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Abstract

This paper proposes a novel age estimation algorithm, the Temporally-Aware Adaptive
Graph Convolutional Network (TAA-GCN). Using a new representation based on graphs,
the TAA-GCN utilizes skeletal, posture, clothing, and facial information to enrich the feature
set associated with various ages. Such a novel graph representation has several advantages:
First, reduced sensitivity to facial expression and other appearance variances; Second, ro-
bustness to partial occlusion and non-frontal-planar viewpoint, which is commonplace in
real-world applications such as video surveillance. The TAA-GCN employs two novel com-
ponents, (1) the Temporal Memory Module (TMM) to compute temporal dependencies in
age; (2) Adaptive Graph Convolutional Layer (AGCL) to refine the graphs and accommo-
date the variance in appearance. The TAA-GCN outperforms the state-of-the-art methods
on four public benchmarks, UTKFace, MORPHII, CACD, and FG-NET. Moreover, the
TAA-GCN showed reliability in different camera viewpoints and reduced quality images.
Keywords: Age Estimation, Graph Convolutional Network, Facial Graphs, Skeletal
Graphs.

1. Introduction

Age estimation has evolved from a carnival curiosity to an established task in computer
vision [1]. It has many applications such as human-computer interaction (HCI), biometrics,
age-restricted security control, video surveillance, and teacher-student differentiation in the

classroom. However, age estimation brings several major challenges, including the following:
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(1) the variance of appearance and facial expression, (2) viewpoint variations, and (3) non-
ordinal temporal dependencies between ages. These challenges hinder the current standard
methods to estimate age effectively. Therefore, we propose an algorithm including several

novel components to handle the challenges above, which we explain as follows:

1.1. Variance in Appearance

People of the same age have remarkable variance in their appearance [2], which makes
the age estimation challenging. To resolve this issue, some researchers have suggested age,
gender and racial grouping [2, 3]. Nevertheless, such approaches fail when the grouping
strategy is erroneous or when the same age groups are highly varying.

Current age estimation methods use raw images commonly with Convolutional Neu-
ral Networks (CNN) [1]. While there have been significant advances in developing effec-
tive CNN architectures such as AlexNet and VGG, CNNs models are commonly used for
object/subject classification. So, they might be less effective for age estimation because
the features obtained from CNN models differ from those in the face. As opposed to ob-
jects/subjects, facial information are commonly centralized around specific facial keypoints.
Moreover, in contrast to object/subject classes (such as a car, house, or pedestrian) that
often differ in non-localized regions, the difference between age classes is mainly defined as
local differences around specific facial keypoints. This fact is the same for the ages of similar
classes.

In contrast to raw images, facial keypoints provide a more potent representation of the
face, eliminating unnecessary data [4] and yielding critical information. However, while
some approaches used facial keypoints for age estimation [5], facial keypoints have not yet
been effectively exploited in age estimation. It is because the current methods are based on
2D convolutional networks, which cannot effectively model the connectivity information in
facial keypoints. Specifically, 2D convolutional operators are applied on a fixed image grid
where there might not be any explicit connections between facial keypoints on the 2D image
space.

An appropriate way to model facial keypoints and their connectivity is by using graphs.
The Graph Convolutional Network (GCN) has shown to be efficacious in solving graph-based
problems such as action recognition using skeletons [6]. Here, we propose a novel graph

representation and a new GCN to model facial keypoints for age estimation effectively. To



better accommodate the variance in appearance in facial graphs, we introduce an Adaptive
Graph Convolutional Layer (AGCL) that adaptively refines the graphs.

Another source of variance in the facial analysis is facial expressions that alter the
structure of the face and facial keypoints. There have been a few recent studies investigating
age estimation under facial expressions. For example, [7] learned both the expressions and
the ages jointly. Their method, however, requires complex learning and prior knowledge
regarding facial expressions. We put forth a simple yet effective algorithm to make the
GCN less sensitive to facial expressions, unlike this joint approach. An example of facial
expression-insensitive graph can be seen in Fig. 1 where f5, f3, and f; almost remain in the
same positions despite varying facial expressions that alters f; (face images are collected

from the RaFD dataset [8]).

Figure 1: Four examples of simple facial graphs under different facial expressions. The appropriate graph
nodes (green keypoints) are selected such that the features are less sensitive to the facial expression.

1.2. Viewpoint Variations

In typical real-life scenarios, videos are captured from different camera angles and view-
points. Most of the reports in the literature are heavily dependent on the single-view frontal
face in which the face is frontal-planar with the imaging plane. A few existing strategies
accommodate various camera angles in age estimation, including the estimation of various
camera parameters [9] and geometric parameters [10]. However, these methods can handle
only limited variations in viewpoints. In real-world applications such as video surveillance,
the viewpoints are highly varying. As a result, a given face might be partially visible from
certain viewpoints. An example is shown in Fig. 2 in which a teacher’s face and a student’s
face are partially visible in given viewpoints (Fig. 2 is collected from a classroom video

dataset belonging to the University of Virginia). In such examples, distinguishing teachers



and students based on their ages has essential applications in some ongoing research such
as teacher tracking and classroom activity recognition [11]. A standard age estimation al-
gorithm encounters difficulty distinguishing their ages based on only facial information in
these cases. Therefore, additional information is required to differentiate various ages when

the viewpoint changes.

Figure 2: An example of a real-life scenario where skeleton and clothing information is more helpful than
the face. In this frame sample from a classroom video, the teacher and student are captured from different
viewpoints. As a result, their faces are only partially visible. However, their skeletons and clothing provide
more critical information about their ages. To include this information, we propose to use Skeletal-Cosmetic
(SC) keypoints (right image) which are obtained from detected skeletons (left image).

People belonging to different age groups have different skeleton structures, adopt specific
postures, and wear particular clothes; an example is shown in Fig. 3 (we collected the
people’s images from the Relative Human dataset [12]) and removed the background for more
clarity). Although these cues are “soft biometrics” rather than definitive features, such cues
can be exploited in age estimation. The skeleton, posture, and clothing provide additional
beneficial information in the attempt to distinguish different age groups, especially when
the face is partially visible. As an example, in Fig. 2, the student and the teacher are
now more distinguishable with their skeletal, posture and clothing information. (Fig 2 is
collected from a dataset belonging to the University of Virginia [13]) The combination of
skeleton and clothing provides a unique and strong feature space distinguishing different age
groups. In this paper, for the first time, we propose the exploitation of the aforementioned
additional soft biometrics, which we call Skeletal-Cosmetic (SC) information, to improve
the age estimation performance in varying viewpoints. To better handle the variance in SC

graphs, our AGCL adaptively refines SC graphs separately from facial graphs
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Figure 3: Information beyond face is helpful for age estimation as people of different age groups have different
skeleton structures, postures, and clothing.

