nm,T)

€0

If ZP contains at least one spatial conormal derivative, we integrate by parts in space
and control it in a similar way as 73 :

1 e~ 1~
J5 S Nle2 8,0 (In |ggY 0; el 2 gym—s €2 0 &2l 2y

1 1 -1, - 1~
S A(a, |(h, 823zh)|m—2,oo,t)||(§, gzatg)”LtZHC'Z—“”828t§2”LZ2HZ'(1)—3

A(l,Nm,T)
(&)

N —

ST
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To summarize, we get that:

Is < T5A<i,/\/mj). (11.47)

€0

We are now left to control the term 7;. After checking every term of G and Gi
defined in (11.18) and (11.19), we find that the problematic terms that may lead to a
loss of derivatives are the following:

Xl—(” V?w) x xN,
@2 =V%0 x V¥(xm), G;l = xI1([31, A?]v - N, [0, A’Tv - N, 0)".

All the other terms can be controlled directly through the Cauchy-Schwarz inequality,
the estimate (11.39) and Proposition 11.9:

//3822/33, G¢ G“’ —G“’ G;l)-s%ZﬁatZ‘zdxds
R

—~—

< ”82814‘2”[42[_1'"*4”(gzat(G{ - Gw - G?z - Gi,l)HLtZHC"Z;“

S ||823zé“2||L2Hm 4||8231(G§

1
5 T4A<_,Nm’T).

€0

w S
w1~ G2~ GX,I)HL,ZHC"F‘(S)

—_

Note that by Proposition 11.9,

1
IG5 = G5 = G2 = G5 lam sy S A oo Mo )

It remains to control the remaining three terms. We shall explain the estimates of the
term involving G‘)‘() |- Let us first rewrite:

u-Vew =u1dy,w+udy,w~+ (u-N)- 0,0 =R — Ry.

where
u-N
Ry = 03y, (u1w) + 0y, (u2w) + 9, w ],
0,9
u-N
R2:8y1u1~a)+8y2u2-w+az< )-a)
0,9
Since

‘N N N
az<”—)_a¢’u Ntu- ( ):div‘f’u—ay,ul—ay2u2+u-az(—),
9z 0z 0z
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there is no term like d,u - d,u appearing in R, we thus can show by using similar
arguments as in the proof of Proposition 11.9 that:

1 1
||828tR2||Ll2HC’7,_4 S A<_a Nm,T)7

€0
which further yields:
" B R eizbaf N
e2ZP9;Ry - €2ZP0,5pdxds ST2Al —, Ny ). (11.48)
0 JR> o
Next, by the change of variable, we have:
~ ~_1._1 - u-N
Ri=D(@ o0® ) jydljww],  where I(u) = (uy,us, 7o )
Z

Therefore, using a similar strategy as the one employed in the estimate of />, we find
that:

t ~ - ~ 1
[ [0zt R -eizrataxas <51 280800 s, + THA( 1 A ),
0 JR ! - €o

which, together with (11.48), leads to:

! 1 —~ ~ 1 ~ 1 1
fo fﬂ@ £2279,G% 1e2ZP9;fp dxds < 5||82V2ﬁ3t§2||i,2L2<Rz) + T4A(5,ij).

Following similar arguments, one can also show that:
! Lo B o | S N A oBa s
e28,2P(G? , + GS |) - e2 2P 8,55 dxds
0 Jr3 o *
L~ 1 1

To summarize, we have obtained that:

5 1
B2 inl L~
J1 <28|VZ QIIL;LZ(R}_) + T4A<CO,Nm,T>- (11.49)

Gathering (11.44)-(11.47),(11.49) and using (11.39), we obtain:
' ¢ p Z o2
|/0 /R3 ZPFf - 2P dxds| < 105”Vzﬁ§2“L,2Lz<Rz>
€0

+TiA<i,Nm,T). (11.50)
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Inserting (11.37), (11.38) and (11.50) into (11.36), we get by choosing § small enough
that forany 0 < k <m — 4,

||823r§2||Loon + e ané“zlleHk <Y (0) + le28, Ve

L7H: !
1 (11.51)
+ T4A<_, Nm’T>.
0
Note that in the above, we use the convention that || - || L2H! = 0if / < 0. Moreover,

we can show by repeating the procedure to prove (11.51) that:

- - - 1 1
162170 e + 1V G2 S Y O) + 1V i + T4A<—,Nm,r).(11.52)

€0

The estimate (11.33) then stems from (11.52) and an induction on k € [0, m — 4], the
estimate (11.34) can also be derived from (11.33) and induction arguments. O

In the following, we show an estimate needed to control /7 in the above lemma.

Proposition 11.9 Assume that (2.2) holds, then forany 0 <t < T,

1 1
10d, 638,)(G4 — G, — ?,2—G§’1)||L3H£4(S)§A(a,

Nm,T).

Proof One can show this estimate by bounding each term appearing in G; G") —

G‘” -G ~.1- We will give the details for one term, namely w - V?u, which is the most
dlfﬁcult one, the other terms can be controlled easily. Let us write

- VU = w10y, u + 029dy,u + (0 - N)ofu.
Furthermore, we have:
o -N=div’(u x N) +u - (V¥ x N)
= —(u xN) - 9/N — 9y, (u x N); — dy,(u x N)2 +u - (V¥ x N).

We thus see that w - V¥u = 0,u - F1(dyu, V¥N, u, Ly + F>(0yu, dyu) where

N, 5 0
Fy, F, are some polynomials with degree 4. Let us control & 3 0;(0,udyu) for example,
the other ones can be bounded in a similar way (note that we do not lose regularity on
the surface the terms involving N). By counting the derivatives hitting on each term,
one finds that:

1 1
(620,00 - Dy, Dot - £2 0,9yl 2 s
1 1
S lle2 0 0zullo, 00, el 2 s + 1€ 2 B ztll 2 pym—allttllim—a,00,¢

1 1
+ WVullcoclle2 drull 2 pym—s + lle2 drutllm—s,00.e [Vitll oo pym—a
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11.3 Estimate of the second order normal derivatives of the velocity

To finish the a-priori estimates for the energy norms, we are left to estimate V2u in a
non-uniform way which is the object of the following lemma.

