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Abstract. We consider the two-dimensional unsteady Prandtl system. For a special class of outer
Euler flows and solutions of the Prandtl system, the trace of the tangential derivative of the tangential
velocity along the transversal axis solves a closed one-dimensional equation. First, we give a precise
description of singular solutions for this reduced problem. A stable blow-up pattern is found, in
which the blow-up point is ejected to infinity in finite time, and the solutions form a plateau with
growing length. Second, in the case where, for a general analytic solution, this trace of the derivative
on the axis follows the stable blow-up pattern, we show persistence of analyticity around the axis up
to the blow-up time, and establish a universal lower bound of (T — 1)7/ 4 for its radius of analyticity.

Keywords. Prandtl’s equations, blow-up, singularity, self-similarity, stability, analyticity, blowup
rate

1. Introduction

We consider the two-dimensional unsteady Prandtl boundary layer equations:

Up —Uyy + UUx + VUy = —pE, (t,x,y)€]0,T) xR xRy,
Uy +vy, =0, (1.1)

u|y=0 = U|y=0 =0, uly—)oo = uE’
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where i = (u, v) is the velocity field, and uZ and pZ are the traces at the boundary of the
tangential component of the underlying inviscid velocity field and the pressure. Prandtl
in [32] introduced this model to describe the behaviour of a fluid close to a physical
boundary for high Reynolds numbers. He obtained this model as a formal limit of the
Navier—Stokes equation when the viscosity goes to zero. He proposed the appearance of
a boundary layer where the viscosity is still effective, describing the solution between the
boundary and the interior part where the dynamics is inviscid. The leading order term in
the expansion in the boundary layer solves (1.1); see for example [27,34,35] for more on
the derivation of the system.

1.1. On singularity formation for the 2-dimensional Prandtl equations

In this paper we are interested in the formation of a singularity in the Prandtl system. The
fact that a singularity can appear in this system is a physical phenomenon that is called the
unsteady separation. Van Dommelen and Shen [38] obtained the first reliable numerical
result in this direction, and explained how the separation is linked to the formation of
singularity. They described the singularity as being a consequence of particles squashed
in the streamwise direction, with a compensating expansion in the normal direction of the
boundary. We refer to [7,14,21,33] and references therein for additional numerical results
on the singularity formation.

Singularity formation is one problem out of many others regarding the Prandtl bound-
ary layer system. The system is locally well-posed in the analytical setting [24,26,34], or
Gevrey setting [9]. Under monotonicity assumptions, the well-posedness holds in Sobolev
regularity [1,28,31] and weak solutions also exist globally [41]. Note that the solutions
we consider here do not satisfy the monotonicity assumption. In this case, the equation
can be ill-posed in Sobolev regularity [15]. Similar instabilities prevent Prandtl’s system
from being a good approximation of the Navier—Stokes equations for high Reynolds num-
bers in certain cases [18]. Indeed, monotonicity and/or Gevrey regularity in the tangential
x-variable are necessary to ensure that this approximation holds. We refer to [16,34] and
the references therein. Finally, let us mention that the Goldstein singularity in the steady
case has recently been constructed in [8].

The precise description of the formation of singularity is still an open problem. How-
ever, E and Engquist [10] proved that blow-up can happen. They make some symmetry
assumptions and consider a trivial inviscid flow in the outer region (uf = p£ = 0). In
this case, the trace of the tangential derivative of the horizontal component of the velocity
along the transversal axis solves a closed one-dimensional equation (1.3). They proved
existence of blow-up for this reduced problem. Their approach is by contradiction and
does not provide any information about the mechanism that leads to the singularity. For
a more general class of nontrivial inviscid outer flows (1, p) but still with a suitable
assumption of symmetry, such a reduction remains possible, and the corresponding one-
dimensional problem still admits blow-up solutions as shown in [25]. The authors of [25]
also use a convexity argument that does not give details about the singularity.
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In this paper, our first results are a complete description of the mechanism that leads to
the singularity for the reduced one-dimensional problem, including the case of nontrivial
inviscid flows in the outer region. In particular, we prove the existence of a stable blow-up
pattern, and other unstable ones.

Our approach is inspired by the description of the so-called ODE blow-up for the
semi-linear heat equation (see [2,17,20,29] in particular). Note that the incompressibility
condition generates difficulties through the appearance of a nonlocal nonlinear transport
term. Actually, this nonlocal term will induce two new effects; the singular point is ejected
to infinity in finite time, and the solution forms a plateau with a growing length. Another
difficulty comes from the boundary: the blow-up is not localised near a single point but
happens on a large zone. We perform a careful treatment near the boundary to show that
the solution stays bounded in its vicinity.

The reduced one-dimensional problem (1.3) with a different domain and boundary
conditions also appears in a special class of infinite energy solutions to the Navier—Stokes
equations [13]. The authors proved the existence of a similar stable blow-up pattern to
the one we describe here, for a particular class of solutions. Their approach is based on
parabolic methods and maximum principles, allowing for a nonperturbative argument, but
requires many special assumptions. In particular, their argument does not seem to apply
to the problem that we consider in the present paper. In addition, our approach based on
energy methods is more robust, since it allows us to prove the stability of the fundamental
profile, to construct unstable blow-ups and to derive weighted estimates.

One may wonder how the one-dimensional reduction is related to the full two-dimen-
sional problem. From the numerics in [14] it seems that for certain solutions with symme-
tries the blow-up indeed happens on the vertical axis. However, for other solutions, such
as the singularity considered by Van Dommelen and Shen, the numerics show that another
singularity appears before the one on the vertical axis. Our second result shows that for
analytic solutions, if the solution of the reduced one-dimensional problem blows up with
the aforementioned stable blow-up pattern, then the solution exists up to this blow-up time
in a suitable neighbourhood of the vertical axis with a universal lower bound on its local
analyticity radius. This justifies that the one-dimensional profile constructed in Theorem |
describes blowing up solutions for the two-dimensional Prandtl system (1.1).

In [4] we treated a two-dimensional Burgers model with transverse viscosity. This
corresponds to a simplified version of the Prandtl system with a trivial flow at infinity,
uf = pE = 0, and no vertical velocity, v = 0. A similar one-dimensional reduction can
be made. More interestingly we were able to prove that the one-dimensional problem
captures the main features of the two-dimensional singularity. As a result we obtained a
complete description of the mechanism that leads to singularity for the two-dimensional
problem.

In the present work, we show that the viscosity is asymptotically negligible during
the singularity formation. This indicates that the full 2-d blow-up could correspond to
leading order to that of the inviscid Prandtl equations. This has been proposed for the Van
Dommelen and Shen singularity in [3, 11,37]. In the recent paper [5], Collot, Ghoul and
Masmoudi studied the self-similar blow-up profiles of the inviscid 2-d Prandtl equations.
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In particular, they show that there exists one of the form

X y
u(t’xv y) = (T _t)1/2®((T _t)3/2’ (T _t)—l/Z)

where 7 is the blow-up time, and the profile ®(X, Y) satisfies dxy®(0, V) =
—sin*(Y/2) 1<y <2 . Our main result in Theorem | shows that this is precisely the pro-

file of the reduced one-dimensional equation. Therefore our result can be understood as a
partial stability result for the profile ®. In a forthcoming paper, we will pursue its stability
analysis for the full two-dimensional viscous Prandlt system.

1.2. A first result on the blow-up of the derivative along the vertical axis

Without loss of generality, we consider a trivial vanishing outer flow uf = pf = 0.
Our result adapts straightforwardly to more general outer flows, as they just generate
additional lower order terms; see comments below. Consider an initial datum wu¢(x, y) of
the horizontal component of the velocity field for the Prandtl equation that is odd in x.
Consequently, the corresponding solution u (¢, x, y) is also odd in x and

u(t,0,y) = uy(¢,0,y) = 0.

This allows one to consider only the dynamic of the tangential derivative of u along the
y-axis. To do so, we set

S(t’y) :_Ux(l’O’J’)» (12)

which obeys the following equation for y € [0, 00):

St - Syy - 52 + (foy S)Sy =0,
£(1,0) = 0, (1.3)
§(0,y) =& (y).

The local well-posedness for the above equation is standard: see for example Propo-
sition 4.1 which adapts the result of [40]. In particular, solutions for initial data in
L'([0, 00)) exist, are instantaneously regularised and the following blow-up criterion
holds: If the maximal time 7" of existence of the solution is finite, then

limsup [|§ (7, )|l oo ([0,00)) = ©©. (1.4)
AT

Our first main result is the precise description of the singularity formation for the reduced
one-dimensional problem (1.3).

Theorem 1 (Stable blow-up for (1.3)). There exists A5 > 1 such that for all Aoy > A,
there exists an €(Ag) > 0 with the following property. For an initial datum of the form

y — Ao

£0() =A%cos2( e

)ﬂogyszkonJrgo()’) with (€0l L1 (0.00y) <€(R0).  (1.5)
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the unique solution to (1.3) blows up at some time' T > 0 with

_ 32 2 Y=V . £
E(t,y) = A=(t) cos (ZA(Z)M(Z))H—nSY;j < TE

where, for some [l > 0,

A0 = J% L OT =Y. ult) = oo + O(T — 1)),
- (1.6)
v = 2 L o(T -0V,

JT —1
and )
€|l Lo < (T — 1)1 F1/3, (1.7)

Moreover, on any compact set, the solution remains uniformly regular up to time T', so
that for any y € [0, 00), the limit lim;+7 £(¢, y) = §*(y) exists and satisfies
2
2

E0)~

asy — oQ. (1.8)

Remark 1.1. Our analysis could be extended to show the existence of other unstable
blow-up dynamics for (1.3). We show in Proposition 3.2 that there exists a countable fam-
ily of blow up profiles (Gg)x>1, With G1(Z) = c0s*(Z /2)1_<z<. We thus mention
here as an open problem to show the existence of solutions to (1.3) blowing up with a G
profile for k > 2 according to:

y—y*@)
/fLoo(T - t)ﬁ_l

E(t.y) = (T —z)—le(

)]l_akS y,}{,;(t) <ay + lo.t.,

where a; > 0 is defined in Proposition 3.2, y*(t) = peoar (T — t)i_l, and (oo > 0.
A sketch of proof is given in arXiv:1808.05967v1.

Let us make the following comments on the results of Theorem 1.

1. On the implication for Prandtl’s boundary layer. Our result shows that the blow-up does
not happen at the boundary, nor at a finite distance from it, but the singularity is ejected to
infinity. This fact is rarely emphasised, but can be seen in numerical results: see [14] for
example. This suggests that the boundary layer should interact with the outer Euler flow
in connection with other high order boundary layer models like the Triple Deck model
[22], which has been proposed to describe flow regimes where Prandtl theory is expected
to fail.

Moreover, Prandtl’s equations are derived neglecting the viscosity effects in the hor-
izontal direction x. Since the x-derivative becomes unbounded in our result, the approx-
imation of the Navier—Stokes equations by the Prandtl system is invalid just before the
singularity formation.

I'Note that our proof will show 7' — 0 as 19 — oo.
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2. On the symmetry assumptions and the stable singularity formation. The reduction to
the one-dimensional problem (1.3) breaks down in the general case without symmetry
assumptions. Hence our stability result in Theorem 1 should be understood within the
symmetry class of odd solutions. Actually, the stable 2-d singularity is expected to be
nonsymmetrical from [3, 11,37,38]. In particular, the blow-up scales in the transversal y
direction are different from the one of Theorem 1 (see [14]).

3. On more general outer flows. Our results could be extended to other nontrivial outer
flows satisfying suitable symmetry assumptions (e.g. uZ odd and p% even in x). Indeed,
this will just induce the presence of new terms that are of lower order asymptotically
during singularity formation, and will not perturb the blow-up mechanism. Hence the
statement of Theorem 1 would remain true. This is the case, for example, of the impul-
sively started cylinder [38] u® =k sinx and pf = (k?/4) cos(2x), for which the reduced
equation (1.3) becomes

E =&y — 8+ (fg HE =2,

£(,00=0, £(t,y) 5>« (1.9)

4. Displacement thickness. The displacement thickness §* is a quantity that measures the
effect of the Prandtl layer on the outer Eulerian flow. It is defined as

o0 t’ b
0 uf(t, x)
(see for example [36, 38]). For the aforementioned flow uf (t, x) = k sin x, we have
8*(t,0,x) = fooo(l + @) dy (using L' Hopital’s rule). Kukavica, Vicol and Wang [25]
proved the existence of blow-up solutions to (1.9), by establishing that a quantity sim-
ilar to §*(¢, 0) could blow up in finite time. For uf = 0, the analogous quantity is

fooo £(t,y) dy (which is limc_o k8*(¢, 0, k)). For initial data more localised than L', we
find that this quantity blows up as ¢ 1 T and we give an equivalent (see Proposition 1.2).

1.3. A second result on a general quantitative persistence of analyticity around the
vertical axis up to the blow-up time

In what follows, as in Section 1.2, we restrict ourselves to solutions of (1.1) that are odd in
x, with vanishing outer flow u® = p£ = 0 (again, this second assumption is for simplicity
only). We consider higher order derivatives restricted to the vertical axis and introduce,
fori > 0,
(£, y) = 03T hu(t,0 1.10
Sl(’y)'_ X M(, »J’) ( )

(hence & = —&p). They solve the following system fori > 0 and y € [0, 00):
0cki = Dyyki — 5o U By + 2520 (55 (051606
£i(1,0) =0, (1.11)
£(0,y) = 93+ 1u(0,0, y).
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Our second result describes solutions u to (1.1) around the axis {x = 0}, combining the
study of (1.11) and an analytic extension. It shows that if u¢ is any initial datum to (1.1)
that is analytic in x around the axis {x = 0} at time r = 0, and such that du|,=¢, defined
as the solution to (1.3), blows up at any time 7 satisfying the properties in the conclusion
of Theorem 1, then there is a local analytic solution up to time 7" on a two-dimensional
set around the vertical axis, with a radius of analyticity greater than (7' — 7)”/4. This
justifies the blow-up profile of Theorem 1 on a two-dimensional set with universal size
(i.e. regardless’ of other information on u( other than d,u¢|x=0), establishing a bound
for the blow-up rate for the analyticity radius. Moreover, this set is causal regarding the
finite speed of propagation of the Prandtl equations. Other singularities of ¥ might form
before time 7', but this shows that they cannot happen too close to the vertical axis.
Given a function 7 € €°([0, T], (0, o0)), we introduce the set

Er.:={(.x,y) €[0,T) xR x [0,00) : |x| < t()}(T —1)7/*}. (1.12)
Note that T > t* > 0 for some 7* > 0. Writing (a) = +/1 + a2, we have

Theorem 2. Assume p% = uf = 0. Assume that ug : R x Ry — R is odd in x, and
analytic in x on the set {|x| < 8§} for some § > 0, and satisfies the following hypotheses:
(a) (Analytic bound on the axis at initial time) There exist Cy, tg > 0 such that for all

i >0,02 uy € C([0,00)) with
10277 0(0, y)| < Cotg 1 2i + Dy)™2 forally > 0. (1.13)

(b) (Stable blow-up behaviour on the axis) There exist T, i, t, Cy > 0 such that the
solution & to (1.3) with initial datum &y(y) = —0xuo(0, y) blows up at time T with

2 (¥ - um(T =072\
2u(T —1)~1/2 -

sz, +E000)

1
£, y) = T coS

where for all t € [0,T),

E(t, ) + (T — 1) 21,E(t, y)| < CYT =) " H(NT —1)2 fory €[0,00),
(1.14)
E(t, y)| + 18,6(t, )| < C§ fory €[0,1/2]. (1.15)

Then there exists T € C°([0, T], (0, o)) and a function u € C(ET,;) (see (1.12)) with
u e C®(Er. N{t > 0}) such that:

(1) u is a classical solution to (1.1) on ET N {t > 0} and u = ug on E; N {t = 0}.

~More precisely, this set is {|x| < ©(T — t)7/4}, and higher order derivatives than dxug|x=0
only influence 7.
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(ii) There exist Cy, Ty > 0 such that forallt € [0,T) and y > 0,

102u(z,0, y)| < C{(T —1)™*, (1.16)
1 _

|8;Z,Ci+1u(t,0, y)| < Cl (T _ [)_%i—gtl 2i—1(2l' + 1)' fori > 2. (117)

(ii1) The set ET ¢ is causal in the sense that at its boundary,

u < | S -0 (118)

x=tc(T—07/4}
1. Uniqueness. Assume that uo is everywhere x-analytic, with |0%uo(x, y)| <
Cilt7i(y) 2 forall (x,y) € R x Ry, for some C, 7 > 0. In this case, there exists Ty > 0
and an everywhere x-analytic solution # to (1.1) on [0, Tp] x R x R, as proved in [24].
Then the solution u of Theorem 2 coincides with u as long as it is defined, i.e. u = u
on Er . N{t < Ty}. This is because both solutions can be obtained by the same Picard
iteration scheme.

2. On the assumptions. Note that there are no conditions imposed on the parameters 7o,
T, u,t, Co, C(; and tp. Thus £(r = 0) can, at the initial time, be away from the blow-
up regime, in the sense that both 7" and § (t = 0) can be arbitrarily large. The existence
of solutions satisfying (b) is obtained as an easy extension of the proof of Theorem 1.
We shall prove that for initial data in the space 8 with norm || f'[|8 = sup,>o(|f(¥)| +

19y LD (y)>:

Proposition 1.2. There exists an open set in B of initial data &y such that the solution &
to (1.3) satisfies assumption (b) of Theorem 2. Moreover, fooo £t y)dy ~ (T —1)3?ux
ast 1 T.

3. Optimality of the lower bound. We believe that the exponent 7/4 is optimal. This value
comes from optimal bounds for the linearised dynamics induced by assumption (b), and
from certain nonlinear bounds for what we identify as the worst terms, which we believe
are optimal; see the formal computation in Section 5.3.1. This value was critical for the
analysis and reaching it required a delicate treatment.

4. Causality. Prandtl’s equations have finite speed of propagation along the tangential
direction (see for example [23]). The inequality (1.18) states that at the boundary of E7 ,
the vector field d; + udy points outward.

1.4. Strategy of the proof and organisation of the paper

The proof of Theorems 1 relies on a perturbative bootstrap argument around the blow-up
profile. The maximum of the solution is the most sensitive location, where the viscosity
effects are nonnegligible at the parabolic scale. There, the dynamic is given by an elliptic
operator with compact resolvent (3.1) in a suitable weighted space, as in [2, 17, 20, 29].
A decomposition of the solution into eigenmodes allows us to derive modulation equa-
tions for the parameters and decay for the remainder due to a spectral gap. In the midrange
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zone, away from the maximum but still on the support of the blow-up profile, the viscosity
is negligible and we face a singularly perturbed problem (4.42). We use a new Lyapunov
functional with an adapted weight and take derivatives with a suitable vector field, which
are the main technical novelties of the present paper. Finally, the solution is studied near
the boundary via a no blow-up argument inspired by [17, 19, 30].

The proof of Theorem 2 relies on the study of all x- and y-derivatives &; x = 8’; &i.
Analyticity in y is first obtained by a parabolic regularisation argument. Then, linear
bounds for the dynamics of §; x = 8§ &; are showed, using the maximum principle and an
explicit treatment of a nonlocal term. Then, a suitable analytic norm based on a weighted
L°° space is defined. It is controlled using a bootstrap type argument. The analytic norm
controls the nonlinear effects, including what we think are the worst ones, for which y-
derivatives act as forcing terms for x-derivatives. To control boundary terms at y = 0, we
rely, classically, on the fact that controlling 7-derivatives allows one to control y-deriva-
tives for parabolic equations. Implementing this argument is delicate around the blow-up
time 7', and we use the fact that we are away from the blow-up zone y ~ (T —t)~1/2
to obtain smallness in certain terms.

The paper is organised as follows. In Section 3, we give a heuristic argument for
the derivation of the blow-up profiles and some of their properties in Proposition 3.2. Sec-
tion 4 is devoted to the proof Theorem 1. A bootstrap argument is described in Section 4.3,
and Proposition 4.7 states the stability result in renormalised variables. The analysis near
the maximum is in Section 4.4, the modulation equations and the interior Lyapunov func-
tional are established in Lemmas 4.9 and 4.10. The midrange zone y ~ (T —1)~1/2 is
analyzed in Section 4.5; the exterior Lyapunov functionals are established in Lemmas 4.12
and 4.13. The solution is studied on compact sets in the original variable in Lemma 4.15.
The main Proposition 4.7 is proved in Section 4.7, allowing us to prove Theorem 1 in the
same subsection, and Proposition 1.2 in Section 4.8.

Theorem 2 is proved in Section 5. Linear bounds are first established in Proposi-
tion 5.1. Then the third order derivative and higher order derivatives for the full problem
are bounded in Propositions 5.6 and 5.12 respectively, yielding the proof of Theorem 2
in Section 5.3.1. The proof of Theorem 2 uses the fact that solutions to (1.11) become
instantaneously analytic in y, which is proved in Section 6.

2. Notation

Let

oY) = l\/Ee_”f. (2.1)
2V nw

For a function / defined on some half-line [Yy, 0o) we will write, with abuse of notation,

012, = [ w@pyar, hig, = [ @@+ prhmPem ay. @2

and the value of Yj (being the image of the boundary y = 0 in (1.3) in the original vari-
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ables y by a change of variable) will always be clear from the context. We denote the
primitive of a function integrated from the origin by

y Yy z
a;lh(y):fo h(7)d7, a;lh(Y):[O h(Y)dyY, aglh(Z)zfo WZ)dZ,

the integration being with respect to the variables y, Y or Z to be defined later on. Note
that the origin will not be preserved by the change of variables: y = 0 does not corre-
spond to ¥ = 0 and the integrals do not start from the same point. Recall the Hermite
polynomials:

ho=1, hy=+3Y, hy=3Y%-2. (2.3)
The heat kernel will be denoted by
1 x2
K:(x) = We_ﬁ. 2.4

We write A < CB if A, B > 0 with a positive constant C that is independent of all other
parameters at stake in the analysis; we call such a constant “universal”. Its value may vary
from one line to another. We also write A < B if A < CB, and O(B) means a quantity
that is < B. We write C(K) for example to indicate that the constant depends only on
some parameter K. Finally, A ~ Bif A < Band B < A.

3. Formal analysis and blow-up profiles

In this section we formally derive the blow-up profile for (1.3). This approach relying
on matched asymptotics is inspired by [2, 12, 13,20,29,39]. Let us first perform a formal
computation for the effect of the viscosity near the maximum of the solution, and to obtain
suitable self-similar variables. Assume that the solution to (1.3) blows up at time 7', with
its maximum at a point y*(¢), and that the speed of this point is given by the transport
part of the equation: y; = a;lg (y*). We then use parabolic self-similar variables
y = 2200 = log(r - Y) = (T -
=T s=loa(T 0. f(s.Y) = (T =Dk

and find that f solves, assuming that one can neglect the boundary condition,

fs+f+§3Yf—f2+3}1f3Yf—3yyf=0.

An obvious solution of the above equation is the constant (in space-time) solution f =1,
which corresponds to § = 1/(T — t) in the original variables (which solves (1.3) but
does not satisfy the boundary condition). Assuming that 1 is a good approximation of the
solution for some large zone in the variable Y, we compute the evolution of the correction

e=f—1:
g+ Le=NL, Le:=-—-c+ %Yaye —eyy, NL=g%— a}lsays. 3.1)

The linearised operator . is well known.
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Proposition 3.1. The operator £ : H 5 — LIZ) is essentially self-adjoint with compact
resolvent. Its spectrum is {—1 + 3i/2:i = 0, 1,2,...}, with associated eigenfunctions
[i/2] ;
hi(Y)= Hi(V3Y) =) —— 3
(Y) = Hi(V3Y) =) =2

j=0""

i—

3 (=) yi=%

where Hj is a Hermite polynomial.

Proof. Changing variables and setting u(Y) = w(z), z = +/3Y gives Lu = —3(,,22w)(z)
where .2 := d,, — zd, + 1/3 and the result follows from the corresponding result on .
whose eigenbasis consists of Hermite polynomials (see [29]). ]

From Proposition 3.1 one sees that the linearised dynamics has one unstable direc-
tion, and an infinite number of stable modes. The unstable direction corresponds to the
constant in space mode 1, and is related to a symmetry of the equation: invariance by time
translation. One can assume that the blow-up time has been chosen well, so that this mode
is not excited. Neglecting the nonlinear effects, one can assume from Proposition 3.1 that
one mode dominates:

e(s,Y) ~ CeQ=3D5 (v, i >1.

From the behaviour at infinity of the polynomials /;, the fact that 1 + ¢ is maximal near
the origin implies that C = —c¢ < 0 and that i = 2k is an even positive integer (the modes
associated to odd integers are related to another symmetry of the equation: invariance
by space translation). Therefore, e(s, Y) ~ —ce(™3)5 11, (V) ~ —ce(1730)sy 2k for Y
large. The correction ¢ then starts to be of the same size as the leading order term 1 in the
zone

Y| ~ G205 e y—y* ~ (T — t)_l+ﬁ.

This suggests introducing the new variables

Y 1
Z:=———=T-0""2%(y—y"). F(s.2):= f(s.7),

1
e(z_ﬁ)s

and F solves

1 Z .-
F,+ F —F? + (—(1 — ﬂ)z + / F (s, Z)dz)aZF ey, F = .
0

Assuming that F is the correct rescaled unknown, the viscosity is asymptotically negli-
gible and F should converge to a stationary solution of the self-similar inviscid equation,

we obtain 2
1 -\ d
F — F? —(1-—)z F(Z)dZ |—F = 0. 3.2
+(( 2k) +/0 (2) )dz 62

In other words, in the renormalised variables, F' should tend to a self-similar solution of
(1.3) without viscosity and boundary, which is

y
%—w%(/_ w)ayw=0. (3.3)
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This equation admits a four-parameter group of symmetries: invariance by space and time
translation and a two-parameter scaling group. Namely, if ¥/ (¢, x) is a solution then so is

1 t—1y — Yo

4 ’y Y ., (to, yo, 1, A) € R? x (0, 00)?.
A A n

This contains the action of scaling subgroups of the form 12K/ (k=1 y, (3 2k/@k=1¢ 'y, /1)

for kK > 0. The following proposition describes the solutions to Equation (3.2), and is

essentially taken from [13].

Proposition 3.2. Let k € N. Equation (3.2) admits a one-parameter family of solutions

Ge(Z/), 1 >0. (3.4

or k > 2, Gy is even, compactly supported on [—ay,ay| with ay = sin(mr ,
Fork > 2, Gy i ) d ith 2k sin(w/2k
positive and increasing on (—ay,0), of class C'T1/@k=D=¢€ on R and satisfies the asymp-
fotic expansions

Gr(Z) ~ 2%k — ) 57T (Z + ap) R T as Z — —a,
Ge(Z2)=1-2%* + 0(Z*) asZ — 0.

