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ABSTRACT

Near Earth Objects (NEOs) are a transient population of small bodies with

orbits near or in the terrestrial planet region. They represent a mid-stage in the

dynamical cycle of asteroids and comets, which starts with their removal from the

respective source regions – the main belt and trans-Neptunian scattered disk –

and ends as bodies impact planets, disintegrate near the Sun, or are ejected from

the Solar System. Here we develop a new orbital model of NEOs by numerically

integrating asteroid orbits from main belt sources and calibrating the results on

observations of the Catalina Sky Survey. The results imply a size-dependent

sampling of the main belt with the ν6 and 3:1 resonances producing ≃ 30%

of NEOs with absolute magnitudes H = 15 and ≃ 80% of NEOs with H = 25.

Hence, the large and small NEOs have different orbital distributions. The inferred

flux of H < 18 bodies into the 3:1 resonance can be sustained only if the main-

belt asteroids near the resonance drift toward the resonance at the maximal

Yarkovsky rate (≃ 2 × 10−4 au Myr−1 for diameter D = 1 km and semimajor

axis a = 2.5 au). This implies obliquities θ ≃ 0◦ for a < 2.5 au and θ ≃ 180◦

for a > 2.5 au, both in the immediate neighborhood of the resonance (the same

applies to other resonances as well). We confirm the size-dependent disruption

of asteroids near the Sun found in previous studies. An interested researcher can

use the publicly available NEOMOD Simulator to generate user-defined samples

of NEOs from our model.

1. Introduction

NEOs are asteroids and comets whose orbital perihelion distance is q < 1.3 au. Aster-

oids, which represent the great majority of NEOs on short-period orbits, are the main focus

here, but we also include comets with a < 4.2 au. The goal is to develop an accurate model

of the orbital and absolute magnitude distribution of NEOs that can be used to understand

the observational incompleteness, design search strategies, and evaluate the impact risk. We

aim at setting up a flexible scheme that can easily be updated when new observational data

become available (from the Vera C. Rubin Observatory, NEO Surveyor, etc.).

We closely follow the methodology developed in previous studies (Bottke et al. 2002,

Granvik et al. 2018; also see Greenstreet et al. 2012), and attempt to improve it whenever

possible. This does not always mean that a new level of realism/complexity is added to the
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model. For example, Granvik et al. (2018) defined various NEO sources from numerical

integrations where main belt asteroids were drifted into resonances (Granvik et al. 2017).

This is arguably a more realistic approach than simply placing test bodies into source res-

onances (Bottke et al. 2002). Here we opt for the latter method because it is conceptually

simple and easy to modify. We verify, when possible (e.g., Sect. 9), that the main results

are not affected by this simplifying assumption.

We develop a new method to accurately calculate biases of NEO surveys and apply it to

the Catalina Sky Survey (CSS). The MultiNest code, a Bayesian inference tool designed to

efficiently search for solutions in high-dimensional parameter space (Feroz & Hobson 2008,

Feroz et al. 2009), is used to optimize the model fit to CSS detections. We adopt cubic

splines to characterize the magnitude distribution of the NEO population. Cubic splines

are flexible and can be modified to consider a broader absolute-magnitude range and/or

improve the model accuracy. We use a large number of main-belt asteroids in each source

(105), which allows us to accurately estimate the impact fluxes on the terrestrial planets.

Our model self-consistently accounts for the NEO disruption at small perihelion distances

(Granvik et al. 2016).

This article is structured as follows. We define NEO sources (Sect. 2), carry out N -body

integrations to determine the orbital distribution of NEOs from each source (Sect. 3), and

combine different sources together by calibrating their contributions from CSS (Sect. 4).

The model optimization with MultiNest is described in Sect. 5. The final model, hereafter

NEOMOD, synthesizes our current knowledge of the orbital and absolute magnitude distri-

bution of NEOs (Sect. 6). It can readily be upgraded as new NEO observations become

available. We provide the NEOMOD Simulator1 – an easy-to-operate code that can be used

to generate user-defined samples of model NEOs. Planetary impacts are discussed in Sect.

7. Sect. 8 considers several modifications of our base model. In Sect. 9, we drift main-

belt asteroids toward source resonances to test whether the flux of bodies into resonances is

consistent with the results inferred from the NEO modeling.

1https://www.boulder.swri.edu/~{}davidn/NEOMOD_Simulator
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2. Source populations

To set up the initial orbits of main belt asteroids in various NEO sources, we made use

of the astorb.dat catalog from the Lowell observatory (Moskovitz et al. 2022).2 As of early

2022, the astorb.dat catalog contained nearly 1.2×106 entries, the great majority of which

were main-belt asteroids. For each source, we inspected the known asteroid population near

the source location to define the initial distribution of orbits for our numerical integrations.

We illustrate the method for the 3:1 resonance at a = 2.5 au, which is a notable source of

NEOs identified by many previous studies (e.g., Wisdom 1985, Gladman et al. 1997, Bottke

et al. 2002, Morbidelli & Vokrouhlický 2003, Greenstreet et al. 2012, Granvik et al. 2018);

other resonances are discussed later on.

In Fig. 1, the 3:1 resonance appears as a V-shaped gap – this is the place where

Jupiter’s gravitational perturbations build up to boost object’s orbital eccentricity (Wisdom

1982). The borders of the gap are approximately a1 = 2.5 − (0.02/0.35) e au and a2 =

2.5 + (0.02/0.35) e au, where e is the orbital eccentricity. The 3:1 source population is

represented in this work by 105 test bodies (not shown in Fig. 1) placed within the gap

borders. In reality, the main belt asteroids evolve into the resonance by the Yarkovsky

thermal effect (Vokrouhlický et al. 2015), but this is not considered here. In Sect. 9, we

drift asteroids into resonances and find that the orbital distribution of NEOs is insensitive to

how the resonant sources are populated (e.g., to the initial resonant amplitude distribution).

One needs to be careful, however, with the eccentricity and inclination distributions of source

orbits (Bottke et al. 2002, Granvik et al. 2018).

We define two strips in (a, e), one on the left and one on the right side of the 3:1

resonance (Fig. 1), and use the known asteroids in these strips to set up the eccentricity and

inclination distributions for the 3:1 source. The idea is that bodies entering the 3:1 resonance

should have the e and i distributions similar to bodies in the strips. For 3:1, the left strip is

defined as a > 2.48− (0.02/0.35) e au and a < 2.49− (0.02/0.35) e au, and the right strip is

defined as a > 2.51 + (0.02/0.35) e au and a < 2.52 + (0.02/0.35) e au. The Mars-crossing

orbits are avoided. Both strips have a fixed (e-independent) width to assure even sampling.

2https://asteroid.lowell.edu/main/astorb/
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To limit problems with the observational incompleteness, which may unevenly affect asteroid

populations with different e/i, we only consider bodies with absolute magnitudes H < 18

(cuts with H < 15, H < 16 or H < 17 produce similar results). This means that the

orbital distribution within a single source is size independent. The size dependence appears

in our NEO model due to the size dependent weights of different sources (Sect. 5.1) and the

size-dependent disruption (Sect. 5.4).

The orbital distribution of known asteroids in the strips is parameterized by analytic

functions, which are then used to generate synthetic bodies. This two-step procedure is useful

to leave the record of the adopted distributions (Table 1). Specifically, we experimented with

the single Gaussian, double Gaussian, Rayleigh and Maxwell-Boltzmann distributions. For

the 3:1 resonance, the eccentricity distribution is well approximated by a single Gaussian

with the mean µ = 0.145 and width σ = 0.067, and the inclination distribution with a double

Gaussian with µ1 = 4.7◦, σ1 = 2.7◦, µ2 = 13.5◦, and σ2 = 2.5◦, where the first Gaussian

is given a 2.5 times greater weight than the second one (i.e., the weight ratio w1/w2 = 2.5;

Fig. 2).3 Table 1 reports parameters of the adopted analytic distributions for all sources.

For each draw of e and i, the semimajor axis is assigned randomly between a1 and a2.

The perihelion (ϖ) and nodal (Ω) longitudes are drawn from a uniformly random distribution

between 0 and 2π radians. The mean longitude λ is chosen such that θ3:1 = 3λJ−λ−2ϖ = π,

where θ3:1 is the resonant angle of the 3:1 resonance and λJ is the mean longitude of Jupiter

at the reference epoch (λJ = 343.68◦ for MJD = 2459600.5). With this choice, the initial

resonant amplitude is simply ∆a = |a− 2.5 au|, and we can therefore easily check if different

amplitudes would yield differing orbital distributions of NEOs (they do not; see Sect. 9 for

additional tests). This completes the description for the 3:1 resonance.

We followed the same procedure for the 5:2, 7:3, 8:3, 9:4, 11:5 and 2:1 resonances with

Jupiter, all of which can potentially be important sources of NEOs. In the preliminary tests,

we also included the 7:2 resonance with Jupiter, and the 4:7 and 1:2 resonances with Mars.

3The double Gaussian distribution is given here by

f(x) = w1 exp

[

−
1

2

(

x− µ1

σ1

)2
]

+ w2 exp

[

−
1

2

(

x− µ2

σ2

)2
]

. (1)
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These resonances were tested to establish the importance of the ‘forest’ of weak resonances

in the inner main belt. Whereas these individual resonances are likely to be important for

the NEO delivery, especially for large asteroids (Migliorini et al. 1998), we found that several

trees cannot account for a forest. We thus followed the method described in Migliorini et

al. (1998) to model all weak resonances (also see Bottke et al. 2002). Specifically, we

extracted all known asteroids from the astorb.dat catalog with q > 1.66 au (i.e., no Mars

crossers), 2.1 < a < 2.5 au, i < 18◦, and H < 18 (163,971 bodies in total), and reduced

that sample – by random selection – down to 105 orbits that define our “inner belt” source.

While it is not ideal to combine two different methods – one that places synthetic bodies

into strong resonances (see above for 3:1) and one based on real main-belt asteroids (here

for the inner belt) – we believe that this is the best practical approach to the problem at

hand. The same method was used for the Hungaria (q > 1.66 au, a < 2.05 au, i > 15◦) and

Phocaea (q > 1.66 au, 2.1 < a < 2.5 au, 18◦ < i < 30◦) asteroids. The known populations

of Hungarias and Phocaeas were cloned 4 and 13 times, respectively, to obtain 105 source

orbits for each.4

The ν6 resonance, which lies at the inner edge of the asteroid belt, requires a special

treatment. We place orbits in the strongly unstable part of the ν6 resonance where bodies

are expected to evolve onto NEO orbits in < 10 Myr (Morbidelli & Gladman 1998). The

left and right borders of the ν6 source region in (a, i) are defined here as a1 = 2.062 +

0.00057 i2.3 au and a2 = a1 + 0.04− 0.002 i au, with i in degrees. To define the initial e and

i distributions in the ν6 resonance, we consider the distribution of real asteroids in the strip

a > 2.12 + 0.00057 i2.3 au and a < 2.18 + 0.00057 i2.3 au, with i in degrees. The eccentricity

distribution of bodies in the strip can be approximated by a single Gaussian with the mean

µ = 0.16 and width σ = 0.067, and the inclination distribution with a double Gaussian

with µ1 = 5.5◦, σ1 = 2.3◦, µ2 = 15◦, and σ2 = 3.0◦, and w1/w2 = 10 (Table 1). The mean

and nodal longitudes are uniformly distributed between 0 and 2π radians. We set ϖ = ϖS,

where ϖS is the perihelion longitude of Saturn at the reference epoch (ϖS = 88.98◦ for MJD

= 2459600.5). For each draw, the initial semimajor axis is randomly placed between a1 and

a2 defined above.

4The cloning consisted in applying a 10−6 relative change to the velocity vector of each object.
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Nesvorný et al. (2017) developed a dynamical model for Jupiter-family comets (JFCs).

In brief, the model accounted for galactic tides, passing stars, and different fading laws.

They followed 106 bodies from the primordial trans-Neptunian disk, included the effects of

Neptune’s early migration, and showed that the simulations reasonably well reproduced the

observed structure of the Kuiper belt, including the trans-Neptunian scattered disk, which

is the main source of JFCs. The orbital distribution and number of JFCs produced in the

model were calibrated on the known population of active comets. We refer the reader to

Nesvorný et al. (2017) for further details.

Here we use the model from Nesvorný et al. (2017) to set up the orbital distribution of

comets in the NEO region. The comet production simulations from Nesvorný et al. (2017)

were repeated to have better statistics for q < 1.3 au. Specifically, every body that evolved

from the scattered disk to q < 23 au was cloned 100 times, and the code recorded all orbits

with q < 1.3 au and a < 4.5 au (with a 100-yr cadence). This data represents our model

for cometary NEOs. The model includes the population of long-period comets but does not

account for the long-period comet fading (Vokrouhlický et al. 2019). Note that the current

orbital distribution of JFCs is largely independent of details of the early evolution of the

Solar System. We thus do not need to investigate different cases considered in Nesvorný et

al. (2017).

In summary, we have 12 sources in total: eight resonances (ν6, 3:1, 5:2, 7:3, 8:3, 9:4,

11:5 and 2:1), the forest of weak resonances in the inner belt, two high-inclination sources

(Hungarias and Phocaeas), and comets.

3. Orbital integrations and binning

The orbital elements of eight planets (Mercury to Neptune) were obtained from NASA/JPL

Horizons for the reference epoch (MJD = 2459600.5). We used the Swift rmvs4 N -body in-

tegrator (Levison & Duncan 1994) to follow the orbital evolution of planets and test bodies

(105 per source). The integrations were performed with a short time step (12 hours).5 For

5The optimal time step was determined by convergence studies. The results with 12 and 18 hour time

steps, both in terms of the orbital distribution produced from different sources and planet impact statistics,
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each source, we used 2000 Ivy Bridge cores of the NASA Pleiades Supercomputer, with each

core following 8 planets and 50 test bodies. The simulation set represented ∼ 10 million

CPU hours in total. A test body was removed from the integration when it impacted the

Sun, one of the planets, or was ejected from the Solar System. All integrations were first

run to t = 100 Myr. The test bodies that had NEO orbits (q < 1.3 au) at t = 100 Myr were

collected and their integration was continued to t = 500 Myr. We tested the contribution of

long-lived NEOs for t > 500 Myr and found it insignificant.

The orbits of model NEOs were recorded with a 1000-yr cadence. This is good enough

– with the large number of test bodies per source – to faithfully represent the orbital dis-

tribution from each source. For the ν6 and 3:1 resonances, we also tested the high-cadence

sampling, with the orbits being recorded every 100 yr, and verified that the results were prac-

tically the same. The high-cadence sampling, however, generated data files that were too

large to be routinely manageable with our computer resources (hundreds of Gb per source).

