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1. Introduction

In this paper, we consider the two-dimensional Navier-Stokes Boussinesq system in a
finite channel Q@ = {(z,y):x € T,y € (—1,1)}:

v +v-Vu—vAv+ VP = —pges
Op+v-Vp—pulAp=0, V-v=0,
v(t,z,+1) = (£1,0), p(t,z,£1) = o,
v(0,2,y) = vin(2,9), p(0,2,y) = pin(,y),

(1.1)

where v is the viscosity coefficient and p is the thermal diffusivity, v(¢, z,y) = (v!, v?) is
the two-dimensional velocity field, P(t,z,y) is the pressure, p is the temperature, g = 1
is the normalized gravitational constant and es = (0,1) is the unit vector in the vertical
direction. The boundary condition in (1.1) means that the fluid is moving together with
the boundary and the temperature is fixed at the boundary. Let us also normalize ¢y = 1
for simplicity. The 2D Navier-Stokes Boussinesq system (1.1) is globally well-posed. One
can refer to [1,2,15,16] and reference therein.

In this paper, we focus on the stability problem of the following steady-state

Vs = (yao)a Ps = 17 Ps =Y +c (12)

Now we introduce the perturbation: v = u + (y,0), P = p+ ps and p = 6 + ps, then
(u,p, 0) satisfies

u2

0 ) —|—U'VU—VAU—|—V]):—(2>,

Q 00+ y0.0+u-VO—puAd =0, V-u=0, (1.3)
u(t,x,£1) =0, 0(t,z,+1) =0,

\ u(O,a:,y) = Uin(x7y)7 9(073:73/) = ein(x7y)'

( Opu + yOru + (

We also introduce the vorticity w = V x u = d,u! — 9,u?, which satisfies

Ow + YO, w + u - Vw — vAw = —0,.0,
00 + 90,0 +u - VO — uAbd =0, (1.4)
w= Ve = (O, -0u0), AY=w.

Note that we can not impose the boundary condition on the vorticity, which is the main
difficulty of this paper.

Before stating our main result, let us first recall previous works about the stability of
flowing steady states. The linear inviscid two-dimensional Boussinesq system with shear
flows has been extensively studied starting from the works of Taylor [24], Goldstein [14]
and Synge [23]. We also refer to the book of Lin [19]. The system (1.3) is well studied in
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the infinite channel case T x R. We can refer to [7,11,28-30]. The best stability threshold
results when v = p is

1 1 5
|winll e < €2, ||0inllme < ev, ||Dal?0inllme < ev®, (1.5)

with s > 1, which was proved by Deng, Wu and Zhang [11]. The mechanisms leading
to stability are the so-called inviscid damping and enhanced dissipation, which are well
studied for the Navier-Stokes system around Couette flow which we will introduce later.
Without thermal diffusion, Masmoudi, Said-Houari and Zhao [22] considered the Navier-
Stokes Boussinesq system with no heat diffusion in the thermal equation, and they
studied the stability of Couette flow for the initial data perturbation in Gevrey—% for
% < s < 1 in the domain T x R. For the Euler Boussinesq system v = p = 0, the
global well-posedness for large data is an open problem. In [26], Yang and Lin proved
the linear inviscid damping for the linearized two-dimensional Euler Boussinesq system
which is generalized in [8]. The nonlinear inviscid damping for a large time is studied by
Bedrossian, Bianchini, Coti Zelati and Dolce [6]. We also mention a very recent result
[27], where the nonlinear asymptotic stability of Couette flow in a stratified fluid with the
linear temperature was studied. We refer to [12,13] for some recent global stability results
of other steady-states for the Boussinesq system, where the stabilization mechanism is
different from that in this paper.

In this paper, we mainly study the boundary effect due to the non-slip boundary
condition on the velocity. Our main result is stated as follows.