For k = 1 one has the explicit formula, with a different scaling than for k > 2 to ease
notation:

G1(Z) = cos*(Z /DN -n<z<x- (3.5)

Remark 3.3. As will be clear from the proof of Proposition 3.2 provided below, we have
f(f K F(Z)dZ = (1 —1/(2k))ay. Using this fact, one sees that equation (3.2) admits other
solutions of the form Gy ((Z — pag)/ ). It also admits the trivial solutions 0 and 1. We
claim that all other bounded solutions of (3.2) can be obtained by gluing a finite or an

infinite number of these solutions, when they attain 1 or 0. For example, the function

1 for Z <0,
F(Z) =1 Gr(2) for0 < Z < ag,
Gk(%) foray < Z

is also a solution with the same regularity.

The solutions Gy of (3.2) are also well defined for k > 0 and k ¢ N. There is then
a continuum of blow-up profiles for equation (3.3), but we expect that adding viscosity
would prevent appearance of nonsmooth blow-up profiles.

Proof of Proposition 3.2. We perform a change of variables on [0, 00):

das _ 3
dz (1= z+ [ G2)dZ

H(§) := G(Z),

so that equation (3.2) becomes

H—H?>+§0:H =0
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whose solution is H = (1 + £)~! (renormalising the constant of integration). Notice that
the function 1 is the only constant solution to (3.2), and that for nonconstant solutions,
there should be a nonempty neighbourhood such that —(1 — ﬁ)Z + fOZ G(Z)dZ #0.
This justifies the above change of variables. Unwinding the transformation one finds

dZ 1 1 z

= —l1=-—)Z G(Z)dZ |,

T s[ ( 2k) *TA @ ]
which gives

L (2 V2 2 Y L]
dg2 & dé £ dt £ d§ G 2k J& &+ &2

and hence
d 1 dz __2_1 1Jr 1
AT 2%k JE T Et 2

7z
log Cjz_g = C +log(67%70)) + log§ —log(§ + 1)

Integration yields

with an integration constant C. Because of the invariance of the equations by scaling, we
can without loss of generality consider

dz £ 0-20
—=—, Z(0)=0.
d& 1+§& ©
Since Z(0) = 0, one deduces that
£ —(—5p)

big
lim Z = dt = .
Eggo €) /0 1+ ¢ sin(%)
and that as £ — 0,
Z = 2kE2* (1 + O(F)),

while as § — oo,

T é_——l+ﬁ 1
— 1+ 0@E™)).
sm(%) 1— ﬁ

Near the origin Z ~ 0, this yields

7 =

7 2k o
i=(5) a+o@®

2k 2k 2k

(%) ) (el )
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Therefore near the origin Z ~ 0 we have G(Z) = 1 — (2k)™2k 2%k 4 0(Z*k), and near
Z ~ m/sin(m/(2k)),

1 2T b/ 4 2=t 2k
G(Z2)= (1——) ( - —Z) (14 O((ax — Z)2k-T)).
2k s1n(%)
For k > 2, we finally define G;(Z) = G(2kZ) where G is defined above. Then G also
solves (3.2) by scaling invariance, its support is [—ay, ax ] for ar = 7 /(2k sin(xr/(2k))),
and it has the desired asymptotic behaviour near —ay and 0. The computation in the case
k = 1 is more explicit, and gives Z = 2tan™! /£, thatis, Z = m = cos?(Z/2).
Hence the result follows. ]

From Proposition 3.2 and Remark 3.3, equation (3.3) admits a family of backward
self-similar profiles for k € N which are smooth on their support:
1
(T—1)' 2% pa
e T

, y*(f)ZT
(T —t) 2%

vt.) = 76 (=570

They blow up in finite time and their support, whichis y €[yg, yg +2ax /(u(T —t) 3 )],
is growing to infinity. The formal analysis we just performed indicates that they could be
at the heart of the blow-up phenomenon.

4. Equation on the axis

In this section we aim at proving Theorem 1. First, let us give the following local
well-posedness result which is an adaptation of [40]. Note that if & solves (1.3), then
A2E(A%t, Ay) is also a solution. The scaling transformation # — A%h(1y) is an isometry
on L'/2([0, 00)) and (1.3) is then said to be L'/?critical.

Proposition 4.1 (Local well-posedness). Let & € L([0, 00)). Then there exists
T(||¢o0llz1) > 0 and a unique solution of the Duhamel formulation of (1.3) such
that £ € C([0, T], L1([0, 00))), £(0, ) = & () and® |0,E(t)|1 < V2. Moreover,
£ € C*®((0,T] x [0,00)) and for each k € N, 8§$ € C((0, T], L(][0, 0))). For any
k € Nand 0 < Ty < T, the solution map is locally uniformly continuous from L' into
C([Ty, T], W 1[0, 00)).

Solutions associated to initial data of the form (1.5) are thus well-defined and we now
turn to the proof of Theorem 1. We will sometimes use an alternative formula for the
profile:

2 Z 1 1
G1(Z) = cos > 1 <z<z = §+ EcosZ 1 _<z<n

VAR A
:1_T+4_8+0(|Z|6) as Z — 0. 4.1)

3With a multiplicative constant that depends on || &g || L1([0,00))"
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The proof of Theorem 1 relies on a bootstrap argument performed near the blow-up pro-
file. First we explain how to suitably decompose a solution near the blow-up profile and
then set up the bootstrap procedure. The fact that such solutions satisfy the properties of
Theorem 1 is then showed at the end of this section.

4.1. Adapted geometrical decomposition and renormalised flow

The following lemma states that in a suitable neighbourhood of the set of self-similar
profiles, there exists a unique way to project the solution onto this set using adapted
orthogonality conditions.

Lemma 4.2 (Geometrical decomposition). There exist A*, 6, K > 0 such that for all
Xo > A* and Yo < —AZ, for any regular ¢ € BL% (8A5%) with e(Yo) = —G1(Yo/A2), there
exist (A, i1, Yo) € (0,00)% x R such that the following decomposition holds:

Y Y - Y, -
Gi| = ) +e(¥) = 226G, O) +5(Y — Vo) with L ho,hy,ha in L2.

A2 A2u o
Moreover, these are the only such parameters satisfying |A — 1|Ag + || + |Yo| < K. This
defines a mapping € — (A, v, Yy), which is of class C' in Lf,.

Remark 4.3. One has to keep track of the free boundary in the Y variable, and we made
a slight abuse of notation in Lemma 4.2. Indeed, the space Lf, to which ¢ belongs is given
by (2.2) with boundary at Y, whereas the space Lf, to which € belongs, and in which it
satisfies the orthogonality condition, is defined by (2.2) with boundary at Y, — Yo.

The proof of the above lemma is a standard combination of the implicit function the-
orem and a Taylor expansion of G near the origin. It is relegated to Appendix B.

For a function & : [0, T) x [0, c0) — R, given parameters (A, u, y*) €
C1([0, T), (0, 00)? x R), we define two renormalisations. The first one is the parabolic
self-similar renormalisation close to the blow-up point:

5= 50+ / V@OdT, Y =a0 -y f6Y) = 5k, @)

The second one is the renormalisation associated to the leading order of the profile:

Z

y—y" Y 1
— A'u = AZI,L’ F(S,Z) = ﬁf(l,y) = f(s,Y) (4.3)

The function £ solves (1.3) if and only if the functions f and F solve the equations

{fs + 5@+ Yoy) f — 240 fov S + ([, [ —AyDdv [ —dyy f =0,

f(s,=(r +a)A*p) =0,
(4.4)
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and

Fy+%Q2—Z0z)F = Z0zF — F2 + 03'Foz F
0 5 1 _
+(Cpe F = 32)02f = qappdzz F =0, 4.5)
F(s,—(m +a)) =0,

respectively. Since A will behave like (7' — ¢)~!/2, and the blow-up point will behave like
au(T —t)~Y2, we introduce the correction a:

y* = Au(w + a). (4.6)
We adopt the following different notation for the remainder:

f(s.Y)=G(Z) +e(s.Y),

4.7
F(s,Z)=G1(Z) +u(s,Z), sothate(s,Y) = u(s, Z2). (&0

4.2. The weighted norm and derivative outside the blow-up point

To control the solution, we need a special weight and a special vector field to take deriva-
tives, both adapted to the linearised operator in the Z-variable. We refer to Section 4.5
and Lemma 4.11 for the motivation regarding these choices. Let ¢ : R — [0, 0c0) be an
even function with the following properties: ¢ € C2((0, 00)), ¢(0) = 0, ¢’ > 0 on (0, )
withlimz 0 ¢'(Z) > 0,q9'(7r) =0,¢"(7) <0,and g(Z) = q(7) = 1 for Z > n. Define
a weight w on (0, c0) x R* by

1+COSZ4Z sin(l—Z)4(n + Z)Ss“;z) ifZ e (—T[, O)’

(1—cos Z) sin
w(s, Z) =\ ey mz =2 g Z € (0.m), (4.8)
1 if |Z| > m.

s

Note that the weight w(s, -) is even, of class C! on (0, c0), and C? on (0, ) and (7, 00).
To take derivatives in a suitable way, we will use the vector field Adz, where

—1 for Z < —m/2,
A(Z):=4sinZ for—nm/2<Z7Z <m/2, 4.9)
1 form/2 < Z.

Note that one has the following sizes for s > 0 and Z € [—x, 7]:

w |A| ~ | Z]. (4.10)

Sz @
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4.3. The bootstrap regime

The solution we will construct will be close to the blow-up profile in the following sense.
At the initial time we require the following bounds, involving parameters which will be
fixed later on. Note that Lemma 4.2 will imply the uniqueness of the decomposition used
below:

f(S,Y) = Gy (%) +e(s,Y), SJ_p (ho,hy, hy), 4.11)
Definition 4.4 (Initial closeness). Let M > 1,50 > 1 with M3e™0 <« 1,0 < v <« 1 and
€0 € C*°([0, 00), R) with £,(0) = 9,,&0(0) = 0. We say that & is initially (at t = tg, i.e.
s = o) close to the blow-up profile if there exist Ao > 0, ag € R and o > 0 such that the
following properties are satisfied. In the variables (4.2) one has the decomposition (4.11)
with (s, (s), A, u) = (80, €0, Ao, Lo), Where the remainder and the parameters satisfy:

(i) Initial values of the modulation parameters:

S0
2

e? <ho<2eF, 1/2<po<2, l|ao| <e 2%, 4.12)

Sl

(i1) Initial smallness of the remainder in the parabolic variables:
_7 _z
leoll 2 < €72, lleollmsqyi<ms) < e 2. (4.13)

(ii1) Initial smallness of the remainder in the inviscid self-similar variables:

—Me—50 00 |
/ wwdZ + / wrwdZ < e 22750,
—m—ag Me—50

 Me—s0 o (4.14)
/ |Adzul?wdZ +/ |AdzulPwdZ < e*"*.

—m—ag Me—50

(iv) Initial regularity close to the origin y = 0 in the original variables:

150 llw1.co0,27) < I (4.15)

We aim at proving that solutions which are initially close to the blow-up profile in
the sense of Definition 4.4 will stay close to this blow-up profile up to modulation. The
proximity at later times is defined as follows.

Definition 4.5 (Trapped solutions). We say that a solution f(s,Y) = F(s, Z) is trapped
on [sg, s1], with 5o < s1 < 00, if it satisfies the properties of Definition 4.4 at time s with
the parameters v and M and if, for K > 1 and 0 < v/ < v, and for all s € [sg, s1], f(s,*)
can be decomposed as in (4.7) and (4.11) with:

(i) Values of the modulation parameters:

1 S S 1

et <h<Ked —<p<K al< Ke=(z72v)s, (4.16)
(i) Smallness of the remainder in parabolic variables:

_7 —(I_y
lellz < Ke™2%, el gsqyi<mz) < Ke (z=Ds, (4.17)
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(iii) Smallness of the remainder in the inviscid self-similar variables:

—Me—* 00 .
/ w*wdZ —I—/ wrwdZ < K2e 2G—)s,

e Me™ o (4.18)
/ |Adzu)*wdZ —|—/ |Adzu?>wdZ < K?e?S.
—n—a Me—s

Remark 4.6. Lemma 4.2 and the regularity of the flow (Proposition 4.1) imply that the
parameters of Definition 4.5 are uniquely determined and are in C ! ([sg, s1]). In particular,
the renormalisations (4.2) and (4.3) are indeed well-defined.

The heart of the paper is the following bootstrap proposition.

Proposition 4.7. There exist universal constants K, M, sy > 1 and 0 < V Ky K1
such that for any so > sg, any solution which is initially close to the blow-up profile in
the sense of Definition 4.4 is trapped on [sg, 00) in the sense of Definition 4.5.

Lemma 4.2 and a standard continuity argument imply that for so large enough, any
solution which is initially close to the blow-up profile in the sense of Definition 4.4 is
trapped in the sense of Definition 4.5 on some interval [sg, s1] with 51 > s¢. Letting s* > s¢
be the supremum of times s; > so such that the solution is trapped on [sg, 51 ], the purpose
now is to show that s* = oo. The strategy is to study the trapped regime via several lem-
mas and show that the solutions cannot escape from the open set defined by Definition 4.5.
The proof of Proposition 4.7 is then given at the end of this section.

Note that the constants K, M, s(’)" , V', v and 7 (defined in Lemma 4.10) will be adjusted
during the proof: we will always be able to prove various lemmas by choosing M large
enough depending on K and then choosing s; large enough depending on K and M.
First, note that one has pointwise control of the remainder for trapped solutions.

Lemma 4.8. There exists v* > 0 such that for any K and 0 < v,v' < v*, for any M large
enough, there exists an sy such that if u is trapped on [so, s1] with s§ < so, then for all
s € [so0,51],

lellzoo = llullzoe S Kse G5, (4.19)

Proof. First, Sobolev embedding together with (4.17) implies
||8||L°°(|Z|§e_sM2) < C(K’ M)e—(%—v/)s < e—(%—v)s

for s¢ large dependingon K, M. Let E :={Z :—n—a<Z <—Me *}U{Z:Me ™ < Z}.
Then from (4.10), we have w > s~ ! and |A|w = s~ ! on E, implying

—Me™S 00
||u||i2(E) < s/ w?w + s/ uw,

—m—a Me—s

o213z, <5 [

—n—a

—Me™* 00

|A82u|2w—|—s/ | A0 Zzu|*w.
Me—s
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Therefore, Agmon’s inequality and (4.18) give

1

lulloe ) < Cllull;

1 11
L2y Ill2) + 10zull2(g))? < CKs2e a=vs,

Hence, as for M large enough depending on K the two zones | Z| > Me ™S and |Y| < M?
1

cover the whole space, we have ||uzco < Kse (@75 4 ¢75/4 < Kse™(1/47)s for g

large enough. u

4.4. Analysis near the blow-up point

This subsection is devoted to the study of the solution near y* in parabolic variables (4.2).
This is the most sensitive zone, in which the blow-up parameters are selected. The remain-
der is dissipated away from this point, until it reaches the outside region |Z| = 1 where
another dynamics takes place (see next subsection). The analysis near the blow-up point
is a consequence of the blow-up profile structure, the linear structure (Proposition 3.1)
and the orthogonality conditions (4.11). The measure p = ce 3Y?/* decreases very fast
because of the transport part of the operator £ which is unbounded and pushes the char-
acteristics away from the origin. Therefore, the analysis here is poorly affected by the
exterior dynamics. From (4.4), (4.7), (3.2) and (4.6) we infer that € solves

~ 1 —
{ss+$e+$s+Mod+NL—W322G1(Z) =0, (4.20)

e(s,—(mr + a)A?n) = —G1(—m —a),

where .Z is defined by (3.1), and where the small linear term, the modulation term and
the nonlinear term are

3 1
ZLe:=2(1-G1(Z))e + (A\*nd;' G1(Z) — Y)dye + mazGl(Z)E);ls, (4.21)
S As 1
Mod(r) i= ~ 2 20,6:2) + (3 = 5 )@= 200)612) + @ + Yoy
0 1
+ (/ de—Ay;")(TazGl(Z)Jraye),
—(T+a)A2pn A%

NL := — &2 + 8;1881/8.
The parameters evolve according to the following dynamics.

Lemma 4.9 (Modulation equations). For v small enough, and K,v', M such that
Lemma 4.8 holds true, there exists s; such that for a solution trapped on [so, s1] with
50 > 84

As 1

_ -8 —4
3 2 gz | S CEOOT AT el + lelleee llell.z). (4.22)
M _
Is ~ gz | SCBOA S lelz + A Nelzge llel ), 4.23)
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0
] LAY =] S O el Az lel ). (4.24)
—Ay*
a -7 1 0
a—i———/ Ga’Z——/ edY‘
’ 2 —mw—a ' AZM/ —Ay*

< C(KYA™* + llellzz + A*llellzosllellz2)-  (4.25)

and we have the bound*

Ay 1 1 o 0 13
] PR T ) dY —Ay¥| <e 5. 4.26
|5 2+4/\4M2+M+‘/;)Ly*f ys|=e (4.26)
To simplify notation, we define
As 1 0
mpy = = — —, mzzﬁ, msz = fdYy —Ay;. (4.27)
A 2 H —Ay*

Observe that m is the difference between the evolution of A and the expected self-similar
law, while m3 is the difference between the speed of the blow-up point and the value of
the transport part of the equation at this point.

Proof of Lemma 4.9. This is a direct and standard computation using the definition of
the geometrical decomposition and the spectral structure of the linearised dynamics. First
we differentiate the orthogonality conditions (4.11) for i = 0, 1, 2 using the boundary
condition (4.20):

d o d o
0= ([ empar) ==L tp- G r -+ [ edipar
ds \J_py= ds —ay*
Thanks to (4.16) and (4.6), one has Ay* > e’ and therefore |p(Ay™*)| < ¢=¢*"? when

so is large enough. Hence, as | ff(]”a)kzu fdY| < A%u < e from (4.7) and (4.19), the
above identity can be rewritten as

f eshipdY = 0(e™¢" (1 4 |m1| + |m3))). (4.28)
—Ay*

We now estimate the contribution of each term when inserting (4.20) in the above identity.

Step 1. The linear and small linear terms. Performing integration by parts and thanks
to the orthogonality (4.11) and Proposition 3.1, using the boundary condition (4.20) and
(4.81) (the latter estimate states boundedness at the boundary, its proof is given later on),
we get

[ hiLepdY = Dyephi)(—Ay*) — (epdyhi)(—y™) + | LhiepdY
—Ay* —Ay*

= (dyephi)(=Ay*) + (pdy hi)(=Ay*)G1(—7 — a)
= 0(e® (1 + [dye(=A2y™)])) = O(e™). (4.29)

4There is indeed no constant factor in front of e~135/8,
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The small linear term is evaluated as follows. First, using Cauchy—Schwarz, and since
11— Gi(Z)| £ Z? <A7*Y?, one has

'foo hi(l — Gy (Z))epdY
—Ay*

—4
<A ||8||L%'

Similarly, since [(A2d,'G1(Z) = Y)| + |Y | |9y (A*nd;' G1(Z) = Y))| SAHY|?, we
get ~
/ hi(A*udz'G(Z) — Y)dyepdY
—Ay*
Using Cauchy—Schwarz one estimates

—4
<A ||8||L%,~

3y2

N|—

Y ~ ~ ¥ 392 .52 e s
[ et rar| <t ([ et ar) Skl ——r @0
0 "\Jo P14y
which implies the bound, since [0z G1(Z)| S A™#|Y],
o0
1
/ hi e ——02G(Z)dy'epdY | S A~ 4||8||L2

From (4.21) this gives the bound for the small linear term fori = 1, 2, 3:

[ hi LepdY

<A el 2 431
—Ay*

Step 2. The modulation term. We first rewrite it performing a Taylor expansion of G
from (4.1) near the origin and using (2.3):

1 (1 1
Mod = mz(k”',uz (ghz(Y) + gho(Y)) + ,LL_4A._81”2(Y))
+m1(2ho(Y) + ™ *A78r1(Y) + 2+ Ydy)e)
11
(e 5 E ) £ aye) @3

where 71 (Y) = u*A8((2 - Z032)G1(Z) —=2) and 1, (Y) = —pu*A8Z(0,G(Z) + Z/2)
are even functions which are O(Y*#), and r3(Y) = u3A1%(02G{(Z) + Z/2) is an odd

function that is O(Y 3). We recall that /,; and h; ¢ are even and odd functions respec-
_63s/2)

From (4.11) and (2.3), one has ffjiy* pe = 0 for any polynomial p of degree 2. Let
Mod; := ffiy* h; Mod p fori =0, 1, 2. Using the previous remarks, (4.11) and the bound-
ary condition (4.20) we obtain

Iholl7, + 0~
3A4M2

—Ay*
+ m3 (—M“‘Fs / r3p + p(=Ay*)Gy(—m — a)),
—00

tively and form an almost orthogonal family: ij* hihjp=— f__o'ly " hih ip=0(e

Mody = m> +mmy (2||h0||i% +OA™%) +(Xp)(=Ay*)Gi(—n —a))

o2,
=mz( e T OO0 8)) + miCllholZ; + O +m30(e™"), (433)
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where for the last bound we use the fact that Ay* > e® and p = Ce —3Y2/4, ; similarly

2

s —Ay* Y
Mod; = m, (O(e_e )—,u_4)L_8/ h1r1p+7p(—ky*)61(—n—a)+0(||£||L%))
—oo 3

—Ay*
+ mz(O(e_es) —pu A8 / hlrl,o)
—00

Iy + 067y
+m3(— 2\/§A4M2 _E(_ ") 1(—7r—a))

Ih1]2, + 0G4

_ —e* —e* .
=my0(e )+ m O ° + ||8||L%) m NN , (4.34)
Ihall2, 8
M0d2 = mz( )L4 2 + 0()& ))

+mi(OA™®) + (Yhap)(=Ay™)Gi (=7 —a) + O(llell .2))

s _)Ly*
+m3 (O(e—e ) -t / harsp + (hap)(=2y*)G1(—=7 —a) + 0(||s||L;,))
—00
Ih2]1?, + 0(A*)
0
6A4M2

= m, +miOM® + |lsll 2) +m30@™ +lellz).  (4.35)

Step 3. The nonlinear term. Since |h;| < (1 4+ Y?) fori = 0, 1,2 we estimate

o0
'[ e2hipdY
—Ay*

Integrating by parts, using (4.20) for the boundary term and |8;18| < Y|le||pee we get

< llellzz llellzos.

o0
‘/ hidyedy'epdY
—Ay*

Therefore, fori = 0,1, 2,

_ L,
< llellzeellell 2 + O(e™).

o0
[ mNLpay| S el el + 0, (436)

—Ay*

Step 4. The error term. Finally, using a Taylor expansion from (4.1) we get

1 1 1 1 1 1 Z?
7) = B (. ~_27)).
A4M282261( ) A4u2( (2 6)L4,u2)h0+12)t4 2h2+(3ZZG1+2 1 ))
4.37)

This gives (since this term is an even function and /; is an odd function):

o —z (3 — g lhol}, + 0071 ifi =0,

/ 2202201 DhipdY = ( ) ifi =1,
A‘ : . .

1218#«4 ||h2|| + 0(1_12) ifi = 2.

(4.38)
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Step 5. End of the proof. We collect the estimates (4.29), (4.31), (4.33)—(4.36) and (4.38)
and insert them in (4.28) using (4.20) to obtain

14+ 0014
3A4M2

1 1 1 _ _
— (3~ g ) + 00T + 06 el + el el 3)

+mi2+ O0™%) + m30(e™)

1+ 001
A4u?
= 0@ ) + 00 el 2 + el liell2),

ma0(e™) +m10(e™® + ||€||L%) — ms

1+ 00

m2 614112

+mi 00 + llell2) +m30@™® + el 2)

= T T 0T+ 00 el + el lell.)-

These three estimates, together with the fact that |le]| 5 < e~ 75/2 and A ~ e%/2 obtained

from (4.17) and (4.16), imply (4.22)—(4.24). The fourth inequality (4.25) is obtained from
(4.22)—(4.24), since from (4.6) and f_Oﬂ G, =mn/2,

0
fdY — Ay
—Ay*

- 1 0
zkzu[/ Gle+T/ edY—as—g—((ml—l—mz)(n%—a)]
—n—a A2 ra)azu 2

Summing (4.22), (4.23) and (4.24), we obtain

As 1 1

N

4
A A 2+4)L4,u2

s —4 4
L <27 el + A4 el el 3.

0
—I—‘[ fdYy —Ay;
—Ay*

The right-hand side is, from (4.17) and (4.16), < C(K)(e 25 +¢775/2 4 5= (G/2+1/4=v)s)
and hence (4.26) holds if v < 1/4, for s¢ large depending on K. ]

The decay of the remainder ¢ is encoded by the following Lyapunov functional.

Lemma 4.10 (Interior Lyapunov functional). There exist universal C,n* > 0 such that
forany 0 < n < n* the following holds. For K,v,v', M such that Lemma 4.8 holds, there
exists sy such that for a solution that is trapped on [sg, 1] with s > s,

d (1 7 _ _ - —es
%(Ensnig) - (5 - ce ”S)IIEIIi% +e M dyelz, < CllellgA™" + Ce™
(4.39)

Proof. This is a direct computation relying on the spectral gap that absorbs the nonlin-
ear effects, the modulation equations established previously, and the rapid decay of the
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measure p. First, from (4.20) and (4.26), one computes

d (1, ., 1d (>
a(i"S"Lﬁ) = zaf_kyf pdY

1 d o ~ 1
= ——(82p)(—ky*)—(—ky*)+/ —Ze—Le—Mod—NL+——0z2G; |epdY
2 ds Ay Atu?

‘ o0 . 1
= 0(e™® (1+||ayg||i%))+/ (—.,s,ﬂg—.,sfg—Mod—NLJr—aZZGl)ede.

—Ay* A4[L2
(4.40)
Step 1. The linear term. First, we prove the dissipative spectral gap estimate
oo 9 oo oo s
/ |0ye|>pdY > —(l—Ce_"s)/ 82de+2e_"s/ |0ye|?pdY — Ce™®
_Ay* 2 _Ay* _Ay*
(4.41)

for some universal constant C > 0. We use analytical results on the whole space R, with
scalar product (u,v) = fR uvp (only for the next few lines). Define the extension

. e(—Ay*) forY < —Ay*,
€=
e(Y) forY > —Ay*.
Thene € H ;. Define the projection on higher modes by

Bk}, ), (Eh)
2 2 2
holZ, ™ iz, 22,

Then from the orthogonality (4.11), since e(—Ay*) = —G1(—n — a) from the Dirichlet
boundary condition, one infers that

1 [3 =7 s
(&, h;) = ) ;/ hiGi(—n —a)e_%YZdY =0 %)
—Oo0

as Ay* > e°. This implies that

hy.

g:=¢

o0

o0
/ e2pdY < &2, + Ce™, / loyel?pdY = ||9y&l|2, — Ce™ .
_Ay* 0 —Ay* D

Asese H [} with & L h; fori = 0, 1,2, one has the spectral gap estimate from (4.41):
I0vE12, = 31512,

The above two estimates imply (4.41). Therefore, the linear term gives, from the boundary
condition (4.20) and the definition (2.1),

o0

o0 o0
— PLeepdY = / e2pdY —/ |0y el>pdY + Oy ep)(—Ay*)Gi(—m —a)
—Ay* —Ay* —Ay*

7 -ns > 2 —ns > 2 —e’
<—|=-—-Ce™" e“pdY —2e " |oye|“pdY 4+ Ce ¢ .