The integration output was used to define the binned orbital distribution of NEOs from

each source j, dpj(a, e, i) = pj(a, e, i) da de di. We tested different bin sizes. On one hand,

one wishes to represent the smooth orbital distribution as accurately as possible, without

discontinuities. On the other hand, the MultiNest fits become CPU expensive if too many

bins are considered. After experimenting with the bin size, we adopted the original binning

from Granvik et al. (2018) for the MultiNest runs and used four times finer binning for

plots (Fig. 3). Table 2 reports the number of bins for the MultiNest runs and the range of

orbital parameters covered by binning.6

For each source, the orbital distribution was normalized to 1 NEO,
∫

a,e,i

pj(a, e, i) da de di = 1 , (2)

effectively representing the binned orbital PDF (probability density function). We used the

orbital range a < 4.2 au, q < 1.3 au, e < 1 and i < 90◦, hereafter the NEO model domain,

were found to be practically identical. Long time steps in excess of 1 day generate artifacts in the orbital

distribution of NEOs with short orbital periods. Granvik et al. (2018) used a 12-hour time step as well.

6Note that, as there are many more bins that known NEOs (Sect. 4), most bins do not contain a known

NEO.
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because this is where all NEOs detected by CSS reside (Sect. 4; except for (343158) Marsyas

with i = 154◦). The model can be easily extended to include retrograde orbits. As the

binning is done only in a, e, and i, the model ignores any possible correlations with the

orbital angles (nodal, perihelion and mean longitudes). Some correlations would arise due

to orbital resonances with planets (JeongAhn & Malhotra 2014), but we do not investigate

this issue here.

Given the vast number of bodies released from each source, the N -body integrator

records a large number of planetary impacts. We record all impacts, including Mars impacts

from impactors with q > 1.3 au (not NEOs), and use this information to compute the

impact flux from each source. When the source-specific impact fluxes are properly weighted

by accounting for the size-dependent sampling of sources (Sect. 5.1), we obtain an accurate

record of NEO impacts on planets (Mercury, Venus, Earth and Mars). These results are

discussed in Sect. 7.

4. Catalina Sky Survey

4.1. Observations

The Mt. Lemmon (IAU code G96) and Catalina (703) telescopes of the Catalina Sky

Survey (CSS; Christensen et al. 2012) produced nearly 22,000 NEO detections and redetec-

tions during the 8-year long period from 2005 to 2012. The two surveys were complementary

to each other, with the 1.5-m G96 telescope providing the narrow-field & deep limiting mag-

nitude observations and the 0.7-m 703 telescope providing the wide field & shallow limiting

magnitude observations. The survey has a carefully recorded pointing history, amounting

to well over 100,000 Fields of View (FoVs) for each site (for the 2005–2012 period), and

a well characterized detection efficiency (Jedicke et al. 2016). The orbital and magnitude

distributions of NEOs detected by CSS were reported in Jedicke et al. (2016).

Here we use new detections and accidental redetections of NEOs by CSS – 4510 indi-

vidual NEOs in total. We count each individual NEO only once (i.e., as detected) and do

not consider multiple (accidental or not) detections of the same object. With this setup, we

mainly care about the detection probability of an object by CSS, and not about the number
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of images in which that same object was detected (hereafter the CSS detection rate). This

has the advantage that we do not have to make decisions about whether a particular detec-

tion was accidental or not.7 We consider the CSS detection rate only to compare our results

with Granvik et al. (2018), where the accidental redetections were included.

The detection probability (or bias for short) of an object in a CSS FoV8 can be split into

three parts (Jedicke et al. 2016): (i) the geometric probability of the object to be located

in the FoV, (ii) the photometric probability of detecting the NEO’s tracklet, and (iii) the

trailing loss.

4.2. Geometric probability

To account for (i), we use the publicly available objectsInField9 code (oIF) from

the Asteroid Survey Simulator (AstSim) package (Naidu et al. 2017). The oIF code inputs

several parameter sets: (1) the list of survey exposure times (MJD), (2) the pointing direction

for each exposure, as defined by the right ascension (RA) and declination (DEC) of the field’s

center, (3) the sky orientation in the focal plane (the angle between sky north and the ’up’

direction in the focal plane), (4) the FoV size and shape (rectangular or circular), and (5)

the observatory code as defined by the Minor Planet Center10. The user needs to generate

a database (.db) file, for example with the help of the DB Browser for SQLite11, containing

all inputs. We refer the reader to the GitHub documentation of oIF for further details.

The oIF code inputs the orbital elements of a body at a reference epoch, propagates it

7Intentional redetections (e.g., the same object targeted multiple times) have no information content for

our work. Accidental redetections of the same object typically happen when the object is relatively bright.

The accidental redetections could thus improve the statistics for bright objects.

8More accurately, this applies to a set of four FoV with the same pointing direction taken by CSS in short

succession on the same night (FoV set or ‘frame’). The detection probability is the probability that the CSS

pipeline picks up an object in at least three of these four FoVs. Objects identified in less then three FoVs

by the CSS pipeline are not reported as detected.

9https://github.com/AsteroidSurveySimulator/objectsInField

10https://minorplanetcenter.net/iau/lists/ObsCodesF.html

11https://sqlitebrowser.org
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over the duration of the survey (using the OpenOrb12 package, Granvik et al. (2009), and

NASA/JPL’s Navigation and Ancillary Information Facility (NAIF) utilities13), and outputs

the list of survey’s FoVs in which the body would appear. To speed up the calculation,

oIF uses a series of nested steps where the body’s position relative to a specific FoV is

progressively refined. The orbital propagation can use the Keplerian or N -body methods.

4.3. Photometric efficiency

Once it is established that a body would geometrically appear in a given FoV, one

has to account for the photometric and trailing loss efficiencies in that FoV (items (ii) and

(iii) above) to determine whether the object would actually be detected. To aid that, oIF

reports the heliocentric distance, distance from the observer, and the phase angle of each

body in each FoV. We can thus consider different absolute magnitudes H of the body in

question and compute its expected apparent magnitude V in any FoV. This can be done by

post-processing the oIF-generated output.

The photometric probability of detection as a function of V (Jedicke et al. 2016) can

be given by

ϵ(V ) =
ϵ0

1 + e(V−Vlim)/Vwidth
(3)

where ϵ0 is the detection probability for bright and unsaturated objects, Vlim is the (limiting)

visual magnitude where the probability of detection drops to 0.5ϵ0, and Vwidth determines

how sharply the detection probability drops near Vlim. In addition, we set ϵ(V ) = 0 for

V > Vlim + Vwidth (Jedicke et al. 2016; no NEOs were detected for V > Vlim + Vwidth). The

ϵ0, Vlim, and Vwidth parameters were reported in Jedicke et al. (2016) for every night of CSS

observations. This allows us to account for changing observational conditions and simulate

CSS observations in detail. The uncertainties of ϵ0, Vlim, and Vwidth were not reported in

Jedicke et al. (2016). We therefore cannot perform a detailed error analysis where these

uncertainties would be propagated to the final results. For reference, the average values are

ϵ0 = 0.680, Vlim = 19.42 and Vwidth = 0.395 for 703, and ϵ0 = 0.853, Vlim = 21.09, and

12https://github.com/oorb/oorb

13https://naif.jpl.nasa.gov/naif/utilities.html
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Vwidth = 0.424 for G96.

4.4. Trailing loss

The trailing loss stands for a host of effects related to the difficulty of detecting fast

moving objects. If the apparent motion is high, the object’s image (a streak) is smeared over

many CCD pixels, which diminishes the maximum brightness and decreases S/N. Long trails

may be missed by the survey’s pipeline (due to streaking), the object may not be detected

in enough images of an FoV set (as required for a detection), or the streaks in different

images may not be linked together. The trailing loss is especially important for small NEOs;

they can only be detected when they become bright, and this typically happens when they

are moving very fast relative to Earth during a close encounter. The oIF code provides the

rate of motion (w in deg/day) for each FoV where the test object was detected. We need

to translate this rate into the trailing loss factor and estimate the fraction of objects not

detected by the survey due to this effect.

The trailing loss of CSS was analyzed in Zavodny et al. (2008). It was deduced as a

function of V and w from a series of CSS images where stars were ’trailed’ by tracking at

non-sideral rates of motion from 1.5 deg/day to 8 deg/day. The results are not available to

us on a FoV-to-FoV basis – we only have the ’average’ trailing loss reported in Zavodny et

al. (2008). This can be a source of important uncertainty because the trailing loss is known

to vary with seeing (Vereš & Chesley 2017), and should have varied over the course of CSS

observations.

An alternative method to estimating the trailing loss was proposed in Tricarico (2017),

who compared the population of known NEOs that should have been detected by CSS to

those actually detected, and looked into the overall variation of the detected fraction with

w. The results were presented as the trailing loss average for G96 and 703 and should be

representative for the bulk of detections (V = 18–20 for 703 and V = 20–22 for G96).

The detection efficiency was given as ϵ(w) = 0.19 + 0.36/(w − 0.06) for 703 and ϵ(w) =

0.56 + 0.18/w for G96, with 0 ≤ ϵ(w) ≤ 1 and w in deg/day.

The CSS trailing loss inferred in Tricarico (2017) is very different – in terms of the
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effect’s overall importance – from that obtained in Zavodny et al. (2008). For example, in

Tricarico (2017), the 703’s detection efficiency drops to ≃ 0.38 for w = 2 deg/day, whereas

Zavodny et al. (2008) found a practically negligible effect for w < 5 deg/day and V < 22

(for both CSS sites). The difference is puzzling. On one hand, Tricarico’s method probably

more closely mimics the actual detection of faint NEOs by CSS than the trailed-star method

in Zavodny et al. (2008). On the other hand, Tricarico derived ϵ(w) as a function of w, but

not of V , while Zavodny et al. (2017) found that the trailing loss is sensitive to an object’s

apparent magnitude.

Given that two different studies of the CSS trailing loss reported dissimilar results, we

must make an uneasy choice on how to proceed. In Sect. 6, we first report the results of

our base model, where we use the trailing loss from Zavodny et al. (2008). This allows us to

directly compare the results with Granvik et al. (2018), where the same formulation of the

trailing loss was used. Auxiliary NEO models, including those where we use the trailing loss

from Tricarico (2017), are discussed in Sect. 8. We point out that the trailing loss represents

an important uncertainty in estimating the population of small NEOs, and we urge surveys

to carefully characterize it.

4.5. CSS bias as a function of a, e, i and H

The detection probability of CSS, P(a, e, i, H), needs to be computed as a function of

a, e, i and H. As we described in Sect. 3, the model NEO orbits are binned (Table 2).

We therefore need to compute P(a, e, i, H) in each bin. For each bin, we generated a large

number (Nobj = 10, 000; the required number was determined by convergence tests) of test

objects with a uniformly random distribution of a, e and i within the bin boundaries. The

mean, perihelion and nodal longitudes were randomly chosen between 0 and 360◦. The oIF

code was then used to determine the CSS geometric detection probability (or the detection

rate). For each H bin, we assigned the corresponding absolute magnitude to 10,000 test

NEOs and propagated the information to compute the photometric detection efficiency ϵP(V )

(Eq. 3), individually for every FoV, and the trailing loss ϵT(w, V ). The geometric detection

probability, ϵP and ϵT were combined to compute the detection probability of each test NEO

in every FoV frame.
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The rate of detection, R(a, e, i, H), is defined as the mean number of FoVs in which

an object with (a, e, i, H) is expected to be detected by the survey. We compute the mean

detection rate as

R(a, e, i, H) =
1

Nobj

Nobj
∑

j=1

NFoV
∑

k=1

ϵj,k , (4)

where NFoV is the number of FoVs, and ϵj,k is the detection probability of the body j in the

bin (a, e, i, H) and FoV k.

The detection probability of CSS, P(a, e, i, H), is defined as the mean detection proba-

bility of an object with (a, e, i, H) over the whole duration of the survey. We compute the

mean detection probability as

P =
1

Nobj

Nobj
∑

j=1

{

1−

NFoV
∏

k=1

[1− ϵj,k]
}

, (5)

where the product of 1 − ϵj,k over FoVs stands for the probability of non-detection of the

object j in the whole survey. To combine 703 or G96, we have 1−P =(1−P703)×(1−PG96).

Figures 4–6 illustrate the CSS bias in several examples. We find a good agreement with

the bias used in Granvik et al. (2018) when the CSS detection rate is averaged over the

whole orbital domain and plotted as a function of the absolute magnitude (Fig. 4). Some

differences are noted when the detection rate is plotted for different orbits. For example, our

bias tends to vary more smoothly with the orbital elements than the bias from Granvik et

al. (2018). We attribute this to the large statistics used here (e.g., 10,000 bodies per orbital

bin).

The detection probability of CSS is ≳ 0.7 for large, H ≃ 15 NEOs, except for those on

orbits with a < 0.8 au (Fig. 5). Fainter NEOs are detected with lower probability. Figure 6

illustrates these trends in more detail. Interestingly, P shows dips and bumps as a function

of NEO’s semimajor axis (vertical strips in the top panels of Fig. 5). The dips, where the

detection probability is lower, correspond to the orbital periods that are integer multiplies

of 1 year. This is where the synodic motion of NEOs allow them to hide and not appear in

the survey’s FoVs. This effect has been reported before (e.g., Tricarico 2017). The average

detection rate is less sensitive to this effect because the hidden NEOs represent a relatively

small fraction of the total sample and have a small weight in the average when the detection
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rate is considered.

5. Parameter optimization with MultiNest

We use MultiNest to perform the model selection, parameter estimation and error

analysis (Feroz & Hobson 2008, Feroz et al. 2009).14 MultiNest is a multi-modal nested

sampling routine (Skilling et al. 2004) designed to compute the Bayesian evidence in a

complex parameter space in an efficient manner. The parameter space may contain multiple

posterior modes and degeneracies in high dimensions. For brevity, we direct those interested

to the aforementioned works for further details.

We use the following reasoning to define the log-likelihood in MultiNest. Let nj be the

number of objects detected by CSS in the bin j, and λj the number of objects in the bin j

expected from the model. Here the index j goes over all bins in a, e, i and H. Assuming the

Poisson distribution15 with the expected number of events λj, the probability of drawing nj

objects is

pj(nj) =
λ
nj

j exp(−λj)

nj!
. (6)

The joint probability over all bins is then

P =
∏

j

λ
nj

j exp(−λj)

nj!
. (7)

The log-likelihood can therefore be defined as

L = lnP = −
∑

j

λj +
∑

j

nj lnλj , (8)

where we dropped the constant term
∑

j ln(nj!). This definition is identical to that used in

Granvik et al. (2018), except that here work with the detection probability (not efficiency)

14https://github.com/farhanferoz/MultiNest

15More accurately, we should use the binomial distribution with the model-estimated probability of de-

tection in the CSS FoV set given by p = λj/Nimg, where Nimg = 226, 824 is the total number of CSS FoVs.