1.3. Non-ordinal Temporal Dependencies

Aging is a temporal process, and as a result, neighboring ages are temporally dependent.
An example of the aging process is shown in Fig. 4. Temporal dependencies help distinguish
various age groups. However, these temporal dependencies are non-ordinal since age data
samples are independent images from different individuals with no explicit temporal con-
nections. In contrast, ordinal temporal sequences such as action video samples are typically
continuous temporal frames showing the same individual in action. Therefore, standard
temporal networks cannot capture such non-ordinal temporal dependencies among different
ages.

Some strategies such as multi-stage classification [14], ranking [15], and grouping [16]
use multiple classifiers to implicitly exploit the temporal properties of ages at a high compu-
tational cost. Nevertheless, there does not exist a computationally efficient approach that
takes advantage of temporal dependencies among different ages explicitly. [17] proposes a
kernel-based bi-directional PCA to find the kinship relationship between family members.
However, this kinship relationship is limited to certain age groups (parent and child). More-
over, the proposed learning process is not end-to-end and heavily depends on multiple stages
including a pre-processing feature extraction using PCA. To fill this gap, we put forth a new
Temporal Memory Module (TMM) that captures non-ordinal temporal dependencies among

a wide range of people with different ages. With a single-stage classification and end-to-end



network, our proposed method is also computationally efficient.

age =1 age = 11 age = 21 age = 31 age = 41

Figure 4: An image sequence exemplifying the temporal dependencies between neighboring ages.

The main contributions of this paper are:

e We are the first to introduce a graph representation for age estimation. Our new
graph representation has some benefits over the previous 2D image-based approaches:
First, it more effectively models facial keypoints and their connectivity; Second, it
allows to exploit our new Adaptive Graph Convolutional Layer (AGCL) and facial
keypoint selection algorithm to make the age estimation less sensitive to facial expres-
sions and other appearance variances.

e We propose a new Temporal-Aware Adaptive Graph Convolutional Network (TAA-
GCNN) that includes a new Temporal Memory Module (TMM) to capture non-ordinal
temporal dependencies among different ages. However, standard temporal networks
cannot capture such non-ordinal temporal dependencies. We are the first to explic-
itly exploit non-ordinal temporal dependencies among different ages with a computa-
tionally efficient single-stage classification.

e Our TAA-GCN also includes another new module, Adaptive Graph Convolutional
Layer (AGCL), that refines the facial and SC graphs adaptively to improve the age
estimation performance under the variance of appearance.

e We are the first to include several soft biometrics including skeleton structure,
posture and clothing (Skeletal-Cosmetic) information to improve the age features rep-
resentation, especially in real-world applications where facial information is only par-
tially available from certain viewpoints.

e We conducted thorough experiments to estimate the age in-the-wild.

e Our proposed method outperforms the state-of-the-art strategies as demonstrated

on four public datasets, MORPHII, CACD, UTK-Face, and FG-NET.



2. Related Work

2.1. Age Estimation

Classical approaches utilized hand-crafted features such as wrinkles, landmark-based
features for age estimation. [18] used natural wrinkles defined a search region on the face
where facial wrinkles are more common. This early method could only estimate three age
groups, baby and adult, and senior. [19] overcame this limitation by estimation a variety of
ages using Multiscale Wrinkle Patterns (MWP) features. Similar to natural wrinkles [18],
MWP also are defined on multiple search regions. However, MWP included several other
attributes such as shape and textures to enrich the age feature representation. Some few
research have been based on facial landmark features. [20] extracted Component extracted
Bio-Inspired Feature (BIF) from facial landmarks using pyramid of convolution filters. [21]
combines facial landmark points and gravity moment and builds a matrix that represents
the the juvenile age range. Other features have been based on geometry, active shape,
appearance [1], and relative-order information in different ages [22]. Different classifiers
have been used with hand-crafted features such as Relevance Vector Machine (RVM) [23],
ratio matching[18], and Support Vector Regression [19].

With the recent advancement of deep learning, deep networks have been used for age
estimation. Some researchers suggested improving the training stage. For instance, [24]
propose a CNN architecture to exploit age differences and reduce the number of training
labels. [25] proposed a CNN architecture with a cumulative hidden layer and extracts
discriminative aging features to resolve the issue of imbalance data. [26] suggested a label
refinery network (LRN) to refine the age labels for a more effective training. [27] suggested
a Progressive Margin Loss (PML) to include the dependencies between the intra-class and
inter-class variance in various age groups. Some researchers proposed to improve the age
feature representation by revising the deep network architecture. [28] suggested to use
multi-scale output connections from different CNN layers to include diverse face features.
[29] suggested using multiple features extracted from local and global regions. [30] proposed
to weight important facial patches using Attention-based Dynamic Patch Fusion (ADPF).

Some researchers recommended assigning classifiers to various age groups. For example,
[14] suggested a multi-stage classification approach for different age groups. [31] enhanced

the multi-group classification using Ordinal Ensemble Learning. Another strategy for age



estimation has been using additional human attributes or features. For instance, [2] in-
troduced an age grouping strategy including genders and sub-groups to facilitate the age
estimation task. [3] proposed a deep conditional distribution learning which is conditioned
to several attributes such as gender and age.

There have been a few approaches such as [32] that tried to estimate age with partial
information. To accomplish this goal, they model different face regions , such as eyes
and nose separately. However, [32] is still dependent on the high-quality frontal face and
might not work in-the-wild scenarios when images are captured in reduced quality and from
different camera angles. Our method, however, is reliable under various camera angles and
for reduced quality images, as the skeleton, posture and clothing information are less affected

than the face by camera viewpoints and image quality.

2.2. Graph Convolutional Network

Graph Convolutional Network (GCN) has been used in several computer vision tasks
such as action recognition [33], brain disorder prediction [34], image retrieval [35], person
re-identification [36], and recommendation systems [37]. There are different types of GCN
which have been introduced based on various applications. An Spatial GCN can encode
spatial properties of data such as image pixels [38]. A Temporal GCN computes the temporal
dependencies of input like sequential traffic data [39]. A spatial-temporal GCN captures the
information in both spatial and temporal domains such as pixels and sequential frames in
activity videos [40].