Lemma 11.10 Assume that (2.2) holds for some T > 0, then for any 0 <t < T, the
following estimate holds,

162 V2u|2 — |h|2 , + Y2<0>)Y2<0)

00 rym—2 2ml§ _
L®H2NL2H o m

oj—

©H
+(T + 8)4 ( Ny T) (11.53)
Proof We will prove the following two inequalities:
Lo (1 1 1
e2[IV7ull oo ym—2 S (T + )2 A a’Nm,T + A o’ [Alm—2.00.0 N2 Vel oo pym—
1 1
—|—87||8tu||L?oHCn;72 —I—S_illv‘pollL?oHanfz, (11.54)
1 1 1
g2 ||V2M||Lf2Hm—1 ST+ 8)2A<C—,Nm,r)
0
1
+A< s - ZOot)“Szvu”LZHm +ée 2||V¢G||L2Hm 1 (11.55)
0
where N, 7 is defined in (1.31). These two estimates, together with (7.1), (7.19),

(9.1), (10.1), (11.1), yield (11.53). To prove (11.54) and (11.55), it suffices to control
8% agu. Let us rewrite the equations (1.16); as

1 1 _1 1 .
e2Au=¢62gy(0; +u-Vu+e 2V% —2V¥div¥u. (11.56)

In view of (11.56), (8.29), we have by the product estimate (3.8) and the definition of
gm,[ that:

||8%8Z2u||L?OHZ%_2 S ||8%8tu“L?°Hc’¥,_2 + ||8_%V0||L§><>ché—2
1 1
+ A(a, |hlm—2,00,)(€21I(0, u, Vo, Vi) |l oo -1
+ A( ! )I82h| )
co’ L")
< ||8%8t”||L;’°HC”(T2 + “8_ZVO'“L§’°H§’;*2
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1 1
+ A(a, Ihlm_z,oo,t)IIEZWIIL;OH;@—I

+(T+g)iA(l,Nm,T>.

€0
We thus finish the proof of (11.54). The inequality (11.55) can be shown in a similar

way, we thus omit the proof. O

12 Control of the L?ox norm

In this section, we prove Proposition 2.3, the a-priori estimate for A,, 7 :

_1 .
Am,1 (0, u) = hlm—2,00t + IVulli,o0,r + lle”2(V¥0, div¥u)llm—s,00,7
1
+ lle29; (o, wllm-5,00,7 + lIAd, €01) (0, W)llm—4,00,T (12.1)

1 1
+lle> Vullm—3.c0,7 + lle2 (0, w)llm—2,00,7-

Remark 12.1 By the identity (12.4) and the equation (1.16), for u, we have that:
L2 1
e210zullm—s,00,0 S A o’ Am.t |- (12.2)

Remark 12.2 As [%] <m —4if m > 7, we thus have:

_1 : 1 1

lle™2 (Voo diveu)llim 11 00,7 + N2 (0 W)z -1 o0 7 + £ 21022l 211 o0
1 1
+10d. £8) (0. )l 21,007 + N2 Vatllz o1 o7 + leZulliz 2 007 S Am.r-

The other terms appearing in .4,, 7 can be obtained by the Sobolev embedding (3.16).

Proof of Proposition 2.3 By the Sobolev embedding H 3 (R2) < L%(R?), we have
directly that:

1 <&nr. (12.3)

|h|m—2,oo,T ,S |h|Loo
T

Bl—

ﬁm

Furthermore, thanks to the Sobolev embedding (3.16), the last four terms in (12.1)
can be controlled by the ones appearing in &, 7. Indeed,

1 1 1 ~
20100, Wllm-s.00r S sup_(lleZdue(s)ll s + 129, V()| yn-s) S Emr.  (12.4)

0<s<T

1 1 1 s ~
2 IVu() 3007 S Sup (62 Vu(s)l gt + 2 V2u() | yn-2) S &

0<s<T

I 4007 S sup_ (1@ 0S| gt + 1Y@ ) ys) S Emr. (12.5)

0<s<T
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9 Page1120f134 N. Masmoudi et al.

1 1 ~
leds (@, w)llm 4007 5 sup_ (I£20 (0, ) ()| -2 + £2 168, V (0, )(5) | ys) < E-

0<s<T

1 1 ~
e2 (o, Wllm—2,007 S sup (Il(o, u)(s)lam + lle2 Vo, u)(S)IIHg;fl) S Emr. (12.6)

0<s<T

For the third term in (12.1), we can use the equation for o to get that:

1o 1 1 2
e2Ndiveullm—s,00,7 S N€20:0 llm—5.00,7 + &2 (Il (t, €30, VO llm—5,00,7 + |Alm—4,00,7)
. L1 (12.7)
SEmr + €2A(C—, Ap.T).
0

Moreover, in view of (12.3), (12.5) and identity TTVY = I1(d;, d;, 0)',

1 1
-1 ~1 2
e 21V llm—s.001 S € 200y0 llm—5.00,7 (1 + [hlm—4,00,7)
_1
+ & 2IV¥0 - nllm—5,00.7Alm—d.00.T

Sémr+ &7 +IV90 nlifn o -
Indeed, we have used the Sobolev embedding (3.16) to get that:

_1 _1 5
e 2|10yo llm—5.007 S €2 |||V¢U|||L;oHcrg—3 Sémr-
. . _1 L .
Therefore, it remains to control £~ 2[|V¥0 - nljz)_1 .7, Which is the aim of the
following lemma. O

Lemma 12.3 Suppose that (2.2) holds, then:

_1 5 1 1
e 2 IVY0 - nllim—toer S Y,,%<0)+531,T+82A(5,Amj). (12.8)

Proof By (8.21), we find that V¥o solves

21 +u-V)V¥o + Vo = O, (12.9)