Singularity formation for the two-dimensional Prandtl system 3727

Step 2. The small linear term. Recall (4.21). One computes, using Poincaré (A.1) and
the fact that |G1(Z) — 1| S A74Y?2,

(o.¢]
'/ (1-G(2)e*pdY sCA“‘IIsIIi,;
—Ay*

Next, by integrating by parts, the boundary condition (4.20) together with the fact that
Ay* Z e® gives (note that the boundary term at ¥ = oo is zero from the exponential
decay of p)

/ e(A\*nd;'G(Z) —Y)dyepdY
—Ay$

2 [o9)
— @712 - 1ol a =5 [ B (02 6r@) - vip)ay

—Ay*

— 0~ 3 [ 20 (@2u7'6u(2) - V)p)ay

Ay
Then, notice that for |Y| < e3s/4,

|0y (A2 d7' GU(Z) = Y)p)| S ATHY P+ Y0 S e 2V Pp.
Hence, applying (4.19), (A.1), and splitting in two zones E = {Y : |V | < e3/4} and
E' =[-Ay*,00) \ E we get

‘/ e(\?pd7'G1(Z) = Y)dyep| S e +
_Ays

/E 20y (W2pd7' G1(Z) — Y)p)'

+ ‘f 23y (A*pdz' G1(Z) = Y)p)
E/

Se™ e 2el?,
o
For the last term, using (4.30), since |_A;u 07G1(Z)| < A™#|Y| one has

3y2

‘/ BZGI(Z)HY epdY | < llell 22" / |e||Y|—dY
Ay TENTE
ﬁ _3v2
< llell A /|e||Y| CdY + el 22" /|e||Y|—dY
LY’ 1+ |73

1
dy \? s s

< Ay 0(e™) 5 llell2 A7 + 0(e™),

~ ||8||L% ”l |8“L% ([Y|§e35/4 1+ |Y|) + (e )r\./ ”8”le + (e )

where we have used (A.1) and (4.19). Therefore, putting all the above estimates together,
as A ~ ¢%/2 we get

< —e* -5 2
Se e el

‘/ eLepdY
—Ay*
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Step 3. The modulation term. Recall (4.27). We use the decomposition (4.32) and the
orthogonality (4.11) to obtain first, with r{(Y) = O(Y*?), rp(Y) = O(Y*?) and r3(Y)
= 0([Y %),

o0 o0
/ eModpdY = /L_4)L_8/ e(myry + mary + msr3)pdY
—Ay* —Ay*
o0 o0
+ my / (24 Ydy)e)epdY + m3/ dyeepdY.
—Ay* —Ay*

For the first line, using Cauchy—Schwarz with (4.22)—(4.24), (4.16) and (4.19), we get

o0
‘M_4)L_8 / e(miry + mary + mar3)pdY

~12 —25 [ |2
SA  ellz +e el

For the second line, use Poincaré (A.1) and (4.26):

o .¢]

‘ml f (24 Ydy)e)epdY + m3/ dyeepdY

—Ay —Ay

_13
< e WOl

The two inequalities above then give

o0
'/ eModpdY | < |lell 227" + e‘%sllellip.
—Ay* L

Step 4. The nonlinear term. A direct L°° estimate gives

o0
'/ epdY
—Ay*

For the other nonlinear term one first performs an integration by parts, then a brute force
bound for the boundary term, the same estimate as above for the second term, and (A.1):

2
S el el

o0 1 00 83
[ edyedy'epdY = —>(e20y ep)(—Ay™) —/ —pdY
—Ay* 2 —Ay* 2
1 o0
- —/ e20y edy pdY
2 )

= 0(e™*) + O(|lelleollel?, ).
1%
Step 5. The error term. Using the decomposition (4.37), the orthogonality (4.11) and
2
022G1 + 3 — ZT| < Z* ~ A78Y* one obtains
[oe] 1 00 1 ZZ
——0zzG1(Z)pdY | = 0zzG1 + - — — |pdY
‘/—Ay* ST 1(Z)p ‘ P9E /_M*S( zzGi+ 5 - )P ‘

—12
S AT el 2.
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Step 6. End of the proof. Collecting all the estimates of Steps 1-5 one finally deduces

from (4.40) that

d (1 7
“ | = N -ns 2 -ns 2
o (2||e||L%) < (2 Ce )||s||L% 2¢7"dyell}

+Ce™> + ||<9||L°°)||<9||12qpl + Cllell 2 A~ + Ce™®

7 _ _ _ oS
< (3 Cemlel; — ol + Cllelga + Ce

2

if n has been chosen small enough and s large enough, where we have used (4.19). =

4.5. Analysis outside the blow-up point in the inviscid self-similar zone

This subsection is devoted to the study of the solution outside the blow-up point y*(z)
and we switch to the Z-variable (4.3). The aim is to find decay for u, which receives

information from the boundaries Z = —mw —a and Z = 0. We first explain the linear

estimate which explains the choice of the weight w and then prove full energy estimates.

In view of the decomposition (4.7) and (3.2), we rewrite (4.5) as
{us+J€u—A4—lﬂzazzu+J?u+NL+w =0,
u(s,—( +a)) = =Gi(=(7 +a)),
where the leading order linearised operator is
Hu:=Tdzu + Vu + agluaZGl,

with the transport and the potential term being defined by

—(Z/2+4r/2) forZ < —nm,
T7(Z2):= —Z/2+8}1G1= %sinZ for—n < Z <=,
—(Z/2—m/2) form < Z,

1 for Z < —m,
V(Z) =1-2G(Z) = —cosZ for—nm <Z <m,
1 formr < Z,

the small linear term is given by

Hu:=m1(2—Zz)u —mrZdzu + myozu, my= ;Z—;

where m 1, m, and m3 are defined in (4.27), the nonlinear term is

NL := —u? + 8§1u82u,

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)
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and the error term is

W(S’ Z) =

Ty 0zzG1(Z) +m1(2—=Z32)G1(Z)—m2Z02G1(Z) +m302G1(2).

Thanks to (4.26) the parameters m, m, and m’3 satisfy

2s + [ma| + € |mj| < P (4.47)

e mi

1
o 4242

4.5.1. Linear analysis. We claim that the dynamics of equation (4.42) is driven to leading
order by the transport and potential terms, and that the nonlocal, viscosity and nonlinear
terms are negligible. From a direct check, the eigenvalue problem

Tozpg + Vog = Bog

admits a solution for all 8 € R, of the form

bs(Z) = q&g“(Z) for Z € (—n, ) \ {0}, (4.48)
¢§’“(Z) for Z € (—oo, —m) U (7, 00),
where
int, . ((1—cOSZ h ) wtrpe | ((Z + )2 for Z < -,
g (2) = (1 - cosZ) sin" 2, 9 (2) = {(Z — 7)20-8) for Z > 7.

Note that ¢g(Z) ~ Z2U+P) as Z — 0 and ¢pg( + Z) ~ | Z|?~P) as Z — 0. The
reduced operator 7 dz + V satisfies the following comparison-type L weighted bound:

e—sTaz+V)y v
bp of

which can be showed by differentiating along the characteristics. The above bound shows

e Ps

1.oo

L°°’

how cancellations near the origin for u¢ are crucial for decay since ¢4 cancels at the origin
for positive 8. Our aim for the full linear problem is to perform a weighted Sobolev energy
estimate which mimics the above estimate. We will modify the weight 1/¢g according to
three principles: (1) any multiplication by a weight which is decreasing along the vector
field 7 (Z)dz preserves the spectral gap estimate, (2) the nonlocal part can be treated as
a perturbation of the transport and potential terms, (3) the viscosity is negligible if one is
sufficiently away from the origin. These are the reasons behind the specific choice of w
in (4.8). The exponent 1/2 for the underlying eigenfunction ¢;/, is made by optimising
two constraints: to optimise the decay in the above inequality, and to minimise the size
of the boundary terms in the lemma below. We claim the following decay, at the linear
level, of a Lyapunov functional with weight w. We state it on the left of the origin but the
analogue holds true on the right as well.
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Lemma 4.11. Let A, i and a satisfy (4.16) and v > 0. Assume that u solves

1

Let Z1 ;= —(m +a)and Z, := —Me™5. Then for any K > 0, for M > 0 large enough
depending on K, and s large enough depending on K, M, one has the estimate

d 1/22 2waz) o (L " /22 2wdz + ] [Zz|a Pwdz
— | - u-w —- — — u-w — ul-w
ds\ 2 Z, 2 4 Z /\4/’L2 VA ‘

< C(K, M)eSu>(Zy) + C(K. M)e* |0 2u|2(Z2) + u>(Z1) (e 3™ + |ay))

0 V4 3
/ |u|dZ) (/ uzde) .
Z> Z1

3 CeZs
+ C|82u|2(21)e 2s + W(

Proof. One first records the identity

d (1 (%
— —/ wwdZ
ds \ 2 Z
Z> 1 Z> ag
= / uuswdZ + —/ wwsdZ + —=Ww)(Zy) + Me™*(ww)(Zy). (4.50)
Z1 2 Z, 2
We compute from (4.8) that
Z> 1 %2
/ wwydZ = ——/ w?wq(Z)dZ <0, (4.51)
A §Jzy

and we recall that
o L% 50 =) 1
U = —Vu—T0zu + = u(s,Z)dZ |sinZl_,<z<x + ——=0dzzu.
2 0 - )\,4/,L2

Step 1. The potential, transport and dissipative effects. Integrating by parts one finds

Z2 1 1 221
—f uTdzuwdZ = 5(u27w)(zl)— 5(uszw)(zz) +/ uziaz(Tw) dZ.

Z Z

One then computes that for —7 < Z < 0, from (4.44) and (4.48),

l+cosZ 4(n+Z)3) 1 ( 1 ; 1 )
=-0z|——4(x+Z
(1—cos Z)sin*Z 542 z ¢f/2 ( ) §4(Z)

T4
28in Zdz¢1)2 1 3(n+ 2)? 1 (m+2)3
$1/2 ¢f/2 s4(Z) 4’%/2 54(2)

1 1
29 (Tw) = -3, —
5 z(Tw) 2 Z(

logs dzq

<—w % sin Z aZ¢1/2
®1/2

b
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and that for Z < —m,
1 1
—0z(Tw) =—w.
3 z (T w) ik

Therefore, on (—, 0) one has from (4.48) the inequality behind the inviscid spectral gap:

1 1 1
—VuPw + MZEBZ(Tw) < —uzw—(VqSl/z +T0z¢1)2) = —Euzw,
1/2
and on (—oo, —r] from (4.45) one has
—Vulw + uzlaz(’fw) = —u’w — lwu2 = —éwu2
2 4 4 '

Therefore, from the two inequalities above, on the whole ray (—oo, 0),

1 1
—Vulw + uziaz(’f’w) < —Ewuz.

That is why for the part involving the operator 7 dz + V one has

Z2 1 [% 1 1
/ u(=Vu—Tozu)wdZ < ——[ wwdZ + —uTw)(Zy) — =T w)(Z>).
Z 2 )z, 2 2

We now turn to the dissipative effects. Integrating by parts yields

Z2 1 1
/ Uz ZUW = (Euzazw - uazuw) (Zy) — (Euzazw — uazuw)(Zz)

Z
Z> 1 Z>
—[ |Bzu|2w+—/ uw.
Z, 2)z,

The function dzz w, from (4.8), is supported in (—s, 0) where one has the bound

[0zzw| < |Z|_7azz(S_Q(Z)) + |Z|_882(s_‘1(z)) + |Z|—9S—¢1(Z)
< |Z|_95_q(z)(1 + Z%1og?s + | Z|log s)

so that for s large enough depending on M, and for Z < —Me™*,
le0zzw| < w/M?.

From (4.16), the above identity becomes, for s large enough (since dzw > 0 near the
origin),

1 22 —2s
e . udzzuwdzZ < Ce

1
Euzazw - uazuw'(zﬂ + Ce 2 ludzuw|(Z,)

1 22 C(K) (%
— 15 / |0zul>wdZ + ( 2) wwdZ.
A l‘L VA M Z
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Hence

= 1 1 (%2 as
/21 u(—Vu —T0zu + A4M2822u)w + 5/ wwy + ?(uzw)(zl)

- + Mo (Pw)(Z,)

1 [# 1 [ C(K) [*2
< ——/ uw — / 10zul*w + () w?w + a—s(uzw)(Zl)
2 Z1 )\,4M2 Z1 M?2 Z1 2

M (P0)(Za) + 5 (T w)(Z) — 5 (T w)(Z2)

+ Ce™%

1

Euzazw—uazuw‘(zl)+C(K,M)e‘2s|u82uw|(22)

1 [, 1 [ C(K) [#2

- __ _ a 2 2 C K,M 6s,,2 7

< 2/21 w2 WZ/Z] ozl + SO /Z w2w + C(K, M)e®u?(Zy)
+ C(K, M)e* |0 zul*(Z2) + Cu>(Z1)(e" 2™ + |as) + Clazul(Z1)e

(4.52)

where we have used (4.16) and the fact that |w(Z2)| < Z57 < e, |w(Z)| S 1,|T(Zy)|
SIw+ Zi| < lal S eV T (Z2)] 122 S €7 and [9zw(Z1)] S 1.

Step 2. The nonlocal term. Using Cauchy—Schwarz one has, for Z € (—mx, 0),

0 Z, 1 0 N2
5/ |u|dZ—|—(/ uzde) (/ w—l(s,Z)dz) . (4.53)
V4] Z z

One computes that for Z € (-, 0),

Z ~ ~
/ u(s,Z)dZz
0

W™ (s, 2)| £12]"59) = |Z[Tet P10,

from which we infer, by the assumptions on ¢ in Section 4.2,

0 0 - 0
[wiezazs [ jzre®reaz gizp [t @)
z z z logsdzq dZ

Z|”

< 1 Dloes, (4.54)
|m + Z|logs
Therefore o 0
/ w_l(s’ Z) dZ Sinz Z S qu(z)’
z log s
which yields

[

0
/ wl(s, Z) dZ) sin? Z 1_p<z<owdZ

z
</0 |Z|9|n+Z|Sq(Z) 1 1 J7 < 1
Ry log s |1Z|7 s4(2) ~logs’
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One also has

Z1 2,1 . Zy d7Z - e%s
g, O T=z=mBAE R [ 7554 @ Y e

Thus the contribution of the nonlocal term is estimated as follows:

VA zZ B 5
/ u(/ u(s,Z)dZ) sinZ]l_nszsode‘
Z> 0
Z 0 Z Z
/ u(/ u) sinZ 1_p<z<ow dZ' + / u(/ u) sinZl_p<z<owdZ
Z> Z> VA V4
1 VA eZS 0 Z1 %
< — [ wwdz + 2(/ |u|a’Z)(/ u2de) .
logs Jz, M=\Jz, Z>
Step 3. End of the proof. The above identity, (4.52), and (4.50) finally yield
d (1 /Zz )
—\ = U w
ds\ 2 Z1

! /22 > ! /Zz 2
< —— UW— —— |0zu|“w
2 Z A'4I’L2 Z

C(K) (%
M?2 Z,

+ Cu(Z1) (e B + |ag)) + Clazu(Zy)e

1 Z1 e2s 0 Z %
+ — w?w + (/ |u|) (/ uzw)
Z> Z>

logs Jz, M?2

1 CKK) C Z2

<|—-—=+ ( )+— / w?w+ C(K, M)e®u*(Z,)+ C(K, M)e* |0zu|*(Z,)
2 M?2 logs) Jz,

+ CuP(Z) (e G5 4 |ay)) + Clozul*(Z1)e

1
CeZS(fO Z> 5 1 Z>
; ) ([ Tw) =g [ 0zupw,
M? Z> VA A'411’(/2 VA

which ends the proof of the lemma for M and s¢ large enough. ]

<

~

w?w + C(K, M)e®u*(Z,) + C(K, M)e* |0zu|*(Z,)

4.5.2. Exterior Lyapunov estimates. We now study the functional (4.11) for the full prob-
lem. First, let us estimate the function at the boundaries, Z1 = —7 —a and Z, = —Me™5.
From (4.17) and Sobolev near the maximum,

u*(Zy) = 2(—MA*pe™) < Cllelm2qyi<m2) < Ce~ T2
(0zu)*(Z2) < Ce™ G725,

From the boundary condition (4.5), the decomposition (4.7), (3.5) and (4.16), at the origin
in the original variables we get

(4.55)

ut(Z)) = G¥(—m —a) < Ca* < Ce @ 8s, (4.56)
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Finally, from (4.81), (4.7) and (4.16),

9zu(Z )| 102 F(Z)|+[02G1 (Z)] < A7 13,6 (0)|+Clal < Ce™ @725, (4.57)

One has the following energy estimate for the function in the Z-variable outside the max-
imum.

Lemma 4.12 (Exterior Lyapunov functional on the left). There exists v* > 0 such that
forany K > 0,0 <v,v" <v*, there exists M* > 0 such that for M > M*, there exist s;
and C(K, M) such that if the solution is trapped on [sg, s1) with so > s§ then

d (1 (* 1 22
—(—[ u?w dZ) + (— — K)[ wwdZ
ds\ 2 Z 2 2

Z,
Z> 3 s .
= C(K. M)(e“u2<zz)+e4~‘|azu|2(zz>+ ( | a’Z) i +e—<2+6>s).
Zy

—_

(4.58)

Proof. One first computes from (4.42) the identity

d 1 Z2 2 Z2 Bzzu ~
—| = = 4 — Jfu —NL —
ds(2 /21 u w) /Zl u( u—+ e u w)w

)

Z> ,,2
+/ Y ows + %S(uzw)(Zl) + M ruyz,).  (459)

z, 2 2
Step 1. The leading order linear terms. From (4.56), (4.91) and (4.57),

uz(zl)(e—(%—v)s 1 lag) + |8Zu|2(Zl)e_2s < e(%—lOv)s + o (5—40)s < e(%—lOv)s_

From (4.3), (4.16) and (4.17), as A2e S uM ~ 1,

0 e2s 0 5
eZS/ u|dZ = — / le|dY < efllell2 < e 2",
Zy AP S p2e=sum r

We now apply Lemma 4.11 and insert the above two inequalities:

Me™s
2

Z> V)
/ u(—m + Lazzu)w 41 / Py + 0P (Z) + e () (22)

Z Atu? 2 )z,

1 22
< (_5 + %)[ ww + C(K. M)e®u*(Zy) + C(K. M)e® |dzul*(Z2)
VA
Z> 3 1 Z2
4 e~ (3-10v)s —I—e_gs(/ uzw) — 72 2/ 10 zul*w. (4.60)
Z At Jz,

Step 2. The small linear term. Recall (4.46); then

Zy - V)
—/ uHuwdZ = —[ u(mydzu +mi(2— Zdz)u —maZdzu)wdZ.
Z4 VA
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Integrating by parts, one has

Z>

Z2 1 1 1
/ udzuw dZ = —rw)(Zy) — = W?w)(Z,) — = / w>dzwdZ.
Z, 2 2 2 /7,

We recall that 0z w is supported on (—7, 0), and that for | Z| = e~ we have
10zw| < 1Z)35s9P)(1 + | Z]logs) < e*w.

Therefore, since w(Z;) < 1 and w(Z,) < e’*, using (4.47) we get

355 2 —2lg 2 -3 2 2
Sefu (Zy)+e 3°u(Zy)+e 8 u“wdZ.

V)
/ umydzuw dZ
VA

VA

The same strategy applies for the other term, and as |0z (Zw)| < e%/?w, this gives, using
4.47),

Z>
/ u(ml(Z—Zaz)u—mzZazu)w'
& 35, 5 13, 5 9 Z2 5
<e®°u(Zy)+e t%u (Zl)+e_8“°/ u w.

VA

In conclusion, for the small linear term, using (4.56), (4.18) and (4.55) as 0 < v/ < v one
has

22 7, 355 2 —Ls 2 —25 22 2
uHuwdZ| Sesd’u“(Z)+e 8°u“(Zy)+e 8 u-w
Zy Z
29 Z2
< e3u(Zy) + e (T8 -I—e_S/ u?w. 4.61)
VA

Step 3. The nonlinear term. For the nonlinear term one recalls the identity
Z> V)
/ uNLwdZ :/ u(—u? + 0, udzu)ywdZ.
Z, Z,
The first term is estimated by brute force:

V)
/ wwdZz

V)
< ||u||Loo/ wwdZ.
VA

VA

For the second, we integrate by parts and obtain

V) ) 1 - 1 S 1 Z> s
/ udz udzuw = E(u 07 uw)(Zz)—E(u 0, uw)(Zl)_E/ wlw

Z Z
L 2
— —/ 0, udzwu~.

2 )z,



Singularity formation for the two-dimensional Prandtl system 3737

In conclusion, the contribution of the nonlinear term is, using (4.19) and (4.56) for sg
large enough, and [, u| <|Z| ||u| L and | Zdzw| < log(s)w,

VA Zs
/ uNLwdZ| < IIMIILooe“uz(Zz)JrIIMIILoouZ(Zl)HOg(S)IIUIILoo/ wu’>dZ
Z Z
6—1)s. 2 2419 o 2
< e(678)sy (Z,) + e~ @t Ovs Z[ wu-dZ. (4.62)
Z

Step 4. The error term. Recall (4.27). The function ¥ is supported on [—, 7], with the
estimate from (4.1)

A4

1
|1/f(S,Z)|=’—M—MzazzGl(Z)+M1(2—ZBZ)G1(Z)—mzzazGl(Z)-i—méazGl(Z)‘
2 1 /
Simi+ 5|+ 27\ 53+ mal + ma| | + |m3] | Z].

4242

Since w < |Z|™7, using (4.47) and (4.16), for s¢ large one has

+—2+ (L
mi 40402 “\ 1

< e~ (PDs 4 C(K)e ™ < e 15,

V)

2 6 As 1 Z 4 2
vwdZ < e T—E—l——) + e |mj]|

VA

By Cauchy—Schwarz, one has proved that for the error term we have

Z; Zy 3 5
/ uyw| < ([ uzw) e 87, (4.63)
Z1 Z1
Step 5. End of the proof. Collecting the estimates (4.60)—(4.63) and inserting them in
(4.59) yields the desired energy estimate (4.58). |

A similar energy estimate also holds for the adapted derivative of u, Adzu where
A is defined by (4.9), to the left of the origin. This vector field is chosen because its
commutator with 7 vanishes for Z € [—x/2, /2], and has a good sign for |Z| > /2.
Before stating the estimate, let us investigate the size of the boundary terms. From Sobolev
embedding and (4.17), since |A| ~ |Z]| and |0z A| < 1 near the origin,
|AdZuX(Z2) < Yy eP(~MA2e™) < ClellZaqyiana)
< C(K. M)e™ 7275, (4.64)
(02 (Adzu)*(Z2) < (|19zul* + |Zdzzul*)(Z2)
< 2429y el® + Y dyyel) (=M A% pe™)
< C(K, M)e =2V, (4.65)

Since A = 1 near —rm, from (4.57) we get

|4dzu|?(Z1) < C|azul*(Zy) < Ce” 0745, (4.66)
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Now we write dz(Adzu) = Adzzu since |0z A(—mw —a)| = 0. Since 9,,£(0) = 0 from
the boundary condition in (1.3), formulas (4.7) and estimates (4.16) imply

10z(A0zu)(Z1)| = [0zzu(Z1)| = [0zz(F — G1)(Z}1)|
< [A2u?0yyE(0)| + [022G1|(= —a) < 1/2. (4.67)

We perform the same weighted energy estimate outside the maximum for Adzu as we
did for u.

Lemma 4.13 (Exterior Lyapunov functional on the left for the derivative). Let Z; =
—n—a, Z, =—Me™S and v = Adzu. There exists v* > 0 such that for any K > 0 and
0 < v,V < V¥ there exists M™* > 0 such that for any M > M* there exists s; such that
if the solution is trapped on [sg, s1] with so > sy then

d 1/22 2wdZ ”f22 20 dZ 4+ — /Zz|a PwdZ <e ¥, (4.68)
— | = vTw — = vw — viTw e . .
ds\ 2 Z 2 Zi 2X4M2 Z1 z -

Proof. In this proof, the constant C might depend on K and M. One first computes the
evolution equation for v = Adzu from (4.42):
AdzT —TozA

O=vs+ (Taz+V)v+ 1 v

(Dzzv + [Adz,dz7]u) + Hv + [Adz, H]u

b
242
+ NL + Adzy 4+ Audz Gy + 0,'uAdzzG, (4.69)
where
NL = —(2u + BgluaZTA)v + 0, udzv.
First, one has the following identity for the energy estimate:

d (1 (% Z2 1 (%2 ag
—(—/ v w dZ) :/ voswdZ + —/ v:wsdZ + = (*w)(Z,)
ds\ 2 Z Z1 2 Z 2

Me™*
2
Step 1. The leading order linear terms. From (4.52), inserting (4.64)—(4.67) one gets

/Zz 1 1 (%,
v —Vv—TE)Zv+—E)ZZv)w+—/ uw
z ( Atp? 2 )z, ’

+ S @w)(Z) +

/Zz 5 1 /Zz 5 v (%2 5
< - VW — ——— |8Zv|w+—/ viw
VA A4:“’2 VA 4 Zy

1
2

+ Ce%v2(Zy) + Ce*|dzv[2(Za) + CvA(Z1)e™ ™5 1 Clazv|2(Z1)e
1
2

Z> 1 Z> v Z> ,
<- / viw — e / |0Zzv])*w + —/ v2w 4 Ce 17205, 4.71)
Z Atz Jz, 4 Jz,

+ Ww)(Z>). (4.70)

Me™5

5 (v w)(Z>)
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Then, for the commutator with A and the transport 7, a direct computation shows that
since A = 27 for |Z| < n/2,and A = —1 for Z < —n/2, for all Z < 0 we have

AdzT ;J IzA _ 07T 1z 5 > _%]125_71/2,
which implies
) /Zz AIZT —TozA 1/22 . (4.72)
Zy A 2 a1

Step 2. The small linear term and other commutators. For the small linear term, from
(4.61), inserting (4.64), (4.66) and (4.18), for so large enough we have

Z> B
/ vHovwdZ
VA

335 2 B 2 —3s 2 2
Sefv(Zy)+e §v(Zy)+e 8 vrw
VA

< C(K, M)(e=(F 725 4 o=(F=4)s | ,=R-20)5) < =5 (4.73)

Next, we turn to the commutator with the dissipative term:

dzzA4  2(dzA)? 974
A —+ A2 v—2Tazv.