For different tasks, the researchers designed various GCN architectures. For example, [33]
designed a human pose-aware GCN to model the dependencies among human skeleton joints
and body parts. [34] proposed a Hierarchical GCN to learn from different ROIs in fMRI data
of the brain. [35] introduced a Siamese GCN to improve the discriminative property of image
representations in image retrieval. [36] proposed a part-guided GCN to model the structural
relationship in the learned features for person re-identification. [37] suggested an adversarial
GCN to overcome the incomplete and noisy social network information for recommendation
systems. According to our age estimation task, we designed a GCN which is (1) temporally
aware of different age groups and (2) is adaptive to spatial-temporal variance in facial and

SC graphs for different human faces, poses and clothing.



3. Methodology

3.1. Overview and Terminology

Facial Keypoint
Detection

Facial Keypoint
Selection

\

Z;
Keypoint Generation

Initial Facial Skeletal- L
Cosmetic (F-SC) Graph TAA-GCN

Construction

D;

Skeletal-Cosmetic (SC)

Skeleton Detection

Figure 5: Overview of our proposed pipeline for age estimation. From a set of age images including I;, we
detect initial facial keypoints (U;) and skeleton joints (D;) using the methods of [41] and [42], respectively.
Subsequently, a facial keypoint selection algorithm picks the most suitable subset of keypoints, F;, that
are more informative and less sensitive to facial expressions. Simultaneously, from D; we generate the
Skeletal-Cosmetic (SC) keypoints, Z;, to include skeleton, posture, and clothing information. Then, given
the previously obtained keypoints (and their corresponding patches of pixels), we construct an initial Facial
Skeletal Cosmetic (F-SC) graph, G;, by defining the initial connectivity (edges) among keypoints (nodes).
Finally, our proposed Temporal-Aware Adaptive Graph Convolutional Network (TAA-GCN) estimates G;’s
age.

An overview of our proposed age estimation pipeline is shown in Fig. 5. Given a set of
images of people of varying age I° = {I;,i = 1,2,--- , A}, for each I;, we calculate a group of
initial facial keypoints U; = {ug, k = 1,2,--- N} using [41], where B is the number of samples
in the dataset, and N is the number of initial facial keypoints. Concurrently, for each I;,
we calculate a collection of skeleton joints D; = {dy,k = 1,2,---, M} utilizing OpenPose
[42], where M is the number detected joints. Next, we use our Facial Keypoint Selection
algorithm to select the most informative, yet least expression sensitive facial keypoint indices
as R={rg,k=1,2,---,N'}. We obtain R offline and during the pre-training phase and use
it as a fixed parameter to select more effective facial keypoints as F; = U;(R) in the training
and testing phases. On the other side, our Skeletal-Cosmetic Keypoint Generation algorithm
processes D, to generate SC keypoints Z; = {zx,k = 1,2,--- , M’} which represents both
the skeleton and clothing (M’ here is the number of SC keypoints). For F; and Z; we create
two sets of initial feature vectors of X" and X7, respectively. The full set of graph nodes
is formed by concatenating the two sets of initial feature vectors as V; = { X}, X7}.

For facial and SC graph nodes (keypoints), we predefine initial adjacency matrices as A



and A%, respectively. AF and AZ indicate the connectivity information among the graph
nodes in the face and body. Using the full adjacency matrix A = {Af A%} (corresponding
to both facial and SC graphs) and full set of nodes V;, we construct an initial Facial Skeletal-
Cosmetic (F-SC) graph as G; = {V;; E;}, where F; is the set of graph edges and obtained
from A. Finally, our TAA-GCN estimates G;’s age ¢;. Our TAA-GCN includes two new
modules to improve the age estimation performance. First, AGCL to refine G; adaptively.
Second, TMM to capture non-ordinal temporal dependencies among various ages. We ex-
plain all the terminologies and definitions with the corresponding reference sections of this

manuscript in Table 7

Table 1: The terminologies used in this paper with descriptions and corresponding sections.

Terminology symbol Description Section
I° set of images I; in the dataset, 0 <1i < A 3.1

Fi, R selected facial keypoints and their indices 3.2,3.1
U; initial set of facial keypoints uj before selection 3.2
K, B number of neighboring keypoints, and neighboring nodes set 3.2
Ck relative distance in a facial neighboring keypoints 3.2
H facial neighboring keypoints normalization term 3.2
UkE . ’U]? facial expression, and age variance 3.2
n keypoint selection weighting parameter 3.2

N, M number of initial facial keypoints and skeleton joints 3.2,3.3

N'. M number of selected facial, and generated SC keypoints 3.2,3.3
D; set of skeleton joints dj 3.3
o, J number of hierarchical levels, and graph nodes 3.3
XF set of initial facial feature vectors 34
X7 set of initial SC feature vectors zZ 3.4
AF A% facial, and SC adjacency matrix 3.4
G;, Vi, F; F-SC graph, nodes, and edges 3.4
e,p nodes edge, and correlation value 3.4
Popty Premp Spatial, and Temporal age probability 3.5
Q,a number of ages, and age label 3.5
wEF w2, adaptive facial, and SC graph edge weights 3.5
¢, psi adaptive activation function, and age weighting parameter 3.5

3.2. Facial Keypoint Selection

Our new graph representation of the face allows us to select the most informative facial
keypoints. Given the initial detected facial keypoints (U;), our facial keypoint selection
algorithm picks the keypoints (F;) that are less sensitive to facial expressions while more
sensitive to aging. We observed that relative distances between neighboring keypoints of-

ten change noticeably under different facial expressions. An example is shown in Fig. 1,
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where the relative Euclidean distances between two keypoints d(f1, f2) change during the
expression “smiling”. In the aging process, however, the global positions of keypoints shift
more dramatically. We exploit this fact to select the most effective facial keypoints based
on the facial expression and aging variances. We selected the most effective facial keypoints
based on the images captured in-the-wild such as those for the UTKFace dataset [43]. We
also further evaluated our method based on classical facial expressions on the PAL dataset
[44]. Our facial keypoint selection algorithm aims to find the facial keypoints that are less
sensitive to facial expressions while being informative enough to improve the age estimation
performance. We designed such a trade-off in a data-driven way based on the datasets we
used. The datasets include a variety of different individuals from different cultures and
various ages.