The Poisson distribution should be an adequate approximation of the binomial distribution as long as Nimg

is large enough and λj is small enough. Both these conditions appear to be satisfied in the present case.
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and first detection (i.e., no multiple redetections; Sect 4.1). The second term in Eq. (8) is

evaluated over all bins with detected objects. The first term penalizes models with large

overall values of λj. For two or more surveys, L is simply the sum of individual survey’s

log-likelihoods.

The models explored here range from simple ones with as few as 7 parameters (3 source

weights and 4 magnitude distribution coefficients) to complex ones with as many as 30

parameters (12 sources with size dependent contributions, cubic spline representation of

the magnitude distribution, magnitude dependent disruption for bodies with low perihelion

distance; Granvik et al. 2016). We first describe various issues that are common to these

models and emphasize differences with respect to the previous work – the tested models are

discussed in Sects. 6 and 8.

The model selection is based on the evidence term lnZ computed by MultiNest. The

aim is to select one model from a set of competing models that represents most closely

the underlying process that generated the observed data. The models are considered to

be a priori equiprobable. To compare two models we compute the ratio of their posterior

probabilities (the Bayes factor; ∆ lnZ) and use it to evaluate the statistical preference for

the best one. Note that this procedure implicitly penalizes models with more parameters.

There are three sets of priors: (1) coefficients α that determine the strength of different

sources, (2) parameters related to the absolute magnitude distribution, and (3) priors that

define the disruption model. The motivation for (3) is explained in Sect. 5.3 (see Granvik

et al. 2016). We limit our analysis to considerations based on the absolute magnitude

distribution. The albedo and size distribution constraints from WISE (Mainzer et al. 2019)

will be addressed in a forthcoming publication.

5.1. Strength of sources

As for (1), the intrinsic orbital distribution of model NEOs is obtained by combining

ns sources: p(a, e, i) =
∑ns

j=1 αj pj(a, e, i) with
∑ns

j=1 αj = 1. The coefficients αj represent

the relative contribution of each source to the NEO population (i.e., the fraction of NEOs

from the source j). The binned distribution p(a, e, i) is normalized to 1 NEO and needs to
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be supplemented by the absolute magnitude distribution (Sect. 5.2).

The main difficulty with implementing the α coefficients in MultiNest is that the

Bayesian tools typically work with independent priors. It is therefore not possible, for

example, to choose each αj randomly between 0 and 1, and rescale them later such that

they sum to 1. Using a geometrical approach we found the following general algorithm for

assuring that αj have a multivariate, uniformly random distribution, and automatically sum

to 1. We generate uniformly random deviates 0 ≤ Xj ≤ 1 and compute

αj =
[

1− (1−Xj)
1

ns−j

]

(

1−

j−1
∑

k=1

αk

)

(9)

for 1 ≤ j ≤ ns − 1, and

αns
= 1−

ns−1
∑

k=1

αk . (10)

The order in which different sources are linked to the index j has no effect on the results.

Kipping et al. (2013) derived an identical formula for ns = 3. The problem in question

is related to the Dirichlet distribution with equal weights, but it is not immediately obvi-

ous to us how to construct an efficient algorithm based on that (as the inverse cumulative

distribution, CDF, is needed in Eq. (9)).

The contribution of different sources to NEOs may be size dependent. This is because

the weak orbital resonances in the inner belt are expected to produce an important share

of large NEOs (Migliorini et al. 1998). Small main-belt asteroids instead drift across large

radial distances by the Yarkovsky thermal effect (Vokrouhlický et al. 2015), can pass over

the weak resonances, and reach the strong ν6 source (Granvik et al. 2017). Granvik et al.

(2018) accounted for the size dependency by adopting a separate size distribution for each

source (see Sect. 5.2). Here we set αj coefficients to be functions of the absolute magnitude.

For simplicity, we adopt a linear relationship, αj = α
(0)
j + α

(1)
j (H −Hα), where Hα is some

reference magnitude, and α
(0)
j and α

(1)
j are new model parameters. In practice, using Eqs.

(9) and (10), we set αj(Hmin) and αj(Hmax) for some minimum and maximum absolute

magnitudes (e.g., Hmin = 15 and Hmax = 25), and linearly interpolate between them. This

automatically assures that
∑

j αj(H) = 1 for any Hmin < H < Hmax.
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5.2. Absolute magnitude distribution

The differential absolute magnitude distribution is denoted by dn(H) = n(H)dH. Given

that the magnitude distribution is not seen to wildly vary across the main belt (Heinze et al.

2019), and craters on the main belt asteroids follow a common size distribution (Bottke et

al. 2020), we use a similar setup for different main-belt sources. Specifically, the magnitude

distribution produced by source j is set to be dnj(H) = αj(H)n(H)dH. The magnitude

distributions of different sources are similar, but change with αj(H), which are assumed to

linearly vary with H (Sect. 5.1). For example, as the ν6 source is found to contribute more

to faint NEOs than to bright NEOs (Sect. 6), the magnitude distribution of ν6 is slightly

steeper than dn(H). When the contribution of different sources is combined, we find that
∑

αj(H)n(H)dH = n(H)dH, which means that n(H) stands for the absolute magnitude

distribution of the whole NEO population. This is a convenient scheme.

Our choice of dnj(H) greatly limits the number of model parameters. For the cubic

spline representation of dn(H) (see below), and ns sources, we have 2ns + 5 parameters in

total (2ns α’s and 5 parameters defining dn(H)). For comparison, Granvik et al. (2018)

used different magnitude distributions for individual sources, in which each distribution was

represented by the 3rd-order polynomial with 4 coefficients. This gives 4ns parameters in

total. The setup in Granvik et al. (2018) can account for large magnitude-distribution

differences between different sources. With too many parameters, however, the model can

be over-parameterized and not all the parameters can be constrained from the existing

observations.

Granvik et al. (2018) defined the magnitude distribution of each source using a smooth,

second-degree variation of the differential slope. In terms of the log-cumulative magni-

tude distribution, logN(H), this is equivalent to a third-order polynomial representation:

log10 N(H) = log10 Nref+γ(H−Href)+δ(H−Hc)
3, where Nref is the normalization constant,

Href is some constant reference magnitude (Href = 17 in Granvik et al.), γ is the slope of the

linear term, and the cubic term is centered at Hc and has the ‘twist’ amplitude δ. In this

case, there are four free parameters for each source: Nref , γ, δ and Hc.

We tested this parameterization in our model and found that it has undesired limita-

tions. First, log10 N(H), as given above, is symmetric around Hc, but the real magnitude
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distribution of NEOs is not symmetric; it is gently rounded just below H = 20 but has a

sharper dip leading to a steeper slope for H > 20 (e.g., Harris & D’Abramo 2015). It then

becomes difficult to accurately fit observations in this model because the cubic polynomial

representation is simply too rigid. In Granvik et al. (2018), the asymmetric magnitude

distribution of NEOs was composed from many different sources each having a symmet-

ric distribution (around a different Hc value). This should have produced some tension in

the fit. Second, given the rigid nature of the cubic polynomial with a twist, the fit near

H = 25, where the magnitude distribution is steep, would influence the fit at H = 15. This

is not desirable as the model should have enough flexibility to deal with the bright and faint

bodies separately. Third, the cubic polynomial is difficult to generalize to a wider absolute

magnitude range and/or higher accuracy. Higher-order polynomials, for example, have the

inconvenient property that the polynomial coefficients sensitively depend on the order; they

wildly change if the order is increased.

Here we use cubic splines to represent log10 N(H). The magnitude interval of interest,

15 < H < 25 for our base CSS model (Sect. 6), is divided into several segments. The more

sections there are the more accurate the parameterization is, but we also have more parame-

ters to deal with. After experimenting with different choices we opted for four segments and

five parameters. There are four parameters defining the average slope in each segment, γj,

and one parameter that provides the overall calibration. We typically use Nref = N(Href)

with Href = 17.75 (diameter D = 1 km for the reference albedo pV = 0.14). The normal-

ization constant and slope parameters are used to compute log10 N(H) at the boundaries

between segments; cubic splines are constructed from that (Press et al. 1992). The splines

assure that N(H) smoothly varies with H. This representation has the desired properties:

it is accurate, flexible, and can easily be generalized by adding more segments.16

Optionally, we can use additional constraints to inform the MultiNest fits. For example,

the known sample of NEOs with H < 15 is complete, and there are ≃ 50 such objects in

16Initially, we sectioned the magnitude range 15 < H < 25 evenly by having four intervals H = 15–17.5,

17.5–20, 20–22.5, and 22.5–25, and found that the use of splines led to a substantial improvement of fits

relative to those obtained with the third order polynomial. The results further improved when the division

between the third and fourth intervals was set at H = 24 (instead of 22.5). This is related to the asymmetry

of the underlying distribution which is reproduced slightly better when the third and fourth segments have

unequal lengths.
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the JPL Small Bodies Database.17 We can therefore fix N(15) = 50 and compute the γ1

slope such that this additional constraint is satisfied. With this, we only have four absolute

magnitude distribution parameters in the MultiNest fit.

5.3. Disruption model

To account for the disruption of NEOs at small perihelion distances, following Granvik

et al. (2016), we eliminate test bodies when they reach critical distance q∗. Granvik et al.

(2016) found that q∗ is a function of size with small NEOs disrupting at larger perihelion

distances than the large ones. To demonstrate this, Granvik et al. (2016) divided the

absolute magnitude range into three intervals, H = 17–19, 20–22 and 23–25, and performed

separate fits to CSS in these three cases. They found that q∗(H) is roughly linear in H with

q∗ ≃ 0.06 au for H = 17–19, q∗ ≃ 0.12 au for H = 20–22, and q∗ ≃ 0.18 au for H = 23–25.

We tested the same method here and found results consistent with Granvik et al. (2016).

Performing separate fits in different magnitude ranges is somewhat awkward (because

there are many other parameters to explore as well). Granvik et al. (2018) therefore used

a different method where the effect of disruptions was approximated by a penalty function

P (a, e) = 1 − k[q0 − a(1 − e)] for q < q0 and P (a, e) = 1 otherwise. The two parameters

of the penalty function, k and q0, which have some (unspecified) relationship to q∗, were

estimated from the CSS fit (Granvik et al. 2018). Given that the penalty function only

depends on a and e, this method cannot accurately reproduce the real effect of disruptions.

This is because, when bodies are removed at q∗, it not only affects the (a, e) distribution,

but it also influences the inclination distribution (it becomes narrower for shorter lifetimes)

and absolute magnitude distribution (as q∗ is size dependent). We find that this is not a

minor issue (Fig. 7).

To circumvent these problems, here we assume that the q∗ dependence on H is roughly

linear, and parameterize it by q∗ = q∗0 + δq∗(H − Hq), where Hq = 20. We use uniform

priors for the two parameters, q∗0 and δq∗. To construct the orbital distribution for any

q∗ < 0.3 au, we first produce the binned distributions (from each source) for q∗ = 0, 0.05,

17https://ssd.jpl.nasa.gov/tools/sbdb_query.html
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0.1, 0.15, 0.2, 0.25, and 0.3 au. This is done by following the orbit of every simulated

object and recording the time t∗ when the object reached q < q∗ for the first time. The

binning is done for t < t∗. The object is assumed to disrupt at t = t∗ and not included

for t > t∗. The fitting routine then linearly interpolates between distributions obtained

with different q∗ to any intermediate value of q∗(H). The resulting orbital distribution, pq∗ ,

which now also depends on the absolute magnitude, pq∗ = pq∗(a, e, i, H), is normalized to 1

(
∫

pq∗(a, e, i, H) da de di = 1 for any H).

The method described above assures that a single fit can be performed globally, for the

full range of H, and at the same time we are using a physically-based approach to modeling

the size/magnitude-dependent disruption distance. The linear dependence of q∗ on H could

be generalized to a more complex functional form when the need for that arises.

5.4. Model summary

In summary, our biased NEO model is

Mb(a, e, i, H) = n(H)P(a, e, i, H)
ns
∑

j=1

αj(H) pq∗,j(a, e, i, H) , (11)

where αj are the magnitude-dependent weights of different sources (
∑

j αj(H) = 1), ns is

the number of sources, pq∗,j(a, e, i, H) is the PDF of the orbital distribution of NEOs from

the source j, including the size-dependent disruption at the perihelion distance q∗(H) (this

is the only H-dependence in the p functions), n(H) is the differential absolute-magnitude

distribution of the NEO population (the log-cumulative distribution is given by splines; Sect

5.2), and P(a, e, i, H) is the CSS detection probability (Eq. 5). For each MultiNest trial,

Eq. (11) is constructed by the methods described above. This defines the expected number

of events λj = Mb(a, e, i, H) in every bin of the model domain, and allows MultiNest to

evaluate the log-likelihood from Eq. (8).

The intrinsic (debiased) NEO model is simply

M(a, e, i, H) = n(H)
ns
∑

j=1

αj(H) pq∗,j(a, e, i, H) . (12)

By integrating Eq. (12) over the orbital domain, given that
∫

pq∗,j(a, e, i, H) da de di = 1
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and
∑

j αj(H) = 1, we verify that n(H) stands for the (differential) magnitude distribution

of the whole NEO population.

6. The base NEO model

Our base NEO model accounts for ns = 12 sources. Each source has a magnitude-

dependent contribution (Sect. 5.1) and the source weights αj(15) (for H = 15) and αj(25)

(for H = 25) therefore represent 2(ns−1) model parameters (the last source’s contribution is

computed from Eq. (10)). There are four parameters related to the magnitude distribution,

Nref and γj, 2 ≤ j ≤ 4 (15 ≤ H ≤ 25). The γ1 parameter is fixed such that N(15) = 50

(Sect. 5.2). In addition, the q∗0 and δq∗ parameters define the disruption model. This adds

to 28 model parameters in total. We used uniform priors for all parameters (see Sect. 5.1 for

the multivariate uniform distribution of αj(15) and αj(25)). The CSS fits were executed with

the MultiNest code running on 2000 Ivy Bridge cores of the NASA Pleiades Supercomputer.

Each fit required at least four Wall-clock hours to fully converge.

The base model, as presented here, was identified by the Bayes factor analysis (Sect.

5). We generated a large number of rival models (about 50; Sect. 8) and computed their

Bayes factors relative to the base model. These models tested the magnitude-independent

αj, disregarded disruption of NEOs at small perihelion distances, adopted constant q∗ (in-

dependent of H), etc. The analysis showed an overwhelming statistical preference for the

base model, M. For example, the non-disruption and constant-α models are disfavored by

∆ lnZ > 20 relative to M. The models with fewer than 12 sources are disfavored by at least

5σ relative M, except for the models without 7:3, 9:4, JFCs, or 11:5 (see below). There is

a correlation between lnZ and ns with higher-ns models generally giving higher Bayesian

evidences. This probably means that the NEO population is supplied from a large number

of sources and the CSS observations are sufficiently diagnostic to establish that.

