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In this paper, we study the asymptotic stability for the 
two-dimensional Navier-Stokes Boussinesq system around 
the Couette flow with small viscosity ν and small thermal 
diffusion µ in a finite channel. In particular, we prove that if 
the initial velocity and initial temperature (vin, ρin) satisfies 
‖vin − (y, 0)‖H2

x,y
≤ ε0 min{ν, µ} 1

2 and ‖ρin − 1‖H1
xL

2
y

≤
ε1 min{ν, µ} 11

12 for some small ε0, ε1 independent of ν, µ, 
then for the solution of the two-dimensional Navier-Stokes 
Boussinesq system, the velocity remains within O(min{ν, µ} 1

2 )
of the Couette flow, and approaches to Couette flow as 
t → ∞; the temperature remains within O(min{ν, µ} 11

12 ) of 
the constant 1, and approaches to 1 as t → ∞.
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1. Introduction

In this paper, we consider the two-dimensional Navier-Stokes Boussinesq system in a 
finite channel Ω = {(x, y) : x ∈ T , y ∈ (−1, 1)}:






∂tv + v ·∇v − ν∆v + ∇P = −ρge2
∂tρ + v ·∇ρ− µ∆ρ = 0, ∇ · v = 0,
v(t, x,±1) = (±1, 0), ρ(t, x,±1) = c0,

v(0, x, y) = vin(x, y), ρ(0, x, y) = ρin(x, y),

(1.1)

where ν is the viscosity coefficient and µ is the thermal diffusivity, v(t, x, y) = (v1, v2) is 
the two-dimensional velocity field, P (t, x, y) is the pressure, ρ is the temperature, g = 1
is the normalized gravitational constant and e2 = (0, 1) is the unit vector in the vertical 
direction. The boundary condition in (1.1) means that the fluid is moving together with 
the boundary and the temperature is fixed at the boundary. Let us also normalize c0 = 1
for simplicity. The 2D Navier-Stokes Boussinesq system (1.1) is globally well-posed. One 
can refer to [1,2,15,16] and reference therein.

In this paper, we focus on the stability problem of the following steady-state

vs = (y, 0), ρs = 1, ps = y + c. (1.2)

Now we introduce the perturbation: v = u + (y, 0), P = p + ps and ρ = θ + ρs, then 
(u, p, θ) satisfies






∂tu + y∂xu +
( u2

0
)

+ u ·∇u− ν∆u + ∇p = −
( 0
θ

)
,

∂tθ + y∂xθ + u ·∇θ − µ∆θ = 0, ∇ · u = 0,
u(t, x,±1) = 0, θ(t, x,±1) = 0,
u(0, x, y) = uin(x, y), θ(0, x, y) = θin(x, y).

(1.3)

We also introduce the vorticity ω = ∇ × u = ∂yu1 − ∂xu2, which satisfies





∂tω + y∂xω + u ·∇ω − ν∆ω = −∂xθ,

∂tθ + y∂xθ + u ·∇θ − µ∆θ = 0,
u = ∇⊥ψ = (∂yψ,−∂xψ), ∆ψ = ω.

(1.4)

Note that we can not impose the boundary condition on the vorticity, which is the main 
difficulty of this paper.

Before stating our main result, let us first recall previous works about the stability of 
flowing steady states. The linear inviscid two-dimensional Boussinesq system with shear 
flows has been extensively studied starting from the works of Taylor [24], Goldstein [14]
and Synge [23]. We also refer to the book of Lin [19]. The system (1.3) is well studied in 
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the infinite channel case T×R. We can refer to [7,11,28–30]. The best stability threshold 
results when ν = µ is

‖ωin‖Hs ≤ εν
1
2 , ‖θin‖Hs ≤ εν, ‖|Dx|

1
3 θin‖Hs ≤ εν

5
6 , (1.5)

with s > 1, which was proved by Deng, Wu and Zhang [11]. The mechanisms leading 
to stability are the so-called inviscid damping and enhanced dissipation, which are well 
studied for the Navier-Stokes system around Couette flow which we will introduce later. 
Without thermal diffusion, Masmoudi, Said-Houari and Zhao [22] considered the Navier-
Stokes Boussinesq system with no heat diffusion in the thermal equation, and they 
studied the stability of Couette flow for the initial data perturbation in Gevrey-1

s for 
1
3 < s ≤ 1 in the domain T × R. For the Euler Boussinesq system ν = µ = 0, the 
global well-posedness for large data is an open problem. In [26], Yang and Lin proved 
the linear inviscid damping for the linearized two-dimensional Euler Boussinesq system 
which is generalized in [8]. The nonlinear inviscid damping for a large time is studied by 
Bedrossian, Bianchini, Coti Zelati and Dolce [6]. We also mention a very recent result 
[27], where the nonlinear asymptotic stability of Couette flow in a stratified fluid with the 
linear temperature was studied. We refer to [12,13] for some recent global stability results 
of other steady-states for the Boussinesq system, where the stabilization mechanism is 
different from that in this paper.

In this paper, we mainly study the boundary effect due to the non-slip boundary 
condition on the velocity. Our main result is stated as follows.

