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Consider a compact surface of genus > 2 equipped with a metric that is flat everywhere
except at finitely many cone points with angles greater than 2z. Following the technique
in the work of Burns, Climenhaga, Fisher, and Thompson, we prove that sufficiently
regular potential functions have unique equilibrium states if the singular set does
not support the full pressure. Moreover, we show that the pressure gap holds for any
potential that is locally constant on a neighborhood of the singular set. Finally, we
establish that the corresponding equilibrium states have the K-property and closed

regular geodesics equidistribute.

1 Introduction

We examine the uniqueness of equilibrium states for geodesic flows on a specific class

of CAT(0) surfaces, those where the negative curvature is concentrated at a finite set of
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points. Translation surfaces are examples of such surfaces. A translation surface X is a
pair (X, w) where X is a Riemann surface of genus g, and w is a holomorphic one-form on
X. The zeroes of this holomorphic one-form occur at a finite set of points. The one-form
o defines a metric that is flat everywhere except at its zeroes. At the zeroes, the metric
has a conical singularity with angle 2(n + 1)7, where n is the order of the zero. For a
more in-depth overview of translation surfaces, see [22, 23].

In [4], the authors prove that under certain conditions, a unique equilibrium
state exists for potentials associated with the geodesic flow on a closed, rank-one
manifold with nonpositive sectional curvature (an example of a CAT(0) space without
singularities). The conditions are a Holder continuous potential and a pressure gap,
that is, topological pressure of the flow restricted to the singular set is strictly less
than pressure of the flow overall. The singular set they consider is all the vectors in the
unit tangent bundle with rank larger than one.

When the singular set is empty—for example, in strictly negative curvature—
every Holder potential has a unique equilibrium state. When the singular set is non-
empty, an additional condition is necessary as the geodesic flow is nonuniformly
hyperbolic. Restricting the pressure of the flow on the singular set is a way of describing
the flow of the singular set as having a small enough impact on the system as a whole
that uniqueness is still guaranteed.

The natural way to define a geodesic flow on CAT(0) surfaces is to look at the
flow on the set of all geodesics (see Section 2.1). Denote by GS the set of all geodesics on
the surface S (see (1)).

In this paper, we study the uniqueness of equilibrium states for the geodesic
flow described above (see Definition 2.5), as we are guaranteed existence for continuous
potentials by entropy-expansivity of the flow (see Lemma 2.17). In particular, we use the
technique of [4] in our setting and define the singular set to be the set of geodesics that

never encounter any cone points or, when they do, turn by angle exactly +rx.

Remark. Some other settings where the uniqueness of equilibrium states were studied

are described in more detail below in the outline of the argument.
We prove the following.

Theorem A. Let g, be the geodesic flow on S, a compact, connected surface of genus
> 2 equipped with a metric that is flat everywhere except at finitely many cone points

that have angle greater than 2x. Let Sing be the singular set as defined in Definition 2.4.
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Unique Equilibrium States for Translation Surfaces 3

Consider ¢: GS — R a Holder continuous potential. If the pressure of the singular set is
strictly less than the full topological pressure, that is, P(Sing, ¢) < P(¢) (see Definitions
2.5 and 2.6), then ¢ has a unique equilibrium state u that has the K-property (see
Definition 2.2).

It is natural to ask for which potentials we have the pressure gap (i.e., the
condition P(Sing,¢) < P(¢)) in Theorem A. The following theorem establishes the
pressure gap for a large class of Holder continuous potentials and thus uniqueness

of equilibrium states.

Theorem B (Theorem 7.1 and Corollary 7.8). Let S, GS, and g, be as in Theorem A.
Let ¢: GS — R be a Holder continuous function that is locally constant on a neigh-
borhood of Sing, or which is sufficiently close to a constant in the uniform norm (see

Corollary 7.8 for a precise statement of “sufficiently close”). Then P(Sing, ¢) < P(¢).

As a nice corollary (Corollary 7.7 below), we have h;,,(g;lsing) < hiop(9;) for our
flows.

We slightly improve the case ¢ = 0 from Ricks’'s result [20, Theorem B] by
showing that the unique measure of maximal entropy for the geodesic flow on S has
the K-property that is stronger than mixing. Using the Patterson-Sullivan construction,
Ricks builds a measure of maximal entropy u [19] and shows it is unique by asymptotic
geometry arguments [20]. We note that Ricks’s result holds for any compact, geodesi-
cally complete, locally CAT(0) space such that the universal cover admits a rank-one axis.

A natural question is whether the techniques in this paper can be extended to
the more general CAT(0), rank-one setting in which Ricks works. The present paper can
be viewed as a 1st step in that direction, but working in the general CAT(0) setting
presents real difficulties right from the outset of the argument. In particular, without
the Riemannian structure present in [4] or the flat surface structure we exploit, it is not
clear to us what the right candidate for the singular set for would be or how to find a
function like A (see Section 3) to aid in producing an orbit decomposition.

We call a geodesic that is not in Sing regular. Using strong specification for
a certain collection of “good” orbit segments, we show that weighted regular closed

geodesics equidistribute to these equilibrium states (see Section 8 for details).

Theorem C (Theorem 8.1). Let ¢ be as in Theorem B and u, is the corresponding

equilibrium state. Then, u, is the weak* limit of weighted regular closed geodesics.
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4 B.Calletal.
1.1 Outline of the argument

A general scheme for proving that unique equilibrium states exist was developed by
Climenhaga and Thompson [10], building on ideas of Bowen [2] that were extended
to flows in [17]. To prove that there are unique equilibrium states for a flow {f;} and
a potential ¢ on a compact metric space X, Climenhaga and Thompson ask for the
following (see [10, Theorems A and C]).
e The pressure of obstructions to expansivity, PelXp(d)) (see Definition 2.7), is
smaller than P(¢).
e There are three collections of orbit segments P, G, S, that we call collections
of prefixes, good orbit segments, and suffixes, respectively, such that each
orbit segment can be decomposed into a prefix, a good part, and a suffix (see

[4, Definition 2.3]), satisfying

(I) G has the weak specification property at any scale (Definition 2.8);
(IT) ¢ has the Bowen property on G (Definition 2.9); and
(1D P(IP1UIS], ¢) < P(9).

This scheme was implemented for the geodesic flow on a closed rank-one mani-
fold with nonpositive sectional curvature in [4] and, more generally, without focal points
in [7, 8]. Also, it was used to obtain the uniqueness of the measure of maximal entropy
on certain manifolds without conjugate points in [9] and on CAT(-1) spaces in [13].

Our proof follows a specific approach to satisfying the conditions in the above
scheme that was applied in [4] and that allows us to reduce condition (ITI) to checking
the pressure of an invariant subset of GS. Although the decomposition (P, G,S) is in
general very abstract, we choose the decomposition using a function A on the space
of geodesics. This choice of decomposition also allows us to avoid having to deal with
the sets [P] and [S], which are discretized versions of P and S necessary for technical
counting arguments to be applied to some decompositions. We define the function 2,
prove that it is lower semicontinuous, and describe how it gives rise to a decomposition
in Section 3. For such a “A-decomposition”, P = S and, roughly speaking, orbit segments
in P and S have small average values of A whereas any initial or terminal segment of
an element of G has average value of A, which is not small. Furthermore, by utilizing a

A-decomposition, we are able to appeal to the following result.

Theorem 1.1. ([6, Theorem 4.6]) Let F be a continuous flow on a compact metric

space X, and let ¢ : X — R be continuous. Suppose the flow is asymptotically
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Unique Equilibrium States for Translation Surfaces 5

entropy-expansive, that Pé(p(qﬁ) < P(¢), and that A : X — [0, 00) is lower semicontinuous

and bounded. If the A-decomposition (P, G, S) satisfies the following:

e G(n) has strong specification at all scales, for all > 0;
e ¢ has the Bowen property on G(n);
o P(Ner(fy x f[A71(0), @) < 2P(¢),

where ®(x,y) = ¢(x)+¢(y) and A(x, y) = A(x)A(y), then (X, F, ¢) has a unique equilibrium
state which has the K-property.

Theorem A will follow from Theorem 1.1 after we show that we can sat-
isfy all conditions required. See Section 1.2 for the sections where each property is
checked.

Our choice of A gives a connection between orbit segments in P and & and
the singular set Sing (see Definition 2.4). The singular set is also the source of the
obstructions to expansivity (see Lemma 2.16). These connections are useful for proving
the two “pressure gap” properties Theorem 1.1 calls for Péxp(qb) < P(¢) and P((er (f;
f1)%71(0), @) < 2P(¢). In particular, in our case, ;g f;+ 1 (0) = Sing.

Remark. The strong specification property on G in Theorem 1.1 is used to
obtain that the equilibrium state has the K-property. The weak specification
property on G is enough to guarantee the existence of a unique equilibrium

state.
Remark. The K-property implies strong mixing of all orders.

1.2 Organization of the paper

The paper is organized as follows. In Section 2, we provide definitions of and
background on the main objects and tools of this paper and we record some
basic geometric results that will be used throughout the paper. The main steps
for the proof of Theorem A according to Theorem 1.1 are in Sections 3 (the
A-decomposition), 4 and 5 (the specification property for G), and 6 (the Bowen property
for G).

We obtain Theorem B in Section 7, first proving the pressure gap condition for
potentials that are locally constant on a neighborhood of Sing, and then using this result
to note that the same gap holds for potentials with sufficiently small total variation.

Theorem C (the equidistribution result) is proved in Section 8.
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6 B.Calletal.

Fig. 1. A large-angle cone point, embedded in R3. Away from the cone point, the surface is flat
under the intrinsic metric—it is the union of lines in R® and so has Gaussian curvature zero. The
dark lines show a geodesic segment hitting the cone point and its two continuations with turning
angles +m; these geodesics are in Sing. All continuations of the geodesic with line segments
passing through the dark shaded region are geodesics. The spread of the geodesic continuations

in this region is exactly the source of “hyperbolicity” for the geodesic flow in these spaces.

2 Background
2.1 Setting and definitions

Throughout, S denotes a compact, connected surface of genus > 2 equipped with a
metric that is flat everywhere except at finitely many conical points that have angles
larger than 2r (see Figure 1). We assume S is oriented by passing to the oriented double
cover if necessary. Con denotes the set of conical points on S and denote by L(p) the
total angle at a point p € S. In particular, L(p) = 27 if p ¢ Con and L(p) > 2x if p € Con.
Note that in the special case of a translation surface, L(p) is always an integer multiple
of 27, but we make no such restriction here. Denote by S the universal cover of S, and
note that S is a complete CAT(0) space (see, e.g., [3] for definitions and basic results on
CAT(0) spaces). Throughout, tildes denote the obvious lifts to the universal cover.

Since S is CAT(0), any p,§ are connected by a unique geodesic segment.
Throughout, we will denote this segment by [p, gl.

Let GS be the set of all (parametrized) geodesics in S. That is,

GS={y:R— S|y is alocal isometry}. (1)
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Unique Equilibrium States for Translation Surfaces 7

We endow GS with the following metric:

dgs(v1.v2) = Inf dz (7 (1), 7, (0)e~ 2 dt, (2)

Y1.Y2 J —oc0

where the infimum is taken over all lifts j; of y; to GS for i = 1,2. GS serves as an
analogue of the unit tangent bundle in our setting. (Indeed, for a Riemannian surface,
GS is homeomorphic to T'S.) It is necessary to examine this more complicated space
as geodesics in S are not determined by a tangent vector—they may branch apart from
each other at points in Con. In this setting, the metric d;g records the idea that two
geodesics in GS are close if their images in S are nearby for all ¢ in some large interval
[T, Tl

Geodesic flow on GS comes from shifting the parametrization of a geodesic:

(g:y)(s) = y(s+1).

The normalizing factor 2 in our definition of d;g ensures that g, is a unit-speed flow
with respect to dgg. (Showing this is a completely straightforward computation, using
the fact that dz(y (1), 7 (s + 1)) = s).

We recall two definitions of the K-property of an invariant measure. See
Section 10.8 in [15] for a proof of the equivalence of these definitions (known as com-
pletely positive entropy and K-mixing, respectively) with the original definition of the

K-property, as well as more details about other equivalent definitions.

Definition 2.1. A flow-invariant measure u has the K-property if (X, (g,), #) has no

nontrivial zero entropy factors (i.e., the Pinsker factor is trivial).

This definition can be reformulated as a statement about mixing in the following

manner.

Definition 2.2. A flow-invariant measure u has the K-property if for all ¢ £ 0, for all

k > 1, and all measurable sets Ay, 4,,...,A, we have

lim  sup  |u(4gNB) — u(Ag)u(B)| =0,
=X BeCr(A1,...Ax)

where C,(4,,...,4;) is the minimal o-algebra generated by 9ir(A)) for 1 < j < k and

natural r > n.
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8 B.Calletal

Remark. The K-property implies strong mixing of all orders. We recall that an
invariant measure u is strongly mixing of all orders if for all £ > 1 and all measurable

sets Ay, A;, ..., A, we have

k
oA NGy (AD NNy, (A)) = HMAJ-).
J:

A key tool in our analysis of the geodesic flow on S will be the turning angle of
a geodesic at a cone point. We note that although S is not smooth at p € Con, there is a
well-defined space of directions at p, S,S and a well-defined notion of angle (see, e.g.,

[3, Ch. I1.3]). In the angular metric, SpS is a circle of total circumference L(p).