Facial Expression Variance. First, for each facial keypoint fi, we define a set of neigh-
boring keypoints as B(fx) = {fn,n = 0,1--- K}, where K is the number of neighboring
keypoints. Then, we calculate the sum of the relative Euclidean distance (d) of each key-

point fr to its neighbors as:

K
1
Gk =17 ;dm,fn) (1)
In the above, H = max ((;) is a normalization term, f, € 5(fx), where N is the

1<i<N
number of keypoints. For each fi, we compute the facial expression variance v,’f across all

the samples in the dataset as:

1 & 14
vp = N Z(Ck -~ ZCk)2 (2)
k=0 k=0

Age Variance. We define the global distance of f with respect to the root keypoint fr

as v, = d(fx, fr). For each f, we calculate the age variance v,’f across all the images in the

dataset:

1 & 1 &
A _ 2
Uk = > (- N > ) (3)
k=0 k=0
Keypoint Selection. We select the facial keypoints with the lowest facial expression

variances and highest age variances. Specifically, among the keypoints with the indices of

11



k € N, we select top-N’ keypoints with the highest va:

of =m-v + (=) (1—vf) (4)

In the above, 7 is a weighting parameter. We store the selected keypoint indices R =
{r,k =1,2,--- ,N'} to pick the selected facial keypoints F; = U;(R) during the training
and testing phases. The value for 7 is obtained experimentally. Specifically, we first select
uniform sampling values from the interval [0, 1] and narrow them down to the smaller

interval that maximizes the overall age estimation performance.

3.3. Skeletal-Cosmetic (SC) Keypoint Generation

Pose estimation algorithms such as OpenPose [42] extract spatially consistent and stable
keypoints which have been used in many applications such as action recognition using skele-
tal graphs [6]. Hence, we use the detected joints by the OpenPose as a reliable backbone to
generate SC keypoints that represent skeletons, postures, and clothing. Given the initially
detected skeleton joints D;, we generate the SC keypoints, Z;, by interpolating between
dy, € D;. The main challenge here is that the number of detected joints varies based on the
visibility of persons in different images. Therefore, different Hierarchical Levels (HL) can
be detected for each image. We define a HL. with O levels, as a set of joints that have a
similar parent-child ranking in a human body skeleton. For example two shoulders or arms
are in the same HL. Within the same HL, the number of detected joints can be also vary
for different image samples according to the camera position. Consequently, we start our
SC generation algorithm by interpolating SC keypoints among the same HL (parent joints)
and then continue to the next HL (child joints). Our SC Keypoint Generation algorithm is
illustrated in Algorithm 1. Two examples of our SC keypoint generation outputs are in Fig.
2 (right) and Fig. 6 (right).

The skeleton pose and facial landmark extraction algorithms that we used, [42] and [41]
respectively, can relatively interpolate the missing parts when partial occlusion happens. To
avoid the missing regions in the human body further, we only used the upper body of the
human with HL O=4 (as described in Section 3.6). We observed that the upper body of the
human provides sufficient skeleton information to model different age groups. Additionally,
our SC keypoint generation algorithm can interpolate the missing keypoints of a side of the

human body given the opposite side. For example, it can interpolate the right arm joint
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given the available left arm joint. In the extreme and less common cases when the facial
landmark and skeleton pose extraction algorithms fail and also the upper body part also is

not available, we set the missing values to zeros.

Algorithm 1 SC Keypoint Generation

Require: The detected skeleton joints, D
Ensure: SC keypoints, Z

1=0
Add D to Z > all the detected joints are added to Z
while i0§ O do > O is the number of HL in the skeleton
j =
while j} < J do > J is in the same HL
if d?(o0;) exists then
if d7T1(0;) exists then > d? and d’T! are neighboring nodes
Add Interpolation(d’ (0;),d"*1(0;)) to Z > in the same HL
end if
end if
Ji+1
if d?(0;11) exists then > check neighboring nodes from next HL
Add Interpolation(d’(o;), d’ (0;+1)) to Z > in two neighboring HL
else if D7(0;41) does not exist then
if D7(0;11) is not end-effector then > like wrists and feet
Add 0 to Z
end if
end if
end while
14 i+ 1
end while

3.4. Facial Skeletal-Cosmetic Graph Construction

After obtaining Z; (SC keypoints) and F; (facial keypoints) in the previous steps, we
construct a graph for each image sample I; to provide input to our TAA-GCN. We create

Z

the initial sets of feature vectors for F; and Z; as X" and X7,

respectively. To create
the sets of feature vectors, Vz, € Z; and Vfi € F;, we assign an initial feature vector of
el € XF and 2} € X7

70

respectively. Specifically, x£ and x are created by concatenating
the patch of pixels around the keypoints fi and z; and their 2D coordinates. We tile the 2D
coordinates of keypoints to match the patch of pixels size. In this hybrid feature represen-
tation, the patches of pixels provide cosmetic (clothing) information, while 2D coordinates
give information about skeletal structures and postures.

An example of the aforementioned feature representation for each keypoint can be seen
in Fig. 6 (the image is collected from the UTKFace dataset). Each x£ and xj then are

converted to 1D vectors. Subsequently, the sets of feature vectors, X7 and X7, are fed

79
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to the TAA-GCN. For two facial and SC graph nodes, we construct the initial adjacency
matrices of AF and A% by calculating the most correlated nodes. The correlation between
each pair of nodes, x; and x;, is calculated across all the dataset samples as:

cov(z;, ;)

= I 5
Pij ox; - o1, ()

So, Aij = 1if p;; is among the top-n correlated values, otherwise Aij = 0. Finally, we
create the initial graph as G; = {Vi; E;}, where V; = {XF, X7} and E; is obtained from
A={AF A%},

<< < [ < |
<<j<i</<<

<5< < < /<]

<|<|<<[</<

=5

Figure 6: The left image shows the detected skeleton joints and facial keypoints; the right image indicates
the final keypoints after using facial keypoint selection and SC keypoint generation algorithms. For each
facial and SC keypoint fr and zj, we assign an initial feature vector aci and z} by concatenating the patch of
pixels (around each keypoint) and the 2D coordinate of the keypoint, (X, Y). In this feature representation,
the 2D joint coordinates serve as the skeleton/posture structure, and the patches of pixels represent the
clothing.