2u 4+ A
where Q1 = Q11 + Q12 + Q13, with

9 = —gzgiV“’a(ea, +eu-V)o — &g V9u - V¥,

e
= — curl? w, = —
Q12 S w, Qi3 S

82(e0; + eu - Vyu.
Denote R = V¥ - n, then by (8.21), R solves:

e2g1(d +u-V)R + R=¢>¢ V¥ (8, +u)n+Q;-n=: 0+ Q;-n

2u+ A
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For any multi-index with || < m — 5, denote R = ZP R, then R” satisfies:

e2g1(0 +u- VIR + RF = 7P (Qy+ Qi -m) +Ch +Ch,=: OF,

2+ A
where
Chy = —€’[ZF g1/elediR. Ch,=—e’[Z”, giu - VIR.
Define X;(x) = X (¢, x) the unique flow associated to u :
0 X(t,x)=u(t,X(,x)), X(@O,x)=x.
Note that since u - n|,—9 = 0, and u € Lip ([0, T'] x €2), we have for each ¢ € [0, T],

X; : S — S is a diffeomorphism. Denote fX = f(¢, X(¢, x)), then RP-X solves the
ODE:

e2 (10, RP) (1, X, (x)) + RP(t, X, (x)) = QP (1, X, (x))

2u + A

from which, we deduce that:

14 L T |
R’B(I,Xt(x)) —e Jo e2g1 (5. X5 (X)) SR'B(O) +f e Jz e2g] (x. X5 (1)) s—zQﬁ(t, X, (x))dr.
0 &

By assumption (2.2), co < g1(¢, X;(x)) < % for any (¢, x) € [0, T] x S. Therefore,

—_

_1 _1
e 2R oot S sup  |RP(, X, (x))|
(t,x)€[0, T1xS

1

T
_1 1 o a2 1
S IR O)llecs) + 672 /0 e T S dsQ Moo

1
<Y (0) + & 210 Ml0.00.7- (12.10)

It thus suffices to control the term 8_% 0P llo.co.7- First of all, by the property (2.1),
we get that:

_1 3 2 3
e 2(ICR llo.co.r < €2 (10 VO llm—5.00.7 + |hlm—st.00,7)” S 242 7.
(12.11)

Next, by using that u - V = u,0d, + %Z3R, we can control the second commutator
term as:

3 1 2
&2 |”C1€,2”|0,oo,T ,S 8(|||(0, u, Vo, Ezvu)lllm—S,oo,T + |h|m+3,oo,T) SJ 8A;%1,T'
(12.12)

@ Springer



9 Page1140f134 N. Masmoudi et al.

Similarly, we can find some polynomial A, such that

1 1 1 1
e 212P(Q2 + Q1 M lo,00,7 S 821\(5, (o, u, Vo, e2Vu)lljmi—1 00,7 + |h|[%]+l,oo,T)

1 (12.13)
< 82A<—, Am,T>.
€0

Moreover, in light of (12.3) and (12.5), we have

1 1 1 1 1
e 2)1Z2P(Q13 M [l0.00.7 S N(€20;u -1, e2u - Vu)|lm—5,00.7 + 821\(%, Am,T)

~ 1
g 531 T +8%A(_,Am7T>.
s o
(12.14)

Finally, since

curlf? w -n = div?(w x n) + w - curl’ n
= —(w xn) - YN+ 91(w xn); +d(w xn)y +w-curl’n

involves only tangential derivatives of V¥u, one has again by (12.3) and (12.5) that:

_1 1 2 _ a2
e 212 Q12 - mllo,co,7 < (€2 Vitllm—s,00.7 + hlm—3007)" < En -

(12.15)
Collecting (12.11)-(12.15), we find that:
QM=) 1.00.7 S Emr + séA(é, Am,T).
Inserting this inequality into (12.10), we eventually get (12.8). O

) . ) 1
In the following Lemma, we obtain the L¢*, estimates of Vu, namely |29, Vullo, 00,
IVull,co,:-

Lemma 12.4 Assume that (2.2) holds, then we have that forany 0 <t < T,

1 1 1 ~
lle20; Vullo,oo,r + IVUlli,00,r S A(%’ Ym(0)> + A(g, |h|3,oo,t>8m,T

(T +e)lA<i,Nm,T). (12.16)

€0
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Proof In view of the identities (4.5) and

1
M0%u) = Nn(w x N+ (V¥u)' -n—nj0ju — nydru)
1

=N (@xN)+TV¥(u -n) — I((V’D)'u — 1014 — mdu),

one gets that:

—_

1 1 1
IVulli,co,r + 2110 Viello,o0,r S 821\(5, -Am,t)

1 1
+ A(—, |h|3,oo,t)<"|”"|2,oo,t + lle20rull1, 0o,
€0

L 1
+ lle72div¥ullt.cor + llollt.co.r + g2 d@llo,00.c)-

The inequality (12.16) then follows from (12.4), (12.5), (12.7) and the next lemma for
the estimates of w. O

Lemma 12.5 Under the same assumption as in Lemma (12.4),

1 1 1 -
lollt,00.r + ll€20;0ll0,00.0 S A(a, Ym(0)> + A(a, |h|3,oo,t)5m,T

1 1
+(T+8)4A<5,Nm,T)- (12.17)
Proof Away from the boundary, the conormal spaces are equivalent to the usual
Sobolev space, the L7 estimate for w can be obtained directly from the usual Sobolev
embedding. It thus suffices to establish the corresponding estimates near the bound-
aries. In what follows, we will detail their estimates near the upper boundary (which
corresponds to the free surface), the one near the bottom being easier and has essen-
tially been performed in [55]. As in the proof of Lemma 11.4, we will employ the
normal geodesic coordinates (11.15) to take the benefit of the explicit formula for the
heat equation on the half line. Taking the same cut off function x = XO(%) intro-

duced in Lemma 11.4 (which satisfies ®;(Supp x) &€ ®,(Sy)), we use the equation
(11.17) to obtain that:

(pd — uA?)(xw) = xG — pAYxw — ud x(N - V9o =: G*
where

\Y%
Gwz—u-Vgow—i—a)-V‘pu—a)div‘”u—ﬁ
€

P82 (20, + eu- V).