Four rival models showed evidence terms comparable to the base model. The 11-source

models without the 7:3, 8:3 or JFC sources are favored by factors of 33, 18 and 3.7, respec-

tively, relative to the base model. The model without the 11:5 source is disfavored by a factor

of 8.2 relative to the base model. This means that the optimal model would be a 9-source

model without 7:3, JFCs and 9:5 (but keeping 11:5). Here we prefer to report the results of
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the 12-source base model, because some of the Bayes factors reported above are relatively

small. The base model also provides upper limits on the contribution of these weak sources

(see below).

MultiNest provides the posterior distribution of model parameters (Fig. 8).18 The

posterior distribution is well behaved for most parameters (i.e., unimodal and Gaussian

like). In some cases, the fit provides an upper bound on the contribution of a specific

source. This most clearly happens for the 7:3 and 9:4 resonances, which are located in the

sparsely populated region of the outer belt, and for JFCs. We use the posterior distribution

to compute the median and standard 1σ (68.3% confidence interval) uncertainties of model

parameters (Table 3). For parameters, for which the posterior distribution peaks near zero

(e.g., the contribution of 7:3, 9:4 and JFCs), we also report the upper limit in Table 3. For

bright NEOs, for which the contribution of these weak sources was found to be slightly more

substantial, we obtained α7:3(15) < 0.012, α9:4(15) < 0.020, and αJFC(15) < 0.017 (68.3%

envelopes). The contribution of JFCs to the NEO population is inferred to be smaller than

in previous works (e.g., ≃ 6% contribution in Bottke et al. (2002), and 2–10% H-dependent

contribution in Granvik et al. (2018)). For faint NEOs (H ≃ 25), all middle and outer

belt resonances, except for 5:2, have α(25) < 0.02 (68.3% envelopes). This implies that the

contribution of the middle/outer belt to very small NEOs is minor.

We note several correlations between model parameters. A notable degeneracy is related

to the contribution of the ν6 resonance and weak resonances in the inner main belt (Fig. 9).

The orbital distributions produced by these sources are similar and MultiNest has difficulties

to distinguish between them for H = 15. Bottke et al. (2002) already discussed a related

degeneracy between the ν6 resonance and their Intermediate Mars Crossers (IMC) source.

There is a hint of correlation between ν6 and weak resonances even for H = 25, where we

only have an upper limit on the contribution of inner resonances. Faint NEAs detected by

CSS are apparently more diagnostic for distinguishing these two sources.19

18Note that the posterior distribution does not account for uncertainties related to the photometric detec-

tion of NEOs by CSS (Sects. 4.3 and 4.4). The CSS photometric detection uncertainties are unavailable to

us.

19Note that the residence time distribution from ν6 and inner resonances are similar but not equal; the

degeneracy between these two sources is therefore not absolute. The inner resonances show the orbital
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Additional correlations can be identified in Fig. 8. For example, Nref and γ2 are anti-

correlated (labels 23 and 24 in Fig. 8), indicating that the models with lower Nref require

a steeper magnitude slope for 17.5 < H < 20. Interestingly, the contributions of some

individual sources, such as ν6, 3:1 and 5:2, to faint and bright NEOs are anti-correlated. We

speculate that this happens because the total contribution of a source to faint and bright

NEOs is relatively well constrained from CSS. A smaller contribution for H = 15 would then

require a larger contribution for H = 25 for things to balance. Other possibilities exist as

well.

The biased base model Mb is compared to CSS NEO detections in Figs. 10 and 11. The

distributions in Fig. 10 are broadly similar. The 1D PDFs in Fig. 11 show the comparison in

more detail. The model distribution in Fig. 11(a) has the overall shape of CSS observations

but the two semimajor-axis peaks at 1.5–2.4 au do not exactly align (they are shifted by

0.1–0.2 au). Statistical fluctuations may be responsible for this difference. We applied the

Kolmogorov-Smirnov (K-S) test to CDFs corresponding to the distributions shown in Fig.

11 and found that the semimajor axis model distribution is not rejectable (K-S probability

9.7%). The model e, i and H distributions match observations well (K-S probabilities 14%,

32% and 61% for the eccentricity, inclination and absolute magnitude, respectively).

The base model correctly reproduces various orbital correlations with H. To demon-

strate this, we slice PDFs using different absolute magnitude ranges and show the results in

Fig. 12. For example, the inclination distribution for H = 15–20 is broader than the one for

H = 20–25. The eccentricity distribution is pyramidal in shape for H = 15–20 and becomes

more peaked for H = 20–25. An interesting feature, which is not reproduced quite well in

the model, is the population of faint NEOs with H = 20–25, a ≃ 1–1.6 au and e < 0.4 (K-S

test probabilities 10−4 and 0.012 for a and e, respectively). This population is not present

in the CSS detections for H < 20 and gradually appears for fainter NEOs.

The intrinsic (debiased) absolute magnitude distribution from our base model is shown

in Fig. 13. It is practically identical (< 2σ difference for 17 < H < 25) to that reported in

Harris & Chodas (2021). For H < 17, the 3σ envelope shown in Fig. 12 shrinks because we

fixed N(15) = 50 – here the NEO population given in Harris & Chodas (2021) is slightly

distribution more peaked for a > 2 au, whereas ν6 produces more evolved orbits with a < 2 au.
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higher. For reference, Harris & Chodas (2021) obtained 4,625, 15,880 and 3.13× 105 NEOs

with H < 19.75, H < 21.75 and H < 24.75, respectively (the magnitude cuts are given here

to avoid problems with rounding of the magnitude values reported by JPL/MPC; Harris

& Chodas 2021). No error estimates were reported in Harris & Chodas (2021). From our

base model we find 4580± 160, 16020± 550 and (2.89± 0.15)× 105 NEOs with H < 19.75,

H < 21.75 andH < 24.75, respectively, in very close agreement with Harris & Chodas (2021).

The relative 1σ uncertainty of our estimates gradually increases from ≃ 3% for H < 20 to

≃ 6% for H < 25. The uncertainty reported here was computed from the MultiNest

posterior sample and does not account for various uncertainties related to the CSS detection

efficiency (Sects. 4.3 and 4.4). As the CSS detection efficiency uncertainty likely increases

with H (e.g., due to issues related to the trailing loss; Sect. 4.4), our NEO-population

estimates should become significantly more uncertain for faint magnitudes (H ≳ 25).20 The

magnitude distribution in the extended magnitude range 15 < H < 28 is discussed in Sects.

8 and 10.

Heinze et al. (2019) estimated the slope of the absolute magnitude distribution for main

belt asteroids. They found γ ≃ 0.22 for H = 20–23.5 and γ ≃ 0.34 for H = 23.5–25.6. Here

our base NEO-population model suggests γ ≃ 0.328 ± 0.004 for H ≃ 20 (Table 3) and a

steeper slope for H ≃ 25 (γ ≃ 0.566± 0.014). This is roughly consistent with the results of

Heinze et al. (2021), who found γ = 0.31–0.34 for NEOs with H ≃ 18–22 and γ = 0.54–0.57

for NEOs with H ≃ 23–28. The magnitude distribution of NEOs for 20 ≲ H ≲ 25 therefore

appears to be significantly steeper (> 5σ difference) than that of main belt asteroids, but not

much steeper (≃ 0.1–0.2 difference in the slope index γ). This result is most likely related

to the size-dependent delivery of main belt asteroids, via the Yarkovsky thermal force, to

source resonances (e.g., Morbidelli & Vokrouhlický 2003).

Various issues related to the photometric detection efficiency of CSS limit our ability

to accurately predict the number of km-sized NEOs. The MultiNest fit gives N(17.75) =

931 ± 30 (H = 17.75 corresponds to D = 1 km for pV = 0.14), but the uncertainty given

20The absolute magnitude distribution given in Table 6 in Granvik et al. (2018) has the shape similar to

ours but indicates a somewhat larger population of NEOs for H > 20 (Sect. 8).
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here does not account for the uncertainty in the CSS detection efficiency.21 As we noted

in Sect. 4, the uncertainties of parameters ϵ0, Vlim, and Vwidth were not given in Jedicke et

al. (2016). Ideally, we would need these uncertainties on a nightly basis. The changes of ϵ0

from night to night of CSS observations, which could be taken as a very conservative proxy

for the uncertainty in the detection probability of bright NEOs, are ∼ 10% (Jedicke et al.

2016). The accurate characterization of survey’s detection efficiency and its uncertainty is

of the foremost importance for accurate population estimates.

We find that different main-belt sources have different contributions to small and large

NEOs (Fig. 14). The models with the size-independent contribution of different sources are

statistically disfavored (∆ lnZ > 20 relative to the base model) and can be ruled out. This

relates back to Valsecchi & Gronchi (2015) who pointed out that the orbital distribution of

bright NEOs (H < 16) is significantly different from the model distribution in Bottke et al.

(2002). Granvik et al. (2018) already identified some complex size dependence in the NEO

delivery process. Other works also speculated that the delivery process is size dependent

(e.g., Nesvorný et al. 2021). Here we find that the ν6 and 3:1 resonances jointly contribute

to ≃ 30% of H = 15 NEOs and ≃ 80% of H = 25 NEOs.22 This most likely happens

because small main-belt asteroids radially drift by the Yarkovsky effect, pass through weak

resonances, and reach the powerful ν6 and 3:1 resonances. Large main belt asteroids do not

move much and are more likely to be removed from the asteroid belt by weaker resonances

(Migliorini et al. 1998; Sect. 10). The ν6 resonance shows the strongest dependence on size

with the ≃ 10% contribution for H = 15 and ≃ 40% contribution for H = 25. The weak

resonances in the inner main belt are found to produce over 20% of NEOs with H = 15,

but their share drops to < 7% (1σ limit) for H = 25 (Table 3). The contributions of ν6 and

inner main-belt resonances show an anti-correlated dependence on size (Fig. 14).

We confirm the need for the size-dependent disruption of NEOs at small perihelion

distances as originally pointed out in Granvik et al. (2016). The models without disruption

are statistically disfavored (∆ lnZ > 20 relative to the base model) and can be ruled out.

21N(17.75) reported here differs from Nref given for Href = 17.75 in Table 3, because the Nref parameter is

defined by linear interpolation (Sect. 5.2). N(17.75), which stands for the number of NEOs with H < 17.75,

is obtained from splines.

22The ν6, inner weak and 3:1 resonances jointly contribute to ≃ 54% of H = 15 NEOs.
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Clearly, any model where the disruption is not taken into account produces a strong excess

of low-q (or high-e) orbits. The q∗(H) dependence found here roughly matches the one

inferred in Granvik et al. (2016), which is perhaps not that surprising given that we use the

similar methodology and constraints as Granvik et al. (2016). Figure 15 shows the maximum

likelihood base model with q∗(18) ≃ 0.08 au (compared to q∗ ≃ 0.06 au for 17 < H < 19 in

Granvik et al.) and q∗(24) ≃ 0.2 au (compared to q∗ ≃ 0.18 au for 23 < H < 25 in Granvik

et al.). Based on this result we could tentatively suggest that the NEO disruption happens

at a slightly larger perihelion distances than found in Granvik et al. (2016). However, given

that there is some variability between different models (Sect. 8), we believe that more work

is needed to establish the q∗(H) dependence with more confidence.

The size-dependent contribution of main-belt sources and the size-dependent disruption

of NEOs at small perihelion distances implies that the orbital distribution of NEOs must be

size-dependent as well. Figure 16 compares the orbital distributions of large (15 < H < 17.5)

and small (22.5 < H < 25) NEOs. There are several differences. The eccentricity and

inclination distributions of large NEOs are more extended than those of small NEOs. This

is a direct consequence of the size-dependent disruption that favors removal of small NEOs

with e > 0.6. The inclination distribution of large NEOs is more extended because large

NEOs are less likely be disrupted; they tend to survive longer, thus allowing the inclination

distribution to become increasingly wider over time.

The results presented here can be used to estimate the completeness of the currently-

known NEO population. We illustrate the current completeness for H < 22 in Fig. 17.

We find that the known population of H < 22 NEOs is roughly a factor of 2 incomplete

(≃ 10, 000 known vs. 18, 900 ± 700 estimated; Table 4). Undiscovered NEOs populate a

wide range of orbits. The incompleteness rapidly increases toward fainter magnitudes. For

example, forH < 25, our model predicts that there are≃ 20 times more NEOs than currently

known (i.e., the known population is only ≃ 5% complete). For H ≃ 25 we only know 1

in ≃ 100 NEOs (see the differential distribution in the bottom-right panel of Fig. 17). We

discuss the NEO population completeness in more detail in Sects. 8 and 10.

To aid similar estimates, and help to plan future observations, we developed the NEO-

MOD Simulator. The code inputs the base (or any other) model from MultiNest, provided

as an ASCII table, and generates a user-defined sample of NEOs with the smooth orbital
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and absolute magnitude distributions. The NEOMOD Simulator will be available from

GitHub.23 Fig. 18 illustrates an example output from the NEOMOD Simulator, where the

user requested to generate the full sample of H < 25 NEOs from the base model described

here. Statistically different NEO samples can be obtained by initializing the code with

different random seeds.

Potentially hazardous objects (PHOs) are defined as having a minimum orbit intersec-

tion distance (MOID) with Earth of less than 0.05 au (19.5 lunar distances) and H ≤ 22

(D ≃ 140 m for pV = 0.14). We used the code described in Wiźniowski & Rickman (2013) to

estimate the number of PHOs as a function of orbital elements. 10,000 objects were placed

into each orbital bin in a, e and i, their nodal and perihelion longitudes were drawn from a

uniformly random distribution, and MOID was computed for each orbit. We then evaluated

the fraction of PHOs, following the definition above (MOID < 0.05 au), in each bin. The

PHO fraction is the largest for orbits with q ∼ 1 au, Q = a(1 + e) ∼ 1 au, a ∼ 1 au, and/or

i < 10◦. Figure 19 shows the completeness of the currently-known PHO population. The

trends seen here are similar to those discussed for the whole NEO population above. The

bulk of yet-to-be-discovered PHOs have orbits with 1.2 < a < 2.8 au, moderate to large

eccentricities, and i ≲ 40◦. The PHO population completeness is > 90% for a < 1.2 au,

e < 0.3 and H < 22. This is because NEOs on these orbits have low MOID and can be more

easily detected than NEOs in general. We find that there are 4000±150 PHOs with H < 22

in total, of which ≃ 2300 are known. The overall population completeness is slightly higher

for PHOs (≃ 58%) than for H < 22 NEOs in general (≃ 52%).

7. Planetary impacts

Planetary impacts were recorded by the N -body integrator (Sect. 3). The record

accounts for impacts of bodies with q < 1.3 au (NEOs) and q > 1.3 au (e.g., Mars-crossers).