3.5. Temporal-Aware Adaptive Graph Convolutional Network (TAA-GCN)

The pipleline of our proposed TAA-GCN is shown in Fig. 7. The input of the TAA-
GCN is a F-SC graph, G; = {V;; E;}, and the output is an age label §; € ¢° = {q;,t =
0,1,---,Q}, where V; = {vy, e R2. k =0,1---J}, E; = {EF, EZ}, and Q is the number of
age labels (maximum age). Here, J = M’+ N’ is the total number of nodes, Ef" and EZ are
facial and SC graph edges, respectively. Our TAA-GCN includes several Adaptive Graph
Convolutional Layers (AGCL) to refine E; so that the updated graph edges, E;, become a
more effective representation of connectivity among V;. Specifically, by updating the graph
edges, the TAA-GCN accommodates the variance in E;, which is caused by variance in facial

and SC graphs according to different faces, skeletons, postures, and clothing.
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The AGCN learns the spatial information in facial and SC graphs and outputs Lo, a C'xJ
feature vector, where C' is the number of channels. Lg is processed through Average Pooling
(AP), 1D convolutional (Conv) and Softmax layers to output the spatial age probability
Pspi(q°|G;). The above spatial dataflow is also illustrated in Eq. 6, where Ly = AGCN(G;).
The architecture of the AGCN which include several AGCLs is shown in Fig. 8.

Simultaneously, the TMM processes a () X J feature vector to learn the non-ordinal
temporal dependencies among different ages. The TMM outputs the temporal features,

1, a Q x J feature vector. L} then passes through convolutional and Softmax layers
to compute Lf, which is the temporal age probability Piemp(¢°|Gi). The aforementioned

temporal dataflow is also shown in Eq. 7. The architecture of the TMM can be seen in Fig.

\ Average
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spt(q 1G)

cxJ C

1
IL'l
'->

L,
[ 4 [ Softmax - tor(q 1G)

Conv

axJ TMM Q Premp(@®1G)
Figure 7: Our proposed TAA-GCN pipeline which includes Adaptive GCN (AGCN) and a new Temporal
Memory Module (TMM). Given the initial graph, G;, the AGCN extract features, Lo by refining the edges
in G;. Lo is then processed to compute the spatial age probability Pspt. Simultaneously, the TMM computes

the non-ordinal temporal dependencies in Lg to find the temporal age probability, Psemp. The final age
prediction is obtained by a weighted summation of two spatial and temporal probabilities.

P.pi(¢°|Gy) = Softmazx(Conv(AP(Ly))) (6)

Piemp(¢°1Gi) = Softmaz(Conv(TM M (Conv(Ly)))) (7)

Lastly, we compute the final age prediction as is shown in Eq. 8. The final loss Lossg
can be seen in Eq. 9, where MSE is Mean Square Error, g, is the ground truth value for

age, and w is an adjustment weight parameter. Additionally, Gsp: and Giemp are spatially
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and temporally predicted ages, respectively.

Pooy(¢°|Gi) = w - Pape(¢°]Gi) + (1 = w) - Premyp(¢°|Gi) (8)

Lossp =w - MSE@Spt - QQ) +(1-w)- MSE((jtem;D - ‘Ig) 9)

We will explain both TMM and AGCL in the following:

(2xJ) GO GCx)
AGCL, _’ AGCL,
— M - .
C. @4— AGCL, 4—’“

Figure 8: The architecture of the proposed Adaptive Graph Convolutional Network (AGCN). Here, DO
signifies a Dropout layer, C' = 256, and the activation function is the Rectified Linear Unit (ReLU).

Temporal Memory Modules.

Standard temporal networks follow an ordinal temporal structure to capture temporal
dependencies in sequences. Such a temporal structure is irrelevant in age estimation since
there is no explicit temporal connection between consecutive age samples. In contrast, our
TMM can capture temporal dependencies among temporally non-ordinal age samples. As
shown in Fig. 7, the input of the TMM is a @ x J feature vector, where each raw represents
different ages as {q,t = 0,1,--- ,@Q}. The TMM captures the temporal dependencies among
different ¢; in a recurrent manner which is shown in Fig. 9. In this figure, z is the input, o

is the output, and I is the hidden state.

0t—1t

oo Xt-ll age=gq,, th age=gq, Xti1 age=qu; ***
Figure 9: Our proposed Temporal Memory Module. With using our new adaptive activation function

including the trainable parameter W; and 1, we extract non-ordinal temporal dependencies in age features,
x¢, for various ages, g;.
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We exploit the fact that people of similar ages share more similarities than different
ages. For example, people aged 20 and 21 look more similar, wear more similar clothing and
have more similar poses than those aged 20 and 60. Our proposed TMM can capture the
dependencies between both close age groups such as 20 and 21 as well as distant age groups
like 20 and 60. By considering such temporal dependencies among age groups, we assist
the age estimation network to (1) decrease the intra-class variations by finding similarities
among the same ages, and (2) increase the inter-class variations by learning the differences
among different ages. Especially, the latter is crucial to avoid significant errors such as
confusion between ages 20 and 60 that lead to a remarkable decrease in the overall network
performance. To make our TMM aware of such age group dependencies, we propose an

adaptive activation function, ¢, illustrated in Eq. 10.

w 1

= 1+ ae—vz’ V= lg: — qql

(10)

In the above, g, is a ground truth age, o > 1 is an adjustment parameter, and W =
{wg,t = 0,1+ ,Q} are adaptive weight parameters. 1 weights different age groups and
ensures that during the training, the ages closer to the ground truth are assigned higher
weights than distant ages. In the extreme cases, when two ages are the same, |¢; —gq4| — 0,

then ¢p — o0, and so ¢ — w;. On the other hand, when |¢ — ¢4] — @, then ¢y — 0,

and so ¢ — fj_ta. The adaptive weight parameters memorize this weighting procedure for
different g;. In the testing phase, ¢ is set to 1, and we use W to weight different g;.

Adaptive Graph Convolutional Layer (AGCL).

The graph convolutional operator is applied over each vy’s adjacent nodes B(vy). The
set of graph edges, F;, includes all 5(vy),vx € V;. Hence, finding appropriate E; is crucial
for applying effective convolutions over B(vy) that maximizes the network performance.
Due to the variance in facial and SC graphs for different faces, skeletons, postures, and
clothing, finding appropriate FE; is challenging. To solve this challenge, some researchers
have suggested using dynamic temporal graphs for temporal problems such as skeleton-
based action recognition [6]. Our case, however, is different because: (1) age estimation
is a spatial problem, where many node candidates are equally important. For example, in
a temporal sequence such as “running” few joints are involved in the action. In different

ages, however many facial and SC keypoints have significant equal roles; (2) in contrast to

the skeletal graphs [6], our F-SC graph consists of two separate facial and SC graphs, with
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no explicit connection between them. So, instead of eliminating the nodes, we propose a
weighting strategy that prioritizes the importance of node connectivity in F;. Moreover, we
utilize two separate weighting functions to refine the edges in facial and SC graphs.