Definition 2.3. Let y € GS. The turning angle of y at time t is 6(y,t) €
(—%ﬁ(y(t)),%ﬁ(y(t))] and is the signed angle between the segments [y(t — §),y(t)]
and [y(t), y(t + 8)] (for sufficiently small § > 0). A positive (resp. negative) sign for
0 corresponds to a counterclockwise (resp. clockwise) rotation with respect to the

orientation of [y (t — §), y ()].
Since y is a geodesic, |6(y,t)|]—7 > 0forany t € R. If y(¢t) ¢ Con, then 0(y,t) = «.
Definition 2.4. We define the singular geodesics in S as
Sing={y e GS:10(y,t)|=n VteR].

Since Sing is defined in terms of properties of full geodesics, it is g;-invariant. Geodesics
not in Sing turn by some angle # n at a cone point. This is an open condition, so Sing is

closed and hence compact.

The geodesics in Sing either never encounter any cone points or, when they
do, turn by angle exactly +x. They serve as an analogue of the singular set in the
Riemannian setting of [4], that is, geodesics that remain entirely in zero-curvature
regions of the surface. In both cases, the idea is that a singular geodesic never takes
advantage of the geometric features of the surface (either its negative curvature regions
or its large-angle cone points) to produce hyperbolic dynamical behavior. We note here
a potentially confusing aspect of this terminology: a singular geodesic in this paper
avoids the “singular”, that is non-smooth, points of Con, or treats them as if they are

not “singular”.
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Unique Equilibrium States for Translation Surfaces 9

We introduce some classical notions of thermodynamical formalism.

Definition 2.5. Consider a function ¢: GS — R that we refer as a potential function.

The pressure for ¢ is

P(¢) = sup (hu(gt) + / ¢ du) .
" GS

where u varies over all invariant Borel probability measures for g, and h,(g,) is the
measure-theoretic entropy with respect to the geodesic flow.

An invariant Borel probability measure w,, (if it exists) such that

P(p) = hM¢(gt) + /GS¢dM¢
is an equilibrium state for ¢.

Definition 2.6. P(Sing, ¢) is the pressure of the potential Plsing ON the compact and

flow-invariant set Sing (see Definition 2.4).

Below, we discuss some of the necessary definitions to apply the Climenhaga-

Thompson machinery.

Definition 2.7. Let ¢ > 0. The non-expansive set at scale ¢ for the flow g, is

NE(e) ={y € GS| T (y)  g|_s v forall s > 0},

where

F.(y) =1{§ € GS|dgs(9,v,9:6) <e VteR}]
The pressure of obstructions to expansivity for a potential ¢ is
Pgyp(¢) = lim sup [hu(gl) +/ ¢pdu | k(NE(e)) = 1¢,
}0 GS

where the supremum is taken over all g,-invariant ergodic probability measures u on
GS such that u(NE(e)) = 1.

In other words, a geodesic is in the complement of NE(e) if the only geodesics

that stay ¢ close to it for all time are contained in its own orbit. A flow is expansive
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10 B. Call et al.

if NE(¢) is empty for all sufficiently small . The presence of flat strips in our setting
means our flow will not be expansive, but for small ¢, the complement of NE(¢) will turn
out to be a sufficiently rich set to use in our arguments.

In the interest of concision, we omit the formal definition of an orbit decompo-
sition, referring instead to [10]. We will use a specific type of decomposition that has
been studied in [5, 6], and we will primarily use results from those two papers. We note,
however, that results from [10] hold for our decompositions as well, as it is written for a
more general class of decomposition. We discuss this more in Section 8, where we will
need to appeal to a few results directly from [10]. Identify a pair (y, t) € GS x [0, 00) with
the orbit segment {g;y | s € [0, t]}. An orbit decomposition is a method of decomposing
any orbit segment into three subsegments, a prefix, a central good segment, and a
suffix. We denote the collections of these segments by P,§, and S, respectively. The
A-decompositions that we use in this paper are orbit decompositions that decompose
orbit segments based on a lower semicontinuous function A. Our choices for the function
A and the associated parameter n > 0 will be discussed in detail in Section 3, but the
idea is this. The function A measures the amount of “hyperbolic” behavior seen by the
geodesic; in accord with our intuition that cone points are the source of this behavior,
A will be based on turning angles at these points. A segment is “good” for our purposes

(i.e., in G(n)) if it experiences a lot of hyperbolicity; otherwise, it is in P = S:

e G = G(n) consists of all (y, t) such that the average value of A over every initial
and terminal segment of (y, t) is at least n, and
e P =S8 = B(n) consists of all (y,t) over which the average value of A is less

than 7.

We can define both specification and the Bowen property for an arbitrary
collection of orbit segments G C GS x [0, 00). In both cases, by taking G = GS x [0, 00),

one retrieves the definitions for the full dynamical system.

Definition 2.8. We say that G has weak specification if for all ¢ > 0, there exists 7 > 0
such that for any finite collection {(x;,£;)}?' , C G, there exists y € GS that e-shadows
the collection with transition times {7;}]' ; at most r between orbit segments. In other

words, for 1 <1 < n, there exists 7; € [0, 7] and y € GS such that
Ags(Giys, Y, 9p%) <efor0O=<t=t,

where s = Z}:ll t; + ;. We will refer to such t as a specification constant.
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Unique Equilibrium States for Translation Surfaces 11

We say that G has strong specification when we can always take each T =rtin

the above definition.

Definition 2.9. Given a potential ¢ : GS — R, we say that ¢ has the Bowen property on

G if there is some ¢ > 0 for which there exists a constant K > 0 such that

t
sup H/ ¢ (g,x) — ¢(g,y)dr| | (x,t) € G and d5(9,y.9,%x) <efor0<r < t} <K.
0

Remark. If ¢ hasthe Bowen property on a collection of orbit segments G at some scale

& > 0, it in turn has the Bowen property on G at all smaller scales ¢’ < «.

There is also a definition of topological pressure for collections of orbit
segments. However, by using Theorem 1.1, we sidestep this complication.
Finally, we adapt a piece of terminology from flat surfaces to our somewhat

more general setting.

Definition 2.10. A geodesic segment with both endpoints in Con and no cone points
in its interior is called a saddle connection. A saddle connection path is composed of
saddle connections joined so that the turning angle at each cone point is at least . Note

that with this definition all saddle connection paths are geodesic segments.

2.2 Basic geometric results

In this section, we collect a few basic results on the geometry of S, S, GS, and GS that
will be used in our subsequent arguments.

The following two lemmas relate the metric d;g to the metric dg on the surface
itself and will be useful for a number of our calculations below. First, we note that if

two geodesics are close in GS, then they are close in S at time zero.

Lemma 2.11. ([13, Lemma 2.8]) For all y;,y, € GS,
ds(h 0),y,(0)) < 2dgs()/1: Vo).

Furthermore, for s,t € R, dg(y;(5), o (1)) < 2d5(gsv1.9:V2)-

Conversely, if two geodesics are close in S for a significant interval of time

surrounding zero, then they are close in GS.
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12 B. Call et al.

Lemma 2.12. ([13, Lemma 2.11]) Let ¢ be given and a < b arbitrary. There exists
T = T(¢) > 0 such that if dg(y;(®),y,(t)) < /2 for all t € [a — T,b + T], then
ds(9:v1,9:Y) < € forall t € [a, b]. For small ¢, we can take T(¢) = —log(e).

A similar, and more specialized, result that we will need later in the paper (see

the proof of Proposition 6.2) is the following.

Lemma 2.13. Suppose that dg(y;(t), y»(t)) = 0 for all ¢t € [a, b]. Then, for all t € [a, b],

Aes(9iv1:91Ya) < e~ 2min{|t—al|t=bl},

Proof. For any x > 0, [°(s — x)e"% ds = ;e 2*. In the setting of the lemma, since the

distance between the geodesics is zero on [a, b] and since geodesics move at unit speed,

a

o
des(Gey1, 9iva) < / 2(a — s)e 2lt=sl gs +/ 2(s — bye 2=l gs.
00 b

Quick changes of variables show that this is equal to flial 2(s—|t—al)e 2 dS"’f\:im 2(s—

|t — bl)e~25ds = 3(e2t=4l 4 ¢=2It-bl) and the lemma follows. [ ]
The geodesic flow has the following Lipschitz property.

Lemma 2.14. ([14, Lemma 2.5]) Fix a T > 0. Then, for any t € [0, T], and any pair of
geodesics y, £ € GS,

dgs(9:v.19:8) < QZTdGs(V/ &).

We need the following four geometric facts.

Lemma 2.15.

(a) There exists some d,, > 0 such that S contains no flat dy, x d, square.

(b) There exists some 5, > 0 such that the excess angle at every cone point in S
is at least 7.

(c) There exists some £, > 0 such that the length of every saddle connection is
at least £,.

(d) There exists some 6, > 0 such that the excess angle at every cone point in S

is at most 6.
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Unique Equilibrium States for Translation Surfaces 13

Proof. These follow immediately from the compactness of S and the fact that S having

genus at least two implies Con # ¢. |
We note here that Sing is the source of the non-expansivity for our geodesic flow.
Lemma 2.16. For all ¢ > 0 less than half the injectivity radius of S, NE(¢) C Sing.

Proof. Suppose y € NE(¢) and that ¢ is smaller than half the injectivity radius of S.
Then, there exists & € GS which is not in the orbit of y such that d;4(g,v,9;£) < ¢ for all
t € R.By Lemma 2.11, dg(y (t),£(t)) < 2¢ for all t € R. In particular, using our assumption
on ¢, there exist lifts 7 and & such that dg(y (t),£(t)) < 2¢ for all t € R. By the flat strip
theorem [1, Corollary 5.8 (ii)], there is an isometric embedding R x [a, b] — S sending
R x {a} to the image of 7 and R x {b} to the image of &.

Since £ is not in the orbit of 7, we must have a # b and the isometrically
embedded strip is nondegenerate. But this immediately implies that forall ¢, |0(7,t)| ==
as y always turns at angle 7 on the side to which the embedded flat strip lies. Therefore,
y € Sing. .

Recall that a flow is called entropy-expansive if for sufficiently small ¢,

sup{htop(gtlrg(y)) | v € GS} = 0.

Lemma 2.17. ([20, Lemma 20]) The geodesic flow in our setting is entropy-expansive.

Proof. This is proven by Ricks [20] for geodesic flow on a CAT(0) space. This covers
our setting, but Ricks uses a slightly different definition of the metric on GS than we
do, so we outline the argument here.

Fix ¢ less than half the injectivity radius of S. Lift y to 7 € GS. Any geodesics
& e T, (y) lift to £ € [,(y). They are either of the form g,y for || < & or are

parallel to y in a flat strip containing y. The flow on I',(y) is thus isometric, and so

Piop@ilr, () = 0. u

Lemma 2.18. Given any closed geodesic y C S, there is a closed saddle connection

path that is homotopic to ¥ and has the same length as y.

Proof. Assume y contains a point p € Con. Then the desired closed saddle connection
path is the geodesic that starts at p and traces y.
Suppose y C S\ Con, and so 7 C S\ Con. Fix an orientation of 7, and consider

the variation p, of curves given by sliding y to its left (so the variational field is
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14 B. Call et al.

perpendicular to 7 and to its left with respect to 7's orientation). Since 7 C S\ Con and
y is closed, there is a nonzero lower bound on the distance from 7 to Con. Therefore, for
all sufficiently small r, , is defined. The projections to S, y,, and y form the boundary
of a flat cylinder in S. Thus, y, is a geodesic with length equal to that of y.

Let r* be the supremum of all » > 0 for which y, is defined for all p € [0, r].
Note that if no supremum exists, y bounds a flat half-space in S, which contains a
fundamental domain for S since S is compact. This would imply S is flat (with no cone
points), a contradiction. Therefore, letting r — r* from below, y, limits uniformly on a
path, and therefore necessarily a geodesic, containing at least one point in Con with the
same length as y. The image of this curve in S (with appropriate parametrization) is the

saddle connection path we want. |

In the proof of Lemma 2.20 and in some later proofs, we will use the following

construction.

Definition 2.19. Let 7 be a geodesic segment in S with endpoint p. The cone around
7 with vertex p and angle v is the set of all points g in S such that the unique geodesic
segment joining p and g makes angle < ¢ with y at p. (In Section 3, Figure 2 shows such

cones in the context of the proof of Lemma 3.8.)

Lemma 2.20. For any ¢ € Con, there exists a closed geodesic a passing through ¢ with

turning angle greater than = at ¢.

Proof. Let ¢ be a cone point with £(¢) = 27 + B for B > 0. Lift ¢ to ¢ in S, and
let ¢ be a geodesic with ¢(0) = ¢ and turning angle 6(¢,0) = 7 + g Let C, be the
cone around &(—oo,0) with vertex ¢ = &(0) and angle g; let C, be the cone around
¢(0,00) with vertex ¢ = ¢(0) and angle %. By construction, any geodesic connecting
a point in C; \ {¢} to a point in C, \ {¢} must pass through ¢ with turning angle
>+ 5.

Let F be a fundamental domain contained in C;. Let g € m;(S) be such that
gF C C,. (F and g exist as both C; and C, contain arbitrarily large balls and S is
compact.) Let o be the closed geodesic representative of g in S. (It will become clear
in a moment why « is unique up to parametrization.) Lift « to @ with @(0) € F. Then
@(f(a)) € gF. As noted above, this forces @ to pass through ¢ and turn with angle > .
Therefore, « is the desired geodesic (and it is unique up to parametrization since it

cannot belong to a flat cylinder). |
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Unique Equilibrium States for Translation Surfaces 15

Fig. 2. The argument for Case 1 in Lemma 3.8. The geodesic segments connecting points in By and
Bj; meet at the cone point p with angle > 7 on both sides. Any geodesic connecting points in By
and B; must run through p.