X ((e0; + eu - Vyu) +
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For a function f(¢, -) supported on R2 x [—C(k), 0], we use the notation

f,x) = ft, &7 0 d,(x)).
By the change of variable, we find that x @ satisfies the system:
(5O — ) = FIo =: GLo 4+ p(DD) ™9, ®, - Vo
+ u[%az(ln 1813 + 8;(InlgNgia; + ;(79;) ]| (X@) (12.18)

supplemented with the initial and the boundary conditions:

K0li=0 = xoli=o(®y ' 0 Bg),  FWlm0 = ®l—0 =: ”1. (12.19)
Let
, 1 _ =2 _ 2 o
E(taZ,Z): (e 4jut — € 4t ), /_,L:,O/M’

(4rfir)?
the solution to the system (12.18)-(12.19) can be expressed as:

t 0
ﬂl)([»yvz):_ll/ (az/E)(t_s’Z’O)a)byl(s’ )’)ds+/ E(t,Z,Z/)X~0)|t:0()’»Z/)dZ/
0 0 (12.20)

t 0 _—
+/ / E(t—s,z,7)FXo(s,y,7)dZds = (1) + (2) + (3).
0 J—0

Control of the boundary term (1). As in the estimate of (11.31) and (11.32), we can
bound the boundary term as:

I0d, 28, 3y Z3)(Dllo.cor < CGIAL, €28, )0 1x
By the identities (4.4), (4.3), one sees that
ol ~ Fuh!, Byub’l, (div?u)?>! nb!, vnPh,
which, together with the previous inequality, yields that:
I0d, £28,., By, Z3) (D00,

1 1 1
S A(a, |h|3,oo,t)("|82al”"ll,oo,t + lle” 2div¥ulli 0o, + |||u|||2,oo,z)

1 (12.21)
+eiA<—,Nm,T>.
€0
1 ~ 1 1
S A(_, |h|3,oo,t)gm,t +e2A| —, Nm,T .
€0 o
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Control of the initial evolution (2). Since 9;, d, commute with the operator pd; — ;1,822,
the following identity holds:

1 0 1
(Szar,ay)(2)=/ E(t,z,2)(e29;, 3y) (Xx@)li=0(y, 2) d’,

—00

from which we derive that:

1 ~
(Id, £2 9, dy) x @) l1=0

0
1
I(1d, £20;, 3y) (D) llo,00,r < H/ |E(t,z,2)|dZ
—00

LPLe L=(Sy)
1 1 1
S A(—, 11012,00 + |8231h|t:0|1,oo> (”(82atw)|t=0”L°°($)
co (12.22)
+ |I(Id, 9y, Z3)CU0||L°°(S))
1
<Al —,Y,0)).
co
/ 1 _ L .. .,
To control Z3(2), wedenote E4(t,z,7') = e 4 Bywritingz = z—7'4z2

(4 jit)2
orz =z+ 7 — 7/, one can split Z3(2) into two terms:

0
Z3(2) = / ¢ ()3 (E- — Ex)(t, 2, ) (xw)i=0dz = (Z3(2))1 + (Z3(2))2
with
0
(Z32)) = d)l(Z)/ (z =23, E- — (z+2)0,E4)(t, 2z, 2)(X®)|i=0 d2,

0
(Z3(2))2 = ¢>1(z)/ E(t, 2,29, (7 (X®)li=0) d2,

where we use the notation ¢ (z) = % = z¢1(z). By straightforward calculation,

we obtain
0
|¢1(z)f ((z =)0, E- — (z+2)3.E4)(t,z,2)dd| < C
— 0

where C is a constant independent of z and ¢. The first term (Z3(2)); can thus be
bounded as:

~ 1
I(Z32)1ll0,00,0 S Nx@ =0l LS S A o’ Y (0) .
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Next, by writing

3y (2 (X@)|i=0) = (X@)l1=0 + Z3(X®)li=0,

1
$1(2")

and by observing that ¢ (z) has a uniform positive lower bound on [—«, 0], we control
the second term as:

~ 1
1(Z3(2))2ll0,00,: S 1A, Z3) (x@)|i=0ll L5,y S A(%’ Ym(O))-

To summarize, we have obtained that

1
NZ32) 0,006 S A a,Ym(O) :

which, together with (12.22), yields that:

1 1
lIdd, £20;, dy, Z3)3) 0,00t S A(g, Ym(O)). (12.23)

—_~—

Control of the nonlinear term (3). We need to distinguish the terms appearing in F X-©
that involves one normal derivative of the vorticity and the others. Therefore, let us
denote

—~—— e~

FX© = pyu -V + pd,d; - V(X0)
—_— 1 —~
—ud xN- Vo + Eﬂaz(ln|g|)az)(w+ R, (12.24)

where the remainder term R satisfies the estimate

1 1 1
||823rR||L[2H30 + ”R”er[—[g() < A(g, Am,z)(||823z(0, u, Vu)lngHga + [I(o, u, V“)”L,Zﬂg,)
1
SAl—, Nt ).

€0

By using the Sobolev embedding H 2(R?) — L;o (R2) we can deal with the term

t 0
/ / E(t —s,z,Z)R(s, y,7)dZ/ds
0 J—oo

@ Springer



Incompressible limit for the free surface... Page 1190f134 9

as follows:
t 0 X
/ f E(t —s,z,z/)(ld,sfat,By)R(s,y,z/)dz/ds
0 J—o0o

t 0 1 1
< ( fo f |Et —5,2,2)7d2/ds) (0, 29y, 9,) Rl 22,
—00 Z

A(l,/\/’m,T>.
co

-

t 1
~ (/0 (1 = 5)"2ds)? [ (d. £33y, 3R 202 S T

Moreover, as in the control of Z3(2), we have that:

t r0
Z [ B s RG0S S 104 Z0Rl
O —00 co

t r0 %
. |:</ f |E|2dz’ds>
0 J—o0
t 0 3
+( [/ (|(z—z/>azE_|2+|<z+z’)azE+|2)dz’ds) ]
0 J—oo

1
rS T}lA<_’ Nm,T)-

€0

(12.25)