We thus have complete information to determine the impact flux on all terrestrial planets,

including Mars. We followed 105 test bodies from each source and have good statistics even

from distant main belt sources (e.g., 9:4, 2:1). We find, in line with the results reported

23See https://www.boulder.swri.edu/~{}davidn/NEOMOD_Simulator for a provisory distribution.
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previously (e.g., Gladman et al. 1997, Bottke et al. 2006), that the impact probability per

one body inserted in the source, pimp, strongly declines with the heliocentric distance of that

source. For example, Hungarias, ν6 and weak inner-belt resonances have pimp ≃ 0.01–0.02

for impacts on the Earth, but pimp ≃ 10−4 for the outer belt resonances such as 2:1 (Table

5). This happens for two reasons. First, the NEOs produced by distant sources typically

end up having larger a and e, and thus lower (intrinsic) impact probabilities with the Earth.

Second, these NEOs have shorter dynamical lifetimes, τ (defined as the time interval spent

with q < 1.3 au) and are often removed before they can impact. For example, the ν6 source

has τ ≃ 6.6 Myr for a reference value q∗ = 0.1 au, and impacts from ν6’s NEOs on the Earth

thus happen over this relatively long time interval. The 2:1 resonance produces much shorter

lifetimes (e.g., τ ≃ 0.41 Myr for q∗ = 0.1 au).

Once the contribution of different sources to the NEO population is fixed,24 via the

weights αj, we may ask how important each source is for planetary impacts. For that, we

must fold in both pimp and τ . The best way to accomplish this is to consider the impact flux,

fimp, which is related to the impact probability and lifetime by fimp = pimp/τ . Interestingly,

the impact flux shows a much weaker dependence on the heliocentric distance of a source than

the impact probability (Table 5). The low impact probabilities from more distant resonances

are apparently compensated by shorter dynamical lifetimes. This suggests that the distant

resonances could provide a surprisingly large share of impacts. For example, f ν6
imp ≃ 0.003

Myr−1 per one body from the ν6 resonance and f 8:3
imp ≃ 0.0015 Myr−1 per one body from

the 8:3 resonance (both given for the Earth and q∗ = 0.1 au). For large NEOs (H = 15

corresponding to D ≃ 3.5 km for pV = 0.14), we have αν6(15) ≃ 0.12 and α8:3(15) ≃ 0.09

(Table 3). Combining these factors together we infer that the ν6 resonance contributes (only)

∼ 2.7 times as many impacts as the 8:3 source for large impactors.

The situation dramatically changes when we consider impacts of small NEOs. For

H = 25 (D ≃ 35 m for pV = 0.14), we have αν6(25) ≃ 0.43 and α8:3(25) ≃ 0.010 (Table 3),

and the weighted impact flux ratio between the two resonances is thus ≃ 90. The low share

of impacts from the 8:3 source is primarily the consequence of the size-dependent sampling

24Note that the NEO population is used here to calibrate the model but the impact statistics inferred

from this calibration accounts for impactors with q > 1.3 au as well. This is because the N -body integrator

recorded all planetary impacts, including those from q > 1.3 au.
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of main-belt sources discussed in Sect. 6. The ν6 source is responsible for most impacts of

small bodies on the terrestrial worlds. [An impact is defined here when a body hits the top

of planet’s atmosphere. The atmospheric ablation of small impactors and possible reduction

of the impact flux on planet’s surface is not considered.]

To combine impacts from different sources, we compute the total impact flux, Fimp, from

Fimp = n(H)
n
∑

j=1

αj(H)
pimp,j(q

∗(H))

τj(q∗(H))
, (13)

where n(H) is the absolute magnitude distribution of NEOs, αj(H) are the magnitude-

dependent source weights (Table 3), pimp,j is the probability of planetary impact for each

body inserted in the source j, and τj is the mean lifetime of NEOs evolving from the source

j. Parameters pimp,j and τj depend on q∗ and are therefore also a function of H (via the

linear relationship between q∗ and H, as defined in the base model; Fig. 15). We report

them for a reference value q∗ = 0.1 au in Table 5.

Figure 20 shows Fimp(H) for the terrestrial planets. A rough approximation of the im-

pact flux on the Earth was traditionally obtained when the magnitude distribution of NEOs,

n(H), was multiplied by constant collision probability (1.5×10−3 Myr−1 for each NEO; Stu-

art 2001, Harris & D’Abramo 2015). The H-dependent factors in Eq. (13), however, produce

a more complex relationship between n(H) and Fimp(H). For example, Eq. (13) gives ≃ 970

impacts per Myr of H < 25 NEOs on the Earth, whereas the approximate estimate from

n(H) would only give ≃ 610 impacts. It is therefore important to carefully account for

various size dependencies in Eq. (13). For reference, we estimate one impact on the Earth

from H < 17.75 NEOs (D > 1 km for pV = 0.14) every ≃ 630 kyr, in close agreement with

the estimates given in Harris & D’Abramo (2015) and Morbidelli et al. (2020).

There are several sources of uncertainty in our impact flux estimates. The first one is

related to the uncertainty of the NEO population estimate in Eq. (13). As we discussed

in Sect. 6, the relative 1σ uncertainty of our base-model population estimate gradually

increases from ≃ 3% for H < 20 to ≃ 6% for H < 25. The second source of uncertainty is

the uncertainty of the impact fluxes fimp,j for bodies evolving from individual sources (Table

5). This uncertainty varies with source, target planet and q∗. In the best case, we record

thousands of impacts on the Earth/Venus from the ν6 resonance for any q∗; this would imply
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a ≲ 3% uncertainty. In the worst case, for the outer resonances, Mars/Mercury and large

q∗, there are only a few impacts, but the outer resonances are not important for impacts

anyway, so this should not be a major limitation of this work. The third and also the least

understood source of uncertainty is related to the detection efficiency of CSS (photometric

efficiency and trailing loss, Sect. 4; Jedicke et al. 2016). We are unable to quantify it here

and leave this issue for future work.

Table 6 reports the impact probabilities from different sources for Mercury, Venus and

Mars. We used Eq. (13) to compute the total impact flux on these planets as a function

of impactor’s absolute magnitude (Fig. 20). The impact fluxes on the Earth and Venus are

similar. The impact flux on Mercury shows a shallower profile with H mainly because small

NEOs on orbits near Mercury are disrupted before they can impact. The size distribution of

small (< 10 km) craters on young Mercury terrains should be shallower than that found on

the Moon and Mars, and this could have interesting applications to the Mercurian chronology

as well.

7.1. Impact ratios and the Rb parameter

The Earth-to-Mars ratio in the number of impacts, E/Ma, is an important parameter

often used to transfer the lunar crater chronology to Mars (e.g., Hartmann 2005, Marchi

2021). Here we find E/Ma ≃ 2.8 for H = 15 and E/Ma ≃ 4.3 for H = 25 (Fig. 20).

Adopting the standard Earth-to-Moon impact flux ratio, E/Mo = 20, we estimate that the

Mars-to-Moon ratio in the number of impacts is Ma/Mo ≃ 7.1 for H = 15 and Ma/Mo ≃ 4.7

for H = 25. In crater chronology studies this is often normalized to the unit surface area on

these worlds (Mars has ≃ 3.8 larger surface area than the Moon), giving the parameter Rb,

where the index b stands for bolides. We thus obtain Rb = 2.0 for H = 15 and Rb = 1.2 for

H = 25. Both these values are significantly lower than Rb ≃ 2.6 used for NEO impacts in

previous works (e.g., Hartmann 2005, Marchi 2021).

The ratio of impact fluxes is size-dependent as a consequence of the size-dependent

contribution of different main belt sources (small and large bodies have different orbital

distributions). For small bodies, the ν6 and 3:1 sources dominate, and these resonances have

– on their own – Rb ≃ 0.8 (they quickly move asteroids into the NEO zone where they can
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impact Earth/Moon rather than Mars). For large bodies, the weak resonances are important;

they have – on their own – Rb ≃ 2.8 (because asteroids in the weak resonances spend a long

time on Mars-crossing orbits and have a greater chance of Mars impact). We emphasize

that these estimates accurately account for all impacts, including the ones from q > 1.3 au.

The Rb parameter is relatively low for small impactors not because we would be missing any

Mars impacts from q > 1.3 au. It is low simply because the ν6 and 3:1 resonances give fewer

impacts on Mars relative to the Moon.

The method we use here to estimate the Rb parameter is the best we can think of. First,

by calibrating the model on NEO observations, we infer the flux of asteroids from different

main-belt sources. We already know the impact probability per one body evolving from

each source (all planetary impacts were recorded by the N -body integrator; Sect. 3), and

this allows us to accurately estimate the impact flux on the terrestrial worlds. Still, there

are some approximations. The main caveat of this method is that we assume that Mars

impactors are on unstable orbits (e.g., in strong or diffusive resonances, scattered by Mars)

that typically evolve, over long timescales, to q < 1.3 au, and we can therefore calibrate

them from NEOs. Our estimates would be inaccurate if many Mars impactors remain on

semi-stable orbits with q > 1.3 au over very long time intervals (longer than our integration

timespan, 500 Myr). We plan on verifying this assumption in forthcoming work. We also

did not account for weak resonances with a > 2.5 au (higher order than 11:5). If these

weak resonances were included as an additional source in the model, and the model was

recalibrated, then perhaps the weight might (slightly) shift from stronger resonances, such

as 5:2 and 8:3, to weaker resonances, and this could influence Rb. In any case, this effect

could only change Rb for large, H ≲ 18 asteroids, not the small ones. Full resolution of this

problem is left for future work.

Previous estimates of Rb for asteroids were inferred from the Mars-crossing population

of large asteroids. For example, Bottke et al. (2002) estimated Rb = 2.8 for H < 18, which

is significantly larger than our Rb ≃ 1.8 for H < 18. Bottke et al. (2002) inferred Rb

from the Mars-crossing population known in 2002. They accounted for secular variations of

Mars’s orbit, computed the impact probabilities on a grid in (a, e, i) space, and approximately

compensated for the observational incompleteness. This allowed them to estimate that the

mean interval between impacts of H < 18 asteroids on Mars is τMars(18) ≃ 1 Myr, thus
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giving Rb = 2.8. Here we employed the same method with the asteroid catalog available in

2022. If the cataloged asteroids with q < 1.8 au and H < 18 are assumed to be a complete

sample, we find τMars(18) ≃ 2 Myr, some two times longer than reported in Bottke et al.

(2002). This would indicate Rb ≃ 1.4. A ≃ 70% completeness for q < 1.8 au and H < 18

would give Rb ≃ 1.8 in agreement with the estimate inferred from our NEO-based method.

To obtain Rb ≃ 2.8 from Bottke et al. (2002) the current population of q < 1.8 au and

H < 18 asteroids would have to be only ≃ 50% complete.

8. Auxiliary models

To this point we only presented the results of the 28-parameter base model. We now

discuss several model modifications to explain some of our choices that we made to assem-

ble the base model. We also explore the model validity beyond the range of parameters

considered in the base model.

In the first modification, the base model domain was extended to fainter magnitudes,

15 < H < 28. The modified model produced a reasonable fit to the CSS observations (i.e.,

relatively large evidence; Fig. 21). The extension to fainter magnitudes, however, revealed

an intriguing difference relative to the intrinsic (debiased) magnitude distribution given in

Harris & Chodas (2021) (Fig. 22). Our distribution is slightly shallower for H > 25 and

leads to a smaller population of NEOs with H < 28. Specifically, Harris & Chodas (2021)

estimated ≃ 3.6 × 107 NEOs with H < 28, whereas we have (1.4 ± 0.2) × 107 NEOs with

H < 28, a value that is roughly 2.6 times lower (see Sect. 10 for a discussion of constraints

from bolide observations). The difference could be explained if we overestimated the CSS

detection efficiency for H > 25, perhaps because of some issue with the trailing loss (Sect.

4.4). Alternatively, some of the assumptions in Harris & Chodas (2021) may not be quite

right. Harris & Chodas (2021) did not derive any formal uncertainty of their population

estimates but suggested that their extrapolation to the faintest magnitudes may be up to a

factor of ∼ 5 uncertain. We discuss this issue in Sect. 10.

The absolute magnitude distribution given in Table 6 in Granvik et al. (2018) has

the shape similar to ours but indicates a somewhat larger population of NEOs (Fig. 22).

The difference is statistically significant. For example, Granvik et al. (2018) estimated
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(8.02 ± 0.45) × 105 NEOs with H < 24.875, while we only have (3.4 ± 0.2) × 105 NEOs

with H < 24.875 (1σ uncertainties quoted here). Our estimates for H < 25 closely agree

with those given in Heinze et al. (2021). Heinze et al. estimated (3.72± 0.49)× 105 NEOs

with H < 25 while we only have (3.6 ± 0.2) × 105 NEOs with H < 25 (Table 4). For

25 < H < 28, the magnitude distribution given in Heinze et al. (2021) is similar to that of

Harris & Chodas (2021) but steeper than ours (Fig. 22). This leads to (2.64 ± 0.88) × 107

NEOs with H < 28 in Heinze et al. (2021) and (1.4 ± 0.1) × 107 NEOs with H < 28 here.

Given the relatively large uncertainty in Heinze et al. (2021), however, this difference is not

statistically significant (only ≃ 1.4σ).

In the second modification, we kept the extended magnitude range (15 < H < 28), and

used the trailing loss from Tricarico (2017) (Sect. 4.4). In this case, the intrinsic magnitude

distribution of model NEOs again closely follows Harris & Chodas (2021) to about H = 25.

A relatively large difference then appears for fainter magnitudes, where the modified model

gives a very shallow slope and only (8.9± 0.9)× 106 NEOs with H < 28. This is a factor of

≃ 4 below the estimate of Harris & Chodas (2021), and a factor of ≃ 1.6 below the estimate

obtained above with the trailing loss from Zavodny et al. (2008). This may indicate that

the trailing loss from Tricarico (2017) overestimates the CSS detection efficiency for very

faint NEOs. In broader sense, this highlights the dependence of the population estimates

obtained here for very faint NEOs on the adopted trailing loss model.

In the third modification, we used the trailing loss from Zavodny et al. (2008), but did

not fix N(15) = 50. Instead, we let the MultiNest fit decide what the population of H < 15

should be based on the CSS data for H > 15. If N(15) is not fixed, the model overestimates,

by roughly a factor of two, the number of NEOs brighter than H = 15. This most likely

happens because the statistical power of the brightest CSS NEOs in the MultiNest fit is

not large enough to properly fix N(15). We therefore impose N(15) in the base model as an

external constraint (Sect. 6).

We also tested a slight modification of the fitting procedure, where G96 and 703 were

treated as separate surveys. The log-likelihood in Eq. (8) was computed separately for

them, and was subsequently combined to evaluate the total log-likelihood. Strictly speaking,

combining the surveys at the level of log-likelihoods must be better than combining their

detection efficiencies and object detections. This is because the detection bias of the G96
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survey only applies to NEO detections in the G96 survey (and not 703), and vice versa. Note

that this method is different from testing the two surveys separately; it makes use of the full

statistical power of them combined.