3 The A-Decomposition

We now turn to the main arguments of the paper. First, following the ideas in [4], we
establish the decomposition (P,G,S) as a “A-decomposition” using the function A in
Definition 3.3 that is defined through two auxiliary functions that view the stable and
unstable parts of any given geodesic. Throughout this section, fix s > 0 such that 2s
is less than the shortest saddle connection of S. Below, we omit in the notation the

dependence of functions on s.

Definition 3.1. We define A¥*%: GS — [0, 00) by

Oy, 0l —m

)= max({s, ¢}

where ¢ > 0 is the 1st time that y(c) hits a cone point and turns with angle strictly

greater than n (naturally, we set A¥¥(y) = 0 in case ¢ = o).
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16 B. Call et al.

Definition 3.2. We define A5: GS — [0, c0) by

Oy, 0l —m

M) = max{s, |c|}

where ¢ < 0 is the most recent time that y(c) has hit a cone point and turned with angle

strictly greater than = (naturally, we set A55(y) = 0 in case ¢ = —o0).

We now define our function A so that near cone points at which geodesics turn
with angle greater than =, it measures the turning angle at that cone point (multiplied
by a constant), and far from a cone point, it measures both distance and turning angle

from both the previous and next cone point.

Definition 3.3. Let A¥Y and A% be functions defined in Definitions 3.1 and 3.2,

respectively. We define A: GS — [0, c0) by

ASS(y) if there exists ¢ € (—s, 0] such that |6(y,c)| — 7 > 0,
AMy) = 1A% () if there exists ¢ € [0, s) such that |0(y,c)| — 7 > 0,

min{A5(y), A¥%(y)} otherwise.

Observe that it is well defined when y (0) is a cone point, as in that case, A¥¥(y) = A55(y).
We prove several properties of A.
Proposition 3.4. If A(y) =0, then A(g,y) = 0 either forall ¢t > 0 or for all ¢t < 0.

Proof. If A(y) =0, then y does not turn at a cone point in the interval (-s, s), and so,
AUY(y) = 0 or A5(y) = 0. In the 1st case, this implies that y never turns at a cone point
in the future. Therefore, for all ¢t > 0, A(g,y) = A**(g,y) = 0. A similar argument holds
with ¢ < 0 if A5S(y) = 0. (]

As corollaries, we have the following.
Corollary 3.5. ();.g 9> '(0) = Sing.

Corollary 3.6. If A(y) =0, then d(g,y,Sing) — 0 eitherast — oo oras t - —oo.
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Unique Equilibrium States for Translation Surfaces 17

Proof. Without loss of generality, assume A(g;,y) = O for all ¢ > 0. Then, y does not
turn at a cone point in [0, o), and we can define r := max{t : |0(y,t)| > 7} to be the
most recent cone point in the past at which y turns. Define a singular geodesic YSing @S
Vsing(t) = v (¢) for all ¢ > r, and for all cone points ¢ < r, yg;,, turns with angle r. Then,
9;v and g,ygin, agree on increasingly long intervals, and by Lemma 2.13 for ¢ > r,

dgs(9.y,Sing) < dgs(gt)’rgtysing) <e 2,

The proof if A(g,y) = 0 holds similarly, but sending t — —oo instead. |

Furthermore, this allows us to show that the pressure gap for the product flow
(condition (3) of Theorem 1.1) is implied by the pressure gap P(Sing, ¢) < P(¢) that we

will establish in Section 7.

Proposition 3.7 (Following [5, Proposition 5.1]). Setting ®(x,y) = ¢(x) + ¢(y) and
A(x,y) = Ax)A(y), we have P((),cz(9; X ;) (%) ~1(0), ®) < P(¢) + P(Sing, ¢). In particular,
if P(Sing, ¢) < P(¢), then P(ﬂteR(gt X gt)():)*l(O), ®) < 2P(¢).

Proof. The variational principle [21, Theorem 9.10] tells us that

P(ﬂ(gt X gt)():_l), <I>) = sup [PU(CD) | v is flow invariant and v (ﬂ(gt X gt)(i_l)) = 1} ,

teR teR

where P, (®) := h,(g; xg;)+ [ ® dv denotes the measure-theoretic pressure of (();cg(g; X
gt)():‘l), (9; x g;), ¥, v). More generally, this relationship holds for any continuous flow,
continuous potential, and compact, flow-invariant subset.

Consequently, we let v be an invariant measure supported on [),.r(g; X
9,)()~1(0) and let

A =)@ x g)()1(0) N (Reg x Reg).
teR

We will show that v(4A) = 0 by showing that it contains no recurrent points. Assume

for contradiction that (y;,y,) € A is a recurrent point, and then assume without loss

of generality that A(y;) = 0. Since y; ¢ Sing, it follows that dgg(y;,Sing) = ¢ > 0,

which from recurrence, implies that there exists a sequence t; — oo such that
o}

dgs(9y, v1,Sing) > 5, with a similar claim holding in backwards time. However, we also

know that d;¢(g,y,,Sing) — 0 as t — oo, or as t — —oo by Corollary 3.6. Thus, we have
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18 B. Call et al.

arrived at a contradiction. Hence, v is supported on the complement of Reg x Reg, which
is (Sing x GS) U (GS x Sing).
Thus,

P(ﬂ (9, x g (A1(0)), cp) < P((Sing x GS) U (GS x Sing), ®) < P(Sing, ) + P(GS, $).
teR

The 1st inequality is by the variational principle. The 2nd inequality is due to the fact
that the pressure of the union of two compact invariant sets is the maximum of the
pressure of each individual set [18, Theorem 11.2(3)], and in this case, the pressure of
each component of the union is at most P(Sing, ¢) + P(GS, ¢) by [21, Theorem 9.8(v)]. M

We have also constructed A so that it is lower semicontinuous.

Lemma 3.8. Lets > 0 be such that 2s is less than the shortest saddle connection of S.

Then, A defined in Definition 3.3 is lower semicontinuous.

Proof. Lety € GS. We show that for any ¢ > 0, there exists § > 0 such that A(y) —¢ <
A(&) for all £ € GS such that d;g(y,&) < 8. To ease the arguments below slightly, we
work in S with lifts 7,£ so that dGS()?,é) = dgs(y,&). Recall that by Lemma 2.11, if
dgz(7,€) < § then dg(7(0),£(0)) < 26.

If A(y) = 0, then we are done as A is a non-negative function. Therefore, for the
rest of the argument, we assume that A(y) > 0.

Case 1: Suppose there exists ¢ € (—s,s) such that ¢ := |60(y,c)| — = > 0. Denote

7(c) = p. We show that there exists § > 0 such that p € £((—s, 5)).
Let C; be the cone around 7((c, s)) with vertex p and angle ¢’ = min{%, 71 Let
C, be the cone around 7 ((—s, ¢)) with vertex p and angle v'. (See Figure 2.) Set

1 1 1 s—|c|
5= zmin{sezs(s— lc]) siny/, 2 —ds(7(0),p)), min{l,es/S}(ereZ'C')*l/ 2te~ 2t aet .
0

(3)

Then, we choose u, = %5, u, = %2 and §; = 53¢siny/,§, = S siny’ > 0 so that
B, :=B(y(u,),8;) C C;NB(y(0),s) and B, := B(y(u,),8,) C C,NB(y(0),s). By Lemmas 2.11
and 2.14, since § < ée_zs(s —|c|) sinvy/, if dGS(?,é) < 8, then & passes through B, and B,.
Since any two points in a CAT(0)-space are connected by a unique geodesic segment and
by our construction of C; and C,, we obtain that if d z(y, £) < 8, then £ passes through

p. Furthermore, since 2§ + dg(y(0),p) < s, by Lemma 2.11 and the triangle inequality
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Unique Equilibrium States for Translation Surfaces 19

for the triangle with vertices £(0),7(0), and p, we have p € £((—s, s)) if ng(;;,é) < 8. Let
ty € (=s,s) be such that §(t0) = p. Moreover, |t — c| < 2.
By the triangle inequality,

dz(E(tg+ 1), 7(c+ 1) < dgE(ty+1),E(c+ 1) +dzE(c+1), 7(c+ 1) = |ty — Cl

+dzE(Cc+1),7(c+1).
Let §1 = gtoé and y; = g.y. Then, by the above inequality and Lemma 2.14,

ng(g'l, )71) < 28 + eleI(S = (2 =+ eZ\C|)8. (4)

Moreover, for all t € (0, s — c], we obtain that

_ 2t if o>,
d§(§1 (t), )71 (t)) =
2t sin(a/2) if O<ac<m,

where « is the (unsigned) angle between the outward trajectories of 7, and &, from the
cone point p.

If « > 7, then d5(&,,7) > [y ©2te"?'dt, which is not possible by (4) and the
choice of § (see (3)).

Consider « € [0, 7). Then we have that
s—c -1
sin(a/2) < §(2 + e/l (/ 2te™ %t dt) ) (5)
0

Let B be the (unsigned) angle between the inward trajectories y;, and §1 at p.

Similarly to the argument above, we obtain that for § as defined in (3),

0 -1
sin(B/2) < §(2 + el (— / 2te’t dt) ) 6)

—S—C

Using (5) and (6),
1 ~ 1
[A(y) — A6 = 5 ‘|9()7,C)| - |9(§,t0)|’ < E(Ot +B) = Cé,

—1
where C = %(2 + e?lely (fosf‘cl 2te—2t dt) . Thus, for our choice of § (see (3)), we have

IA(y) —A(E)] <e.
Case 2: Assume there exists ¢; < —s and ¢, > s such that y; :=[0(y,c;)| —7 >0

and v, 1= |0(y,c,)| — 7 > 0. Denote y(c;) = p; and y(cy) = ps.
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20 B.Calletal.

Let C; be the cone around the segment y((c;,—s]) if ¢; # —s or y((—2s,—s))

min{yy a7}
4

otherwise with vertex p, and angle ¢’ = . Let C, be the cone around the

segment y([s, ¢,]) if ¢, # s or y((s, 2s)) otherwise, with vertex p, and angle v’'. Set

1 1
¢ =min{|cy|,cz} and § = 3 min gefzs(c —s)siny’/, min{l,sc/8}(2e%*¢ + 1)71/

o0
2te— 2t dt} .
Cc

(7)

Similar to Case 1, by Lemmas 2.11 and 2.14 and the choice of § in (7), if dGS()?,S) <8
then £ passes through p; and p,. In particular, y and £ share a geodesic connecting P
and p,. Therefore, there exists d such that g;&(t) = y(¢) for t € [c;, c,]. Let t; and t, be
such that £(t;) = p; and &é(t,) = p,. Then, |t; — ¢;| < 2?1l and |t, — c,| < 2€%%2§ so
|d| < 2e%¢s. Moreover, by the triangle inequality,

dgz(@ak. V) < (2% +1)6. @)

Let «; and o, be the (unsigned) angles between the inward and outward
trajectories of gd§ and y at p; and p,, respectively. Similarly to Case 1, for our choice of

8, wehave 0 < oy, 0y <,

o0

-1
sin(a; /2) < 8(2€%¢ + 1) (—/ 2te?t dt)

2

and
o0 -1
sin(a,/2) < 5(2€%° 4+ 1) (/ 2te 2t dt) .
C1
Therefore,
A (y) =A%) < C8 and [A"(y) — A¥H(§)] < C8,

where C = 8(2¢%¢ + 1) ([2° 2te~2dt) .

Thus, ift;, =c; +d < —sand t, = ¢, + d > s, then A(§) = min{A5(§), A¥¥(§)} and
we have |[A(y) — A(§)] < CS < e.

Otherwise, A(§) > min{A55(¢), AY¥(&)} and we have A(§) > A(y) —C8 > A(y) —e. A

Remark. Note that for this construction of A, we do not in general have upper
semicontinuity. To see this, consider a geodesic y that turns with angle greater than

7 at times —s and c for some ¢ > 0. Then, for all r € (0,s], A(g_,y) = 2*(g_,y), while
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A(y) = min{A5S(y), A\¥¥(y)}. Therefore, if A*¥(y) < A5(y), we have that
Ay) = 2" (y) < A% (y) = lima%(g_,y) = limA(g_,y).
rl0 rl0

This contradicts upper semicontinuity of .

Following Section of [4], or Definition 3.4 in [5] (and formalizing the idea

presented in Section 2.1), we define

J o
g = {(V,t) I/0 Agy(y))du >np and /0 Mg_yg:(y))du=>np for p€l0, t]}

and
p
B(n) = [(V:t) | /0 rgy(y)du < np] )

The decomposition we will take is (P,G,S) = (B(n),G(n), B(n)) for a sufficiently small
value of n that will be determined below. We reiterate that because of our choice of
decomposition, we do not need to consider the sets of orbit segments denoted by [P], [S]
because of [5, Lemma 3.5].

While near cone points, positivity of A only gives us information about the
closest cone point, and far from cone points, it gives us information about cone points
on both sides. The following propositions help us quantify these relationships. Let 6,

be as in Lemma 2.15(d).

Proposition 3.9. If A(y) > 5, then there is a cone point in y[—g—%, g—%] with turning angle
at least sy away from +rx. In particular, if (y,t) € G(n), then there exist ¢, t, € [—g—‘;’], g—‘j]]

such that y(t,), y(t + t,) € Con, with the turning angles at these cone points at least sp

away from +r.

Proof. Since A(y) > n, either A¥¥(y) > n or A%S(y) > n. If A¥¥(y) > p, then by

Definition 3.3, there is a ¢ > 0 such that y(c) € Con and A%%(y) = %. The turning

angle at y(c) satisfies |6(y,c)| —m < 6;,/2. Thus,

0, 0 =7 _ 6y/2

< )Luu <
n (y) < =
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and0<c< 2 Furthermore

0y, 0| —

so the turning angle of y at ¢ differs from = by at least sn.