[407,0zz]u = (—

Since, for Z > Me™5,

C Ce?s
< __ <
- Z2 - M2’

dzz A 4 (0zA)?
A A2

for the first term one has

1 Z2 9774 2(d7 A)? C(K) (%2
‘ 2 2/ vz(— zz v+ (Zz) )de‘ < (2) vwdZ.
)L/,L Z1 A A M Z

For the second term, one first integrates by parts:

V)
—/ ZUaZTABva dZ = (vzaz—Aw)(Zl)— (vzaZTAw)(Zz)

Z A
Z2 dzA
—I—/ UZaZ(Z—w) dz
Z, A
dzA Z2 dzA
2 2
= — —_— Z ozl —w |dZ
(UAW)(z)-i-/Zle(Aw)
since dzA(Z1) = 0. From a direct inspection,
0z A Cw Ce?*
82(7“’)‘ S R TR
Therefore
1 (%2 9z4 65 2 C(K) (%2 ,
e /21 2vTaszdZ < Ce™v°(Zy) + ey, v'wdZ.
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We have proved that for the commutator with the dissipative term, for M large enough
depending on K, using (4.64) we get

1 /Zz C(K) (% ,
v[Adz, 0z z]uw| < Ce®v?(Z,) + V7w
‘)&4#2 Z M2 Jz,
’ V Z2
< Ce (=25 gf v2w. (4.74)
VA

Next, the commutator with the small linear term is

- ,0zA ZizA ZizA
[ABZ,H]u:(—m3T—m1(1— y )—i—mz y )v.

Since |0zA/A| S 1/Z < ef for |Z| > Me™*, this implies using (4.47) that

Z, 3 Z, s (22
/ v[Adz, Hluw| < (m1] + |m2| + €*m3%) viw <e” s[ viw.  (4.75)
VA VA Z

Step 3. The nonlinear term. Since |0z A/A| < 1/Z one has

i

Z2 dzA
/ v(u + 8}1uZT)vw dZ

Z>
< ”M”Loo/ vwdZ.
Z)

Z)

For the other term, integration by parts gives

Z>
/ v udzvw dZ‘
VA

1 1 22
— ‘E(Bgluvzw)(zl) — 5(8§1uv2w)(22) + /Z v297(3, uw) dZ‘
1
Z>
S Iullv?(Z0) + ullse®?(Z) + log0)lules | vwdz,
Z,

where we have used the fact that |0z w| < log(s)Z~!'w. Thus we have shown that for the
nonlinear term, using (4.19), (4.64) and (4.66),as 0 < V' < v,

Z> ~
/ vNLwdZ| < Jullpoev®(Z1) + Jull oo™ v2(Zs) +log(s) [ull oo [22 v2w dZ
VA
1 v (%42
< e (tg—svs 4 —/ vwdZ. (4.76)
8 Jz,

Step 4. The error term. Recall (4.27). Since |A| < |Z] for |Z| < & with A(—7) = —1,
and since dzz G has limit 0 and 1/2 on the left and on the right of —m respectively, one
first computes

Adz (s, Z)
1

= Adyz (—WazzGl(Z) +mQ2—2Z0z)G1(Z) —myZdzGq + mgazGl(Z))

1 1
= 55{Z=—n} + O(ZZ(F + |mq| + |m2|) + |mj| |Z|).
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Since w < |Z|” one has, by (4.47),

V)
2 1 ’
O\ Z7°| 7 + Imi| + |m2| | + [m3|Z
Z A

1 2 5
S e (M +|m1|+|m2|) +eM|ms)? S e

2
wdZ

For the Dirac term, either one has a < 0 and then —7 < Z in which case there is nothing
to estimate since

Z>
/ Voiz=—mydZ = 0;

Z

or, if Z; < —m, we use Sobolev embedding (since w ~ s~ ! near —m) to find

1 (%
A4M2 L v8{2=_n}w

1

(o) ([ o))

Z2 ) 3 Crk [%2 C
VW + — dzv) w + —
L] ) A'4I’L2 VA ( z ) )'4

; (
<
= A4p2

Using Cauchy—Schwarz, one sees that for the error term, in both cases Zy < mw or Z; > 7,
for k small enough, using (4.16) and (4.18) for the last inequality, one has

V) s C Z> ) 3 1 V) C
/ vAdZzYw s(e 8S+A4M2)(/Zl v w) +W . (0zv)’w + — T

Z
(2—v)s 1 22 2
Se 8T 4 ad . 4.77
e 2A4M2/21(2v)w 4.77)

Step 5. The remaining lower order terms. For the first term, from (4.18) one has

1 1
Z> 2 Zs 2 1
< ( / ww dZ) ( / 2w dZ) <e T (478)
Z VA

since Adz G is bounded. For the last term, from (4.53) one has
|8EluAazzG1|
0 \2
/ w™! dZ) |1Z|11_r<z<o
z

0 ~ Z ~
< (/ |u|dZ)|Z|]l_,,5250+(/ uzde) (
Z> VA
1

0 _ V) \2
s([ |u|dZ)|Z|ﬂ_nsZ5o+ﬁ(/ uzde) 1ZP Loszn.

Zs VA

Zs
/ VAudzGiw dZ
VA

1

=
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where we have used the fact that w &~ | Z|~7s79(%) for — < Z < 0, and that ¢ is maximal
at —m with ¢(—m) = 1. One then computes that

Z> Z> Z>
[ Z?wdZ < / Z72dZ <e*, f ZW¥wdz < 1.
Z1 Z Z

Therefore

Z> 0 2 Z>
/ 10,'uAd7z2GPwdZ < e* (/ |u| dZ) +/ wwdZ,
Z4 Z> Z)

which, by Cauchy—Schwarz, gives for the last lower order term, using (4.17) and (4.18),

V)
/ vagluAazzledZ‘

Z
Z> % 0 Z> %
< (/ vzde) (ezs(/ |u|dZ)+s(/ uzde) )
Z V) Zy

0
<e(e ( / el dY) + se—(é—m) < (e 5T (BT) < o m a2,
M2

Step 6. End of the proof. In conclusion, from the identities (4.69), (4.70), collecting the
estimates (4.71)—(4.78) and the above inequality we get

Z>
i(l/ vzde)
ds\ 2 Z1

1 % 2 1 22 2 o 2 —(1-2v")s
5—5 v'wdZ — |82v|de+Z v-wdZ + Ce

Z Atu? Jz, Z
1 42 v [%2 13 Z2
+ —f V2wdZ 4+ e + Ce (172V)s —/ vZwdZ + Ce_SS/ v2wdZ
2 Z1 8 VA Z1

z z
+ Ce—(I+4—5v)s + v / ’ viw + Co~G—)s + ! / 2(821})2w dZ
8 Jz, 20412 Jz,

< v /‘Zz 2 d7 1 /ZZ |a |2 dZ + C(K M) —(%—ZU)S
— vw _ v w ) e ’
2 Zy 2A'4/“L2 Zy z

which is the desired differential inequality (4.68) for v small enough and s large enough.
]

The same analysis can be done to the right of the origin. The analogues of Lem-
mas 4.12 and 4.13 hold and their proofs are exactly the same.

Lemma 4.14 (Exterior Lyapunov functionals on the right). Let Z3 = Me™". There exists
v* > 0 such that for any K > 0 and 0 < v,v’ < v*, there exists M* > 0 exist such that
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for M > M?*, there exist s and C(K, M) such that if the solution is trapped on [sg, 51]
with so > sq then, withv = Adzu,
o0
/ wwdZ
Z3

d (1 >, 1 v
‘2 d7 - _Z
55, wwaz)+(3-3)

*© 2
< C(K, M)(e“uz(zs) +e¥]dzu2(Zs) + e OO + ([ w2 dz) e_gs)’
Z3
4.79)

d (1 (%, vo[® o, 1 OO 2 —1g
—\ = viwdZ | — = v'wdZ + ——— [0zv|[*wdZ <e 3°. (4.80)
ds \2 Z3 2 Z3 2A4/’L2 Z3

Proof. The proof follows exactly the same lines as the proofs of Lemmas 4.12 and 4.13,
since everything is symmetric except the boundary condition, and we safely skip it. The
only difference is that in this case the only boundary terms come from Z3. |

4.6. Analysis close to the origin

This subsection is devoted to the analysis of the solution in the original variables, on
compact sets and in particular close to the origin. Since the blow-up happens at infinity,
eventually the nonlinear effects become weak and the solution stays regular. We state it
in a perturbative way and track precisely the constants, so that this can be used both to
derive uniform estimates at the origin, and to derive the asymptotics (1.8) for the profile
at blow-up time.

Lemma 4.15 (No blow-up on compact sets). Let0 <so<sy,b>0, N,L,L'>1, g €2N.
Assume that s is given by (4.2) with A satisfying (4.16). Let & solve (1.3) on [0, t(s1)] x
[0,2N], with € € C3([0,¢(s1)] x [0,2N]), and such that

Eo(t(s0)) =by* +E(t(50)), I (so) Loeqoony < L. 10EE o) Iz2qo2ny <L
and for all t € [t(s0),t(s1)],
1@ zqoany < e85, 18,60 I2qo2ny < €
Then, writing € = by? + &, forall t € [t(so), t(s1)] one has
1€l Lao.np < LN@ + N**a¢™ 16, 19y&lL2qony S L'+ N3es0,

Corollary 4.16. There exists a universal C > 0 such that for any K,v,v’, M, there exists
s¢ such that if the solution is trapped on [sg. s1] with so > s, then for all t € [t(so),t(s1)],

1§, ) lwr.0q0,1/2) = C. (4.81)

Proof. From (4.19), (4.16) and (4.3) we infer that for sy large enough and for all s €

(S0, 51],

1
€]l Looo,2p < e85,
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Hence from Lemma 4.15, using (4.15), one finds that for all ¢ € [0, #(s7)],

IElLaqo,y S 1. 119yE 2o S 1-

The desired bound (4.81) then follows from a standard parabolic regularity result. We do
not prove it here and refer to the proof of Lemma 4.18 for a similar strategy. ]

Proof of Lemma 4.15. The proof relies on a standard localised bootstrap argument similar
to thatin [17]. The fact that we performed such an argument close to the anticipated profile
at blow-up time is inspired by [19,30].

Step 1. The bootstrap procedure. Let 1 < o; <2,0 <k <1 with k #£ 1 —1/(169),
1 1 S
Li=LNd + N2t7¢~16, and assume that for ¢ € [t(s0),?(s1)] one has the bound

/ E|7 dy < LIe90709)s, (4.82)
y<2N

We claim that then, for all ¢ € [0, 7(s1)],

- L9907 18 ific < 1—1/(89),
/ Elray < {"1° 7 o< 1-1/(8q) (4.83)
y<aiN L1 if 1 —1/(8¢q) < «.

To prove this claim, we write § = by? + § . Then § solves
§ —0yyE + 0,60, — &> + 200, "6y —2b =0, £(1,0) =0.

Let 0 < @ < 1 and y be a smooth cut-off function with y(y) =1 for y <1+ « and
x(y) =0fory > 1+ 2a,set y; = )((O“LN), and let v := y{&. Then v solves

v — Oyyv + 0,1 E0yv + 20, x10yE — (167 + 200, Ex1y — 2b)
+ 0yy x1€6 — 0,169y x1£ = 0.

One then has the following identity for an L? energy estimate:
0= 4 l/vqa'y + (g — 1)/v‘1_2|8 v|? dy
dt \ q Y
+ / Va7 (851 £9yv+20y 019,501 6242605 Ex1y =2 )1+ 11§05 1§Dy xa§) d.
We now estimate all terms. For the first one, integration by parts gives, using |v| < |§ l,

'/ vq—lay—lgayvdy‘ = -

1
/ viE dy
q

< L?e(q(l—/c)—{—l—é)s_

< €l oo o.on) /

|£|7 dy
y=<2N
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For the second term, integrating by parts, applying the Holder and Young inequalities and
v < [€] we get

‘/Uq_lay)flayg
For the third term, since |v| < § and £2 < |$|(|§| + y2|), from Holder and (4.82) we obtain
‘/Uq_l)(@z
:
S lolimgoay [ 8+ telmqoamy ([ )" ([ )
Yy=<2N Yy=<2N y<2N

< L‘lle(Q(l—K)-H—%)S + e(l—%)sN2+éch—le(q—l)(l—x)s < Ltlle(q(l—ic)—l—l—%)s

! : 1
§§/|8yv|zvq—2+C/ |$|q55/|ayv|2vq_2+CL‘fe‘I(1—K)S_
y<2N

since e~ 16 N2t 4 < L. For the fourth term, since |8;1§y| < ||€lloe 0.2 ¥? and |v]

N
§||§||L°°([o,2N])(/ Z‘Idy) (/ |s|q)
y=< y=<2N

< 190@0-0+1-15)s,

< |§|, we get
‘/ vI71 ey

For the next two terms we have

‘[ Uq_l(_zb)(l + ayy)(lg) dy

< / quy < L?eq(l_")s.
y<2N

Finally, for the last term, as d, x1 < N !, one has |8;1§8y)(1| < & llzoeo,2n7) and

‘ / V01551 €0, 10 dy

< €l (o .2v) / B gy < L9000+
y<2N

Collecting all the above estimates gives

d
E(/ 04 dy) < L?e(q(l—x)ﬂ—%)s_

We reintegrate the above over time, using the relation ds/dt = A? ~ e* from (4.16):

N
/vq 5/|§(so)|q +chf e@1=0=16)5" g/
50

- {L‘IN + L9e@0=0-1)s if e <1 — ﬁ

LIN + L{e@=0=1)%0 if g > 1 — ;L.
- {L(fe(q(l_’c)_l%)s ifk <1-— W

q . 1
L3 ifk >1 167"
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since L = LNé + N2+ée_§% (the case x = 1 — 1/(16q) produces a harmless log
which can be avoided by choosing slightly different parameters without affecting the
result). This ends the proof of (4.83) and of the claim.

Step 2. Uniform-in-time L9 bound. We iterate Step 1 for a sequence of intervals [0, 1 V],
..., [0,0r N| and parameters k1, . . ., kx. Note that this is possible from the initial bounds.
At each iteration, if one is not in the second case the gain in (4.83) is k; = kj—1 + 1/(164q).
Hence we only need a finite number of iterations depending on the choice of ¢ to reach
the second case, yielding

/ E1%dy < L9 = LIN + N2l 16,
Y=N

Step 3. The bootstrap procedure for the derivative. Let 1 < a; <2, 0 < k < 2 with
Kk#2—-1/8, Ly =L+ N32¢75¢  and assume that for 7 € [£(50), 2(s1)],

/ y 19, €|?dy < L2e@7)s, (4.84)
y=<2

We claim that then for all € [0, 7(s7)],

——1 .
/ E2dy < L%e(2 k=8 ifk <2—1/8, 4.85)
y<a) N A if2—-1/8 <«.

We now prove this claim. Let { := 9, &. Then ¢ solves
§r —§C + 8;1§3y§ - ayy§ =0.

We write { =h + ¢ with h smooth such that 1 = 2by for y > 1, h(0) = #'(0) = k" (0) = 0.
Then ¢ solves

Co—yyC + 0,160, —£0 + 8,760, h — 9y,h =0, 9,£(1,0) = 0.

Let 0 < @ < 1 and y be a smooth cut-off function with y(y) =1 for y <1 4+ o and
x(y) =0fory > 1+ 2a,set y; = X(MLN) and let v := . Then v solves

+ )y 18 — 0,168y x1¢ = 0.

An L? energy identity then reads

d (1 N B
E(E/U)‘i‘/“)yvl

+/v(a;lgayv+2ay;(1ayE—Xlg§+a;lg)(layh—zbayyh+ayyX1§—a;1gayX1§):o.
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We now estimate all terms. For the first one, integration by parts gives, using |v| < |2 l,

_ 1
/vayléayv dy‘ = 5‘[02§dy

For the second one, integrating by parts, applying the Holder and Young inequalities and
vl < 18], we get

~ 1 ~ 1
‘/ vayﬂay?dy‘ <5 / |0yv[*dy + C/ ¢1dy < —/layv|2dy + CL2Cs,
2 y<2N 2

P k11
N ||$||L°°([o,zN])/ Z2dy < L2e@ t1-%)s,
y

<2N

For the third term, since [vE{| < |E|2|$| + y|&|, we obtain

‘/vméé < ||§||L°°([o,2N])/

y<2N
Similarly for the fourth term, since |8;1§8yh| < |€lleo(o,2n7)y and |v| < |E| we find

Vva;lgmayh

&2+ ||§||Lw([o,zN])/ . y?

y=<2
— _1 _1
S [%6(2 k+1—3)s N3€(1 8)s.

< ||$||L00([0,2N])[ &2+ ||¥||L°°([o,2N])/ y?
y=<2N y<2N

5 L%e(Z—K-Fl—é)S +N33(1_%)s.

<2

Finally, for the next two terms,

/ o(=dyy g1 + By 118 dy

3 / {Pdy < Lie®™".
y<2N

Finally, for the last term, as dy y; < N !, one has |8;1$8y)(1| < €]l Lo (j0,2n7) and

‘ f 001 £D, 1

B 4 IE oo oany) / V2 dy
y=<2N

< [I§llzeo 0,257 f
y

< L%e(z—x+1—§)s + N3e(1—§)s_

<2N

Collecting all the above estimates gives

%(/ 2 dy) < L%e(z—/c+l—§)s + N3€(1_%)S.

We reintegrate the above identity over time, using the relation ds/dt = A% ~ e°

from (4.16):
S N
[ s [lsor + 13 [ ey oy [k
S0 50

_ L4 L300 p N3emE0ifc <2178,
Y L2 4 L2e@ )50 4 N3emwS0 if i >2—1/8,

_ | L3 it <2178,
T L2 ifk >2—1/8,

since L1 = L' + N3e~%0/8 This ends the proof of (4.85).
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Step 4. Uniform-in-time L? bound for the derivative. Again, as in Step 2, we iterate Step
3 for a finite sequence of intervals [0, ¢; N], ..., [0, ax N] and finally obtain

/ 19,€2dy < L2 =L + N3~ ¥, »
Y=N

4.7. End of the proof of Proposition 4.7 and proof of Theorem 1

In this subsection we reintegrate over time the modulation equations and the various
energy estimates, to show that the various upper bounds describing the bootstrap cannot
be saturated. We first reintegrate the modulation equations and Lyapunov functionals.

Lemma 4.17. There exists v* > 0 such that for any v < v*, for v’ small enough and then
for n small enough, for any K, M such that Lemmas 4.8, 4.12, 4.13 and 4.14 hold true,
the following holds for so large enough. For a solution that is trapped on [sg, s1], at time

s € [so0,51],
S

le]|?, < 2e72°, T3 13y e[, d5 < 2, (4.86)
L2 5o L2

1 l s 9 s —(2—2v)s

— <pu=<2, -—e2<A=<-—-e2 la]<2e'2 , (4.87)

2e 4 4

1= ftoo(1+ 0™, A =e2do(l+ 0(e2)), (4.88)
Z> o)

/ wwdZ +/ wWrwdZ < 4e”172v)s,

Z, Z5

z, " (4.89)
/ |Adzul?w dZ + / |Adzu|>wdZ < 4e>*.
Zy Z3

Proof. Step 1. Interior Lyapunov functional and energy dissipation. We rewrite (4.39)
as

(e lel7y) + T oy ell7; < CeTT el 7y + CePlell A1 + Ce™
Inserting the bounds (4.16) and (4.17) and integrating over time using (4.13) gives

N s B B . s
e7S||e||I{%—1+ [ e<7—">5||aye(§)||1{%5 f (C(K)e™ +C(K)e 25 +Ce™ ") d5 < 1
N

S0 0

for s¢ large enough depending on K, which implies the desired estimates (4.86).

Step 2. Law for n. We integrate the inequality (4.26) over time to find that for s¢ large

enough,
N
flog () ~ og u(so)| = [ e Woas<1.
50
which using (4.12) gives indeed (2¢)~! < u < 2e, and if the solution is trapped for all
times then
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M(S)=M(So)eXp(/ O(e—‘s**g)ds)m(s())exp((/ -/ )0<e—'83§>d§)

= oo(1 + O(e™F?)),

where we have set jtoo 1= (S0) exp(fsf)o O(e_%g) ds).
Step 3. Law for A. We rewrite as in Step 2 the equation for A in (4.26) using (4.16):

As ;SC(K)e_zs. (4.90)

A

This can be written alternatively as | % (e75/2))| < C(K)e™>%/2, which when reintegrated
over time using (4.12) gives

¢ RY s ~
le™ 30 —e™ 2 A(so)| < C(K)/ e 552 45,
S0

which with (4.12) yields 1/4 < e™5/2) < 9/4 for s, large enough, implying the bound
for A in (4.87). If the solution is trapped for all times, this gives

P 50 K B B 50 00 00 B
A= e2(e_2ko+[ O(e—SS/Z)dg) = e2(e_2k0+ (/ —/ )O(e_ss/z)d§)
S0 S0 K}

= e3oo(l + 0(e73%)),
where we have set Ao = 750/21¢ + f;:)o 0(e~55/2) d5.

Step 4. Law for a. We rewrite the equation for a in (4.25) and insert the bounds (4.16),
(4.17) and (4.19), using G(—m + Z) = O(Z?) as Z — 0:

) - 0
< e(‘f Gidz| + ‘/ udZ‘ £ el +A“||s||Loo||s||Lg,)
—r—a —m—a

—Me—* 0
/ udzZ + / u dZ‘
—T—a —Me—$

L C(K)(e™25 4 e735 4 ge~(1F37)s)

d s
‘g(eZa)

<etlal + e

; —Me™S é 0
< e (16w +e2(s(f wude) —|—e_S/ |8|dY)
—n—a CM

< e~ (1-6v)s + e% (Se—(%—v)s + e—%s) < se"s,
for s¢ large enough. This implies in particular the following bound for a; using (4.16):
jag| < e G725, 4.91)

Reintegrating this estimate over time gives, using (4.12),

la| = e~ 3 < e~ (32v)s,

s ~
ape? +/ 0(5e") ds
N

0
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Step 5. Exterior energy functionals. We insert the bounds (4.18) and (4.55) in (4.58):

d Z> 1 Z>
—(e(l_”)s/ uzw) + (— — K)/ u?w
ds Z 2 2 Zq

Zz 2
< C(K, M)e'—)s (e6su2(zz) + ¥ 07uP(Zy) + e @Fe)s 4 ( / u2w) e_gs)
Z

< C(K, M)(e(2V’—V)s + e—(1+é—V)s + e—(%—zv)s) < C(K, M)e(Zv’—v)s’

where the e~ (V=2v)s

is the worst term, due to the boundary condition at Z,. Indeed, we
optimised the weight w to match the exterior decay with the interior decay, hence the
choice of B = 1/2 for the eigenfunction (4.48) in the weight (4.8). Reintegrating the
above inequality over time using (4.86) and (4.14) yields, since 0 < n K v/ € v K 1, for

so large enough,

Z> Z>(s0) s ,
/ uzw < e—(l—v)s |:e(1—v)s0 / uzw + C(K, M) e—(v—2v )s]
A Z1(s0) 50

< e—(1—2v)S(ev(s0—s) + C(K, M)e—VS) < 26—(1—21)).9.

The differential inequality on the right (4.79) can be reintegrated over time the same way,
giving /. Z uw < 2¢~172Y)5 These two bounds imply the first bound in (4.89). We now
turn to the derivative. We write (4.68) as

d Z2
—(e_”s/ |Adzu)?w dZ)
ds Z

Note that compared to the differential inequality for u, the above inequality for Adzu is

1
< e_ZS_

better. Indeed, the fact that A ~ Z near the origin improves the control of the boundary
term at Z,, and Adz kills the worst component of the error near the origin. Reintegrating
the above inequality over time using (4.86) and (4.14) yields

Z> Z>(s0) s
/ |AdZzul? < e?Vs (e_"se"s‘)/ |AdZzu(so)|* + Ce_”s/ e 4° d§)

Zy Z1(s0) 50
2vs ¢, v(so—s) —vs 2vs
<e (e + Ce ™) < 2e°,

The same bound can also be proved the same way for the right derivative at the origin,
implying the last bound in (4.89). ]

We now bootstrap the last bound and control & on [—M 2, M ?] using parabolic regu-
larity.

Lemma 4.18. There exists v* > 0 such that for any v < v*, for v’ small enough, for
K, M such that Lemma 4.17 holds true, for a solution that is trapped on [sg, s1] for s
large enough,

leGD sy <arz) < 1067770 (4.92)
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Proof. The proof is a classical application of parabolic regularity: € evolves according
to a parabolic equation, its size and the size of the forcing terms are precisely e~ 75/2,
hence this bound propagates for higher order derivatives due to the smoothing effect of
the heat kernel. In this proof, the constants C might depend on M and K unless explicitly
mentioned. We rewrite (4.20) as

es—ayys+l78+7:8y8=37,

where

Vv

A -~ A 0
2= —2Gy—&, T ==Y -|—/ f=AyF +A2n05'Gy + dy'e,
A A (—mr—a)A2p

1 1 1
F o= ——\|Z —— ]2—-Z0 —_—
F (mz 2)L4I,L2) dzG1 + (m1 + 4A4M2)( Z)G1 +M3A2M82G1

1 1
— 072G -Z0zG -Gy |.
/14“2(22 1+4 z 1+2 1)
Note that from (4.26), (4.8) and (4.17) one has, for a universal C > 0,
1T lw1.ooqyi<aezy + IV wrooqri<m3y < C (4.93)
We now let ¢! := dye. It solves

8; —dyyel + (I7 + ayf/:)c“l + {f'aysl = —0dy Ve + Iy . (4.94)

Let M2 < My < M, < M3, let y be a cut-off function with y = 1 forY < M;and y =0
forY > M,,and let v = )(81. Then v solves

Vg—0yy v+ (I7+ayf/:)v +?:8yv = —8yy)(81 —28y)(8y81 —?:By)(el — 0y 178+)(37.

We then apply a standard energy identity:
d (1 2
—\ = dY dyv|*dY
ds(Z/v )+/|le
= /(—8yy)(81 — 20y ydye' — Ty ye' — xdy Ve + xFvdY
— /((17 + 3y T)v + Tayv)vdY.
Let 0 < k < 1. Integrating by parts and using Young’s inequality one finds, since |v| < &!,

C
< —/ |81|2+KC[|8yv|2dY
K- Jy|=mz

1
< Clovely + 4 [ lovoPay

'/(—3YY81 — 20y ydyehvdY
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for k small enough. Similarly, integrating by parts, using the Young inequality, (4.17) and
(4.93) gives

‘/ "J:BYXEIU
1

< Z/|8YU|2 + C||‘r]:||W1°°(|Y|§M2)/ 82 + C/ |81|2
|Y|<M> Y |<M>

1 1 _
< [1ovoP + Cllell; + Clloyel2, < 5 [ 1030 + Ce™ + ClloyelZ,.

= ‘/‘fay)(aysv

Next, from Cauchy—Schwarz, (4.17) and (4.93), and the Young inequality,
/ xdy Vev

For the error, we recall the cancellation 077G, + %ZazGl + %Gl = 0(|Z|*) and
|02G1| = O(|Z]|) as Z — 0, which implies using (4.47) that

. _7
< Cloy Vipeoqyi<mmIvli2llel L2y i<m3y < Ce™ 2% |vll L2

<Ce ™ 4 C||v||i2.

29
TS

/)(237de§€€_ ,

which by Cauchy—Schwarz and Young yields

‘/X?de

Integrating by parts and using (4.93) we get

20 _29
<Ce™ ¥ vz < Ce™ 3 4 Cvl72.