The results of this test were similar to those obtained with the standard method but we

also noted several differences. The contribution of the ν6 resonance to NEOs with H = 15

is smaller than reported in Table 3 (here αν6(15) = 0.036 ± 0.023). This can indicate that

– at least for some parameters – the systematics in the model fitting may be the dominant

source of uncertainties and some source weights may be more uncertain than indicated in

Table 3. The differences for all other source weights and other parameters are smaller than

30%. For some reason, the new fitting procedure also gives N(17.75) = 1010± 19 – a ∼ 8%

larger population than that obtained in the base model (and smaller uncertainty). This

indicates that an accurate population estimate (also) depends on the details of the fitting

algorithm. A detailed investigation of this approach is left for future work. Our preliminary

results from 2013-2021 CSS observations, for which we derived the CSS detection efficiency

from scratch (Nesvorný et al., in preparation), favor combining surveys at the level of log-

likelihoods and indicate N(17.75) = 931 ± 21. It thus appears that the detection efficiency

of the original CSS for H < 17.75 was slightly underestimated (Jedicke et al. 2016) and

this was compensated by combining the detection efficiences of G96 and 703 (Granvik et al.

2018).

Following Granvik et al. (2016), our base model accounted for the size-dependent dis-

ruption of NEOs at low perihelion distances. We extensively tested various NEO models

where the disruption module in MultiNest was switched off. All modified models without

disruption showed a strong excess of high–e and low–q orbits, and Bayes factors that strongly

disfavored them (∆ lnZ > 20 in favor of the base model). We also tested several models

where the disruption module in MultiNest was switched on, but the dependence of q∗ on H

was ignored (i.e., fixed q∗ for all sizes). Again, the evidence term showed a strong preference

for the models with the size-dependent disruption (∆ lnZ > 20 in favor of the base model).

This confirms the results of Granvik et al. (2016).
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9. Models with the Yarkovsky drift

The methodology described above, where the contribution of different main-belt sources

is inferred from the NEO population, is agnostic as to whether the main-belt sources can

actually provide that contribution. This depends on the influx of main-belt asteroids into

resonant sources and complex interaction of drifting orbits with weak resonances in the

inner belt and for the Hungarias and Phocaeas. To test this, we performed new numerical

integrations in which bodies were not placed onto unstable orbits in the resonances. Instead,

we collected real main-belt asteroids near a resonance, accounted for the Yarkovsky effect

(Vokrouhlický et al. 2015), and followed bodies as they drifted into the resonance and became

NEOs. Two cases were considered: one with themaximum (theoretically possible) Yarkovsky

drift and one where the drift was set to the mean (theoretically estimated) Yarkovsky rate. In

either case, asteroids were assumed to drift toward the resonance. The first case maximizes

the asteroid flux into the source. The second case would correspond to a situation where

asteroids drift toward the resonance with random obliquities.

Adopting thermal parameters appropriate for the S and C type asteroids (Vokrouhlický

et al. 2015), we estimate that the maximum Yarkovsky drift of a reference D = 1 km body

at a = 2.5 au is da/dt = 1.61+1.67
−0.82 × 10−4 au Myr−1 for S, and da/dt = 2.35+2.74

−1.20 × 10−4 au

Myr−1 for C. For comparison, if the measured Yarkovsky drifts for Golevka (S type) and

Bennu (C type) are rescaled to the same size and orbital radius, we obtain 2.25 × 10−4 au

Myr−1 and 1.82× 10−4 au Myr−1, respectively (Greenberg et al. 2020). Given these results,

we decided to make no distinction between S and C type asteroids, and adopted the drift

rate
da

dt
= 2× 10−4 au

Myr
× cos θ

(

1 km

D

)(

2.5 au

a

)2

, (14)

where θ is the asteroid obliquity.

We considered all main-belt asteroids near the 3:1 resonance that could potentially drift

into the resonance in 100 Myr. Near the 3:1 resonance, the maximum accumulated drift

of a D = 1-km body over 100 Myr is ≃ 0.02 au. We therefore set, with a generous safety

margin, a1(e) = 2.46 − (0.02/0.35) e au and a2(e) = 2.54 + (0.02/0.35) e au, and collected

all known main-belt asteroids with H < 17.75, q > 1.66 au and a1(e) < a < a2(e) (31,121 in

total). The numerical integrations were performed with the modified Swift integrator, where
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artificial force terms were added to account for da/dt from Eq. (14). The diameters in Eq.

(14) were estimated from the absolute magnitudes of selected asteroids and the reference

albedo pV = 0.14. The orbits of eight planets and all selected asteroids were integrated with

a 12-day time step for 100 Myr.

In the case with the maximum drift rate, we set θ = 0 for a < 2.5 au and θ = 180◦ for

a > 2.5 au. We found that η = 11,107 asteroids reached the NEO region in 100 Myr. The

number of NEOs expected from this influx in a steady state is ητ/(100Myr) where τ is the

mean NEO lifetime for objects evolving from the 3:1 source (Table 5). For q∗ = 0–0.1 au,

which should be appropriate for H < 17.75 (Fig. 15), we have τ = 1.4–2.5 Myr. We can thus

estimate that the 3:1 resonance should contribute ≃ 155–277 NEOs with H < 17.75. This

is roughly consistent with the result of Morbidelli & Vokrouhlický (2003), who found, in the

case where the effects of YORP and collisions were suppressed, ≃ 161 H < 18 NEOs from

3:1. For comparison, we inferred from the base model in Sect. 6 that the 3:1 source should

produce ≃ 24 ± 4% of NEOs with H < 17.75 (Fig. 14). This gives ≃ 180–268 NEOs for

N(17.75) = 931± 30 (Sect. 6). We conclude that the model with the maximum Yarkovsky

drift of large main-belt asteroids toward the 3:1 resonance is consistent with what is needed

from the NEO-population modeling (Sect. 6).

The same simulations were repeated with the mean Yarkovsky drift toward the 3:1

resonance (the mean rate is 1/2 of the maximum rate for random orientation of the spin

axes; Vokrouhlický et al. 2015), and found η ≃ 5,000. This case can be ruled out because it

only gives ≃ 70–124 NEOs with H < 17.75. Given these results, the case with fully random

obliquities, where the main-belt asteroids would drift toward or away from the 3:1 resonance,

was not investigated in detail – we roughly estimate that this case would only give < 70

NEOs with H < 17.75.

We conclude that asteroids near the 3:1 resonance must be drifting toward the resonance

with the (near) maximum Yarkovsky drift rates (≃ 2× 10−4 au Myr−1 for D = 1 km). This

most likely happens because large, slow-drifting asteroids cannot cross the 3:1 resonance and

this produces a dynamical bias, where all asteroids currently in the immediate neighborhood

of the 3:1 resonance must be drifting toward it. In addition, the YORP effect must have

driven their obliquities to θ ≃ 0 or θ ≃ 180◦, and this maximized the Yarkovsky drift and

resonance feeding rate.
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This result has several interesting consequences. First, in the immediate neighborhood

of the 3:1 resonance, ∼km-class asteroids should have θ ≃ 0 for a < 2.5 au and θ ≃ 180◦ for

a > 2.5 au. This prediction is testable by lightcurve observations (see the note at the end of

the main text). Second, the spin re-orientation timescale of ∼km-class main-belt asteroids

via collisions or YORP (Vokrouhlický et al. 2015) should be relatively long. As bodies keep

their drift directions, they must be drifting toward the resonance and not away from it; the

bodies currently drifting away from the resonance would have to have a relatively recent

(< 100 Myr) reorientation event. Third, the YORP effect must have driven obliquities of

km-class bodies to either θ ≃ 0 or θ ≃ 180◦. This rules out, on the population level, the

YORP models/shapes that lead to θ ∼ 90◦ and sets limits on the importance of spin-orbit

resonances (Vokrouhlický et al. 2003, 2006).

Similar tests were performed for the ν6 and 5:2 resonances. For the 5:2 resonance, we

found η = 10,169 – the influx in the 5:2 resonance is thus similar to the influx in the 3:1

resonance. We estimate ≃ 31–46 NEOs with H < 17.75 from 5:2 in the steady state. For

comparison, our NEO model nominally implies ≃ 56 NEOs from the 5:2 source, but this

value has a relatively large uncertainty (Table 3) and is consistent within 1σ with the drift-

inferred values. In addition, the population of H < 17.75 main-belt asteroids near the 5:2

resonance is probably incomplete and that may account for some of the difference as well.

For the ν6 resonance, where da/dt < 0 was assumed for all orbits, we found a lower influx,

η = 4,040, because the region adjacent to the ν6 resonance is sparsely populated. With the

relatively long lifetimes of orbits evolving from ν6 (Table 5), this implies ≃ 237–318 NEOs

with H < 17.75, to be compared with ≃ 186 inferred in Sect. 6 for the ν6 source. An

accurate comparison is somewhat complicated in this case because many asteroids in the

drift simulations reached the NEO orbits via weak resonances, and not from ν6.

The simulations presented here offer an opportunity to test whether the NEO orbital

distributions obtained from different sources sensitively depend on the initial conditions.

The model described in Sect. 6 was based on the orbital distributions obtained from the

simulations where test bodies were inserted onto unstable orbits in resonances. Here we

instead drifted real main-belt asteroids into resonances. We can therefore compare the orbital

distributions of NEOs obtained from the two methods to see if there are any important

differences. We find that the distributions obtained from the two methods are practically
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identical (< 1% differences for ν6, 3:1 and 5:2). This justifies our preferred approach to this

problem described in Sect. 5.1.

10. Discussion

10.1. Magnitude distribution of NEOs

Harris & Chodas (2021) determined the absolute magnitude distribution of NEOs by

comparing detections of new NEOs with redetections of previously known NEOs (also see

Harris & D’Abramo 2015). If all objects were equally detectable, the ratio of new detections

to redetections in a survey is proportional to the number of not yet discovered NEOs, thus

giving clues about the observational incompleteness. Given that the observational bias is

the same for both the new detections and redetections, by using the ratio of the two, the

method is relatively insensitive to the observational bias and different surveys can be clumped

together to improve the statistics. Harris & Chodas (2021) approximately accounted for

observational biases of different surveys to correct the estimates for unequal detectability of

NEOs on different orbits. They also corrected a small error in Harris & D’Abramo (2015)

related to a rounding problem.

The method based on redetections is limited to a magnitude range where the num-

bers of new-detections and redetections are statistically large, which, according to Harris &

D’Abramo (2015), corresponds to the magnitude range 17.5 < H < 23.5. To extrapolate the

results to fainter magnitudes, where there are no or too few redetections, Harris & D’Abramo

(2015) and Harris & Chodas (2021) assumed that a survey detects an increasingly smaller

fraction of the NEO population and estimated – from the statistics of close encounters of

faint NEOs to the Earth – that this fraction is proportional to 10−0.8H . Finally, anchor-

ing the results to the re-detection ratio approach at H ≃ 23.5, they produced the absolute

magnitude distribution of NEOs for 25 ≤ H ≤ 31.

To demonstrate the applicability of their estimate, Harris & Chodas (2021) used the

fixed impact flux probability with the Earth, fimp = 1.5 × 10−3 Myr−1 for each NEO, and

compared their impact statistics with the one inferred from observations of bolides (Brown

et al. 2002). Brown et al. (2002) analyzed satellite records of bolide detonations in the



– 40 –

Earth atmosphere to estimate the impact flux of ∼ 1–10 m bodies. For D ≃ 10 m, roughly

equivalent to H = 28 for our reference albedo pV = 0.14, the average interval between

impacts was found ≃ 10 yr (with a factor of ≃ 2 uncertainty). The infrasound data from

Silber et al. (2009), as reported by Brown et al. (2013), indicate a somewhat shorter interval

but the error bars of these estimates overlap with the bolide data. For comparison, Harris &

Chodas (2021) estimated the average interval between impacts of H < 28 bodies to be ≃ 18

yr (Fig. 23).

Here we find that the magnitude distribution is relatively shallow for H > 25 and

estimate a somewhat smaller population of faint NEOs (Sect. 8). We also find, however,

that the Earth-impact probability of faint NEOs is relatively large (because they evolve onto

NEO orbits via the ν6 resonance), and that this larger impact probability at least partially

compensates for the smaller population. For example, we have fimp ≃ 1.5 × 10−3 Myr−1

for H = 15 and fimp ≃ 2.6 × 10−3 Myr−1 for H = 28. The mean interval between impacts

for H < 28 is estimated here to be ≃ 30 yr (Fig. 23). This is a factor of 1.6 and 3 longer

than the nominal intervals from Harris & Chodas (2021) and Brown et al. (2002, 2013),

respectively. Adopting our estimate, the probability of having four impacts in the last 30

years from D > 10 m projectiles would only be 1.5%. Brown et al. (2013) suggested that the

current impactor flux for near-Earth asteroids that are 10–50 m in diameter may be higher

than the long term average.

Note that all estimates quoted above have significant uncertainties. Brown et al. (2002,

2013) reported a factor of ≃ 2 uncertainty in their estimates from bolide and infrasound

observations, but the fact that these two estimates agree means that the combined uncer-

tainty would be smaller. Harris & Chodas (2021) suggested a factor of few uncertainty in

their estimate. Our impact flux estimate is at least ≃ 10% uncertain (1σ from the magni-

tude distribution uncertainty for H = 28; Fig. 22) and probably much more given that we

were not able to characterize the uncertainty of the CSS detection efficiency (Sect. 4). It is

possible, for example, that the CSS detection efficiency is overestimated by a factor of ≃ 2–3

for H ≃ 28. If so, this would bring our impact flux up by the same factor. It is also possible

that the difference between our estimates and bolide/infrasound data has some interesting

physical explanation. We are testing different possibilities and will report on the results in

forthcoming publications.
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10.2. PM/AM ratio

There has been some debate about the PM/AM ratio of meteorites/bolides (Morbidelli

& Gladman 1998; Wisdom 2017, 2020). The PM/AM ratio measures the relative frequency

of meteorite falls before (6–12 h) and after (12–18 h) noon. It is usually reported as the

number of afternoon falls (12–18 h) over the number of day-time falls (6–18 h), to express

the observed excess of afternoon falls, here denoted as E . Ordinary chondrites (OCs), for

example, have E = 0.63 ± 0.02 (Wisdom 2017). Morbidelli & Gladman (1998) obtained

E = 0.52 and 0.48 for impactors from the ν6 and 3:1 resonances, respectively (no cutoff on

collisional lifetime or entry velocity imposed here), and suggested that the PM excess of

reported OC falls should be a consequence of the collisional removal of meteoroids (young

NEOs tend to have a stronger PM excess). Wisdom (2020), as an update on Wisdom (2017),

estimated E = 0.533 ± 0.002 and 0.604 ± 0.007 from the ν6 and 3:1 resonance. He argued

that the previous (lower) estimates of Morbidelli & Gladman (1998) were wrong because –

to calculate E – Morbidelli & Gladman (1998) incorrectly assumed orbits with a uniformly

random distribution of the argument of perihelion, ω.