Our AGCN consists of several AGCLs that refine F; separately for facial and SC graphs
via updating the weight of each edge e, € E; which connects (vp,, v,,) € V;. We define the
relationship between the input (f;,) and the output (f,u:) of each AGCL for each v, € V;

as:

Jout(Vm) = Z fin(vn) - (fe(emn)) (11)

U €6(Vm)

In the above, f. is our proposed correlation weighting function and e,,, = {ef  eZ 1},
where I' and Z represent for facial and SC graphs, respectively. The correlation weighting
function, f., ensures that highly correlated nodes have larger weights on their connecting
edges. To find the correlations among nodes we compute the cosine similarities (Cs) between
the pair of nodes v, and v, as:

Um * Un

OS('U'men) = I (12)

vm [ llvnll
We selected the cosine distance since compared to Euclidean distance is not sensitive to
node vectors’ magnitudes. Specifically, the Euclidean distance fails to capture the correlation
between highly correlated nodes that are located distantly in the Euclidean space. For a
similar reason, we could not use the city block distance.
To include the correlation information between each nodes (v, v,) € V;, we update each
edge e, € F; using f.. For SC and facial graphs, the facial and SC correlation weighting

functions, fZ and fI, can be seen in Eq. 13 and Eq. 14, respectively.
fCZ(ein) = WZ : CS(Um,Un) : eg’m, (13)

WF
f () = = (14)
1 + CS(Um,vn) : e’I’FnTL n

In the above equations, W# and W are trainable parameters. Since facial graphs might
not change dramatically similar to SC graphs, for facial graphs, we magnify the correlation

change in e by a logistic function with the power of v, . Specifically, 7, € 1 <Z < K is
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the order of el € E;(3(v)), where K is the number adjacent nodes in 3(v,,). Namely,

F

mn is ordered based on the correlation value between v,, and v,,. So,

for each v, € B(vy), e
the optimal values of ~,, for v,, and its neighboring nodes v, is calculated based on order of
correlation values between neighboring nodes. We used this optimal weighting because it is
consistent for all nodes V; since K is a fixed parameter.

We separately update ef = and eZ

- 2 » by defining two separate correlation weighting func-

tions fCF and fCZ to ensure that the original connectivity importance in the facial and SC
graphs are preserved. Each e, is adaptively updated after each convolutional operation
between B(vp,) * U, + fe(émn) which also updates W< and WF in each gradient descent

iteration.

3.6. Implementation Details

Table 2 summarizes the implementation details of our proposed pipeline referenced in

relevant sections of this paper.

Table 2: Implementation details of our proposed pipeline with associated paper section references.

Parameter Value Section
Number of Initial Facial Keypoints (N) 68 3.1
Number of Skeleton Joints (M) 18 3.1
Number of Selected Facial Keypoints (N') 19 3.2
Number of Neighboring Facial Keypoints (K) 5 3.2
Facial Keypoints Selection Weighting Parameter (7)) 0.4 3.2
Number of SC Keypoints (M) 20 3.3
Number of Hierarchical Levels (O) 4 3.3
Size of Patch of Pixels 32x32 pixels 3.4
Number of AGCLs 6 3.5
Number of Channels in AGCL (each layer) (64, 64, 128, 128, 256, 256) 3.5
Number of Layers in TMM 5 3.5
Number of Channels in TMM (for all layers) 64 3.5
Learning Rate le™® 3.5
Number of Training Epochs 300 3.5
Optimizer ADAM 3.5
Weight Decay le=6 3.5
Loss Adjustment Weight (w) 0.65 3.5
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4. Experimental Results

4.1. Datasets

For our major comparative experiments, we used four age datasets, CACD [45], MOR-
PHII [45], UTKFace [43], and FG-NET [46], in our experiments. For the FG-NET, MOR-
PHII, and CACD datasets we only used our facial graphs since they do not include the
human body.

UTKFace. Consists of 24,000 images of 116 ages. We used 20,000 samples for training
and 4,000 samples for testing. For now, it is the only major publicly-available age dataset
that includes uncropped images with sufficient views of clothing. So, the dataset is well
matched with our network when both facial and SC graphs are used.

MORPHILI. Includes 55,000 samples of 13,000 subjects ranging from age 16 to 77. We
used 44,000 samples for training and 11,000 samples for testing.

CACD. Includes 160,000 sample images of 2,000 celebrities from 49 age categories. In
our experiments, the training, testing, and validation sizes are 127,000, 31,000 and 12,000
samples, respectively. As the CACD dataset only includes faces, we tested this dataset only
on our facial graphs.

FG-NET. Consists of about 1,000 samples from 69 different ages, and 82 individuals.
We used 900 samples for training and 100 samples for testing. This dataset also includes

only face images.

4.2. Comparative Results

We compared our method with the state-of-the-art approaches on four datasets, UTK-
Face, CACD, MORPHII, and FG-NET, with the results shown in Table 4 and Table 6,
respectively. We used the Mean Absolute Error (MAE), an standard evaluation metric in
age estimation. The description of MAE is shown in Equation 15, where y; is the estimated

age for each test sample 1, yZG is the ground truth, and N is the number of test samples.

N

MAE:Z\yi—yﬂ (15)
i=0

Our proposed approach outperformed the state-of-the-art methods on all four bench-
marks. Specifically, for the UTK-Face dataset, with an MAE of 3.48, our TAA + F-SC

graph outperformed the best previous record by approximately one year in age accuracy.
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For the MORPHII dataset, we obtained an MAE of 1.69, which outperformed the other
methods. For the CACD dataset, which is the largest existing age dataset, we obtained
an MAE of 4.09, which improves upon the currently best results by 0.54 years in age ac-
curacy. Our proposed method outperforms the existing approaches that did not use the
IMDB-WIKI dataset pre-trained weights/features on the FG-NET dataset. We improved
the current benchmark by 0.34 years. Among the methods that used IMDB-WIKI dataset
for pre-training however, DAG-CNN [28] achieved the best performance. We outperformed
the other works on two large MORPHII and CACD datasets, though many of them used
IMDB-WIKI pre-trained weights/features.

Table 3: Comparison of our method, TAA-GCN + Facial graph and the state-of-the-art methods on the
MORPHII dataset.