< I UV lwrooqyi<arsy + 1T lwiooqy<arsy)

/((17 + 3y T)v + Tdyv)v

2
< Clvllzz-

Let 0 < n < v; < v'. Collecting all the estimates above, and since |v| < |&!|, one has
the energy estimate

i e(7—v1)s / 'U2 + 16(7—\)1)3 / |8yv|2 < Ce(7—v1)s”8Y8||22 + Ce V15,
dS 2 Lp
Reintegrated over time, using (4.86) and (4.13), this gives, for s¢ large enough,
S
e(7_”‘)s/v2dY+%/ e”“’l”’/layvlzdws/ 5e<7—”1)S0fv3dY+ <2
N

0

Therefore, ||v(5)||;2 < 2~ (/27715 We have thus proved the following pointwise bound
for dy ¢ and integrated bound for dyy é:

vsebosl [ loyePdy = 10e G,
Y |<M;

S
/ e(7—"1>S’/ |dyye|?dY ds' < 2.
50 Y |<M;
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Let now
M? < My < M3 < M.

We claim that we can differentiate equation (4.94) and, with the same arguments, obtain
the analogue of the above estimates for dyy &, with an exponent v, such that v; K v, K
V. Indeed, the only crucial arguments to derive the above bounds were the pointwise-in-
time boundedness (4.17) of ||&|| L2 and the dissipation estimate (4.86) for |0y || L2 and
we have just obtained the analogues for dye, so that the same strategy can be applied.
Then, another iteration yields the analogue of the above bounds for 35,3)8 for |Y| < My
for an exponent v, < v3 < V', which ends the proof of the lemma. ]

All the bounds of the bootstrap and the modulation equations have been investigated
previously. We can now end the proof of Proposition 4.7.

Proof of Proposition 4.7. Let an initial datum satisfy the properties of Definition 4.4 at
time s¢9. Let § be the supremum of times such that the solution is trapped on [sg, §]. Assume
for contradiction that § < oco. Then from the local well-posedness Proposition 4.1 and
the blow-up criterion (1.4), the solution can be extended beyond time 5. Hence, from
the definition of 5 and Definition 4.5 and a continuity argument, one of the inequalities
(4.16), (4.17) or (4.18) must be an equality at time s. This is however impossible for K
large enough from (4.86), (4.87), (4.89) and (4.92), which is the desired contradiction.
Hence s = oo, which proves Proposition 4.7. ]

Theorem 1 is a direct consequence of Proposition 4.7 and we can now give its proof.

Proof of Theorem 1. For an initial datum of the form (1.5), let so = 2 log(kg). Then for
€(Ao) > 0 small enough, thanks to the smoothing effect of the equation (see Proposi-
tion 4.1), §0 is instantaneously regularised, and £(¢*) is initially trapped in the sense of
Definition 4.4. Applying Proposition 4.7, the solution is then trapped for all times in the
sense of Definition 4.5. Since ds/dt = A? and A satisfies (4.88),

dt
ds

Reintegrating the above equation, we find that there exists 7" > 0 such that

— e—Si;}Z(l + O(e—ZS)).

T—t=e A2(1 4 0@e™%)).

This implies e = A2 (T —t) + O((T —t)?). The identities (1.6) are then consequences
of (4.88). From (4.19), X (¢, y) = u(s, Z) and (4.7) one infers that

It e —(1_ _1
1ElLoe = A2 |uflpee S e e @™ < C(T —1)'75,

which proves (1.7). We now investigate the existence and asymptotic behaviour of the
blow-up profile at time 7. The existence of a limit £(¢, y) — £*(y) ast 1 T follows from
Lemma 4.15 and a standard parabolic bootstrap argument. We now use Lemma 4.15 more
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carefully to find the asymptotic of the profile at blow-up time. For y* > ¢(1/271/16)s0 e
define the following adapted time, which now depends on the point that we consider:

1 1\ ! 1 1\ ' 16
*) = _— — = o = _— — = —
so(y™) = (2 16) log(y) = log(y*), «a: (2 16) =

so y* = e(z—16)500)  For s > so(y) and y € [0,2y*], one has

Z(y) = S =—n—a+L:—n+O(e_i%).
Au Al

a+L

12(s0)G1(Z(y)) = 1( a+ - ) AZ+/\20(
2 Ap

4

Therefore one can apply the Taylor expansion of G near the origin for so large enough.
Using (4.87), (4.88) and (4.19), for s > s¢(y*) we have
)
32

=z O((y*)?716) < 17950 < (193,
u

2
o0
and

1A2(s0)u(s0. Z(1))| < CA%(s9)e™ 8% < Ce(1=8)%0 = C . (y*) & = C - (y*)2 7.

The above two estimates imply that, writing § =

Yy * *
ves on [0, y*] we have

2 *\ 2— 1k . P * ) 2—
>+ O0((y)*716), ie. [IEGo(Y* ) Looqo2yp < C - (y*)*7 T8,
o0

E(t(50(7)¥) =

and that for s > so(y*),

1€l Looqo.2y*p < €U 8)s

Moreover, from (4.18), changing variables one gets

3
18y Au(s. ZO) 20,294 S A28 zu(s, Dllr2qopyrap S e*'se® < e

3
10, (A*G1(s, ZO) 20,247 S 230026 (s, 2)l2qo,29+/27) S €+’ < e,
3 3
18y ) L2 10.2p)) S 231|02G (s, Dl2qo2y*/ap S (052 < e,
for s¢ large enough, so that for s > s¢(y*),
10y€lL2(0,2y%)) < €
We apply Lemma 4.15 to find that for all t > 7 (so(y™)),
~ _L 1 1 _o _141
1§l ao.yxy S (*)PTT6 ()7 + (y*)*Ta(y*) 716 S (y*)* 16T,

and for some fixed constant ¢ > O,

- 3 _so
19yl L2qoyp S (V)" + (y™)2e 80 < (y™)°.
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We apply the following interpolated Sobolev inequality:

l_q-%-Z 442-2
[Allzee < MAllpe ™ NI0yhll /2
implying that for all # > ¢ (so(y*)),

~ _ < _ 1
Il Loy S (b*)* T6Ta < (y*)* 32

for g large enough. Thus, since this remains true in the limit at time 7" we have showed
that for y* > e(%_%)s(’,

2
_ 09

* 2—317
ot OO,

EO)

2
00

which ends the proof of (1.8). |

4.8. Localised initial data

We now prove Proposition 1.2. It is obtained from the analysis of the previous subsections
by controlling an additional weighted norm. We introduce Z* = Me™*.

Lemma 4.19. Fix any v,v’, K such that Lemma 4.8 holds true, and assume a solution is
trapped on [sg, 00). Then for M large enough, there exists 69 > 0 such that for so large
enough:

(i) If supzs, |F(s0. Z)|Z% < 8¢ then supg., |F(s, Z)|Z* < e85 for s > so.

(i) If SUPz>_(w+a(so) 192U(s0. Z)(Z)* < 8o then supzs_(z_a(so) 192U (s, Z)|(Z)?
< e_%sfors > So.

Proof of Proposition 1.2. Let

Iflle = sup | f(DNZ>+  sup |3z f(2)(Z)*.
Z>n Z>—(m+a(s0))
Let an initial datum &y € B for (1.3) satisfy the conditions of Proposition 4.7 and
[ (s0) ||« < 80/2. Consider the open set of initial datum satisfying ||Ey — &olla < &
with corresponding variable u#. Then §0 satisfies the conditions of Proposition 4.7 and
|l2i(so) ||« < 6. Hence § satisfies the conclusions of Theorem 1 from its proof done in

Section 4.7, and the bounds (1.14) and (1.15) are then consequences of Lemma 4.19 and
of (4.81). ]

Proof of Lemma 4.19. Recall (4.27) and (4.46). Let my4 = ﬁ Note that one has the
following estimates, from (4.87), (4.88), (4.26), (4.17) (using Sobolev embedding), for s
large enough:

mi=0("3), my=0(3), my=0@3) my=0@>), (495

lullLee < e™ 8, |ullpoopz*.z+] + e *|0zullpoo[—zx z+] < e . (4.96)
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Step 1. Proof of (i). We rewrite equation (4.5) as (dy + M) F = 0, with the elliptic
operator M = 2% —F + (BEIF — %Z —maZ + m45)dz —mydzz. We compute that
F' = e_%s Z2%2isa supersolution on [, 00). Indeed, from (4.95), (4.96), and since
G1(Z) =0for Z > m and [; Gy = /2, we have

2mYy  6my

V4 zZ4

1 Z
Z2e%5 (0 + M)F' = —§+1—u+2(3—%—821u)2_1+4m1+2m2—

7
=g+ (Z —m)Z7 " + 05500(1) > 0,
where the o() is uniform for (s, Z) € [sg, 00) X [7, 00). At the boundary |F (s, )| <
F'(s, ) for all s > sq for s¢ large enough from (4.96). Then (i) is a consequence of the

parabolic comparison principle.

Step 2. Proof of (ii). Let Q2 =[-7 +a,—Z*|U[Z*,00)and Q, =[-Z*, Z*].For y a
smooth cut-off with y(y) = 1for y < —1 and y(y) = 0 for y > 0, we define y*(s, Z) =
x(e3/2(Z — 1)) y(e8/?(—Z — 1)). After smoothing the profile near the points £+, we
decompose dz F as follows:

oz F = X*azGl + F.

Since dzu = (x* — 1)07G; + F, recalling (4.1), it is sufficient to prove (ii) for F in
order to prove it for dzu. On 21 we find from (4.5), (4.26), (4.95) and (4.96) that one has
(05 + M + M)F = & where

_ -
M=5 =G+ Tz, &= +M+M(("0zGn),

=

=m(2—2Z03z) —myZdz —u+ (0, u +mh)dz —mydzz
— 0(e™%%) + 0(e™%°|Z])dz + O(e™2)d27.

We claim that there exists a smooth positive function w on R \ {0} such that

L
10

. sin(Z /2) )

Z) = |—=L= Z| for|Z| <m/2
WZ) = oszjzy| snZl forlZl = =/2, 4.97)
W(Z)=1/Z% for|Z|=m+1, Mbd > L.

We relegate the proof of this fact to Step 3. We now show that F'(s, Z) = e~ 30 w(Z)is
a supersolution on €2;. Note first that |8iZII)| < Z 7w fori = 1,2. Hence on Q,
M = O(e™51) + 0(e¥°|Z)O(1Z]1B) + O(e™25)0(1Z] 2ib)
= O((e™ 5 + M),
as |Z| > Me™*. This and (4.97) imply that on Q1, for M large enough and then s large

enough,
(s + M+ M)F' > & F.
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Next, since M(dzG;) = 0, from (4.1) we obtain (dy + M)(x*d2G1) = O(e™*/?) and
it has support in [—7, = + ¢™5/2] U [ — e™%/2, xr]. From (4.1) and (4.96) we also find
that J\Z()(*BZGI) = O(e_%S|Z|) and it has support in [, r]. Therefore, since W(Z) ~
|Z|1+% as Z — 0, and since e~ 8% < e‘ﬁs|Z|WM_11*0 on 7, we infer that on 1,

1 5
|8|§mF

for so large enough. The above two inequalities imply that (95 + M + M)F' — & > 0
on Q1. At the boundary, |F(s, £Z*)| < F'(s, £Z*) from (4.96), |F (s, —w — a)| <
Ce™/2 < F'(s,—m — a) from (4.81), and | F (sg)| < F’(so) for 8y small enough. Hence
|F| < F’ on , from parabolic comparison (using similarly —F” as a subsolution). This
bound on €27 and the bound (4.96) on €2, show (ii).

Step 3. Existence proof for (4.97). For example, we choose

1
10

sin(Z /2) |sin Z|w(Z)

cos(Z/2)
on (0, ), withw(Z) = 1for0 < Z < /2 so that on (0, ),

W(Z) =

1
in(Z/2) |10
Sin(Z/2) |sin Z|(sin Z)dzw.

1 1
2 cos(Z/2)

M = —i
w 20w—|—2

We choose w > 0 to be an increasing function of Z such that w is smooth on (0, ] all the
way up to 7 with W(r) = 1, and so M1 > ziou? on (0, r] from the above identity. Next,
on [, 00) we choose W to be any smooth extension that is a nonincreasing function of Z
with (Z) = Z72for Z > = + 1. Then MW = 1 — 3(Z — 7)dzW > 1 on [r, 00).
Hence the desired properties hold on (0, co). We finally extend w to (—oo, 0) by even

symmetry. [

5. Application to the two-dimensional Prandtl system

Here we prove Theorem 2. Recalling that &; is defined by (1.10), we introduce
Eige(t.y) = 956 (1.y) (5.1)

(e &x = 8§i+18§u|x=0). First, we apply Proposition 6.1 using (1.13), and find
that there exist Ty, 7y, Cg > 0, and (&)i>o0 € C([0, To] x [0, 00)) with (&)i>0 €
C*°((0, Tp] x [0, 00)) a classical solution to (1.11) on (0, Tp], such that

& (2, )] < CJ(zh) ™1 @2i + D!I(y)~2 forall (¢,y) €[0,To] x[0,00),  (5.2)
&k (To, ¥)| < CJ(x) 2% 71 Qi + k + 1)Y(y)™2 forall y € [0, 00). (5.3)

Thus now our aim is to control (§;);>0 from Tp up to time 7.
We first establish linear estimates in Section 5.1, then study &; ¢ in Section 5.2, and
then all remaining derivatives in Section 5.3. Theorem 2 is proved in Section 5.3.1.
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Throughout this section, we assume that all the hypotheses of Theorem 2, (5.2) and (5.3)
hold true. In particular, the parameters T, Ty, Co, Cg. Cy, t, 79, 7, are independent of all
other forthcoming parameters, since they are fixed a priori. We shall denote by C a con-
stant that may vary from line to line, but that depends solely on those parameters. Since
the precise value of u will never play a role, we assume

w=1
without loss of generality. We perform the following renormalisations:
s=—log(T —1t), so=—1log(T —Ty), z=(T —t)%y — 7,
E(t,y) = (T —1)"'F(s,2), F(s,2) = G1(2) + u(s, 2),
Ek(t,0) = (T =051 F(s.2),
and will use the notation

05 1)) = [ fo@ne=[
0 -7

so that 97! f = ffn f + 97! f. The evolution equation for F;; for i +k > 1 is,
from (1.11),

OsFig + Lik Fix = Skr08i20(2i + 1) Foxt10 ' Fip
i—1

2i +1 _ 2i +1 k
+ Z( 2 )(3 "Fio) Fijrs1— Y (2]. n 1)(1)Fj,lFi—j,k—l

J=1 U.DEE]
2i +1 k
F:iF_ .1 5.4
PN G [ L o4
U.EE?

where E}, ={(j,1):0<j <i,0<1<k}\{(0,0),(i,k)yand E7, = {(j,1):0<j <i,
0 <! =<k—1}\1{(0,0)}, with Kronecker notation 8,9 = 0if p = 0 and 8«9 = 1 if
p > 1 and similarly for §,—¢, and where the linearised operator is

k
LixFix = _(5 314 Qi —k+ 2)F)F,,k - (% —F+ %)aZF,-,k
— e 20, Fi g + Sk=08i20(2i + 1)0,FI" ' F; . (5.5)
Note that above, from the assumptions of Theorem 2, F is well-defined for all times s > sy.
The quantity &£; ¢ F; x is then linear with respect to F; i, but the coefficients of &£; &
involve F. We introduce a weight w and the associated weighted space:

@) 1 for—m <z <m, Lf | f(2)]
w(z) = o = sup ——,
(z—m)"2 forz>m, L zz—pn w(z)

so that hypothesis (b) in Theorem 2 implies, with 0 < ¢ < 1/8 without loss of generality,

lullzge + 10zullzee < Coe™*. (5.6)
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5.1. Linear bounds

The semigroup generated by the linear part is denoted by S; . That is, we write v(s) =
Si.k(s1,5)(vo) for the solution v on [—7, 00) of

0sv + Lixv =0, v(s,—m) =0, wv(s1,z) = vo. 5.7)

Proposition 5.1. Assume hypothesis (b) in Theorem 2 holds, and for any n > 0 set

Cik ‘= max(—i—§+l,§—3i—1) + n(i). (5.8)

Then there exist C,K > 0 depending on n, T, Cy and ¢ but independent of i and k such
that for anyi + k > 1 and s, > s1 > sy,

(1 4+ e~ 351)Ke™™!

(14+e2

aj.k
1S,k (s1,82) (Vo) llLge = Cé’c"’k(sz_sl)( ) lvollgge »  (5.9)

s2)pKe™*2
where a; j is defined by (5.35). Moreover, one can take C = 1ifk > 1.
Remark 5.2. On the right-hand side of (5.9), %2751 is the sharp leading factor. The

factor 1 + e~ 2° controls lower order terms close to the blow-up time. The blow-up time T
is arbitrary, hence there is a transient regime between ¢ = 0 and a time close to 7, in which
¢ has not yet entered its asymptotic regime described by (b) in Theorem 2 (i.e. § may be
large). The eX¢ ™ factor controls the solution in this transient regime. Together with the
exponent a; i, they could have been chosen differently, but such formulation will be easier

to use in what follows.
To prove Proposition 5.1, when k > 1 we decompose £; . as
Lif =Lip+ Lig

where the leading order and lower order linear operators are (7 being defined in (4.44))

. k . o~
ik =3i+1- 5 2i +2—-k)Gy + T (2)0,, (5.10)

bl =—Qi +2—ku+ (07'wd; — e 0.

For k = 0, there is a nonlocal term in (5.5). We will write 9,F9~! = azFf_Oﬂ +82F8;1
as the sum of a projection onto d,F and of a nonlocal term that we treat perturbatively.
d,F is indeed a stable eigenfunction at leading order for £; o, as the next lemma will
show. Let

1*(s.2) = x(e3 (z =) p(e? (=2 — ) (5.11)
where y is a smooth cut-off with y(y) = 1for y < —1 and y(y) = 0 for y > 0.

Lemma 5.3. Foranyi > 1, d,G; satisfies the identity

1
(E)o + (21 + 1)0:G19 )Gy = (35 i E)azcl. 5.12)
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Moreover, assume (5.6) and set ¢(s,z) = y*(s,2)0,G1(z), with x* given by (5.11). Then
foralli > 1 (the constant in the O() being universal and uniform),

Ri = s + (L0 + 2i + 1)0:G10™ )¢ — (3i + %)qﬁ = O0(ie™®) (5.13)

and R; has compact support in [—m, 7].

Proof. Differentiating equation (3.2) yields the identity

1
50:G1 = G10:G1 + (—% + a;lGl)azzGl = 0.

In turn, this directly implies (5.12) as fi)n G, = n/2. Using (5.12) and (5.6), we next
make the following computation which proves (5.13) :

il = [0+ Gi 4 1= @i+ 2P0~ 0.60) — (5 -8 'F + 2 Jautp - 8:6)
— g Q0+ DP9 - 860 + (345 )0~ 0.6)

— (2i +2)ud;Gy + (3 'u)d,0,Gy + (2i + 1)(3;u)0;19,G,

_s _3 .- . S - — .
‘e 24e 2°Fije S tie 2 4ie B +e S tie s, m

(S

_ S5 .
<e 2+4ie

In the case k = 0 we thus decompose a solution v of (5.7) with ¢ defined in
Lemma 5.3:

db _ __(1: 1vs . 0 ,
U(S,Z) = b(S)d)(S,Z) + U/(S,Z) with { ds — (3l + 2)b (2l + 1) f_n. v,

b(s;) = 0.
(5.14)
We obtain the following evolution equation for v” using (5.5) and Lemma 5.3:
Bs + Lo+ £l + Li v = bR (5.15)

where the leading order and lower order elliptic operators :ﬁ;,o and i;,o are given by
(5.10) with k = 0, and where the nonlocal operator is

0
£ o0 = Qi +1)0:G19;'v 4+ 2i + 1)dzud™"v" + 2i + 1)(1 — x*)9:G, / v’
—7T
We first study the dynamics generated by i;.’k + f;k We write v(s) = Si,k (s1,5)(Vg)
for the solution v on [—1, 00) of

0B+ £}, 0+ &£, 5 =0, #(s.—m) =0, ¥(s;1.2) = Do. (5.16)

Letw : [—m, 00) — (0, 00) be a function that satisfies the following properties (note that
it is possible to construct explicitly such a weight w for any n > 0):
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(i) W is C2, nonincreasing on [—, 0], nondecreasing on [, 2], W(0) = 1, W(z) =
wW(m){z — )2 forz > m.

(i) Forall z € [—7, ], |0, 1W(z)| < n>W(z).
We introduce the space with the norm || f|| L = SUP;> 4 | F(2)|W™L(z2).

Lemma 5.4. For any n > 0, there exist s* and K > 0 such that for all i + k > 1 and
S2 = 81 = So,

(1 + e—%SI)eKe_Sl ai k ~
iszlandi—i-k22, (5.17)

| Si,k (s1,82)(V)|lx < ik (s2—s1) (

1 4 e 3281

||§i,k(31,82)(f))||x < eci,k(sz—sw(—L
1 +e 2%

aj k
) il gezazs s
where X denotes either L° or Ly, and c; . and a; i are defined in (5.8) and (5.35).
Proof. Let w denote either w or W, and let /1(s) be either 1 or e~ -%%¢"° We prove that
S(s, z) 1= €% k5(1 + e 2%) "%k h(s)w(z) (5.19)

is a supersolution for the parabolic operator ds + SC;’ ¢t f; ¢~ We compute

R:=0,S— (g i1+ Qi—k -|—2)F)S— (g _ylF - %)aZS—e—Zsazzs

ok Kk
‘“zl’ke—zs+%—§+3i+1—(2i—k+2)F

=S |:C,"k +

W _ e—ZS—a”W]. (5.20)

+(T(z) + 0w -

On the interval [, 00), using G1(z) = 0, dsh > 0, T(z) = (z — w)/2 and (5.6), we get

Lai,k

Lk
e 2% — 5 +3i+14+0{i +k)e™)

- (Z mL o(<z>e—‘8))82—w - e—zs_azzw].
2 w w

R> s[ci,k +

Wehavec;x —k/2+3i +1>n(i).On[m,00),d,w < 0and |8£w| <w(z)™/ for j =1,2.
Hence

R> S[n(i) + kb i+ k)e - ce—25<z)—2] >0

for s larger than some s* depending on 7, Cy, ¢ and T, but independent of i and k.
On [-m, 7], wehave 0 < Gy < lsothatc;x —k/2+3i +1—-Q2i —k +2)G; >
n(i) from (5.8). As T (z) is nonpositive on [—, 0] and nonnegative on [0, ], and w is
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nonincreasing on [—z, 0] and nondecreasing on [0, ], we get 7 (z)d,w > 0. Hence from
(5.20), using (5.6) and dsh > 0,

. . a a
R > S[U(i) 4 ik =g i —k +2)u+ g-1,22% _e—2sLW]
w w
. Lai’k —LS . s s
33|:77<’)+—€ 25— C(i +k)e ™ —Ce ]>O

for s large enough as (i) + a; x 2 (i + k). We conclude that R > 0 on [, 00) for s large
enough. Hence there exists s* such that S is a supersolution for s > s*. The bound (5.18)
is then a consequence of the maximum principle. Assume now i + k > 2 and h(s) =
e~ %.kKe™ We have proved that S is a supersolution for s > s*. For s* > s > s we have
a;lh = Ka; xe™® > cK(i + k) for some ¢ > 0 depending on s*, since a; x 2 (i + k). All
other terms in (5.20) are O({i + k)) with some uniform constant, hence for all s € [s¢, s*]

and z > —m,
dsh ) . .
RZS[T—C(Z +k):| >8S[cK(i +k)—C(i +k)] >0

for K large enough depending on s*. Hence S is a supersolution for all s > sq, proving
(5.17) by the maximum principle. |

We now study the dynamics of (5.14) for k = 0, setting b = 0. We write 0(s) =
Si.0(s1,s) (o) for the solution ¥ on [—, 00) of

b + £} o0 + £ g0+ £1y0 =0, O(s,—m) =0, B(s1,2) = do. (5.21)

Lemma 5.5. Forany n > 0, if s, > sy are large enough, then for all i > 1,

5 . sy [ ET IS0
ISi06s1.5) @) = Copero =) (TE ) T, 52

where c; o and a; o are defined in (5.8) and (5.35).

Proof. We reason with a parameter 7" > 0, and let W = W[n'] and ¢ , = ¢; o[1]. Using
the assumption (ii) on W/, the bound (5.6) and that G vanishes outside [—, 7] we get for
n’ small enough, and then s large enough,

1£; BllLes < (Cin® + C(nie™ + C(n)ie 3) Bl Les < n'illD]lLep-

W

Duhamel gives §i,0(31,82)(ﬁ) = Si,e(sl,sz)(ﬁ) - f:2 51‘,0(5, 82)(36;,0(51',0(51,S)(ﬁ)))d&

1

Set ®(s) = (11:6—_?5)“"‘0 ||§i,0(31,s)(ﬁ)||Lg>§>. The above bound and (5.18) imply

e 2%1

/ 52 4
062 = 0@ il + i [ o900 ds,
s1
Gronwall then gives ®(s) < (.ot )67 15 roo. This proves the lemma, upon notic-
ing that ¢; x[n'] + in’ < c¢;x[n] for n’ small enough, and that the weights W' and w are
equivalent. ]
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Proof of Proposition 5.1. Step 1. We claim that for any 1 > 0, there exist s*, C’ > 0 such
that

1+ e~ 381

ai.k
1+ _552) [vollpee forsz > sy = s*,
e

(5.23)

for all i + k > 1, and that one can take C’' =1 if kK > 1. For k > 1, this
is Lemma 5.18. So we only need to prove the above inequality for k = O.
Let ¥ > 0, and c{’o = ¢io[n']. Recall (5.14) and (5.15). We write by Duhamel

b(s) = (2i + 1)e~Gi+Ds [* oG+ [0 4/(s') ds’ and v'(s) = Sio(s1.5)(vo) +
fssl b(s)Si0(s". s)(Ri(s')) ds’. Recall that (5.13) gives ||R;|[Leo < Cie™*. We take s,
large enough, and apply the linear estimate (5.22) with parameter " to get

H Siak (Sl ’ 82)(v0) ”L\?/o < C’eci.k(sz—sl) (

S
b(s)] < Ci / ¢ CIHHE |/ (8') | oo S,

S1

e l—l—e_ésl ai.k
10/(s) || L0 < CeCik Sl)(m) vl Lgo

s / 1 e‘és/ ik ’
+ Ci / eci’k(s_s ) (ﬁ) e " |b(5/)| ds'.
s1

Consider the function ®(s) = (:J:'—zs)“f-k(||v/(s)||Lvovo + 1|b(s)|). Take s; large
e

—Zs1
enough so that e < /2 for s’ > s;. Note that for all i + k > 1 one has =
—3i — 1. Hence ® satisfies the integral inequality ®(s) < Ceik=s1) lvollpee +
Cin fssl ik =) P(s') ds'. Hence ®(s) < CeléinTCIN)s=s1) lvoll oo by the Gronwall
lemma. This shows (5.23), on taking 7" small so that ¢; ['] + Cin’ < ¢; x[n].