Here we take the opportunity to rectify this issue. Our N -body integration recorded a

large number of Earth impacts from bodies started in the ν6 (2527 in total) and 3:1 resonances

(398 in total). For each impact, we propagated the impactor to the Earth’s surface and

determined the geocentric coordinates of the impact. This allowed us to estimate E without

any uncertainty related to the ω distribution. The night-time impacts were ignored. To be

consistent with the previous work (Morbidelli & Gladman 1998; Wisdom 2017, 2020), the

Earth obliquity was neglected in this test.

We obtained E = 0.47± 0.02 and 0.50± 0.05 for the ν6 and 3:1 resonances, respectively.

These values are better aligned with Morbidelli & Gladman (1998) than with Wisdom (2017,

2020). The PM excess reported in Wisdom (2017) for the 3:1 resonance is roughly 2σ above

our value. The reasons behind this are uncertain. Part of the difference may be explained

by the relatively short integration timespan (20 Myr in Wisdom 2017, 2020). When the

integrations were extended to 40 Myr, Wisdom (2020) found E = 0.587 ± 0.007 for the 3:1

resonance. Here we find the same trend: the early impacts show higher PM excess than the

late ones (e.g., E ≃ 0.56 from the 3:1 resonance and t < 10 Myr).
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For reference, we also computed the PM excess with the disruption model (Sect. 5.3).

For example, for q∗ = 0.3 au, which should be appropriate for 1-10 m meteoroids, we find

E = 0.51± 0.05 and 0.58± 0.08 for the ν6 and 3:1 resonances. Meteoroid disruption close to

the Sun can thus significantly influence the PM excess. The observed statistics of PM/AM

falls shows higher excess (E = 0.63 ± 0.02) than the values derived here for the ν6 and 3:1

resonances. Morbidelli & Gladman (1998) suggested that the excess increases in the model

when it is accounted for the collisional lifetime of meteoroids. A possible solution to this

problem could thus be that the PM excess is influenced by the physical lifetime of meteoroids

(collisional disruption, disruption at low perihelia, YORP spin-up, etc.)

10.3. Size dependencies

The size-dependent sampling of main-belt sources found here, both in terms of their

contribution to the NEO population and Earth impacts, helps to resolve the following scien-

tific problem. Granvik et al. (2018) estimated that the outer-belt contribution to NEOs is

practically negligible (≃ 3.5% for the 2:1 resonance complex). They suggested that ≃ 80% of

impactors on the terrestrial worlds are produced from the ν6 resonance, and over 10% of im-

pactors are produced from the 3:1 resonance, Hungarias and Phocaeas, leaving only < 10%

for the middle/outer belt. Based on this, Granvik et al. (2018) proposed that the majority

of primitive NEOs/impactors must come from the ν6 resonance. Nesvorný et al. (2021)

instead found that the middle/outer belt can supply nearly 50% of large NEOs, ≃ 70% of

large primitive NEOs, and ≃ 35–40% of large impactors (D ≳ 5 km).

Nesvorný et al. (2021) speculated that these differences may be a consequence of the

size-dependent delivery process. On one hand, small main-belt asteroids can drift over a con-

siderable radial distance by the Yarkovsky effect and reach NEO space from the powerful ν6

resonance at the inner edge of the asteroid belt (e.g., Granvik et al., 2017). The ν6 resonance

is known to produce highly evolved NEO orbits and high impact probabilities on the Earth

(Table 6; Gladman et al. 1997). On the other hand, large main-belt asteroids often reach

NEO orbits via slow orbital evolution in weak resonances (Migliorini et al. 1998, Morbidelli

& Nesvorný, 1999, Farinella & Vokrouhlický 1999). Whereas each of these resonances adds

only a little, their total contribution to the population of large NEOs can be significant.
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Here we find supporting evidence for this thesis. For H = 15 (D = 3.5 km for the

reference albedo pV = 0.14), we find that the middle/outer main belt produce ≃ 40% of

NEOs. When extrapolated to D > 5 km, this should be consistent with the similarly large

contribution reported in Nesvorný et al. (2021). For H = 25 (D = 35 m for a reference

albedo pV = 0.14), however, the contribution is only ≃ 10% (the 3:1 source is excluded

here). The ν6 and 3:1 resonances produce ≃ 80% of small NEOs for H = 25 (and ≃ 90% of

small Earth impactors; Sect. 7), which is in line with the findings reported in Granvik et al.

(2018).

11. Summary

The main results of this work are summarized as follows.

(1) We developed a new NEO model (NEOMOD). The model is based on numerical integra-

tions of bodies from 12 sources (11 main-belt sources and comets). A flexible method

to accurately calculate biases of NEO surveys was applied to the Catalina Sky Survey

(CSS) observations from 2005 to 2012 (Christensen et al. 2012). The MultiNest code

(Feroz & Hobson 2008, Feroz et al. 2009) was used to calibrate the model on CSS

detections. The algorithms developed here can be readily adapted to any current or

future NEO survey.

(2) The methodology used in Granvik et al. (2018) was improved. We adopted the cubic

splines to characterize the magnitude distribution of the NEO population. The cubic

splines are flexible and can be modified to consider a broader absolute-magnitude range

and/or improve the model accuracy. We used a large number of main-belt asteroids

in each source (105), which allowed us to accurately estimate the impact fluxes on the

terrestrial planets. Our model self-consistently accounts for the NEO disruption at

small perihelion distances (Granvik et al. 2016).

(3) We used 10,000 test objects per orbital bin, 18,480 orbital bins, 56 absolute magnitude

bins, and nearly 250,000 FoVs to compute the CSS detection probability as a function

of NEO’s a, e, i and H. We considered different approaches to modeling the trailing
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loss of CSS. The trailing loss represents an important uncertainty in estimating the

population of small NEOs, and we urge surveys to carefully characterize it.

(4) Our base model is available via the NEOMOD Simulator (Sect. 6), a code that can

be used to generate a user-defined sample of model NEOs. Researchers interested

in the probability that a specific NEO evolved from a particular source can obtain

this information from the ASCII table that is available along with the Simulator.

Optionally, the NEOMOD Simulator can output the information about the impact

probability of model-generated NEOs with the Earth.

(5) We found that the sampling of main-belt sources by NEOs is size-dependent with the

ν6 and 3:1 resonances contributing ≃ 30% of NEOs with H = 15, and ≃ 80% of

NEOs with H = 25. This trend most likely arises from how the small and large main-

belt asteroids reach the source regions. The size-dependent sampling suggests that

small terrestrial impactors preferentially arrive from the ν6 source, whereas the large

impactors can commonly come from the middle/outer belt (Nesvorný et al. 2021).

(6) We confirm the size-dependent disruption of NEOs reported in Granvik et al. (2016),

and find a similar dependence of the disruption distance on the absolute magnitude.

As a consequence of the size-dependent disruption and item (5), small and large NEOs

have different orbital distributions.

(7) Although the base NEOMOD fit only applies to H < 25, the fit in the extended

magnitude range shows a shallower absolute magnitude distribution for 25 < H < 28

and smaller number of NEOs with H < 28 than Harris & Chodas (2021). The average

time between terrestrial impacts ofD ≃ 10 m bolides is found to be ≃ 30 yr – ≃ 3 times

longer than the nominal estimate from Brown et al. (2002, 2013). These differences

may point to some problem with the detection efficiency of CSS for 25 < H < 28.

Alternatively, they may have some interesting physical explanation.

(8) We compute the PM excess of meteorite falls for meteoroids evolving from the ν6 and

3:1 resonances to find E = 0.47± 0.02 and 0.50± 0.05, respectively. These values are

better aligned with Morbidelli & Gladman (1998) than with Wisdom (2017, 2020).

The observed statistics of PM/AM falls shows higher excess (E = 0.63±0.02) than the
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values derived here for the ν6 and 3:1 resonances. The PM excess can be influenced by

the physical lifetime of meteoroids.

(9) The model-inferred contribution of the 3:1 source to large NEOs (H ≲ 18) implies

that the main-belt asteroids should drift toward the 3:1 resonance at the maximum

Yarkovsky drift rates (≃ 2 × 10−4 au Myr−1 for a ≃ 1-km diameter body at 2.5 au).

This suggests that the main-belt asteroids on the sunward side of the 3:1 resonance

(a < 2.5 au) have obliquities θ ≃ 0◦; the ones with a > 2.5 au should have θ ≃ 180◦

(in the immediate neighborhood of the resonance). A similar inference applies to the

ν6 and 5:2 resonances (it should apply to other resonances as well). These predictions

are testable from lightcurve observations.

(10) The contribution of inactive comets to the NEO population is inferred to be smaller

than in previous works (αJFC < 0.017; 68.3% envelope). For comparison, Bottke et al.

(2002) found a ≃ 6% contribution of JFCs and Granvik et al. (2018) suggested a 2–10%

H-dependent contribution. As the Bayes factor slightly favors a model without any

comet contribution, the evidence for cometary NEOs can be thus hard to extract from

the CSS observations alone. This may imply that JFCs disrupt rather than becoming

dormant (see Sect. 6 in Nesvorný et al. 2010).

(11) We estimate that the Mars-to-Moon ratio in the number of impacts is Ma/Mo ≃ 7.1

for H = 15 and Ma/Mo ≃ 4.7 for H = 25. In crater chronology studies this is often

normalized to the unit surface area on these world giving the parameter Rb, where

the index b stands for bolides. We obtain Rb = 2.0 for H = 15 and Rb = 1.2 for

H = 25. Both these values are significantly lower than Rb ≃ 2.6 used for NEO impacts

in previous works.

Note added as this manuscript was being completed. J. Ďurech and J. Hanuš (2022, private

communication) recently analyzed the Gaia data release 3 (DR3) to determine the obliquities

for ≃ 9500 asteroids. The distribution of obliquities confirms the trend predicted in Sect. 8

and item (9) above. The obliquities of main belt asteroids immediately sunward of strong

orbital resonances are θ < 90◦, with a concentration for θ < 45◦; capture in spin-orbit

resonances is probably important here. The obliquities on the opposite side of resonances

are θ ≃ 180◦, exactly as predicted here to produce sufficiently large feeding rates.



– 46 –

The simulations were performed on the NASA Pleiades Supercomputer. We thank the

NASA NAS computing division for continued support. The work of DN, RD, and WFB was

supported by the NASA Planetary Defense Coordination Office project “Constructing a New

Model of the Near-Earth Object Population”. The work of SN, SRC and PWC was conducted

at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with

the National Aeronautics and Space Administration. DV acknowledges support from the

grant 21-11058S of the Czech Science Foundation. We thank an anonymous reviewer for

helpful comments.

REFERENCES

Bottke, W. F. and 6 colleagues 2002. Debiased Orbital and Absolute Magnitude Distribution

of the Near-Earth Objects. Icarus 156, 399–433. doi:10.1006/icar.2001.6788
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source µe σe µ1 σ1 µ2 σ2 w1/w2

(or γe) (◦) (◦) (◦) (◦)

ν6 0.16 0.067 5.5 2.3 15.0 3.0 10

3:1 0.145 0.067 4.7 2.7 13.5 2.5 2.5

5:2 (0.1) – 5.5 3.0 13.5 4.0 3.3

7:3 (0.085) – 2.7 1.3 10.5 2.2 0.65

8:3 (0.1) – 5.3 2.0 13.0 2.3 1.4

9:4 (0.09) – 2.0 2.0 10.5 3.3 0.3

11:5 (0.11) – 10.0 1.0 10.0 6.0 1.0

2:1 (0.12) – 26.0 2.0 11.0 6.0 0.55

Table 1: The eccentricity and inclination distributions adopted in this work for different

sources. The columns are: (1) source id., (2) the mean of the Gaussian distribution (µe)

or the scale parameter of the Rayleigh distribution (γe, values in parentheses) in e, (3)

the standard deviation of the Gaussian distribution in e (σe), (4-5) the mean and standard

deviation of the first Gaussian term in i (µ1 and σ1), (6-7) the mean and standard deviation

of the second Gaussian term in i (µ2 and σ2), and (8) the weight ratio of the two terms

(w1/w2).

min max Nbin ∆

a 0 4.2 au 42 0.1 au

e 0 1 20 0.05

i 0 88◦ 22 4◦

H 15 25 40 0.25

Table 2: The orbit and absolute magnitude binning used in this work. The columns are: the

(1) model variable, (2-3) minimum and maximum values considered here, (4) number of bins

(Nbin), and (5) bin size (∆).
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label parameter median −σ +σ limit

α’s for H = 15

(1) ν6 0.118 0.052 0.056 –

(2) 3:1 0.219 0.040 0.041 –

(3) 5:2 0.057 0.026 0.028 –

(4) 7:3 0.008 0.005 0.009 0.012

(5) 8:3 0.093 0.020 0.021 –

(6) 9:4 0.013 0.009 0.017 0.020

(7) 11:5 0.044 0.020 0.022 –

(8) 2:1 0.045 0.010 0.010 –

(9) inner weak 0.202 0.048 0.045 –

(10) Hungarias 0.082 0.022 0.022 –

(11) Phocaeas 0.095 0.017 0.018 –

– JFCs 0.012 0.008 0.013 0.017

α’s for H = 25

(12) ν6 0.424 0.043 0.040 –

(13) 3:1 0.338 0.034 0.035 –

(14) 5:2 0.063 0.018 0.020 –

(15) 7:3 0.004 0.003 0.006 0.007

(16) 8:3 0.010 0.008 0.014 0.016

(17) 9:4 0.007 0.005 0.010 0.012

(18) 11:5 0.009 0.007 0.013 0.014

(19) 2:1 0.006 0.004 0.008 0.009

(20) inner weak 0.033 0.023 0.036 0.049

(21) Hungarias 0.056 0.027 0.030 –

(22) Phocaeas 0.014 0.010 0.018 0.021

– JFCs 0.008 0.006 0.011 0.014

H distribution

(23) Nref 896 29 29 –

(24) γ2 0.344 0.006 0.006 –

(25) γ3 0.328 0.004 0.004 –

(26) γ4 0.566 0.014 0.014 –

Disruption parameters

(27) q∗0 0.144 0.004 0.007 –

(28) δq∗ 0.030 0.003 0.001 –

Table 3: The median and uncertainities of our base model parameters. The first column is

the parameter/plot label in Fig. 8 (JFCs do not appear in the figure). The uncertainties

reported here were obtained from the posterior distribution produced by MultiNest. They

do not account for uncertainties of the CSS detection efficiency. For parameters, for which

the posterior distribution shown in Fig. 8 peaks near zero, the last column reports the upper

limit (68.3% of posteriors fall between zero and that limit).
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H NM(H) H NM(H) H NM(H) H NM(H)

15.1 55.8 17.6 783.3 20.1 5795 22.6 28970

15.2 62.4 17.7 860.9 20.2 6180 22.7 31320

15.3 69.7 17.8 945.1 20.3 6585 22.8 33930

15.4 77.9 17.9 1036.3 20.4 7011 22.9 36850

15.5 87.0 18.0 1134.9 20.5 7458 23.0 40120

15.6 97.2 18.1 1241.4 20.6 7930 23.1 43780

15.7 108.6 18.2 1356.3 20.7 8427 23.2 47910

15.8 121.2 18.3 1480.1 20.8 8953 23.3 52580

15.9 135.2 18.4 1613.2 20.9 9509 23.4 57870

16.0 150.8 18.5 1756.1 21.0 10100 23.5 63880

16.1 168.1 18.6 1909.4 21.1 10730 23.6 70760

16.2 187.3 18.7 2073.6 21.2 11400 23.7 78630

16.3 208.5 18.8 2249.2 21.3 12110 23.8 87670

16.4 232.0 18.9 2436.8 21.4 12870 23.9 98100

16.5 258.0 19.0 2636.8 21.5 13690 24.0 110200

16.6 286.7 19.1 2849.7 21.6 14570 24.1 124200

16.7 318.4 19.2 3076.1 21.7 15520 24.2 140500

16.8 353.2 19.3 3316.5 21.8 16540 24.3 159500

16.9 391.6 19.4 3571.3 21.9 17650 24.4 181400

17.0 433.7 19.5 3841.0 22.0 18860 24.5 206900

17.1 479.9 19.6 4126.1 22.1 20180 24.6 236400

17.2 530.4 19.7 4426.9 22.2 21620 24.7 270500

17.3 585.7 19.8 4743.9 22.3 23200 24.8 309800

17.4 646.0 19.9 5077.3 22.4 24940 24.9 355200

17.5 711.8 20.0 5427.6 22.5 26850 25.0 407400

Table 4: The cumulative number of NEOs. For each absolute magnitude limit (H), the table

reports the number of NEOs brighter than H as estimated from our base model (NM(H)).