Theorem 1.1. Suppose that (u, θ) solves the system (1.3) with the initial data (uin, θin). 
Then there exist constants ν0 and ε0, ε1, C > 0 independent of ν, µ so that if

‖uin‖H2 ≤ ε0 min{ν, µ} 1
2 ,

‖θin‖H1 + ‖|Dx|
1
6 θin‖H1 ≤ ε1 min{ν, µ} 11

12 ,

for some sufficiently small ε0, ε1, 0 < min{ν, µ} ≤ ν0, then the solution (u, θ) is global 
in time and satisfies the following stability estimates:

‖(1 − |y|) 1
2ω‖L̃∞

t FL1L2
y

+ ‖∂xu‖L̃2
tFL1L2

y
+ ‖|Dx|

1
2u‖L̃∞

t FL1L∞
y

+ ν
1
4 ‖|Dx|

1
2ω‖L̃2

tFL1L2
y

≤ Cε0 min{ν, µ} 1
2 ,

and

‖θ‖L̃∞
t FL1L2

y
+ ‖|Dx|

1
6 θ‖L̃∞

t FL1L2
y

+ µ
1
6 ‖|Dx|

2
3 θ‖L̃2

tFL1L2
y
≤ Cε1 min{ν, µ} 11

12 ,

where ‖f‖L̃p
tFL1Lq

y
=

∑
k∈Z

‖f̂k‖Lp
tL

q
y

and f̂k = 1
2π

∫
T f(x)e−ikxdx is the Fourier transform 

of f in the x direction and k is the wave number.
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Remark 1.2. The function space L̃p
tFL1Lq

y is of the same spirit as the Chemin-Lerner’s 
Besov space [9].

Remark 1.3. The asymptotic stability holds for the initial perturbation satisfying
∑

k∈Z

‖ŵin,k‖L2 +
∑

k∈Z\{0}
|k|−1‖∂yŵin,k‖L2 ≤ Cε0 min{ν, µ} 1

2 ,

and

‖θ̂in,0‖L2 +
∑

k∈Z\{0}
‖|k| 16 θ̂in,k‖L2 ≤ Cε1 min{ν, µ} 11

12 .

Remark 1.4. The estimate ‖∂xu‖L̃2
tFL1L2

y
is due to the inviscid damping and the estimates 

ν
1
4 ‖|Dx|

1
2ω‖L̃2

tFL1L2
y

and µ
1
6 ‖|Dx|

2
3 θ‖L̃2

tFL1L2
y

are due to the enhanced dissipation.

Remark 1.5. Compared to [11], when ν = µ, the interpolation of Sobolev spaces gives 
that the stability threshold is more restrictive than the one in our paper. In [11], an 
extra smallness on lower frequencies is required, namely ‖θin‖Hs ≤ εν. The key point of 
improvement is that we can control the buoyancy term and nonlocal terms in the temper-
ature equation by avoiding discussing the different sizes of θ in different frequencies. More 
precisely, there is one derivative loss of the buoyancy term ∂xθ. A half derivative can be 
absorbed by using the enhanced dissipation of the vorticity, namely ν

1
4 ‖|Dx|

1
2ω‖L̃2

tFL1L2
y
. 

A 1/3 derivative can be absorbed by using the enhanced dissipation of the temperature. 
Thus, there is only 1

6 derivative loss in the buoyancy term that needs to be controlled, 
which requires the estimate of the temperature with an additional 1

6 derivative, namely 
the term ‖|Dx|

1
6 θ‖L̃∞

t FL1L2
y

in the energy.

Remark 1.6. If θin = 0, ν = µ, Theorem 1.1 is consistent with the Navier-Stokes result 
in [10]. We also remark that the stability problem of two-dimensional Couette flow has 
previously been investigated. One may refer to [4,5,17,18,20,21] for infinite channel case, 
and to [3,10] for finite channel case.

In (1.4), the buoyancy term is a linear term, which makes it different from the lin-
earized operator from the Navier-Stokes equation. Luckily, the linearized equation of the 
temperature is decoupled from the whole system, we can still use the linearized operator 
from the Navier-Stokes equation. In this paper, the linear estimates of the velocity and 
the vorticity can be obtained by the same method as [10], and to shorten this paper, we 
will use some linear estimates from [10] as a black box.

Remark 1.7. For the Navier-Stokes result, the restriction on the size of perturbations for 
the asymptotic stability is ν 1

2 which was obtained in [10] due to the boundary effect. 
Without boundary, it is expected that the stability threshold is ν 1

3 for perturbations in 
some higher regularity Sobolev spaces [21]. In the infinite channel setting Ω = T × R, 
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by modifying the time-dependent multiplier of [21] and treating the buoyancy term as 
in this paper, one can prove the nonlinear asymptotic stability holds for larger initial 
perturbations, namely,

‖ωin‖Hs ≤ ε0 min{ν, µ} 1
3 , ‖θin‖Hs ≤ ε1 min{ν, µ}β ,

with some s large and β ≤ 5
6 .

To control the buoyancy term, in section 2, we obtain the precise estimates of θ by 
decomposing the system of θ into the inhomogeneous problem and homogeneous problem. 
For the homogeneous part, we can obtain the sharp bound by using the Gearhart-Prüss 
lemma in [25]. And for the inhomogeneous part, we obtain Proposition 2.5 by some 
resolvent estimates which were obtained in section 3 of [10] with the Navier-slip boundary 
condition. Finally, in section 3, we will mainly give the proof of the nonlinear stability.