Step 2. Fix n > 0, s* asin Step 1, and s* > s, > s; > —log T'. The control of (5.7) on
[—log T, s*] is direct since this is a linear equation with bounded coefficients, over a finite
interval. Indeed, the functions |F|, |0,F| < Cw are uniformly bounded from (5.6). Then,
(5.7) is a linear parabolic equation, with variable coefficients in the elliptic part that are
uniformly bounded by C (i + k), and with a nonlocal operator v > §;.20(2i + 1)3,Fd™ v
that is bounded from LZ° onto LZ° with operator norm < C(i). As a result, we have a
classical linear bound using a standard Gronwall argument: there exists C > 0 depending
on T, s*, ¢ and Cy such that H Sik(s1,52)(vo) ‘Lg;o < ec("+k>(82_sl)||v0||L$o. Since for

K', C” large enough, € iTk)s2=s1) < C7ai kK (€™*1=€7%2) ypiformly for s* > s, > 51 >
—log T', we get

. 74 —S1 _p,—S
[Sik(s1,82)(vo)|lLge < CelikK (e e 2)||Uo||LV<;O-

The above estimate on [—log 7', s*] and (5.23) on [s*, 00) directly imply (5.9) for all s, >
s1 > —log T (upon using them after writing S; x(s1,52) = S; k(s*,s2) 0 Sj k(s1,8%) if
s1 <s* <s,, and up to taking K, C > 0 large enough dependingon K, C’,C",s*,T). =m
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5.2. Control of the third order tangential derivative on the axis

We first control &1 o (equivalently, F; o). This is because the growth of this function as
t — T will be responsible for the (T — ¢)7/* bound of the radius of analyticity, and
because the bound below is critical for the linearised analysis due to the presence of a
nontrivial kernel, thus requiring a more careful treatment.

Proposition 5.6. Assume hypothesis (b) in Theorem 2 and ||£1,0(0)|| oo ((y)—2) < 00. Then
the solution &1 0 of (5.4) is defined for all t € [0, T). Moreover, there exists C, > 0 such
that forallt € [0, T) and s > s,

11,00 lLoo(o,1/4)) < C2 and || F1,0(8)[lLge < Ca. (5.24)

The proof is decomposed into several steps, and Proposition 5.6 is proved at the end
of this subsection. The existence up to time 7 is straightforward, since F o solves a linear
equation

(0s + L£1,0)F10 =0 < (s + N + N — e 250;;) F1,0 =0, (5.25)
where the leading and lower order linear operators are
N Fi o =4(1—G1(2))Fi0 + T(2)9; F1,0 + 30:G1(2)d" Fy 0.
tN~.F1,0 = —4UF1,0 + 3_1u82F1,o + 382u8_1F1,0.

Applying Proposition 5.1, for any n > 0, as c1,0 = (1)n and a; o = 0, we obtain
| F10(s)||Loe < CelV)s, By taking a smaller 7 in this inequality and s large enough we
get

| F1,0(s)|lLoow) < e forany n > 0, for s large enough depending on 7.  (5.26)

This is almost the second bound in (5.24) we wish to prove. The problem with improving
to n = 0 above is the presence of a nontrivial kernel.

Lemma 5.7 ([5, Proposition 6 (vi)]). There exists a C' solution Q to N Q =0 on [—m,00)
that has the following properties: the support of Q is [—m, ], and Q restricted to [—m, 1]
is smooth; Q is positive on (—m, w) with Q(0) = 1; and there exist positive constants ¢
and ¢’ such that Q(z) ~c(z + )8 asz | —mwand Q(z) ~c'(wr —z) asz } .

To improve (5.26), we prove boundedness in a parabolic neighbourhood of a particular
characteristic of the transport operator, and extend this local bound to a global one.

Lemma 5.8. There exists a solution z*(s) of 0sz* = —% + f_Z; F(s.z)dz — 7 such that
|z*| < Ce™*. (5.27)

Proof. For an initial time s; > s¢, using ffn G, = 7/2 and (5.6) the ODE becomes

* *

* z z 1
0sz* = —% + / G, —I—/ u= EZ* + 0@z +0(e™™), z*s1)=z5. (5.28)
0 -1
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Consider for M > 0 the sets [, . and / AJ; s, defined by

Iﬂﬂj’Sl ={zg :|zg| < Me™*', 35, > 51, |2°(s)] < Me S fors; <s<s;

and z*(sp) = £ Me 2},

Then for M large enough and then for s; large enough the following holds true. For

zg € 1;;,81, at time s,, by (5.28),

ds(le*z*|)(s2) = M/2 4+ O(M3e™22) + O(1) > 0.

This inequality, by continuity of the flow of the ODE (5.28), implies that both 7 M,
and / AJ,;,SI are open in [—Me™**1, Me™**1]. They are moreover disjoint by definition, and
nonempty as they contain —Me™*! and Me™ ‘! respectively. Hence, by connectedness,
there exists zg € [-Me™"!, Me™*! | withzg ¢ I}, U IAZ;’S] . The solution to (5.28) with
data z§ at time s; then satisfies the conclusions of the lemma by the definitions of / M,
and / 1\44_ o ]

Lemma 5.9. Let z* satisfy the conclusion of Lemma 5.8. Then there exists d € R such that
foranyM > 0and 0 < (' <, for all large enough s and all z € [z* —Me™*,z* + Me™],

|Fio(s.2) —d| < e (5.29)
Proof. We switch to the following parabolic variables:

z—z" 7+z*
Fi1o(s,2) = fi0(s,Y), Y*=

Y = , .
T —1t T —1t

(5.30)

Then f; o solves the following equation on [—Y*, co) with Dirichlet boundary condition:

V4

Y
ds f1,0 + (5 + 351 F (s, Z))anl,O —dyy fi,0 = 4F —4)Fy o — 3(/

—TT

F1,0) 0 F,

the right-hand side being a function of the space variable z. Set d(s) = [g ¥ f1,00(Y)dY,
where p(Y) = e73Y*/4 and j(s,Y) = y(e~¥/2Y) for x a smooth cut-off, y(y) = 1 for
|| < 1and y(y) = 0 for |y| > 0. Notice that the support of ¥ is strictly inside [—Y*, 00)
for s large, justifying that the integral for d is on R. Note that dyp(Y) = —%Y,o(Y). Then
integrating by parts, using the exponential decay of p and (5.26) to upper bound by Ce™¢°
all boundary terms due to y,

dsd = /R)?((4F(s,z)—4—|—p_18y(,o8§1(F(s,Z)—l)))F1,0—3(/Z Fl,O)azF)PdY

+ 0(™). (5.31)
Above, we note that, using (5.30), (5.27) and (5.6), one gets

IF(s,2)—1| < |G1(2)=G1(z")|+]G1(z") =1 +|u| < CYe " +Ce™*, (5.32)

|0,F(s,z)] <10:G1(2)—0,G1(z*)|+19,G1(z*)|+]0,u] < CYe *+Ce™ . (5.33)
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Let 0 < ¢ <, and let s be large so that | Fy o] < e~V"s from (5.26). Inserting (5.32) and
(5.33) in (5.31) gives |9sd| < Ce~(=")s_ Hence there exists doo € R with |d — deo| <
Ce= (=5 Set now f1 o = f1,0 — d. It solves the equation

z

_ Y
asfl,O + (_

>t 8\71':(3,2))3\(/;1,0 — vy fi0 = (4F =4 Fyo— 3(]

-7

FI,O)aZF— dsd.

We compute the following energy estimate by integrating by parts, using the exponential
decay of p, that d is bounded and (5.26) to upper bound all boundary terms due to y by
Ce™®:

d 1 - i
ds 5(/11« |)?f1,0|2/0) = —/R Iav()?fl,o)lzp+[Rizay(pa;1(F(S, 2) = )| fiol?

+/ )?zﬁ,o((4F—4)F1,o—3([ F1,0)3ZF—3sd)p+ 0(e™%).
R -7

Above, since [ 7 f1,00 = 0, we obtain the coercivity [ |9v(¥f1,0)>p > 3 [& |7 f1.01%0
from Proposition 3.1 (note that 1 = ho). Bounding the remaining terms by using the fact
that d is bounded, that | f1 0| = | f1,0 —d| < Ce'’s, (5.26), (5.32) and (5.33) we get

d 1 = 3 o o
e 7 / |Xf1,0|2,0 < ——/ |Xf1,0|2,0-|-C€ (t—2t )s_
2 R 2 R

Reintegrating this inequality gives [p |)(f1 0|20 < Ce=2)s Hence | f1 Lollz2—2m,2m)
< Ce~ =23 A standard application of parabohc regularlsatlon gives || f1,0ll oo ((—m,m])
< Ce~ =2 < ¢=s (upon choosing ¢” small depending on ¢/, and then s large). This
and the bound on d show the lemma upon renaming d, as d. ]

Lemma 5.10. Let (z*,d) be given by Lemmas 5.8 and 5.9, and let Q be as defined in
Lemma 5.7. Then

lim [[Fi,0(s,2) —dQ(z)|Lge = 0.

S—>00

Proof. We regularise the element of the kernel Q near the points £ and decompose
Fio(s,2) = dy"(s,2)Q(2) + Fi0(s, 2),

where y* was defined in (5.11). Then Fj g solves
(0s + N + N" — 20:2) Fr0 = E(s, 2),

where the elliptic linear operator, the nonlocal linear operator and the error are

z

" =4(1—-Gy(2)) + (a;lG1 +/ u—%)az, N =30,G107",

z

E=—d((s+ N —e20)(x"0) + N —1)Q)) + 4uF10— 3azu/ Fip.

-7
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Since d is bounded, from the asymptotic behaviour of Q near 7 in Lemma 5.7 and
(5.6) we get
[Ellge < e %= (5.34)

We introduce the domain Q = [, z* —Me 5] U [z* 4+ Me™, 0o] and let s; be large.

Step 1. Letw: (—o0,00) — (0, 00) be a function that satisfies all the following properties
(note that it is possible to construct explicitly such a weight w for any ¢ > 0, along the same
lines as in Section 4.5.1):

(i) wis an even C? solution of the differential inequality N'W > swon R\ {0}.
(ii) w(z) = |z|*/? for |z| small enough and W(z) = W(x)(Z — )2 for z > x.
(iii) Forall z € [—7, 7], |37 W(z)| < (2W(z2).

Then we claim that there exists M > 0 such that for s large enough, S(s, z) =
e~ 85W(z — z*) satisfies (9 + N — e7259,,)S > 75S on €. This is a direct compu-
tation. We indeed compute using the evolution equation for z* that, for s large enough,

(0 + N —e7259,,)S

Z—Z

= —éé+e_fls(4(l—Gl(z—z*)v_v(z—z*)—l— (/Z: G1(2—z%)dzZ— 5 *)BZV_V(Z—Z*))

—e—2sazzé+/ u82§+4(G1(z—z*)—G1(Z))é—i—/ (G1(2)—G1((—2%))dZd,S

[— [ — - L -
> ——S4+-S+0M28)+0("|S|) > —S
_8+4+( )+(e||)_10

where we have used property (i) for the second term, e =2]3,,S| < e 25|z — z*|72S <
M~—2S for |z — z*| > Me™* for the third one, and (5.6) and (5.27) for the remaining terms.

Step 2. Let 151150 solve (05 + N/ — ™25 822)}7“11’0 = E on €, with boundary conditions
Flo(=m) =0, F{j(z* £ Me™) = Fyo(z* = Me™) and F o(s1) = Fy,0(s1). From the
behaviour of W near 0, we have S > C(M)e™ 25w uniformly on  for a constant C (M) > 0.
Hence by Step 1 and (5.34) we get (05 + N” — e72%3,,)S > |E|. Moreover, S > | F} o|
at the boundary 0 and z* + Me™* from (5.29). Hence by parabolic comparison, for some
C(s;) > 0 and s > s large,

|Fly] < C(s1)IS| < C(s1)e™ 5°W.

Step 3. Let F o = F11’0 + F12,0- Then Fﬁo solves (35 + N + N/ — e—zsazz)ﬁﬁo =
—N"F 11’0 on Q with Dirichlet boundary conditions and zero initial datum at time s;.
From Step 1, the solution to (35 + N” — e 259,,)v = 0 on Q with Dirichlet bound-
ary conditions satisfies ||v(s)||Loo@w) =< e 56752 ||y (sy) | Loo@w) for s > s, large enough.
Hence, reasoning as in Step 1 of the proof of Proposition 5.1, one finds that the solution
to 3y + N + N —e™259,,)u = 0 on Q with Dirichlet boundary conditions satisfies
u(s)||Loo@) =< e~ 165752) |y (so) | Loow) for ¢ small enough. This linear bound and the
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bound for F 11’0 obtained in Step 2 show that for s > sy,
|F2ol < CIS| < Ce 165w

for s; large enough. This bound and the one from Step 2 prove the lemma since F 1,0 =
F 11’0 + F 12’0, and since w < Cw for some constant C > 0. n

We can now end the proof of Proposition 5.6.

Proof of Proposition 5.6. The second bound is a direct consequence of Lemma 5.10.
As for the first one, from (1.15) we find that ;o solves a linear parabolic equation on
[0, 1/2], with variable coefficients involving & and d,&, but which are uniformly bounded
on [0, T'] x [0, 1/2] from (1.15). Hence this first bound is obtained via a standard parabolic
bootstrap. [ ]

5.3. Control of higher order derivatives

5.3.1. The analytic norm and formal explanations. In this subsection we will use the
bound (5.24) obtained for the third order tangential derivative, and the constant C, is
now considered as a universal constant. Our aim is to control the following seminorm
for derivatives in an analytical setting (we recall that i denotes 2i + 1 derivatives in the
tangential variable):

; 3
sup % -kz%kgbik (i +k)

i+k>2 m”l’i,k(s)lhgo

where 0 < 7,7 < 1 are constants, 3 is a correction exponent,5 the other exponents are

o 0 ifi =0,
0 ifi +k<1, ]
aik = 9 . - ) bix =12i—1 ifk>1andi >1, (5.35)
i +k— 7 otherwise, _ _ _
2i —2 ifk=0andi >1,

and for K > 0 a constant such that Proposition 5.1 holds true, we have

T(s) = e 25(1 + 592K = (T — )27, #(t) = (1 + (T —1)5)2eXTD_ (536)

Let us now explain formally why the above seminorm will remain bounded, and the role
of the parameters. For this, let us only keep the term with j = 1 in the first line of (5.4):

2i + 1Y\ . _
OsFik + LikFix = ( 5 )(3 YFLo) Fictesr 4 -
Since 371 F1,9 = O(1) from Proposition 5.6, this means that the evolution of F; ; has a

forcing term that is O(F;—1 x+1); that of F;_; 41 has an O(F;_5 x+2) forcing; and so
on. At the end of this chain, we see that Fj x4; is in a sense forcing the evolution of Fj k.

There is no need to optimise the value of the exponent 3.
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The optimal bound on the linear evolution of Fo 4, is Forti = O (e~ 2k+1)s+0(1))
from Proposition 5.1. Hence we formally infer that F;j = O (e~ 2k+s+0()y 4pq
in particular F; o = O(e~ 2579 Back in the original variables, this gives Eio =
oO(T — l)_%(ZiH)Fi,o) = O((T — t)~31+9M) hence a radius of analyticity of
(T —t)7/* in the x direction.

We separate the radius of analyticity into three parts that will play different roles.
First, %k is the time dependent part: it encodes the above expected temporal bound, and
is compatible with the linear estimates of Proposition 5.1. Next, 7 is the constant part, and
taking it small enough allows us to control the second line in (5.4). Finally, 0% gives
a different estimate for 0, and 9, derivatives ; this anisotropy in the norm allows one to
control the first line in (5.4).

Finally, let us mention that certain short time analytical results as [24] only require
the control of a finite number of 9, derivatives, relying on parabolic regularising effects.
However, here the viscosity is negligible as s — 0o, and 9, derivatives are forcing 0y
derivatives as explained above, requiring us to control an infinite number of 9, derivatives.

The heart of the analysis is to control the analytic norm using a bootstrap argu-
ment. We introduce the weight w(z, y) = w(y~/T —t — ) and the space with the norm

1 fllzge = supyso [ fMw ™ (5. ).

Definition 5.11. Let L, 7,7,K > 0. We say for Ty < t1 < T that u is in the analytic trap
on [Ty, t1) if (& k)i ken is a C*° solution of (1.11) on [Ty, #1] x [0, 00) such that, initially,

. 2i +k + 1!

&4 (To. Mlzge < (T — To)~ 314~k g=bin g4k % fori +k>2,
(5.37)

and for all ¢ € [Ty, 1], setting L = L/(2(T — Ty)"/®), one has
. 2i +k + 1)!
MwﬁﬁhgSMT—W{“%ﬂMrWWﬂML%%f%l fori +k > 2,
l
(5.38)
. . 2i +k +1)!
64 (1, 0)] < (T — 1)~ 31 p-arxg-biwg-aie CL T K+ DY l( ,++ 1:;3 Y feri k>0,
1

(5.39)

Proposition 5.12. For any constants Ty, T, u, t, Co, Cy and 7o in the hypotheses of
Theorem 2, and C, in the inequality (5.24), there exist L*,K > 0 such that for any L > L*,
there exist T*,7* > 0 such that, forany 0 < T < t* and 0 < T < ©%, if u is in the analytic
trap on [Ty, t1] in the sense of the previous definition, then at time t, for alli + k > 2,

3 T (20 4k + 1)

(1) lpee < (T — 1)~ 2787 %ikgbikg—ain 22~ =~ 77 5.40
ekt e = GUT =3 bameg-tgen ST (5.40)
1. g p o (20 4k 4 1)

|Ei,k(ll,0)| = EI—(T _t) 2tk b”k‘E a”kw (5.41)

Proof. The inequality (5.40) is proved in Proposition 5.17. The inequality (5.41) for k
even is proved in Corollary 5.15 and for £ odd in Lemma 5.16. ]
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Remark 5.13. The bounds (5.40) and (5.41) improve (5.38) and (5.39) by factors < 1.
This is used to prove Theorem 2 as follows: for a solution starting in the analytic trap
(Definition 5.11), the bounds (5.38) and (5.39) can never be saturated, showing that the
solution remains in this trap up to the blow-up time 7.

The bound (5.40), valid up to the blow-up time, is used to prove Theorem 3. The
bounds (5.38) and (5.41) however are only used as additional estimates to prove Proposi-
tion 5.12.

The above proposition directly implies Theorem 2.

Proof of Theorem 2. Proof of (ii). Fix all constants in Definition 5.11 such that Propo-
sition 5.12 holds true. Then (5.37) is satisfied because of (5.3), by choosing possibly a
smaller coefficient 7.

Letnow £ € N and define ¢*(£) as the supremum of times #; > T such that (§; x )i+ <¢
satisfies the estimates (5.38) and (5.39) in [Ty, t1]. Assume t*(£) < T for contradiction.
Notice that (&; x )i +k<¢ solves a closed system of equations of the form

0:Eik — Oyybig — 0, E0yEik = fin((Eirk)irir<t)

from (1.11). Notice that, as a consequence, the proof of the bounds (5.40) and (5.41) for
i + k < £ only relies on the use of the bounds (5.38) and (5.39) for i + k < £. Thus,
by definition of ¢*(£), the bounds (5.40) and (5.41) hold true for i + k < £ at any time
t1 < t*, hence at time ¢t* as well by continuity. By a continuity argument and because
of propagation of regularity, using the fact that (5.40) and (5.41) strictly improve (5.38)
and (5.39), we deduce that (§; 1 ); +k<¢ satisfies (5.38) and (5.39) on [t*, t* 4 §] for some
§ > 0, contradicting the definition of #*.

Hence t*({) = T'. Letting £ — oo, we infer that (&; x )i k>0, on [0, T'), satisfies (5.38)
and (5.39). Thus, (&;,0)i>0 satisfies (1.16) and (1.17), as a consequence of (5.2), (5.24)
and (5.40).

Proof of (i). We now define u(f, x,y) = Y 1o, x2 1 %2?31))}') The convergence in E7, ¢+
for t* independent of time small enough is a direct consequence of (1.16). Moreover,
the trace of all x-derivatives of u on the vertical axis {x = 0} solves the corresponding
trace of Prandtl’s equations. Hence u solves Prandtl’s equations on E7 .+ by uniqueness

of analytic extensions.

Proof of (iii). We set T to be constant on [T — §’, T] and then for x = +7(T —)7/* for
T —§ <t <T,using (1.14), (1.16) and (1.17), we bound

seisn |5 (1. )

ul = o7 )3 leott, )+ 21— ¥ BN 572

= (2i +1)!
7 (14 050(1)) 5 >, g2itl 13
<u(T _t)4T +C (T -1 +Cy Z TR (T —1)3

7 3
< -17(T —1)4
7T —1)
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if  and & have been chosen small enough. This shows (1.18) on [T — §, T'). Since on
[0, T — §'], & and &; remain bounded, it suffices to take v decreasing fast enough on
[0, T — §] to obtain (1.18) on this interval. [

We turn to the proof of Proposition 5.12. We use the following throughout this section.
For any K > 0, one has 0 < t7 < 1 on [Ty, T') for 7 small enough. The function 7 satisfies

7>1 and 7 isdecreasing on [Tp, T]. (5.42)

We shall use the following properties of the exponents for any i, i, k, k' > 0:

aix <apyp and bjy <byy ifi <i'andk <k’, (5.43)
ik +air g < Qiyirkvkrs bigx +birgr < bigi gk, (5.44)
Aik = Ajk+1 — 1/4 ifi +k>1, ik = Ajk+1 — 1 ifi +k>2, (5.45)
ai,k + ai/,k/ E ai+i/,k+k/ — 1/4 lfl + k Z 1 al’ld i/ + k/ Z l; (5.46)

moreover, if i > 1 then

aio+ airj+1 < aitirk, andifk > lori’ > 1thenbio + by k1 < bitirk — 1.
(5.47)

5.3.2. Analytic control at the boundary. The aim now is to prove (5.41). We rely on the
fact that the control of 85’" derivatives is similar to that of 07" derivatives for parabolic
equations, the latter having the advantage of preserving Dirichlet boundary conditions.
However, this equivalence degenerates as one approaches the blow-up time 7. We need
to exploit two gains coming from the fact that near the boundary one is away from the
blow-up zone: first the bound (1.15), and then the fact that 8;1 lose a (T — t)~/2 factor
for y ~ (T —t)~"/2 but not for y = O(1).

Lemma 5.14 (Improved estimates at the boundary for even derivatives). For any L, K, T*
> 0, there exists T* > 0 such that the following holds true for any 0 < 7 < t* and 0 <
T < 1% Assume (1.15), (5.24) and (5.39) in Definition 5.11. Then for any m > 1 and any i,

€0 = 030 + £, (5.48)

where for some universal C > 0, for all k and t € [Ty, t1],

L Qi+ k +2m + 1)

(i +k+m)3
(5.49)

|a§$lm (t,0)| < CL(T — t)_%i%_bi,k—I—Zm—z $=ai k+2m—2 54 k+2m—

with the convention that for all i, a; x = bjx =0 fork = —1 andk = 2.

Corollary 5.15. With the same hypotheses, for a universal C > 0, for any i,k > 0
with k even,

An PR T ) B 4 S P )
|§i,k(tv0)| <ttl(T —1) 2't b”kT dikT a"kw, (5.50)
, 2i +k + 3)!
10:£ x(£,0)] < L(T — t)_%l{—_bi.k-’c‘_ai,k%_ai,kw (5.51)

(i + k)3
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Proof. The boundary condition u|,—¢ = 0 implies (5.50) for all i > 0 for k = 0. By
time differentiation, and from (1.11) for & ¢, one obtains & (¢, 0) = 0, hence (5.50) for
(i,k) = (0,2). By differentiation again, d*&; (z,0) = 0 for all k, hence agkg,-,o(z, 0) =
—Ek (z,0). So (5.50) is then a direct consequence of (5.49), since a; x—» < a;x — 1 for
any i if k > 2 and (i, k) # (0, 2). Next, we write 9;&; ok = &i2k4+2 + 0 ké , so that

0:&i 2k (2,0) = éf“(l, 0) + Bikéi (z,0) at the boundary, and (5.51) is again obtained
from (5.49). |

Proof of Lemma 5.14. We set
Eikom = 07 &i k-

By induction we obtain from (1.11) the recurrence identity
e = 05" &i0
(S L (241 2 +1
2m—2n—2qn L
+’12:(:)ay at (_Z(:)(z] + 1)5],051-],0 +§)( 2 )(8 S]O)%—z Jl)

We now reason by induction on m > 0 to prove (5.49). For m = 0 the bound is trivial
since él-o = ( for all ;. We now assume the desired bound holds true for all m’ < m, for all
i and k. Note that if m > 1 then a; g 42m—2 < @; k+2m — 1 so that

-’E—ai,k+2m—2%_ai,k+2m—2 < (%f)%_ai,k—}—Zm %_ai,k+2m.

Note also that if m = 0 then §" = Eio = 0. In particular, the identity (5.48) and the bounds
(5.39) and (5.49) give, for m" < m and 7 small enough,

(2i +k +2m + 1)!

(i +k+m)3
(5.52)

To prove the desired bound for m + 1 we first obtain the following identity from the recur-

1 (1, 0)] < 2L(T — 1) B Ebik2m k2 i k2

rence identity using the Leibniz rule and the fact that 3;1 terms vanish at the boundary
(with the convention that (Z) =0if b > a):

n k+2m—2n

8" m+1(l‘ 0) ZZZ Z ( )S]lp(l 0)51 —Jj.k+2m—2n—I,n— p(t 0)

n=0,;=0p=0

5 ((21—i'—l)(k+2m—2n)_(2l:+1)(k+2m—2n)). 559
2j [ +1 2j 41 !

Note that in the sum, if (/,/, p) € {(0,0,0), (i,2m — 2n + k,n)} then the term is zero
because £,0,0(¢,0) = ux(¢,0) = 0 from the Prandtl boundary condition u|,—¢ = 0. There-
fore we assume (J, 1, p) ¢ {(0,0,0), (i,2m — 2n + k, n)} without loss of generality.
Introducing r = 2j + 1 + 2p + 1 we bound, using (5.52),
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1&i1.p(t, 0 2m—2n+k—1,n—p(t,0)]
<Cl¥(T - t)_%j_%(i_j)-E_bj,Zp-H_bi—j,Z(m—PH-k—l
LT 2p T4~ 2(m—p)+k—1 TT4j.2p+ T qi—j.2(m—p)+k—I
Qj+2p+I+D)QGE—-j)+2(m—p)+k—1+1)!
i+ p+1)3 i—j+m—p+k—I)3
rl Qi+2m+k+2—r)!
(r)® Qi+k+2m+1-r)3

~ 7.
<L(T - t)_jl-f_bi,Zm—l—k £74i 2m+k 34 k+2m

., (5.54)

where in the last bound we have used (5.44) and (5.46) for the exponents, and CL L1t <1
for T small enough. We recall the estimate, for some universal C > 0,

2’“%"“(21' —|—2m—|—k—|—1) PlQidk2m 2 1)
(

ry3 2i +k+2m+1—r)3
2i +k+2m+2)!
(i +k+m)3

r
r=0

Using the inequality (';)) < (;Z) (D.3) with (A1, A, A3, 12) = (2i + 1,k +2m —2n,2n,
2p +2j + 1 + 1), and the above inequality, we get

ZXn:k+ZXm:2n r! (2i+2m+k+2_r)!(n)
j=0p=0 (ry3 2i+k+2m+1-r)3\p
20 + 1\ [k +2m—2n 204+ 1\ (k+2m—2n
2i+2§k+1 2i+2m+k+1\ r! Qi+k+2m+2-—r)!
(ry3 Qi4+k+2m+1—r)3

<

r
r=0

Qi + k +2m +2)!
(i +k +m)3

(5.55)

Inserting (5.54) in the identity (5.53), then using (5.55) and the inequality ZZ’:O 1<

(2i + k + 2m + 3), we get the upper bound

Qi+k+2(m+1)+1)!
(i +k+m)3 '

Thus (5.49) holds true for m + 1, for any i and k. It thus holds true for any i, k, m by

induction. u

K Em T (1,0)] < CL(T — 1)~ 3 & biketom g =aikcrom z=aiksom

Lemma 5.16 (Improved estimates at the boundary for odd derivatives). Assume that the
bounds (1.15), (5.24), (5.38), (5.50) and (5.51) are satisﬁed Then for any L > 0, there
exists T* > 0 small enough such that for all 0 < T < t*, all k odd (with k > 3 if i = 0)
andt € [T(), ll],

Q2i +k +1)!