A similar argument applies if A%5(y) > n. ]
Finally, we collect a statement we will need in Section 7.

Lemma 3.10. Given any n > 0, there exists a § > 0 such that A(y) < 5 for all
y € B(Sing, 29).

Proof. Let n > 0 be given, and suppose without generality, it is small enough that
;—'2’ < 1. We argue in S. Suppose 7 € B(Sing,28) and, in particular, that £ € Sing with
dgs(7,&) < 28. We choose § < W

(Recall that s is specified in Lemma 3.8, and 7, is specified in Lemma 2.15(d).)

and toward a contradiction suppose that A(7) > 7.

Since A(y) > 7, by Proposition 3.9, there exists a cone point in )7[—9—0 9—01 at
which y turns with angle at least ! away from 4. Say 7 hits that cone point at time

As dGS()?,g) < 28, by Lemma 2.14,

46,

- . 46,
dgs (g_zeo)?,g_zooé) <25e 7 and dgs (go)?,gzeoé) <25e .
n n n

o

Then, by Lemma 2.11,

d=

~ 0, - 0,
(O o o o213 <"
n n n n

Consider the geodesic segment ¢ connecting é(—%) and y(ty). The segment c

260

and )7[—%, tol agree at t; and at time —=2, at least 90 away with respect to dg, are at

40
most 48e 1 apart. Comparing to a Euclidean triangle and using the CAT(0) property, the
46
angle between these segments at y(¢;) is at most 2sin™ lase™ )/ (2 90)] By our choice

of §, this is less than 2 smfllg I < S—” The same argument applies to the angle between

7lto, 2] and the segment ¢’ from 7(£,) to 5(200)
At ty, 7 turns with angle at least 3} away from . Therefore, the concatenation

of ¢ with ¢’ turns with angle at least = + %L on both sides and hence is geodesic. By

€202 1snBNny Gz Uo Jasn UoISIAI] S|elas Aq 0/G1 0.9/ 7ZoBul/ulWwI/S60 | 01 /10p/a[o1e-a0uBApe/UIWI/Woo dnoolwapese//:sdjy Wol) papeojumod



Unique Equilibrium States for Translation Surfaces 23

uniqueness of geodesic segments in S, é[—%, %] must agree with this concatenation.
But this contradicts the fact that & € Sing. Therefore, A(y) < % < n as desired. [ |

4 G(n) has Weak Specification (at All Scales)

The goal of this section is to obtain Corollary 4.6, which shows that G(n) has weak

specification at all scales.

Lemma 4.1 (Compare with Lemma 3.8 in [16]). Let x € S and 8 be a geodesic ray with
B(0) = x. Then, for any ¢ > 0, there exist T(¢) and a geodesic ¢ which connects x with
a point z € Con so that the length of ¢ is at most Ty(¢) and Z,(8,c) < ¢ where /,(a,b) is

the angle at x between geodesic segments a and b.

Proof. Letx € Sbe alift of x and § a lift of g with 3(0) = k. Denote by C% (%, B) the cone
around g with vertex x and angle 5. Choose Ty = Ty(¢) so large that an angle-¢ sector
of a radius-T, Euclidean ball contains a ball of radius much larger than the diameter
of S. ThenI = By, Xx) N C% (%, B) is at least as large as this Euclidean sector and so must
contain a fundamental domain of S. Then ConNint(I) # @, so let z € ConNInt(I) such that
z is closest to X. The segment ¢ = Xz is a geodesic of length at most T,. The projection of

¢ to S is the desired geodesic. |

Lemma 4.2. For any § > O, there exists T; = T;(§) such that for any ¢ > 0 and (y,t) €
G(), (y,t) is §-shadowed by a saddle connection path y, in the following sense:

o {U(y,) <t+2Ty;
e there exists s, € [0, T;] with the property that if y is any extension of y, to a
complete geodesic then dgg(g,,(v), 9,,(3s, (vs))) < 8 for all u € [0, t].

In particular, if t > %0, there exists a closed interval I D [2—?7, t— 2—?7] such that y,(sy +u) =

y(u) foru el.

% b
2n' 4
are from Lemma 2.15. By Lemma 2.12, if we construct y, such that dz(y (w), y,(so+w)) < %
for all u € [-T,t + T], then dGS(gu(y),gu(gSO(ye"'))) < § for all u € [0, t]. (See Figure 3 for

Proof. As usual, we prove the result in S. Let T = max{— log(é), } where 6, and ¢,

the constructions in this proof.)
2—?7,9—?7] such that y(ty), y(t +t)) € Con,
0(y,ty)|—m > spand |0(y,t+t;)|—n > sn. Thus, there exist s; € [T, Z—?’] ands, € [—g—‘,’], T]

such that 7 (s,), 7(t + s,) € Con and (F(A=T,s) Uy ((t+sy,t+TH) N Con = 0.

By Proposition 3.9, there exist ty,t; € [—
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Fig. 3. The construction of ye in Lemma 4.2 around the left endpoint of . The sequence of «-cones
featured in the proof is shaded.

If s; = —T, then define y,(u—s;) = y(u) for u € [s;, t+5s,]. Assume s; > —T. Let 1,

be as in Lemma 2.15(b). Choose & < —*_ min{n,, —>—}. Let C be the cone in S around
AT+35)) 2(z+T)

7 (=T, s;]) with angle «/2. Note that o < 5, so any geodesic segment from a pointin C to

7(s;) can be concatenated with 7 ([s;, t]) to form a geodesic. By Lemma 4.1, there exists
To=To(3) =T+ g—‘:] and a point p, in Con N C such that dz(p1,7(s1)) < Ty. Choose p; as
in the previous sentence minimizing the distance to y ((—Ty, s;1). If dg(p;, 7(s})) > T+ g—%,
then let the initial segment of y, be the geodesic segment [p;, y (s1)].

Otherwise, we repeat the argument above, applying Lemma 4.1 to construct an
angle-a/2 cone centered around the geodesic segment making angle 7 +% with [py, y (s))].
We get a point p, € Con in this cone with dz(p1,py) < Ty, again chosen to minimize
the distance to y([=Ty, s{]). If dg(p,, v(sy)) = T + g—%, then let the initial segment of p,
be the concatenation of geodesic segments [p,, p;] and [p;, 7 (s;)]. This concatenation is
a geodesic by the choice of « and the construction of the cone. Otherwise, repeat the
procedure at p, and so on. )

20

2

We will need to repeat this procedure at most times. We extend the

beginning of y, constructed here with [y (s,), ¥ (t+5s,)] and then extend beyond y (t+s,) (if
needed) similarly to the procedure at 7 (s;). Since the turning angles at each cone point
are at least 7, we obtain a saddle connection path y,.

Let T, =T+ g—?} + T,. Let s, be such that y,(sy + s;) = y(s;). Then s, € [0, T 1.

For u € [s,s,], dg(y (W), V(5o + w) = 0 < %, as desired. For u € [-T,s;], note that the

4

% % There are at
HT+32) 2(H+T)

sequence of cones used in the proof have angles 5 and a <

%

+2
Lo

we always choose our cone points p; as close to y as we can. Therefore, the distance

most of these cones, each segment from p; to p;,, is at most length T + g—‘;’], and
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dg(y(u), 75(sg + u) is bounded by % for u € [T, s,]. For the same reason, this bound also

holds for u € [s,, t + T], finishing the proof. |
Lemma 4.3 (Compare with Lemma 3.9 in [16]). Let N = [%] + 3 where 75 is from
Lemma 2.15(c). Let g € Con. Then there exist N saddle connections o;,0,,...,0y

emanating from g with the following property.
For any geodesic segment y with endpoint g, the concatenation of y with at least

one o; is also a local geodesic.

Proof. We have £(q) = 27 + « > 27 + n,. Divide the space of directions at g into

. 21 +o
27 )2

Lemma 4.1, pick a saddle connection emanating from g with direction in each of these

intervals of size no more than at most [ 1 < N intervals are needed. Using

intervals. These are the o;.
The concatenation of y and some saddle connection o; is a geodesic if and only if

c; lies outside of the 7-cone of directions at g around y. The complement of this cone in

the space of directions at g is an interval of size £(q) — 27 = « and must therefore fully

Q_
2

y as desired. |

contain one of our 5-size intervals. The o; chosen in this interval geodesically continues

Lemma 4.4 (Compare with Corollary 3.1 in [16]). For any two parametrized saddle
connections 0,0’ on S, there exists a geodesic segment y that first passes through o

and eventually passes through o'.

Proof. Let o be a closed geodesic that turns with angle greater than = at a cone
point p (such « exists by Lemma 2.20). Denote by & the lift of o to S that has the
starting point @ and the endpoint b. Consider a parametrized complete lift & of o such
that it is disjoint from 6 and its positive endpoint is contained in the complement
of the cone around |[a, B] with vertex b and angle n. Denote by ¢;: [0,¢;] — S the
geodesic that connects a with «(t). By the choice of the lift &, there is a time ¢,
such that for all t > t,, ¢, passes through b and that ¢y, only shares its endpoint
with a. |

We now need the following fact.

Sublemma. There exists ¢; > t; such that ¢, intersects the geodesic segment

[a(ty), ()] in a positive-length segment.
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Proof of Sublemma. Consider the geodesic triangle in S with vertices @, a(ty) and a(t)
fort > t,. As tincreases, the length of the side [@(t;), @(?)] increases without bound while
the length of [a, ¢(ty)] is fixed, so the length of ¢, = [@, @(t)] must also increase without
bound once t is sufficiently large, by the triangle inequality. The comparison triangles in
R? will have one side of fixed length while the other two become very long. The angle at
the vertex of the comparison triangle where the long sides meet must therefore become
arbitrarily small.

At each lift of the cone point p that « passes through, & has turning angle = + 6
for some 6 > 0. Let T be so large that the angle noted above in the Euclidean comparison
triangle is < 6. As S is CAT(0), the original triangle in S has angles no larger than those
in the comparison triangle. Thus, the angle between ¢, and [&(ty), & (t)] will be less than
0 for all t > T. Let t’ be any time greater than T at which & passes through a lift of the
cone point, and let ¢; > t'. Since & turns with excess angle 6 at @(t’), the concatenation of
¢(t) and a([t', 00)) is a geodesic ray. Therefore, F:tl and [&(,), @ ()] intersect in a positive-

length segment. u

For t, as in the sublemma, the projection of ¢, to Sis a local geodesic that first
passes through o and eventually through a piece of «. By extending the resulting local
geodesic along «, we can make sure that it passes through the whole curve «. We denote
the resulting local geodesic by g;.

We apply the above argument to ¢’ and o with their orientations reversed to
obtain a local geodesic g, that connects these curves.

The concatenation of g, and g, (with its orientation reversed) has the desired
property.

Repeating the proof of Proposition 3.2 in [16] and replacing [16, Lemma 3.9]
by Lemma 4.3 and [16, Corollary 3.1] by Lemma 4.4, we obtain Proposition 4.5 that

strengthens Lemma 4.4. We include the proof of the proposition for completeness.

Proposition 4.5. (Compare with Proposition 3.2 in [16]) There exists a constant
C(S) > 0 so that the following holds.

For any two parametrized saddle connections o,0’ on S, there exists a geodesic
segment y that first passes through o and eventually passes through ¢’ and that is of
length at most C(S) + £(c) + £(c”).

Proof. Recall that S has only finitely many cone points. By Lemma 4.3, there are

N, = Ny(S) parametrized saddle connections a;,0,,... ' ON, with the property that for
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any geodesic segment with endpoint in Con (in particular, any saddle connection) the
concatenation of it with at least one o; is a local geodesic. By Lemma 4.4, for each
pair (o;,05), there is a local geodesic ¢;; that first passes through o; and eventually
through o;. Since there are only finitely many pairs (0,09, there exists a constant C(S)
such that Uy = C(OS). Thus, for any two parametrized saddle connections o,0’, we
do the following. First, we connect the endpoint of ¢ to o; for some i and the starting
point of o’ (the endpoint of the saddle connection with the reversed parametrization
of ¢') to o; for some j so that the results of concatenations are local geodesics. Then,
the concatenation of o with ¢;; followed by the concatenation with ¢’ is the desired
geodesic segment that first passes through o and eventually through ¢’ of length at most
C(S) + £(o) + £(o). |

Using Lemma 4.2 and Proposition 4.5, we obtain the weak specification property

on G(n) at all scales.

Corollary 4.6. (Weak specification) For all § > 0, there exists T = T(n,8,S) > 0 such
that for all (y;,t;),..., (¥ tx) € G(n7) thereexist0 =s; < s, < ... < s, and a geodesic y on
Ssuchthatforalli=1,...,kwehaves; ; —(s;+¢;) € [0, TT and d;5(g,(v}), 9, (s, (¥)) <8
for all u € [0, t;].

Proof. We can take T = 2T; + C(S) where T, is as in Lemma 4.2 and C(S) is as in
Proposition 4.5. We omit the proof here as it is a simplified version of the proof of

Proposition 5.6. |

5 G(n) has Strong Specification (at All Scales)

The goal of this section is to upgrade the weak specification property of Corollary 4.6 to
strong specification (Proposition 5.6), in which we have more precise control over when
our shadowing geodesic shadows each segment.

As 7 is fixed throughout, we write G := G(n).

Lemma 5.1. If G c R0 ¢ cN for all ¢ > 0, then for all § > 0O, there exist x,y € G and

n,m € N such that 0 < nx — my < é.

Proof. Let x denote the smallest nonzero element of G, which exists, as otherwise we

are immediately done. Now, there are three cases.
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First, assume there exists y € G such that § ¢ Q. Now take g € N large enough
so that ’é < 8, and so that there is p € N with |§ — §| < qiz by Dirichlet’s theorem. Then,
this implies that

b's
lgy — px| < E <3d.