Theorem 1.1. Suppose that (u,0) solves the system (1.3) with the initial data (Wi, 0;r).
Then there exist constants vy and €g,e1,C > 0 independent of v, u so that if

||uin||H2 <é&p min{y, ,u}%’

11

10inl 1 + ||| Da | Oin || 1 < &1 min{w, u} 12,

for some sufficiently small £g,e1, 0 < min{v, u} < vy, then the solution (u, @) is global
in time and satisfies the following stability estimates:

1 1 1 1
H(l - |y|)2w||EgOfL1L§ + Haﬂcuuig}"[,l[% + |||ch|2u||ig0]:L1L§o +vi |||Dm|2w||Z§]:L1L§
< Cepmin{v, u}%,

and

1 1 2 . 1
1017 £ 12 + 11D21860 5 pga s + 58 11D21 260 72 511 s < O min{w, 1,

o=

where || fllzozpips = k%: I fellrrs and fr = 5= [p f(x)e”"**da is the Fourier transform

of f in the x direction and k is the wave number.
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Remark 1.2. The function space f/f FL'LY is of the same spirit as the Chemin-Lerner’s
Besov space [9].

Remark 1.3. The asymptotic stability holds for the initial perturbation satisfying

D @inillze + Y2 (KT 0y @inkllzz < Coomin{w, p}t,
keZ keZ\{0}

and

11

10inollzz + D k56 xl L2 < Ceymin{w, u} 2.
keZ\{0}

Remark 1.4. The estimate |0, ul| 271172 18 due to the inviscid damping and the estimates
Y

Vi H|Dgc|%<,qu%}.L1L2 and 16 |HD9€|§9”E§}‘L1L2 are due to the enhanced dissipation.
Y Y

Remark 1.5. Compared to [11], when v = pu, the interpolation of Sobolev spaces gives
that the stability threshold is more restrictive than the one in our paper. In [11], an
extra smallness on lower frequencies is required, namely ||0;, |z < ev. The key point of
improvement is that we can control the buoyancy term and nonlocal terms in the temper-
ature equation by avoiding discussing the different sizes of 6 in different frequencies. More
precisely, there is one derivative loss of the buoyancy term 0,.6. A half derivative can be
absorbed by using the enhanced dissipation of the vorticity, namely v ||| D,|2wl|| P2FriLe-
A 1/3 derivative can be absorbed by using the enhanced dissipation of the temperaturé.
Thus, there is only % derivative loss in the buoyancy term that needs to be controlled,
which requires the estimate of the temperature with an additional % derivative, namely
the term || ]Dx\éHHE?O}.LlL% in the energy.

Remark 1.6. If 6,,, = 0, v = p, Theorem 1.1 is consistent with the Navier-Stokes result
in [10]. We also remark that the stability problem of two-dimensional Couette flow has
previously been investigated. One may refer to [4,5,17,18,20,21] for infinite channel case,
and to [3,10] for finite channel case.

In (1.4), the buoyancy term is a linear term, which makes it different from the lin-
earized operator from the Navier-Stokes equation. Luckily, the linearized equation of the
temperature is decoupled from the whole system, we can still use the linearized operator
from the Navier-Stokes equation. In this paper, the linear estimates of the velocity and
the vorticity can be obtained by the same method as [10], and to shorten this paper, we
will use some linear estimates from [10] as a black box.

Remark 1.7. For the Navier-Stokes result, the restriction on the size of perturbations for
the asymptotic stability is #2 which was obtained in [10] due to the boundary effect.
Without boundary, it is expected that the stability threshold is v3 for perturbations in
some higher regularity Sobolev spaces [21]. In the infinite channel setting Q@ = T x R,
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by modifying the time-dependent multiplier of [21] and treating the buoyancy term as
in this paper, one can prove the nonlinear asymptotic stability holds for larger initial
perturbations, namely,

. 1 .
Jwinllie < cominf{v,w}d,  [0inllse < 1 minv, u}?,
: 5
with some s large and 8 < 3

To control the buoyancy term, in section 2, we obtain the precise estimates of 6 by
decomposing the system of # into the inhomogeneous problem and homogeneous problem.
For the homogeneous part, we can obtain the sharp bound by using the Gearhart-Priiss
lemma in [25]. And for the inhomogeneous part, we obtain Proposition 2.5 by some
resolvent estimates which were obtained in section 3 of [10] with the Navier-slip boundary
condition. Finally, in section 3, we will mainly give the proof of the nonlinear stability.