7.
F=Gik (T — ) 2tz bik 3—aik ’
( ) (i +k)3

N

|§ik (2, 0)] =
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Proof. Assume k is even, with k > 2 if i = 0. Let y : [0, 00) — R be a smooth cut-off
function with y(y) = 1 for |y| < 1/8 and y(y) = O for |y| > 1/4. Set {; x = x&; x. Then
from (1.11) we infer the evolution equation of ; x:

0:Cik — 0yyCik
:_ZZ(ZZ +1)( )Xéflg’ —Jk= ’+ZZ( 12J )(l+1)x’§j,1§i—j,k—z
j=01=0 =i
I

i
2i +1 _ _

+ Z( 2 )X(ay Y& 00kt + 2005 E0.0)6ik+1 — 20y XEi k1 — Oyy XEik -
j=1

i

1

We decompose §; (¢, y) = &k (¢,0)x(y) + nik(t, y) + n; ;. (¢, y) where

ek — OyyMik = &k (£,0)0yy x — 0.8 1 (2,0) 1,
{Ui,k(To, V) = x(W)Eik(To, y) = §ik(10.0)), 1ik(2,0) =0,
0en; j — Oyym e =1 + 11+ 11,
{ M (To.y) =0, 7}, (,0)=0.
The first term n; ;. Recall (6.3), and that 7 is given by the representation formula (6.15).

For the first part, as d,, y = 0 on [0, 1/8], dy x is a smooth function so that from (5.50)
and (5.42),

t

t
8y Ky % (Si,k(t/ao)ayy)() dt’ Si,k(t/,O)Kt—t’ * (ayayy)() dt’

Ty Loo To Loo
An P S ) e S B
< Cll& k(. 0)||Looqro,) < CTTL(T — 1) 2'T bikgaikg a”kw

For the second part, we let f = max(t — (i + k)2, Ty), decompose the time integral and
integrate by parts:

t

at’éi,k(t,vO)Kl—t/ * th/ = Ei,k(f, O)Kt—f * )E - Si,k(TOaO)Kt—To * X
To

e maKtﬂ*x+/’mfma 0)Kiy 7.
Ty

We estimate the first line. It is zero if 7 = T so we assume ¢ > To + (i + k)~2. For the
first term on the first line we have, using (C.2) and (5.50),

10, (Ei k(. 0V K gy * )| < Cli +k)|Eik(7.0)]

< C%%L(T—t) 2 T lk‘[_aisk%_ai,kw

(i + k)3
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The second term on the first line enjoys the same estimate. For the first term on the second
line, using (C.2), (5.50) and (5.42) we get

f
Eix (1,000 Ky * ydt’
Ty

t
1
< / (t — /)3/2|é§_i,k(l/,0)|d[/

To

2i + k +2)!

/ —Jiz=bj x 2—a; 1=—
S0 R O) e < CLT — 1) e P gmenactgons S

For the second term on the second line, from (5.24), (5.51), (5.42) and (C.2),

< C/t |at/§i,k(l‘,a 0)| d /
N max(t—(i +k)—2,Tp) A=t

< C{i + k)M 8084 O)|Loopre. < CL(T — 1) 2 7 bik ek gain

t
3y[ A&k (t', 0)Ks—p y dt’
7

2i +k +2)!
(i +k)3

From (5.44), (5.45), and the initial bound (5.37), the above estimates imply

2i +k +2)!

(i +k)3
(5.56)

The second term 77; ¢ For I, first from (1.15), (5.24) and (5.38) we have the bound

19y ik lLoe < (1 4+ CED)FLY(T — 1)~ 3 g Dikt1 5 k41 7 0k41

167,18 jk—1llLoo(0,1/4)
<(T - Z)—%j—%—%(i—j)—%LZf—bj,z—bi—j,k—zf—aj,z—ai—j,k—z%—aj,z—di—j,k—l
Cj+I1+DQ2i=2j+k—-1+1)!
(j+1)3 (i—j+k=1)3

. . N
< (T —1)~ 341277 zkf—azkf—a,k(r) Qi +k+2-n!
B (r)3 2i4+k+1-r)3

where we have used (5.44) and set r = 2j + [ + 1. Therefore, using the bound (5.55)
withn = m = 0 we get
(2i +k + 2)!

(i +k)3
We turn to /I; using the bounds (1.15), (5.24) and (5.38), the inequalities (5.47) for the
exponents since j > 1 in the sum in the definition of /1, we estimate

_7;_1 I P
1 || oo (fo.1/apy < (T — 1) 274127 bik g =ik g=aik

105" 6/.0)&i —j k1 ll oo (f0,1/4)
< (T — 1) 37836 D=g | 2570107 bivj k1 $74).07 @i~ j k1
2j + D! 2i —2j +k +2)!
GP o Gi—j k)
(2j + D! Qi +k+2-2j)!
¥ -k

L T745.074i—j.k+1

< C(T — 1) 3425 bikg=aikgai
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As Z;=0 (2i+1) @j+D! @itk+2-2))! <C w, we conclude that /7 enjoys the same

) 2j ()3 (i—j+k)3 i+k)3
estimate as /,
Ziil o g (20 + k +2)!
17 oo < C(T — )y 2t~ a1 277 bik p—aikz=aik
|| Loo 0,174y < C( ) FEWAE

Therefore, by (5.42) and (C.2),

t
3y Kt—t/ % (I +II) dt/
To

< CL27 bikgaik (T — )~ 3i=5 741k (') dt’

Qi +k+2)! [F 1
(i +k)3 /TO t—t
2i +k+2)!
(i +k)3
where we have used (5.44) and (5.45). We turn to IIl. Let ro > 0 be fixed small
in a universal way. Let yo be a smooth function on [0, co) such that yo(y) = 1 on
[0, 70] and yo(y) = O for y > 2ro. We decompose xd, " £0,0&i x+1 = X095 Eo0.08ik+1 +
(x — Xo)a;lgo,ogi,kﬂ. Since from (1.15) we have |8;1§0,0| < Cy, we deduce from
(5.38), (5.42) and (C.2) that

< C(RR)FLAT — 1) 2 bk gm0 50kt () (5:57)

t
3y/T Ky % (x09; €006 k1) dt’
0

< CroLz bik+1270ik+1

Qi +k +2)! /f Tkt () (T — ')~ 21~ % dr’
(i +k)?  Jr, Vi—t

P ) ) )

< Crol(T — ) 2! g Vikt1g k1774 ’kH—(i e

For the other term we write

(X — 208} 0,08 k+1 =0y (X — x0)3;, " 0,08:.k) + Iy x00, " £0.06i.k + (X — X0)E0,0i k-

Notice that all terms are supported away from the origin, at distance ro from it. Thus using
(C.2), (1.15), (5.38), (5.42) and integration by parts we obtain

Laﬂmﬂ*u—mw;&@&mmws

t
< CO0) [ gl ds
To
2i +k+1)!
(i +k)3
where we have used (5.44) and (5.45). The other terms in III can be treated in the same
way. Hence

< (ff)%C(ro)L(T — t)_%i{—_ai,k—}—l 77 bik+15=ai k+1

t

3, (Ky—s * IT)(0) ds

Ty

Qi +k +

! ;
S (CO0)(ED) + Crol bt it 22 22 Remacnr -4, 559
l
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Conclusion. Gathering the estimates (5.56)—(5.58), we have proved that

10,6 £(0)] < (L' + C(ro)(RD)* + Cro + C(F7)7L)
Qi +k + 1)!

——b: A—a;
Lz bik+1 3%k
(i +k)3

Feikb (T — )~ 5

which is the desired estimate upon taking L > 2, ro > 0 small enough in a universal way,
and then 7 small enough depending on ro, K, L and T'. |

5.3.3. Analytic analysis in the blow-up zone. Our aim here is to prove (5.40). Note that
(5.38) is equivalent to, fori + k > 2,

Qi +k + 1)!
i +k)3

Recall the evolution equation (5.4) for F; x, and Proposition 5.1 for the linear evolution.

| Fi e (s)||ge < Lr %k g bikgaix (5.59)

Proposition 5.17. Assume (a) and (b) in Theorem 2, and that (5.37), (5.39) and (5.59)

hold on [sg, s1]. Then

i +k+1)!
(i +k)3

Proof. Note that combining the assumption (1.14) in Theorem 2, (5.24) and (5.59), we

get, foralli +k > 1,

3 I
| Fig(s1)llnee < ZLT‘“'*r‘b’-kr %k (5.60)

Qi +k + 1)!

TERE (5.61)

| Foae(s)lLge < Leokg—brug=ar

if L has been chosen large enough. We fix i 4+ k > 2 and recall s9 = —log(T — Ty).

Step 1. The case k > 1. Assume k > 1. From (5.4) we write, with §; x being the semi-
group (5.7),

S1

Fia(s1) = Frplsr) + / Six(s.s)(I + 1) ds,

SO

where F'i,k solves the free evolution with the same boundary conditions as F; x:
0sFix + LixFix =0, Fip(s,—m) = Fip(s,—m), Fix(s0,2) = F;x(0,2),

and the second term is obtained via the Duhamel formula with forcing terms

i

20 +1Y,._
1:2( 2j )(a YEi0)Fijk+1s

J=1

20+ 1\ (k 2i +1 k
Il = — FiiFi_jx— FiiFi_ix—i.
Ezl(zjﬂ)(z) bt X)) )t

2
i.k Ei.k
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The free evolution term. Let

LQ2i+k+1)! =
eik = 3 %%—az}k bk and S(s,z) 1= e; kT YK (s)w(z).

Then S = e; 4 (1 + e~ 25) ik (@i k/2=¢i k)SS where S was defined in (5.19) (with i (s) =
e Xaike™") Fori + k > 2, from the definitions (5.8) and (5.35) of ¢; x and a; x we com-

pute

aig 3. 15 7. 1 ,
ci’k_lT:maX(_El_k_'—?’_El_g + n(i).

Therefore, there exist n* > 0 and ¢ > 0 independent of i and k such that for all 0 < n < n*

andi +k > 2,
1 .
— i) < cip — Lk
C

< —c(i) <0. (5.62)

As a result, since S was proved to be a supersolution for ds + £; x in the proof of
Lemma 5.4 for all s > sg, we see that S is also a supersolution for ds + &£; k. At the
boundary {s = s¢} or {z = —x} we have |I:“,~,k| < § from (5.41) (proved in the previous
subsubsection) and (5.37). Hence |I‘:,~,k| <Sforalls>spandz > —x by the maximum
principle. This yields the bound

i +k +1)!
(i +k)3
The first term I. Note that this term is zero if i = 0 so we assume i > 1. From

107" fgllLge < I fllzgoligllLge and (5.61) we have

N 1
| Fik(s1)Lee < 5Lr—az:k(sl)f—bzrk%—azwk (5.63)

(2j + D! (2i —2j +k +2)!

107" Fj0) iyt lzge < L2 ikt lganegain 22 =/ ,
FOITE (j)? (i —j+k)?

where we have used (5.47) as j, k > 1. We then compute

Qi+ 2i-2j+k+2)!

2i —2j +1)! (i—Jj+k)?
Qi+ 1+k) 4k Qi+ DIQ2i—2j +k+2)!
i +k)3 (- HR)3 Q=2+ DIQi+k+ D

Since 2i +1—-m)/2i +k+1—m) <lform=0,...,2j — 1, we get

2i + DH12i —2j + k + 2)! Qi+1)---2i —2j +2) <l
= i—J).
Qi -2+ D)IQitk+ D) Qitk+DQi—2j+kt3 "7

As a result,

i—1

(i +k)3 Z (2i +1)! Qj+ D! Qi —2j +k+2)!
Qi +1+K)! = 2)12i =2j + D! (j)3 (i—Jj+k)3
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This yields the bound

Qi +1+k)!
(i +k)3

Using this and (5.9) we find that for the first term, for a universal constant C > 0,

||I||L55° = (CfL)Lf_bi,k T4k £ ALK ()

/ " Six(s 1) (D) ds

0

Ly

< (CTL)LT bik =ik (j)

21 14+ k) [st
w/ p(s,s1)T %k (s)ds

(i + k)3

0

(1+e_és)eKe_S
(1+e_§sl )eKe—Sl

where p(s,s1) := eCikC179)( )“*, so that

p(s,81)T %k (s) = e kKT pCiksI(] 4 6—581)—01',/(6(%7”‘—01',1()8(1 + 738k,

Using (5.36) and integrating by parts we find that for  small independently of i and k,

s1 . s1 e\@ik/2=¢ik)s .
[ @ik /2=CiIS (| 4 o™ 38) ik g = / 8s(—)(1 + e 2%) "%k dg
S S

0 0 ai,k/z_ci,k
a:

o3 (s—s1) L _

< g (L o727k
- —Cik

L. S1 .
aik . ik _ .. _ L Ll
_%ecz,kﬂ/ ¢T3 kTN 4 o728 T4k gy,
i _ci,k 1)

Using the identity above and (5.62), we infer that there exists C > 0 depending on 7" and
Ty (since s = —log(T — Tp)) and ¢ > O such that

/ (s 81)T—%k () ds 4 O (;") / ps.s1) T4k (s)e 55 ds < (%r—“f-k(sl).

(5.64)
In particular, for T small enough depending only on L and 7',
S1 L__p.. _a g, Qi+ 14+k)!
S; x(s,s1)(I)ds < —77bikp—ain(g g2 - T 2 5.65
[, Siwts.somnas| < gt SELEE 66

The second term Il. From (5.61) we compute

| Fj

|Lge Il Fi—jk—ill Lo
Qj+L+ 1) 2i—-2j+k—L+ 1)

(j +1¢)3 (i—j+k—=20)3 ~
where we have used (5.44) and (5.46)as/ + j > 1andi — j +k — [/ > 1 in the sums.
We use the identity (D.2) with (Ay, A»,r1) = (2i + 1,k,2j 4+ [ + 1) to obtain

A 1 —a: v =——b: 1 ~—a;
< ('L"L')4L2‘L’ kT bz,k-L— aj.k

2i—1+k , . .

L o g —ar o ——b: 2i +1+k\ r! Qi+k—r+2)!
o < (T 4|_2A @ik —ai .k 7=bik E .
Wl = oL ! ! ( ) (ry3 2i+k+1-—r)3

r
r=2
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Hence, since Y20 (1) 320 +k +1—r)2(i +k)> < (i + k) and T = e~25% we
get
Qi + 1+ k)!

Sy 22—a; i .—a; x =—b;.
[H||pee < C (i +k)(ff)4e 85| 2 =aik p=aik 7bik TEWAE

From the above bound and the linear estimate (5.9) we get

S
| sixssnanas
S

0

L

o Qi+ 1+ k) s1 ‘ .
E C("[\f)%LZ%—al,k -E_bz,k M(k + l) / p(S,SI)T_al’k (S)e_és ds_
(i +k)3 5
Using (5.64), for 7 small enough depending on L, K and T, from the above identity we
obtain

|___b, o nea . QI+ 1+ k)!
< Lebisgain ap FLH TR 566
. o7 T (s1)? FEWAE (5.66)

End of the proof. Summing the estimates (5.66), (5.66) and (5.66) shows (5.60).

s1
/ Sik(s,s1)(D)ds

0

Step 2. The case k = 0. Note thati > 2 since i + k > 2. This case can be treated almost
exactly the same way. We just point out the minor modifications.

The free evolution Fi,o now satisfies the Dirichlet boundary condition at z = —x
because F; o does. To estimate it, we use the linear estimate (5.9) and the initial datum esti-
mate (5.37). The resulting bound is acceptable if L has been taken large enough depending
solely on the universal constant C > 0 in (5.9).

Next, the forcing terms / and /I are treated in the same way. Note that for / the sum
is taken only over j € {1,i — 1} since the term corresponding to i is zero for k = 0 from
(5.4). The estimate (5.47) is still valid in this case, and so [ is estimated in the same way.
There are no changes to make to treat /I. This concludes the proof of the proposition. m

6. Analyticity in the transverse variable close to the axis

Here we show that solutions § = (;);>0 to system (1.11), rewritten as

8,6 = dyy&i + Hi(E, &) + Ji(E, ),
£(0,y) = £°(»), ieN,ye0,00),1>0, (6.1
Si(t’o) = 0,

with

l
l

(s 0= 5 e,

Jj=0

are instantaneously regularised for # > 0 and become analytic in y, up to the boundary
y = 0. Solutions with only bounded initial data will be understood in an integral sense,
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and will be classical solutions for # > 0. Indeed, there is a representation formula for
solutions to

at(p = ayy(lb,
$(0,y) = ¢°(»), y €[0,00), t > 0. (6.2)
¢(,0)=0

Given a real valued function f on [0, c0), let f_ denote its extension to R by odd symme-
try:

6.3
—f(=y) fory <0. ©3)

Then the solution ¢ (t) = S(t)¢° to (6.2) is given by (with K, being defined in (2.4))

Fo) = {f(y) for y = 0.

(5()$°)(y) = [_ Ky — °Gyd5. y>o. 6.4)

We shall therefore look for solutions to (6.1) in the following integral sense, using
Duhamel’s formula:

E(t,y) = S)E + /0 St —1")(Hi (E(t), E(t)) + JiE(t), E())) di'.  (6.5)

Throughout this section, @ denotes the weight

o(y) = (y)7?
and we introduce the weighted L°° spaces for ¢ : [0,00) — R or ¢ : R — R respectively:
|¢(y)| |¢(y)|
I¢llLge = or |[lpllLge = su
w(y) w(y)

For T > 0, we introduce the weighted (in y) analytic space (in x, recalling that &; stands
for the trace of Bii"'lu on the axis) with the norm

~2i+1

P oy e

20
167 Ixo = sup

The main result of this section is the following proposition.

Proposition 6.1. Let T > 0 and assume ||§°|| x0 < 00. Then there exist To > 0 and a
solution & to (6.1) on [0, Ty in the sense of (6.5) such that for each i, & € C([0, To], LY).
Moreover, we have:

(i) (Immediate regularisation up to the boundary) Foreachi, & € C°°((0, Tp] x [0, 00)),
and & is a classical solution to (6.1) on (0, Tp] X [0, 00).
(i1) (Analytic bounds) There exist C,t > 0 such that for all i > 0 and (t,y) € [0, Tp] x
[0, 00),
& (. y)| = CT72712i + Diy) 2 (6.6)
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For each T € (0, Tp), there exist C.7 > 0 such that foralli,n >0 and (t,y) €
[T’ TO] X [0’ OO))

856 (e, »)| < CT2717 Qi+ 0 + DY) 2 6.7)
Proof. This is a direct consequence of Lemmas 6.6 and 6.7. ]

Remark 6.2. We believe our proof of Proposition 6.1 could be adapted to show instanta-
neous analytic (in y) regularisation for solutions to the Prandtl system (1.1), for data that
are everywhere x-analytic, and without the oddness-in-x assumption.

To simplify notation, from now on and throughout this section, in the estimates we will
use quantities of the form (2i + n)! instead of (2i +n + 1)!, and t instead of 21,
These are equivalent, up to changing certain constants by a fixed factor, which is harmless
for the analysis. We write T instead of T for convenience, so T here is not the blow-up
time.

6.1. Strategy of the proof of Proposition 6.1

For small times, we approximate the solution to (6.1) by the linear solution to (6.8), show-
ing that it undergoes a parabolic regularisation like the linear solution does. We proceed
as follows.

e We construct the solution through a Picard approximation scheme (6.32). At each iter-
ative step, the scheme preserves C° differentiability in # but not necessarily the C*°
differentiability in y due to boundary effects. That is why we first obtain the C *° regu-
larity in time.

e This C regularity in ¢ is measured in Gevrey-2 spaces. Indeed, first the system of
homogeneous linear heat equations (6.8) regularises the initial data, making it analyti-
cal in time, and so Gevrey-« for all « > 1 (see Lemma 6.3). Second, for the inhomo-
geneous linear system (6.9) with a source term that has analyticity radius /7 (singular
at initial time), we show Gevrey-2 regularity (see Lemma 6.4).

e Once a Gevrey-2 in ¢ solution is obtained, we get its analyticity in y in Lemma 6.7 by
elliptic regularity techniques applied to equation (6.1).

6.2. Regularisation for the system of homogeneous heat equations

Our strategy is to approximate, for small times ¢ > 0, solutions to (6.1) by solutions to the
system of linear heat equations

3;& = anyi»
£(0,y) = &(»), i 20,y€l0,00),1€(0,T] (6.8)
Si([’o) = 0’

Standard regularisation estimates for (6.8) rely on the above formula and on the standard
heat kernel estimates given in Lemma C.1 in Appendix C.
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Lemma 6.3 (Estimates for the system of homogeneous heat equations). Let to be given
by Lemma C.1. There exists C > 0 such thatfor each T > 0, for 0 < t < min(72/2, 79),
given §0 satisfying ||§ | xo < oo, the solution § = S(t)§0 to (6.8) satisfies, for alli € N,
t € (0,1 and y € [0, o0),

1058 (1, )| + V7 1050, & (1, )] < Co(»)(2i + k)t * T 0.

Proof. Recall from (6.4) that&; (1) = K; % §l° where 510 is defined by (6.3). Differentiating,
using (C.2), then (C.1), and then a!b! < (a + b)!, we obtain, for any i,k € N,m =0, 1,
t €(0,1]and y > 0,

9EE (1, )] < Ch 3 p* [ BOIKa =)
ye
< ChkU ™ 2% 2i + )17 w(y) || xo
" ] R Ti+k
< Co(t ™ 277K + I)E o (i + D —=;
‘L'O T

This proves the lemma, because (i + 1) o 2k is uniformly bounded since 0 < 7 <

min(72/2, 19). m

6.3. Estimates for the system of inhomogeneous heat equations

Nonlinear terms in (6.1) will be considered as forcing terms for a linear inhomogeneous
heat equation. That is why here we study solutions to

¢: = dyyd + [
$(0,y) =0, y €[0,00), t € (0,T]. (6.9)
¢(t,0) =0,

We will formulate estimates in particular function spaces, in order to be able to apply
them to (6.1) later on. Namely we introduce t defined by

3,1

1
L= (e () = T(0)e VT, (6.10)
s =7 ) = t(@e /T
Fori € N and a Sobolev correction exponent « (that we will take equal® to 2), define the
coefficients

Aijeu(t) = t7F077K Qi + 2k) Wi + k)™

For measurable functions u such that, for each y € [0, c0), the function (0, 7] > ¢
u(t, y)is C°, we introduce the Gevrey-2 in time norms:

161x;. ooy = Sup a0 Les. (6.11)
te(0,T], k,ieN

The exact value 2 is not relevant. It only needs to be large enough for the inequality (D.1) to
hold true.
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L. _
I6lyi ooy =  Sup  1ZATL (O[5 d(0)]Les. (6.12)
T 1€(0,T), k,ieN
||¢||Z"T.2([0,oo)) = ||¢||X%2([O,oo)) + ||ay¢||y;.l([0,oo))- (6.13)

To simplify notation, we write
Ak = Nik,2.

Lemma 6.4 (Estimates for the inhomogeneous heat equation). There exist C,t* > 0 such
that for any 0 < T < 1, t satisfying (6.10) with 0 < t(0) < t*, the following holds true.
Let ® be the mapping which to f associates the solution ¢ = O(f) to (6.9). Then ©®
satisfies the continuity estimate

18, < CVT ISl (6.14)

Proof. Pick m € {0, 1}. The solution to (6.9) is given by the formula

t -
u(r) = / Ky xh(t')dt', h(t) = f(t). (6.15)
0
Recall thatif ¢ € LS, then ¢ € LJ° with the same norm. For k € N, we let 0 = 1 — ﬁ
and decompose
Ot t
u(t) = K, v xh(t")dt' + K, v *xh(t")dt'. (6.16)
0 Ot
=ui =Un

Step 1. Estimates for uy. By a direct computation,

k—1 Ot
OO uy =6 Y 3y P[0 Y K—gyye * h(Bkt)] + /O @m o K,—y) x h(t) dt'.
p=0
(6.17)
For the first term in (6.17), we can assume k > 1, and using the Leibniz identity we get

3P [0mY K1—gyye * h(Bkt)]
k—1—p

k—1-— e
= ¥ (7)) eperka-ad <7 BG0D. 618)
1=0

Using (C.2) and (1 — 0x)"P~™/2 = (2 + k)P+™/2 < CkPT™/2 with C independent of k
and p as p < k — 1, we find that for ¢t € (0, T],
[
10810797 K (1—g, )]l = (1 — 0) 137,77 K) (1-g, )¢
< Cry PR (1= 6P R (L + p) K g e
< Cty PP kPR (L4 p) K et (6.19)
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Using the definition of Y7i",1’ 0, 12 < 1 and then the inequality (2i +2k —2—2p —2[)! <
(2i +2k —2p—2D)i +k — p—1)"2, we get

05 P h(00)]) = 657 PO TP Ry (0t
_1 1
= 9k 2t 2Ai,k—l—p—l,l(t)Hf”Y%’lw
S Qi+ 2k —2p —2D)Ni + k= p— 1) Pz KD p ),
(6.20)

Combining (C.1), (6.19) and (6.20), choosing 7(0) < to/2 so that T < 7(/2 from (6.10),
we obtain

19410707 K (1—gye] * 85 P h(Bk)] I os
<CVJT I £ llys. TR RS G k—p— )Tk 2 27 P Qi 2k —2p—2D) (1 + p) kP

Now using a!b! < (a + b)!, (IN~! < 1, and the fact that foreach p <k — 1 and [ <
k—1—ponehas2i +2k—p—I1l+1>k—1—pand2i +2k—p+ 1>k, we
estimate

(k -1 _p)(Zi + 2k —2p =20 + p)k?

l
_k=1-p)...(k=p-1
= T
k—1—p k—p-—1
“2i4+2k—p 2i+2k—p—I+1
< (2i + 2k — p)lk? < (2i + 2k)!.

Qi + 2k — p— kP

Qi + 2k — p)lk?