We are left to treat the first four terms appearing in (12.24), for which we need to
integrate by parts in order not to lose normal derivative. Let us explain the estimate
for the term

t O —_ —
,5/ f E(t—s,2,7)xu-VPwdz7ds
0 J—oo
By straightforward calculation, we find that

xu - Ve0 = X1y (D®) 49, ((10) + X1ty (DDP)340; (1)
= K (DD) 18 (X1®) — 3, (X1t (DDP)3x) X710 + 3, (X1t (DDP)35 X 1)
(12.26)

where x; is a cut-off function supported on [—C (x), 0] that satisfies x;x = x. The
Einstein summation convention is used for j = 1,2,k = 1,2, 3. As the first two
terms in the right hand side of the above identity does not involve normal derivatives
of (x1@), we have by following the same procedure as in the estimate of R that:

t r0 ~
,5/0/ E(t —s,z,2)(xuy(DD) j10; (x10)

—~ ~ 1
0. (i (DF)30)770) d2'ds < TiA(—,Nm,T).
0
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For the one whose integrand involves the last term of (12.26), we integrate by parts in
7/ to get that:

t 0
,5/ f E(t —s,2,7)0, (XU (DP)3 x1w)dz'ds

0 J—o0
t ~

5 / o E(t —s, 2, -)||L2/ds ||Xuk(DcD)3lew“Lt00L2/L$o
0 4 zZ/77)
l ~ ol —_— l 1

S THIxuDP)zexioll ey S T4A(5aNm,T)-

In addition to the above two inequalities, we have also analogs of (12.25), that is to
say:

t 0 —_—
,5(853;,8),,23)/ / E(t—s,2,7)xu-VPwdzds
0 J—o0

1 t
§A<C_,Nm,T>/ ||E(t_S,Z, '),az/(E(t_S,Z, ')a
0 0

(z—=)0E_, (z+ )0 E )l 2 ds

1 ‘ 1
< A(—,Nm,T)/ (t —5)"1ds < TiA<—,Nm,T).
0

(12.27)

€0 €0

We have thus finished the estimate of the term fot ffoo E(t—s,2,7)x i - Vewdz7ds.
The other three terms in (12.24) can be dealt with in the same way. Consequently, we
find that for any ¢ € (0, 7],z < 0,

t 0
— 1
/ / E(Z‘—S,Z,Z/)FX,de/dS g T}‘A<—,./\/’m,T>. (12.28)
0 J—oo €0

Collecting (12.21), (12.23) and (12.28), we find that:
1 ~ 1 1 ~
lIAd, £20;, Ay, Z3) (X @) llo,00,r S A o’ Yn(0) ) + A o’ 113,00, )Em.t
1
(T +g)iA(c—,Nm,T>.
0

By the property (11.22), this leads to (12.17). O

13 Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1 which is based on the known local
existence results (non-uniform with respect to ) and the uniform estimates established
in the previous sections. Concerning the compressible Navier-Stokes system with
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free boundaries, the local existence in the Sobolev-Slobodeskii space H*? (see the
definition (13.1)) is established in [65] [77] (see also [69] for the local existence in
Holder spaces). All these results deal with the case where the reference domain is a
smooth bounded domain, nevertheless, by following the same arguments as in these
papers, one can easily obtain a similar result when the reference domain is changed
into a strip or half space. The following theorem corresponds to Theorem B of [65] or
Theorem 6.2 in [77] in this framework.

Theorem 13.1 Assume that the compatibility condition (1.28) holds up to order 2 and
(0. uf) € (H3S)*, S e HIR?), 1+h > 3co >0,
8 is chosen sufficiently small such that
d:05(x) = 1+ d:m5(1 +2) +ng = 2¢co > 0,Vx € S,

where 1, is the extension of h( defined in (1.12). Then for any ¢ € (0, 1], we can find
T¢ > 0 such that:

(0%, u) € C([0, T], H3(S)), h® e C([0,T¢], H? (R%)).
Moreover,
u® € H*2([0, T°] x 8) = {u[d/u € L*([0, T°1, H*72/(S)), j = 0, 1,2}(13.1)

and (2.2) holds.

We shall combine this theorem with the uniform regularity estimates established in
the previous sections. Set

Tf = sup {T|(of, uf) € C([0, T1, H*(S)), u* € WH2([0, T¥] x S) and (2.2) holds}.

Since the initial datum is assumed to belong to Y, , a space with higher regularity, by
standard propagation of regularity arguments (for example based on applying finite
difference instead of derivatives) and the computations presented in Section 6-Section
12, we can find the following uniform estimates of Theorem 2.1:

£ 1 € 9 1 £ £
w1t < Ps| —. Y, (0) ) + (T +&)"Ps| —. Y, (0)+ N, ). (13.2)
Co €0

where 0 < ¥ < 1 and Ps, Pg are two increasing continuous functions that are inde-
pendent of ¢. By the fundamental theorem of calculus and Lemma 3.8, one finds for
0<t<T

t

9,01, %) = 0,000, %) + f 3y + (1 + 2)3,8,1)(s, %) ds
0
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> 0;¢(0,x) — C1T|8th(t)|Lw(Rz), (13.3)
1(Ve, V) (Dl (s) < 1V, V@) (0) [l 1oo(s) + CoT 1h(t)] .00 g2y (13.4)

where Cy, C, are two constants independent of €. Moreover, eo® can be expanded by
using the characteristic method:

t
808(t,x)=805(X_1(t,x))—f (divu® /g1) (X (s, X 'z, x)))ds  (13.5)
0

where X (¢, x) is the unique flow associated to u. Let us define

Tf = sup{T > 0|(0%, u®) € C([0, T1, H), u* € W"*([0, T] x S)},
Tg =sup {0 < T < min{T}, 1}| N7 (0%, u®) < 2P5(1/co, M)
(1.34) holds for all (¢, x) € [0, T] x S}.

where M is chosen such that M > sup, g 11 Y (03, ug)-
We now choose successively two constants 0 < ¢g < 1 and Ty > 0 (uniform in
¢ € (0, &o]) which are small enough, such that:

1
(To +20)" Ps(1/co, M +2Ps(1/co, M)) < 5 Ps(1/co, M),

C1ToPs(1/co, M)? < ¢y, CaToPs(1/co, M) < 1/(2co), 2Ps(1/co, M)To/co < EP.