2. Space-time estimates of the linearized Boussinesq equations

In this section, we establish the space-time estimates of the linearized two-dimensional 
Boussinesq equation. By taking the Fourier transform in x ∈ T , we have

θ(t, x, y) =
∑

k∈Z

θ̂k(t, y)eikx, ω(t, x, y) =
∑

k∈Z

ŵk(t, y)eikx, u(t, x, y) =
∑

k∈Z

ûk(t, y)eikx.

And for convenience, we suppress the index k in θ̂k, ŵk, ̂uk.

2.1. Space-time estimates for the vorticity

Let us first study the following system for k '= 0:
{
∂tŵ + ν(∂2

y − k2)ŵ + ikyŵ = −ikf1 − ∂yf
2, w|t=0 = ŵin(k, y),

ŵ = ∂yû
1 − ikû2, û(t, k,±1) = 0.

(2.1)

We also introduce the space-time norm:

‖f‖LpLq =
∥∥‖f(t)‖Lq(−1,1)

∥∥
Lp(R+) .

Let us introduce the following estimate for (2.1).

Proposition 2.1. (Proposition 6.1 in [10].) Let 0 < ν ≤ ν0 and ŵ be a solution of (2.1)
with ŵin ∈ H1(−1, 1) and f1, f2 ∈ L2L2, where ŵin satisfies 〈ŵin, e±ky〉 = 0. Then there 
exists a constant C > 0 independent of ν, k so that

|k|‖û‖2
L∞L∞ + k2‖û‖2

L2L2 + (νk2) 1
2 ‖ŵ‖2

L2L2 + ‖(1 − |y|) 1
2 ŵ‖2

L∞L2

≤ C
(
‖ŵin‖2

L2 + k−2‖∂yŵin‖2
L2
)

+ C
(
ν−

1
2 |k|‖f1‖2

L2L2 + ν−1‖f2‖2
L2L2

)
.
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2.2. Space-time estimates for θ

First of all, we consider the linearized equation:

∂tθ̂ − µ(∂2
y − k2)θ̂ + ikyθ̂ = −ikg1 − ∂yg

2, θ̂|t=0 = θ̂in, θ̂|y=±1 = 0. (2.2)

By the standard energy estimates for θ̂, we can easily get the following proposition, 
which is important for the estimates of the high frequency of θ̂.

Proposition 2.2. Let θ be a solution of (2.2) with θ̂in ∈ L2(−1, 1) and g1, g2 ∈ L2L2. 
Then there exists a constant C > 0 independent in µ, k so that

‖θ̂‖2
L∞L2 + µk2‖θ̂‖2

L2L2 + µ‖∂y θ̂‖2
L2L2 ≤ Cµ−1(‖g1‖2

L2L2 + ‖g2‖2
L2L2

)
+ ‖θ̂in‖2

L2 .

Proof. Taking L2 inner product between (2.2) and θ̂, we get

〈∂tθ̂, θ̂〉 − µ〈(∂2
y − k2)θ̂, θ̂〉 + 〈ikyθ̂, θ̂〉 = 〈−ikg1 − ∂yg

2, θ̂〉.

By taking the real part and integration by parts in the above equality, we obtain

1
2
d

dt
‖θ̂‖2

L2 + µ‖∂y θ̂‖2
L2 + µk2‖θ̂‖2

L2 ≤ C‖g1‖L2‖kθ̂‖L2 + C‖g2‖L2‖∂y θ̂‖L2

≤ 1
4µ‖kθ̂‖

2
L2 + Cµ−1‖g1‖2

L2+1
4µ‖∂y θ̂‖

2
L2

+ Cµ−1‖g2‖2
L2 .

Thus by integrating in time, we have

‖θ̂‖2
L∞L2 + µk2‖θ̂‖2

L2L2 + µ‖∂y θ̂‖2
L2L2 ≤ Cµ−1(‖g1‖2

L2L2 + ‖g2‖2
L2L2

)
+ ‖θ̂in‖2

L2 . !

To deal with the buoyancy term ∂xθ in the vorticity equation, we also need to give 
the following estimates about θ̂.

First, we decompose θ̂ = θ̂I + θ̂H , where θ̂I solves

∂tθ̂I − µ(∂2
y − k2)θ̂I + ikyθ̂I = −ikg1 − ∂yg

2, θ̂I |t=0 = 0, θ̂I |y=±1 = 0, (2.3)

and θ̂H solves

∂tθ̂H − µ(∂2
y − k2)θ̂H + ikθ̂H = 0, θ̂H |t=0 = θ̂in, θ̂H |y=±1 = 0. (2.4)

For the homogeneous part, θ̂H , by using transport diffusion structure and the 
Gearhart-Prüss type lemma with sharp bound [25], we use the following estimates.
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Lemma 2.3. (Lemma 6.3 in [10].) Let θ̂in ∈ L2(−1, 1). Then for any k ∈ Z, there exist 
constants C, c > 0 independent of µ, k such that

‖θ̂H‖L2 ≤ Ce−cµ
1
3 |k|

2
3 t−µt‖θ̂in‖L2 .

Moreover, for any |k| ≥ 1,

(µk2) 1
3 ‖θ̂H‖2

L2L2 ≤ C‖θ̂in‖2
L2 .

For the inhomogeneous part, considering the system

−µ(∂2
y − k2)Θ̂ + ik(y − λ)Θ̂ = F, Θ̂(±1) = 0, (2.5)

we have the following sharp resolvent estimates for the linearized operator, which is very 
important for the space-time estimates of θ̂I .