Inserting the above two inequalities in (6.18) we obtain

19512 (8797 K(1—ay e * h(Gk)]ll o
k—1k—1-p
Y li+k—p—1T27tr

=0 [=0

< CVT i+ 8720 fllyg 7t Ai, (6.21)

m
2

<CVT ||f||Y%lf_i_k+1t_k_%(2i + 2k)1k

N

where we use ZI;;}) ;:é_p (i +k—p—1)"3271=P < C(i + k)73 for C independent
of i, k.
For the second term in (6.17), using (C.2) and (C.1), and then (6.10), we estimate

19K K —yr % h(t')l| e < ChUE — 1)) =2 05 k|| f1lpo

7(0)

k
< Ck!Q2i)(i)~! (T—O) ||f||Y%!1(z — t’)—k—%(t/)—%f—i—k_
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We estimate the following time integral if i = k = 0:

m

ekt m 1 : le‘ m 1
/ (t =) =2 @)y 27 7Ry dt = / (t—t)"2()2d’ SNT17 7,
0 0

and using (6.10) if i + k > 1, we get

th m . m t i
/ (t — )2 @)y 2R () de < (t—t6) % [ )" zc k(') dit’
0 0

m m T ! .
=120 -o) T —— | (R )ar
1+ k 0
k-m kem NT iy
<t 2(1-86 2 .
< (1 —6k) A
. =1 —10zO\k(1 _ g% < (TONE -2 .
Hence, using (i)™ (i + k)™ ( IO )(1—60k) 2 S (=2)2(i + k)™~ if 7(0) is small

70
enough, we get

Ot
H / MK —y * h(t') dt’
0

Ly
k
m , 2
< CKIQWi + k) 2t7*F 2 (1 — gp) 77k (lo)) JT 1 /1l -
70 :

Stirling’s formula yields % ~ %(%)kk_k, so that since 1 — O = —

k+2°
1 fe\F(k+2)\F e? (e \*
(=0~ —(~) ) ~Q)'—|- k :
ot (5 (5 - h(s) we
and hence, for 7(0)/7¢ small enough, using (2k)!(2i)! < (2i + 2k)! we get
O t m
/0 T Ky x h(t) dt'v - < C«/T||f||Y}’lt‘7Ai,k. (6.22)
Combining (6.21) and (6.22) yields
il < CVT 1Sy . (6.23)

Step 2. Estimate for u,. We differentiate with respect to time and then integrate by parts
to find

t
deuy = h(t) — O K(1—6,) * h(Ort) + ; 0/ [Ki—p] * h(t') dt’
it

t
= h(0) = 6uKa-ap < h(Oct) = [ 0olKime] () d
Kt

t
— (1= B0 K gy * h(Bkt) + /6 Ko % 0eh)(¢') 1.
Kt
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Iterating the above computation, we find the following identity for all k € N:

k—1
Hmuy =Y 0P = 0 K1—gyye * (37 ) (k)]
p=0
t
+ i MKy * (OFh)(t) dt. (6.24)
it

The first term in (6.24) is estimated as the first term in (6.17) in Step 1. Namely, using
Leibniz, we obtain

05T P[0 K -y * (87 R) (6k1)]

k—p—1 k— b 1
= 2 ( / )35 [0 Ki—gye] * 3577 (@7 ) (Bt)). (6.25)
=0

Using (6.19) with p = 0 one has
10010 K(1—)]| < Cto 't 772k 211K (1_6, e

Using 8f_l_p_l[(8fh)(9kt)] = ek"’a’;—l—l [h(6k1)], then (6.20) (with p + [ replaced
by /), and Gk_p < Gk_k =(1—-1/(k +2))7% < 1, one gets

105 1P (3P ) (01)]| < C(2i + 2k —2)!(i +k — 1) 3¢ * I+ mimk+i+1 1/ 1ly;, o
Choosing T < 1p/2 and using (C.1), we see that the two inequalities above give

10510 K (1—g3e] * 85 7P (0P 1) (O] ey
<CNT ||f||Y%lf_i_k+lt_k_% (i +k—1)"3kZ270Q2i +2k —2D)11.  (6.26)

Using a!b! < (a + b)!, (I)~! < 1, and the fact thatfor p <k —land/ <k —1— p one
hask — 1 — p < 2i + 2k — [, it follows that

(k_l_p)(2i+2k—21)!l!§ K=1=p) K= P =D o 4 g gy,

l [
<k—l—p k—p—1
2i 4+ 2k 2i +2k—1+

Qi +26)! < i+ 2K (627)

Inserting (6.26) and (6.27) in (6.25), using Zl;;}, ;:é_p(i +k—1)3271 <
k(i +k)3,1—6; <k~'and k™2 < (i 4+ k)!/2, one finds that the first term in (6.24)

satisfies

k—1
|0 8 = 008 Kaaoe + @2 @0
p=0 )

< CtVT | flly; (k Fi)y I T A (6.28)

.1
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For the second term in (6.24) we first estimate, by (C.1),
197 K~y % (5B)(¢)|Loe < (6 — )21 M) (@) Loy
S =)y Rk 201+ BT T2 fly

: —k _ _ —k
and hence, since 6, = (1 2+k) —eask — oo,

t
O Ky—y % (05 h)(¢) dt’

Oyt

LOO
< CQk +20)1k + i)' fllys. / R R (1 e T (O VT
< CQk + 2k +i)7! £ ly; 1:-"/ (t—t)" 2207k dr.
’ Ot
We now estimate the above integral. For i = k = 0, we have

t
(t =) ™22 R Gy A < VT2

Ot

Fori + k > 1, for m = 0, using (6.10) we get

JT ! ) JT .
Y2t _’_kt/dl/z—/ 3 (7Y () dt < ——1"TR(r),
/() W =7 | e e = oo
while for m = 1, using t(¢') > t(¢) fort’ <t we get

(t—t) 1)z iR (Y de < o k(r)f (t —1)"2(t")"2 dt’

Ot
‘L’_i_k/ (1—- o)_fo_f do <tk
0

Combining the above four inequalities, one ends up with

‘ LgY

Therefore, summing (6.28) and (6.29) we find that
luallzy < CNT Iy (6.30)

t
0T Koy * (95 h)(¢') dt’

O t

<CVT 3G+ )" Al flly; - (6.29)

Conclusion. Inserting (6.23) and (6.30) in (6.16) shows the bound (6.14). |

6.4. Bilinear estimates

We now estimate the quadratic terms in (6.1). We introduce the X }’2 and Zéw’z based
(defined by (6.11) and (6.13)) vector spaces with the norms

1§ 1x75 (10,000 = sup 1illx: o.00ns  NElZ7010.000 = sup 1§11z, (10,000
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The following lemma states that H; and J; both loose a derivative in a combinatorial
sense (an (i + k) factor). Moreover, as d, derivatives are regularised each with a 1~1/2
factor, J; looses an additional ~1/2 factor.

Lemma 6.5 (Bilinear estimates). For some C > 0 independent of T and i,

”Hi(g’%‘/)”x%l = C”é:”XT,z”%—/”XT,Z’ ”Ji(%‘»s/)ny%’l = C”S”Xr,zng/“ZT,z' (6.31)

Proof. We write H; = H; (5 , 5’ )and J; = J; (§ , 5’ ) for simplicity. Then, by the Leibniz
rule, fort € (0, T1],

2i +1\[(k I
o Hi| < 22(2] )0 ete s

Jj=01=0

We introduce r = 2j 4+ 2/ and using the definition of the X7, norms, we bound
10485 05 E_llree < AjallElxro Aijk—i I 7
S E Ny lIE Ixp o™ 7 e 7120 4 2k — ) Ur) 7220 + 2k —r) 2

Therefore, using (Il() < (i’;) and (D.2) with Ay =2i +1, A, =2k andr; =r + 1, we
get

0% Hill g
—k _, —k 2i+1 Cons _,
1€ llxy, 1E ||XTZZZ 2+ V12 + 2k =) 1) 221 + 2k —r)
Jj=01=0
2i4+2k+1 .
—k —i—kyE 2 2i4+2k+1 _ o _
ST e 1E s D ( il )r!(zz+2k—r)!<r> 2(2i +2k—r) 2
r=0
) . . 2i+2k+1
SRR+ 2%k + DEIx o IE s D ()20 + 2k —r) 7
r=0

SRR Qi+ 20 Wi+ KT IE I IE xS A li + K IE DX, 18 xrs

where we have used (D.1) with K = 2i + 2k + 1. This precisely implies the first inequal-
ity in (6.31).
To prove the second inequality in (6.31), we first write

ki
5 =ZZ('§)(2’ “)(a o), 0k e
[=0j=0

Using the definition of the X7, and Zr, norms, and fooo w(y) dy < oo, and introducing
r=2l+2j, we get

1,1 0L87) 0,0 "€l llnoe < AjullEllxya Aicjmtli — j +k =D 2E 2y,
SUEIxp IE 2y ot K+ 21120+ 2k — 1) (F) 220 4 2k — 1),
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so that, since (I;) < @Ilc),

k P P —i—k,—k—1
197 Jillge < N€Nx7 2 18 1 zgpt " T 0772

k i ;
' 22(22];) (21; 1)r!(zi + 2k —r)Nr) (20 + 2k —r) 7
1=0j=0

Using (D.2) with (A1, A2, r1) = (2i + 1,2k, r), and then (D.1) with K = 2i + 2k + 1,
we obtain

ki ;
ZZ@) (212? 1)”(21‘ + 2k — 1)) 7220 + 2k — )7

1=0,j=0

2i+2k .
> (2’ 2k 1)r!(2i 42k — )220 4 2k — 1)

r=0 r
2i+42k

= Y (2 +2k + DIQ2i + 2k —r + )7 )220 + 2k —r)”!
r=0

< i +2k)Wi + k)7L

Combining the above two inequalities shows that

1 . 2 2
8% il Lo < CAGxt™2 (i + k) Elxs o 1E | 2700

which is precisely the second inequality in (6.31). ]

6.5. Obtaining Gevrey-2 in time regularity by the Picard iteration scheme
The lemma below shows analytic regularisation for solutions to (6.8).

Lemma 6.6. For any T > 0, there exists T(0) > 0 such that for any §° satisfying ||§O llxo
< 00, there exists a T > 0 and a solution & to (6.1) in the sense of (6.5) such that
§& € C([0,T], LY) for each i. Moreover,

1§l Z7, < oo

Proof. Let E =S (t)g 0. We look for a solution of the form § = z' + . We consider the
mapping ® which to ¥ € Zr, associates the unique solution W = ® () to

dywi = dyywi + Hy (C+9,+0)+J: (C+5.L+0),
w; (0, y) =0, i €N, yel0,00),t€l0,T],
w; (,0) =0,

(6.32)
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By Lemma 6.3 and (6.31), for alli € N we have

1H: (€ 40,8+ 0) vy, < VT IH@C+ 0,8+ Dlxg, S VT (ellxys + 110xy,)>
< ﬁ(c + ||5||ZT,2)2

where C is independent of 7', and similarly for v € Z7,, since H; is bilinear:

1 Hi(§ + 0,8+ 0) = Hi(§ + 0, ¢+ 0)lyy,
= |H;i(¢+ 0.0 —-0)+ H;(D=0".¢ +V)|lyp,
< \/T”l_} - 5/||ZT,2(C + ||17||ZT,2 + ||6/||ZT,2)'

Similarly, using again Lemma 6.3 and (6.31), we have

17: (€ + 0.8+ Dlvr, S UClzrs + 18ll272)? S (C + [19]27,)

In addition, since J; is bilinear,

i€+ 5.8 +5) = JiE+8.C+ ) vy,
= i€ + 8.5 =) + JiG = 7. E+ )y,
S =27, (C + 10llz7, + 1Vl 270)-
Therefore, thanks to (6.14) we deduce from the above estimates that
1®@)I 275 S VT (C + [B]l27,)%,
19@) = D) 27 S VT 5=Vl 27,(C + V]l 27> + 1Vl 27.)-

Thus, there exists 7' small enough such that ® is a contraction on the unit ball of Z75.

Hence ® has a unique fixed point E by the Banach fixed point theorem. Then § = Z + E
solves the system (6.1) on (0, T'], and belongs to Z75. ]

6.6. Instantaneous analytic regularisation in the transverse variable

Thanks to Lemma (6.6), for any 0 < t9 < T, the solution is Gevrey-2 in time on [ty, T],
with a radius of analyticity that is now bounded from below uniformly on [ty, T]. In this
subsection, 7 is thus independent of time. Analyticity in the y-variable is given by the
following lemma.

Lemma 6.7. Let © > 0 and assume that § is a smooth (in space and time) solution to
(6.1) on [ty, T] x [0, 00) such that for all k,i € N andm = 0, 1,

10507 &; | oo o 71,209) < CT K20 + 2k + m)!(i + k +m) ™2, (6.33)
Then there exists T' > 0 such that for allm,i € N,

103 &i | Lo (110,71, L52) < C - ()72 +m)i +k +m)72
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Proof. To shorten notation, we shall write L> for L>([tg, T'], L;][0, 00)). In the proof,
C denotes a constant independent of the other parameters, whose value may change from
one line to another. We prove the following bound by induction on m € N:

10597&i[|lLoe < CAjk, forall0 <n <mandi k€N, (6.34)

where
Aigen = T F7H@) ™20 + 2k + m)Wi + k +m)

Note that if 0 < t’ < 1, then (6.34) is true for m = 1 by (6.33). We now assume it is true
form — 1 > 1, and aim at proving it for m.

Step 1. m = 2p is even. By induction on p, using (6.1) we get

p—1
oyE =0t — ) ol O(H; + ),
q=0
and hence, for all k € N,
p—1
okome; = ol g =Y ot (1 ). (6.35)
q=0

We bound the first term on the right-hand side of (6.35) using (6.33):
197+ & llLoe < Co77P7* Qi +2p + 260 +k + p) 2 < éC(T) Aikm-

For the second and third terms in (6.35), using the Leibniz formula we get

a’;‘*'q 35(1)-1—4) H;

k+q2(p—1—q) i i

- +q 2(p—1—¢q) k+q\ (2(p—1—q)\ (2i+1Y\ ., gk+a—l g2(p—1-g)—n

-y ¥ % I R TR K Si=j>
o . l n 2j+1

n=0 j=0
(6.37)
k+ —1-
9, qai(p 1 61)].

k+q2(p—1—g)—
B 1:20 2:: n+1 2j

n=0

(k+q)(2(p_l_q))(2l+l)8’8”&, ak+q 182(17 1—q)— nE_
0

,]:

=]
k+q i

k+qg\[(2i+1)\._ _ i
+ZZ( )( 2 )ayl(aiéj)a’,‘” frr—tmatly (6.38)

[=0,=0

=II
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Using (6.34), introducing r = 2j + 2/ + n, and using the inequality (k +¢q — 1 +
20p—1—¢q)—n+i—j)2 < (2 +2k +m—r)~2 given the range of the parame-
ters /, n and j in the sum, we obtain
k+q-1 —1—q)—
10202; 97 T4 2P "D el oo < CP Ay Aiejktg—1,2(p—1—q)—n
< sz_l_j (17/)_"(2]' +20+m)(j +1+ n)_2 x t—(k+q—l)—(i—j)(T/)—(Z(p—l—q)—n)
R =) 42k +q-D+2(p=1—q)—n)(2i +2k +m—r)"2

2\ 49 )
= C?1"? (r_) T TR YT Q0 4 2k +m—r = 2)Wr) 220 4 2k +m —r) 2.
T

Using (19) < (*329) and (D.3) with (A1, Az, A3,72) = 2k +2¢,2(p — 1 — q),
2i +1,r 4+ 1), we get

"+q2(”‘1“”X":((Hq)(z(p—l—q))(ziﬂ)+(k+q)(2(p—l—q))(2i+1))
& =~ I n 2j+1 l n+l1 2j
P20+ 2k +m —r = 2)Nr)72(2i + 2k +m —r)72
2i+2k+m

2i + 2k —1
< > (l+ +m )r!(2i+2k—|—m—r—2)!(r)_2(2i+2k+m—r)_2
r=0 r+1
2i+2k+m
= Y Qi42%k+m-DIr+ D))+ 2k+m—r)7
r=0

< Qi +2k+m—Di +k+m)2,

where we have used (D.1) with K = 2i 4+ 2k 4+ m. Combining the three inequalities
above, (6.37) and (6.38), one finds

» _5/2 q
195 T2 1Dy 4 [ 00 < cczf/z(T) (i +k+m""Ajgm. (6.39)

For the second term in J;, using (6.34), fooo w(y)dy < oo, letting r = 2j + 2/, and
using (i —j +k+qg—14+2(p—1—q)+ 172 < (2i + 2k + m — r)~2 for the range
of parameters [ and j in the sum, we get

— k+qg—1 —1— o k+qg—I1 —1—
1951 (3Lg)ay TIT R2PTIm DT g oo < C 10 oo 07T 2T g 00
<CCr i @j+20)(j +1)2 x = kta=D=G=))
() REI DD (0 Y 4 2k +q—1) +2(p— 1 —q) + )20 + 2k +m —r) 2
12\ 9
= CC2T/(T—) TR Qi 2k +m—r = DNr) 220 + 2k +m—r) 2.
T

(6.40)
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Using (¥19) < (*3,29) and (D.2) with (A1, A2, 71) = (2k + 2¢,2i + 1,7) we have

k+qg i .

2 +1
Zz(k“’)( P )r!(zi+2k+m—r—1)!(r)—2<i+k+m—r)—2
1=0j=0 ! 2j

2k+2q+2i ;
2k +2 2i +1
5 Z ( +29 +21 + )rg(zi+2k+m—r—l)!(r)_2(i+k+m—r)_2
r=0 ’
< (2k +2i +m—1)!
WA ok 4 2g+2i + 1) Qi+2k+m—1—r) . . -2
Z ‘ ‘ (rV2(2i +2k +m—r)"2.
= Qk+2itm-D! Qk+2¢+2i+1-r)!

We estimate

Rk +2q+2i+1)! Qi+2k+m—1—r)!
Rk +2i+m—1)! 2k +2q+2i+1—r)!
242k +2p—1—-r 2i+2k+2q+2-r
O 2i42k+2p—1 20 +2k +2q +2
Combining the above two inequalities and (D.1) with K = 2k + 2¢g + 2i we obtain

k+g i

2 Z(k Jlr q)(2i2j l)r!(zi +2k +m—1=n)lr) i +k+m—r)

=0 j=0 -
< CQk +2i +m)!(i +k +m)~3.
Combining (6.40) and the above inequality, for the second term in (6.38) we get
2\ 4
7) (i +k+m)" "Nigm. (6.41)

Combining (6.39) and (6.41) we get, for t/ small enough,

~ T
|||z < CCZT’(

~ _L,/Z q
||a’;+qa§<P—1—q>(H,~ + Ji) e < cczf/(T) (i +k+m) " "Ajgom.

Therefore, for T2 < /2, we have Zf;;(l) (t"?/7)4 < 2 and so from the above identity,

p—1
HZ o TR (H; + ;)
qg=0

. CC (i +k +m) " Asgm.

Inserting the above inequality and (6.36) in (6.35) gives
- -/ 7\
105077 &i lLoo < CAjgem (CCT’ + C(Tﬁ) ) < CAigom

for t/ small enough, since m > 2. Therefore, (6.34) is true for m.
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Step 2. m = 2p + 1 is even. By the formula of Step 1 we obtain

p—1

k k —1—
droyE =07 0yE — Y 8 T PTITOTN(H, + 0y,
q=0
and the same computations show the desired result. We omit the details. ]

Appendix A. Functional analysis

Lemma A.1. There exists C > 0 such that for all —oo < Yy <0 and ¢ : (Yy,00) —> R
with ¢ € Hg,
> 3y2
/ Y2e2e™ "1 dY < C|e|?,. (A.1)
H
Yo p

Proof. Let first Yo = —oo. For ¢ € CZ°(R), integrating by parts yields

4 2 2 2 2
—/ 83Y8Y€_% dY + —/ e~ JY = / 22~ gy,

From the Cauchy-Schwarz and Young inequalities, we have 4| [ edyeYe 3Y 2/ 4 <
3 Y262 3Y?/4 4 8 [ |3y e|2e~3Y /4 and we infer from the above identity that

2 2 16 2
/ 2Y2e % dy < 4/ e dY + —/ |ay8|2€_% dY.
R R 5 Jr

By density, this proves (A.1) for all € € le in case Yy = —o0. For —oo < Yy < 0, define

the even extension: &(Y) = e(Y) for Y > Yy and &(Y) = e(QYy — Y ) for Y < Y, and

Yo = —oo. Then ||¢]|2,, < ||§]%, <2|l¢|?, ., where the second inequality holds
HD’YO Hp,ifo HD-YO

since p(Y) < p(2Yy — Y) for Y < Y,. Applying (A.1) for & with ¥y = oo then implies
(A.1) for & with Y. ]

Appendix B. Geometrical decomposition

Proof of Lemma 4.2. The proof relies on a classical use of the implicit function theorem,
preceded by a renormalisation procedure to obtain a result which is uniformly valid for
all A large enough. Define the mapping

D : (e, A, i1, Yo) = AG((8, ho) p, (B, T11) s (8. B2) ),

where (u,v), = f;(?—f’o uvp and, for Y > Yy — Y,

~ Y+Y~v0 —41\2 ( Y ) 8(Y+f]0)
Y)=G —(14+A,7°1)°G .
o 1( o ) RO e T
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Then @ is a C* mapping on L2 x (=g, 00) x (0, 00) x R. Moreover, one computes that
its differential at (0, 0, 1, 0) is, with (u,v) = fYZYo uvp,

J®(0,0,1,0) + O(e~*0) =

(-, o) (—2G1(12) +27”%82G1(%),h o) A2(YdzG1(
(,h1) (—2Gy( %) 2%(‘)2(;1(&%),;1 1) A2(YazGq(
(-, ) (—2G1(L%) 2%3201(1),h 2) A3(Y 926G (5

2
0

).ho) 233G
)i} 23326
).ha) 233G

>

N—
Nyl
=)
_— S~

Py
ON|~< o>;)|~< o>§|~<

Sl S~ S~
'\/
=
S

N—
ol
N
g

>

where the O(e_kg) comes from the boundary terms. Using the Taylor expansion of G
one has

2G(Y) Y G(Y)— 2- Y2+0(Y4)
\az) "2z ) T 202 A8

1
= /\4h2() (2+K)h°(y)+0(k )

Y Y2 Y4
ngaZGl(ﬁ) ==+ o(k—4) = hz(Y) — —ho(Y) + 0(—4)
0 0 0
Y Y Y]? [Y]?
A207,G (—) =——+0(—) =——h (Y)+0( .
0TeM I\ a2 2 A4 23 A
Therefore
J®(0,0,1,0) =
(s ho) —2||ho||i% + 04" —%Ilholli% + 00" 0%
(- h1) 0(Ag" 0(Ag™ —ﬁllhllli% + 01"
( h2) O0(Ag™h) —éllhzlli% + 0(A5") 0(A5®)

This implies that the restriction of the differential to {0} x R3 is invertible for Ay large
enough, with a uniform size. Moreover, one can also check similarly that the second dif-
ferential of ® is bounded near (0, 0, 1, 0), and this uniformly for large A. Therefore the
implicit function theorem applies uniformly for all Ay > A* large enough and Yo < —A3.
There exist 6, K > 0 such that for each ¢ € LKZJ with ||| 2 = 8, there exist unique param-
eters (A, i, Yo) with [A] 4+ | — 1| + |Yo| < K such that ®(g, A, i, Yy) = 0. Moreover,
they define C! functions with respect to the Lf, topology.

Let Ao > A* and | ¢|| 12 = 815*. The above discussion yields the existence, unique-
ness, and differentiability of (4, i, Yo) such that ®(Age, A, 1, Yo) = 0. Let (A, i, Yo) =
(1 4+ A3*A, i, Yo). Then indeed

)+§(Y—170) with & L ho.hy, hyin L2
"

Y 5 Y — Y,
Gy (Az)+8(Y)—)L G( T2
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and one has |)~L — 1| < KAy* and | — 1| 4 |Yo| < K. The uniqueness when requiring
these bounds follows similarly, and implies the smoothness from the above discussion.
This ends the proof. u

Appendix C. Estimates for the heat kernel

Lemma C.1. Let K, be given by (2.4). First, for any T > 0, there exists C(T) > 0 such
that foranyt € [0,T] and y € R,

(K: *w)(y) = Co(y). (C.1)

Second, there exist C,k, tg > 0 such that forallk € N, t > 0and y € R,
K ()] = Cra* k1K e (). 1950y Ko (p)] < Cra ¥t 2k1K 0 (p).  (C2)

Proof. From a direct computation, [, g @(y —z)K;(z) dz < Cw(y) for all y € R and
t € [0, T] for some universal constant C(7") > 0; we omit the details. This shows (C.1).

Below we will denote by C > 0 some universal constant whose value may change
from line to line.

Let z € C denote a complex variable, and (p, ) be its (radius, angle) variables. Let
¢(z) = e~/% . Then ¢ is an analytic function on C \ {0}. Consider for any ¢ > 0 the circle
€ ={zeC:lz—t|= {—0}. Then, for all z € €;, we have %t <p< %t and |0] < 6,
for some 8y < 7/2. Hence, denoting Z = 1/z, we see that for z € €;,

10 _ 10 ~

1 =P=g and [0]=fo.
Therefore, there exists a constant ¢g > 0 independent of ¢ such that Ct—‘) < é}i(%) < $ for
all z € €;. Consequently, for all z € €,

()] <e 7.

Applying the Cauchy contour formula to the holomorphic function ¢ with the contour €;,
and differentiating, one finds that for some constant C > 0, for all j € N,

1976()] < C17107 j1e= P

2
Letnow y € R\ {0} and ¢, (¥) = P T ¢(;_§)_ Then
. 4J . 4t 4] 4t —J ) a2 . ' o2
9y = 35 a{¢(_2)‘ o ) e e O
Y Yy y y

Combining the above bound with the bounds |8{ (t — 1//1)] < jlt=7~Y2 and
107 (t — 1/t3/%)| < (j 4+ D)t~/ 73/2 using the Leibniz rule, one finds that for all j € N,

t >0and y € R,
ifl
d ;Kt(J’)

2

A i i coy? . . ¢
31K, ()| < Cr7=311 jle” ™ and <t jle
1Ko (y J J
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The first bound above is precisely the first bound in (C.2), while the second bound above

gives the second one in (C.2), using the fact that 9, K; = —Z%K ¢ and that for any 0 <
: - ST Ea . Ve
¢y < co there exists C > 0 with je a7 < Ce™ 47 . ]

Appendix D. Combinatorial estimates

Lemma D.1 (Combinatorial estimates). There exists C > 0 such that for any A € N,

A
Z A—a)2<C({A)2 (D.1)

FO}"dl’lyAl,Az,A:;EN,}’ A1+ Arandry, < A1 + Ay + Az,

o)) =) o

a1<A1,a3<Az,a;1+az=ry

z () (@) ()= ("7 oo

a1<A1,a3<Az,a3<A3z,a1+tazx+taz=rp

Proof. To prove (D.1), we decompose

K LK /2] [K/2]
YK k)2 = Y k) THK — k)T Y (k) T2(K k)72
k=0 k=0 k=0
S(K)2) (k)72 S (K) 2
k>0
(D.2) and (D.3) are obtained from a standard counting argument. |
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