In order to prove Theorem 1.1, it suffices to show that TO‘S > Tp forevery 0 < ¢ < gg.
Suppose otherwise 7j < Tp for some 0 < & < g, then in view of inequalities
(13.2)-(13.4) and the formula (13.5), we have by the definition of ¢g and Ty that:

3 -
Non,1 (0, u*) < §P5(1/Co, M) VT < T =min{Ty, T}, (13.6)

0:¢°(t,x) = co.  |(Ve©, V2¢*)(t, x)| < 1/co,
—20P < e0f(t,x) <2P/¢ Y(t,x) €[0,T] x Q. (13.7)

We intend to prove that T = To < T;. This fact, combined with the definition of T08
and the estimates (13.6), (13.7), yields T(f > To, which is a contradiction with the
assumption Tj < Tp. To continue, we shall need the claim stated and proved below.
Indeed, once the following claim holds, we have by (13.6) that ||(o®, u®)(To) |l g3 () <
+00. Using the local existence result stated in Theorem 13.1, we obtain that 7,f >
Ty = T.

Claim. For all ¢ € (0, 11, if N, 7 (0%, u®) < 400, then (0%, u®) € C([0, T], H?),
ut € H4%([0, T] x S).

Proof of claim By the definition of N, 7, we derive that:
e3u® € L2([0,T], HY), &>0,u® € L2([0,T], H?).
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e39%u € LX([0,T), LY e20® e L([0, T], HY),

which yields by interpolation that £3ut e C([0, T, H®) N H*2([0, T] x S). More-
over, carrying out direct energy estimates for o in H>(2), one gets that:

|0 R (1) < K* f*(t) (13.8)
where K¢ = A(1/co, (0, Vo¥, Vu?®, S%Vzus)nloo,,) is uniformly bounded and

1 3 1
RE() = 20135, £5(6) = [e2uf ()17 + lle2u® (D135

+l(0®, 672V )OI € L' (0, TD).

Inequality (13.8) and the boundedness of || R® (+) || .o~ ([0, 7)) leads to the fact that R®(-) €

C ([0, T]), which further yields that 8%0'8 e C(0,T],H 3). This ends the proof of
the claim. Note that at this stage we do not require the norm [|(o®, u®) [l ¢ (0.7, 3y tO
be bounded uniformly in €. O

14 Convergence

This section aims to show Theorem 1.5. In the following, we denote Q7, = [0, Tp] x
S, T'g, = [0, To] x R2.

First of all, for the surface, since d;4° is uniformly bounded in L°°([0, Tp],
H™3/2(R?)), h® is uniformly bounded in L>([0, Ty, H™~!/?(R?)), one has that
h® converges (say to h%) in C([0, Tp], HZSOC(RZ)) for any 0 < s < m — 1/2. Further,
from the definition of ¢® (1.11) and Lemma (3.8), we conclude also that ¢° — ¢
in C([0, To], H},.(5)), 0 < s < m where (po is defined in a similar way as (1.11) by
replacing h¢ with h°.

Next, since (8%8;0’8,8%08) is uniformly bounded in L*°([0, Tp]l, H!(S)) x
L°([0, Ty], H3(S)), we have that £20° is uniformly bounded in C?(Q7),0 <
y < % In view of the definition of 6® : 0 = (P(p) — P(p))/e, we have that
P(p®) — P(p) in CY(Q7,), which, combined with the uniform boundedness of
IV P(p®)lloo.s» yields the convergence of p® to p in C¥ (Q7,).

Let us see the convergence of the velocity. We write u® = V¥ W¢ + v¢, where
V¢ W and v® denote the compressible and incompressible part of the velocity
(see definitions (5.2), (5.3)). On the one hand, since e~ 2div u , S%E)tdiv‘pgu‘9 are
both uniformly bounded in L*°([0, To], H'(S)), we get that div¥’u® — 0 in
C7([0, Tol, H'(S)),0 < y < 3. By elliptic estimates (5.10), V¥"W¢ — 0 in
CY ([0, Tol, H3(S)). On the other hand, due to the uniform boundedness of 9;v®
in L2([0, Tol, H'(S)), and of v® in L*([0, Tp], H'(S)), we obtain by Aubin-
Lions lemma that up to extraction of subsequences, v® converges (say to u°) in
C([0, Tol, L? (S)). Since we will prove that u¥ is the unique solution (in conor-

loc
mal spaces with additional regularity property), to the incompressible free-surface
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Navier-Stokes equations this convergence holds indeed for the whole family. We thus
proved that u® converges to u” in C? ([0, Ty1, H'(S)) + C ([0, To], LZZOC(S)).
To conclude, we have achieved that

o =0 p° > p VYW 5 0in CY(Qr) v¥ —u® in C(I0,Tol, L},),  (14.1)
1
¢¢ — " inC((0, To), HS,.(S)  h® — K" in C([0, Tpl, HY .(R?)), 0<s<m— >

(14.2)

We now show that there exists g € L2([0, Tp], H%"~1) such that (u°, 7°, h0) is
the (unique) solution to the incompressible free surface system (1.36). Let us rewrite
the equations for the incompressible part of the velocity (see (9.6)) as follows:

pY v+ vF - V) — uAP W+ VO RS = FE (14.3)
where

VRS = v (= gf) — [0, P,
g —1

Fé=¢ (B 4+ u’ - V)ub — p(° - (V9)2We + V& We . V¥ %),

with V¥ 778, V¥° ¢¢ defined in (9.7). Note that by the definition (5.2), (5.3) for Q;, P;,
the commutator —[8;” , P;Ju® can be expressed as a gradient:

—[0¢" Put = [3¢, Qiluf = V¥ (0 wE — %) (14.4)

where we denote V¥ ¢ = Q;(df Eu‘e). By estimates established in (9.10), (9.14)
and (9.15), we readily see that V¢ is uniformly bounded in L?([0, Tp], H>"2).
Therefore, there exists 70 € L?([0, Tp], H%"~!) such that V¢ tends (up to subse-
quences) to Vz¥ in sz(QTo) and 77° converges to g in L%)([O, To], LIZOC(S)). Next,

by boundary conditions (9.6)>-(9.6)3 as well as the fact (14.4), we have that:

& & & 8 hs
QuS? uf — 7FEIDN® = 2 (div? uld — (V¥ )2W#)N® + (at _ azw) N° onz=0,
4%
(14.5)
v; =0, Mag”“’vj = auj (j=1,2) onz=-1. (14.6)
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Let us now choose a smooth vector ¥ = (Y, ¥, ¥3) € [Cfo (Q_TO)]3 with
condition ¥3|,=—1 = 0. Multiplying the equations (14.3) by ¥ and integrating by
parts in space and time, we find by using the boundary conditions (14.5), (14.6) that:

t t
p/(us-w)(z,-)dv;f+m/ / S‘/’gv£~V‘/’£de§ds+,5/ /(vs.vw’“’v*’)-wdvsgds
S 0 JS 0 JS
t
=,6/ W - ¥)(0, ) dV§ +/ / F€ .y dVeds
S 0 JS
t . 1 R
+,5/ / e - 9 wdv‘fder/ /ﬁgdiv“’ ¥ dVeds (14.7)
0 JS 0 JS

t t
+a/f (ui-w1+u§-wz)dyds+// (o - N°)(u* - ) dyds
0 7=—1 0 z=0

t
—|—// Qudiv? u® +
0 Jz=0

where dV; = 8Zlg0€ (t,-)dydz. Since v* — v¥ in C([0, Tp], leoc(S)), d,¢° converges

to az<p0 in C([0, Ty], Cioc(S)), we see that:

0;h¢
9. 9°

3. WO (Y - N%) — (V¥ )2WEN® - ¢ dyds

b [t a5 [ W e,
S S
5 /S (0 )0, ) dVE — /S @ )(0, ) dVY. (14.8)

Let us now show the convergence of the last two terms in the left hand side of the
above identity. Since

v — u%in L*([0, To], L}, .(S)), Vvi—=Vu® in L*(Q7),

v® uniformly bounded in L%([0, Tp], H'(S)) (14.9)
¢° — ¢" in C([0, Tol, C},.(S)), (3¢, d00)(t, x) = co > 0,¥(t,x) € O,
(14.10)

one gets that: S¥ e8P0 v¢* v — V‘/’Olﬁ in L2(QTO), which leads to the fact:

t t
2M/ /s¢5v8-v‘/’£¢ deder,s/ /(US-V‘pgve)-defds
0 /S 0 /S (14.11)

t t
— ZM/ / §9°0 . V‘/’Ow dV0ds + ,5/ / u® - V(ﬂouo) - dVVds.
0 JS 0 JS
It suffices to deal with the convergence of the the last four terms in the right hand

side of (14.7). As V‘/’Sl,/fe = 0(8%) in LtzH1 and (u?, s%atu‘g) uniformly bounded in
L2([0, To], H'(S)), one readily see that F* — 0 in LQ(QTO), which gives that:

t
//Fs-de§ds—>O. (14.12)
0 JS
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Next, since(:) 30 — 9,00 in L%)([O, Tol, L*(S)), we have by combining (14.10) that
3y w—a¢ ¥ in L>(Q7,) This, together with (14.9) gives that:

t & t 0
,5/ / ve - af y dVids — /3/ / u® - 8¢y dV0ds. (14.13)
0 JS 0 JS

As for (14.11), we have also that:
! 3 ! 0
/ / afdiv? ¢ dVids — / / 70div? I/rdVSOds. (14.14)
0 JS 0 JS

To proceed, we prove that (1¥)?/, (v¥)?>/ both convergent to (1°)?*/ in leoc([(), To] x

R?) where j = 1, 2. Indeed, by the trace inequality and the fact (14.9), one has for
any K C R? compact,

I 1
b,j On\D, j 0,3 0,3
(v — (") Ne2qorxk) S v —u’|? v —u”|?

L2([0,To], L2 (K x[—1,0]) L2(0. T H'(S) 0.

where K C R? is a compact set such that K € K. The same argument applies also
for u®. Therefore, one deduces that:

1 t
a/ / (u§ - Y1 +us - Yp) dyds +/ (v® -N*)(v® - ¥) dyds
0 Jz=-1 0 Jz=0 (14‘15)

t t
aa// <u?-w1+u8-wz>dyds+// W - N - ) dyds
0 Jz=-1 0 Jz=0

Finally, by the trace inequality div® u®, V¥° We, (V¥ )2We = O(e2) in L2([0, Tl
L?(R?)), which yields that:

! . ah® .
/ f Qudiv? uf + ——— 3. W8 (¥ - N°) — (V¥ )2WEN? - ¢ dyds — 0.
0 Jz=0 9z ¢°
(14.16)
Plugging (14.8) and (14.11)-(14.16) into (14.7), we find that (u°, 7°, h°) satisfies
(1.40). Finally, itis direct to see that u” has the additional regularity (1.35). In particular,

u" is Lipschitz continuous, which is sufficient to verify the uniqueness. For the reader’s
convenience, we will sketch the proof in the following subsection.

14.1 Uniqueness of limit system
Suppose that there are two solutions (hl, ul, an) and (h2, u?, VTL’Z) to the system

(1.36)-(1.39) on the time interval [0, 7] with the same initial data ((pl, goz are defined
through (1.11) and (1.12) associated to k!, h?). Leth = h' — h*>, u =u' —u?, 7w =
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7l — 72 We prove that 7 = 0, u = 0. By direct calculation, we find that (%, u) solves

the following system:

oh + @hHP Vb +uP v R 4 ub =0 (14.17)
@ +u' - VYu+V9m — A u=F (14.18)

where

F=—@—u?) Vi + (V" =) 4 u(a? — A2,

. o ub NE— 9,0k
W= (ul o, TN o0, (14.19)
B b2 09"

and with boundary conditions:

(8¢ u — 7ldy)n' = [(5¢° — $ )u*In' + (=5 u? + 721d3)(m' —n?) on {z = 0},
(14.20)

mozuj =auj(j=1,2) uz=0 onf{z=-1}. (14.21)
Define

_ 2 2
E@) = |h(t)|H%(]R2) + [, yu) (D72 s

It suffices to prove that

1 t
E(t)+/ IV @, Byu)(5) 25 ds < A(R)/ E(s)ds, ¥t € [0, Tp]. (14.22)
0 0

where

2
R =Y (e, Vu', 9,V lo.co.r + IGT", VY 0.00.0 + 1B |20 113).
i=1

Direct energy estimates on £ lead to:

s+ A b1

h(t)? SAMR(Ih? 3
| |H%(R2) ( |L%H§(R2) L7H2 (R?)