Lemma 2.4. (Proposition 3.1 and Proposition 3.3 in [10].) Let Θ̂ ∈ H2(−1, 1) be a solu-
tion of (2.5) with λ ∈ R. Then it holds for F ∈ L2(−1, 1),

µ
2
3 |k| 13 ‖∂yΘ̂‖L2 + (µk2) 1

3 ‖Θ̂‖L2 + |k|‖(y − λ)Θ̂‖L2 ≤ C‖F‖L2 ,

and for F ∈ H−1(−1, 1),

µ‖∂yΘ̂‖L2 + µ
2
3 |k| 13 ‖Θ̂‖L2 ≤ C‖F‖H−1 .

Proposition 2.5. Let θ̂I be a solution of (2.3). Then there exists a constant C > 0 inde-
pendent of µ, k such that

(µk2) 1
3 ‖θ̂I‖2

L2L2 + ‖θ̂I‖2
L∞L2 ≤ C

(
µ− 1

3 |k| 43 ‖g1‖2
L2L2 + µ−1‖g2‖2

L2L2
)
.

Proof. Now we use the resolvent estimates in Lemma 2.4 to obtain the semigroup esti-
mates. We first decompose θ̂I = θ̂(1)

I + θ̂(2)
I , where θ̂(1)

I and θ̂(2)
I solve

∂tθ̂
(1)
I − µ(∂2

y − k2)θ̂(1)
I + ikyθ̂(1)

I = −ikg1, θ̂(1)
I |t=0 = 0, θ̂(1)

I |y=±1 = 0,

∂tθ̂
(2)
I − µ(∂2

y − k2)θ̂(2)
I + ikyθ̂(2)

I = −∂yg
2, θ̂(2)

I |t=0 = 0, θ̂(2)
I |y=±1 = 0

By taking the Fourier transform in t:

Θ̂I(λ, k, y) =
+∞∫

0

θ̂I(t, k, y)e−itλdt,

Θ̂(j)
I (λ, k, y) =

+∞∫

0

θ̂(j)
I (t, k, y)e−itλdt, j = 1, 2,
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Gj(λ, k, y) =
+∞∫

0

gj(t, k, y)e−itλdt, j = 1, 2.

Then Θ̂I = Θ̂(1)
I + Θ̂(2)

I , and Θ̂(1)
I and Θ̂(2)

I satisfy

(iλ− µ(∂2
y − k2) + iky)Θ̂(1)

I (λ, k, y) = −ikG1(λ, k, y), Θ̂(1)
I |y=±1 = 0,

(iλ− µ(∂2
y − k2) + iky)Θ̂(2)

I (λ, k, y) = −∂yG
2(λ, k, y), Θ̂(2)

I |y=±1 = 0.

By Lemma 2.4, we get

(µk2) 1
3 ‖Θ̂(1)

I (λ)‖L2 ≤ C‖kG1(λ)‖L2 ,

and

µ
2
3 |k| 13 ‖Θ̂(2)

I (λ)‖L2 ≤ C‖G2(λ)‖L2 .

Then, by Plancherel’s theorem, we have

(µk2) 1
3 ‖θ̂I‖2

L2L2 ∼ (µk2) 1
3

∥∥∥‖Θ̂I(λ)‖L2

∥∥∥
2

L2(R)

≤ 2(µk2) 1
3

(∥∥∥‖Θ̂(1)
I (λ)‖L2

∥∥∥
2

L2(R)
+

∥∥∥‖Θ̂(2)
I (λ)‖L2

∥∥∥
2

L2(R)

)

≤ C(µk2) 1
3

(∥∥∥(µk2)− 1
3 ‖kG1(λ)‖L2

∥∥∥
2

L2(R)
+

∥∥∥µ− 2
3 |k|− 1

3 ‖G2(λ)‖L2

∥∥∥
2

L2(R)

)

= Cµ− 1
3 |k| 43

∥∥∥‖G1(λ)‖L2

∥∥∥
2

L2(R)
+ Cµ−1

∥∥∥‖G2(λ)‖L2

∥∥∥
2

L2(R)

∼ µ− 1
3 |k| 43 ‖g1‖2

L2L2 + µ−1‖g2‖2
L2L2 .

Next we estimate ‖θ̂I‖L∞L2 . Notice that

1
2∂t‖θ̂I‖

2
L2 + µ‖∂y θ̂I‖2

L2 + µk2‖θI‖2
L2

= Re〈(∂t − µ(∂2
y − k2) + iky)θ̂I , θ̂I〉

= Re〈−ikg1 − ∂yg
2, θ̂I〉 = Re

(
− ik〈g1, θ̂I〉 + 〈g2, ∂y θ̂I〉

)

≤ |k|‖g1‖L2‖θ̂I‖L2 + ‖g2‖L2‖∂y θ̂I‖L2 ,

which gives

∂t‖θ̂I‖2
L2 + µ‖∂y θ̂I‖2

L2+2µk2‖θ̂I‖2
L2 ≤ µ− 1

3 |k| 43 ‖g1‖2
L2 + (µk2) 1

3 ‖θ̂I‖2
L2 + µ−1‖g2‖2

L2 .