In the 2nd case, suppose that for all y € G, )Z( is rational, and when written in lowest
terms, the denominators can be arbitrarily large. Then, take n such that iy <dandy € G
with )Z( = % in lowest terms for some g > n. Then, as p is invertible in Z/qZ, we can take
m to be a positive integer such that mp =1 (mod gq). It follows that

m‘ X )
X—my|=— <.
q

‘mp—l

Finally, in the 3rd case, )Z{ is always rational, but with denominators bounded

above by M. Then, G C A%N, a contradiction. [ |

Lemma 5.2. Suppose x > y > 0 and x — y = §. Then, there exists T > 0 such that for
all t > T and all n € NU {0}, there exists m;, m, € N such that t + né < m;x+ m,y <
T4 (n+ 1)8.

Proof. Fix C such that C > % + 2. We claim that T = max{Cy, 1}. Fix t > T. Now, let
n € NU{0}. Fix k; to be the largest integer such that k;y < t + né and then choose k,
to be the smallest positive integer such that k;y + k,8 > v + nd. Therefore, we see that
kyx + (k; — ky)y = k1y + k,8, and so

T+nd <kyx+ (k; —kyy <1+ (n+1)3.
Observe that by construction,
kiy+k,—1)d<t+ns<kiy+y,
and consequently, k, < % + 1. Therefore, by our choices of r and C,
T4+né—y - Cy—y vy

> =+41.
y y 3

k, >

Thus, k; — k, > 0, and we are done. [ |
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We need the following result of Ricks; we explain the necessary terminology in

the course of applying it.

Theorem 5.3. [19, Theorems 4 and 5] Let X be a proper, geodesically complete, CAT(0)
space under a proper, cocompact, isometric action by a group I' with a rank one element,
and suppose X is not isometric to the real line. Then, the length spectrum is arithmetic
if and only if there is some ¢ > 0 such that X is isometric to a tree with all edge lengths

in cZ.

Proposition 5.4. Given § > 0, there exist two closed saddle connection paths y, & such
that 0 < |€(y) — £(&)| < 6.

Proof. This follows for translation surfaces by combining Lemma 5.1 with Section 6
of [12] (see hypothesis (T3) and the discussion following [12, Proposition 6.9]).

For general flat surfaces with conical points, this follows from Theorem 5.3.
We outline the reasoning as follows. We say that y € T" is rank one if there exists a
geodesic n such that yn = g,n for some ¢ > 0 and 5 does not bound a flat half plane, that
is, a subspace isometric to R x [0, 00). The existence of this follows from the existence
of a closed geodesic which turns with angle greater than = at some cone point (see
Lemma 2.20). Now, the universal cover of a flat surface with cone points is not isometric
to a tree with edge lengths in cZ, and so it follows that the length spectrum is not
arithmetic. The length spectrum is the collection of lengths of hyperbolic isometries in
I, which is precisely the set of lengths of closed geodesics, which by Lemma 2.18 is the

set of lengths of closed saddle connection paths. We can now apply Lemma 5.1. |

Proposition 5.5. For all § > 0, there exists T = 7(§) > 0 and 8’ < § such that for
any 7’ > t, any two saddle connections o, ¢’ and any n € NU {0}, there exists a geodesic
segment &, that begins with o and ends with ¢’ with length in [¢(0)+£(0")+1'+né', £(0) +
L)+ 17+ (n+ 18N

Proof. Fix§ > 0, and take y;,y, to be closed geodesics such that 0 < [£(y;) — £(yp)| =
8’ < 8, which exist by Proposition 5.4. Now take t = 3C(S) + T, where C(S) is from
Proposition 4.5 and T is from Lemma 5.2 applied for £(y;) and £(y,).

Consider two saddle connections o and o/, and apply Proposition 4.5 three
times to connect, in sequence, o to y; to y, to o’ with the geodesic &. Furthermore,
L&) =L+ (o) +L(y;) + L(yy) + £(0’) and L < 3C(S). Because the y; are closed geodesics,
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there is a geodesic &, ;, that follows the exact path of & except that it loops around y;
a total of k; times. In other words, £(§, x,) = €(§) + (k; — 1)L(yy) + (ky — 1)£(y,). Now let
n € N, and, using Lemma 5.2, take k;, k, such that

ki€(y1) +kyl(yy) € [T+ (BCES) — L)+ (' = 1) +n8, T+ (3C(S) — L) + (t' — 1) + (n + 1)&'].
Then &, := &, satisfies our desired property. n

Proposition 5.6. The collection of orbit segments G = G(n) has strong specification at
all scales. That is, for any ¢ > 0, there exists 7(¢) > 0 such that for any finite collection
{(v;, 151-)};7‘:1 C G, there exists & € GS that e-shadows the collection with transition time 7

between orbit segments. In other words, for 1 <i < n,
dGs(gu+Z;;i(tj+f)§’guyi) E SfOI' 0 f u S ti-

Moreover, for 1 < i < n such that ¢; > %0 where 6, as in Lemma 2.15(d), there exists a
closed interval I; D [g—%, t; — g—%] such that &(u + Z]i;i(tj + 1)) =y;(u) foru eI,

Proof. By Lemma 4.2, there exists T} = Tl(%,S) for each i = 1,...,n, there exists a
saddle connection path yie such that E(yie) < t; + 2T, and there exists s; € [0, T;] such

that for any extension yf of yf to a complete geodesic, we have

. €
des(Gur) gu9s, 7)) = 5 forall uelo,¢].
Moreover, if t; > %0, there exists a closed interval I; O [g—?}, t; — g—‘,”] such that yf(s; + u) =

y;(w) for u € I;. We will construct our shadowing geodesic by induction. Let t = 7 (%),
8’ <  be as in Proposition 5.5 applied for § = 7. Denote T = 7 + 3T}.

Thus, for any k = 1,...,n — 1 and m; € NU {0}, there exists a geodesic segment
&4+ that begins with y¢ and ends with y,, with length (&, ;) = £(v9) + €y, )+ T —
(Sgy1 — Sk) — (L) — tg) + ¢ where ¢ € [my8', (my + 1)8'].

Moreover, by Lemma 4.2, for any extension §k+1 of &, to a complete geodesic

with ékH(u) =& (s +w) for all u € [—sy, —sp + £(§; )], we have

forall uel0,t] and

RS

dGS(guékr guyk) <

™

des(GuGo i Trerin) GuVirn) < > forall uel0,ty,,]. 9)
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We define the sequence m; inductively. Let m; = 0. In particular, ¢; € [0,8'] C

[0, £]. For k > 1, we set

€ e €
m,=[—] if (k—1)—-— c;>—, and 0 otherwise,
k |—48"| ( )4 Z i 4
i<k—1
. k-1
as this ensures |37, 7 — ¢j| < 5.

Let & be a geodesic segment that is a result of gluing & and &, along y; that is
the end of & and the beginning of &, forallk=2,...,n — 1. Let £ be any extension of
£ to a complete geodesic with the parametrization such that &(—s;) = £(0). By the choice

of my and (9), we obtain for 1 <i <mn,
~ ~ 8
dGS(gu(gZJi;%(tj+T+£/4)$)'guyi) S dGS(gu(gZJi;%(tj+T+Cj)é)rguyi) + E S 3 fOI' all uc [O, tl]

Thus, é is the desired shadowing geodesic. As a result, the collection of orbit
segments G has strong specification at all scales with the specification constant
T+3. u

We close this section by recording a simple technical modification of

Proposition 5.6, which we will need when we apply specification in Section 7.

Definition 5.7. Let M > 0 and > 0 be given. We denote by G (i) the set of all orbit
segments (y, t) such that there exist ¢, ¢, with |¢;| < M such that (g, ¥, t —t; +15) € G(0).
That is, these are segments that lie in G(5) after making some bounded change to their

endpoints.

Corollary 5.8. Specification as in Proposition 5.6 holds for G (5), with the constant T

depending on M in addition to the parameters listed in Proposition 5.6.

Proof. This is a simple exercise using Proposition 5.6 and uniform continuity of the
geodesic flow. We give the idea of the proof. Let {(y;, 1)}, C GM(n) be a collection of
segments that we wish to shadow at scale ¢. This leads to a collection {@s,7i t;)}?zl C
G(n), where |s;] < M and |t; — t§| < M that we can shadow at any scale as in Proposition
5.6. We choose our new shadowing scale § so that if d;5(y,§) < 8, then d;5(g,v,9:8) < ¢
for t € [—M, M], using uniform continuity of the flow. Any geodesic that §-shadows

{(gs; 14, t;)} must then e-shadow our desired collection {(y;, ;)}. |
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6 G(n) has the Bowen Property

In this section, we establish the Bowen property (see Definition 2.9). To do so, we analyze
orbits that stay close to a good orbit segment for some time. This description will allow

us to effectively bound the difference of ergodic averages along these orbits.

Proposition 6.1. For all » > 0, for all sufficiently small ¢ > 0 (dependent on ), and for
any (y,t) € G(n) with t > 23—‘,’], we have

By(y,e) CC,, 0 (v.1),

%
12y
where

B.(y,e) ={§ € GS | ds(9,v,9,8) < e forall u €0, t]}
and

0, 0,
C, o (y,t) =& |3Ir| < 2e such that g,£(w) = y(w) forallu e | -2, ¢t — - | .
2e,53 2n 2n
Proof. Fix n > 0, and recall Proposition 3.9. Now choose ¢ > 0 small enough that
6,
ssin(%") > 2862(7(37+S) . (Here, s is the parameter involved in the definition of A and
fixed in Lemma 3.8.) Consider a cone around some geodesic with angle 3. By an easy

[
2(2+5)

computation, the ball of radius 2¢ce with center at distance s from the cone point

along the geodesic is contained in the cone (recall that s > 0 was chosen so that 2s < ¢).

Let (y;,t) € G(n) with ¢ > %0 be arbitrary. By Proposition 3.9, there exists ¢, €

% o)
2n' 2n

—g—%, 9—%] such that y, () € Con and |6(y;, ty)|—m > sn. Similarly, there exists t; € [—

such that y,(t +t;) € Con and |0(y;,t + t;)| — 7 > sn.
Now consider y, € B,(y;,¢). Taking t; and t; as above, by Lemmas 2.11 and 2.14,
)
—S 2(27,+S) (10)

%
dg(y1(tg —5), y2(tg —5)) < 2dGs(gtO_sV1'9t0_sV2) < 2dgs(y1, Vz)ezlz” | < 2¢e

and

2061451 < 9o 2+,
(11)

ds(y1(t+t1+5), y2(t + t1+5)) < 2dGs(Gt; +s9tV1, Gt1+s9tY2) < 2dgs(gty1. gty2)e

Let y; and y, be lifts of y; and y, to GS so that dz(y;,7,) = dgs(y1,v,). Let
% %
B, = B(j(ty — 5),2¢¢”217) and B, = B, (t + t, + 5),2¢e*21™). Then, by (10) and

€202 1snBNny Gz Uo Jasn UoISIAI] S|elas Aq 0/G1 0.9/ 7ZoBul/ulWwI/S60 | 01 /10p/a[o1e-a0uBApe/UIWI/Woo dnoolwapese//:sdjy Wol) papeojumod



Unique Equilibrium States for Translation Surfaces 33

(11) and the remarks in the 1st paragraph of this proof, y, intersects B, and B,. Since
10(y1,to)l — > sp and |0(y;, t + t;)| — m > sn, by the choice of ¢ and the fact that any
two points in a CAT(0)-space are connected by a unique geodesic segment, ¥, contains
1ltg. t + t1]. Moreover, since d;z(gy+sV1/9tytsV2) < € and 0 < ¢y +s < 2s < ¢, it follows
that dg(y; (ty+5), 7, (tg+S) < 2¢. Thus, there exists r such that |r| < 2¢ and g, y,(u) = y; (w)
for u € [ty, t + t;]. Since ¢, < g—% and t; > —g—%, we have completed our proof. [ |
Proposition 6.2. For all ¢,s > 0 and «-Ho6lder continuous functions ¢, there exists
K > 0 such that for all geodesic segments (y;,t) with ¢t > 22—?’, given any y, € Coe s(r1, 1),

we have

t
'/O #(gry1) — ¢(g,vp) dr| < K.

Proof. Let R be the time-shift in the definition of C,, ;(y, ), so that ggy,(r) = y;(r) for
r € [s,t — s]. We see that

=<

t t—R
/Od)(gm)dr—/_R #(g,(gryo)) dr

t—s

?(Gry1) — #(9r(gry,)) dr

t
‘/0 ¢(G,71) — ¢(gryp) dr

=< + (4s+ 2|RD 1]l

N

Since y; = gry, onls,t — sl, by Lemma 2.13, we have forall r € [s, ¢t — s,

2min{|r—s|,|r—(t—s)|}

dgs(9r71:9-GR)YV2) < € .

Thus, we obtain

t—s

t—s
$@v1) — $(@r(gryy) dr| < / C(dgs(9rvy, 9r(Gry))® dr

N
t

i t—s
</ Ce2a(r=9) dr+/t Ce20(=9)=1) gy
s t

2

— E(l _ efa(t72s))

[A
RO R
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As a result, since |R| < 2¢, we have

£ c
‘/0 ¢ (9ry1) — #(g,yy) dr| < ;+(4s+4s)||¢ll-

Corollary 6.3. For all n > 0, there exists ¢ > 0 such that G() has the Bowen property

at scale &.