2. Space-time estimates of the linearized Boussinesq equations

In this section, we establish the space-time estimates of the linearized two-dimensional
Boussinesq equation. By taking the Fourier transform in z € T, we have

0(t,z,y) = Z@kty“m w(t,z,y) = Zwkty”m u(t,z,y) = Zukty”m
kez keZ keZ

And for convenience, we suppress the index k in gk, Wi, U
2.1. Space-time estimates for the vorticity

Let us first study the following system for & # 0:

{at@+ V(8§ — E?)® + iky® = —ikf' — 0, %,  w|i=o = Win(k,y), 2.1)

W = 9,u' —iku*, u(t,k,+1)=0.
We also introduce the space-time norm:

| fllzrre = HHf(t)”Lq(—l,l)HLP(Rﬂ :

Let us introduce the following estimate for (2.1).

Proposition 2.1. (Proposition 6.1 in [10].) Let 0 < v < vy and W be a solution of (2.1)
with Wi, € H'(—1,1) and f1, f? € L2L?, where Wy, satisfies (W, eT*Y) = 0. Then there
exists a constant C' > 0 independent of v,k so that

~ ~ FETIPN 1
BN oe o + K2 [TIL2 2 + (WE*)2 1B]|72 2 + 1(1 = |y]) 2 @D Lo 12
~ — ~ _1 _
< C(ll@mllz2 + E2(10y@inl72) + C (v 2 Kl T2 e + v 2L L2)-
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2.2. Space-time estimates for 0

First of all, we consider the linearized equation:
00 — (92 — k)0 + ikyd = —ikg" — 0,97, Bli=o = O, Oly=s1 = 0. (2.2)

By the standard energy estimates for 5, we can easily get the following proposition,
which is important for the estimates of the high frequency of 6.

Proposition 2.2. Let 6 be a solution of (2.2) with 0;n € L?(=1,1) and g*,¢9*> € L?L2.
Then there exists a constant C' > 0 independent in u,k so that

10N e 2 + k210172 L2 + 1ll0yO11 L2 2 < O™ (g 12222 + 19°1172122) + 10inlIZ-

Proof. Taking L? inner product between (2.2) and 0, we get

~ ~

) — (02 — k)8, 0) + (iky0,0) = (—ikg" — d,9%,0).

)

<at é\;

By taking the real part and integration by parts in the above equality, we obtain

| =

10172 + 10,017 + uk?llON 7> < Cllg* L2 1E8]| L2 + Cllg®|| 21|10, 0] 2

N[ =
QL

t
1 ~ _ 1 ~
< ZullE03 + O g 3+l 9,013
+Cp 9?12
Thus by integrating in time, we have
1012 L2 + k2101|7212 + pllByOll 222 < Cu (Ig' 1222 + 19°MZ2L2) + 10inlZ2. O

To deal with the buoyancy term 0,60 in the vorticity equation, we also need to give
the following estimates about 6.
First, we decompose 6 = 6; + 0, where 6; solves
8,55[ - ,u((?j - ]{52)@\[ + Z']{Jyé\[ = —ikgl - 8yg2, 6[|t:0 = 0, aI|y:j:1 = 0, (23)
and §H solves

010 — (92 — k*)0u + k0 = 0, Opli—o = Oin, Oprly—sn = 0. (2.4)

For the homogeneous part, §H, by using transport diffusion structure and the
Gearhart-Priiss type lemma with sharp bound [25], we use the following estimates.
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Lemma 2.3. (Lemma 6.3 in [10].) Let gm € L?(—1,1). Then for any k € Z, there exist
constants C,c > 0 independent of u, k such that

[Grlle < CementFE et
Moreover, for any |k| > 1,
(1k?) 3101|7212 < C0inll7-
For the inhomogeneous part, considering the system
—u(92 — k%O +ik(y — O = F, ©(+1) = 0, (2.5)

we have the following sharp resolvent estimates for the linearized operator, which is very
important for the space-time estimates of 6;.