As θ̂I |t=0 = 0, this shows that
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‖θ̂I(t)‖2
L2 ≤

t∫

0

(
µ− 1

3 |k| 43 ‖g1(s)‖2
L2 + (µk2) 1

3 ‖θ̂I(s)‖2
L2 + µ−1‖g2(s)‖2

L2

)
ds

≤ µ− 1
3 |k| 43 ‖g1‖2

L2L2 + (µk2) 1
3 ‖θ̂I‖2

L2L2 + µ−1‖g2‖2
L2L2

≤ C(µ− 1
3 |k| 43 ‖g1‖2

L2L2 + µ−1‖g2‖2
L2L2).

Thus, we get

‖θ̂I‖2
L∞L2 ≤ C(µ− 1

3 |k| 43 ‖g1‖2
L2L2 + µ−1‖g2‖2

L2L2).

This completes the proof of Proposition 2.5. !

Thus, combining Lemma 2.3 and Proposition 2.5, we immediately obtain the following 
space-time estimates of θ̂.

Proposition 2.6. Let θ̂ be a solution of (2.2) with θ̂in ∈ L2(−1, 1) and g1, g2 ∈ L2L2. 
Then there exists a constant C > 0 independent in µ, k such that

‖θ̂‖2
L∞L2 + (µk2) 1

3 ‖θ̂‖2
L2L2 ≤ ‖θ̂in‖2

L2 + C
(
µ− 1

3 |k| 43 ‖g1‖2
L2L2 + µ−1‖g2‖2

L2L2

)
.

3. Nonlinear stability

In this section, we prove Theorem 1.1. Due to the buoyancy term ∂xθ in the equation of 
the vorticity, we need to estimate ‖|Dx|

1
6 θ(t)‖L2 in order to control the buoyancy term. 

In fact, for the two-dimensional Boussinesq equation, the global existence of smooth 
solution is well-known for the data uin ∈ H2(Ω), θin ∈ H1(Ω) and |Dx|

1
6 θin ∈ H1(Ω). 

The main interest of Theorem 1.1 is the stability estimates

∑

k∈Z

Ek ≤ Cε0 min{ν, µ} 1
2 ,

∑

k∈Z

Hk ≤ Cε1 min{ν, µ} 11
12 . (3.1)

Here E0 = ‖ŵ0‖L∞L2 and H0 = ‖θ̂0‖L∞L2 , and for k '= 0,

Ek = ‖(1 − |y|) 1
2 ŵk‖L∞L2 + |k|‖ûk‖L2L2 + |k| 12 ‖ûk‖L∞L∞ + (νk2) 1

4 ‖ŵk‖L2L2 ,

and

Hk = |k| 16 ‖θ̂k‖L∞L2 + µ
1
6 |k| 12 ‖θ̂k‖L2L2 .

And we can get the following estimates, which along with bootstrap arguments, then we 
can easily deduce the estimates (3.1).
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Proposition 3.1. There hold that, for k '= 0,

Ek ≤ ‖ŵin,k‖L2 + |k|−1‖∂yŵin,k‖L2 + Cν−
1
2
∑

l∈Z

ElEk−l + Cν−
1
4µ− 1

6Hk, (3.2)

and

E0 ≤ ‖ŵin,0‖L2 + Cν−
1
2

∑

l∈Z\{0}
ElE−l. (3.3)

For H0, there holds that

H0 ! ‖θ̂in,0‖L2 + µ− 1
2

∑

l∈Z\{0}
|l|− 2

3ElH−l. (3.4)

For k '= 0, there hold that
1. for µk2 ≤ 1,

Hk ! |k| 16 ‖θ̂in,k‖L2 + µ− 1
2
∑

l∈Z

ElHk−l + ν−
1
8µ− 5

24
∑

l∈Z\{0,k},|k−l|≤ |k
2

ElHk−l; (3.5)

2. for µk2 > 1,

Hk ! |k| 16 ‖θ̂in,k‖L2 + µ− 1
2
∑

l∈Z

ElHk−l + ν−
1
8µ− 5

24EkH0. (3.6)

Proof. Proof of (3.2). Denoting ŵk(t, y) = 1
2π

∫
T ω(t, x, y)e−ikxdx and

f1
k (t, y) =

∑

l∈Z

û1
l (t, y)ŵk−l(t, y), f2

k (t, y) =
∑

l∈Z

û2
l (t, y)ŵk−l(t, y),

we have

(∂t − ν(∂2
y − k2) + iky)ŵk(t, y) = −ikθ̂k(t, y) − ikf1

k (t, y) − ∂yf
2
k (t, y). (3.7)

It follows from Proposition 2.1 that

Ek ≤ C
(
ν−

1
4 |k| 12 ‖θ̂k‖L2L2 + ν−

1
4 |k| 12 ‖f1

k‖L2L2 + ν−
1
2 ‖f2

k‖L2L2

)

+ ‖ŵin,k‖L2 + |k|−1‖∂yŵin,k‖L2 . (3.8)

As in [10], we get that for k '= 0,

∥∥∥∥
û2
k(t, y)

(1 − |y|) 1
2

∥∥∥∥
2

L2L∞

=
∥∥∥∥∥ sup
y∈[−1,1]

|û2
k(t, y)|2
1 − |y|

∥∥∥∥∥
L1
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=
∥∥∥∥∥max{ sup

y∈[0,1]

|
∫ y
1 ∂zû2

k(t, z)dz|2
1 − |y| , sup

y∈[−1,0]

|
∫ y
−1 ∂zû

2
k(t, z)dz|2

1 − |y| }

∥∥∥∥∥
L1

≤ 4‖∂yû2
k‖2

L2L2 = 4|k|2‖û1
k‖2

L2L2 ≤ 4E2
k.