L,ZH%(RZ))
(14.23)

1 t t
< 5/0 ||V(u,ayu)(s)||iz(8) ds—l—A(R)/O E(s) ds.
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Thanks to Lemma 3.12 and boundary condition (14.21), we can obtain the energy
equality:

1 t t
—/ Iu(t)lde,1+2,u,/ /lS‘pluldeslds—l—a/ / u|? dyds
2 /s 0 Js 0 JR2

13 t t
:f /ndiv‘pludvslds—l—/ /F-udvslds+2,u/ ($%'u — w1dz)n' - u dyds,
0 JS 0 JS 0

where dV,l = 9,9 (¢, -) dx. Inlight of the definition (14.19) for F, boundary condition
(14.20) as well as the identity:

. ol . 02 . ol
div? u = (div?" — div? )u?,

we can obtain, after lengthy but direct computations, that:

t

t
2 1 2 1
/Sm(m dy +f0 f8|vu| dV'ds gA(R)(fO E(s)ds—l—||n||Ltsz(S)|h|L[2H%).

Following similar arguments, one can also show that:

t t
f ENIGIR% +/ / IV, ul?dV'ds < A(R)(/ E(s)ds + |7 [l 21521 5 3)-
S 0 JS 0 ! LiH?2
By the elliptic estimates performed in Section 5, we can find that:

7210 S ARV 3 o+ 16 8020 )

Combining the previous three inequalities and using Young’s inequality, we have:

t t
Gt 3yu)(O)172s) + /0 IV, 8yu)(9) 172545 < A(R) fo E(s) ds.

Together with (14.23), this yields (14.22).

15 Remarks for other reference domains

In this section, we shall explain how to extend the uniform estimates results established
in sections 5-12 to the case when the reference domain is a channel with infinite depth
or a bounded domain. We will only explain the former case since the latter can be
dealt with by using the similar covering as in [56] and by working in local coordinates
based on the former case.

Assume now that Qf is given by:

Q ={x=(y,2)|y eR* z <hé(@, ).
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The first step is still to use the so-called harmonic extension transformation to reduce
the problem to a fixed domain. Consider the map

oF ‘R = Q7
. . , (15.1)
(y,2) > ®°(t,y,2) =y, ¢ (1, y,2)
where
e°(t,y,2) = Az +n°(t, x) (15.2)

Here 7 is given by (1.12) and A is a constant which is chosen sufficiently large such
that 0,¢° > 0. We introduce the conormal vector fields

Zo=¢d, Z1 =03y, Zy=20y,, Z3=d¢()0,.

where the weight function ¢(z) = z/(1 — z). We can define conormal spaces anal-
ogous to those in Section 1.2 by using these vector fields. Furthermore, we can use
the quantity \V? ,fZ’T defined in (1.31) (with the conormal norms being changed accord-
ingly in the current definition). The projections Q;, IP; that send a vector field in
(L*(R3 dV))3, @V, = d;¢ dydz) to its compressible part and incompressible part
are defined as: P, = Id — Q; and

Q : L*(R:dV,)’ - L*(R? dV))?

‘ (15.3)
f=Qf=V0

where p satisfies the elliptic equation with trivial Dirichlet boundary condition:

—A? o = —div¥* in R3
{ A?Y o= —div¥ f inR> (15.4)

lezO =0

Denote further v¢ = P,u®, V¥ ¢ = Q,uf.

Following the similar (and even easier since there is no lower boundary) compu-
tations done in Section 5-12, we can prove uniform estimates analogous to those of
Theorem 2.1, we thus do not detail them. We comment that one crucial point that we
have used in the computations is that [|[VW?|lo,,; can be controlled by the L Hclo

norm of div¥ u® (rather than u¢) which has a size of £2 . This is achieved by Sobolev
embedding and elliptic estimate similar to (5.10). In the current situation, due to the
lack of suitable Poincaré inequality, only || V>W/|| reop) (but not [VWE| e o ) can
be controlled by ||div¥u®|| L®HL - Nevertheless, in the current situation, one has the
following Sobolev embedding:

1Nl oo w3y S ||Vf”H,1M(R3_)
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which leads to:

1
2 .
0,000 S IVPWEN eyt S A 113,00, ) [div?ue] oo

IV e —
co
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16 Appendix
We give a short proof of (3.4). The proof of | fg|ys@2) S [f1ms1glwie, (0 <5 < 1)
can be found in Theorem 15.2 of [54]. The case for —1 < s < 0 is derived by duality.

We thus focus on the proof of inequality: | fg|ysg2) < | flas|gl i+, (=1 <s < 1).
We shall use Bony’s decomposition:

fe=Tof +Tg= ZSj—lgAjf + Z Sk+2f Akg.
=0 k>—1

One canrefer to [p.61, [6]] for the definition of nonhomogeneous dyadic block A; and

nonhomogeneous low-frequency cut-off operator Si. For any s € R, one can control
T, f as:
8

Te flus@ey SlglLel flas S8l 1 flas.

As for ffg, if s < 0, we control it with the aid of Bernstein inequality:

(27518, Trgl2)p S <2j<s+1>|Aj(Zsk+2fAkg)|Ll) 2
k lj
SRF Y IMgle)p sip<2’“|sk+zf|Lz> S gl | f1as,
J
k<j+5

andif s > O,

1Trgl < sup (X179 840 flree) gl giee S 1F1aslgliee,
k

where ¥ > 0 is a number that can be arbitrarily close to 0. The proof is now complete.
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