Lemma 2.4. (Proposition 3.1 and Proposition 3.3 in [10].) Let © € H2(—1,1) be a solu-
tion of (2.5) with A € R. Then it holds for F € L*(—1,1),

plk[310,0 L2 + (uk*) 3 [[O L2 + (K[ (y — MO £z < C||F]| 2,
and for F € H™1(-1,1),
. a1~
1l|0yO| Lz + w3 k[5[©] L2 < O F g1

Proposition 2.5. Let 0; be a solution of (2.3). Then there exists a constant C > 0 inde-
pendent of u, k such that

1~ o _1 4 _
(k)3 1011222 + 11077 12 < C (3 K] g T2 + 17 lg? (172 12)-

Proof. Now we use the resolvent estimates in Lemma 2.4 to obtain the semigroup esti-

mates. We first decompose 0 = 551) + 5}2), where 551) and 5(12) solve

até\yl) - N(ag - k2)é§1) + Zkyé\f'l) = _Z.k;gla é\§1)|t:0 = 07 é\51)|y::|:1 = O,
0,07 — (@2 — k)0 +iky8? = —8,9%, 0 ]m0 = 0, 65 |y—sr =0

By taking the Fourier transform in ¢:

~

Or(\k,y) = /@(t,k,y)e_mdt,
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“+o00

GI(\ k,y) = /gj(t,k:,y)e_”)‘dt, ji=1,2.
0

Then ©; = @31) + @?), and @gl) and @gz) satisfy

(i) — (02 — k2) + iky)BL (A k. y) = —ikG (A, k,1), 05" ,=s1 = 0,
(i) — (02 = k?) + iky)®P (A k) = —0,G*(\ k,y), 0 |,—11 = 0.

By Lemma 2.4, we get

(k) 5118 (W[l 2 < ClIRGE (N[ 12
and

PO N2 < CIG2N) | 1.

Then, by Plancherel’s theorem, we have

~ 2
1©r(M)l|z2

E2) 51071222 ~ (uk?)3
(k)3 (|07 2p2 ~ (uk™)3 La®)

e 2
oW\
197 (M)l z2 @

2
LQ(R)>

+||p R IGR O) 2s|

< 2(uk?) ( + (|18 e

1 -1 2
< ot (o He e

+ ™ IG2 Nl

2
L2(R)>

2

1 4 2
:C‘Ekﬁ‘Gl)\ .
S IGH Ols [

L2(R)
1,4 _
~uT 3 kE g T e + 0GP T o
Next we estimate ||5I||LOQL2. Notice that
1~ A
5001122 + 0,057z + k(161172
= Re((0y — (92 — k?) + iky)0;.01)
= Re(—ikg" — 8,92, 0;7) = Re< —ik{g", 07) + (g, aﬁg)
< |klllg lz= 1011122 + lg°[| 2210y 0r [l 2
which gives
—~ o~ ~ _1,..4 1~ _
Oull0111Z> + 1|0y 01172 +2uk 1071172 < =3 K[ (lg 72 + (k)3 101]1 22 + 1 lg? (172

As §1|t:0 = 0, this shows that
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t

107 ()12 < / <u‘§|k\§Hgl(8)Hi2 + (uk?) (107 ()12 + u‘ng2(8)H2L2>d8
0

1 4 1,7 —
< uE kg e e + (0B F 0022 + 17 170 0
1 4 —
< Cu7 5 k5 g o2 + 17 g% 2o L2).

Thus, we get
~ _1,..4 _
101172 < C(u™3 k|3 |lg |72 + 17 g2 72L2)-
This completes the proof of Proposition 2.5. 0O

Thus, combining Lemma 2.3 and Proposition 2.5, we immediately obtain the following
space-time estimates of 6.

Proposition 2.6. Let 0 be a solution of (2.2) with Bin € L?(—1,1) and g',g* € L?L2.
Then there exists a constant C > 0 independent in p, k such that

~ 1,7 -~ _1 4 _
613 g2 + () 1813250 < 18inl3e + C (i H I 19 s + 1 973012
3. Nonlinear stability

In this section, we prove Theorem 1.1. Due to the buoyancy term 9,0 in the equation of
the vorticity, we need to estimate ||| Dy|s6(t)||12 in order to control the buoyancy term.
In fact, for the two-dimensional Boussinesq equation, the global existence of smooth
solution is well-known for the data w;, € H2(Q),0;, € HY(Q) and |Dy|s6;, € H(Q).
The main interest of Theorem 1.1 is the stability estimates