From which, we infer that, for k ∈ Z,

‖f2
k‖L2L2 ≤

∑

l∈Z

∥∥∥∥
û2
l (t, y)

(1 − |y|) 1
2

∥∥∥∥
L2L∞

‖(1 − |y|) 1
2 ŵk−l‖L∞L2 ≤ 2

∑

l∈Z

ElEk−l, (3.9)

and

‖f1
k‖L2L2 ≤ ‖û1

0‖L∞L∞‖ŵk‖L2L2 + ‖û1
k‖L2L∞‖ŵ0‖L∞L2

+
∑

l∈Z\{0,k}
‖û1

l ‖L∞L∞‖ŵk−l‖L2L2 .

Thanks to |l||k − l| " |k|(l '= 0, k), we have
∑

l∈Z\{0,k}
‖û1

l ‖L∞L∞‖ŵk−l‖L2L2 !
∑

l∈Z\{0,k}
|l|− 1

2Elν
− 1

4 |k − l|− 1
2Ek−l

! |k|− 1
2 ν−

1
4

∑

l∈Z\{0,k}
ElEk−l,

and

‖û1
0‖L∞L∞‖ŵk‖L2L2 + ‖û1

k‖L2L∞‖ŵ0‖L∞L2 ! ‖ŵ0‖L∞L2‖ŵk‖L2L2 ! (νk2)− 1
4EkE0.

This shows that

‖f1
k‖L2L2 ! (νk2)− 1

4
∑

l∈Z

ElEk−l. (3.10)

Thus, by (3.8), (3.9) and (3.10), we obtain that

Ek ≤ ‖ŵin,k‖L2 + |k|−1‖∂yŵin,k‖L2 + Cν−
1
2
∑

l∈Z

ElEk−l + Cν−
1
4µ− 1

6Hk.

Proof of (3.3). Due to divu = 0, we have û2
0(t, y) = 0. By P0(û1∂xû1) = 0, we have

∂tû
1
0(t, y) − ν∂2

y û
1
0(t, y) = −

∑

l∈Z\{0}
û2
l (t, y)∂yû1

−l(t, y)

= −
∑

l∈Z\{0}
û2
l (t, y)ŵ−l(t, y) = −f2

0 (t, y). (3.11)
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By integration by parts in (3.11), we get

〈(∂t − ν∂2
y)û1

0,−∂2
y û

1
0〉 = 1

2∂t‖∂yû
1
0(t)‖2

L2 + ν‖∂2
y û

1
0(t)‖2

L2 = 〈f2
0 , ∂

2
y û

1
0〉,

which gives

∂t‖∂yû1
0(t)‖2

L2 + ν‖∂2
y û

1
0(t)‖2

L2 ≤ Cν−1‖f2
0 (t, y)‖2

L2 ,

from which, along with ∂yû1
0(t, y) = ŵ0(t, y), we infer that

E2
0 = ‖ŵ0‖2

L∞L2 ≤ Cν−1‖f2
0 (t, y)‖2

L2L2 + ‖ŵin,0‖2
L2 . (3.12)

Thus, by using (3.9), we obtain

E0 ≤ ‖ŵin,0‖L2 + Cν−
1
2

∑

l∈Z\{0}
ElE−l.

Proof of (3.4). Similarly, we can derive the evolution equation of θ̂0,

∂tθ̂0 − µ∂2
y θ̂0 = −

∑

l∈Z\{0}
∂y(û2

l θ̂−l)(t, y) = −∂yg
2
0(t, y). (3.13)

Similarly, as the estimate of E0, we get that by integration by parts in (3.13),

H2
0 = ‖θ̂0‖2

L∞L2 + µ‖∂y θ̂0‖2
L2L2 ≤ Cµ−1‖g2

0(t, y)‖2
L2L2 + ‖θ̂in,0‖2

L2 . (3.14)

By using the Gagliardo-Nirenberg inequality and ∂yû2
k = −ikû1

k, we have

‖û2
k‖L2L∞ ≤ C|k| 12 ‖û2

k‖
1
2
L2L2‖û1

k‖
1
2
L2L2 ≤ C|k|− 1

2Ek. (3.15)

And then, we obtain

‖g2
0‖L2L2 ≤

∑

l∈Z\{0}
‖û2

l ‖L2L∞‖θ̂−l‖L∞L2 !
∑

l∈Z\{0}
|l|− 1

2 |− l|− 1
6ElH−l

!
∑

l∈Z\{0}
|l|− 2

3ElH−l. (3.16)

Thus, from (3.14) and (3.16), we have

H0 ! ‖θ̂in,0‖L2 + µ− 1
2

∑

l∈Z\{0}
|l|− 2

3ElH−l.