Proof. Fix n > 0. Then, choose ¢ > 0 sufficiently small to apply the previous propo-
sitions. Then, we can take the constant for the Bowen property to be max{K, 2%0||¢||},
where K is from the previous proposition. Then, the previous proposition gives the
desired bound for orbit segments of length at least %0, and the triangle inequality gives

the desired bound for any shorter orbit segments. |

7 Establishing the Pressure Gap

In this section, we prove the pressure gap condition of [4] for certain potentials. We then
show that this pressure gap holds in the product space as well. See also the survey by
Climenhaga and Thompson [11, Section 14].

First, we prove the following theorem.

Theorem 7.1. Let ¢ be a continuous potential that is locally constant on a neighbor-
hood of Sing. Then, P(Sing, ¢) < P(¢).

Furthermore, we use the above theorem to note that a pressure gap also holds
for functions that are nearly constant. (See Corollary 7.8.) For a sense of the functions
covered by Theorem 7.1, it may be helpful to think of the special case of a translation
surface. There are infinitely many cylinders in such an S, and the geodesics circling
different cylinders are in different connected components of Sing, so there is significant
flexibility in building a function that satisfies Theorem 7.1 on Sing itself, let alone on
the complement of its neighborhood.

Our argument for Theorem 7.1 closely follows that in Section 8 of [4]. The differ-
ent geometry in our situation calls for somewhat different arguments in Proposition 7.4
and Lemma 7.5, which we present here in full. After these are proved, the argument
hews closely to [4]. We present the main steps of the argument, filling in the details

where a modification is necessary for the present situation.

€202 1snBNny Gz Uo Jasn UoISIAI] S|elas Aq 0/G1 0.9/ 7ZoBul/ulWwI/S60 | 01 /10p/a[o1e-a0uBApe/UIWI/Woo dnoolwapese//:sdjy Wol) papeojumod



Unique Equilibrium States for Translation Surfaces 35

For any n > 0, we let

Reg(n) ={y [ A(y) = n}.
We need a pair of lemmas in this section.

Lemma 7.2. Let c be any singular geodesic segment. That is, ¢ is a geodesic segment
such that the turning angle at any cone points it encounters is always +x. Then c¢ can

be extended to a complete geodesic y € Sing.

Proof. The extension is accomplished by following the geodesic trajectory established
by ¢ and, whenever a cone point is encountered, continuing the extension so that a

turning angle of = or —x is made. |

Let 8003' be the boundary at infinity of S, equipped with the usual cone topology
(see, e.g., [3, Section I1.8]). Since S is a surface, 8005' is a circle. Using this identification,
we can speak of a path in 9,_S as being monotonic if it always moves in a clockwise or
counterclockwise direction.

The following lemma leverages this structure to provide a way to continuously

move a geodesic in GS.

Lemma 7.3. Lety € GS with v(ty) =§& € Con. Let ¢, be a continuous and monotonic
path in 8003 with ¢; = y(+o0) such that for all v, the ray connecting £ with ¢, can be
concatenated with y(—o0o, ;) to form a geodesic y,. Then {y,} is a continuous path of

geodesics in GS with d;z(v,7,) nondecreasing in |v/.

Proof. First, that £ and ¢, can be connected with a unique geodesic ray is a standard
fact about CAT(0) spaces [3, Section II.8, Prop. 8.2]. For continuity of y,, we claim that if
vV — Vg, d3(7,(D), Yo () —> 0 uniformly on any [t,, T]. This together with the formula for
d g will show that dz(y,, ¥,,) — 0. To verify the claim, fix T > ¢, and ¢ > 0 and recall
that in the cone topology on BOOS',

Uy, Te):={¢ € 8005‘ 2 dg(c(T), Vo () <& where c is the geodesic ray from & to ¢}
is a basic open set around Sy = )7V0 (+00) [3, Section I1.8]. Therefore, for v sufficiently

close to vy, ¢, € U(yy,, T, ¢). But the ray ¢ from & to ¢, is precisely 7l o). Thus,

dS(J?V(T),J?VO(T)) < ¢. Since the distance between two geodesics is a convex function
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of the parameter [3, Section II.2] and ds(f‘,(to),)?v0 (tp)) = 0, for all t € [ty, T], we have
dz(7,(0), V() < € and hence have the desired uniform convergence.
For all t < ty, dz(y (1), 7,(t)) = 0. We claim that for ¢t > ty, dz(y(?),y,(t)) is

nondecreasing in |v|. Together with the formula for d .z, this will provide the result.

GS'

Fix some v* # 0; without loss of generality, we can assume v* > 0. Since ¢, is
a monotonic path on BOOS, v — 7,(t) sweeps out an arc on the circle of radius t — ¢,
centered at & monotonically (though not necessarily strictly monotonically). We want to
show that for v > v*, dz(y (1), 7, (t)) > dg(y(0), V,+(t)). This will be trivially true if for all
v > v*, 7,(t) = y,+(t), so we can assume this is not the case.

Consider the path swept out by v — 7, (t). Near the point y,.(t) this path consists
of arcs of two Euclidean circles meeting at y,.(t). To each side of y, . (¢), the arc belongs
to a circle centered at the cone point on [&, y,«(¢)] \ {7, ()} closest to y,(t) among those
cone points where [, y,«(t)] makes angle greater than = on the given side of [&, 7, (?)].
Therefore, in the space of directions at y,.(t) (this will be the tangent space at 7, (t)
unless y,«(t) happens to be a cone point), we have well-defined vectors pointing along
these arcs. Furthermore, since these are arcs of Euclidean circles, the angles between
these two vectors and a vector pointing radially along [7,.(t),&] are both Z. Let W+
and W~ be vectors in the space of directions at y,.(t) pointing along the arc swept out
by v + 7,(t) with W' pointing in the direction swept out as v increases past v* and
W~ in the direction swept out as v decreases from v*. (Note that v — y,(t) may be
constant in v for v near v* due to cone points y,. encounters at times greater than t. The
vectors W™ are tangent to a reparametrization of this curve by arc-length, for instance.)
Similarly, let H* be the vectors in the space of directions at 7,.(t) pointing along the
circle of radius dg(y (), y,«(t)) centered at y(t). Let V; be the initial tangent vector for
the geodesic segment from y,.(t) to &, and let V, be the initial tangent vector for the
geodesic segment from y,.(¢) to y(t). By the CAT(0) condition and using a comparison
triangle for the triangle with vertices &, y(t), and y,«(t), it is easy to check that the angle
between V; and V, is in [0, Z). The angles between W+ and V; and between H* and V, are
all 7 as these are angles between a circle and one of its radial segments. (See Figure 4.)

The segment [y,.(t), 7 (?)] lies in the convex hull of 7 and y,.. By the CAT(0)
condition, it is within the ball of radius t — ¢, centered at £. So V,, which points along
[7,+(®), 7 ()], is between V; and W™ in the space of directions at y,«(t). More precisely, the
space of directions at y,«(t) is a circle with total length equal to the total angle at y,«(t).
V, is between V; and W~ in the sense that it lies within the angle-7 arc of directions
connecting V; and W~ in the space of directions. Thus, the angle between V, and W~ is

less than or equal to 7 and so the angle between V, and Wt is at least .
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Fig. 4. The proof that dg()?(t), 7v(t)) is non-decreasing in |v/|.

If the angle between V, and W+ is 7, then the geodesic segment [} (%), 7,-(t)] must
run through £ and then for v > v*, dz(y (1), 7, (1)) = 2(t —tg) = dz(y (1), ¥, (2)). If the angle
is strictly less than 7, then in the space of directions, W+ is separated from V, by H*.
This means that as the path v — p,(?) leaves the point y,.(t) with v increasing, it must
move—at least initially—to the outside of the circle of radius dg(y (), y,«(t)) centered
at y(t). In particular, dg(y (), y,+(t)) is locally monotonically increasing near v*. As v*
was arbitrary (among v such that y, give geodesic extensions of y(—oo, ty)), and the path

v = ¥,(t) is connected, this completes our proof of the claim and the lemma. |

The 1st step in the dynamical argument for a pressure gap is the following
technical proposition, which allows us to find a regular geodesic that is close to any

connected component of the §-neighborhood of the singular set.

Proposition 7.4. Let § > 0 and 0 < n < % be given, where 7, is defined in
Lemma 2.15(b). Then there exists L > 0 and a family of maps I1, : Sing — Reg(n) such
that for all ¢t > 3L and for all y € Sing, if we write ¢ = I1,(y) then the following are true:
(@) ¢, gy rC € Reg(n) for some |t'| < 4d;
(b) dgs(g,c,Sing) < S forallrelL,t — L;
(c) for all r € [L,t — L], g.c and y lie in the same connected component of
B(Sing, §), the §-neighborhood of Sing.

€202 1snBNny Gz Uo Jasn UoISIAI] S|elas Aq 0/G1 0.9/ 7ZoBul/ulWwI/S60 | 01 /10p/a[o1e-a0uBApe/UIWI/Woo dnoolwapese//:sdjy Wol) papeojumod



38 B.Calletal

Furthermore, c(0),c(t + t') € Con, any c € I1,(Sing) is entirely determined (among the
geodesics in I1,(Sing)) by the segment c[0, t+t'], and dz(y (0), c(0)), dz(y (t), c(t+1)) < 2d,

where d; is as in Lemma 2.15(a).

Remark. The above proposition should be compared with [4, Theorem 8.1], although
we have made two slight adjustments for our situation. First, we cannot guarantee that
g;c € Reg(n), but only that g, ,c € Reg(n) with uniform control on |¢'|. Second, we prove
our result for all ¢ > 3L, instead of 2L. These result in trivial changes to subsequent

estimates in [4]'s argument.

Proof of Proposition 7.4. We begin with a geometric preliminary.
(A) Suppose that &, and ¢, are geodesic rays in S with & (0) = &,(0) and
dz(c,(D,cy()) < 3dy. The distance between geodesic rays is a convex
function in a CAT(0) space, so dg(C;(r),Cy(r)) < @r for all r € [0,1].
Therefore, to ensure that dz(¢, (r), C;(r)) < % for all r € [0, 271, it is sufficient

to have %ZT < %, orl> 12?_0T.

We now begin the proof in earnest. Let § > 0 and 0 < 1 < 22 be given. Let T(5) be

as in Lemma 2.12. Let

8d 12d,T (8
L = max do,—O,ZT(é),L() ;
Mo )

we will highlight the need for each condition on L as we come to it in the proof. Let
t > 3L, and let y € Sing.

As usual, we work in S. Let R be the maximal, isometrically embedded Euclidean
rectangle with y([L,t — L]) as one side, containing no cone points in its interior, and
to the right side of y, with respect to its orientation. (Throughout this proof, refer to
Figure 5. For ease of exposition, we will often refer to the orientation as depicted in that
figure in this proof.) Note that if y ([L, t — L]) contains any cone points with an angle > =«
on the right side of 7, then R has height zero. That ¢t > 3L implies R has positive width.
By maximality of R, there must be cone points on the boundary of R, specifically on the
bottom side of R, as oriented in Figure 5. Let &, be the cone point closest to y(0) and &,
be the cone point closest to y(t) on the bottom side of R.

Using Lemma 7.2, extend the bottom side of R to a singular geodesic 7’ that turns
with angle 7 on the y side any time it encounters a cone point (i.e., measured from within

the connected component of S\ 7’ containing 7, the incoming and outgoing directions
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Fig. 5. The construction of ¢ = I1;(y) in Proposition 7.4.

of 7’ make angle = at any cone point). If R has height zero, let y’ = y. Parametrize 7’ so
that 7/(L) is the lower-left corner of R (and hence 7'(t — L) is the lower-right corner).

Construct geodesic segments of length d,, starting at the points 37’(—%) and
)7/(%), ending below 7’, and perpendicular to 7’ in the sense that for each segment,
both angles between it and y’ are > 7. Connect the endpoints of these segments with
a geodesic segment, forming a quadrilateral that we denote by Q,. Construct a similar
quadrilateral Q, based on 7’ around 7’(t) on the same side as Q. Any point in Q, (resp.
Q,) can be reached from 7/(0) (resp. y'(t)) via a path along 7’ of length < % followed by a
perpendicular segment of length < d,. Therefore, forany ¢ € Q,, dz(y'(0),¢) < %do < 2d,
(the analogous bound holds for Q,) and the diameter of Q, is bounded by 3d,,. Our choice
of L > d, implies that y/(L) and y'(¢ — L) are not in the quadrilaterals.

By their construction using d, from Lemma 2.15, the quadrilaterals Q; and Q,
must contain cone points. Let {; be a cone point in Q; and ¢, a cone point in Q,. Let
t = dg(¢;,¢,). Extend the geodesic segment [¢;, {,] to a geodesic ¢, parameterized so that
¢(0) = ¢; and ¢(f) = ¢,, with turning angles equal to exactly half of the total angle at
each cone point ¢;, ¢,, and any cone points encountered over times (—oo, 0] U [t,00). Note
that this condition implies that c is determined entirely by the segment [}, ;1. Then,
¢ € Reg(n). An alternate path from ¢; to ¢, is to travel ¢; — 7/(0) — y'(t) — ¢, that has
length < 4d,+t. Thus, t < t+4d,,. Reversing the roles of ¢ and 7' also shows t < t+4d,,
sot=t+t with|t| < 4d,. Then, g, ,C € Reg(n) as desired.

We claim that [£,,&,] € ¢ N R. Consider the geodesic segments [, &,], [£;,&,],
and [&,, ¢;]. The triangle formed by y'(0), ¢; and &; has dg(y'(0),&;) > L and as noted
above, dg(7'(0),¢)) < 2d,. Using the CAT(0) property and an easy Euclidean geometry

4dy

calculation, the angle between [y'(0), ;] and [¢1, £;] at & is less than =72. Our assumption

that L > 8% ensures that this angle is less than . An analogous argument bounds the
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angle between [§,, 7'(t)] and [£,, ¢,]. By Lemma 2.15, there is excess angle at least 7, at
& and &,. At &, (and similarly at &,, even if &, = &,) the angle our concatenation of
segments makes on the side toward y is at least the angle 7’ makes on that side, which
by construction is 7. On the side away from y, the angle our concatenation makes is at
least £(§;) — m — ny > m. The concatenation of [¢},§,], [§;,&,], and [&,, ¢,] is therefore a
geodesic segment, and hence it must be a subsegment of ¢, proving the claim.