Z E; < Ce¢ min{l/,,u}%, Z Hy, < Cey min{u,,u}%. (3.1)
keZ kez

Here Ey = ||@o|| =12 and Hy = ||0o| 12, and for k # 0,
1 o ~ 1. 1. .
By = (1~ lyD2 @kl ooz + K@kl 2r2 + k]2 [Tkl Lo e + (0h%) 7 || @k 212,
and
1.~ 1,1~
Hy = [k[5 |0k || ooz + 1o k]2 |0k L2 2

And we can get the following estimates, which along with bootstrap arguments, then we
can easily deduce the estimates (3.1).
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Proposition 3.1. There hold that, for k # 0,

Ey, < |[@in g2 + |k 110y @in |22 + Cv™2 ZElEk—l +Ov i Hy,  (3.2)

leZ
and
Eo < @il +Cv™2 Y EE_. (3.3)
1€Z\{0}
For Hy, there holds that
Ho S |0mollez +17% D [I7SEHy. (34)
1€Z\{0}
For k # 0, there hold that
1. for pk? <1,
Hy, S |k|5 0 llze + 072> BHyy + v sp” 2 > EyHy,_;; (3.5)
leZ 1€Z\{0,k},|k—1|<1E
2. for uk?® > 1,
1.~ _1 _1 _ 5
Hy S |E®|8inkllL2 + 172 Y EitHg o+ v~ s p~ 2 By Ho. (3.6)

leZ

Proof. Proof of (3.2). Denoting wy(t,y) = 5- fﬂr (t,z,y)e”**dr and

felty) =D Uit y)ei(t,y), fi(ty) =D Wt y)aei(t,y),

leZ leZ

we have

It follows from Proposition 2.1 that

PR 1 1 _1
By < C (v 4110kl o2 + v R e + 3| fR 2 )

(3.8)

As in [10], we get that for k # 0,

~ 2
ui(t,y)

uz(t,y)|?
e sup |ui (4, 9)|

ye[—1,1] 1 — |y

L2~

Ll
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| [} 0.3 (t, z)dz|? | [7, 013 (t, 2)dz|?
= |l[max{ sup ,
y€[0,1] 1 — |yl y€[—1,0] 1 —y|

Lt
< 4110y Tk[|72 12 = ALK )17z 12 < 4ES.

From which, we infer that, for k € Z,

12 2 <)

leZ

uz(t,y)

Tt O Bl <23 B, (39)

L2 =Y/

and

I fillzzre < ||l poe poe | @kl n2re + 4| 2 no |@ol| £ r2

+ > e @il e e,
1eZ\{0,k}

Thanks to |I||k — 1| Z |k|(l # 0, k), we have

. . 1, 1 1
Z 18y [ Loe oo [[Wh—it]| 22 S Z 1] 2B |k —1| 2 By
1€Z\{0,k} 1€Z\{0,k}

S |]€|_%V_% Z ElEk—l,
1€Z\{0,k}

and
~ ~ ~ ~ ~ ~ _1
1| oo poe || @kl 22 + |G| L2 pee | @oll oo 2 S @0 oo r2 |kl 2re S (VE*) ™ By Ey.

This shows that

I fellzoce S (Wk?)~ ZElEk - (3.10)
leZ

Thus, by (3.8), (3.9) and (3.10), we obtain that

~ _ ~ _1 1 _ 1
By < |\ @inxllzz + k|71 |0y Win k|2 + Cv2 ZElEkfl +Cvap~ 6 Hy.
ez

Proof of (3.3). Due to divu = 0, we have u2(t,y) = 0. By Py(u'd,u') = 0, we have

i (t,y) — vogg(t,y) = — D Up(t,y)d,al,(t,y)
1€Z\{0}

=— ) @ty oty = —f3ty). (3.11)

leZ\{0}
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By integration by parts in (3.11), we get

(01— voR)ab, ~028) = 500,03 + V2T (03 = (13, 030),
which gives
Ocllo stz + vIdgast)lz: < Cv=If5 (8 y)llZe,
from which, along with d,u}(t,y) = wo(t,y), we infer that
Bf = @0 Zr2 < CvH G972z + [1Win,0l1 2. (3.12)