Team Method MAE

Lu et al. [47] ORMO 327
Liu et al. [2] SAF 2.97
Zhang et al. [48] C3AE 2.75
Cao et al. [49] RCOR 2.64
Yang et al. [14] SSR-Net 2.52
Pan et al. [50] MVL 2.51
Shen et al. [51] LDIR 2.24
Shen et al. [52] DRF 2.17
Ours TAA-GCN+F 1.69

Table 4: Comparison of our proposed method, TAA-GCN + F-SC graph and the state-of-the-art methods
on the UTKFace dataset.

Team Method MAE

Rothe et al. [53] DEX 4.31
Yoshimura et al. [54] FOSS 4.49
Cao et al. [49] RCOR 5.39

Al et al. [55] SDTL 4.86

Li et al. [56] SAM 477
Berg et al. [57] DOR 4.55
Sun et al. [3] DCD 4.47
Ours TAA-GCN+F-SC  3.48

4.8. Ablation Study

We conducted an ablation study to evaluate the impact of the constituent components
of our proposed pipeline on the overall age estimation performance. For our study, we define

some abbreviations that are shown in Table 7. We carried out our ablation study on the
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Table 5: Comparison of our method, TAA-GCN + Facial graph and the state-of-the-art methods on the
CACD dataset.

Team Method MAE

Lu et al. [47] ORMO 5.36
Cao et al. [49] RCDR 5.24
Yang et al. [14] SSR-Net 4.96
Zhang et al. [48] C3AE 4.88
Rothe et al. [53] DEX 4.78
Shen et al. [51] LDIR 4.73
Shen et al. [52] DRF 4.63
Ours TAA-GCN+F 4.09

Table 6: Comparison of our method and the state-of-the-art methods on the FG-NET dataset. The results
for this small dataset are reported for two categories: (1) methods that employed training from scratch
rather than pre-trained weights and features; methods that used IMDB-WIKI pre-trained weights/features.

Methods NOT pre-trained  DE [58]  CS-LBF [59] GADF [60] SAF [2] Ours
MAE 4.80 4.36 3.93 3.92 3.58
Methods pre-trained DEX [53]  MVL [50] C3AE [48] DAG-CNN [28]
MAE 4.63 4.10 4.09 3.05

UTKFace dataset because it includes uncropped images with visible clothing, allowing us to
test various types of graphs. We compare two facial and SC graphs (keypoints and patches
of pixels) separately in Table 8. The overall age estimation performance changed when
different graphs (facial or skeletal-cosmetic) were used.

We encode the skeletal and posture information with our Skeletal-Cosmetic Keypoints
(SCK), while we obtain the clothing information from our Skeletal-Cosmetic Image Patches
(SCIP). As can be seen in Table 8, using the skeleton/posture (SCK) information alone led
to slightly better performance (MAE=5.50) compared to using clothing information alone
(MAE=5.56). The combination of skeleton/posture and clothing information (SCK+CSIP),
however, yields the best performance (MAE=5.45). Table 9 illustrates the impact of the
combination of facial and SC graphs (skeleton/posture and clothing information) on the
overall age estimation performance. Overall, combining all facial, skeleton/posture, and
clothing features (FK+SCK+FPP+SCIP) led to superior performance.

Without facial information, and by using only SC graphs and SCK+SCIP features, still
our proposed approach achieved competitive performance (with an MAE of 5.45 according
to Table 8). Our age estimation algorithm works well without facial information, using
only skeleton, posture and clothing information. So, our proposed algorithm is practical

in real-world scenarios such as surveillance systems, where facial information is partially
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available.

We also analyzed the impact of the constituent components of our proposed network,
which is shown in Table 10 (with facial keypoint selection) and Table 11 (without facial key-
point selection). We achieved the best performance (with an MAE of 3.48) when we jointly
used all our proposed modules (TAA-GCN) with our facial keypoint selection algorithm.
Moreover, we evaluated the impact of the trainable facial and SC graph edge parameters,
WF and W#, on the overall age estimation performance illustrated in Table 12. To evaluate
the generalization of our proposed approach, we conducted a cross-dataset evaluation on the
MORPHII and CACD datasets which have sufficient numbers of samples for appropriate

training. The results are shown in Table 13.

Table 7: The abbreviations used in the ablation study.

Abbreviation Definition
FK Facial Keypoints (2D coordinates)
FPP Facial Patches of Pixels
SCK Skeletal-Cosmetic Keypoints (2D coordinates)
SCIP Skeletal-Cosmetic Image Patches
TAA-GCN Temporal-Aware Adaptive GCN
AGCN Adaptive GCN (no temporal awareness)
TA-GCN Temporal-Aware GCN (no adaptivity)
GCN Baseline GCN (no TA and adaptivity)

Table 8: The impact of facial/SC graphs and their keypoints/patches of pixels, individually, on the overall
age estimation performance. The skeletal and posture information are encoded using the Skeletal-Cosmetic
Keypoints (SCK). The clothing information are encoded using Skeletal-Cosmetic Image Patches (SCIP).

Modules FK FPP FK+FPP SCIP SCK SCK+SCIP
Modality face face face clothing skeleton/posture clothing+skeleton/posture
MAE 551 5.05 4.18 5.56 5.50 5.45

Table 9: The impact of the skeletal and posture (SCK) and clothing (SCIP) information, combined with
facial information on the overall age estimation performance.

Modules FK+FPP+SCK FK+FPP+SCIP FK+FPP+SCK+SCIP
Modality face+skeleton/posture face+clothing face+skeleton/posture+clothing
MAE 3.64 3.75 3.46
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Table 10: The impact of the constituent components of our proposed network on the overall age estimation
performance when the facial keypoint selection algorithm is used.

Modules TAA-GCN AGCN TA-GCN GCN
MAE 3.48 4.83 4.02 5.33

Table 11: The impact of the constituent components of our proposed network on the overall age estimation
performance, when the facial keypoint selection algorithm is not used.

Modules TAA-GCN AGCN TA-GCN GOCN
MAE 4.01 5.60 4.78 5.98

Table 12: The impact of the trainable facial and SC graph edge parameters, W and W2, on the overall
age estimation performance.

trainable parameter W adaptive adaptive non-adaptive non-adaptive
trainable parameter W# adaptive non-adaptive adaptive non-adaptive
MAE 3.48 4.43 4.20 4.78

Table 13: Cross-dataset analysis between the MORPHII and CACD datasets.