The relative 1σ uncertainty of the population estimates given here increases from ≃ 3%

for H < 20 to ≃ 6% for H < 28. The uncertainties were estimated from the posterior

distribution produced by MultiNest. They do not account for uncertainties of the CSS

detection efficiency.
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source τ pimp fimp

(Myr) (Myr−1)

ν6 6.64 0.02035 0.00306

3:1 1.38 0.00273 0.00198

5:2 0.29 0.00041 0.00141

7:3 0.15 0.00006 0.00041

8:3 1.20 0.00138 0.00149

9:4 0.21 0.00028 0.00132

11:5 0.29 0.00009 0.00029

2:1 0.41 0.00010 0.00025

inner weak 4.83 0.01262 0.00261

Hungarias 20.88 0.02802 0.00134

Phocaeas 15.33 0.00666 0.00043

Table 5: The average lifetime of NEOs (τ), Earth impact probability (pimp) and impact flux

(fimp = pimp/τ). The values are given here for the fixed reference disruption distance q∗ = 0.1

au.

source Mercury Venus Earth Mars

% % % %

ν6 0.273 2.042 2.035 0.317

3:1 0.035 0.227 0.273 0.041

5:2 0.006 0.023 0.041 0.004

7:3 0.001 0.011 0.006 0.004

8:3 0.015 0.099 0.138 0.067

9:4 0.000 0.009 0.028 0.006

11:5 0.000 0.017 0.009 0.017

2:1 0.001 0.013 0.010 0.006

inner weak 0.122 1.221 1.262 0.895

Hungarias 0.258 2.266 2.802 2.001

Phocaeas 0.069 0.708 0.666 0.388

Table 6: The impact probabilities (pimp) of NEOs from different sources. The values are

given for the model with the fixed disruption distance q∗ = 0.1 au. The impact fluxes (fimp)

for different planets can be computed by dividing the probabilities given here by the average

NEO lifetimes given in Table 5.
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Fig. 1.— The orbital distribution of main-belt asteroids (red dots) near the 3:1 resonance

with Jupiter. The inner V-shaped region approximates the dynamically unstable domain

where test bodies representing the 3:1 source were placed. The main belt asteroids with

orbits in the two outer strips, 2.48 < a < 2.49 au and 2.51 < a < 2.52 au for e = 0

and diagonally extending to e > 0, were used to set up the eccentricity and inclination

distributions of test bodies.
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Fig. 2.— The eccentricity (panel a) and inclination (panel b) distributions of bodies placed

in the 3:1 resonance with Jupiter. The red lines are the actual distributions of main belt

asteroids near the 3:1 resonance. The black lines are the analytic approximation of these

distributions described in the main text.
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Fig. 3.— The projected PDFs of model NEO orbits for different sources (projected pj(a, e, i)):

ν6, 3:1, 5:2, 8:3, 2:1 and JFCs (from top left to bottom right). Higher values are shown by

brighter colors. For reference, the red lines show orbits with q = aEarth, Q = aEarth, q = aVenus,

and Q = aVenus, where Q = a(1+e) is the aphelion distance, aEarth = 1.0 au and aVenus = 0.72

au.
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Fig. 4.— The CSS’s mean rate of detection – the number of CSS FoVs in which a NEO with

given orbital elements is expected to be detected – is plotted as a function of the absolute

magnitude (green line). The average of R(a, e, i, H), given in Eq. (4), was computed over

the whole orbital domain. The original bias from Granvik et al. (2018) is shown by open

circles. The gray line shows the detection rate when the trailing loss from Zavodny et al.

(2008) is not accounted for.
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Fig. 5.— The CSS detection probability (Eq. 5) as a function of orbital elements for four

different absolute magnitude values. From top-left to bottom-right, we plot P(a, e, i, H) for

H corresponding to objects with D = 3 km, 1 km, 300 m and 50 m (H = 15.37, 17.75, 20.37

and 24.26 for the reference albedo pV = 0.14). The detection probability was averaged over

all inclinations bins. The vertical strips, with P going up and down as a function of NEO’s

semimajor axis, are discussed in the main text.
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Fig. 6.— The CSS detection probability (Eq. 5) as a function of orbital elements for

four different absolute magnitude values. From top to bottom, we plot P(a, e, i, H) for H

corresponding to objects with D = 3 km, 1 km, 300 m and 50 m (H = 15.37, 17.75, 20.37

and 24.26 for the reference albedo pV = 0.14). The plots in the left column show P for the

fixed orbital inclination (i = 10◦) and several eccentricity values. The plots on the right

show P for e = 0.6 and several inclination values. The detection probability was computed

for orbits with q < 1.3 au.
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Fig. 7.— The orbital distributions of NEOs from the 3:1 source for three disruption thresh-

olds: q∗ = 0.005 au (red line), q∗ = 0.1 au (green line), and q∗ = 0.2 au (blue line). By

increasing the disruption distance in the model, we remove the orbits with high eccentricities,

and the eccentricity distribution becomes more peaked near e = 0.5. At the same time, the

inclination distribution becomes narrower.
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Fig. 8.— The posterior distribution of 28 NEOMOD parameters from our base MultiNest fit

to CSS. The individual plots are labeled (1) to (28) following the model parameter sequence

given in Table 3.
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Fig. 9.— The enlarged plot on the left illustrates the degeneracy between contributions of

the ν6 resonance and weak resonances in the inner belt to bright NEOs (H = 15). The two

contributions are anti-correlated and sum up to ≃ 30%.
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Fig. 10.— The orbital distribution of NEOs from our biased based model (left panels) and

the CSS NEO detections (right panels). The two distributions were binned with the same

resolution and are shown here in the (a, e) and (a, i) projections. There are no NEOs with

the aphelion inside Venus orbit in CSS (and the biased model), because the pointing strategy

of CSS had negligible low solar-elongation coverage.
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Fig. 11.— The probability density functions (PDFs) of a, e, i, and H from our biased base

best-fit model (blue lines) and the CSS NEO detections (red lines). The shaded areas are 1σ

(bold gray), 2σ (medium) and 3σ (light gray) envelopes. We used the best-fit solution (i.e.

the one with the maximum likelihood) from the base model and generated 30,000 random

samples with 3,803 NEOs each (the sample size identical to the number of CSS’s NEOs in

the model domain; 15 < H < 25). The samples were biased and binned with the standard

binning (Table 2). We identified envelopes containing 68.3% (1σ), 95.5% (2σ) and 99.7%

(3σ) of samples and plotted them here. The K-S test probabilities are 9.7%, 14%, 32% and

61% for the a, e, i and H distributions, respectively.
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Fig. 12.— The probability density functions (PDFs) of a, e, i, and H from our biased base

best-fit model (blue lines) are compared to the CSS NEO detections (red lines). The four

panels on the left show the results for bright NEOs with 15 < H < 20, and the four panels on

the right show the results for faint NEOs with 20 < H < 25. The shaded areas are 1σ (bold

gray), 2σ (medium) and 3σ (light gray) envelopes. See caption of Fig. 11 for the method

that we used to compute these envelopes. For 20 < H < 25, the K-S test probabilities are

10−4 and 0.012 for the a and e distributions, respectively.
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Fig. 13.— The intrinsic (debiased) absolute magnitude distribution of NEOs from our base

model (black line is the median, blue line is the best fit) is compared to the magnitude

distribution from Harris & Chodas (2021) (red line). The gray area is the 3σ envelope

obtained from the posterior distribution computed by MultiNest. It contains – by definition

– 99.7% of our base model posteriors.
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Fig. 14.— The contribution of different NEO sources as a function of the absolute magnitude.

The ν6 and 3:1 resonances are shown by the black and red lines. The light-green line is the

contribution of weak resonances in the inner main belt. The plot shows the result for the

maximum likelihood parameter set from the base model. We simply plot αj(15) and αj(25)

for each source and connect them by a straight line (Sect 5.1). The uncertainties of αj(15)

and αj(25) are listed in Table 3.
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Fig. 15.— Disruption models. Our base model M, where the critical perihelion distance

q∗ is assumed to be a linear function of absolute magnitude (the red line with the light

red envelope containing 68% of posteriors), is compared to Granvik et al. (2016) (triangles

with error bars). The surface temperature is estimated to be 820 K (average) and 930 K

(subsolar) at 0.117 au (Granvik et al. 2016).
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Fig. 16.— The probability density functions (PDFs) of a, e, i, and H from the intrinsic

(debiased) base model. The plot compares the distributions of bright NEOs with 15 < H <

17.5 (blue) and faint NEOs with 22.5 < H < 25 (red). The blue and red shaded areas are

the 1σ envelopes of our base model posteriors.
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Fig. 17.— The incompleteness of the known NEO population. For the a, e and i distribu-

tions, the dashed lines show the number of known NEOs with H < 22, and the solid lines

are the number of NEOs with H < 22 inferred from our maximum likelihood base model

(both given per bin interval; 0.1 au, 0.04 and 4◦). For the H distribution in the bottom-right

panel, we show both the cumulative and differential (per 0.25 mag) distributions (upper

and lower lines, respectively; solid for model, dashed for known). The uncertainty of the

cumulative population estimates increases from ≃ 3% for H < 20 to ≃ 6% for H < 25.

The uncertainties were obtained from the posterior distribution produced by MultiNest and

does not account for various uncertainties of the CSS detection efficiency.
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Fig. 18.— A sample output from the NEOMOD Simulator that shows ≃ 4.1× 105 orbits of

NEOs with H < 25.
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Fig. 19.— The incompleteness of the known PHO population (MOID < 0.05 au, H < 22).

For the a, e and i distributions, the dashed lines show the number of known PHOs with

H < 22, and the solid lines are the number of PHOs with H < 22 inferred from our

maximum likelihood base model (both given per bin interval; 0.1 au, 0.04 and 4◦). For

the H distribution in the bottom-right panel, we show both the cumulative and differential

(per 0.25 mag) distributions (upper and lower lines, respectively; solid for model, dashed for

known). The uncertainty of the cumulative population estimates increases from ≃ 3% for

H < 20 to ≃ 6% for H < 25. The uncertainties were obtained from the posterior distribution

produced by MultiNest and does not account for various uncertainties of the CSS detection

efficiency.
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Fig. 20.— The impact flux on the terrestrial planets as a function of NEO absolute magni-

tude. The black, green, blue and red lines show the impact flux for Mercury, Venus, Earth

and Mars. The thin solid lines near the Earth flux is the base-model NEO magnitude dis-

tribution scaled with the fixed impact probability (1.5 × 10−3 Myr−1; see the main text).

The thin solid line near the Mars flux is the Earth profile scaled down by a factor of 3. The

horizontal dashed line shows the impact flux for D > 1 km bodies from Morbidelli et al.

(2021) (0.75-Myr average spacing between impacts). The vertical dashed line corresponds

to H = 17.75.
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Fig. 21.— The probability density functions (PDFs) of a, e, i, and H from our modified

base model with the extended magnitude range (15 < H < 28) (blue lines) is compared to

the CSS NEO detections (red lines). The shaded areas are 1σ (bold gray), 2σ (medium)

and 3σ (light gray) envelopes. We used the best-fit solution (the one with the maximum

likelihood) from the modified base model and generated 30,000 random samples with 4,412

NEOs each (the sample size identical to the number of CSS’s NEOs in the model domain;

15 < H < 28). The samples were biased and binned. We identified envelopes containing

68.3% (1σ), 95.5% (2σ) and 99.7% (3σ) of samples and plotted them here.
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Fig. 22.— The (intrinsic) absolute magnitude distribution from the modified base model

where we extended the model domain to 15 < H < 28 (solid black line). The gray area

shows the 99.7% envelope of posteriors from the MultiNest fit. For reference, we also plot

the magnitude distributions from Harris & D’Abramo (2015) (green line), Granvik et al.

(2018) (dashed black line for 17 < H < 25), Harris & Chodas (2021) (red line), and Heinze

et al. (2021) (blue line; the vertical blue bar at H = 28 shows the 1σ uncertainty reported

in Heinze et al. for the number of NEO with H < 28).
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Fig. 23.— The impact flux on the terrestrial planets as function of NEOs absolute magnitude.

The black, green, blue and red lines show the impact flux for Mercury, Venus, Earth and Mars

from Eq. (13). The thin solid line near the Earth flux is the NEO magnitude distribution

from Harris & Chodas (2021) scaled with the fixed impact probability (1.5×10−3 Myr−1; see

the main text). The black dot approximately marks the constraint from bolide detonations

in the Earth atmosphere (Brown et al. 2002). The horizontal dashed line shows the impact

flux for D > 1 km bodies from Morbidelli et al. (2021) (0.75-Myr average spacing between

impacts). The vertical dashed line corresponds to H = 17.75.
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