Thus, by using (3.9), we obtain

Eo < ||@imollze +Cv2 > EE_.
leZ\{0}

Proof of (3.4). Similarly, we can derive the evolution equation of 50,

0i00 — 11020y = — > 0y (@701 (t,y) = —yg3 (£, ). (3.13)
leZ\{0}

Similarly, as the estimate of Ey, we get that by integration by parts in (3.13),

H§ = |00l 72 + pll0yb0l1 722 < Cu™Hlgg (8 ) I7epe + 10inoll72-  (3.14)
By using the Gagliardo-Nirenberg inequality and d,u; = —iku;,, we have
@il 2r < ClEIZNGRN 72 o TN 72 2 < ClEI7 2 Ey. (3.15)

And then, we obtain
lggllzzce < Y Naflleepellf-illoers S Y 721U SEH
1€Z\{0} leZ\{0}

< > T EBHS,. (3.16)

~

leZ\{0}

Thus, from (3.14) and (3.16), we have

Ho < finollze + =% > 73 EH .
1eZ\{0}

To control the nonlinear term ||g} || 1212, during the estimates of Hy, we need to divide
them into the low-frequency part pk? < 1 and the high-frequency part pk? > 1.
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Proof of (3.5). First, we can derive the evolution equations of 0 (t,y) = 5= 1 0t z,y) x

™
e~ "**dx. Denoting

Zultyﬂklty girlt,y) = Zultyeklty)
leZ leZ

we have that ), (t,y) satisfies,

(0 — p(02 — K?) + iky)r(t,y) = —ikgl(t.y) — Oygi (L y). (3.17)
For uk? < 1, it follows from Proposition 2.6 that
H < |1 1Bin il + C (18 01 Mgl 2re + i I lgEllnare ). (3.18)
On the one hand, by using u2 = 0 and (3.15), we have that for k # 0,

lg2llzere < @3l|zerllfolloere + > afllzesoe |0ki]lpoere

1eZ\{0,k}
<[MEBuHo+ Y TRk TS BiHy
1€Z\{0,k}
< |k|_%EkH()+|/€|_% Z E Hy_,. (319)
1eZ\{0,k}

On the other hand, for gi and k # 0, by using Gagliardo-Nirenberg inequality, we
have

—~ PO PR _1,,,_3
Ul 2~ < Cllugl 722100k f2p2 < Cv™ 5|k ™3 By, (3.20)
and then we obtain that

lgillz2re < @00 o o 8kllzzre + @kl epe0ollzere + Y @6kt 2r
1eZ\{0,k}

~ - _1 _ 3 -~ PR
< || @ollpr2llOkllLor> + v 5 kT3 EBellfollp~r: + > 1@ 0k-illz2r2

1€2\{0,k}
< WOk TEEoH, + v [T B Hy + Y @Ol 2. (3.21)
1€2Z\{0,k}
To estimate ) ||ﬂl1§k_l|| 1212, we divide it into two parts and get that
1€Z\{0,k}
> N O-illzere < > [ Ok —ill L2122 + > 2 61| L2 2
1eZ\{0,k} 1EZ\{0,k},|k—1|< 15 1€Z\{0,k},|k—1|> 15
def

= HL + LH,
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whereas by (3.20),

HL < > G} | 22 e 1Bk | o 2
1EZ\{0,k},|k—1|< 5L
> TR U B
1€2Z\{0,k},[k—1|< 15!
SvTElk| > EiHy—y, (3.22)

AN

and

LH = > 7 N[ oo oo 10—l 22

k
1€Z\{0,k},|k—1|> &l

S > TEHE—UTE S B H
1€Z\{0,k},|k—1|> 15l

SwEkTE Y EHe (3.:23)
1€Z\{0,k},|k—1|> 15l

And then, substituting (3.22) and (3.23) into (3.21), we get
1 1,1 1,8
19kllL2p2 S p e k|72 EoHy +v™ % k|~ Ey Ho
—|—V_%|k?|_% Z ElHk,l—i—,u_%Vﬂ_% Z EHy_ .
1€Z\{0,k},|k—1|< 15l 1€Z\{0,k},|k—1|> kL
(3.24)
Thus, combining (3.18), (3.19) and (3.24), we get that for k # 0 and pk? <1,

Hk; §’k|%||§zn,k||L2 + /Jz_% Z ElHk:—l + /J’_%’kﬁEOHk + V_%/J’_%|k|%EkHQ

leZ\{0}
—}—l/_é,u_%’k‘% Z ElHk—l‘F,u_%'k‘% Z ElHk—l
1€Z\{0,k},|k—1|< &L 1€Z\{0,k},|k—1|> L&l