To control the nonlinear term ‖g1
k‖L2L2 , during the estimates of Hk, we need to divide 

them into the low-frequency part µk2 ≤ 1 and the high-frequency part µk2 > 1.
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Proof of (3.5). First, we can derive the evolution equations of θ̂k(t, y) = 1
2π

∫
T θ(t, x, y)×

e−ikxdx. Denoting

g1
k(t, y) =

∑

l∈Z

û1
l (t, y)θ̂k−l(t, y), g2

k(t, y) =
∑

l∈Z

û2
l (t, y)θ̂k−l(t, y),

we have that θ̂k(t, y) satisfies,

(∂t − µ(∂2
y − k2) + iky)θ̂k(t, y) = −ikg1

k(t, y) − ∂yg
2
k(t, y). (3.17)

For µk2 ≤ 1, it follows from Proposition 2.6 that

Hk ≤ |k| 16 ‖θ̂in,k‖L2 + C
(
µ− 1

6 |k| 56 ‖g1
k‖L2L2 + µ− 1

2 |k| 16 ‖g2
k‖L2L2

)
. (3.18)

On the one hand, by using û2
0 = 0 and (3.15), we have that for k '= 0,

‖g2
k‖L2L2 ≤ ‖û2

k‖L2L∞‖θ̂0‖L∞L2 +
∑

l∈Z\{0,k}
‖û2

l ‖L2L∞‖θ̂k−l‖L∞L2

≤ |k|− 1
2EkH0 +

∑

l∈Z\{0,k}
|l|− 1

2 |k − l|− 1
6ElHk−l

≤ |k|− 1
2EkH0 + |k|− 1

6
∑

l∈Z\{0,k}
ElHk−l. (3.19)

On the other hand, for g1
k and k '= 0, by using Gagliardo-Nirenberg inequality, we 

have

‖û1
k‖L2L∞ ≤ C‖û1

k‖
1
2
L2L2‖∂yû1

k‖
1
2
L2L2 ≤ Cν−

1
8 |k|− 3

4Ek, (3.20)

and then we obtain that

‖g1
k‖L2L2 ≤ ‖û1

0‖L∞L∞‖θ̂k‖L2L2 + ‖û1
k‖L2L∞‖θ̂0‖L∞L2 +

∑

l∈Z\{0,k}
‖û1

l θ̂k−l‖L2L2

≤ ‖ŵ0‖L∞L2‖θ̂k‖L2L2 + ν−
1
8 |k|− 3

4Ek‖θ̂0‖L∞L2 +
∑

l∈Z\{0,k}
‖û1

l θ̂k−l‖L2L2

≤ µ− 1
6 |k|− 1

2E0Hk + ν−
1
8 |k|− 3

4EkH0 +
∑

l∈Z\{0,k}
‖û1

l θ̂k−l‖L2L2 . (3.21)

To estimate 
∑

l∈Z\{0,k}
‖û1

l θ̂k−l‖L2L2 , we divide it into two parts and get that

∑

l∈Z\{0,k}
‖û1

l θ̂k−l‖L2L2 ≤
∑

l∈Z\{0,k},|k−l|≤ |k|
2

‖û1
l θ̂k−l‖L2L2 +

∑

l∈Z\{0,k},|k−l|> |k|
2

‖û1
l θ̂k−l‖L2L2

def= HL + LH,
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whereas by (3.20),

HL ≤
∑

l∈Z\{0,k},|k−l|≤ |k|
2

‖û1
l ‖L2L∞‖θ̂k−l‖L∞L2

!
∑

l∈Z\{0,k},|k−l|≤ |k|
2

ν−
1
8 |l|− 3

4 |k − l|− 1
6ElHk−l

! ν−
1
8 |k|− 3

4
∑

l∈Z\{0,k},|k−l|≤ |k|
2

ElHk−l, (3.22)

and

LH ≤
∑

l∈Z\{0,k},|k−l|> |k|
2

‖û1
l ‖L∞L∞‖θ̂k−l‖L2L2

!
∑

l∈Z\{0,k},|k−l|> |k|
2

|l|− 1
2 |k − l|− 1

2µ− 1
6ElHk−l

! µ− 1
6 |k|− 1

2
∑

l∈Z\{0,k},|k−l|> |k|
2

ElHk−l. (3.23)

And then, substituting (3.22) and (3.23) into (3.21), we get

‖g1
k‖L2L2 ! µ− 1

6 |k|− 1
2E0Hk + ν−

1
8 |k|− 3

4EkH0

+ ν−
1
8 |k|− 3

4
∑

l∈Z\{0,k},|k−l|≤ |k|
2

ElHk−l + µ− 1
6 |k|− 1

2
∑

l∈Z\{0,k},|k−l|> |k|
2

ElHk−l.

(3.24)

Thus, combining (3.18), (3.19) and (3.24), we get that for k '= 0 and µk2 ≤ 1,

Hk !|k| 16 ‖θ̂in,k‖L2 + µ− 1
2

∑

l∈Z\{0}
ElHk−l + µ− 1

3 |k| 13E0Hk + ν−
1
8µ− 1

6 |k| 1
12EkH0

+ ν−
1
8µ− 1

6 |k| 1
12

∑

l∈Z\{0,k},|k−l|≤ |k|
2

ElHk−l + µ− 1
3 |k| 13

∑

l∈Z\{0,k},|k−l|> |k|
2

ElHk−l

! |k| 16 ‖θ̂in,k‖L2 + µ− 1
2
∑

l∈Z

ElHk−l + ν−
1
8µ− 5

24EkH0

+ ν−
1
8µ− 5

24
∑

l∈Z\{0,k},|k−l|≤ |k|
2

ElHk−l + µ− 1
2

∑

l∈Z\{0,k},|k−l|> |k|
2

ElHk−l

! |k| 16 ‖θ̂in,k‖L2 + µ− 1
2
∑

l∈Z

ElHk−l + ν−
1
8µ− 5

24
∑

l∈Z\{0,k},|k−l|≤ |k|
2

ElHk−l.