We now need to show, using our choice of L, that dGS(gr*E‘, Sing) < ¢ for all
r* € [L,t — L]. We do this by showing that for each such r*, there is a geodesic 7’ € Sing
such that dz(y'(r), c(r)) < % forall r € [r*—T(8), r*+ T(8)] and then invoking Lemma 2.12.

Let y) be the reparameterization of 7’ so that ¢(r) = y;(r) whenever ¢(r) € R.
Let [ry,r)] = {r : ¢(r) = pi(r) € ¢ N R}. (Figure 5 depicts a situation where ¢(r;) = &,
and ¢(ry) = &,.) For any r € [r},r,], consider the geodesic rays ¢(—oo,r) and yj(—o0o, 7).
They share the point ¢(r) = 7)(r) and at some distance > L > w are both in Q, and
hence < 3d, apart (with respect to dg). Therefore, by (A) at the start of this proof, for all
relr,—2T(8),1,l, dz(C(r), pi(r) < % Applying the same argument to the rays ¢(r, co) and
Yo (1, 00), shows dg(C(r), y(r) < % forall r € [ry, ry + 2T (8)]. As 7} € Sing, by Lemma 2.12,
d;z(g,+C,Sing) < § for all r* € [r; — T(8),ry + T(8)].

If this covers all times in [L,t — L], we are done with this part of the proof. If
not, we continue as follows. Assuming r; — T(§) > L, consider the geodesic segment
[¢,,&] Let [, &,] be the maximal subsegment of [{;,&,] containing no cone points in its
interior. Extend [, &,] to a geodesic y”, in Sing lying between ¢ and y;, parametrized
so that y’,(r;) = & = ¢(ry). First, note that over the interval [r, — 2T(8), {1, 7’ ,(r) is at
least as close to fé(r) as ¢(r) is, and by our work above, this distance is bounded above
by % By Lemma 2.12, dGS(grl—T(a)%rgrl—T(a)Jlﬂ < 4. Second, we can argue regarding ¢
and y’, exactly as we did regarding ¢ and y;. They form rays with a common endpoint
which after some distance > L are still within 3d,, of each other, which as noted above
allows us to show they are § close in d; for an interval of time below r;. This interval
will either extend to L as desired or will end at some ry — T'(§) where ¢ and y’, branch
apart at a cone point. We then repeat our argument at that cone point, finding y’, € Sing
shadowing ¢ further, and so on, until we have reached time L. Exactly the same argument
applies beyond &,, constructing 7;,7;,... € Sing as necessary to shadow ¢ in d;z until
time ¢t — L.

It remains to establish that for all r € [L,t — L], g,¢ and y lie in the same
connected component of B(Sing,§). We do this by showing that one can get from y
to g,.c by a series of “moves”, each of which can be realized by a continuous path in
B(Sing, §).
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Move 1: geodesic flow

If y € Sing, then for all r, g,y € Sing with the flow itself providing a continuous
path between the two, so y and g,y are both in the same connected component of Sing
itself and hence of B(Sing, §).

Move 2: “pivot”

Suppose 7;, 7141 € Sing with 7;(0) = 7,,,(0) = & € Con, dgz(7;, Vi) < 8, and
suppose that the angle between y; and y;,, at & is less than L(§) — 27. Note that
any geodesic ray starting from & that lies between y;(—o0,0) and y;,;(—00,0) can be
concatenated with y;(0,4+00) to form a geodesic. Similarly, any ray between y;(0, 4+00)
and y;,,(0, +00) can be concatenated with y;, (—o0,0) to form a geodesic.

Let y;,; - ¥; be the concatenation of y; ;(—oc,0] with y;[0,+00). Note that
Aoz (Vi Vip1 - 7)) and dgg(¥iy - ¥ Vip1) are both less than dgz(y;, 7;,;) and hence less
than 6. Indeed, the integrals computing d;z(v;, V;y1 - ) and dgg(Vipy - vy Vi) will
each match the integral to compute d 3(y;, 7;,1) on one side of ¢t = 0, and will
replace the integral on the other side of t = 0 by zero, if anything decreasing the
distance.

We “pivot” from p; to y;,; in two steps. First, let ¢, be a continuous and
monotonic path in 8,,S from ¢, = 7;(~00) to ¢; = ;,(~00). Apply Lemma 7.3 to
get a continuous path v + ¢, from y; to y;,, - y; such that for all v, d 3(3;,¢,) <
dgz(Vi Vig1 - ;) < 8. Second, let ¢, be a continuous and monotonic path from p;(+oc)
to ¥;,1(+00), and apply Lemma 7.3 to get a continuous path v — ¢;, from y;_, - ; to y,;.
Again, for all v, d3(Cy, V1) < dgz(Viy1 - Vi Vip1) < 6; this time, we apply the distance
nonincreasing property obtained in Lemma 7.3 to the reverse of the path v — ¢;,, which
continuously moves from y;,; to y;,; - 7. Overall, we have a path of geodesics that

remains in B(Sing, §) throughout.

Move 3: “slide”

Suppose that R is an isometrically embedded Euclidean rectangle in S. (Note
that this implies R contains no cone points in its interior.) Let 7,7’ € Sing be geodesics
that extend the top and bottom sides of R, respectively, with dz(7,7) < §. Let {c,} be
a continuous path of horizontal (i.e., parallel to 7 and 7’ within R) geodesic segments
connecting the two sides of R, which move monotonically downward through R, with
co=7NRandc, =7 NR.

For each v, let % be the “uppermost” geodesic extension of c,, that is, the
extension which turns with angle 7= on the y-side at any cone point it hits. Let fé be

the “lowermost” geodesic extension of c,, that is, the extension that turns with angle =
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on the p’-side at any cone point it hits. Since the distance between geodesics is a convex
function and since c, is parallel to  and 7’ over R, both % and )75 lie between 7 and 7.

Ifpl = )7&, set 7, = p¥ = 375. This happens if and only if y, hits no cone points.
Since there are countably many cone points in S, there is a countable set {v,} cl0,1]
for which y! # f‘fn. Let {I,,} be a corresponding collection of closed real intervals with
> |I,| = 1. Cut [0, 1] at each v,, and glue in the interval I, resulting in an interval of
length 2. Adjust the subscripts where y, has already been defined accordingly. For each
n, if I, = la,, b,l sety, =y and y, = ?én. For all v € I,, use Lemma 7.3 to fill in a
continuous path v ~ y, from y, toy, .

The result is a path v — 7, from y to 7’ that we claim is continuous. Continuity
at any v, that is in the interior of one of the inserted intervals I, is provided by
Lemma 7.3. If v, is on the boundary of some I, and v approaches v, from inside I,,,
Lemma 7.3 again applies. Otherwise, y,, is in Sing and as v — vy, y,, approaches y,, from
a side on which y,, always turns with angle r. In this case, let ¢ > 0 be given. Since there
are only finitely many cone points in any compact region of S, for v sufficiently close
to vy, there are no cone points in the convex hull of )7V0[—T(s), T(e)] and y,[-T(e), T(e)l.

Perhaps, making v even closer to v,, this convex hull is a rectangle with width <

N|m

Then, by Lemma 2.12, d;3(Vy, ¥,) < &, proving continuity at vy,

Finally, we claim that ng()?,)?V) is nondecreasing. Let a < b be in [0,2]. If
a,b € I,, doz(v,v,) < dg3(v,7,) by Lemma 7.3. Therefore, to prove the distance is
nondecreasing in general, we just need to show dz(v,7,) < d;3(¥,7,) when a and b are
close and a is the lower endpoint of some I,, or is in the complement of the {I,,}. In either
case, y, is a singular geodesic that makes angle = at any cone points it encounters on
the side away from y. For each fixed ¢, consider the geodesic segment ¢, , = [y (?), 7, (?)]

and how it varies with v. We claim the length of ¢, , is at most the length of ¢, for

v,a
small enough ¢ > a, which together with the formula for d;z will establish the desired
result. As v increases from a, y,(t) will move along a geodesic path perpendicular to y,
on the side of y, away from y. Indeed, for all b > a small enough that no cone points
are in the convex hull of y,[0, t] and y,[0, t], by construction, y,[0, t] will simply be the
translation of y,[0, t] across an embedded Euclidean rectangle. Take such a b > a. Then,
consider the geodesic triangle with sides ¢, ;, ¢; ;, and [y, (2), 7, (9)]. Since [y,(t), 7, ()] is
perpendicular to y, on the side away from y and ¢, ,; hits y,(¢) from the side toward y,
the angle between c, , and [y,(?), 7, (?)] is at least 7. By comparison with a Euclidean
triangle and the CAT(0) property, ¢, , is longer than ¢, , giving the desired result.
Therefore, y, is in the same connected component of B(Sing, §) for all v for this

“slide” move.
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We return now to our construction of ¢. For any r € [L,t — L], we can reach g,
via the following series of the moves noted above. First, we move y — g, ,7 by geodesic
flow. Second, we slide g, ,7 down across R (if R has nonzero height) to a geodesic in the
orbit of y§ using our “slide” move. We break this move down into a sequence of small
“slide” moves between geodesics y,, in Sing. Since t > 3L and L > 2T($) if we choose v,, so
) < 4.

Therefore, this series of moves stays in the same connected component of B(Sing, §).

that y,, NR and y,,  NR are within §/2 vertically in R, by Lemma 2.12, d;5(¥y,, Vy,,,
Finally, we apply a series of “pivot” moves and the geodesic flow to get to g,c via the
geodesics y; introduced in our construction above. Our work in the construction showed
that all the “pivot” moves involved are between geodesics within § of one another.
Therefore, in total, we have a continuous path from y to g.c¢ in B(Sing, §), completing

the proof of Proposition 7.4. |

The 2nd step in the argument for the pressure gap is to prove the following
Lemma, which uniformly controls how many geodesics in Sing can have image under IT,

near to a fixed geodesic. Recall that

dGS,t(Vlf 7/2) =m

sell

ax ds(Gsy119sV2)

and that a subset of GS is (t, 2¢)-separated if its members are pairwise distance at least

2¢ apart with respect to dgg ;.

Lemma 7.5 (Compare with Prop. 8.2 in [4]). For all ¢ > 0, there exists some C(¢) > 0

such that if E;, C Sing is a (¢, 2¢)-separated set for some t > 3L, then for any w € GS,
#y e E; | dGS,t(Wr IT,(y)) <&} <C.

Proof. It is sufficient to prove the result in GS.

Let dy be as in Lemma 2.15(a). Fix w € GS,and let ¢ > 0, t > 3L, and E, be given.

Suppose that dgg,(w,c) < e. Then, by definition, d;z(g,w,g,c) < ¢ for all
r € [0,t]. By Lemma 2.11, that d z(w,c) < ¢ implies dg(w(0),c(0)) < 2¢ and that
dgz(9,w, g.c) < e implies dg(w(t), c(t)) < 2e.

By Proposition 7.4, any geodesic c in I1,(Sing) has c¢(0) € Con and c(t + t') € Con
for some |t'| < 4d,. Using what we noted above, the cone point at ¢(0) must be within
dz-distance 2¢ of w(0) and the cone point at c(t+t') must be within dgz-distance 2¢ +4d,
of w(t).
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As Sis compact and Con is a discrete subset, for any R > 0, Ny = max, s #{55710
Br(p)} is finite. Let Cy(¢) = Ny Ny, 44, As specified in Proposition 7.4, any element ¢ of
I1,(Sing) is entirely determined by the cone points ¢(0) and c(t + t'). Thus, there are at
most C, (¢) elements c¢ € I1,(Sing) with d z(w,¢) < e.

Now we want to bound #{y € E; | I1,(y) = c} for any ¢ € I1,(Sing). For y € E,,
the construction of IT,(y) shows that dg(y(0),c(0)) < 2d, and dg(y (), c(t + t)) < 2d,.
Therefore, y (—T(¢)) € B(c(0),2d, + T(¢)) and y(t + T(¢)) € B(c(t +t'),2dy + T(e)), where
T(¢) is as in Lemma 2.12. Let P be an %-spanning set for B(c(0), 2d, + T(¢)) with respect
to dz and Q an g-spanning set for B(c(t + t'),2d, + T(e)) with respect to dz. By the
compactness of S, there exists some C,(¢) such that #P and #Q are bounded above by
C,(¢). For each (p,q) € P x Q, extend [p, g] to a geodesic p.q with Np,q(—=T(€) = p.

Since P and Q are g-spanning, there exist (p,q) € P x Q such that
dz(y(=T()),p) < g and dg(y(t + T(e)),q@) < §. We immediately have that dg(y(—=T(e)),
Mpq(—T () < §- In addition, y[~T(e),t + T(e)] and [p, q] are geodesic segments whose
endpoints are each less than g apart. Since geodesic segments in S minimize length,
the length of [p, gl is within % of t + 2T(¢), the length of y[-T(e), t + T(e)]. Therefore, we

also have

dg(y (t + T(€)), My o (t + T(e))) < dg(y (¢ + T(e)), @) + d3(q, mp o (t + T(€))

€ L e €
< = - << —=.
8 4 2

Using convexity of the distance between geodesics in a CAT(0) space and our

bounds on the distances between the pairs of endpoints, we have
e
dg(y (). npqM) < 5 forall rel=T(e) ¢+ T()].