SV Ginillze + 173> EiHioy +v b p % EyHy

leZ
+V_%:u_2_54 Z ElHk—l‘i‘,Uz_% Z E H;_,
1E€Z\{0,k},|k—1|< &L 1€Z\{0,k},|k—1|> &
1.~ _1 _1 _ 5
5 |k|6||0in7k||L2 +p2 ZEZHk—l+V spo24 Z EH_,.
leZ 1€Z\{0,k},[k—1|< kL

Proof of (3.6). For puk? > 1, it follows from Proposition 2.2 that
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1 1 1A
Hy < |k[o]|0k o~ £z + [k[ (1k?) = [|0k]| L2 2
1 1,1
< k[ 10in pll 2 + Cr™ 2 [k[% (llgrll2r2 + 98Il L2r2)- (3.25)
For gi and k # 0, by (3.20), we obtain
lgillcoe < @bl Okl 22 + @k 2o 0ol oere + D @ Or-ill 21
1eZ\{0,k}

~ ~ 1,3 ~ PPN
S @oll e L2 10kl 22 + v 5|k 3 Exllfollpoere + Y 118 0kl oro
1€Z\{0,k}

S USRI TE B  Hy + v R KT B Ho + Y 602z, (3.26)
leZ\{0,k}

Whereas for the term 3,7\ (g 13 Hﬂllé\k_lHLsz, we can obtain that by using |l||k — | 2
|k[(L # 0, k),

ST latbailizeze S Y lad e poe 10r—illz2re

1eZ\{0,k} leZ\{0,k}
S > WTEEwTEE =1 He
leZ\{0,k}
S sk > EH .
leZ\{0,k}

And then, we obtain

lgtllzeze S =8|k~ 2 BoHy + v 8 |k| i B Ho + ps[k|72 Y EiHp_. (3.27)
leZ\{0,k}

Thus, combining (3.25), (3.19) and (3.27), we get that for k # 0 and puk? > 1,

Hy, S KIS |0 illze + 072> ErHy—y + p™ 5 [k 75 BoHy, + v =2 k| =32 By, Ho

leZ
_2 _1
FpTSkTS Y B
1€Z\{0,k}
1.~ 1 1 1 _ 5
S kIS Oinillze + 172> EyHy—y + p~ 2 EgHy + v~ s i~ 2 By Hy
leZ
_1
+pz Z EyHy—
1€Z\{0,k}
1.~ _1 1 _ 5
Sk BinkllL> + 12> EHg_y+ v~ 5p” % EH.
lez

This completes the proof of Proposition 3.1. 0O
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Now we prove Theorem 1.1. From (3.3) and (3.2), we deduce

DoE< ) @il + Y KT N0y @inllee

keZ keZ keZ\{0}

+CV_%ZZE1E;€,Z+CV_%/L_% Z Hy. (3.28)

keZ I1eZ keZ\{0}

And by the fact that

> He=Ho+ >,  Hy+ >  H

kEZ keZ\{0},uk2<1 keZ\{0},uk2>1

combining (3.4), (3.5) and (3.6), we can deduce that

STHL S 0imollze + > ko Oimkllze +p2 YD EiHy

kez keZ\{0} keZ 1eZ
T Z ZElHk:—l‘f‘V_%,UJ_% Z EyH,y.
KEZ\{0}.uk2<11€Z KEZ\ {0} k2 >1

(3.29)

On the other hand, it is easy to verify that from ||u;,|gz < €0 min{v, ,u}% and
! . 11
HginHHl + H‘Dwyggzn”Hl <eér mln{y, ,u} 1z,

~ _ ~ . 1
Z | Wi, || 2 + Z k| |0y @in k|| 2 < Ceominf{y, u}?,
kez kEZ\{0}

and

LTV . 11
2 + Z |k|8[|0in k|| L2 < Cer min{v, p}12.
keZ\{0}

1030l

Thus, for €p,e1 suitably small, by bootstrap arguments, we can deduce from (3.28)
and (3.29) that

Z Ey < Ceomin{v, u}%, Z Hji, < Cey min{v, u}%.
kez kez

This completes the proof of Theorem 1.1. O
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