Proof of (3.6). For µk2 > 1, it follows from Proposition 2.2 that
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Hk ≤ |k| 16 ‖θ̂k‖L∞L2 + |k| 16 (µk2) 1
2 ‖θ̂k‖L2L2

≤ |k| 16 ‖θ̂in,k‖L2 + Cµ− 1
2 |k| 16

(
‖g1

k‖L2L2 + ‖g2
k‖L2L2

)
. (3.25)

For g1
k and k '= 0, by (3.20), we obtain

‖g1
k‖L2L2 ≤ ‖û1

0‖L∞L∞‖θ̂k‖L2L2 + ‖û1
k‖L2L∞‖θ̂0‖L∞L2 +

∑

l∈Z\{0,k}
‖û1

l θ̂k−l‖L2L2

! ‖ŵ0‖L∞L2‖θ̂k‖L2L2 + ν−
1
8 |k|− 3

4Ek‖θ̂0‖L∞L2 +
∑

l∈Z\{0,k}
‖û1

l θ̂k−l‖L2L2

! µ− 1
6 |k|− 1

2E0Hk + ν−
1
8 |k|− 3

4EkH0 +
∑

l∈Z\{0,k}
‖û1

l θ̂k−l‖L2L2 . (3.26)

Whereas for the term 
∑

l∈Z\{0,k} ‖û1
l θ̂k−l‖L2L2 , we can obtain that by using |l||k − l| "

|k|(l '= 0, k),
∑

l∈Z\{0,k}
‖û1

l θ̂k−l‖L2L2 !
∑

l∈Z\{0,k}
‖û1

l ‖L∞L∞‖θ̂k−l‖L2L2

!
∑

l∈Z\{0,k}
|l|− 1

2Elµ
− 1

6 |k − l|− 1
2Hk−l

! µ− 1
6 |k|− 1

2
∑

l∈Z\{0,k}
ElHk−l.

And then, we obtain

‖g1
k‖L2L2 ! µ− 1

6 |k|− 1
2E0Hk + ν−

1
8 |k|− 3

4EkH0 + µ− 1
6 |k|− 1

2
∑

l∈Z\{0,k}
ElHk−l. (3.27)

Thus, combining (3.25), (3.19) and (3.27), we get that for k '= 0 and µk2 > 1,

Hk ! |k| 16 ‖θ̂in,k‖L2 + µ− 1
2
∑

l∈Z

ElHk−l + µ− 2
3 |k|− 1

3E0Hk + ν−
1
8µ− 1

2 |k|− 7
12EkH0

+ µ− 2
3 |k|− 1

3
∑

l∈Z\{0,k}
ElHk−l

! |k| 16 ‖θ̂in,k‖L2 + µ− 1
2
∑

l∈Z

ElHk−l + µ− 1
2E0Hk + ν−

1
8µ− 5

24EkH0

+ µ− 1
2

∑

l∈Z\{0,k}
ElHk−l

! |k| 16 ‖θ̂in,k‖L2 + µ− 1
2
∑

l∈Z

ElHk−l + ν−
1
8µ− 5

24EkH0.

This completes the proof of Proposition 3.1. !
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Now we prove Theorem 1.1. From (3.3) and (3.2), we deduce

∑

k∈Z

Ek ≤
∑

k∈Z

‖ŵin,k‖L2 +
∑

k∈Z\{0}
|k|−1‖∂yŵin,k‖L2

+ Cν−
1
2
∑

k∈Z

∑

l∈Z

ElEk−l + Cν−
1
4µ− 1

6
∑

k∈Z\{0}
Hk. (3.28)

And by the fact that

∑

k∈Z

Hk = H0 +
∑

k∈Z\{0},µk2≤1
Hk +

∑

k∈Z\{0},µk2>1
Hk,

combining (3.4), (3.5) and (3.6), we can deduce that

∑

k∈Z

Hk ! ‖θ̂in,0‖L2 +
∑

k∈Z\{0}
|k| 16 ‖θ̂in,k‖L2 + µ− 1

2
∑

k∈Z

∑

l∈Z

ElHk−l

+ ν−
1
8µ− 5

24
∑

k∈Z\{0},µk2≤1

∑

l∈Z

ElHk−l + ν−
1
8µ− 5

24
∑

k∈Z\{0},µk2>1
EkH0.

(3.29)

On the other hand, it is easy to verify that from ‖uin‖H2 ≤ ε0 min{ν, µ} 1
2 and 

‖θin‖H1 + ‖|Dx|
1
6 θin‖H1 ≤ ε1 min{ν, µ} 11

12 ,

∑

k∈Z

‖ŵin,k‖L2 +
∑

k∈Z\{0}
|k|−1‖∂yŵin,k‖L2 ≤ Cε0 min{ν, µ} 1

2 ,

and

‖θ̂in,0‖L2 +
∑

k∈Z\{0}
|k| 16 ‖θ̂in,k‖L2 ≤ Cε1 min{ν, µ} 11

12 .

Thus, for ε0, ε1 suitably small, by bootstrap arguments, we can deduce from (3.28)
and (3.29) that

∑

k∈Z

Ek ≤ Cε0 min{ν, µ} 1
2 ,

∑

k∈Z

Hk ≤ Cε1 min{ν, µ} 11
12 .

This completes the proof of Theorem 1.1. !
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