Then, by Lemma 2.12, dés(gr%grﬂp,q) < ¢ for all r € [0,t]l, or, equivalently,
Az (Vinpg) <&

We can conclude that #{y € E; | [I,(y) = ¢} < #{n, 4} < C,(¢)?. Indeed, if there
are more than C,(¢)? elements in E, that have image ¢ under I1,, then some two of them
must both be within dGS,t—distance ¢ of the same 7, , and hence less than 2¢ apart with
respect to d .z ,, contradicting the fact that E, is (¢, 2¢)-separated.

Putting these estimates together, #{y € E; | dgg,(w,TI,(y)) < &} < Cy()Cy(e)?,
completing the proof. |
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The 3rd step of the argument closely follows [4], as we now outline. First, by

Lemmas 4.1 and 4.2 of [10], for any ¢ > O and ¢t > O,

t .
sup z eSUPscB (.0 Jo $Grd)dr | g~ Sing is (t,£)-separated { > eF(Sing.2¢:9) (12)
yeE

To apply this fact from [10] here, we just need to recall that Sing is compact (noted in
Definition 2.4).
We now use the fact that ¢ is locally constant on a neighborhood of Sing. For

sufficiently small ¢, the left-hand side of the inequality above is equal to

A(Sing, ¢, &, t) := sup Z efot¢(grl/)dr
y€eE

E C Sing is (t,¢)-separated ¢ . (13)

Combining (12) and (13) and using the fact that g, is entropy-expansive (Lemma 2.17)

exactly as in [4], for sufficiently small ¢,
A(Sing, ¢, ¢, t) > e!FSnge), (14)

Fix 0 < n < 2 where 7, is from Lemma 2.15(b). Note that Reg(n) has non-empty
interior. Pick § > 0 small enough that A(Sing, ¢, 28,t) > eP(n89) ¢ is locally constant
on B(Sing,§), and by Lemma 3.10, A(y) < n for all y € B(Sing, 25). Then we proceed
exactly as in [4], invoking Proposition 7.4 as a direct replacement of their Theorem 8.1
and Lemma 7.5 as a direct replacement for their Proposition 8.2. The argument produces

the following lemma.

Lemma 7.6 (Lemma 8.4 in [4]). For sufficiently small § > 0, there is a (t, 25)-separated

set E; in Sing such that there is a (¢, §)-separated set E; C I1,(E,) satisfying

Z einfucnyw) Jo #(GswWds = gotP(Singd),

weE]
where g = £e 819l and C is as in Lemma 7.5.

Proof. The only minor change needed in substituting our Proposition 7.4 for their

Theorem 8.1 is to note that our condition on t is that it be > 3L, whereas theirs is that
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it be > 2L. This gives us g = te SLI?l instead of g = %

cosmetic changes to the rest of the argument in [4]. |

e 4LI9ll This results in merely

Note that {(w,t) : w € E/} is in G4do(y)), using the notation of Definition 5.7.

The final step in the argument is to use specification to string together orbit
segments from E; in many different orders so as to produce a large collection of
long orbit segments that together produce more pressure than P(Sing, ¢). In [4], this is
undertaken in Section 8.4, and at this point, the argument is almost entirely dynamical.
It uses the estimate of Lemma 7.6 together with strong specification for G*@ () as given
by Corollary 5.8. The one geometric piece of information used is that A(y) < n for all
y € B(Sing, 28). Hence, we assumed this when choosing § above, invoking Lemma 3.10.
This completes the proof of Theorem 7.1.

Applying Theorem 7.1 with ¢ = 0 gives the following.

Corollary 7.7. htop(gtlsing) < htop(gt)'

With the pressure gap condition for such potentials in hand we briefly note a
second class of potentials for which it holds. Proposition 4.7 of [6] notes that if the
pressure gap P(Sing, ¢) < P(¢) holds for ¢, then for any function sufficiently close to
¢ (specifically with 2||¢ — || < P(¢) — P(Sing, ¢)) and any constant c, P(Sing, ¥ + ¢) <
P(y¥ +c). Applying this to the locally constant functions ¢ discussed in this section gives
us a further class of potentials with a pressure gap. Applying it with ¢ = 0 gives us one

class of particular note.

Corollary 7.8. If ¢ is a continuous potential with || < %(hmp(gt) - htop(gt|sing)),

where h,,, is the topological entropy, then P(Sing, ¥) < P(y).

top
8 Equilibrium States are Limits of Weighted Periodic Orbits

We can show that weighted periodic orbits equidistribute to the equilibrium states
we have constructed, following a method of [4]. Throughout this section, we write
GM := GM (1) (see Definition 5.7) as we will work with a fixed » throughout.

Define the equivalence class of a closed geodesic [y] to be all geodesics n € GS
for which y = g,n for some t € R. Then let Perg[Q —§, Q] be the set of equivalence classes
of regular closed geodesics with period in [Q — §, Q]. Now consider such a regular closed
geodesic, and define 1, to be the normalized Lebesgue measure supported on y and

D(y) = foe(y) ¢(g,v) du. These definitions agree for all representatives of an equivalence
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class, so we define Ryl = My and ®([y]) = ®(y). We consider the weighted sum

! o(
_ vD
Has = AR(Q,8,¢) Z e Kyl
RYZ 2P Iy lepergla—-3,a]

where Az(Q, 5, ¢)= > e®) is our normalizing constant. When lim 5 log Ag(Q,
[ylePer[Q—6,Q] Q—00
3, ¢) exists, it can be thought of as the pressure of closed saddle connection paths, and

we write it as Py 5(¢).

Theorem 8.1. We use the notation above. Let ¢ be a Hélder potential with P(Sing, ¢) <
P(¢), and let 1 be the unique equilibrium state for ¢. Then, for all § > 0, Py 5(¢) = P(¢)

and in the weak-* topology we have alirn Has = M.
—00 !

Remark. Note that this provides a way to identify interesting potentials, by consid-
ering geometrically relevant ways to weight closed geodesics. For instance, one could
potentially try to identify a continuous function that weights y by the number of conical

points it turns at.
We first prove a lemma that will be necessary throughout this section.

Lemma 8.2. Let 2¢ be less than the injectivity radius of S. For all Q > § > 0, any set

of representatives of the equivalence classes in Perg[Q — §, Q] is (Q, ¢)-separated.

Proof. Consider [y,],[y,] € PerglQ—§, Ql, and let y;, y, be representatives. Furthermore,
suppose dgg(g;¥1.9:v2) < € for all t € [0, Ql. By Lemma 2.11, dg(y; (%), ¥5(t)) < 2¢ for all
t € [0,Q]. By our choice of ¢, these geodesics are freely homotopic and represent the
same element g of the fundamental group. Letting y; be lifts of y;, we have that both 7,
and p, are axes of g. By [3, Theorem II.6.8], 7, and y, are parallel, and so they bound a
flat strip by the flat strip theorem. This contradicts the assumption that y; and y, are

regular. u

We have the following proposition, which follows from the proof of variational
principle found in [21, Theorem 9.10] because Pergz[Q — §,Q] is (Q, ¢)-separated for all

sufficiently small ¢.

Proposition 8.3. If i is the unique equilibrium state for ¢, then for all § > 0 such that
lim 5logAR(Q,8,¢) = P(¢), we have lim pgs = p.
Q— o0 Q—o0
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In order to apply this proposition, we need to establish a growth rate for
ARr(Q,$,¢) for all sufficiently small § > 0, which is done in Propositions 8.7 and 8.8
below.

First, we show that the growth rate for Agz(Q, 8, ¢) is fast enough. In order to do
this, we need to be able to approximate (y,t) € G by closed geodesics of a bounded

length. This is encapsulated in the following proposition.

Proposition 8.4. For all § > 0, there exists T” such that for all (y,t) € GM with
t > %0 + 2M, there is some regular closed geodesic & with period in [t + T' — §,t + T']
such that d;5(g,v,9,8) < d forall u € [0, t].

Proof. First, we explain how to obtain the statement of the proposition for (y,t) € G.
Let § > 0, and let 7 be the specification constant for ¢ with shadowing scale %
(see Proposition 5.6). We will show that T/ = 7 + % satisfies the requirements of the
Proposition. Let (y,t) € G, and let & be a geodesic guaranteed by specification that
shadows (y, t) twice in succession. Now recall from Proposition 5.6 that there exists a
closed interval I D [2—?7, t— g—%] such that £ contains two copies of y(I). In other words,
there exist r;,r, > 0 such that &(r; +r) = y(r) for all r € I, where i € {1, 2}. Thus, we
can choose £ to be a closed geodesic and observe that its length is given by r, — ;.

Now, since dgg(ge &, 9o, v) < % by Proposition 5.6, we can apply Lemma 2.11 to show
2n 2y

ds(é(g—%),y(g—(,’,)) < f‘;' Thus, |r;| < f—}. Similarly, considering the 2nd copy of (y,t) that &
shadows, we have ds(.f;(g—‘,)7 +t+17), y(g—%)) < f;, andsor, € [T+t— S T4t+ %]. Hence, £ is a
regular closed geodesic with length in [7 4+t — % T4+t+ %]. Taking T' = 7+ % we are done.
In order to adapt this argument to GM for r > 0, note that we achieve specification for
GM by considering the specification constant for G at a smaller scale (which depends on

M). (See Corollary 5.8.) ]

To establish the desired growth rates on Az(Q,8,¢), we need two technical
counting results from [10]. These results are used implicitly in the proof of Theorem 1.1,
and we do not provide a self-contained proof in the interest of concision. However, we
do discuss why they hold in our setting.

As noted in Section 1.1, the conditions that we check differ slightly from those
used in [10]. The only case where they are not immediately stronger conditions is the
pressure estimate. In [10], the authors need to define the pressure of a discretized
collection of orbit segments P([P] U [S],¢) < P(¢). Because we use A-decompositions,

we do not need to consider the pressure of collections of orbit segments (this is the
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content of [5, Lemma 3.5, Theorem 3.6] and [6, Proposition 4.2]). Instead, it suffices to
show that P ((,cg 9;21(0), #) < P(¢), which is precisely the condition P(Sing, ¢) < P(¢).

The lemmas we will use are the following.

Lemma 8.5 ([10, Lemma 4.12]). There exist C,¢,M > 0 such that for all ¢ > 0, there

exists a (¢, ¢)-separated set E, with the following properties:

o X,enoxp (f§ #(9,y) du) = cetP®
e E,ClyeGS|(begh)

Lemma 8.6 ([10, Lemma 4.11]). For all ¢ > 0 sufficiently small, there exists a constant

D > 0 such that for any (¢, ¢)-separated set E,, we have

t
Z exp ( / b (gyuy) du) < DetP@),
0

VEE;

We are now ready to prove our growth rates.

Proposition 8.7. For all § > 0O, there exists a constant C such that

A

C
AR(Q,8,9) > 5e0P<¢>

for all sufficiently large Q.

The proof of this proposition follows almost exactly the proof of the lower bound
in [4, Proposition 6.4], replacing the use of [4, Corollary 4.8] with Proposition 8.4. We

include it here for completeness.

Proof. LetC, ¢, M, and E, be as in Lemma 8.5. Now, choose p < % small enough that the
Bowen property at scale p holds on GM (that this is possible follows immediately from
the fact that G has the Bowen property). Then, by Proposition 8.4, there exists T/ > 0
so that when ¢t > 970 + 2M, there is an injective mapping from E, to a set P, of regular
closed geodesics with periods in [t + T" — §,t + T'], that is, for any & € P,, there exists
u € [t+ T —3§,t+ T'] such that g,& = &. In particular, for all y € E,, there exists & € P, so

that d;g(9,&.9,y) < p for all u € [0, t]. Because the mapping is injective and ¢ has the
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Bowen property at scale p on G, it follows from Lemma 8.5 that

t
D exp ( / #(9ué) du) > Ce KetP@®
0

§ePy

for some constant K independent of t. Now, writing ® (&) = 06(5) ¢(g,%) du, we can then

write

t
Z exp(®()) > Z exp (/ #(g,&) du — T’||¢>||) > Ce~ K+TI#1) gtP@)
0

5 €P; %‘ €P;

At this point, we can almost relate this to Az(Q,3§,¢). However, there is a possibility
that &;,&, € P, both represent the same closed geodesic path, that is, there exists u so
that g, & = &,. As P, is (¢, p)-separated and d;s(n,g,n) = u, there are at most %}1/ such
repetitions. Hence, if Q > T, by setting Q =t + T’, we have

AR(Q,8,¢) > (ﬁ) CeK o~ T (I91+P©)) ,QP@)
’ ’ - O .

|
In order to see that the growth rate is not too large, we use Lemmas 8.2 and 8.6.

Proposition 8.8. For all § > 0O, there exists a constant D > 0 such that
AgR(Q,8,¢) < Dedll¢ll gQP(&)

for all sufficiently large Q.

Proof. By Lemma 8.2, any set of representatives of Pergz[Q — 8, Q] is (Q, ¢)-separated
for ¢ sufficiently small, and in particular, small enough to apply Lemma 8.6. Now, given
[y] € PergzlQ — §,Ql, observe that ‘CD(]/) — fOOd)(guy)du‘ < §||¢|| because we know the
period of y is at least Q — §. Consequently, it follows that for such an ¢, there exists
D > 0 such that

Q
AR(Q,8,¢) < 7l > exp (/ $(gyy) du) < P9I peP@)
0

[ylePergrlQ—$§,Q]
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Proof of Theorem 8.1. Propositions 8.7 and 8.8 imply that
lim L log A Q,8,¢) = P($)
000 O g R 1Y - .

By Proposition 8.3, it follows that alim Hos = M |
—00 !
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