Scenario Trained on MORPHII  Trained on CACD
tested on CACD tested on MORPHII
MAE 5.56 3.02

4.4. Images in-the- Wild

The images from the UTKFace [43] that we used in our experiments are captured in-
the-wild. To further evaluate our proposed approach in-the-wild condition, we also used
the Relative Human dataset [12] which includes a variety of images captured in-the-wild.
The Relative Human dataset includes 24800 image samples with a variety of partial face
views commonly due to the impact of different camera angles or subjects/objects overlap
in-the-wild. Such the in-the-wild condition also shares many similarities with surveillance
conditions, where people are captured from different camera viewpoints. Some image ex-
amples are shown in Fig. 10. The dataset also includes both human face and body which
is useful in our experiments. The Relative Human dataset provided the label set consist-
ing of four age groups “baby”, “kid”, teenager”, and “adult”. For evaluation, we used the
“top-1 score”, a common metric in classification problems, that matches the top class with
the highest probability and the target label. We reported the age estimation results for
different combinations of facial and SC graphs (face, skeleton/posture and clothing infor-
mation) in Table 14. We also compared our method to two other approaches, DEX [53] and
SSR [14] in Table 15. As can be seen, our approach with the combination of all features
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(FK+FPP+SCIP+SCK) achieved a top-1 score of 97.80% which is significantly higher than
those scores for other methods.

Table 14: The impact of facial/SC graphs and their keypoints/patches of pixels on the age estimation
performance on the Relative Human dataset.

Modules FK+FPP SCIP SCK SCK+SCIP
Modality face clothing skeleton/posture clothing+skeleton/posture
Top-1 score  94.35% 91.85% 91.10% 91.98%

Table 15: Comparison of our proposed method to other approaches on the Relative Human dataset.

Method  Ours (FK+FPP1SCIP+SCK) DEX [53] SSR [14]
Top-1 score 97.80% 90.03% 92.31%

Figure 10: Some image samples form the Relative Human dataset with a variety of partial facial views
captured in-the-wild that also resembles surveillance conditions.

4.5. Blurring Effects and Facial Expressions

To simulate the reduced-quality image capture in-the-wild or under surveillance con-
ditions, following [61] and [62], we evaluated our proposed method under several blurring
effects. We tested our algorithm on the PAL dataset [44] which includes 3000 image samples
with a variety of facial expressions. We synthetically added Gaussian and motion blurring ef-
fects to the image samples of the dataset to emulate those effects in real-life scenarios. Some
image examples from the PAL dataset with three facial expressions, “sad”, “surprise”, and
“happy” and synthetically added blurring effects are shown in Fig. 11. We compared our
method with two other strategies and showed the results in Table 16. As can be seen, our
method remarkably outperforms the other approaches which shows the reliability of our
proposed approach under blurring effects which is a common condition in-the-wild or in

surveillance scenarios.
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Figure 11: Some image samples form the PAL dataset with two blurring effects under different facial
expressions. (a): Original image, (b): added Gaussian blurring effect, and (c¢): added motion blurring effect.
The facial expressions are: (up): sad, (middle): surprise, and (down): happy.

Table 16: Comparison of our proposed method to other approaches on the PAL dataset under different
blurring effects that simulates those effects in-the-wild or under surveillance conditions.

Method MAE (Gaussian Blur) MAE (Motion Blur)

61 6.42 6.48
62 6.0 6.0
Ours 3.49 3.70




5. Conclusions

We proposed a new graph representation for age estimation using skeleton joints and
facial keypoints. This new representation yields more relevant information than raw images
and is more reliable under different viewpoints and facial expressions. We also suggested
a new Temporally-Aware Adaptive Graph Convolutional Network with two improvements
(1) it captures non-ordinal temporal dependencies in different ages which is not possible
with standard temporal networks, and (2) it adaptively refines facial and Skeletal-cosmetic
graphs edges to accommodate the variance in appearance. Furthermore, we proposed to use
skeleton structure, posture, and clothing information in the age estimation solution. This
rich set of features accommodates significant performance improvements when the face is
only partially visible in real-life scenarios. Our method outperformed the state-of-the-art
approaches on four public benchmarks, including the UTKFace dataset, whose images are
captured in-the-wild. We also further tested the reliability of our proposed age estimation
algorithm in uncontrolled environments in two more scenarios: (1) the images captured
in-the-wild from the Relative Human dataset and (2) the synthetically blurred images from
the PAL dataset under a variety of facial expressions.

Our new graph representation of soft biometrics, including the skeleton, posture, cloth-
ing, and face, can be used as a backbone by other researchers in the field. Such a graph
structure is a powerful representation of the skeleton and face in tandem, since graph nodes
and edges can effectively describe facial landmarks, and skeleton joints and encode their
connectivity information. We also are the first to introduce a complete experimental setup
for age estimation in-the-wild. Such an experimental setup can be used as a standard
benchmark in the future. Moreover, our new Temporal Memory Module (TMM) can be ex-
ploited in any research problem, such as age estimation that involves computing non-ordinal

temporal dependencies.
5.1. Limitations
Here is our work’s main limitations:

e Severe occlusion: While our method is effective when the human face and body are
partially occluded, it can fail when both the face and body are severely occluded.

However, such a severe occlusion is unlikely.
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e Non-conventional facial expressions: Our facial keypoint selection algorithm can ac-
commodate a variety of facial expressions. Nevertheless, our proposed algorithm might

be less effective in handling non-conventional facial expressions.

e Complex human poses: Although our Adaptive Graph Convolutional Layer (AGCL)
can accommodate diverse standard and non-standard human poses, it might be less
effective in handling extremely complex human poses in sports activities such as gym-
nastics or martial arts. It is because, in many of these activities, the skeleton config-
uration of human changes significantly. So, the neighboring skeleton joints can highly

vary in such sport activities.

5.2. Future Work

We suggest some future work to solve the limitations explained above:

e Modeling human sub-parts: Although our graph-based model can model several human
face and body sub-parts, such as eyes and noise, the network’s loss function does not
depend independently on human sub-parts. We suggest modeling human sub-parts
independently with separate loss functions to handle severe face and human body
occlusion. Such independent human sub-parts modeling is more effective when only a
sub-part of the human face or body is visible. This can be achieved, i.e., by designing

multiple graph convolutional streams for several human sub-parts.

o Adaptive facial keypoint selection: Although our facial keypoint selection algorithm
is data-driven, it is not based on a learning process. To accommodate a variety of
cross-cultural and non-conventional facial expressions, we recommend a more adaptive
model, preferably using a separate deep learning module to select more effective facial

keypoints.

o Adaptive skeletal-cosmetic keypoint generation: Our skeletal-cosmetic keypoint gen-
eration algorithm selects fixed and spatially consistent keypoints based on human
skeleton structure. We suggest an adaptive way to generate such keypoints to handle

various complex human poses.
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